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1. INTRODUCTION

This report is submitted in accordance with the reporting provisions of .
the subject contract and describes the research effort and its accomplish-
ments for the contract period. This study was performed by personnel of the
Computational Mechanics Section of the Lockheed-Huntsville Engineering Center
(Lockheed—Huntsville), Huntsville, Alabama, and Computational Mechanics Com-
pany (COMCO), Austin, Texas. The Technical Representative of the NASA-
Langley Contracting Officer was Dr. G.C. Olsen, Aerothermal Loads Brénch.
Mail Stop 395.

1.1 BACKGROUND

Finite element numerical methods are currently being used in computer
codes for solving practical fluid flow problems. The advent of the super-
computer is one of the primary reasons for the success thus far. However,
future problems are destined to be more complex and will no doubt tax even
the fastest machines. 1In conjunction with the release of the next generation
of supercomputers (Cyber Zxx/GFIO), more powerful numerical algorithms will
also be needed. Current methods utilize a grid of'points-to discretize the
continuum which are fixed a priori and not changed during the computation.

In addition, the order of the method, direction of differencing, and damping

models, are all chosen by the code user.

The success of finite element and finite difference codes often depends
on the user's ability to discretize the domain and/or selectively increase
the order of the finite element shape function to capture strong gradients
within the domain. Currently, this requires an a priori knowledge of the
location and strength of sharp gradients that occur in the flow field. Even

then, obtaining optimal discretization and interpolation is a lengthy and



costly iterative procedure. Strong flowfield gradients occur in shock waves,
expansion regions, and viscous layers. The accurate determination of these
regions is vitally important in determining the aerothermal loads on aero-
space vehicles in supersonic flight. Body heating rates are particularly

sensitive to the resolution of thermal gradients at the vehicle surface.

The next generation of finite element methods to impact thé computa-
tional mechanics community will be the "self-adaptive" kind. 1In these ad-
vanced methods, logic is built into the code to choose the grid of points,
move them around, choose the degree of approximation, and generally adapt
itself to the physics of the flow. Not only does this provide more reliable
-and accurate results, but it frees the (non-expert) user from making these

decisions before running the code.

1.2 OBJECTIVE

The objective of this contract is to develop new computation methods
for aerothermal heating analysis which utilize adaptive strategies. The new
nethods will be tested initially in trial codes and then implemented in
Lockheed'é GIM/PAGE code. Finally, a test problem will be run and compared

with experimental data for code verification.
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2. WORK ACCOMPLISHED
Adaptive procedures may be placed in one of three basic categories:

1. Moving Meshes. The number of grid points is fixed, and the mesh is
distorted so as to improve the quality of local approximations of
the flow field and its gradient.

2. Mesh Refinement (h-method). The mesh is refined (i.e., the number
of elements is increased, their dimension decreased) so that local
accuracy is improved.

3. Subspace Enrichment (p-method). The local order of the approxima-
tion is increased to provide a more accurate solution. 1In finite
element methods, the mesh is fixed while the local degree p of the
polynomial shape functions is increased. '

Regardless of which category én adaptive procedure falls into, it generally
Eollows the steps shown in Fig. 2-1. The term structure refers to the basic
mesh topology, the number of nodes and cells, the local order of the approxi-
mation, the numerical scheme, etc. It is the framework within which the

solution is obtained. Using an initial structure, a solution is computed.

‘The "goodness" of this solution is then determined. A measure of '"goodness"

can be obtained by computing a posteriori error estimates. The measure of
solution "goodness" can also include such things as the cost of the solution
in dollars and the manhours required to obtain solution. If the '"goodness"
criteria is met then a solution of a specified "goodness" has been obtained.
If the "goodness" criteriahare not met, then the structure of the mathe-
matical approximation is changed in some rational manner. This may involve
moving nodes, adding more nodes and cells, and increasing the local order of
the approximation. A "better" solution is now computed. This process is

repeated until the 'goodness" criteria are met.
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This report consists of a collection of papers which document the
various research efforts undertaken during this multiyear contract by

Lockheed-Huntsville and COMCO personnel.

Appendix A documents recent advances in error estimation and adaptive

methods for finite element calculations.

Appendix B documents the adaptive mesh strategy which is employed in

several test codes as well as the GIM/PAGE code.

Appendix C documents the implementation of a class of adaptive pro-

cedures for time-dependent Euler equations in two dimensions.

Appendix D documents implementation of an adaptive procedure which uses

triangular elements and a FEM-FCT numerical scheme.

The implementation of the GIM/PAGE code with adaptivity is documented
in Appendix E.

Development of a three-dimensional adaptive procedure is covered in

Appendix F.
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3. REMARKS AND CONCLUSIONS

‘Adaptive finite element methods will have a significant impact on comp-
utational fluid dynamics in the future. This report shows that adaptivity
can be coupled to several numerical algorithms. Existing flow solvers can ﬁe
enhanced with adaptivity. There is much work which needs to be done in the
general area of overall adaptive strategy optimization. This involves the
integration of both software and computer to realize an efficient analysis
tool. Within a software/computer structure, a particular adaptive strategy
may produce the least computationally expensive answers. This same adaptive
strategy within another software/computer structure may perform very poorly.
The type of data management technique may effect how an adaptive strategy
performs within a particular software/computer structure. In summary,
additional work should be done to determine the effect of the software/

computer structure on an adaptive strategy.
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RECENT ADVANCES IN ERROR ESTIMATION
AND ADAPTIVE IMPROVEMENT OF
FINITE ELEMENT CALCULATIONS

J.T. Oden, P. Devloo,: and M. Howe

Texas Institute for Computational Mechanics,
Department of Aerospace Engineering
and Engineering Mechanics
The University of Texas at Austin

Abstract. We collect in this article a synopsis of methods and results' on adaptive finite element
methods. We outline methods for constructing a-posteriori error estimates for linear and nonlinear
problems in mechanics. Adaptive methods are described and a variety of numerical results are
given on applications to problems in fluid mechanics.

