
Analytical Investigation of the Dynamics

of Tethered Constellations in Earth Orbit (Phase II)

Contract NAS8-36606

Quarterly Report

For the period 1 April 1988 through 30 June 1988

Principal Investigators

Dr. Enrico C. Lorenzini
Dr. Gordon E. Gullahorn

Dr. Robert D. Estes

July 1988

Prepared for
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812

Smithsonian Institution
Astrophysical Observatory

Cambridge, Massachusetts 02138

The Smithsonian Astrophysical Observatory
is a member of the

Harvard-Smithsonian Center for Astrophysics

(KASfi-Cfi-17S371) AKAIS1JCAI IKVESflGASJGfi N88-28S5Q
cf 2iE Bisaaics ci IEIEEBED ccRSfELiiiiCRs
IK IflMH OiBIT Cuacterly-Bepcxt. £c. 13, 1
Apr,:,-, 30 Jua.; 1S£€ ' (SmitbsctiaD Unclas
Astrophysical Cfcstrvatcry) ; 121 p CSCI 22B G3/18. v0156618

Analytical Investigation of the Dynamics

of Tethered Constellations in Earth Orbit (Phase II)

Contract NAS8-36606

Quarterly Report #13

For the period 1 April 1988 through 30 June 1988

Principal Investigator
Dr. Enrico C. Lorenzini

Dr. Gordon E. Gullahorn
Dr. Robert D. Estes

Co-Investigators
Dr. Mario D. Grossi

Dr. Mario Cosmo
Mr. David A. Arnold

July 1988

Prepared for
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812

Smithsonian Institution
Astrophysical Observatory

Cambridge, Massachusetts 02138

The Smithsonian Astrophysical Observatory
is a member of the

Harvard-Smithsonian Center for Astrophysics

CONTENTS

Page

Summary 1

Figure Captions 3

SECTION 1.0 INTRODUCTION 4
2.0 TECHNICAL ACTIVITY DURING REPORTING PE-

RIOD AND PROGRAM STATUS, E.G. LORENZINI,
PI 5

2.1 Wave Propagation In The Upper Tether Of
TECS 5

2.1.1 Introductory Remarks 5
2.1.2 Transverse Waves 7
2.1.3 Longitudinal Waves 12
2.1.4 Numerical Results 14
2.1.5 References To Section 2.1 .'• 24
2.2 Longitudinal Dampers 25
2.2.1 Introductory Remarks 25
2.2.2 Optimization Of Longitudinal Damper Parameters 26
2.2.3 References To Section 2.2 41
2.3 Concluding Remarks 41
3.0 PROBLEMS ENCOUNTERED DURING REPORT PE-

RIOD, E.G. LORENZINI, PI 43
4.0 ACTIVITY PLANNED FOR NEXT REPORTING PE-

RIOD, E.G. LORENZINI, PI 43
5.0 TECHNICAL ACTIVITY DURING REPORTING PE-

RIOD AND PROGRAM STATUS, G. GULLAHORN
PI 44

CONTENTS (Cont.)

Page

SECTION 5.1 Tether Applications Simulation Working Group Sup-
port 44

5.2 Tether Aerodynamic Effect Of RCS Thruster
Plume 45

5.2.1 Computer Acquisition 45
5.2.2 Transport Of SLACK Code To Microcomputer . 46
5.2.3 Modification Of SLACK Code 50
6.0 PROBLEMS ENCOUNTERED DURING REPORTING

PERIOD, G. GULLAHORN PI . 50
7.0 ACTIVITY PLANNED FOR NEXT REPORTING PE-

RIOD, G. GULLAHORN PI 51
7.1 Tether Applications Simulation Working Group Sup-

port 51
7.2 Tether Aerodynamic Effect Of RCS Thruster

Plume 52
8.0 TECHNICAL ACTIVITY DURING REPORTING PE-

RIOD AND PROGRAM STATUS, R.D. ESTES, PI 53
9.0 PROBLEMS ENCOUNTERED DURING REPORTING

PERIOD, R.D. ESTES, PI 119
10.0 ACTIVITY PLANNED FOR NEXT REPORTING PE-

RIOD, R.D. ESTES, PI 119

Summary

This Quarterly Report deals with the three sets of topics summarized

hereunder. For each set of topics the name of the PI responsible for that

particular set is indicated.

(1) E.G. Lorenzini, PI.

Investigation of the propagation of longitudinal and transverse waves along

the upper tether. Specifically the upper tether is modelled as three massive

platforms connected by two perfectly elastic continua (tether segments). The

tether attachment point to the station is assumed to vibrate both longitudinally

and transversally at a given frequency. Longitudinal and transverse waves

propagate along the tethers affecting the acceleration levels at the elevator and at

the upper-platform. The displacement and acceleration frequency-response-func-

tions at the elevator and at the upper-platform are computed for both longitudinal

and transverse waves.

An analysis to optimize the damping time of the longitudinal dampers is

also carried out in order to select, the "optimal" damper parameters. The

analytical evaluation of the performance of tuned longitudinal dampers vs. detuned

longitudinal dampers is also part of this analysis.

Page 2

(2) G.E. Gullahorn, PI.

Due to other demands on the time of one PI, reduced effort was spent on

the tasks (A) for support of the Tether Applications Simulation Working Group and

(B) for study of the use of the Shuttle primary Reaction Control System (RCS)

thrusters for blowing away a recoiling broken tether. In support of the latter,

a microcomputer system was acquired and set up. SLACK code has been

transferred to this system from the VAX, and translated from VAX extended

Fortran to the Fortran-77 standard used on the microcomputer.

(3) R.D. Estes, PI.

Most of the effort in the tether plasma physics study was devoted to

software development in this period. A particle simulation code has been

integrated into our Macintosh II computer system and will be utilized for studying

the physics of hollow cathodes.

Page 3

Figure 1.

Figure 2(a)-2(f).

Figure 3(a)-3(h).

Figure 4.

Figures 5(a)-5(c).

Figures 6(a)-6(c).

Figure 7.

Figure 8.

Figure Captions

Schematic of the upper-tether.

Displacement and acceleration frequency-response-functions
(FRF's) at the elevator for longitudinal and transverse waves
propagating in the upper-tether.

Same as Figures 2 except that the FRF's are those of the
upper-platform instead of the elevator. The longitudinal
and transverse displacement attenuation-functions for waves
crossing the elevator and reaching the upper-platform are
shown in Figures 3(g) and 3(h).

Schematic of a longitudinal damper and associated tether
segment.

Longitudinal dynamic response vs. damper parameters and
tether characteristics of tether segment 1 (between the
lower-platform and the station). These figures are also
representative of the dynamic response of tether segment 3
(between the elevator and the upper-platform).

Same as in Figures 5 except that the dynamic response
is that of tether segment 2 (between the station and the
elevator).

First "card" of hypercard front-end to simulation program.
User defines the basic run parameters.

Example of a card to define the input parameters for a given
species of simulation particle.

Page 4

1.0 INTRODUCTION

This is Quarterly Report #13 submitted by the Smithsonian Astrophysical

Observatory (SAO) under NASA/MSFC contract NAS8-36606, "Analytical Investi-

gation of the Dynamics of Tethered Constellations in Earth Orbit (Phase II)."

The Pi's for this report are: Dr. Enrico C. Lorenzini for the analysis described in

Sections 2.0-4.0, Dr. Gordon E. Gullahorn for Sections 5.0 — 7.0, and Dr. Robert D.

Estes for Sections 8.0—10.0. This report covers the period from 1 April 1988

through 30 June 1988.

Page 5

2.0 TECHNICAL ACTIVITY DURING REPORTING PERIOD AND PRO-
GRAM STATUS, E.G. LORENZINI, PI

2.1 Wave Propagation In The Upper Tether Of TECS

2.1.1 Introductory Remarks

An important topic of investigation for the Tether Elevator/Crawler System

(TECS) is the propagation of disturbances along the tethers. Specifically, the

propagation along the upper tether is of particular relevance to the microgravity

experiments on board the elevator (EL). The Space Station (55), in fact, is a

source of non-negligible disturbances at a wide range of frequencies. In general,

the low frequencies (around 10"3 Hz) disturbances are associated with aerodynamic

and orbital perturbations, the medium frequencies (10"" Hz—10 Hz) disturbances

with the structural vibrations of the station, and the higher frequencies (>10 Hz)

with rotating machinery and human activity on board the station.

Since the tether is an elastic continuum the above mentioned disturbances

travels from the 55 to the upper-tether-end and back affecting the microgravity

level on board the elevator. For a perfectly elastic tether with non-dissipative

terminations these waves propagate indefinitely back and forth along the tether.

In an actual case the tether has a small amount of material damping and is,

moreover, embedded in a dissipative medium. The same applies to the

terminations (platforms).

Page 6

The amount of tether material damping has been estimated in a

preliminary way. The tether is a complex non-isotropic continuum and the

damping varies with the tether length according to a function which depends on

the damping model adopted. Furthermore, material damping is significantly

affected by temperature because the material properties of kevlar are sensitive to

temperature variations. Current estimate of tether material damping ranges from

1% to 5% of the critical damping for a tether length of 20 km [1,2], The tether,

therefore, has to be viewed as a low-damping elastic continuum.

The small tether material damping affects primarily the propagation of

longitudinal waves, while has an almost negligible effect on the transverse waves

[l]. Transverse waves, on the other hand, are affected by the interaction with the

surrounding atmosphere. The extent to which this interaction provides non-

negligible damping of transverse waves along the tether has not been evaluated so

far but it is quite reasonable that it is small given the low value of the tether

transverse velocity.

The first issue to be addressed, therefore, is the response of the upper

tether, considered as a perfectly elastic continuum, when its attachment point

to the station is oscillating in either the longitudinal or the transverse direction

with a given frequency.

If we consider the realistic case of small perturbations we can treat the

longitudinal and the transverse waves independently as shown in the next

Page 7

subsections.

2.1.2 Transverse Waves

The upper tether subsystem is schematically shown in Figure 1. The tether

segment 1 of length t\ connects the attachment point of the station to the elevator.

The tether segment 2 of length £2 connects the elevator to the upper platform.

The longitudinal coordinates along the undeformed tether segments 1 and 2 are

called Zj and z2 respectively; therefore 0 < Z| < t± and 0 < z2 < £2. The

attachment point at the station is perturbed in either the transverse or the

longitudinal direction as indicated in Figure 1. In particular the transverse

perturbation generates transverse waves propagating in the two tether segments.

We call tjji and V>2 the lateral deformations of tether segments 1 and 2 produced by

the transverse waves.

After assuming that the platforms are point masses the transverse wave

equations in tether segments 1 and 2, and the boundary conditions are given by

0 < z, < i, (1.1)

0 < z2 < £2 (1.2)
dz2

(1.3)

Page

Upper -Piatform

Elevator

cos

Figure

Page 9

(1-5)

where we have expressed the external perturbation in equation (1.3) as a complex-

variable function by utilizing Euler's formula. The boundary condition of

equations (1.4) states that the inertial force at the elevator (mj) is balanced by the

resultant of the transverse forces generated by tether segments 1 and 2. Equation

(1.6) is similar to equation (1.4) except that is referred to the upper platform (m2)

which is connected to tether segment 2 only. Equation (1.5) is an interface

condition between the transverse displacement of tether segment 1 and 2 at the

elevator. The solutions of equations (1.1) and (1.2) have the form

' (2.1)

t/,2 = fl2(z2)e'«" (2.2)

After substituting equations (2) into equations (1.1) and (1.2) we obtain standard

differential equations in RI(ZI) and R-^z^) whose solutions are

RJ(ZJ) = Re[D,e^} j = 1,2 (3)

Page 10

where Dy's are complex numbers which can be expressed as follows

Dj = d, + id, j = 1,2 (4)

and

•kj = U/CM j = 1,2 (5)

We define

J - 1,2 (6)

and after substituting equations (3) into equations (2) and subsequently into the

boundary conditions (1.3) — (1.6) we obtain

= pT

sn

cos <>2 + % sn

d i cos <£i — di sin <j)± = d^ (7)

\ / ~ \
) T^k^ = — u^m^i d% cos (^2 — ̂ 2 sin 02)

^v^ ^>^

By solving equations (7) for <fj , dj, ^2, an<i ^2 we can explicit the shape functions

RJ(ZJ) given by equations (3). In particular we are interested in the values of the

function RI(ZI) and #(22) a^ the coordinates Z[= t± and z^ = LI respectively.

R\(t\} and ^2(^2)) in fact> provide the transverse displacements at the elevator and

at the upper platform respectively for a transverse displacement perturbation of

Page 11

the tether attachment point to the station.

After several algebraic manipulations we obtain the displacements at the

elevator and at the upper platform as follows:

where

and

X, = cos • ,
sin <pi + T

= cos

°y

sn

X, = I X, I 6-

sin d>\—
cos fa - sin

-1

1,2

1,2

-i

(7.1)

(7.2)

(8.1)

(8.2)

(8.3)

(9.1)

(9.2)

(9.3)

j I and I X2 I are the transverse-displacement frequency-response-functions (FRF)

at the elevator and at the upper platform. From equations (7) we infer that | Of |

provides the attenuation of a transverse wave passing through the elevator and

tether segment 2. It is comforting to notice that for T2 = 0 (no wave propagation

in tether 2) equation (8.1) reduces to the form shown in reference [2] which has

been derived for a single tether sequent. Since the wave equations are linear we

Page 12

can easily obtain the acceleration FRF's \ X\ \ and | X2 | as follows [l]

X ;-| j = 1,2 (10)

2.1.3 Longitudinal Waves

By inspecting equations (l) we see that the transverse wave equations and

their boundary conditions can be transformed into longitudinal wave equations and

associated boundary conditions by making the following substitutions: (a) the

transverse displacement tfjj is substituted by the longitudinal displacement ?7;; (b)

the transverse wave velocity cy. by the longitudinal wave velocity cn•; (c) the

tensions Tj by (EA)j; and (d) the transverse displacement amplitude p? by the

longitudinal displacement amplitude pi. After the transformation the longitudinal

wave equations are obtained as follows:

2 0 < Zj < tj, j = 1,2 (11.1)
dzj

* (11.2)

(0, O "»! (11.3),

>7i(*i,0 = »72(0,0 (H.4)

fj?

Page 13

(11.5)

where the longitudinal wave velocities are given by:

ctl] = j = 1,2 (12)

The displacement FRF's | Aj | at the elevator and I A2 | at the upper-platform, and

the attenuation function | OL \ for the longitudinal waves are also obtained from

equations (8) by performing the above mentioned transformation. We have

therefore

where

A, I = cos . ..
sin 7i + c

sn

6L = cos

A =

COS 72 ~~ u"2 Sln "/2

!>2 sin 72 '

-i

y, =

y = 1,2
3 = 1,2

(13.1)

(13.2)

(13.3)

(14.1)

(14.2)

(14.3)

The longitudinal displacements S^ d.L the elevator and S2 at the upper platform are

Page 14

therefore given by

(15.1)

(15.2)

The acceleration FRF's \ X'l \ and | A-> | are immediately obtained from equations

(13.1) and (13.3) as

j =1,2 (16)

2.1.4 Numerical Results

The longitudinal and transverse-wave frequency response functions at the

elevator and at the upper platform have been evaluated for the typical design

parameters of the upper tether of TECS. Specifically (see Figure l) we have:

(EA)i = (EA)2 = 61645 N, TL = 394.5 N, T2 = 375.5 N, and j*i = ^2 =

4.9 x 10~3 kg/m. Consequently the transverse-wave velocities in tether segment 1

and 2 (of the upper tether) are

283.74 m/s

276.83 m/s

(17.1)

(17.2)

Page 15

and the longitudinal-wave velocities

cn\ = cm = 3546.92 m/s (18)

The elevator displacement FRF's | Xj | (transverse waves) and | Aj | (longitudinal

waves) are shown in Figures 2(a) and 2(b). Similarly the elevator acceleration

FRF's \ Xi \ and | At | for the transverse and longitudinal waves are shown in

Figures 2(c) and 2(d) respectively. The last two figures have been zoomed-in

for frequencies less than 10 Hz in Figures 2(e) and 2(f). In general the tether

segment behaves as the superposition of a single DOF low-pass filter and a

transmission line for both longitudinal and transverse disturbances. In this

analysis the effect of damping, both internal and external, has been neglected. In

an actual case the resonance peaks will be limited by the damping. The lower

envelopes of the displacement FRF's correspond to the response of a single DOF

low-pass filter while the additional spectral lines are related to the transverse and

longitudinal waves propagating in the tether.

