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I. BACKGROUND

Renewed interest in simulation of high enthalpy flows brought about by interest in hypersonic

vehicles has led to the refurbishment and renewal of ground based wind tunnel facilities. The

National Aerospace Plane Program (NASP) is a program requiring the use of high enthalpy ground

based facilities for many aspects of the testing vehicle and its propulsion system. Simulation of flows

expected to be present at the entrance to the combustor of the propulsion system is of particular

interest here. This portion of the propulsion system presents some of the more challenging problems

in the simulation of the fluid flow due to the very high enthalpy values required for adequate

simulation. The 100 megawatt arc heater at the NASA-Ames Research Center is one such facility

that has the potential to simulate the required entering combustor conditions. This facility had been

previously developed, but the nozzle simulating the entrance to a combustor in the range of Mach

numbers of about 3 to 3.5 does not exist. The design of a nozzle for this facility for the NASP

program brought about interest in the present work.

Because of the very high temperatures that the gas develops through the process of being

heated by the electric arc, potential structural and thermal design problems arise due to the high heat

transfer expected to occur between the gas and the solid walls of the nozzle. These can be

particularly interesting to the design in the throat of the nozzle where active cooling systems will be

required in order to prevent the nozzle from burning through, or at least eroding and changing its

area ratio. Unfortunately, heat transfer rates that will allow adequate design of the active cooling

system are difficult to come by and in the past have been generated as a result of experimental data

and extrapolations to higher enthalpy conditions. The laminar heat transfer rates may be adequately

calculated as long as separation within the converging-diverging passage near the vicinity of the

throat is not allowed to occur. Similarly, correlations are available for adequate estimates for the



turbulent heat transfer rates as a result of the work by Bartz (Reference 1). The latter is a correlation

of experimental data for the case where the boundary layer entering the nozzle throat is turbulent.

The range of Reynolds numbers investigated previously is not high enough to include areas that are

of current interest in high enthalpy ground based facilities, and in particular are about an order of

magnitude below those expected to occur in the throat of the proposed 100 megawatt arc heater

nozzle. For most practical applications, the boundary layer entering the nozzle throat is expected to

be turbulent due to the length of run along the solid walls upstream of the nozzle in conjunction with

the violent flow existing within the arc heating chamber itself. Although the Reynolds number for

the 100 megawatt arc heater nozzle is higher than those available through correlation functions, this

does not represent a significant limitation to the use of the Bartz correlations because, with increasing

Reynolds number, the expected change in heat transfer coefficient (Stanton number) is not large.

This behavior is typical of both skin friction and heat transfer coefficients for most turbulent flow

situations at very large Reynolds numbers.

In another area of interest, the numerical simulation of fluid flows in numerous physical

situations is popular and may be able to shed light on the current problem of nozzle design for the

100 megawatt arc heater nozzle. The numerical simulations of properties of the flow very near the

wall, such as heat transfer and skin friction, are problematic in that the numerical grids upon which

solutions to various applicable modeling equations are solved may not be fine enough to allow

sufficiently detailed data concerning the near wall behavior to be resolved, even in an engineering

sense. The present study investigates the numerical simulation of flows within the proposed nozzle

and attempts to calculate the heat transfer rates that could be expected to occur within the throat

region and presents these values for use in the design of the active cooling system.



II. INTRODUCTION

The difficulty of dealing with the calculation of near wall properties has recently been

addressed in numerous works by Viegas, Rubesin and Horstman (References 2, 3 and 4). These

authors have addressed the question of providing detailed near-wall resolution in modern numerical

simulations through the use of empirical or semi-empirical information concerning the nature of the

turbulent boundary layer near a surface under the effects of various pressure gradients. Their work

has been applied in both two and three dimensional numerical simulations.