1. INTROD N

How good are the answers? What can be done to improve them? These questions arise with
increasing frequency among users of modern computational mechanics codes. They are
fundamental, in that such questions relate to the basic goals of computational mechanics: the use of
computational methods and devices to simulate mechanical phenomena. Yet much of contemporary
research in computational mechanics is concerned with a myriad of other issues which, important
as they may be, do not consciously and directly focus on those primitive and fundamental
questions. When one does focus on those queries, a sequence of natural constraints are met that
have a profound effect on the way one approaches the development of modern codes, numerical
schemes, algorithms, and data management techniques for computational mechanics applications:

Modulo natural deficiencies in the ability of the mathematical model itself to capture real
physical behavior, we translate the first question into one that can be managed in mathematical
terms: how accurate are the numerical solutions? The only plausible and general approach toward
answering this question is to construct a-posteriori error estimates; i.e. to use the results of an
initial calculation to estimate the local error in a finite element / finite difference approximation.

Having obtained an indication of "how good the answers are,” one can proceed to the second
question: what can be done to improve them? The answer is clearly to use adaptivity of the
approximation in some way: to change the structure of the approximation to improve accuracy,
where by "structure” we mean the basic mesh topology, the number and location of nodes and
cells, the local order of the approximations, etc.

As is well known, there has emerged in the literature several methods for effectively altering

A-1



this structure: h-methods, in which the mesh is automatically refined to reduce error; p-methods, in
which the local polynormal degree is increased; r-methods, in which a fixed number of nodal
points are redistributed to reduce error; and combined methods, in whichh -p,r- h,r- p, --
combinations are employed. A survey of the recent literature on such adaptive methods has been
compiled by Oden and Demkowicz [20].

What is especially significant about these answers to the basic questions. is that they have
great impact on the design of computauonal mechanics codes. To 1mplcment a rational adaptive
scheme one must obey the following criteria in designing a programming strategy:

1. Mesh Independence. Since the mesh itself may well be changing as the solution
evolves, it is necessary to have schemes which can be implemented on arbitrary unstructured or
quasi-structured meshes. This first criterion makes obsolete most existing body-titted
coordinate schemes common in finite difference literature.

2. Robustness. Since the structure of the approximation is continually changing in an
adaptive scheme, adaptive methods must be very stable under changes in mesh size, under mesh
distortions, etc.

3. Mathematical Basis. Since a -posteriori error estimates are necessary for an effective
adaptive scheme, it is necessary that a solid mathematical basis exist for the adaptive methods.

4. Geometry Independence. Modern computational methods, adaptive or not, must be
able to cope with solution domains of arbitrary, complex geometry. The "real world" problems
encountered in applications seldom have simple geometries for which many classical methods work
well.

5. Supercomputing. The significant data management problems inherent in adaptive
strategies must lend themselves to supercomputing strategies-vectorization, parallelism, etc.

6. Efficiency. Hopefully, when all features of an adaptive strategy are optimized in a
program/computer structure, an efficient analysis tool will emerge. It is not necessary that the final
product be capable of analyzing a given discretization as "fast” as possible; rather, the objective is
overall optimization: to produce the best possible answers (in some sense) for a fixed level of
computational effort.

In our opinion, it is very clear that only finite element methodologies can fulfill all of these
criteria.

In this paper, we shall outline several recent advances in developments of the basis
components of adaptive methods. We do not attempt to provide a thorough review of the literature,
as this has already been the subject of a recent paper [20]. Rather, we provide summary comments
in a few areas that we think stand out as important advances in the field. Naturally we are most
familiar with our own efforts in this field. so we comment more fully on some of our own results.

Following this Introduction, we give a brief summary of a few recent advances in adaptive
finite elements. This is followed by several sections on general ideas behind a-posteriori error
estimation, h-method data management, algorithms for fluid-mechanics applications, and some

new results on numerical experiments with our adaptive codes. Finally, we comment on future
directions of research in this field.

2. RECENT ADVANCES

The state-of-the-art in adaptive finite element methods is adequately summarized in the volume
of cetiected works and presentations made at the Lisbon conference of 1985, These have recently
appearec urnder the editorship of Babuska, Zienkiewicz, Gago. and Oliveira {1j. Here ong will fin¢
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information of the basic ideas of h, p, r methods together with numerous applications to problems
in solid mechanics and fluid mechanics.

More recently a number of signigicant advances have been made which should be brought to
view in the area of elliptic problems, we mention the important theoretical work by Guo and
Babuska [14] on h-p methods. It is known that one can generally achieve a faster increase in local
accuracy using p methods than h methods. By this it is meant that greater accuracy can be achieved
with fewer degrees of freedom by increasing the local order p of the polynomial than by refining
the mesh. This does not necessarily mean that the p methods offer a superior approach to solving
elliptic problems, for one must add to this equation the significant factor of a data management
scheme, which is often the life and death of an adaptive method. Babuska and his co-workers have
shown, however, that the best possible approach to the accuracy problem, one leading to
exponential convergence, is to simultaneously refine both h and p. The h-p methods have shown,
in certain example problems, to produce exceptionally accurate results. At this wnting, most of
these results have been confined to one-dimensional problems and to linear elliptic problems in
two-dimensions. There would appear to be some computational difficulties in extending these
methods to time dependent problems, since there one must cope with the difficult issue of
consistent mass matrices, stability and space-time approximation. However, it is possible that these
difficulties may also be overcome with additional research.

A production finite element code based on p methods is now being promoted and sold. This
is the PROBE code, and its successful implementation of the p method has already an impact on the
design of linearly elastic structures, see [25]. The simple r methods produced by Diaz and
Kikuchi, and Taylor [ 12] have been used effectively in classes of problems in which one wants to
keep the number of degrees of freedom more or less constant. In particular, in problems such as
metal forming simulations, where one must solve a large number of nonlinear partial differential
equations, it is natural to try to achieve the best possible accuracy for a fixed number of nodal
points. Some simple moving mesh algorithms have been proposed which are easy to implement
and which apparently work well in two and three-dimensional problems. These have proved to be
very effective for nonlinear problems in plasticity in nonlinear solid mechanics.