Figures 3(a)-3(f) are like Figures 2(a)-2(f) except that the former set is

referred to the upper platform. By comparing these two sets of figures it is clear

that the elevator acts as a wave attenuator. The noise at the upper platform is a

few orders of magnitude smaller than at the elevator. Specifically Figures 3(g)

and 3(h) show the displacement attenuation functions | Of | and | #L | f°r

transverse and longitudinal wa1'" respectively. The acceleration attenuation

Page 16

-i

~ -2
eo
.3

-4

-5

-6 -

i i i i i i i

ELEVATOR (a)

TRANSVERSE WAVES

DISPLACEMENT FRF

0 10 20 30 40 50 60 70 BO 90 100
Frequency (Hz)

ELEVATOR (b)

LONGITUDINAL WAVES

DISPLACEMENT FRF

0 10 20 30 40 50 60 70 80 90 100
Frequency (Hz)

Figu^s 2(a) and 2(b)

I I I I I I I I I M I

o -1•o
3
*j

"S
M
a

? -2

-3h

ELEVATOR

TRANSVERSE WAVES

ACCELERATION FRF

I I 1 I I I I I I I 1 I I

0 10 20 30 40 50 60 70 80 90 100
Frequency (Hz)

Page 17

o
•o

I
<d

I I I I I I I I (| I I I I I I I I I I T~I I I I T~I

ELEVATOR

LONGITUDINAL WAVES

ACCELERATION FRF

10 20 30 40 50 60
Frequency (Hz)

70 80 90 100

2(c) and 2(d)

Page 18

ELEVATOR

TRANSVERSE WAVES

LOW FREQUENCY ACCELERATION FRF

0 1 2 3 4 5 6 7 8 9 1 0
Frequency (Hz)

M I I I I 1 I M

ELEVATOR

LONGITUDINAL WAVES

LOW FREOUENCY ACCELERATION FRF

0 1 2 3 4 5 6 7
Frequency (Hz)

8 9 10

Figuies 2(e) and 2(f)

Page 19

1 0 I I 'I I

Of I and | #L | are readily obtained as follows:

(19-1)

el\ = h2/^i)2 | *L I (19.2)

Figures 3(g) and 3(h), therefore, provide also the acceleration attenuation functions

when their magnitudes are scaled by

2

= 85 (20.1)

2

= 81 (20.2)

The response at the upper platform stresses the previous conclusion: the upper

tether acts as the superposition of a low-pass filter and a transmission line.

The elevator, however, attenuates the transverse and the longitudinal waves

propagating from tether segment 1 (below the elevator) to tether segment 2 (above

the elevator).

Page 20

-2

V

1 -6

an
a

-8

-10

-12

UPPER PLATFORM (a)

TRANSVERSE WAVES

DISPLACEMENT FRF

i i i I i i i i I i i t t [i i i i l t i t i l i i i i l i i i i i i i i i i i t t i l i *J
0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

v•o

-2h

-4

-6

-8

-10

UPPER PLATFORM (b)

LONGITUDINAL WAVES

DISPLACEMENT FRF

0 10 20 30 40 50 60 70 80 90 100
Frequency (Hz)

Figures 3(a) and 3(b)

Page 21

-4.5

~ 7 - 5 b ~ i 1 , 1 1 1 -
0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

UPPEP. PLATFORM

LONGITUDINAL WAVES

ACCELERATION FRF

0 10 20 30 40 50 60 70 60 90 100
Frequency (Hz)

Figures 3(c) and 3(d)

Page 22

-4.5

-5

il I I I I f I I it I I

UPPER PLATFORM

TRANSVERSE WAVES

— LOW FREQUENCY

ACCELERATION FRF

v
•o

-6

-6.5

-7

-7.5 -

3 4 5 6
Frequency (Hz)

8 9 10

-1.5

-2

-2.5

1 -3
0)

TJ
3

g, -3.5
a
X

1 -4

-4.5

-5

11 i , I I 1 1 1

-
_

-

-

':
—

I- V

\
• i l l

ii

f i l lIf
¥

I I I 1 1 1 1 1 1 1 1

UPPER PLATFORM

I I I ! 1 1 1 1 , 1 1 !

LONGITUDINAL WAVES

LOW FREQUENCY

ACCELERATION F

i

,

If!
1 J_l 11 _L 1 1 1

RF

i l l

iff
* * »

I I 1 1 1 1 1

I 1 . 1 1 1 .J.
(f)

-

—

-

-

-

• -

\
II j

Ii
i i i i I i i

0 1 2 3 4 5 6 7 8 9 1 0
Frequency (Hz)

Figures 3(e) and 3(f)

Page 23

-i

M

2 -2

•u

1 -3
00
s

I -4a

< -5

-6

I M I I I M I I I I I I I I Lj

TRANSVERSE WAVES (9)

ATTENUATION FUNCTION

I 1 I I I I I I I I I I I I I ' I I I I I I I I I I I '

0 10 20 30 40 50 60 70 80 90 100
Frequency (Hz)

LONGITUDINAL WAVES <h)

ATTENUATION FUNCTION

0 10 20 30 40 50 60 70 80 90 100
Frequency (Hz)

Figures 3(g) and 3(h)

Page 24

2.1.5 References To Section 2.1

1. Xiaohua He, and J.D. Powell, "Tether Damping in Space," to appear in
t

Proceedings of the Second International Conference on Tethers in Space,

Venice, Italy, 4-8 October 1987.

2. G.E. Gullahorn and R.G. Hohlfeld, "Tether as a Dynamic Transmission Line,"

to appear in Proceedings of the Second International Conference on Tethers in

Space, Venice, Italy, 4-8 October 1987.

Page 25

2.2 Longitudinal Dampers

2.2.1 Introductory Remarks

The damping of longitudinal (along the tether segments) oscillations is

essential to provide acceleration levels on board the elevator and the station

suitable for microgravity experiments [l]. Specifically once the deployment-

induced-oscillations have been dissipated the libration and lateral oscillation control

systems can be switched off without impairing the microgravity experiments [l].

In fact the steady-state external perturbations are not strong enough to excite

appreciably the libration and the lateral oscillations. On the contrary, thermal

perturbations have a non-negligible effect upon the longitudinal oscillations.

Everytime the system crosses the terminator, the tethers' temperatures vary

abruptly (almost impulsively) and longitudinal oscillations are excited twice per

orbit. Longitudinal oscillations, therefore, must be continuously controlled if low

acceleration levels are desired.

In reference [2] we have described the three longitudinal dampers which

are in series with the three tether segments connecting massive platforms. In

reference [2] we also selected each damper parameters (stiffness and damping

coefficient) based on considerations arising from physical intuition. Each damper

has been tuned to the frequency of the natural bobbing frequency of the associated

tether segment. We also adopted a damping coefficient which provides a damping

Page 26

ratio equal to 0.9 for an ideal damper which is decoupled from the associated

tether (i.e. the ideal damper is directly connected to the platform). This selection

of parameters has indeed provided effective damping of tether bobbing oscillations.

Nevertheless, since the performance of the longitudinal dampers is essential to

guarantee a microgravity environment on board the tethered system, we want to

verify more rigorously the validity of our selection of the damper parameters. We

also want to assess if a detuned damper (i.e. damper stiffness different from the

tether stiffness) can possibly perform better than a tuned longitudinal damper.

2.2.2 Optimization Of Longitudinal Damper Parameters

A relatively accurate mathematical model, amenable to an analytical

solution, for each damper and the associated vibrating tether segment is as follows:

each damper is assumed massless and only two degrees of freedom (DOF) are

taken into account, i.e. the damper stretch and the elastic stretch of the associated

tether segment (see Figure 4). The assumption of massless damper is actually

quite accurate for an active control system. As a result of high feedback gains,

the active damper's response exhibits a negligible phase delay and therefore the

effects of the damper's (spool's) inertia are masked. The two-DOF-assumption

provides a realistic picture of the actual behavior of the system for small values of

lateral oscillations since the coupling between the lateral and the longitudinal

oscillations decreases quadratically W ; J T the lateral oscillation amplitude. This case

Page 27

of "quasi"-aligned tethered system is actually the most interesting because is

representative of the system steady-state configuration.

With reference to Figure 4 the force-balance equations for the longitudinal

vibrations of one tether segment with damper are as follows:

mQL - F = FE (21.1)

F = Fd (21.2)

where the equivalent mass rnq is equal to mi • m<i/(mi + m?), L is the geometrical

distance between two adjacent platforms with masses m\ and m2, FE is an

arbitrary external force. The forces F (tether) and F,i (damper) are given by:

F= - k(l - t,, - t l t \ = -ki t (22.1)

Fd = - (k , i t , i+bi d) (22.2)

where £„ is the unstretched tether length, £,/ is the damper stretch, k is the tether

stiffness, k,i and b are the stiffness and damping coefficient of the damper, and tt is

the elastic stretch of the tether.

After substitution of equations (22) into equations (21) and after some

algebraic manipulations, we obtain the equations of motion as follows:

Page 28

iMgure 4

Page 29

t + w2£ - u2£(i = FE/mQ (23.1)

ld + 2Xdtd - XI = 0 (23.2)

where t = L - t0 is the total stretch of the vibrating system. We have also

defined

w2 = k/mQ

Xd = kd/b (24)

X = k/b

Equations (23) describe the motion of a 3"'-order vibrating system which is

actually amenable to an analytic solution.

By Laplace transforming equations (23), with null initial conditions, we

obtain

(25.1)

= 0 (25.2)

where [] denotes the Laplace transformation. After solving equation (25.2) for

[£,l] and substituting into equation (25.1) we obtain

Page 30

(26.1)

(26.2)

which after substitution into equation (25.1) provides the characteristic equation of

the system

s3 + 2X,,s2 + w,?(2X,/-X) = 0 (27)

By using the transformation 5 = 2- 2X,//3 equation (27) reduces to the canonical

form

23 + pz + q = 0 (28)

where

P =

(29)

The discriminant of the cubic equation (28) is

i , - ^ <30'

Page 31

For an oscillatory response of the system we must have A > 0 which implies that

a pair of roots are complex conjugate and one root is real. For A < 0 the

roots are all real. Real roots of equation (28) implies real roots of equation (29).

By applying the Routh criterion to equation (29), however, we discover that at

least one of the three real roots is positive. Consequently the system is unstable

for A < 0 and we limit our parametric analysis to the case A > 0.

Instead of using Cardano's formulae (which are quite cumbersome) for

computing the roots of the cubic equation (27), we compute the real root 5j by

means of a numerical root finding routine and then we deflate equation (27).

After deflation, equation (27) becomes

(s - s^ [s2 + (s2 + 2X,,)s + («! + 2X,,)s1 + c] = 0 (31)

Since equation (31) has real coefficients, the roots $2 and $3 of the 2U(1-order

equation between square brackets are complex conjugate. After defining

= 0 - iu (32)

we can express the characteristic equation (27) as

D(s) = (s - S l) [. - (l 3 + i u)] [S - (l 3 - i u >)] (33)

Page 32

From the solution of the quadratic equation between square brackets in equation

(31) we have

(3 = - (*! + 2X r f)/2

.1/2

u, = 2X (/)
2 - 4[(Sl + 2X l t)Sl + w0

2] (34)

We can express [i] and [£,]] in terms of transfer functions by using equations

(26)

[£] = G,(«)[Ff i]/m<, (35.1)

M - G,(s)\FE}/mQ (35.2)

The transfer functions are given by

£,(*) - (5 + 2X,/)/£>(«) (36.1)

G2(s) = X/D(s) (36.2)

where D(s) is the characteristic equation.

The expressions of t and £,/ as a function of time [i.e. the solution of the

3I(1-order differential equations (23)] are obtained by Laplace reverse-transforming

equations (35). A case of par1., .ular theoretical and practical interest is the

Page 33

response of the system to an impulse. If we assume that FE is an impulsive

function of strength / we have that

[FE] = / = constant (37)

and equations (35) can be Laplace reverse-transformed by a lengthy but well

known technique. G^(s) and G(s) are first reduced to a sum of simple fractions as

follows

s - Si DI(S] D-i(s]

where D->[s} = [s - (/? + zw)] [s. - (j3 - tw)] and the coefficients A±, B±, BZ, A1;

B[, and B2
 are functions of X (/ ,X and u,,.

The variable of greatest interest to us is actually the elastic stretch

it = t - t d (39)

Hence, by taking into account that the Laplace transform is a linear operator, we

can define a third transfer function £3(5) as follows:

Page 34

[£,] = Gz(s}I/mQ (40.1)

where

G3(s) = G,(s}-Gt(s) (40.2)

Subtracting equation (38.1) from equation (38.2) we obtain the fraction formulation

of £3(5) and we can finally Laplace reverse-transform equation (40.1). We give

only the final result, without providing details on the reverse-transformation for

the sake of brevity.

The elastic stretch as a function of time for null initial conditions and

impulsive external force is given by

tt = — {Ae'i* - ef ' t[Acos(ut)+ B s
mQ *•

where s1; /? and u have already been defined and

_ 2X . / -X
2 o

3s, + uj- + 4X./SJ

(42)

B =
UJ

Equation (41) gives the response if the elastic stretch as a function of the

Page 35

parameters of the 3rd-order vibrating system X, X^, and w0.

Since the acceleration measured on any platform of the tethered system is

directly proportional to the tether elastic stretch, the time history of the latter

quantity is of particular significance to the microgravity levels of our tethered

system. In an actual case a tethered system is excited twice per orbit by a

"quasi" impulsive thermal perturbation which deposes energy primarily into the

longitudinal oscillations. Our goal is therefore to define those values of parameters

X, X,/ and ui>, which provides the smallest and shortest fluctuation of the

acceleration.

Several parameters can be used as indicators of the effectiveness of the

damper. We adopt the settle time t$ and the maximum elastic stretch per unit

initial velocity it [in equation (40.1) I/mq is equal to the initial velocity] as

primary indicators of the damper's effectiveness. We define the settle time as the

time taken by the system to reduce the oscillation amplitude to 10% of its

maximum value after the application of the external impulse. We also define the

rise time IM as the time to reach the maximum amplitude of the response and the

relaxation time tp as the time the system takes to reduce the amplitude from its

maximum value to 33% of its maximum amplitude (i.e.

The rise time and the maximum elastic stretch have been computed for

several values of X and X,/ by bracketing equation (40.1) around its absolute

maximum and then using a root-fine.. ,ig routine to locate the maximum value with

Page 36

high accuracy. The computation of the settle time and relaxation time require

knowledge of the envelope of it. Such an envelope is given by:

l t = -L (\ A \ e * t + \ M \ e f l ' } (43)
mQ \ /

(V/2
where M = (A2+B2J . The relaxation time is then computed by solving

numerically the following equation

M eflto+to) = [t/e (44)

where IM is the previously computed rise time. The settle time t$ is also computed

by equation (44) after replacing the factor e with 10. We want to point out that

in general t$ > IM + IR.

Figures 5(a)-5(c) depict the settle time, the maximum elastic stretch per

unit initial velocity, and the pseudo frequency vs. X and X,/ for ui,, = 0.0242

rad/sec (/, = 3.844 x 10~3 Hz). This value of uf> is the natural bobbing frequency

of the first tether segment (i.e. between the lower mass and the station).

The settle time, in Figure 5(a), depends almost linearly upon the damper

parameter X,/. The dashed line connects the points with X=X,/ which are.

representative of a damper tuned to the bobbing frequency of the associated tether

Page 37

segment. The shortest settle time for a tuned damper is obtained for

X = Xj - 0.0135 sec"1 which is actually the value adopted in reference [6] for the

longitudinal damper of tether 1. The settle time for a detuned damper can be

shorter than that for a tuned damper as shown by all the points below the dashed

line. From inspection of Figure 5(b) we notice, however, that some of the above

mentioned points (for a detuned damper) correspond to maximum elastic stretches

much larger than those associated with a tuned damper. There are only small

areas in the X-X,j plane which correspond to a short settle time and a small

elastic stretch for a detuned damper. One of such areas is for those values of X

and X(/ along the lowest points of Figures 5(a) and 5(b). Below those points the

response is unstable and a certain margin should be provided to account for

possible fluctuations of X and X,;.

Figure 5(c) shows the pseudo-frequency u as a function of X and X,/ for

w0 = 0.0242 rad/sec. It is worth noticing the reduction of the pseudo-frequency

for certain values of X and X,/ of a detuned damper.

Figures 6(a)-6(c) depict the settle time, the elastic stretch, and the pseudo

frequency respectively vs. X and X,/ for wf) = 0.117 rad/sec (/„ = 1.868 x 10~2 Hz)

which is the natural bobbing frequency of tether segment 2 (between the station

and a 1-km-off elevator). The trends of these plots are similar to the previous set

of plots except for the ranges of the parameters X and X,/ which are larger than

before. There may be a scaling factor related to u(> even if it is not immediately

Omega = 0.0242 rad/sec
Page 38

o
o>
at

_E
P
4)

41
CO

2000

1500

1600

MOO

1200

1000

600

600

100

200

0

60

~ 55
o
4>
» 50

45

40

4, 35

30

in 25
o

20-

u
i>
V)
™v
-o

C
O
3
cr

15

0.028

0.026

0.024

0.022

0.020

0.0 1 6

0.016

0.014

0.012

0.010

0.008

C.006

0.004
(c)

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

Xd (I/sec)

Figures 5(a)-5(c)

Page 39

evident from the inspection of the equations.