Previous numerical studies have been carried out for the flow expected to occur in two nozzle

concepts for the 100 megawatt arc heater. These results, by Rose, Perkins and Serafini, were

published at the Fourth NASP Symposium in Reference 5. These calculations dealt primarily with

the nature of the outflow from the nozzle as effected by the shape of the throat and no particular

attention was paid to the resolution of the near wall properties. Results from the study of Reference

5 indicated that a nozzle with a slit throat, as opposed to a nozzle with a square throat, produced a

more uniform outflow condition, and thus was tentatively chosen to pursue in the design of the

nozzle. These calculations were carried out with the full Navier-Stokes three-dimensional code

described in Reference 6. The Kumar code was used because of the potential for small regions of

separating and reattaching flow to exist within the assumed sudden contraction just upstream of the

throat of the nozzle. The solutions shown in Reference 5 indicated that a small region of separation

was present just upstream of the throat, however, with the grid spacing that could be used to allow

the solution for the three dimensional flow fields to be obtained within a reasonable amount of time

under the constraints of the explicit time accurate algorithm used in the method of Reference 6, it

was not possible to even roughly estimate the throat heat transfer rates. Historically, it is known that

regions of reattaching flow can produce very high heat transfer rates, and thus the present

investigation into what heat transfer rates might exist within the throat region of the nozzle was

undertaken. In Reference 5, it was shown that the flow throughout most of the nozzle remained two

dimensional, that is the sidewall effects of the slit nozzle were negligible except just at the sidewalls

themselves. This finding led to the conclusion relative to the present study that the effects of heat



transfer in the nozzle throat over most of the nozzle could be investigated with the use of two-

dimensional equations simulating the observed nominally two-dimensional flow field. The two-

dimensional Navier-Stokes code described in Reference 7 was used in this study. Investigations into

the effect of the throat heat transfer rate using a combination of the full Navier-Stokes equations

and the semi-empirical wall function approach described in References 2-4 were carried out during

the present investigation and the remainder of the report discusses the findings relative to the heat

transfer rate throughout the slit nozzle for the 100 megawatt arc heater.



III. RESULTS AND DISCUSSION

Initially, the two-dimensional Navier-Stokes code was used to investigate the flow within

the nominally two-dimensional plane of the proposed 100 megawatt slit nozzle. Results from this

study, carried out on a grid similar to that used for the full three dimensional calculations in

Reference 5, showed that the flow away from the walls could be adequately modeled with the two

dimensional code. This conclusion was determined from the general agreement between the

calculated boundary layer thicknesses and exit Mach number distributions. Once the use of the two

dimensional code had been demonstrated to be valid at least for most of the flow expected to exist

throughout the three dimensional nozzle, a mesh refinement study was initiated to determine the

effect of calculated surface heat transfer rates taken directly from the Navier-Stokes code. The

results from this mesh refinement investigation are shown graphically in Figure 1. This figure

indicates that as the mesh is refined, that is, as the distance from the wall to the first point in the

numerical simulation grid is decreased, the calculated heat transfer rate increases. Nearly an order-

of-magnitude variation in the calculated heat flux values occurs in various portions of the nozzle.

The smallest of the grids (Beta = 1.001) placed the point near the wall within the laminar sublayer

of the turbulent boundary layer. This was determined from examining values of the turbulent wall

boundary layer parameter y*. Thus one would expect the value of the heat transfer determined

from this calculation to be quite close to the correct value. Unfortunately, the time required to carry

this calculation out is prohibitive in terms of parametric investigations useful for engineering design

procedures because the time step must be small for the small cell size. Thus, some technique for

determining the near wall behavior of the turbulent boundary layer in the throat region is required

that can be affected on a relative coarse numerical mesh.

The turbulent-boundary-layer wall-function approach described in References 2-4 was

implemented for the algebraic turbulence model considered in present study. This implementation

is in fact simpler than those described in the cited references for the wall function work because of



the algebraic turbulence model being used here rather than a full multiple equation turbulence model.

A brief description of the use of these wall functions is given here for completeness. Equation 1

shows a law-of-the-wall equation for where constants C1 and k are to be determined through

empirical relationships. For mild pressure gradient flows and flows undergoing accelerations, these

constants are well understood and can be given by Equation 2.

u% = 1/k (In y+) + C, (1)

u+
c = 2.5 In y+ +5.1 (2)