In general, moving mesh methods suffer from one defect: for a fixed number of nodes and
fixed degree polynomial within each element, there is an inherent threshold of error which cannot
be eliminated. Thus, with the exception of the work of Miller on moving finite element methods
and the work mentioned above by Diaz and Kikuchi on r methods, most of the recent work on
adaptive methods has focused on h-methods and p-methods.

Perhaps the most significant recent advances in adaptive finite element methods have come in
the area of time dependent problems. We mention in this regard the important work of Flaherty and
his co-workers (see, for example, [8]) who have developed effective numerical methods for certain
classes of parabolic problems. Additional references on this subject can be found in these papers.
We also mention the construction of adaptive characteristic Petrov-Galerkin methods by
Demkowicz and Oden {9,10] which involves not only the construction of the local a-posteriori
estimates but also the construction of near optimal schemes for nonlinear convection diffusion
problems with small diffusion coefficients. These results have recently been extended to solve
Euler equations in two-dimensions. [27] .

One area in which adaptive methods appear to be making some in-roads is in supersonic gas
dynamics and general fluid mechanics. Several effective numerical schemes have been proposed
by Léhner, Morgan and Zienkiewicz [16,17,18], and the authors [19, 21]. These schemes have
been used effectively to solve two-dimensional steady state and transient problems in compressible
fluid mechanics. ‘

More recently, Oden, Strouboulis and Devloo [19,23,24] have extended these methods to
fluid mechanics in which moving domains are encountered. In particular, adaptive schemes have
been developed for classes of problems in which flow interaction occurs due to the motion of one
body or another through a flow field. Initial results on the applicatior of adaptive methods to
supersonic rotor-stator problems have produced some impressive results. some of which are
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outlined later in this paper. These include examples in which adaptivity has resulted in a mesh with
nearly 70 percent fewer elements than the uniform fine mesh required to produce equivalent
accuracy.

We comment on some of the components of an effective adaptive scheme below.

3. A-POSTERIORI ERROR ESTIMATION

The great majority of results on a-posteriori error estimation that have appeared in the literature
in recent years is restricted to linear elliptic problems; however, a great deal of precision and depth
of results has been possible for problems in this class. In [21.24,9], we have described a general
method for a-posteriori error estimation that is applicable to broad classes of linear and nonlinear
problems, including parabolic and hyperbolic problems. Successful use of our method in
determining error estimates for the finite element approximation of the Navier-Stokes equations has
also been made (24].

An outine of the general method is provided by the abstract linear problem:
Find u € V such thata (u,v) = f(v) v veV (3.1)

where a (-, - ) is a bilinear form on V x V. V being a Banach space, ind flS a linear functional on
V. The Galcrkm approximation of (3.1) in a finite- -dimensional subspace VP of V is characterized
by the probiem,

%)
(B9

Find uP e VP such that a(uh, vP) = f(vih 7 vhe vh ' (

We suppose that V — H = H* —  V*, the inclusions being dense and continuois, for &
Hilbert (pivot) space H, V* being the dual of V,etc. If <., . > denotes duality pairing on V* x V,
then we generally have

alu, v) = <Au, v>

TV, ={ve ViAve HJ}, then we also have <Au,v> =(Auv)y:iuve V, where( .

is the inner producton Hand A e £(V, . H)

In general, for finite element approximations, the form a ( . ) can be expressed as the sum
of contributions from an assembly of E subdomains:

uv = Ve oauv) = (CAuv), + re (u,vi}

where (-, *) denotes the H- inner product defined on restrictions of u and v to subdomain

(element) ¢ and T (u.v) is the bilinear concomitant associated with boundary terms on the boundary

~ of subdomain e.

h

Let eP =u - uM denote the error and suppose that

5 det
1RY !I-A = a(v.v)

L.




wi, = WP AV

veV IleIA

Then
sup a(eMv)

e il =
veV liviy

- -1
= hvily (Z@ )+, (e, v} 3.3
€

where th = Au- AuP = f - Aul is the local residual. To eliminate ™, we construct a local auxiliary

problem, for a function 8, defined by
a(6% v)=R,(v); e=12,.,E _ (3.4)

_ /.h h* h* . . . . h
where R, (v) = (1", v), + T (e",v)e being some appropriate approximation of ¢" on the

~ boundary. Setting Al, the restriction of A over €, and

IB® 1125 o = a, (6%, 6%) = < Al 6°,6%
introduce (3.4) into (3.3) to arrive at the a-posteriori estimate,

2 12
leP i, < {ZNeclly,} (3.5)

The functions 8, are local error indicators. Of course we do not wish to solve the E equations

to obtain the 66. We are, thus, content to construct an approximate solution to (3.4) over some

enriched subclass VP of functions so as to produce approximations 8 " of 8. Several different
methods of a-posteriori error estimation may result from different schemes for approximating (3.4).
Alterriatively, if one can derive local a-priori bounds such as 118% Hi A SCIIR® Ik then (3.5) can be
rewritten in terms of the residual functional R®.

In many nonlinear problems, a step such as (3.3) may not hold, and instead, we bound the
residual. For example

- Agh ]
irhyp, = SUP SAu-AwLv>oswp ol o V), + (el v))
ve V vl ve V €
S{Zunen2 )iz
€ Age

We conclude this section with several remarks.

1. These examples provide global a-posteriori error (or residual) bounds in terms of local
error indicators. By a special construction of test functions, trulv local error estimates can be
: A-5



obtained. For example, Demkowicz and Oden [9] studied a special Petrov-Galerkin method for the
problem - € u" + u = f, and showed that the local error must satisfy the sharp a-posteriori estimate

h2
el equ— by |
LAQ)” 12 +end e N
where ' is, again, the ¢lement residual.