This time the shortest settle time for a tuned damper is even closer to the

best results obtained by adopting a detuned damper. The detuned damper is also

affected, for certain values of the parameters, by the problem of the amplification

of the elastic stretch. We prove again that the values adopted in reference [6] for

the longitudinal damper of tether 2, X = X,/ = 0.065 sec"1, provides the shortest

settle time for a tuned damper. The figures for tether segment 3 are not shown

because they are quite similar to Figures 5(a)-5(c) of tether segment 1. The

natural frequency of tether segment 3 is u0 = 0.0247 rad/sec (/„ - 3.934 x 10~3

Hz) which is very close to the natural frequency of tether segment 1. In

conclusion, because of the moderate advantages of a detuned damper over a tuned

damper we have decided to adopt tuned longitudinal dampers, as in reference [l],

with the following values of parameters

Xi = X(/J = 0.0135 sec-1

X2 = X (/2 = 0.065 sec-1 (45)

X3 = X,/3 = 0.0137 sec-1

The indexes in equations (45) refer to the three tether segments respectively.

Page 40

u
D
en

V
E

0>

4^

+*
4>

800-

700-

600-

500'

400'

300

200

100

0

10

u
o
m̂
E
•***

E

9-

8 -

7-

0.12

0.11

o 0.10
4)

"g 0.09

0.08

J> 0.07

cr

it 0.06

0.05

0.04

Omega = 0.117 rod/sec

X = 0.015
0.03
0.045
0.06
0.075
0.09
0.105
0.12
0.135
0.15

~ ~ — ~ Tuned (C)

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Xd (I/sec)

Figures 6(a)-6(c)

Page 41

2.2.3 References To Section 2.2

1. E.G. Lorenzini, M. Cosmo, S. Vetrella and A. Moccia, "Acceleration Levels on

Board the Space Station and a Tethered Elevator for Micro and Variable-

Gravity Applications," to appear in Proceedings of 2ud-International Conference

on Tethers in Space," Venice, Italy, 4-8 October 1987.

2. E.G. Lorenzini et al., "Analytical Investigation of the Dynamics of Tethered

Constellations in Earth Orbit (Phase II)," SAO Quarterly Report #2 under

contract NASA/MSFC NAS8-36606.

2.3 Concluding Remarks

A perturbation originated from the space station produces frequency

responses at the elevator and at the upper-platform which contain frequency

components related to the longitudinal and transverse waves propagating in the

upper-tether. These frequency responses can be viewed as the superposition of the

responses of a single-degree-of-freedom low-pass filter and of a transmission line.

This result is not discouraging because the higher frequency longitudinal waves

could be abated by the longitudinal dampers which are tuned to the low frequency

bobbing frequencies. The abatement of transverse waves, on the other hand,

requires a low-frequency transverse wave attenuator. By analyzing the results of

our analysis we notice that the elevator attenuates strongly both the longitudinal

and transverse waves travelling fror^ the tether segment below the elevator to the

Page 42

one above. This result provides an indication of how to design a passive wave-

attenuator for transverse waves which will be investigated during the next

reporting period.

The wave propagation analysis stresses once more the importance of the

longitudinal dampers not only as devices for damping out the bobbing oscillations

but also for attenuating the longitudinal waves. We have, therefore, carried out an

analysis to optimize the damping performance of the longitudinal dampers. The

results of this analysis shows that detuned dampers may be actually even more

effective than tuned dampers in abating longitudinal oscillations. The advantages

are, however, quite limited. Our analysis has confirmed that the damper

parameters, that we had selected for the dampers, are "optimal" with respect to

the damping time for tuned dampers. Since the bobbing frequencies are the lowest

frequencies of the longitudinal wave frequency-response-functions the longitudinal

dampers are also expected to act as low-pass filters. These issues related to the

attenuation of longitudinal and transverse waves will be investigated in the next

reporting period.

Page 43

3.0 PROBLEMS ENCOUNTERED DURING REPORT PERIOD, E.G. LOREN-
ZINI, PI

None

4.0 ACTIVITY PLANNED FOR NEXT REPORTING PERIOD, E.G. LOREN-
ZINI, PI

In the next reporting period we will analyze the techniques for attenuating

the longitudinal and transverse wave propagating from the space station to the

upper-platform along the upper tether.

We will also work on the implementation of the rotational dynamics of the

station and the elevator into MASTER20 computer code.

Page 44

5.0 TECHNICAL ACTIVITY DURING REPORTING PERIOD AND PRO-
GRAM STATUS, G. GULLAHORN PI.

A variety of other demands (response to time critical demands of the TSSl

mission as PI for an experiment on board, startup of a new grant, and internal

administrative duties) reduced the effort the PI could devote to these tasks.

Primary activity revolved around acquisition and setup of a new microcomputer

system and transporting the SLACK code to that system. It is expected that

greater effort can be devoted in the next reporting period.

5.1 Tether Applications Simulation Working Group Support

No significant activity in this reporting period.

Page 45

5.2 Tether Aerodynamic Effect Of RCS Thruster Plume

The activity during the reporting period involved acquisition and setup of a

microcomputer system and transfer of Fortran code for the SLACK program to

the new system.

5.2.1 Computer Acquisition

A Northgate microcomputer system with a 12 MHz 80286 central processor

and 8 MHz 80287 numeric coprocessor was acquired. The system includes 1 MB

of system memory, a 60 MB hard disk, and a monochrome graphics display. A

variety of software was either transferred from a home computer system or may

be used on both systems under manufacturer's licensing agreements: compilers

for Fortran, Pascal and C; wordprocessors; math libraries. Some further utility

software was purchased: Pascal debugger; multitasking and task switching

utilities; an 8087 library for the Fortran.

It should be noted that an independently clocked 12 MHz 80287 (Microway)

can be obtained at reasonable cost which would increase floating point throughput

by up to 50%. We have also requested institutional (overhead) funds to upgrade

the basic system to an 80386/80387 system, which should about double the system

throughput initially, and with proper compilers (taking advantage of instructions

and registers unique to the 386/387) increase floating point throughput by factors

Page 46

of 4 to 10.

5.2.2 Transport Of SLACK Code To Microcomputer

Physical transfer of the source code for the SLACK program involved little

difficulty; indeed, it was already available on diskette, having been transferred via

modem for distribution to those requesting the source.

Compilation and linking of the program proved not so simple. When

written on the VAX full use had been made of a number of convenient extensions

to the Fortran-77 standard provided in the VAX compiler (and one non-standard

feature which though convenient is not simply an extension and which can lead to

subtle errors). The compiler available (Microsoft) on the microsystem has few of

these extensions, and a review of other microcomputer Fortrans showed that none

of them supported the full set of extensions used. Hence a program FILTER was

written (about 400 lines of Turbo Pascal) which accepts as input a VAX Fortran

subroutine and outputs a version much closer to the F77 standard, nagging some

constructs for manual modification. FILTER does the following

• Removes in-line comments to a separate line. VAX Fortran allows a
comment to be placed on the same line with code, set off after an
exclamation point. F77 requires all comments to be on a separate line
with a C in the first column.

• Converts continuation lines starting with TAB to begin with 5 spaces.

• Convert continuation line with continuation character '0' to continuation
character '!'. Microsoft does not allow '0'.

Page 47

• Convert initial TAB to 7 spaces. Microsoft would accept these lines,
but this is done for consistency with the above.

• Convert DO / ENDDO pairs to statement label format. VAX Fortran
allows an extension in which the end of the range of a DO statement
is delimited by an 'ENDDO', while F77 requires a labeled statement
(referred to in the DO statement itself) as the delimiter. A statement
label is provided (a five digit number), inserted in the DO statement,
and attached to a created CONTINUE statement at the end of the range.

• Flag DO WHILE statements for manual modification. This useful
extension repeats a loopi while some condition is met (e.g., DO WHILE (X
> 1.0)). This construct is replaced by a conditional branch around the
loop and an unconditional branch at the end. It proved easier to simply
flag these and modify them by hand.

• Flag DATA and COMMONS statements for possible manual (a) transfer to
BLOCK DATA (b) change of the commons name if same as subroutine
name. VAX Fortran allows a labeled commons to have the same name as
a subroutine; F77 requires all program units (including commons and
subroutines) to have distinct names. VAX Fortran allows initializing of
variables in commons with a DATA statement. F77 requires that this be
done in a separate BLOCK DATA subprogram, and on reflection the VAX
permissibility, though convenient, can lead to subtle bugs: if data
statements are used to initialize the same variable in more than one
subroutine, tests show that the linker does not pick up this inconsistency,
and the value assigned depends on the order in which routines are linked.
Good programming practice would: initialize variables local to a
subroutine with data statements and not put them in commons, as this
is not needed in the F77 standard (the habit of putting local variables
in commons when their value must be retained between subroutine calls
was developed using a non-standard, stack-oriented compiler); use
parameter statement initialization where values need not be modified; use
block data or other distinct initialization (as in a startup routine) where
variables must be referred to by several routines.

The SLACK code was run through the filter program and manual

modification was made as needed; some cleanup could still be done on unneeded

commons statements, as noted above. An additional problem arose in a subroutine

REFINE which refines solutions to a single non-linear equation. This contains

Page 48

convergence criteria in exceptional cases (which arise fairly often in SLACK) which

depend on the details of real arithmetic. Two parameters (the maximum real

number and a constant related to maximum precision) had to be modified since

the VAX 8-byte real numbers are not the IEEE standard 8-byte reals used in

virtually all current microcomputer compilers, whether for 8086 or 68000 series

computers. The maximum real number for the IEEE format is readily available:

about 1.797 x 10308. The precision factor 6, defined as the smallest number for

which x ^ (l+£)x can be assured (i.e. is true for all x), is not so easily found. It

may be estimated from the length of the fraction part of the number, but its

precise value depends on the details of rounding which are not given in typical

compiler documentation. Estimates put 8 at 2"52 or 2.22 x 10"15. A program was

written to locate an "individual" 5 by logarithmic bisection for randomly chosen

numbers x in an interval; the maximum individual 6 then forms the universal 6

which will insure that the criterion is satisfied. Several runs for a variety of
i

ranges lead to 6 = 1.12 x 10'15.

A working version has been produced. It's results need to be compared to

those from the VAX and any discrepancies accounted for; some may be expected

due to the difference in precision of the arithmetic (the IEEE standard has greater

range than the VAX and about a digit less precision). The VAX version had been

deleted due to disk space limitations during an extended period in which SLACK

was not being used. It must either be restored from tape or recreated from source

code, and a controlled set of comr ;isons run.

Page 49

It must be noted that experience with the Microsoft compiler has been less

than satisfactory. Fairly innocuous errors cause the computer to hang, requiring a

coldboot. And although a working version has been created, the difference

between that version and versions which fail to run (indeed hang the system) is

unclear, seeming to reside in the options chosen on compiling (options chosen,

indeed, to provide diagnostics on failure). Even when failing in a nondestructive

way, the diagnostics provided are not very informative. Running with the

Codeview debugger provided, though it is in many ways a very attractive tool,

sometimes seems to generate failures or fail in different ways than without the

debugger. Although all these problems arise occasionally with compilers on larger

systems, the fragility of the Microsoft system supports the various word of mouth

reports that it is not the preferred microcomputer compiler. (To be fair, most

benchmarks show the Microsoft compiler producing moderately to substantially

faster code than its rivals.) (Microsoft was initially chosen because of its

attractive street price, about half that of other comparable compilers, a significant

factor for personal acquisition.) If the problems experienced do not quickly

resolve themselves, another compiler will be obtained; the two most generally

favored are Lahey and Ryan McFarland, each with different advantages.

Page 50

5.2.3 Modification Of SLACK Code

Only slight effort was devoted to modifications of the SLACK code to reflect

the more general drag in the trajectory calculation. Most effort was spent in

getting the existing code working on the microcomputer; modifications will be

made in that setting. Several other factors require analysis and inclusion in the

code: periodic updating of the drag forces; specification of the thruster positions

and firing strategy; calculation of the tether area presented, and tether

configuration for lift; computing the aerodynamic forces due to the RCS plumes.

6.0 PROBLEMS ENCOUNTERED DURING REPORTING PERIOD, G. GUL-
LAHORN PI.

None

Page 51

7.0 ACTIVITY PLANNED FOR NEXT REPORTING PERIOD, G. GUL-
LAHORN PI.

7.1 Tether Applications Simulation Working Group Support

Preparing a final report on this task will be the first priority during the

initial period of the next quarter. A major effort for the report will be preparing

a uniform set of comparison plots for the various cases and simulators; this effort

is complicated by the fact that the Imagen laser printer which has been used for

plotting does not have sufficient memory to process some of the plots needed; a

second printer exists with (presumably) adequate memory, but different scalings

and fonts will require modification of the plotting schemes which had been

developed. An alternative is the use of a microcomputer based graphics system,

which would typically allow more convenient placement of labels, etc. A number

of such systems are being evaluated to see if they will support the number of lines

and data points needed for our purposes; a high resolution dot matrix printer is

available. Work on this task, other than reporting, is essentially complete. Some

few further efforts may be made as suggested in Quarterly 11.

Page 52

7.2 Tether Aerodynamic Effect Of RCS Thruster Plume

The topic of aerodynamic forces on the tether due to the RCS plumes

should be given further consideration, in particular to find an indication of the

orthogonal (lift) forces. Experimental results may now exist. The relationship of

the orthogonal force to the angle between the tether and the flow needs to be

better understood.

Modification of the SLACK code will be continued. It is probable that

a preliminary version, at least, can be completed in the next quarter.

The port of the SLACK code to the microcomputer will be studied and

completed. The VAX version of SLACK will be resurrected, and comparison runs

made. If the current compiler cannot be made to perform in a consistent and

robust fashion, a new compiler may be acquired.

Page 53

8.0 TECHNICAL ACTIVITY DURING REPORTING PERIOD AND PRO-
GRAM STATUS, R.D. ESTES, PI

Most of our effort in the study of the plasma physics of hollow cathodes for

use with tethered satellite systems in this reporting period was devoted to software

development. This was carried out on one of the Macintosh II computer systems

recently purchased by the group, partially out of funds from this contract. The

development system used was Lightspeed C, an integrated system consisting of an

editor, C compiler, and linker that can generate "stand-alone" Macintosh

applications which can be run as regular Macintosh programs on any Macintosh

computer. The system has full support for all of the features of the Macintosh

computer that make it "user friendly", including menus, event-driven programs,

and windows.

The program implemented was the one-dimensional electrostatic plasma

simulation program ESI, originally developed by Birdsall and Langdon [1985] for

use on a Cray-1 supercomputer. While this program does not include all aspects

of the physics that may be important for the problem we are considering, it can

serve as a useful starting point, especially for analyzing experiments conducted

in plasma chambers, which are less complicated than the environment of a

tethered satellite orbiting through the ionospheric magnetoplasma. A one-

dimensional model is clearly insufficient to deal with the combined effects of orbital

motion and the geomagnetic field, but we should be able to use the existing

Page 54

subroutines to develop a two-dimensional computer code.

The original source code for ESI is written in rather obscure Fortran for a

Cray computer. It has been translated into transparent (hopefully—at least to a C

programmer), modular C code. The use of the C language was dictated both by

the programmer's preference and the greater ease with which the Macintosh

system's "toolbox" can be accessed with existing C implementations. The new

version should be much easier to modify than the original Fortran version as well.

This translation of the simulation program to a different language and a

different system required a substantial effort, which we feel was well justified, since

it gives us a version that we can not only use on our own computers but can share

with other investigators using Macintosh systems. The programming effort was

not confined to writing equivalent C code for the simulation program. It was also

necessary to integrate this into the Macintosh environment. This required writing

a number of i/o utility routines and graphics routines that make use of windows.

For example, the "snapshot" plots that are periodically made and stored on

microfiche in the original Cray version are stored as PICT files on the Macintosh

hard disk. Software has been written to read these files and display them

graphically in windows on the computer screen and to print them, as desired.

We are presenting the source code for this project, as it stands. It probably

still contains a few bugs, but it has been tested for a number of simple cases,

including the case of counterstreaming electrons. The file-handling and plotting

Page 55

routines are working. The simulation code has so far only been run for cases with

periodic boundary conditions, which are not applicable to a hollow cathode model.

The graphical display code includes a novel feature. By selecting a menu item, the

user can make the display windows "transparent", so that two graphs in two

different windows (the one on top obscuring the one below it in the usual display)

can be compared. Although we have not yet implemented it as a regular feature,

the use of color to distinguish different particle populations has been demonstrated

to be an easily programmed, effective analytical tool.

To facilitate running different cases of the simulation program, while at the

same reducing the chance of introducing errors in the input data, we have

developed a "front end" for the program that utilizes HyperCard, the object-based

programming environment of the Macintosh. HyperCard is easier to demonstrate

than to describe, but the figures that follow will hopefully clarify the basic ideas.

Figure 7 shows (with annotations) the Macintosh screen display of the first "card"

of our plasma simulation HyperCard "stack". All of the input parameters

necessary to define the run, exclusive of the parameters characterizing the different

particle species, are included on this card. That is, the number of species, number

of time steps, etc. are displayed for the text file whose title is displayed in the

box at the top of the card. Certain areas of the screen (card) are defined to be

buttons ("Open", "Save", "Run", "nearest grid point", etc.). When the mouse

button is clicked while the mouse-controlled cursor is within the defining area of

one of these buttons, the action appropriate to that button is carried out. These

Page 56

actions are programmable using the HyperTalk scripting language of HyperCard.