Equation 2 describes the variation of the velocity away from the wall in the fully turbulent region

of a turbulent boundary layer once the very near wall laminar sublayer and a brief transition distance

between the laminar sublayer and the fully turbulent region has been passed. In the present code,

no attempt was made to use a single equation describing the behavior all the way from the wall into

the turbulent region. In general, beyond the turbulent region a wake exists whose size depends on the

nature of the pressure gradient being encountered by the turbulent boundary layer. For highly

accelerated flows, such as those encountered in the current nozzle, there is essentially no wake

involved, and considerations of the nature of the wake portion of the turbulent boundary layer are

neglected throughout the remainder of the present discussion. The crux of the implementation of

this wall-function method is similar to a procedure used by experimentalists in fitting experimental

data to an assumed mathematical function and deducing the wall shear stress or wall heat transfer

values. In the present study, Equation 2 was used and values of the heat transfer rate were

determined from points within the mesh at values of y+ between 100 and 200. The remainder of the

use of Equation 2 follows Reference 3, equations 10-34. This allows a very coarse mesh to be used

(as opposed to the very fine mesh used to resolve a laminar sublayer) and accurate near-wall

parameters to be obtained. Heat transfer results obtained in comparison with the very fine mesh of

Figure 1 are shown for the wall function implementation on a coarse mesh in Figure 2. As can be

seen, the wall function technique is very effective at producing a reasonable engineering result at a



much lower computation time. These results have been shown for the two dimensional code applied

to the proposed geometry for the slit nozzle for a case where the total temperature is 4000*R and the

walls are assumed to be held at 1000'R. The total pressure was 41 atm. As noted previously,

separation exists in this throat because of the sudden contraction and maximum heating rates are as

high as 12 MW per square meter. These conditions correspond to those in the Johns Hopkins

University, APL, high enthalpy facility. Two other conditions were studied for the Ames 100

megawatt arc heater. They are: Ames #1; Tt = 6500*R, Pt = 53 atm. and Ames #2; Tt = 9180*R,

Pt = 23.8 atm. All of the calculations assume that gamma is frozen at its stagnation value and the wall

temperature remains at 1000'R. The solutions presented for these three cases were carried out on

very coarse grids that allowed a speed-up of a factor of 100 from that case in which laminar sublayer

resolution was obtained.

Figure 3 shows the final calculated heat transfer rates in the throat the slit nozzle with a new

smooth contraction section for which no separation occurs. Values of up to about 6 MW per square

meter can be expected to occur in the throat region itself for the Ames #2 condition. This calculated

value may be compared with extrapolations of the heat transfer from Reference 1. The coefficient

should have a value of about 0.0007. When multiplied by the mass flow and wall-to-total enthalpy

difference, the dimensionalized heat transfer is about 5.0 MW per square meter near the throat. This

use of a numerical simulation to determine an engineering number for design represents some of the

first useful implementations of computational fluid dynamics applied to the NASP program. The

active cooling system should be designed to be able to take out the indicated 6 MW per square meter

expected to be delivered in the throat region. These values are within the range of heat fluxes that

can be adequately cooled without excessive thermal gradients existing in the nozzle throat material

(such as, for example, copper).



IV. CONCLUSIONS

An investigation into the use of computational fluid dynamics (CFD) has been carried out to examine

the expected heat transfer rates that will occur within the NASA-Ames 100 megawatt arc heater

nozzle. This nozzle has been tentatively designed and identified to provide research for a directly

connected combustion experiment specifically related to the NASP aircraft, and is expected to

simulate the flow field entering the combustor section. It was found that extremely fine grids, that

is very small mesh spacing near the wall, are required to accurately model the heat transfer process

and, in fact, must contain a point within the laminar sublayer if results are to be taken directly from

a numerical simulation code. In the present study, an alternative to this very fine mesh and its

attendant increase in computational time was invoked and is based on a "wall-function" method. It

was shown that solutions could be obtained that give accurate indications of surface heat transfer rate

throughout the nozzle in approximately 1/100 of the computer time required to do the simulation

directly without the use of the wall-function implementation. Finally, a maximum heating value in

the throat region of the proposed slit nozzle for the 100 megawatt arc heater was shown to be

approximately 6 MW per square meter.
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FIGURE 1. Heat transfer rates taken directly from the N-S code for various mesh spacing
parameters for the APL slit nozzle with sudden contraction. (Beta = 1.001 is in laminar
sublayer).
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FIGURE 2. Heat transfer rates taken from the wall-function/N-S code for various mesh
spacing parameters for the APL slit nozzle with sudden contraction (Beta = 1.001 is in
laminar sublayer and wall function defaults to the direct code value).
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FIGURE 3. Heat transfer rates using wall-function/N-S code for the APL slit nozzle
throat with new smooth contraction.