2. For a time-dependent problem, such as

Jo t QUL+ Au)) v dx dy = | £ v dx dy

tor drhnmry test functions and v, and linear A, the fact that the error must be the function
M= u .yl leads, by direct substitution, to the evolution equation,

-

_i‘Q ( 9el/ot + AeM) vdx dy =- JQ v dx dy

Thus. using a higher order approximation EN of eM than that used in approximating u, we arrive
naturally at a system of equations for the evolution of error,

ME+KE=R ' (3.6)

Various dynamic error estimators can be constructed depending on how one constructs the
approximation EM of e . In (3.6), M is the usual mass matrix associated with the approximation
Eh = ,., E (v \y {x), E is the vector of nodal errors EJ, K is the stiffness matrix, and R the residual

\'L(,[OI'

-

3. For certain classes of problems, it is possible (or, at least, it may be assumed to be
possible) to obtain an estimate,

: < e h h
16°-8,¢ll, , SCIIB_ -V, , Vihe v

vhere Veh 1s the special class of local test fucntions used in approximating the local auxilliary

croplems (3.4, Then !l ec -yl Ae MAy, in turn, be estimated using standard results from finite

element interpolation theory (see Oden and Carey [22]). In particular, if 8" is the interpolant of Gc

over 2, obtained using polynomials of degree < k, for an n - dimensional problem with
~quasi-uniform mesh refinements,

- n/q-o/p +k +1-m
'g.-8h1 . <ch 19,1 37)
2 m.q,Q, o “k+1,pQ, o

with 0. the W4 (Q 3 - seminorm 0<p <ee.andq =p/(p- 1). For the case m =0, k =
L

1

I,p=4g=2, weobtain




Igel O - 8! a2~h216, -8y1 < Chll6, 1

» €

These estimates can judge the quality of the approximations of the local indicators, provided a

means for computing estimates of the seminorms 18, 1., D is developed.

4, FEATURES OF AN ALGORITHM APPROPRIATE FOR ADAPTIVE FEM

Earlier in this paper we listed criteria for the development of adaptive finite element codes for
complex problems in solid and fluid mechanics. In this section, we summarize features of an
adaptive code we have developed for two dimensional problems in compressible gas dynamics in
which we have attempted to meet most of these criteria.

4.1 Preliminaries

We consider the motion of a perfect gas flowing through a two-dimensional domain Q < IR2,
If U = U (x,t) is the vector of conservation variables with p the mass density, m the linear
momentum and e the total energy, it satisfies the following weak initial -boundary value problem:

Find U € V such that

ST @t a—¢+Q(U):V¢)det+JJO 0(-,0)dQ =] | Flodsdt @.1)
0Q ot Q 0 0Q
Voée W

Here Q (U) is the Euler flux tensor,

m, I m, 1
pl m12 +p(U) Il pl mm,

Q= |p! m,m, | pl m12 +p (U) (4.2)
p'lml(e+p(U)I p'1m2(6+p(U))_j

p(U)=(y-D(e-pl m-m/2)

where p is the thermodynamic pressure and Yy is the ratio of specific heats.

Moreover,
V= {v={vvgvy v THy =vi(x,De L0, T, L1 Q)i = 1,23.4) CR}
W={w={w,w,,w,, w4}TI w; € cl [QT) w;x, T)=0; i=1.2,3,4) 4.4)

F 1s the actual prescribed flux through the boundary oS and the following notation is used

A-7



T o 4 a¢a

U = =3 U ,—
H el OBt

2 4 00
Q:V6=2 £ Qy —
i=1 a=l1 ox;

1

Let us now consider an arbitrary time interval [t |, T,] C[ O, T] and modify the space of test
functions to include functions which do not vanish at the final time, namely:

WU (we (wpy wy wa wa) Tl w e €L @x[t1t, Ds i = 1.2.34)
Then we can state the weak-statement of the conservation laws over the space time subdomain Q x
[ T,.T,]as follows: ‘
.Finc.i Ue VT1'T2 such that
Jo WTCL 10 (1) d= Jo WTCL 16 (L1 dQ
R T

P T —a-¢+Q:V¢)det 2] Fo dydr Voe WirT2 (4.5
1 Q ot 1 dQ .

Here V T1: 72 is appropriately defined as the solution space over the strip Q x [T, T, ].

4.2 Solution Algorithm

We obtain a finite element approximation of (4.1) by partitioning the space-time domain Q x
[0.T] into subdomain Q x [t ,t 4] (WithO=tg< <. <t <t <.ty =T by
discretizing each subdomain and by employing (4._% using the discrete spaces of test and tnai
functions defined by the discretization. Moreover, by approximating the space-time integrals using
numerical integration we get the following scheme [19]:

I First Step:

For each element Q,, compute U™ such that,

U2 Jo a0 = JoUnaa - av2 Jo divQ @ d@ (4.6)

II. Second Step:

Calculate Up ™1 such that,

Ia q{ U = g QThU“hd.Q £0t QUATVE )1 Vg, d0
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aQ h oQ h

Here we assumed ¢, /ot =0 (i.e. the spatial grid remains fixed), we lct F = Q n and denote
Ul\ Uh ( [n)

Equations (4.6), (4.7) define a two-step TG/FELW (Taylor-Galerkin/Finite-Element-Lax
Wendroff) method which has been introducted by Donea [13], studied by Baker et al. [2], refined
by Lohner et al. [17] and others ( [3], [19]). The second step of the scheme, as given in (4.7)
involves a global calculation of the form:

M({U)}™ ={R} (4.9)

Here M denotes the consistent mass matrix, {R} the load vector whose deﬁnmon can be easily
deduced from (4.7) and {U} = { Uy, U2, U, Un+1, .., U } is the global vector of nodal

unknowns. The inversion of the mass matrix can be performed by a Jacobi iteration [17] or a
preconditioned Jacobi Conjugate Gradient [19].