For example, clicking on the "Run" button copies all of the input parameter values

(as they are shown on the cards) to a selected text file (which can then be read by

the simulation program) and launches the simulation program. The values of the

input parameters are stored in "fields" that can be modified using the usual

Macintosh text editing method, which relies upon selecting the text to be changed

by means of the mouse. Only the contents of the fields can be modified in this

way; the descriptive text is "locked".

The advantage of such a front-end is that the meaning of the input

parameters can be spelled out in English, so that it is not necessary to remember

what the equivalent variable name is in the computer program. All of the

parameters can be displayed at once, allowing the complete picture of the computer

run they represent to be taken in at a glance. This represents a great

improvement over the usual alternatives, which consist of either changing the

parameters within the source code and recompiling, making changes directly to the

text input file (an error-prone method), or going through a tedious question and

answer session with the computer via the screen and keyboard on every run.

Buttons and fields are trivial to create within HyperCard, so modifications to the

stack can be made as the program evolves with minimum programming effort.

Figure 8 shows one of the cards that defines input parameters appropriate to a

particular group of simulation particles.

Page 57

.ORIGINAL PAGE m

All input parameters can be
changed by Macintosh editing

Mouse clicks on control buttons
copy input data between HyperCard
and the text file read by the program.
Run button stores data and launches
the simulation program.

[Open) Plasm^eimulation input data is in \,
fs \ DataFramX? 20.LSC System.Plesma simulations.
^ ' simulation oa.ta

£&
^Run)

Identifying informatiorvXri, Jun 24, 1988 8:38 AM

number of species: 1^2
number of time steps: §00
time step size (dt): 0.2
length L (units of 2fl). 1.
number of grid points: 32
epsi (normally one): 1.0
background density: 0.0

kind of weighting:
O nearest grid point
<§) momentum consenting

/Q> energy consenting

\ quantity plot interval
charge density (rho) 50
smoothed rho 50
potential (phi) 50
electric field 50
phase space (x, vx) 50
velocity spece(vx,vy) 0
(velocity disltribution | 50

<$

<*

smoothina'al = o.O e2 = o.O 1
external: eO = 0.0 Look at 4

y/omegaO = o.O modes. |

Computing options
selected with "radio
buttons"

Names of variables and function of
program flags can be spelled out in
English to avoid confusion.

igure 7

Page 58

Plasma simulation input data is in
DeteFrame™ 20:LSC SystemPlasma simulations:
simulation data

Identifying information. Fri, Jun 24, 1968 6:38 AM

number of particles:
plasma frequency:
cyclotron freq.(sign):
charge/mass (sign):
number of sub-groups:
drift velocity.
thermal velocity:
type of velocity generation:

O random number
<•) inuerse distribution

exponent for v dist.(nv2): 0

MODE EXCITATION
mode number,
size of x perturbation:
size of v perturbation:
phase in x (thetax):
phase in v (thetav):

first group:
vO = I.

Figure 8

Page 59

Details of the simulation program can be found in the Birdsall and Langdon

reference. We now present the source code for our version, module by module.

References

1. Birdsall, Charles K. and A. Bruce Langdon. Plasma Physics via Computer

Simulation, McGraw-Hill Book Company (1985).

Page 60

I. electrostat.c

This module includes the main control routine for the simulations. In

"mainQ" the initialization routines are called and the time integration loop is gone

through. The module also contains the event loop, which responds to mouse

events (menu selections, etc.) whenever the program goes into the interactive

mode. The routines to make "snapshot" and time-history graphs are included.

Page 61

•include 'plasma.h"

int my_mask = mDownMasK + activMask,
Boolean valid-event;
FILE "output-file;
PILE *data_read;

double TWOPI;
double L, dx, dt;
double elapsed-time;
double ael, epsi, rhoO, al, a2, eO, wO;

double *x, *vx, *vy;
double rholNGlM], phi[NGlM], elNGlM),
double esetNTHl], nms(NSPM];
/»

double esemfMMAXlNTHl];
double XeslNSPMlNTHl], pxs(NSPMINTH2],

*/
double *esem[MMAXJ;
double *keslNSPM], *pxs[NSPM];

double scratch[NGlM], fftUNGTWO],
double x_polnts(NGMAX],
double "Upolnts;
double (_o(_vC25l;
max_mln xv_limit9(2];
double vte;

Int mplotlMMAX],
int ng, iw;
Int nap, ntp;
int it, ithl, irho, irhos, iphl, ie, ixvx, ivxvy, ifvx;

extern WindowPtr draw_wlndow(4];
extern PicHandle draw_picture{43;
extern tnt rho_file, rhos_flle, e_file, phUflle, vxvy_flle, xvx_file,

fv_flle, history_flle;
extern long header[128],
extern int my_rel;

extern void do_preliminaries();
extern void inltiallzeO;
extern void get_fields(), set_v(), bin_fvO, trac«_plot(), draw_plot();
extern void accelerateO, advance(), do_mouse_down(), douupdateO,
extern void scatter_plot(), do_activate(), dOLjcv_plot(), da_see_update();
extern void under_updateO,

void event_loop(), recordO, finishO, 5ho\v(), shov/10;
void save_fv<), save_graph(),
double ranfO;

Boolean RETURN;
extern Boolean GROW, DRAG, UNDER-ONLY, INI, INF;
extern Reel overlap_rect;

Page 62

malnO
(double p_total = 0.;

double lie-total • 0.;
double mslNSPM), qs[NSPM], tslNSPM];
double te = 0.;
double vl, vu, vmu,
int insfNSPMl],
register int 1th = 0;
register int is;
int nt;
Int nmodes;
max-min fv_limits!2], all_xv_lims(2], vxvy_limits[2];
do_prellmlnarles(ins, &nt, fcnmodes);
for(is = 0; is < nsp; is++)
(initlalizednstts], fcinstls + 1], fcrnslis], &qs[is], Mslis),

inmsfls]);
}
gct_fields(0),
for(is = 0; is < nsp; is-**)
{ set_v(lnslis], insfis * 1], qsfls], msfis], tsfis], pxs[is));
)
SysBeep(10);
evenLJoop();
fprlntf(output_flle," time ese p-total Kef);
fprintf(outpuUfile," ke2 te");
while(it < nt)
(iftixvx !• 0 && (it X ixvx — 0))

{ save_graph(xvx_fUe, x, vx, all_xv_lims, ins[nsp],
draw_wlndow(l], &draw_picture[l],

"\pPhase Space of All", TRUE, do_xv_plot);
}

IfOfvx 1= 0 && (it X ifvx == 0))
{ save_fv(fv_limits, ins{l], 13);
}
lf(ts[0] != 0. && ivxvy !« 0 && (it X ivxvy »« 0))
{ »ave_graph(vxvy_file, vx, vy, vxvy_limits, ins[l],

draw_window{0], Mraw.plctureCO], "\pVx-Vy space",
TRUE, scatter-plot);

}
p_ total = 0.;
ke-total = 0.;
for(is = 0; is < nsp; ls*+)
{ accelerate(ins(is), instis + 1], qs[is], ms[is), tails],

ipxstlsllth +1], &kes[islithl);
p-total += pxsllsllth + 1);
Ke-total +• Kesfisllthj,

}
for(is = 0; is < nsp; ls++)
(advance(ins[is], ins[ls + 1], qslls]),
}
te = Ke_total + esefith];
fprlntf(outpuLJile,"\nfl0.3e H10.3e *10.3e *10.3e *10.3e X10.3e",

elapsed_time, esefith), p_total, kes[0lith], KesIHith],
U),

/•ifQth == NTH)

Page 63

(recordO;
W
t-pointslit] = it * dt;
lt++;
elapsed_time += dt;
1th = It - ithl;
get_iields(ith);

}
/*event_loopO;*/
/*scatter_plot(x, vx, xvjlmlts, insll], draw_wlndowt2],

Mraw_picturel2], "\pVx versus X phase space", TRUE);*/
rccordCnt, nmodes);
evcnLJoopO;
flnishO;

}
/« _„«/

void
event_loop()
{

EventRecord my_event;
WindowPtr event_\vindo\v;
Boolean valid;
RETURN = FALSE;
while (IRETURN)
{ SystemTaskO;

valid = GetNextEvenUeveryEvent, &my_event);
if((valid)
(continue;
}
swltch(my_event. what)
{ case nullEvent:

break;
case mouseDown:

if(UNDER_ONLY I GROW)
(break;
}
do_mouse_down(8imy_event);
break;

case mouseUp:
break;

case key Down:
finishO;

case keyUp:
case autoKey:

break;
case updateEvt:

event-window » (WlndowPtr)my_event.message;
lf(event_wlndow == FrontWlndowO i&

GetWRefCon(event_window) < OL && INF)
{ lf(UNDER_ONLY)

{ under_update(&my_event);
}
else
{ do_see.update(t>my_event);

Page 64

else
{ do_update(fcmy_«vant);

UNDER-ONLY = DRAG = GROW = FALSE;
}
break;

case dlsKEvt:
break;

case activateEvt:
do_activate(&my_event);
break;

case networkEvt:
case driver Evt:
case applEvt:
case app2Evt:
case app3Evt:
case app4Evt:
default:

break;

}
/.

void
finlshO
{ if(my_ref != -999)

{ PSClose(my_ref);

ExitToShelK);

void
save_M/v_llmlts, n, nblns)

register max_min *fv_limits;
register int n, nbins;

{ static int call-number = 0;
register Int save_error;
bliuJiXvx, f_of_v, 0., 2., n, nblns);
if(call_number •• 0)
{ limit_calc(x_points, f_of_v, fvjimits, nbins);
}
trace_plot(x_points, f_of_v, fv_limits, nbins, draw.wlndowtO],

&draw_plcture{0], "\pVelocity Distribution", TRUE);
draw_plot(draw_window(0], draw_picture[0], "\pVeloclty Distribution");
lf(call_number == 0)
{ call_number++;

if((save_error = wrlte<fv_flle, (char *)&header, (unsigned)512))
1= 512)

{ SysBeep(20);

lf((save_error = write<fv_file, (char *Xm(draw_picture[0])),
(unsignedX(*<draw_picture[0]))->plcSize))) == -1)

{ SysBeepUO);

Page 65

n __ »/

void
save-graphdplot, x, y, xy_limlts, n , graph. window, graph_plc,

graph-label, time-test, grapher)
register int iplot, n;
register double "x, *y;
register max_min *xy_llmits;
WindowPtr graph-window;
PlcHandle *graph_plc;
char 'graph-label,
Boolean time-test;
void CgrapherX);

(static int counter[14];
int save_error;
/*ll(counter[iplot] == 0 I Iplot == history-file) HERE'S THE SCALING*/
{ limit_calc(x, y, xy_limits, n);
}
CgrapherXx, y, xy_limits, n, graph- window, grapn_pic, graph-label,

time-test);
/*draw_plot(graph_window, «graph_plc, graph-label);*/

if(counter[iplot] == 0)
{ counter[iplot)++;

if((save_error = writedplot, (char *)&header, (unsigned)612))
!= 512)

{ SysBeep<20);

if((save_error - writedplot, (char »X"graph_pic),
(unsignedX("r*graph_pic)->picSize))) == -1)

{ SysBeepdO);

void
record(nt, nmodes)

register int nt, nmodes;
{ register char 'mode-label = NewPtr(30);

register int 1;
max_min mode_limlts[2];
for(i = 0; 1 < nmodes; i++)
(sprint! (mode-label, "energy in mode Xd", i);

CtoPstr(modC-labcl);
save_graph(hlstory_file, t_points, esem[l], mode-limits, nt,

draw_window[i X 4), Mraw_picture[i f 4], mode-label,
TRUE, trace-plot);

}
save_graph(history_file, t_points, ese, mode-limits, nt,

draw_window{2], &draw_picture{2], "\pelectrostatic energy",
TRUE, trace-plot);

save_graph(history-file, Lpoints, kes[0], mode-limits, nt,
draw_window{3], &draw_picture{3], "\pkinetic energy",
TRUE, trace-plot);

)
/» -- */

double
ranfO

Page 66

double rand_value;
double randl;
Int first;
randl • 1. * RondomO,
rand_value - (randl + 32767.) / 65554.;
return (rand_ value);

void
show(x, y, n)

register double *x, *y;
register int n;

{ register int i;
ford = 0; 1 < n; i++)
{ fprlntf(output_file,"\n*e Xe",

void
showlOx, n)

register double *x;
register int n;

(register Int 1;
ford = 0; 1 < n; i++)
{ fprlntf(output_file,"\n«d

Page 67

II. plasmastart.c

This module includes routines to set up Macintosh windows and menus that

are then available for use throughout the program. It also contains the routines

for reading the input data file and initializing the relevant program variables. The

first part of the actual simulation code, which creates the simulation particles

according to the data in the input file, is also found in this module.

Page 68

"include "plasma.n"

WindowRecord draw_record[4]j
WindowPtr draw_window{4j;
ControlHandle bars[4l2);
ControlHandle lookup_control();

Rect drag_rect, grcrw_bounds;
PlcHandle draw_plcturc{4];
Rect big_rect, biggest_rect = { 0, 0, 756, 576);
Rect clipper;
int rho-Jile, rhos_file, e_flle, phLJile, vrvy_file, xvx_file;
Int fv_file, history_file;

extern double TWOP1;
extern double L, dx, dt,
extern double elapsed_tlme;
extern double ael, epsi, rhoO, al, a2, eO, wO,
extern OSType my_creator, my_type;

extern double *x, *vx, *vy;
extern double rhofNGlM], phlfNGlM], e{NGlM],
extern double csefNTHl], nmstNSPM],
/«

double esemlMMAXlNTHl};
double kesfNSPMjNTHl], pxs{NSPMlNTH2];

V
extern double «csem[MMAX],
extern double *kes[NSPM], *pxs[NSPM];

extern double scratch[NGlM], fftlfNGTWO],
extern double x_points(NGMAX], *t_polnts,
extern double f_of_v(25],
extern max_min xv_llmitst2],
extern double vtc;

extern int mplottMMAX],
extern Int ng, Iw,
extern int nsp, ntp;
extern int it, ithl, irho, irhos, iphi, ie, ixvx, ivxvy, ifvx;

extern double ran/0;
extern void accelerateO, move_bars(), fill_sinc_table();

extern PILE "output-file;
extern PILE *data_read;
extern Boolean RETURN;
extern void shovX);

void fill_menus(), define_arrays(), set-defaultsO, read_in_values();
void malieJilesO, zero_alK), initializeO, do_even_load();
void do-orderedJoadO, acrambleO, do_rotation<), copy-groupO;
void add-maxwellianO, addLperturbationO, set_rho(), field-initO, set_vK);
void do_inits(), maKe_wlndows(), set_parameters(), make_window<);
void Init-barO, swltch_controlO, do_preliminarles(), (lll_x();

Page 69

n
void

do_preUmlnarles(in3, nt, ntnodes)
int *ins, *nt, "nmodes;

{ Int "dummy « (lnt"X&thePort);
dcUnitsO;
define_arrays();
dummy(-63] = 331;
TWOPI = 2. * PI;
ntp = 100;
It = Ithl = 0;
elapsed-time » 0.;
InstO] = 0;
zero_all();
read_ln_values(nt, nmodes),
make_filesO;
make_wlndowsO;
L «= TWOPI;
dx = L / ng;
fill_x(ng + 0;
fllLsine_Uble<);

/»
void

dCL-initsO
(InltGraftt-thePort);

InltPontsO;
InltWindowsO;
TElnltO;
InltDialogs(OL);
MaxApplZoneO;
InitMenusO;
FlushEvent3(everyEvent, 0);
InltCursorO;
MoreMastersO;
MoreMastersO;
MoreMastersO;
MoreMastersO;
MoreMastersO;
MoreMastersO;
Stdlo-Maclnit(TRUE);
set_parameters();
fill_menus();

void
make_windowsO
(register Int 1;

/*blg_rect.left = 0;
blg_rect.top = 0;
big_rect. right = screenBlts.bounds.right;
blg_rect.bottom = (scrcenBHs.bounds.right * 10);
blg_rect.bottom /= 8;*/
blg_rect = blggesUrect,
clipper - screenBits.bounds;
clipper.bottom = biggest_rect. bottom;

Page 70

/*blg_rect = screenBits. bounds;*/
£or(l = 0; 1 < 4; i**)
(draw_window[ij = (WindowPtr)&draw_record[l);

make-windowtaraw-windowll), GRAPH_W1NDOW);

void
set-parametersO
{

drag_rect = thePort->portRcct;
SetRect(&grow_bounds, 64, 64, thePort->portRect.right,

thePort->portRect.bottom);

void
make_ wlndow(new_ window, wlndov^_id)

register WlndowPtr new_ window;
int wlndow_id;

{ ControlHandle my_scroU;
new_>vindo'w = GetNewWlndow<wlndow_ld, new_wlndow, -1
SetPort(new_ window);
my_scroll = GetNewControl(V_SCROLL, new_window);
SetCRefCon(my_scroll, Oong)V_SCROLL);
my_scroll = GetNewControl(H_SCROLL, new-Window);
SetCRefCondny-Scroll, Oong)H_SCROLL);
move_bars(new_w1ndow);
lnit_bar(new_window, (long)H_SCROLL, 0, 50);
init_bar(new_window, (long)V_SCROLL, 0, 50);
DrawGro'WIcon(new_'wlndow);

void
lnlt_bar(window, id, value, range)

register WlndowPtr window;
register int value, range;
long id;

{ ControlHandle control = lookup_control(wlndow, id);
if(lrange) HlliteControKcontrol, 255);
else
(SetCUMin(control, 0);

S«tCtlMax(control, range);
SetCtlValue(control, value);
HiliteControKcontrol, 0);
InvalRect(&<*control)->contrlRect);

void
switch_control(window, id, hllite)

Windo'wPtr window;
long id;
int hillte;

{ ControlHandle control - lookup_control(wlndow, id);
HiliteControKcontrol, hillte);

Page 71

nf __ — — „„.._.. __„ __ ____ ___ ____________ ___ .. __ — ___ _ ___ _ ___ ___.—.— — .. __

ControlHandle
lookup-controKwindow, id)

WindowPtr window;
long id;

(long label;
ControlHandle control = ((WlndowPeek)window)->controlList; ,
while (control)
(label = GetCRefCon(control);

if Uabel == id) break;
control = ("control)->nextControl;

}
return control;

}
/» _________________________ ;. __

void
nil_menusO
{ char 'apple-name = NewPtr(20);

MenuHandle menu;
*apple_name = (char)l;
*(apple_name + 1) = (char)appleMark;
menu = NewMenu(APPLE_MENU, apple-name);
AppendMenu(menu, '\pAbout Plasma ..."),
AppendMenu(menu, "\p(-"),
AddResMenu<menu, DRVR),
InsertMenu(menu, 0);
InsertMenu(GetMenu(FILE_MENU), 0);
InsertMenu(GetMenu(EOIT_MENU), 0);
InsertMenuCmenu = GetMenu(PLASMA_MENU), 0);
CtoPstr(apple_name = 'I Shrink to Fit");
apple_name[2] = (char)checkMark;
AppendMenudnenu, apple-name);
DrawMenuBarO;
Disableltem(GetMenu(EOIT_MENU), 0);

void
define-arraysO
(register int 1;

x = (double *)NewPtr(sizeof(double[NPAR]));
vx = (double *)NewPtr(sizeof(double[NPAR]));
vy = (double *)NewPtr(slzeof(double[NPAR]));
for(i * 0; i < NSPM; i++)
{ pxsli] = (double *)NewPtr(NTH2 * sizeof(double));

kes[i] * (double *)NewPtr(sizeof(double[NTHl]));
}
t-points = (double *)NewPtr(sizeof(double{NTHl]));
tor(i = 0, i < MMAX; i++)
{ esem[i] = (double *)NewPtr(NTHl * sizeof(double));

/»

void
set_defaults(nt)

int «nt;
{ register int i;

Page 72

nap = 1;
L = TWOPl;
dt = .2;
*nt = JO;
epsi = l.;
ng = 32;
iw = 2;
al = a2 = eO = wO = 0.;
Irho = irhos = Iphl = le = Ixvx = Ivxvy = ifvx = 20;
ford = 0; i < MMAX; i++)

0,

/» ___ . _______________ ; ____

void
read_ln_values(nt, nmodes)

register int *nt, 'nmodes;
(register int i;

char ch_read =(charX);
data-read • fopen("slmulation data", "r");
whlle(ch_read 1= C\n*XO])
(fscanf(data_read,"Xc",&ch_read);
}
(scanf(d&t&-read,'Xd\nXd\ninf\nXlf\nXd\n', &nsp, nt, Wt, S.L, tog);
fscanf(data_read,'Xlf\nflAnXd\nXd\nM\nXd\nM\nM\nXd\nM\rT,

iepsi, irhoO, &iw, &irho, Urhos, &iphi, &ie, &ixvx, &ivxvy,
Wfvx);

fscanf (data-read, "«lf\n)«AnXlAn*lAnW\n", &al, &a2, &eO, &wO,
nmodes);

for(i = 0; 1 < "nmodes; 1++)
{ mplotli] - 1;

n

void
make_files()
{ register int open-mode = 0_RDWR + O-CREAT + 0 J1NARY;

outpuLJile = fopen("run_flle", "w+");
my_type « 'PLOT';
my_creator = 'PLAS';
ifdrhos 1= 0)
(rhos-fUe = open("smoothed rho.plot", open—mode);
}
ifdrho I- 0)
{ rho-file = open("rho.plot", open-mode);
)
WOe l« 0)
{ e_file = open("electric field. plot", open-mode);
)
IfCiphi 1= 0)
{ phi-file •= openC phi. plot ', open-mode);
}
ifdvxvy 1= 0)
{ vxvy_flle = open("vxvy.plot", openjnode);
}
ifdxvx != 0)

Page 73

(xvx-Jlle = open("xvx.plot", open-mode);
}
ifUfvx != 0)
{ fv_/ile - open("f(v).plot", open—mode);
}
history_flle = openChlstory.plot", open-mode);

}
/«

void
zero-all()
(register Int i, j;

fort i = 0; i < NSPM; 1++)
{ pxstilO] = 0.;

for(J = 0; J < NTH1; J++)
(keslitH = 0.;

pxsfiU + 1] = 0.;

for(i = 0; i < NTH1; i++)
{ ese£i] = 0.;
)
for(1 = 0; i < MMAX; 1++)
{ mplotti] = 0;

for(J = 0; J < NTH1; J++)
{ esemfilj) = 0-i

void

register int n;
register int i;
for(i = 0; i< n; 1+*)
{ x_pointsti] = 1;

/«
void

initialized!!, 112, m, q, t, nm)
double *m, *nm, *q, *t;
register Int ill, *112;

{ double Lg, ddx, wp, •we, vtl, vt2, vO, xl, vl, thetax, thetav, qm;
int ngr, n, nig, nv2, mode;
Boolean skip = FALSE;
f5canf(data_read,"W\nSlAn*lAn!llAnJW\n"; 8-n, ftwp, &wc, &qm,
fscanf(data_read,"«An»An!ClAn!M\n", 8,v6, ivtl, &vt2, 8.nv2);
(scanf(data-read,"Xd\nXlAnXlAnXlAn«lAn", &mode, &xl, &vl,

fcthetax, 8-thetav),
if(ill == 0)
{ vte = vtl + vt2;
}
*t = tan(-we * dt « .5);
*112 = ill + n;
*q = L * wp * wp / (n * qm);

Page 74

»m = *q / qm;
*nm = n * (*m);
ngr = n / nig;
Lg = L / nig;
ddx = L / n;
dQ_even_load(lll, ngr, vO, ddx);
if(ORDERED)
{ do_ordered_load(ill, "112, n, nv2, ngr, vt2, fcskip);

If(lsklp)
{ scrambleCLg, ddx, 111, ngr);

(((MAGNETIZED && (skip)
(do_rotatlon(ngr, ill, Lg);
}
ifCANOTHER)
{ copy_group(in, ngr, n, Lg, we);
}
if(RANDOM)
{ add_maxwellian(n, ill, vtl, we),
}
add_perturbaUon(n, ill, mode, xl, vl, thetax, thetav);
set_rho(Ul, *112, «q, n » («q) / L); .
/"showKrho, ng + I);*/

}
/»

void
do_even_load(ill, ngr, vO, ddx)

register int ill, ngr;
double vO, ddx;

{ register int 1, 11;
double xO;
for(1 = 0; 1 < ngr; 1++)
{ 11 = i + ill;

xO = (1 * 1. + .5) * ddx;
xtil] = xO;
vx[il] = vO;

void
do_ordered_loadUll, 112, n, nv2, ngr, vt2, skip)

int ill, 112, nv2;
register int n, ngr;
double vt2;
Boolean "skip;

{ register Int i, 11, J;
double vmax, dv, w, wnv2, fv, df;
vmax = .5 * vt2;
dv = 2. * vmax / (n - 1);
wnv2 = 1.;
x[ill] ' 0.;
ford = 1; i < n; i++)
{ w " ((1 - .5) * dv - vmax) / vt2;

if(nv2 1= 0)
{ wnv2 = powKw, nv2);

Page 75

fv = wnv2 * exp(-.5 * w * w);
tl = i * 111;
x{ll] - x(U - 1] » my_max(fv, .0);

}
df = rfll] / ngr;
11 = ill;
J = "1;
tori i * 0; 1 < ngr; 1++, 11*+)
{ t v * (1 + .5) " df;

while(fv >= xlj + 1])
(>+;

lf(J > 112 - 2)
{ *skip = TRUE;

return;

w = dv * (J - ill + (fv - x[jl) / (x[J * 1] - xlj])) - vmax;
vx[il] += w;

/» ______ _

void
scramble(Lg, ddx, ill, ngr)

double Lg, ddx;
register int ill, ngr;

{ register int i, 11;
double xs <* 0.;
double xsi;
for(i = 0; i < ngr; i++)
{ 11 = i + ill;

xlllj •= xs " Lg + .5 » ddx;
/» write(); "/
xsl = 1.;
whlle(xs >= 0.)
{ xsi «= .5;

xs -= xsi;
}
xs +- 2. * xsl;

}
>
/»

void
do_rotation(ngr, ill, Lg)

register int ngr, ill;
double Lg;

(register int 1, 11;
double w, theta;
for(1 = 0; i < ngr; i++)
{ 11 = ill + i;

w » vxfll];
theta = TWOPI * x[il] / Lg;
vxlil] = w » cos(theta);
vytil] = w * sln(theta);

Page 76

void
copy_group(ill, ngr, n, Lg, we)

int 111, ngr;
register Int n;
double Lg, we;

{ register int 1, J, 11, 12;
double xs * 0.;
for (i = ngr; i < n; i += ngr)
(xs »= Lg;

for(J = 0; J < ngr; J++)
{ il = j + ill;

12 = 11 + i;
x[12] = xtil] + xs;
vx[i2] = vx[il];
(/(MAGNETIZED)
(vy(12]

}

/»
void

add_maxweHian(n, 111, vtl, we)
register int n, ill;
double vtl, we;

{ register int i, 11, J;
for< i = 0; i < n; i++)
{ 11 = ill + i;

for(J = 0; J < 12; J++)
{ if(MAGNETIZEO)

{ vyfil] += vtl * (ranfO -.5);
)
vx[il] += vtl * (ran/0 -.5);

void
add_perturbation(n, ill, mode, xl, vl, thetax, thetav)

register Int n, 111, mode;
double xl, vl, thetax, thetav;

{ register int i, 11;
double theta;
for(1 = 0; i < n; i++)
{ 11 = ill + i;

theta • TWOP1 * mode * xlil] / L;
xlil) += xl * cosdheta + thetax);
vx[il] *= vl * sin(theta +thetav);

/.
void

set-rhoGl, iu, q, rhos)
register Int il, iu;
double q, rhos;

Page 77

register int i, J;
double dxi, xn, drho, qdx;
qdx = q / dx;
dxi « 1. / dx,
xn = ng;
tt(FIRST_GROUP)
{ for(i = 0; i < ng; 1++)

{ rhoti] = rhoO;
>
rhofng] = 0.;

}
show<x_points, rho, ng + !);*/
rhoO -= rhos;
for(i = 0; 1 < ng; 1++)
{ rhoti] -= rhos;
}
showKx-polnts, rho, ng + l);V

(case ZERO.ORDER:
for(i = il; i < lu; i++)
{ x[i]«=dxi;

if(x[i] < 0.)
{ x[i]+=xn;
}
if(x[l] >= xn)
{ x[i] -= xn;
}
j - x[i] + .5;
rho[J] += qdx;

}
break;

case MOMENTUM:
case ENERGY:

for(i = 11; i < lu; 1++)
{ x[i] «= dxi;

if(xli] < 0.)
{ x[i] += xn;
}
if(x[i] >= xn)
{ x[l] -= xn;
}
J = x[i);
drho = qdx * (x[l] - J);
rhoCj] += (qdx - drho);
rho(j + 1] += drho;

}
breaK;

/* show(x_polnts, rho, ng + I);*/

/«
void

field-iniUsm, ksqi, ng2)
register double *sm, *Ksqi;
register Int ng2;

Page 78

register int i;
double kdx2;
for(i = 0; i < ng2; 1++)
{ kdx2 = (PI / ng) * (i + 1);

smlij = exp(al * pow(sln(kdx2), 2.) - a2 * pow(tAn(Kdx2), 4.));
ksqlti] = (povrismtt) « dx / (2. » sln(Kdx2», 2.) > / epsi;

/» __________________________________ _

void
seL-vdl, iu, q, m, t, p)

double q, m, t, *p;
register int 11, iu;

{ double dtdx = dt / dx;
double c, s, vxx;
register int i;
W(NEED-ROTATION)
{ c = 1. / sqrtd. + t * t);

s = c « t;
for (i - il; i < iu; i++>
{ vxx = vxli);

vxtl] = c * vxx + s * vyti];
vy(l] = -s * vxx + c * vytl];
vyli] *= dtdx;

for (i = il; i < iu; i+»)
(vx[i] «« dtdx;
}
accelerated!, Ju, -.5 * q, m, 0., p, scratch);

Page 79

III. plasmafiles.c

This module consists of the routines to create, read, display, and print

graphics files: snapshots made at selected intervals or time histories made the end

of the simulations.

Page 80

'include "plasma.h"
Int dirty;
Size file-size;
long header[126];
Point sfg_where = (90, 82};
SPReply reply;
Str255 picture-name;
int my_ref = -999;
PicHandle file-picture;

extern FILE "output-file;
extern Boolean MORE-PLOTS;
extern Rect big_rect, clipper;
extern void show-scrollsO, hide_scrolls(), erase_growO, do_wlndow_care();

void do_new(), do_save-as(), do-OpenO, do_save(), show_error();
void do_read(), do_prlnt_close(), handle_error();
/*—- - */
do_print()
{ GrafPtr save_graf, save_print;

WindowPtr the_window = FrontWindowO;
TPPrPort print-port;
THPrlnt my_print;
TPrStatus p-status;
TSetRslBlk image-set;
Boolean valid;
int *print_rect;
int i;
PicHandle draw-picture = (PicHandle)my_abs(GetWRefCon(FrontWindow<)));
GetPort(&save_graf);
image-set.iOpCode = setRslOp;
image-set.iXRsl = 144;
image-set.lYRsl = 144;
PrOpenO;
if(PrintErr 1= noErr)
{ return PrintErr;
}
my_print = (THPrint)NewHandle(sizeof(TPrint));
PrintDefault(my-print);
valid = PrValidatedny-print);
Image-set.hPrint = my_print;
PrGeneral(&lmage_set);
if (image-set. iErr or 1= 0)
(SysBeepdO);

SysBeep(10);
}
print-port = PrOpenDoc(my_print, OL, OL);
if(PrintErr 1= noErr)
{ return PrintErr;
>
GetPort(8tsave_print);
SetPort(the-window);
hlde_9crolls(the_\vlndow);
erase_grow(the_window);
SetPort(save-print);
valid = PrJobDlalog(my_print);

Page 81

if(ivaHd)
(S«tPort(th«_wlndow);

SysBe«p(10);
show_scrolls(the_wlndow);
DrawGrowlcon(the_window);
SetPort(save_graf);
return;

}
valid = PrSUDlalog(my_prlnt);
ifdvalid)
{ SetPort(the_wlndow);

show_scrolls(the_wlndow);
DrawGrowIcon(the_wlndow);
SetPort(save_graf);
return;

}
PrOpcnPage(prlnt_port, OL /*&blg_rect*/); /* this choice means no scaling */
ifCPrintErr != noErr)
{ do_print_close(prlnt_port, save_graf);

return PrlntErr;
}
print-reel = (int *)&(prlnt_port->gPort.portRect);
for(i = 0; i < 4; 1++)
{ fprintf(output_flle, -\nJM-, *(print_rect+*));
}
DrawPictur^draw.plcture, &(prlnt_port->gPort.port.Rect)

/"&big_rectV);
lf(PrintErr I- noErr)
{ do_print_close(prlnt_port, save_graf);

return PrlntErr;
}
PrClosePage<prlnt_port);
PrCloseDoc(prlnt_port);
if((*my_prlnt)->prJob.bJDocLoop == bSpoolLoop)
{ if(PrintErr !« noErr)

{ PrCloseO;
SetPort(save_graf);
return PrlntErr;

}
PrPicFiledny-print, OL, OL, OL, &p_status),

}
PrCloseO;
SetPort(the_window);
show_3crolls(the_'wlndow);

SetPort(save_graf);

void
do_prlnt_clo*e(print_port, the_save)

TPPrPort print-port;
GrafPtr the_save;

{ PrClosePage(prlnt_port);
PrCloseDoc<print_port);
PrCloseO;
SetPort(the_save);

Page 82

void
handle_error(the_error)

int the_error;

/»

void
do_new<)
{ /*SetwTitle(draw_window{0], -\pUntitled11);