The TG/FE-LW method provides us with a fast, multi-dimensional time stepping algorithm
with a high resolution (high order of accuracy) in smooth regions of flow and which applies to
unstructured adaptive grids. It is well known [17] that the algorithm suffers from a phenomenon
of non-linear instability. To overcome this deficiency, artificial diffusion is added to stabilize the
scheme in the presence of discontinuities ( [18], [ 19]).

4.3 Flux-Coi'rccted Transport

The theory of Flux Corrected Transport has been developed by Boris, Book and others ( (4],
[51, [6]) and it involves an attempt to systematically correct finite - difference transport schemes in
order to avoid non-physical oscillations in the solution. Fully multi-dimensional FCT schemes have
been constructed by Zalesak [26]. Recently Lohner et al. [18] presented a flux-correction procedure
of the TG/FELW scheme for systems of conservation laws. In this section we give a short
exposition of the FCT - TG/FE-LW algorithm which we employed in some of our adaptive
calculations.

The FCT procedure consists of solving equation (4.9) by using a diffusion and an
antidiffusion step. In the diffusion step a "strong" diffusion term is added to obtain a "transported
and diffused” solution which is free of non-physical oscillations. In the antidiffusion step part, a
"limited" amount of diffusion is subtracted from the right hand side (4.9) in order to steepen the
solution at discontinuities and increase the accuracy in "smooth" regions of flow. '

In particular, we have:

Step I: "Diffusion” Step

Compute { U1} from
M(Ug™l) = (R} +{V]) (4.10)
Here {V} denotes the vector of added diffusion with nodal contributions ot the form:
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For a mesh of quadrilaterals we let
X

D =Dy =cAe

where c is a constant and A, denotes the area of element Q...

StepII: " Antidiffusion " Step.

Compute (U™} as the limit of the sequence of iterates { U[',‘]”), i=1273,.. defined by:
1

M n+l _pn+ly - F
M G -

(4.12)
F=(M_-M) AU[;‘]”-V

Here M| denotes the lumped mass matrix and 1 denotes the flux limiting function which may be

defined appropriately in order to prevent oscillations in the solution. In our applications we used
the strategy of Zalesak [26] and Lohner et al. [18] to compute | (F[i])‘

4.4 An h Refinement / Unrefinement Strategy for Steady-State Solutions of
High-Speed Compressible Flow

An adaptive procedure for steady-state solutions of equations of compressible gas dynamics
involves the following steps: _

For a given domain a coarse finite element mesh is defined which contains only a number of
elements sufficient to model the basic geometric features of the flow domain (see Figure 1a). Each
element in the initial mesh is assigned a "level” equal to zero. Then a finer mesh is generated by a
bisection process, indicated in Figure 1b, in order to obtain an initial grid with the "group”
structure. Note that when an element is refined a group of 4 elements is defined and each of the 4
new elements has a level one unit higher than the "parent” element.

1. For a given finite element grid determine the steady-state solution.

2. Compute error indicators 8, overall M elements in the grid. Let

eMAX = max Gc
1€esM

3. We scan groups of 4 elements and compute
4

m
9 D = E 8
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where my is the k-th element in group m.

4. Error tolerances are given by two real numbers, 0 < a, B < 1.

I 8,2 B Oyry

we refine element €, by bisecting it into four new elements.

If

m
86roup < @ Byax

we unrefine group m by replacing this group with a single new element with the nodes
coincident with the comner nodes of the group.

5. Goto step 1.

4.5 Numerical Examples

In this section we present examples of adaptive calculations of steady-state solutions of
problems in high speed compressible flow. The error indicator employed in the numerical
examples is given by the normalized gradient of the density:

apy,

max —a——

S 1=1,2| ox;

0, Ai’z :
Ph

where p, denotes an average value of the density of element £, .

4.5.1 Supersonic Flow Over a 20° Ramp

We consider the problem of a Mach 3 flow (with y = 1.40) over a 20° ramp. The gas enters

with uniform flow conditions through the left boundary of the domain and develops an oblique
shock at the root of the ramp.

, A coarse initial mesh with the computed pressure contours are illustrated in Fig. 2. Adaptive
mesh results are shown in Figures 3 and 4 with one and two levels of refinement respectively. The

constants for the adaptive scheme were chosen o = 0.05, § = 0.15. The FCT version of the
time-stepping algorithm was employed with ¢ = 0.125. The results compare well with the exact
solution except for some small disturbances downstream which are due to the artificial stagnation
point at the tip of the corner. A three-dimensional view of the pressure is shown in Figure 5.

4.5.2 Supersonic Flow in Expansion Corner.

In this example, the steady supersonic flow through a 10° expansion is studied. Thé inflow
Mach number was selected M, = 6 with vy = 1.38. Figures 6 through 8 show the meshes
A-11
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Figure 5.

Supersonic flow over a 20° ramp.
Three-dimensional view of the converge
levels of refinement
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employed in the calculation with the corresponding density contours. The results were obtained

with the FCT scheme with "o = 0.05, B = 0.15 and ¢ = 0.125. Striking improvement in the
solution is seen to result from the refinement procedure.

4.3.3 Asvnchronous Time-Stepping Procedures

In the algorithms described in the previous paragraph the global timestep At is determined as
* the minimum allowable time step in the 5@, namely:

CV Ae
At = min At,; At,= (4.14)

c ’
e=1,....M lul +¢

Here C denotes the C.F.L. number, c is the local speed of sound in the element and Il = u?) + u,.

From the definition (4.14) we see thatsince At ~C \er ~ h, the timestep may be governed

by the smallest element in the mesh. This choice of At guarantees stability and time-accuracy of
the scheme. For steady-state calcumations however time-accuracy is not important and it may be
more economical to employ asynchronous time-stepping by prescribing local time-steps.