ShowWindow(draw_window{0]);
dirty = 0;V

void
do_savc_as()
{ register WindowPtr plot-window = FrontWlndowO;

register int i;
Str255 the_volume;
long flle_count;
register PicHandlc plot-picture;
long header-jcount = 512;
lf(plot_window == OL) return;
plot-picture = (PlcHandle)GetWRefCon(plot_wlndow);
file-size = file-count = GetHandleSize(plot_picture);
picture_name{0] = 0;
hide_scrolls(plot_ window);
erase_grow(plot- window);
SFPutPlletefg-Where, "\pSave Pile As ...", picture-name, OL, Sreply);
show_scrolls(plot_ window);
DrawGrowlcon(plot_window);
if (reply .good)
{ lf((i = FSOpenCreply. fName, reply.vRefNum, &my_ref)) 1= fnfErr)

else
{ i = Create<reply.fName, reply.vRefNum, '7???', 'PICT');

i - PSOpen(reply. fName, reply.vRefNum, &my_ref),
}
SetWTitl^plot-window, reply. fName),
1 = PSWriteOny_ref, &header_count, *header);
HLocK(plot-picture);
i = FSWrite<my_ref, &file_count, "plot-picture);
HUnlock(plot-picture);
if(i 1= noErr)
{ show_error(i, 30);
}
else
{ if((i = GetVol((StringPtr)the_volume, ireply.vRefNum))

1= noErr)
{ shoAv_error(i, 40);
}
if((i = PSClose(my_ref)) != noErr)
{ show_error(i, 50);

Page 83

lf«l = FlushVol((StringPtrhhe_volume, reply .vRefNum))
1= noErr)

{ show_error(i, 60);

ft _________________
void

show_error(type_error, which_call)
Int type-error, which_call;

(SysBeep(which_can * 10);
fprintf(output_file, "\nerror « Xd on call number Xd", type-error,

which_call);

void
do_open(new_window, new_picture)

WindowPtr new_ window;
PicHandle *new_picture;

{ SFTypeList my_types;
WindowPtr first-window;
register int 1;
long header-count = 512;
MORE-PLOTS = FALSE;
my_types{0j = 'PLOT1;
lf(my_ref 1= 999)
{ i - PSClose(my_ref);

my_ref = -999;
}
if((fir»L.window = FrontWlndowO) 1= OL)
{ hlde_scrolls(first_window);

erase_grow(flr5t_wlndow);
}
SFGetPile<sfg_where, "\p', OL, 1, my.types, OL, fcreply);
lf(flrst_window 1= OL)
(show_scrolls(firsL_wlndow);

DrawGro>vlcon(flrst_wlndow);
}
lf(reply.good)
{ !/((! = FSOpen(reply.fName, reply. vRefNum, &my_ref)) 1= noErr)

{ show_«rror(i, 1);
return;

}
lf((i = PSRead(my_ref, &header_count, &header)) 1= noErr)
{ show_error(l, 2);

return;
}
do_read(ne\v_>A'indow> new_picture, reply, my_ref);

}
else
{ do_wlndow_care{);

void

Page 84

do_read(new_wlndow, new-picture, the_reply, the_ref)
register WlndowPtr n«w_window;
PlcHandlc *new_picturc,
SFReply the_reply;
register Int the_ref;

(register Int 1;
IntJ;
long pic_count « 21,
WlndowPtr first-window;
MORE-PLOTS = TRUE;
lf((i = PSRead(the_ref, ipit-count, &J)) 1= noErr)

{ if(i = eofErr)
{ if((first_window = ProntWindowO) 1= OL)

{ hlde_scrolls(flrst_wlndow);
era»e_grow{fir3t_window);

}
NoteAlert(ENDALERT, OL);
if(first_window != OL)
{ show_scrolls(flrst_wlndow);

DrawGrowIcon(first_'wlndow);
}
1 = FSClose(the_ref);
my_ref = -999;
MORE_PLOTS = FALSE;

)
return;

}
*new_picture • (PicHandle)NewHandle«long)J);
HLock(*new_plcture);
lf((i = SetFPos(the_ref, fsPromMark, -2L)) 1= noErr)
{ show_error(l, 4);

return;
)
pic_count = (long)j,
lf((i = PSRead(the_ref, &pic_count, **new_picture» != noErr)
{ if(i • eofErr)

(NoteAlerUENDALERT, OL);
1 = FSClose(the_ref);
my_ref • -999;
MORE.PLOTS = FALSE;

SetWRefCon(new_wlndow, Oong)*new_picture);
SetPort(new_wlndow);
ClipRect(&clipper);
EraseRecK&clipper);
SetwTitle(new_wlndow, &the_reply.fName);
SelectWindow<new_>Arlndow);
do_wlndow_care();
ShowWlndow(new_window);
DrawPlctur^'new.picture, 8tblg_rect/*&new_window->portRect*/);
HUnlock(*new_picture);
/*DrawControls(new_wlndow);
DrawGro>vIcon(ne\v_wlndow);*/
/» THE FOLLOWING CODE IS BASICALLY RIGHT FOR DEFINING A BITMAP

PICTURE OF THE GRAPH, BUT IT ISN'T INTEGRATED WITH THE REST

void
do_save()

Page 85

OP THE PROGRAM. LOTS OP BIZARRE DRAWING RESULTS IN TRANSPARENT
MODE.

*new_picturc = OpenPicture(&big-rect);
CopyBHs(&new_wlndow->portBlts, &new_wlndow->portBits, &big_rect,

&big_rect, srcOr, OL);
ClosePictureO; <
SetWRefCon(new_window, (long^new.picture),
V

Page 86

IV. plotting.c

This module contains routines to make scatter and line plots, which are

stored as "pictures" available for display through the routines found in

plasmafiles.c.

Page 87

•include • plasma, h"

extern Reel big_rect. clipper;
extern PILE "output-file;
extern double elapsed_time;

extern double L, dx, dt;

void scatter_plotO, UmlLcalcO, trace_plot(), llne_lt(), move_lt();
void map_pointO, make_point(), bin-fvO, draw_plot(), do_xv_plot();
void xv_llmit_calc(), do_window_care();
tt «// /

void
scatter_plot(x, vx, xv_limlts, n, plot-window, plot-picture, plot-label,

time-test)
register int n;
register double *x, "vx;
register max_min *xv_limits;
WindowPtr plot-window;
PicHandle 'plot-picture;
char *plot_label;
Boolean time-test;

{ register int i;
Reel ploL-rect;
double deltax, deltay;
char *e_strlng = NewPtr(256);
SelectWindow(plot_window);
ShowWindowKplot-window);
SetPort(plot-window);
ClipRccK&clipper);
EraseRecU&clipper);
plot-reel.top = 11;
plot-reel.bottom = 261;
plot_rect.left = 31;
plot_rect.right = 481;
limlt-calcKx, vx, xv_limits, n);
deltax - xv_limits[0].fmax - xv_limits[0] fmin;
deltay - xv_limits[l].fmax - xv_limits[l].fmin;
•plot-picture - OpenPicture(trbig_rect);
ShowPenO;
PrameRect(&plot_rect);
for(i = 0; i< n; 1++)
{ maKe_polnt((x[i] - xv_limits[0].fmin),(vx[i] - xv_limits[l].fmin),

deltax, deltay);
)
MoveTo(180,295);
DrawString(plot_label);
if(time-test)
{ sprlntf(e_strlng, "time = *.21f, elapsed_tlme);

CtoPstr(e-string);
MoveTo(350, 276);
DrawString(e_string);

}
ClosePictureO;
DisposPtr(e-strlng);
SetWRefCon(plot_window, Uong)*ploL.picture);

Page 88

do_window_careO;
DrawControls(plot-window);
DrawGrowIcon(plot-window);

I*. *f
void

do-xv-ploUx, vx, xv-limits, n, plot-window, plot-picture, plot-label,
time-test)

register Int n;
register double *x, *vx;
register max_min *xv_llmits;
WindowPtr plot-window;
PicHandle 'plot-picture;
char "plot-label;
Boolean time-test;

{ register Int i;
Rect plot-rect;
double deltax, deltay;
double dxdt = dx / dt;
char *e_»tring • NewPtr(256);
SelectWlndow<plot_ window),
ShowWlndow(plot_window);
SetPort(plot-window);
ClipRectt&cllpper);
EraseRecK&clipper);
plot-rect.top = 11;
plot-reel.bottom = 261;
plot-reel.left • 31;
plot-rect.right = 481;
xv_limit_calc(x, vx, xv_llmlts, n);
deltax = xv_limits[0].fmax - xv_llmlts[0].fmin;
deltay = xv_llmitsll].fmax - xv_limils[l].fmin;
•plot-picture = OpenPicture(&blg_rect);
ShowPenO;
PrameRect(&plot_rect);
ForeColoHredColor);
for(i = 0; 1< n; i++)
{ 11(1 >127)

{ ForeColor(blueColor);

make_polnt((x[l] - .5 * vx[l] * dx - xv_llmlts[0].fmln),
(vx[i] * dxdt - xv_limitstl].fmin),
deltax, deltay);

PoreColor(blacKColor);
sprintf(e_string, "y mln = X.21e", xv_llmlts[l].fmln);
CtoPstr(e-strlng);
MoveTo(38, 276);
OrawString(e-string);
sprlntf(e_string, "y max = K.2le", xv_limits[l].fmax);
CtoPstr(e-string);
MoveTo(200, 276);
OrawString(e_string);
MoveTo(180(295);
DrawString(plot-label);
if(time-test)

Page 89

(»pnnti<e_strmg, -time <• *.2ir, eiapseo_time);
CtoPstrte-string);
MoveTo(350. 276);
DrawString(e_string);

}
ClosePlctureO;
DisposPtr(c_string);
SetWRefCon(plot_ window, (long)*plot_plcture);
do_window_care();
DrawControls(plot_window);
DrawGrowlcon(ploL_wlndow);

}
/* ___

void
draw_plot(plot_window, ploLpicture, plot-label)

register WindowPtr plot-window;
PicHandle plot-picture,
char "plot-label;

{ /«SetPort(plot_window);
CllpRecU&clipper);
EraseRectC&clipper);*/
SetWRefCon(plot_wlndow, (long)plot-plcture);
SetwTitle(plot_window, ploUabel);

}
tit ___ . ________________

void
limit_calc(n, 12, f_limits, n)

register double *n, *f2;
register max_mln *f_llmlts;

{ register int 1;
double fll = I.elO;
double flu = -I.elO,
double f21 = I.elO;
double f2u = -I.elO;
for (i = 0; 1 < n; i++)
{ if(fl[i] < fll)

{ fll = fill];
}
if(f l[i] > flu)
{ flu = fl[i];
}
If(f2[i] < f21)
{ f21
>
if(f2[i] > f2u)
{ f2u =

f_llmlts(0].fmax = flu;
f_limitsIO].fmln = fll;
f_limits[l].fmax = f2u;
f_limits[l].fmin = f21;

}
n

void
xvJlmit_calc(fl, f2, f_limits. n)

Page 90

register double *fl, *f2;
register m»x_min "i-Mmits;
register int i;
double fll - I.etO,
double flu = -I.elO;
double f21 = I.elO;
double f2u = -I.elO,
double gl, g2;
double dxdt = dx / dt;
for (1 « 0; 1< n; 1+*)
{ gl = flti j - .5 « f2[l] « dx;

g2 = f2[t] * dxdt;
lf(gl < fll)
{ fll * gl;
)
if(gl > flu)
(flu = gl;
}
K(g2 < 121)
{ f21 - g2;
}
If(g2 > f2u)
{ f2u = g2;

f_limits[0].fmax = flu;
f_limitstO].fmin = fll;
f_limit»[l].fmax - f2u;
f_limitsfl].fmln = HI;

/»

void
trace_plot(x, y, xy_limlts, n, plot-window, plot-picture, plot-label,

time-test)
register double *x, *y;
register max_min *xy_limits;
char "plot-label;
register int n;
WindowPtr plot-window;
PicHandle "plot-picture;
Boolean time-test;

(register int i;
Rect plot-reel,
double deltax, deltay;
char "e-string = NewPtr(256);
SelectWlndow(plot_ window);
ShowWindow(plot_window);
SetPort(plot-window);
ClipRecK&clipper);
EraseRect(&clipper);
plot-rect.top - 11;
plot-rect.bottom - 261;
plot_rect.left = 31;
plot-reel.right = 481;
deltax - xy_limits[0].fmax - xy_limits[0].fmin;
deltay = xy_limits[l].fmax - xy_limits[l].fmin;

Page 91

*plot_plcture = OpenPlcture(&big_rect);
ShowPenO;
FrameRect(&plot_rect);
move_it(xlO] - xy_limit3[0].lmin,

y[0] - xy_limits[l].fmin, delUx, deltay);
ford = 0; 1 < n; 1»+)
(Hne_Jt(x[i] - xy_limlts[0j.fmin,

y[i] - xy_limits[l].fmin, deltax, deltay);
}
/*move_lt(x[6] - xy_limlt3(0].fmin, 0., deltax, deltay);
line_lt(x[6] - xy_limits(0].fmln, deltay, deltax, deltay);*/
9printf(e_string, *y mln = f .21e", xy_limitsll].fmln);
CtoPstKe-string);
MoveTc/SB, 276);
DrawString(e_string);
sprintf(e_string, "y max = X.21e", xy_limits[l].fmax);
CtoPstr(e_string);
MoveTottOO, 276);
DrawString(e_string);
MoveTo(180,295);
DrawString(ploLJabcl),
lf(tlme_test)
{ sprintf(e_string, "time = X.21f", elapsed_time);

CtoP3tr(e_9tring);
MoveTo(350, 276);
DrawString(e-String);

}
ClosePictureO;
DisposPtr(e_string);
SetWRefCon(plot_window, (long)*plot_plcture);
do_window_care();
DrawControls(plot_ window);
DrawGrowIcon(plot_window);

}
/« __ »/

void
move_it(x, y, dx, dy)

double x, y, dx, dy;
{ int h, v;

map_polnt(x, y, dx, dy, fch, &v),
MoveTo(h, v);

}
/* __ ________ »/

void
line_it(x, y, dx, dy)

double x, y, dx, dy;
{ int h, v;

map_point(x, y, dx, dy, &h, &v);
LineToOi, v);

void
map_polnt(x, y, deltax, deltay, h, v)

double x, y;
double deltax, deltay;
register int «h, *v;

Page 92

double tst;
itfdeltax > 1.0-45)
{ x /= deltax;

*h = (x » 450);
}
else
{ «h = 225;
}
*h += 31;
if (deltay > l.e-45)
{ y /= deltay;

«v = 250 - (y « 250);
}
else
{ *v = 125;

•v += 11;

/«
void

make_point(x, y, deltax, deltay)
double x, y;
double deltax, deltay;

{ Rect pt_rect;
Int h, v;
register int r = 1;
map_point(x, y, deltax, deltay, &h, &v);
pt_rect.top - v - r;
pLrect.left = h - r;
pt_rect. bottom = v + r;
pt_rect.right = h + r;
PaintOval(&pt_rect);

/» »/

void
bin_fv(v, f_dist, vcenter, dv, n, nbins)

double vcenter, dv;
register double »f_dist, *v;
register int n, nbins;

(register int i, j;
double space = 2. * dv / nbins;
double compare, coml;
coml = vcenter - space * (.5 * nbins -1.);
for(J = 0; j < nbins; J++)
{ f_dist[J] = 0.;

for (i = 0; 1 < n; i++)
{ compare = coml;

for(j = 0; J < nbins; J++)
{ if(v[i] <= compare)

{ f-disttj] += 1.;
break;

compare += space;

Page 93

V. response.c

This module includes the routines that take care of all interactive mode

events. In this mode menu selections (e.g. examining plot files) are executed and

graphics viewing windows are moved and selected. The code for making a window

"transparent" is found in these routines.

Page 94

•mciuae -plasma. n-
*define ENOUGH 3
"define NOT-ENOUGH 2

Int DESKOPEN = 0;

extern WlndowPtr draw_wtndow(4];
extern PicHandle draw_picture{4];
extern PILE "output-flic;

extern int my_re(;
extern SFReply reply;
extern Reel drag_rect, growjaounds, big_rect;
extern Boolean RETURN;
extern void douiewO, do_save_a3(), do-openO, do_save<);
extern void do_read(), handle_errorO, switch-controlO;
extern do-print();

void dO-controlsO, dounenuO, do_about_mcnu(), do_flles();
void do_mouse_downO, do_update<), dcuexamineO, move_bars();
void grow_wlndow(), invaLgrowO, do_activateO, show_scrolls();
void hlde_scroUs(), do_window_care<), erase_grow(), valid_grow<);
void toggle_see(), combine_pictures(), valid_scrolls(), grow_update();
void valld_rect(), define_growO, do-see-updateO, under_update();
Boolean MORE-PLOTS, INI, INF, see_throughO, GROW, DRAG;
Boolean UNDER_ONLY;
PicHandle combo_pic;
Rect »ave_rect, overlap_rect, *ave_graw, save_v, save_h;
WindowPtr top_ window, under_window,
RgnHandle draw_reglon;
Rect empty-reel = {0, 0, 0, 0);
RgnHandle empty_rgn;
I*

void
do-controlsO

i* __ _»/

void
do-menu(command)

long command;
(

int mentuid = HlWord(command);
int item = LoWord(command);
char item_name{32];
register int da_number;
switch(menu-id)
{ case APPLE-MENU:

lf(item =« ABOUTJTEM)
{ do_about_menu();
)
else
(GetItem(GetMHandle(menu_id), item, item-name);

OpenDesKAcc(item_nanie);
da-number » ((WindowPeeK)ProntWindow())->windowKind;
if(da_number < 0 && ++DESKOPEN == 1)

Page 95

Enableltem<GetMHandle<EDJT_MENU>(o),

break;
case FILE-MENU:

do_flles<ltem);
break;

case ED1T-MENU:
SystemEdttdtem - 1);
break;

case PLASMA-MENU:
switch(item)
{ case INITIALIZE:

break;
case EXAMINE:

MORE-PLOTS = TRUE;
da_examlne(),

case INTERRUPT:
break;

case TRANSPARENT:
toggle_see();
break;

case RESTART:
RETURN = TRUE;
break;

HiliteMenu(O);

void
da_about_menu()

n ___ »/

void
do_flles(ltem)

Int item;
{ register int da_numbcr - «WindowPeek)FrontWindowO)->wlndowKind;

switchUtem)
{ case PRINT:

if(da_number >= 0)
{ do_prlnt();

iKPrlntErr 1= 0)
{ bandie_error(PrintErr);

break;
case NEW.

lf(da_number >= 0)
{ do_new<);
}
break;

case OPEN:
if(da_number >= 0)
{ do_open(draw_window{3], &draw_picture(3]);

Page 96

break;
case CLOSE:

if(da_number < 0)
{ CloseDeskAcc(da_number);

W(—DESKOPEN <= 0)
{ Dlsableltem(GetMHandle<EDIT_MENU), 0);

break;
case SAVE:
case SAVEAS:

if(da_number >= 0)
{ dO-save-as();

break;
case QUIT:

finishO;
default:

break;
}

/« . v
void

do_mouse_down(event)
register EventRecord 'event;

{ register GrafPtr save_graf;
Point b;
WlndowPtr mouse, window;
register Int da_number;
int place-type = PindWindow(event->where) &mouse_wlndow);
register long getw = GetWRefCon(mouse_window);
Boolean test;
lf(lempty_rgn)
{ empty_rgn = NewRgnO;

RectRgn(empty_rgn, &empty_rect>;

switch(place-type)
{ case inDesk:

break;
case inMenuBar:

do-menu(MenuSelect(event->where));
break;

case inSysWindow:
SystemClick(event, mouse-window);
SystemTaskO;
da-number = «windowPeek)Frontwindow<))->windowKind;
if(da_iiumber >= 0 <A —DESKOPEN <= 0)
(DisableItem(GetMHandle(EDIT_MENU), 0);

break;
case inContent:

if(mouse-window 1= ProntWindowO)
SelectWindow(mouse_wlndow);

else
do_controls(mouse_window, event->where);

Page 97

break;
case inDrag:

lf((test = (getw < 0 && mouse-window == FrontWindowO)))
(INI - see_through();

save_rect = overlap_rect;
DRAG = TRUE;
If (I N I)
{ InvalRect(&save_rect);

valid_scrolls(mouse_ window);
valid_grow(mouse-window);

DragWindow<mouse_ window, event->where, Mrag_rect);
if(test)
{ INF = see_throughO;

if((IINl) && INF && (EmptyRgn(
((Wlndov/Pcck.)mouse_wlndo\s')->updateRgn)))

{ lnvalRect(&overlapLj*ect);
UNDER-ONLY = TRUE;

}
if((IINF) «,$, (IINI) && EmptyRgn(

((WindcrwPecK)mouse_vrtndo\v)->updateRgn))
(DRAG = FALSE;

break;
case inGrow:

ifUest « (getvv < 0 && mouse- window •» FrontWindowO))
{ INI = see_through();

GROW = TRUE;
»ave_rect = overlap-reel;

}
grow_wlndow<mou3e_ window, event->v^here);
ifCEmptyRgn(((WindowPeek)mouse_wlndow)->updateRgn))
{ GROW = FALSE;

break;
}
INF = 3ee_throughO;
break;

case inGoAway:
it (TrackGoAway(mouse_wlndow, event->where))
(HideWindow(inouse_window);
}
break;

default:
break;

void
grow_u pdate< window)

register WindowPtr window;
{ GrafPtr save_graf;

GetPort(&save_graf);
SetPort(window);
lf(ldraw_reglon)

Page 98

(draw-region - NewRgnO;
)
RectRgn(draw_region, &overlap_rect);
SectRgn(draw_region, «WindowPeek)window}->updateRgn, draw_region);
SetPort(save-graf);

}
/» _________ ________ _ ___ ___ _ ________ _ _ _ _ »// ____ --------- ______ _ _ ___ ______ f

void
do_update(event) '

register EventRecord 'event;
{ Gra/Ptr save_graf;

register WindowPtr update_window » (WindowPtr)event->message;
register long getw « GetWRefCon(update_window);
GetPort(&save_graf);
SetPort(update_window),
BeginUpdatedipdate-window);
EraseRect(&update_wlndow->portRect)i
DrawPictureKPlcHandleXmy-absCgetw)), &bJg_rect);
UpdtControKupdate-window, update_window->visRgn);
DrawGrowIcon(update_window);
EndUpdate(update_window);
SetPort(save_graf);

nt _____ _____ ____ _ _______________ _____ ___ _ ____________________ ;_______ ____ *

void
do_see_update(event)

register EventRecord 'event;
(GrafPtr save_graf;

register WindowPtr update. window = (WindowPtr)event->messagc;
register long getw = GetWRe(Con(updatc_window);
Rect comp_rect;
GetPort(&save_graf);
SetPort(update_wlndow);
BeginUpdate(update_,wlndow);
EraseRect(&update_wlndow->portRect);
DrawPlcture((PlcHandleXmy_ab9(gctw)), ibig_rect);
UpdtControl(update_wlndow, update_wlndow->visRgn);
DrawGrowlcon(update_wlndow);
EndUpdate(update_wlndow);
SetPort(save_graf);

lnvalRect(SrOverlap_rect);
if(GROW)
{ ValldRect(&save-rect);

/*SectRect(__ave_grow, &overlap_rect, isave_grow);*/
InvalRect(&save_grow);
SectRect(&save_h, &overlap_rect, &save_h);
InvalRect(&save_h);
SectRecUfcsave-v, &overlan_rect, &save_v);
lnvalRect(&save_v);

}
valld_3crolls(updat«_wlndow);
valid_grow<update_ window);
UNDER-ONLY « TRUE;
if(EmptyRgn(((WlndowPeeK)update_wlndow>->updateRgn))

Page 99

(UNDER-ONLY « GROW • FALSE;
}

)

ft __ »/
void

under_update(event)
register EventRecord 'event;

{ Point origin;
GrafPtr save_graf;
register WindowPtr update_window • (WindowPtr)event->message;
GetPort(«rsave_graf);
BeginUpdate(update_window);
/*EraseRect(fcsave_grow);V
SetPort(under_window);
origin. h - orlgln.v - 0;
LocalToQIobaK&origln);
SetPort(top-wlndow);
GlobalToLocaK&origln);
SetOrlgin(-origln.h, -or (gin. v);
DrawPicture((PicHandleXmy_abs(GetWRefCon(under_window))), &big_rect);
SetOrigin(0, 0);
OrawPicture((I>icHandleXmy-abs(GetWRefCon(update.wlndow)))>&big_rect)i
EndUpdateKupdate-window);
SetPort(save_gra/);
UNDER-ONLY = DRAG = GROW = FALSE;

void
da_actlvate<event)

register EventRecord 'event;
(register WindowPtr event-window - (WindowPtrXevent->message);

GrafPtr save-graf;
if(actlveFlag & event->modUiers)
{ SetPort(event_window);

if(GetWRefCon(event_window) < 0)
(INF - see-throughO;

LnvalRect(&overlap_rect);
va)id_scrolls(event_window);

}
fthow_scrolls(event_window);

)
else
(lf(GetWRefCon(event_wlndow) < 0)

(GetPort($,»ave_4raf);
SetPort(event_wlndow);
InvalRect(&overlap_rect);
valid_scrolls(event- window);
SetPorUsavougraf);

}
hide-scrolls(event_window);

}
DrawGrowlcon(event-window);
/*valid_grow(event_window);"/

Page 100

void
valid_rect(window, bad-reel)

register WindowPtr window;
register Rect *bad_rect;

{ register ControlHandle control = ((WindowPeeK)window)->controlList;
register long label;
Rect val_rect;
whllc(control)
{ label > GetCRefCon(control);

ifUabel •= Uong)V_SCROLL I label == (long)H_SCROLL)
{ SectRect(_<"control)->contrlRect, bad_rect, &val_rect);

ValidRect(&val_rect);
}
control = (*control)->nextControl;

)
/*define_grow(window, &val_rect);
SectRect(&val_rect, bad-rect, &val_rect);
ValidRect«.val_rect);V

}n __ _ _____ ______ ___ - ______ ________ ____ _ ___ • ________ __________ ______ _______*/

void
valld_scrolls(window)

register WindowPtr window;
{ register ControlHandle control = ((WindowPeeK)wlndow)->controlLlst;

register long label;
while(control)
{ label = GetCRefCon(control);

IfOabel == (long)V_SCROLL I label == (long)H_SCROLL)
{ ValidRect(&(>control)->contrlRect);
}
control = (*control)->nextControl;

}
}
n ______ _ _____________________ ____ _____________ _ ___ _____ ____________ __„.-_-/

void
show_scrolls(wlndow)

register WindowPtr window;
{ register ControlHandle control - ((WindowPeek)windc<w)->controlList;

register long label;
whil«<control)
{ label - GctCRefCon(control);

IfOabel " Oong)V_SCROLL I label == Oong)H_SCROLL)
{ HlllteControKcontrol, 0);

ValidRect(&(*control)->contrlRect);
}
control « (*control)->nextControl;

}
)
/_ _____________________ _ ___ _ _____ _ _______ __ _________ ____ ___ _ ____ _____ __ _ __ »/

void
hide_scrolls(window)

register WindowPtr window;
{ register ControlHandle control - ((WindowPeek)window)->controlList;

register long label;

Page 101

whilefcontrol)
{ label = GetCR«fCon(control);

ifUabel = Oong)V_SCROLL I label « Uong)HLSCBOLL)
(HiliteControl(control, 255);

ValidRect(&(*control)->contrlRect);
}
control = ("control)->nextControl;

/»__ __ „__ _____ __ __________ _ __ ___ _ _ _____ _ _ ___ ___ _ ___ _____ __ ______ ___ »/
void

move_bars(wlndow)
register WlndowPtr window;

{
register WindowPeek peeK = (WindowPeek)window;

register ControlHandle control = peek->controlList;
int new_top = window->portRect.top;
int new_left • window->portRect.left;
Int new_bottom = w1ndow->portRect. bottom;
int new_right - v^lndow->portRcct. right;
register long label;

while (control)
{ label «= GetCR«fCon(control);

if (label " (long)V_SCROLL)
(HidrControKcontrol);

save_v n ("control)->contrlRect;
MoveControKcontrol, new-right - BAR-WIDTH, new-top -1);
SizeControKcontrol, 16, new—bottom - new-top - 13);
ShowControl(control);
ValidRect(«,((«controD->contrlRect)),

}
else if (label == (long)H_SCROLL)
{ HldeControKcontrol);

save_h = (*control)->contrlRect;
MoveControKcontrol, new-left - 1, new-bottom - BAR-WIDTH);
SizeControKcontrol, new-right - new_left -13, 16);
ShowControKcontrol);
ValldRect(&((*control)->contrlRect));

}
control o ("control)-) nextControl;

void
grow_wlndow(window, mouse-point)

register WindowPtr window;
Point mouse-point;

{ long new-bounds;
new-bounds « GrowWindow(wlndow> mouse-point, &grow_bounds);
if{new_bounds 1° 0)
(inval_grow(window);

/*EraseRect(«c»ave_grow);*/
SlzeWindow(window, LoWord(new_bounds), HlWord(new_bounds), TRUE);

Page 102

move-bars(window);
DrawGrowIcon(window);
valld_grow(wlndow);

void
define_grow(window, grow_rect)

WlndowPtr window;
register Rect *grow_rect;

(Rect port_rect;
port-rect « wlndow->portRect;
SetRect(grow_rect, port_rect. right - 16, port-rect. bottom - 16,

port_rect.right, port-rect. bottom);
)
It __ _ ________________ _ _____________________________ __„ __________________ :_«/

void
inval_grow(window)

WindowPtr window;
(Rect Ump_rect;

define_grow(wlndow, &temp_rect);
InvalRect(&temp_rect);
save_grow = temp_rect;

}
n __ ___ _________________ _ ___ «/

void
valid_grow(window)

WindowPtr window;
{ Rect temp-rect;

define-growCwlndow, &temp_rect);
VolldRect(«, temp-rect);

nt _____________ _ ______________________ _

void
do-examlneO
(int response;

static int window-number - 0;
int selection;
register WlndowPtr the_ window;
if(my_ref == -999)
{ selection =• window-number X 4;

da-openCdraw-windowtsclection], &drav/_plcture{s«lection]);
/*SelectWindow(draw_window[selection]);"/
window_number++;

}
while(MORE_PLOTS)
{ the_window » FrontWindowO;

hlde_scrolls(the_ window),
erase_grow(the- window);
response = Alert(257, OL);
show_scrolls(the_wlndow);
DrawGro%vIcon(the_'wlndcryv)>
swltch(response)
(case ENOUGH:

MORE-PLOTS » FALSE;
selection = wlndow_number X 4;

Page 103

do-jopenfaraw-wlndowfselectlon], Wraw_plcture{selectlon]);
/•SelectWlndow(draw-window(sel»ctlon]);V
do_window_care();
window-number++;
break;

case NOT-ENOUGH:
selection = window-number X 4;
/*SelectWindow(draw_window{selection]);*/
do_read(draw_windowt selection],

&draw_picture[selection], reply, my_ref);
do_wlndow_care<);
windcrw_number++;
break;

r* __ „_ ______ _ ____ __ ____ _ _______ „_ ________ _ _____________ __ _____ __ _____ — */

void
do_wlndow_care()
(Boolean activate * TRUE;

EventRecord this_event;
whlltKactivate)
{ EventAvalKeveryEvent, &thls_event);

if(this_event.what == activateEvt)
{ GetNextEvent(everyEvent, &thls_event);

do-actlvate(&this-event);
}
else
(activate = FALSE;

void
erase_grow(wlndow)

register WindowPtr window;
{ Rect temp-rect, port_rect;

port_rect = wlndow->portRect;
SetRect(&temp_rect, port-reel right - M, port_rect. bottom - 14,

port-reel. right, port-reel, hot torn);
EraseRect(&temp_rect);

}
/» __ fi

void
toggle_see()
{ top-window = ProntWlndowO;

SetWRefCon(top_wlndow, -GetWRe/Con(top_ window));
lf(UNl - INF = see_through(»)
{ InvalRecU&overlap-rect);

valld-Scrollsdop-Nvlndow);
valld_grow(top_wlndow);
if(GetWRefCon(ton_window) < 0)
{ UNDER-ONLY « TRUE;

Page 104

Boolean
see_throughO
{ GrafPtr save_graf;

Boolean IN « TRUE;
top-Window = FrontWindowO;
under_wlndow = (WindowPtrX((WindowPeeKHop_wlndow)->nextWindofw);
GetPort(&save_graf);
(SetPort(undcr_wlndow);

LocalToGlobalUPolnt *X«,under_wlndow->portRect));
LocalToGlobal((Polnt "Xfc((under_window->portRect).bottom)));
SetPort(topuwindow);
LocalToGlobal((Polnt "X«.ton_wlndow->portRect»;
LocalToGlobaK(Point «XM(lopuwindow->portRect).botlom»);
SectRect(&(top_wlndow->portRect)(&(under_wlndow->portRect),

&overlan_rect);
lf(((long ")«K)verlapL-rectXO] == OL «.«. (Qong *)4overlap-rectXl] — OL)
(IN = FALSE;
)
GlobalToLocal«Point *X&top_window->portRect»;
GlobalToLocal((Polnt «Xfc((topL.window->portRect).bottom)));
GlobalToLocal((Polnt *X&overlap_rect)>;
GlobalToLocal«Point *X&overlap_rect.bottom)),
SetPort(under.wlndow);
GlobalToLocal((Polnt *X&under_window->portRecO);
GlobalToLocaKCPoint *X«<((under_window-)portRect).bottom)));
SetPort(save_graf);

}
return(IN),

Page 105

VI. advance.c

This module contains the heart of the simulation program. The routines

that carry out the "leap frog" advancement of the simulation particles in time and

the routines that calculate and advance the field quantities are in this module.