Let us denote by At j"Ode the nodal timestep of node j which is computed by the minimum 6f
the time-steps of the elements which are connected to node j. Then, an Asychronous TG/FE-LW
scheme may be employed as follows: ' '

I._First Step:

For each element Q, compute U 8*1 such that: -

U2 Jode=lp UmdQ A Jo div Q (U a0 (3.15)
2

II. Second Step;

Calculate U:” =3

U;' 1+1 ¢. such that,
=1 e

N T ’ T
Z (Jg o 0,d2) Y =2 (Jg 67 ¢;d0)
=1 i=1

- 8] 0/(QUMIP-Q(UMnay
€00

-

+Amode [ T Q (UM ndy i=1,2,...N (4.16)
Yo%
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We now demonstrate some of the features of the asynchronous time-stepping scheme using
two numerical examples:

4531 T ing Sh 1

The statement of the problem is given in [19]. Figures 9 and 10 show the steady-state density
contours obtained with the time-accurate and asynchronous algorithms, respectively. We note that
the steady state was obtained after 130 time steps with the time-accurate scheme and after only 100
time-steps with the asynchronous scheme, which represents 30% of savings in computational

effort.

4532 NACA 0012 Airfoil in Supersonic Wind Tunnel;

We also considered the problem of a NACA 0012 airfoil in a supersonic wind tunnel with
inflow Mach number M_, = 3, y= 1.4 [19]. Figure 11 presents a comparison between the
steady-state density contours obtained with the two schemes. The time-accurate scheme requires
585 ume-steps to converge while the asynchronous scheme converged after 496 time-steps.

4.5.4, Elevon Cove Problem

The Elevon Cove problem has to do with supersonic flow past a complex swan-like geometry
of a portion of the space shuttle elevon. The problem is described in [3]. Figures 12 and 13 show a
preliminary calculation of the problem with our adaptive Euler code. The mesh shown does not
correspond dto a later unrefined mesh. This mesh is not yet optimal, since the program was still
attempting to compute a new mesh at the time calculations were stopped.

Fi T ive Finite Element Algorithm for Transient Calculation

We now present an example of an h-refinement / unrefinement strategy for transient
calculations. The basic steps of the algorithm are: ‘

a) Advance the solution N time steps.

b) Do the following until no more elements can be refined:

(1) Compute the element error indicators 6,.
(2) Refine all elements with 8, > B 8y,

3 Integrate the last N time steps with the updated (refined) mesh
(4) Go to (1).

¢) Compute the element error indicators 6, and unrefine all groups with
6™Group S @ OMax

d) Gotoa).

We note that the "do loop" in step b) converges when no more elements can be refined (the
maximum level of refinement is fixed). Although the iteration in step b) guarantees a "fully
updated” mesh it may lead to an expensive scheme if more than a few passes are required for
col:wergencc of the "do loop”. A cheaper alternative is presented by the following "two-pass”
scheme:

a)  Advance the solution N time steps.
A-21



b) Compute the element error indicators 6,
¢) Refine all elements with 6,2 B E:R,l&x o
d) Integrate the last N time steps with the refined mesh obtained in c)

e) Compute the element error indicators 6, and
1) Unrefine all groups with

m
8" Group S @ Bmax

2) Refine all elements with
ec: <p Omax

D  Gotostepa).-

In the following, we present two examples of adaptive refinement for transient problems.

3.1 Rotating Cone Problem [11]

We consider the following advection problem:

U .
é_t_+dW @u)=0

4
t0,r 2150
VD=t ot +cos ™ 1, r< 150
. + — <
\ [1+cos 50} r
Here, 12 = x2 + @y - 250)2 is given by the vector a (R, 0) = (R cos 6, - R sin 8) where R, 6
are the polar coordinates indicated in Figure 14.

This problem has been solved by many authors and it is considered as a benchmark problem
for algorithms for advection problems ([15], [11]). Here we show some results obtained with an
adaptive SUPG algorithm [11]. Figure 15 shows some "fully updated” meshes which are obtained

with the scheme outlined in the beginning of this section. For more details the reader should refer
to {11].

5.2 A Problem of rsonic Rotor-Stator Interaction

We applied the "two-pass” adaptive algorithm to a problem of supersonic rotor-stator
interaction. We consider now two rows of doubly-parabolic airfoils with thickness to lenth ratio
equal to 0.08. Figure 16 shows some of these airfoils and the initial finite element discretization of
the domain. We assume that the stator and the rotor have the same number of airfoils and we
perform the computation on domains corresponding in one rotor and one stator airfoil while the

presence of the remaining airfoils is simulated by periodic boundary conditions. In the figures the
domain of the rotor airfoil is drawn twice.

In the Figs. 17 through 25 we give the results of a supersonic calculation obtained with a
dynamically adapted grid. The distance between consecutive airfoils of the rotor (and stator) is
assumed equal to twice the airfoil length while the distance between the tail of the stator and the
front tip of the rotor airfoil is taken equal to 0.2 of the airfoil length. We impose boundary

conditons of supersonic inflow on the left boundary of the stator with the dependent variables

equal to

p=14, pu = 4.2, pv = 0. pe = 8.8.
A-22
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The inflow boundary conditions correspond to a free stream Mach number equal to three.
Boundary conditions of supersonic outflow were assumed on the right boundary of the domain of
the rotor. The steady-state solution which is obtained by keeping the airfoild fixed was used as
initial condition.

We have chosen f =0.19, a = 0.06 and we defined the group error indicator to be equal with
the maximum element error indicator of the elements in the group. We did not specify N but instead
we revised the mesh every time the fifth nodes [23,24] of the rotor mesh coincided with comer
nodes of the stator mesh (this resulted in mesh revisions every 10-12 tme steps). We also note that
all interface elements have been refined beforehand with the maximum level of refinement to
facilitate the application of the sliding interface algorithm.

In order to capture shocks of variable strength we used the "normalized" error indicators given
in (4.13). It becomes clear from the numerical results that variable shocks are captured well and the
mesh evolves dynamically to adapt to the solution of the rotor-stator problem.