Page 106

•include *piasma.h*

extern double *x, *vx, *vy;
extern double ael, epsi, rhoO, rho(NGlM], phtfNGlM], c(NGlM], eO, wO;
extern Int it, ithl, Irho, irhos, iphl, le, Ixvx, Ivxvy, Ifvx;
extern double elapsed_tlme;
extern double scratchlNGlM], fftl[NGTWOi
extern Int ng, iw,
extern double L, dx, dt;
extern double ese(NTHl], nmslNSPMt
extern double •esemlMMAX];
extern int mplotlMMAX];
extern double x_points[NGMAX);
extern WindowPtr draw_wlndow{4];
extern PicHandle draw_plcture[4l;
extern Int rho_flie, rhos-file, e_flle, phi-file, vxvy_flle, xvxJile,

fv_«le;
void get-fieldsO, transform_rhoO, rho_to_phiO, save_modes(), do_lnverseO;
void electric-fieldO, reset_rho(), accelerateO, nearest_pointO;
void p-conserveO, e_conserveO, advanceO;

extern void field_inltO, slncos20, Inverse_sincos20, save_graphO;
extern void trace_plotO, showO;

extern FILE *output-Jlle;

void
geLJieldsGth)

register int ith;
{ static Int ng2 = 0;

static double sm(NG2M], ksqi[NG2M]i
static max_mln e_llmlts(2];
static max_mln rho_llmits[2];
static max_min phl_llmlts[2l
double Li;
register int i;
if(lng2)
{ ng2 * ng/2;

fleld_init(sm, ksql, ng2),
}
rbo[0) »° rbofng];
rho[ng]« rho[0]i
if(lrbo I- 0 M (ith X irho •=» 0))
{ save_grapb(rho_file, x_polnts, rho, rbo-llmits, ng, draw_wlndowtO],

&draw_picturetO], '\pCharge Density *, TRUE, trace-plot);
)
transform_rhoO;
rho_to_phi(lth, ng2, ksql, sm);
save_modes(ltb);
do-lnverseO;
IfOrbos 1= 0 «A (1th f Irhos == 0))
(save_graph(rhos_flle, x-points, rho, rhoJimlts, ng, draw_window(0],

&draw_plcture[0], '\pSmoothed Charge Density*, TRUE, trace-plot);
}
IfOphl l» 0 M, (ith * iphl == 0))
{ save_graph(phi_file, x_points, phi, phLJimits, ng, draw_windowll]t

Page 107

&draw_plcture[l), 'NpPoUntlal Phi', TRUE, trace-plot);
}
electrlc-HeldO;
if(ie I- 0 Mi (1th X it « 0))
{ save_«raph(e-file, x_points, e, .-limits, ng, draw_wlndow{2],

&draw_plcture{2], "\pElectrlc Field", TRUE, trace_plot);
}
reset_rhoO;

I* fprtntf(output_/lle, •\nreset_rho");
shovKx-points, rho, ng + I);*/
ael = 1.;

}nt __ _ ____________ ________ _________________ ___ ______ _ ________ _

VOW
transform_rho()
(register int i;

double hdx;
register double "rhok = rho;
hdx = .5 « dx;
for(i - 0; 1 < ng; i++)
{ rhotl] "- hdx;

scraichli] - 0.;
}
slncos2(rho, scratch, fftl, rhok, scratch, ng);
rhoklO] = 0.;

void
rho_to_phi(Uh, ng2, ksql, sm)

int ith, ng2;
register double *ksql;
double *sm;

{ double eses - 0.;
register int i, index;
register double *phik = phi;
register double *rhok = rho;
phik[0] n o.;
index - ng - 1;
for (i • 1; i < ng2; 1++, index--)
(phlk[l] o ksqi[l - 1} * rhok[i];

phiklindex] - ksqi[i - 1) * rhok[index];
•MS += rhokll] * phikti] + rhok[index] * phlkllndsx];
rhok[l] •- smli - 1];
rhok[index] »= sm[i - 1];

}
phik[ng2] - ksqi[ng2 - 1] * rhok[ng2],
eseCith] = (2. « eses + rhok[ng2] " phik[ng2D / (2. * L);
rhok[ng2] •« smtng2 - 1];

}
nt _________________ _ «// --------- -___ _ ------- _ — ___ ------- _______ i

void
save_nuxies(ith)

register Int ith;
(register Int 1 « 0;

register int index « ng;
double temp;

Page 108

register double *phlk » phi;
register double *rhok = rho;
whlle<(mplotti] != 0) M (i <= MMAX))
{ temp • (rhokli] * phikli] + rhoklindex] * phiklindexD / L;

if(l == index)
{ temp •• .25;

e»emti++Iith] = temp;
index—;

void
doJnverseO
(register double *phik = phi;

register double "rhok = rho;
double Li = 1. / L;
register int 1;
for(1 = 0; i< ng; i++)
{ rhokli] «- U;

phikli] «= Li;
)
Inverse_sincos2(phik, rhok, fftl, phi, rho, ng);
phihig] - philO];
rho[ng] = rho{0];

/* fprintf(output_lile, "\ndo_inverse");
showOc_points, rho, ng + !);*/

void
electric-fieldO
{ double eOt, hdxl, dxl;

register int i;
eOt B eO * cos(wO * elapsedLtlme);
switchdw)
{ case ZERO-ORDER:

case MOMENTUM:
hdxi = .5 / dx;
for (1 - 1; i < ng; i++)
(e[l] - (phi[i-l] - phi[i + 1]) « hdxi * eOt;
}
e[0] - (phitng - 1] - phitl]) * hdxi + eOt;
e[ng] = e[0];
break;

case ENERGY:
dxi = 1. / dx;
for (i » 0; i < ng; i++)
{ di] = (phiti] - phiti + 1]) » dxi + eOt;
}
etng] = etO];
break;

/»

void
reset_rhoO

Page 109

(register Int 1;
for (1 - 0; t « ng; 1**)
{ rholij - rhoO;
}
rhofag] « 0.;

)
/• __ __ ___ _ _______ _ _________________ _ ____ _„ ____ __ __ ____ __ ___ ____ _ ______ ___»/

void
accelerated!, lu, q, m, t, p, Ke)

double q, m, t;
register double *p, *ke;
register int il, iu;

{ register double *a = e;
double dxdt = dx / dt;
double ae - (q / m) * (dt / dxdt);
double temp;
register int 1;
if (NEED-ROTATION)
{ ae «- .5;
)
lf(ae 1= ael)
{ temp = ae / ael;

for(1 = 0; i <= ng; i++)
{ ati] *- temp;
}
ael = ae;

}
swltchUw)
{ case ZERO-ORDER:

nearest_polnt(il, iu, dxdt, m, ke, p);
break;

case MOMENTUM:
puconservedl, iu, dxdt, m, t, ke, p);
break;

case ENERGY:
e_conserve(ll, iu, dxdt, m, ke, p);
break;

void
near»et_point(il, iu, dxdt, m, ke, p)

register int il, iu;
double dxdt, m;
register double *ke, *p;

{ double vis » 0.;
double v2s - 0.;
register double *a = e;
double vO, vn;
inti.j;
for(i « il; 1< iu; i++)
{ J - (x[i) + .5);

vO = vxli];
vn = vO + atjt
vis »- vn;
v2s »= vn * vO;

Page 110

vxCO » vn;
)
*p *« m * vis • dxdt;
«ke +• .5 " m " v2» * dxdt " dxdt;

void
p_conserve(il, iu, dxdt, m, t, ke, p)

register int 11, lu;
double dxdt, m, t;
register double *p, *ke;

(register int i, J;
double vO, vn, vis, v2s, s, aa, vxx, vyy;
register double *a - e;
If(NEEELROTATION)
{ s - 2. * t / (1. + t * t);

v2s » 0.;
tori i - 11; i < iu; 14+)
{ J = rfU

an = a£j] + Mil - J) * («U + D
vyy - vy{il
vxx = vx[l] - t * vyy + aa;
vyy *» s * vxx;
vxx -= t * vyy;
v2s += vxx * vxx * vyy * vyy;
vx[i] = vxx + aa;
vytl) = vyy;

}
»ke += .5 " m * v2s * dxdt » dxdt;

}
else
{ vis » 0.;

v2s = 0.;
for(i = 11; 1 < iu; i++)
{ J - 411

vO « vx[il
vn - vO * atjl * Wi] - J) « (a[J + 1] - a(J]);
vis *• vn;
v2s +« vO * vn;
vxllj » vn;

)
«p +« m » vis * dxdt;
*ke +• .5 * m * v2s « dxdt * dxdt;

___*/
void

e_conserve(il, iu, dxdt, m, ke, p)
register int 11, iu;
double dxdt, m;
register double *p, *ke;

(register int 1, j;
double vO, vn, vis, v2s;
register double *a « e;
vis = v2s » 0.;
fort i « 11; i< lu; !+»>

Page 111

vO
vn " vO +
vis += vn;
v2s +« vn * vO;
vx[i] * vn;

*p +» m » vis " dxdt;
"He +- .5 • m * v2s * dxdt * dxdt;

n ___ _ __ ___ __ ___ __ „ ___ _____ ____ ____ _____ _______ ___ __ ___ __ __ _ __ ________ ___ _»/

void
advanced!, lu, q)

register Int 11, lu;
double q;

{ register int 1, j;
double qdx « q / dx;
double xn = ng;
double drho;
switchUw)
{ case ZERO-ORDER:

f or(i = 11; 1 < lu; 1++)
{ xli] += vx[i];

if(x(l] < 0.)
{ x[l] += xn;
)
if(x[i] >= xn)
{ x[i] — xn;
}
J = xti] + .5;
rhotj] +• qdx;

}
break;

case MOMENTUM:
case ENERGY:

for(1 = 11; 1 < lu; 1++)
{ x[l]+-vxW;

lf(xti] < 0.)
{ x[i] *-' xn;
}
if(x[i] >= xn)
{ x[i] -= xn;

J
drho - qdx « (x[i] - J);
rhoUl *= qdx - drho;
rhotj * 1] +- drho;

break;

Page 112

VII. fourier.c

This module consists of the fast Fourier transform routines utilized in

advance.c.

Page 113

•include -plasma, ft"
double sinesUS], slnepllBj;
void filLsine-tableO. fourlO. sincos20. inverse_sincos2();

void
«ll_sine_tableO
(double t » atand.);

register Int i;
sinesIO] = 1.;
for(l = 1; i < 15; i++)
{ smestij = sin(t);

sinepfi] = -2. * powteinesli], 2.);
t «« .5;

void
fourKdata, nn, isign)

register double "data;
int nn, isign;

{ register int i;
register Int J - 0;
int n » 2 * nn;
register int mmax, m, istep;
int sincnt;
double wtemp, wr, wpr, wpi, wi, tempr, tempi;
for(i = 0; 1< n; 1 += 2)
{ if (J > i)

{ tempr = data[j];
tempi - data[J + 1];
datalj] = datali];
datalj + 1] = datall + 1];
datati] = tempr;
data[l + 1] « tempi;

)
m = nn;
whlle((m >= 2) «A ((j * 1) > m))
{ j -= m;

m I" 2;
}
J *" «»;

}
mmax = 2;
wpi = 0.;
sincnt = 0;
whlleOnmax < n)
(istep = 2 * mmax;

wpr s slnep[sincnt];
wr • 1.;
wi = 0.;
for(m = 0; m < mmax; m +=2)
{ for(i = m; i < n; i += Istep)

(j « i »' mmax;
tempr = wr * datalj] - wi « dataU * H
tempi • wr * datalj + 1] + wl * dataljl
datalj] = datati] - tempr;
dataU + U - datali + 1] - tempi;
datali] += tempr;

Page 114

datali + 1} += tempi;

wtemp = wr;
wr +* wr * wpr - wi * wpi;
wl *» wl * wpr + wtemp * ^T>i;

mmax *» 2;
wpi » (isign > 0? sineslsincnt] : -sines[sincnt]);
sincnt**;

void
sincos2(datal, data2, fft, datakl, datak2, n)

double "datal, *data2;
register double Matakl, *datak2;
register double ("fftX2];
register Int n;

{ double rp, ip, rm, im;
register Int j, index;
foHj - Oi j < n; j*+)
{ fft(JIO] = datalUli

data2UJi

fourl(fft, n, 1);
datakUO] = 2. *
datak2[0] = 2. "
for(j = 1, index « n - 1; J < index; J++, index--)
{ rp • IftlJIO];

ip = ffttjllt
rm = fftllndexlO];
im - fftlindexll];
dataklUJ • (rp + rm);
datak2U) - tip * im);
datokl(index) - Gp - 1m);
datak2[index] = (rm - rp);

}
dataklU) = 2. " «ttjl0);
datak2[J] - 2. *

void
inverse_slncos2(datakl, datak2, fft , datal, data2, n)

double *daUl, "d«U2;
register double 'datakl, *datak2;
register double ("fftX2];
register Int n;

(double ca, sb, cb, sa;
register int j, index;
ffttOlO] - datakUO];
ffUOll] «= datak2[0];
for(J « I, index « n - 1; J < Index; >*, Index--)
{ ca - daUkltj];

cb • datak2[J^
sa « datakUindex];
sb « datak2tlndex^
ff UjIO] « ca - sb;
fftfjll] - cb + sa;

Page 1-15

HtflndexlOj = ca » st>;
tiUlndexll] = cb - **;

datakl[J];

/ourJ(//t, n, -It,
for(j = 0; J < n; J++)
{ datalUJ

dat»2[JJ

Page 116

VIII. plasma.h

This is the header file that contains definitions of various quantities used in

the other modules. Many of these definitions are in the form of include

statements for still other header files, mainly

Macintosh system and i/o definitions.

Page 117

•include -matn.tr
•include 'stdio.h'
•include "unlx.h'
•include *sane.h"
•include "QulckDraw-h"
•include "MemoryMgr.h"
•include "MacTypes.h"
•include "WindowMgr.h"
•include -ControlMgr.h"
•include "EventMgr.h"
•include -DeskMgr.h*
•include "MenuMgr.h"
•include "Toolbox Wtl.h"
•include "DlalogMgr.h"
•include "ResourceMgr.h"
•include "PontMgr h'
•include "TextEdlt.h"
•include "PrlntMgr.h"
•include •FileMgr.h*
•include "StdPilePkg.h"

•define my_abs(x) «x) > 0? (x) : -(x»
•define my_max(x,y) «x) > (y)? (x) : (y))

•define NTH 5OO
•define MMAX 16
•define NSPM 3
•define NGMAX 256
•define NG1M (NGMAX + 1)
•define NG2M (NGMAX / 2)
•define NGTWO (2 * NGMAX)
•define NPAR 512
•define NTH1 (NTH + 1)
•define NTH2 (NTH * 2)
•define NSPM1 (NSPM * 1)

•define ZERO.ORDER 1
•define MOMENTUM 2
•define ENERGY 3

•define ORDERED (vt2 1= 0.)
•define MAGNETIZED (we l» 0.)
•define ANOTHER (nig I* 0)
•define RANDOM (vtl l« 0.)
•define PIRST.GROUP (11 =« 0)
•define NEED-ROTATION (t 1= 0.)

•define VJ3CROLL 256
•define H-SCROLL 257
•define BAR.WIDTH 15
•define GRAPH-WINDOW 256

•define APPLE-MENU 1
•define PILE-MENU 256
•define PLASMA_MENU 257
•define EDIT-MENU 258

Page 118

•define ABOUT-ITEM I

•define NEW i
•define OPEN 2
•define CLOSE 3
•define SAVE 4
•define SAVEAS 5
•define REVERT 6
•define PRINT 8
•define QUIT 10

•define ENDALERT 256

•define INITIALIZE 1
•define EXAMINE 2
•define INTERRUPT 3
•define TRANSPARENT 4
•define RESTART 5

•define DRVR Ox44525652L /» The string "DRVR" as a long */
•define mk_long(x) (*(0ong ") & (x)))

typedef structCdouble fmax,
IminJ max-mln;

Page 119

9.0 PROBLEMS ENCOUNTERED DURING REPORTING PERIOD, R.D.

None

10.0 ACTIVITY PLANNED FOR NEXT REPORTING PERIOD, R.D. ESTES,
PI

The work of this task is proceeding on schedule. In the coining period the

software development will continue with the modification of the plasma simulation

program to more closely approximate the physics of our hollow cathode plasmas.

This means that collisional effects will have to be added and that the boundary

conditions will have to be modified. Initial computer experiments will be made

and their results compared with actual laboratory results. Parameters will be

varied to determine which ones are most important. In addition to continuing the

line of development already begun, we will be investigating the use of another

computer code for applicability to our problems. MASK, a two-dimensional, fully

electromagnetic, relativistic plasma simulation code developed at MIT and

improved by Scientific Applications International Corp. (SAIC) is available for our

use. The relativistic features are clearly not needed and would carry a substantial

overhead, but it may be possible to modify the code easily to run in a

nonrelativistic mode. A CONVEX computer is now available to us in the Radio

and Geoastronomy Division of the Harvard-Smithsonian Center for Astrophysics.

The vectorizing capabilities of this machine may make simulations with larger

Page