Results are shown in Figures 17 - 25. The initial mesh is that shown in Fig. 16. The first
adaptive calculation for a steady-state initial condition is shown in Fig. 17a. The corresponding
computed pressure profiles are shown in Fig. 17b. Note the symmetry of the shock lines, the
continuous pressure fields across the mesh interface, and the fact that both unrefinement and
refinement of the mesh were required to achieve the accuracy limits specified. The rotor blades are
then allowed to move with unit speed and the mesh is dynamically refined. Plots are shown of
calculated adaptive meshes and pressure profiles for 1/8, 2/8, 3/8. 4/8, 5/8, 6/8, 7/8 and 1 cycle
(period) of the motion, during which a rotor blade makes a complete revolution from its tnitial
position in Fig. 17 back to the same position.

Several features of the computed meshes and solutions are noteworthy. In the initial
steady-state case, only 16 unrefined elements appear. The size of these large elements, indicating
small local error, is limited in the present caluclations by the distance from the tips of the rotor and
stator blades: two elements in the present case since there must exist a sliding interface between
them. A minor program modification could allow much larger elements in regions of small error.
For the transient case, the number of larger elements (indicating substantial unrefinement)
increases, and these regions of low error migrate over the mesh as solution evolves in time.
Conversely, substantial refinement of the mesh is indicated at the interface and along shock lines.
The method successfully captures shock interactions and the increasing density of pressure profiles
downstream from the moving blades. The ratio of the number of elements in the adaptive mesh to
that in the uniform fine mesh varies in time, but is typically 4,000 / 12,500, a reduction of 68
percent! The initial coarse mesh of Fig.16 contains around 4000 cells and is incapable of delivering
the required accuracy, a fact not easily realized without an expensive computation.

Future Direction

We believe adaptive finite element methods will have a significant impact on computational
fluid dynamics and computational structural mechanics in the future. These techniques, together
with the modem parallel and array processors, will make obsolete many of the more popular
methods in numerical analysis in use today. In particular, use of the body-fitted coordinate
techniques, splitting methods such as ADI, etc. will probably lose some of their popularity since
they are not well suited for problems with unstructured meshes.

It is likely that large gains are to be made in three-dimensional problems. Here more than
anywhere else, one needs to do computations on a near optimal mesh where only a minimum
number of degrees-of-freedom is required to produce a given level of accuracy.

It is likely that new advances in parallel and array processing will bring the p-methods and h-p
methods to the forefront, since, at least from a theoretical point of view, array processors may have
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Figure 11.

NACA 0012 airfoil in supersonic wind tunnel.

(a) Steady-state density contours obtained with the time-accurate scheme.

(b) Steady-state density contours obtained with the asynchronous time-stepping
scheme. " '
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Figure 13.

Elevon Cove Problem.
Density contours of the computed solution.

A-28

—_—

1

—=



1 ] : '

1 4

500

$00 -

Figure 14.  Rotating cone problem.
Problem statement.
s
L
!
!
-4
e ; 2
S =0
L = 1
T1E
-
131
1
!
Figure 15.  Rotating cone problem.
“Fully updated” adaptive grids.
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Figure 16.

Supérsonic flow interaction between rotor and stator airfoils.
Inidal finite element mesh employed in the calculation.
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Figure 17.
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Supersonic flow interaction between rotor and stator airfoils.
(a) Initial adaptively refined mesh for steady-flow through rotor-stator configuration.
(b) Pressure contours for steady-flow through rotor-stator configuration.
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Figure 18.

AEN

Supersonic flow interaction between rotor and stator airfoils. -

(a) Adaptively refined mesh at 1/8 of the rotor cycle.
(b) Pressure contours at 1/8 of the rotor cycle.
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Supersonic flow interaction between rotor and stator airfoils.
(a) Adaptively refined mesh at 2/8 of the rotor cycle.
(b) Pressure contours at 2/3 of the rotor cycle.
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Figure 20,
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Supersonic flow interaction between rotor and stator airfotls.

(a) Adaptively refined mesh at 3/8 of the rotor cycle.

(b) Pressure contours at 3/8 of the rotor cycle.
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Figure 21.

44

Supersortic flow interaction between rotor and stator airfoils.
(a) Adaptively refined mesh at /8 of the rotor cycle.
(b) Pressure contours at 4/8 of the rotor cycle.
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Figure 22.  Supersonic flow interaction between rotor and stator airfoils.
(a) Adaptively refined mesh at 5/8 of the rotor cycle.
(b) Pressure contours at 5/8 of the rotor cycle.
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Figure 23.  Supersonic flow interaction between rotor and stator airfoils.
(a) Adaptively refined mesh at &8 of the rotor cycle.
(b) Pressure contours at 6/8 of the rotor cycle.
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Figure 24.

Supersonic flow interaction between rotor and stator airfoils.
(a) Adaptively refined mesh at 7/8 of the rotor cycle.
(b) Pressure contours at 7/8 of the rotor cycle.
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Figure 25,

a
t e 31117
A TT1
b

Supersonic flow interaction between rotor and stator airfoils.
(a) Adaptively refined mesh after one complete rotor cycle.
(b) Pressure contours after one complete rotor cycle.
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the capability of handling significant local data management problems that might be associated with
an implementation of p-methods. It is conceivable that a clever use of p-method philosophy in this
computing environment may prove to be very effective for a wide class of problems.

There is another point of view that is emerging from the adaptive literature: that is that two
general types of a-posteriori estimation can be used in effective adaptive procedures. In one case,
only a rather crude error estimator may be satisfactory to establish trends in mesh adaptation that

will lead to improved accuracies. The effectivity indices for such methods may not be close to -

unity, so that the actual error predicted may be quite far from the true error that exists in the
approximate solution. Nevertheless; a'scheme may result which is truly adaptive, in the sense that
the actual local error is systematically reduced below some threshold. Parallel to these methods are
methods in which a great deal of sophistication is used in an a-posteriori error estimation. Here,
with additional expense, quite accurate estimates of local errors can be obtained. This leads one to
speculate that thére may emerge in the future adaptive codes with two or three levels of
sophistication: one in which an adaptive scheme is used to produce a near optimal solution for a
fixed level of effort; secondly, a post-processing operation in which very precise estimates of the
local error are produced and presented, perhaps in terms of error contours, for residual evaluation
toward obtaining a final evaluation of the quality of the solution. Again, if this quality is not
acceptable to the analyst, he may choose to re-run the problem through additional adaptive cycles to
produce furhter improvement in local solution quality.
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Appendix B

The adaptive mesh strategy to be described is an h-method gpplied to
hexahedral elements for three-dimensional and quadrilaterals for two-
dimensionals wherein the mesh is refined or unrefined (coarsened) when a
solution quality test function falls outside preassigned upper and lower
bounds. For clarity the two-dimensional strategy is described. It differs
from the three-dimensional strategy only in the number of elements which
comprise a group (4 vs 8) and the number of new sub-elements created during
a refinement (4 vs 8). A set of "adaptation" rules are listed which are

used to implement this strategy.

1.1 General Description. The adaptive mesh strategy involves the following

steps.

1l. For a giveh domain L, such as that shown in Fig. B-la, a coarse

finite element mesh and an initial solution are available.

2, As the adaptive process will be designed to handle groups of four
elements at a time, a finer starting grid is generated by a
bisection process, indicated in Fig. B-1b, to obtain an initial set

of element groups.

3.  The adaptive procedure is initiated by computing solution quality

indicators r, over all M elements in the grid. Let

m

"uax™ 1"8°u Te

4, Next, scan groups of a fixed number P of elements and compute

k P

T GrROUP™ k=1 rek
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" Fig. B-1 (a) A Coarse Initial Mesh Consisting of Four-Element
‘Groups and (b) The Refinement and Unrefinement of a
Group of Elements
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where ek is the element number for groﬁp k, P = 4 for two-

dimensional grids and P = 8 for three-dimensional grids.

5. The solution quality bounds are defined by two real numbers, 0 a, B

1. If

element re is refined. This is done by bisecting Te into four

new sub-elements. If

k

Terour = *Fuax-
group k is unrefined by replacing this group with a single new element
with nodes coincident with the corner nodes of the group. This is
always possible because each group is itself the result of an initial

- bisectioning.

This general process can be followed for any choice of a solution quality

indicator.

2.2 Data Structures. An important consideration in all adaptive schemes is

the data structure and associated algorithms needed to handle the changing

number of elements, their node locations and numbers, and the element labels.

As noted in the preceding paragraphs, the algorithm is designed to pro-
cess (refine or unrefine) in groups of four elements at each local refinement/
unrefinement step. Consider, for example, the case of an initial mesh of 20
square elements shown in Fig. B-2. Assign to each element in this mesh an
element number, NEL = 1,2,...,NELEH'and to'each global node a label NODE. The
array, NODES(J,NEL) relates the local node number J(J = 1,2,3,4) of element

NEL to the global node number NODES. 1In addition, the coordinates XJ,YJ

" B-3
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of each node are also provided relative to a fixed global coordinate system.

File these numbers in two arrays,

NODES(J,NEL) = the array of global node number
assigned to node J of element NEL
XDO(JCO,NODE) = the array of JCO —-- coordinates of

global node NODE(JCO = 1 or 2).

If a solution quality indicator signals that an element should be refined,
say element 11 in the example, some system for assigning appropriate labels to
the new elements and nodes must be devised. Toward this end, a convention can
be_established that defines the connectivity of the specified element with its
neighbors in the mesh. This information is provided by a third connectivity

array,

NELCON(NC,NEL) = the NCt'D connection of element NEL,
where NC = 1,2,...,8 :

As seen in Fig. B-2, each side of an element may be connected to two other

elements so that NELCON is dimensioned thusly;
NELCON (8 ,MAXEL)
with MAXEL an appropriately large number.

The entire refinement process (or its inverse -- the unrefinement process)
just described is accomplished by specifying a series of element levels. For
example, the initial coarse mesh could be assigned levél'o. When an element
is refined, its sub-elements belong to a higher level, level 1, and when these
sub-elements are refined,velements of level 2 result, and so on. In this way,
if the maximum level any element in the mesh can achieve is limited, then the
maximum number of elements the mesh can contain is also limited. 1In general,

no such limit need be set.



Tﬁus. the bookkeeping of element and node numbers evolved in a refinement
process is monitored by the arrays NODES(.,.), XCO(.,.), NELCON(.,.), and an
array LEVEL(NEL) which assigns a level number to element NEL. 1Initially, the
same level can be assigned to all elements, and this level is an arbitrary
parameter preécribed in advance by the user. Thus, provisions are now in hand

for an arbitrary, dynamic renumbering of elements and nodes.

2.3 Adaptation Rules. Several rules must be established to successfully
implement the refinement or coarsening of a mesh. The following "element"

rules are employed:

1. An element may be refined only if its nelghbors are at the same
refinement level or higher. :

2. If a "neighbor" element of an element to be refined is at a lower
level of refinement, it must be refined first.

3. Refinement of an element results in creation of eight sub-elements
. for three- dimensxonal and four sub-elements for two—dlmen31onal
neshes.

4. To be eligible for coarsening a group of elements must not contain
another group of elements and each element of the group to be
coarsened must not be connected to a "neighbor" element of a higher
level. '

For example, if element 11 if Fig. B-2 is to be refined, we proceed through

the following steps:

1. An intermediated node is common to two members of a group only.

2. An 1ntermedlate node that is created along a domain boundary cannot
be constrained.

3. if.an element and its neighbor both of which are at the same level
are connected to a third element at a lower level, then the

intermediate node which exists along the edge common with the third
element is constrained.

4. If a group of elements is eligible for coarsening, then the
intermediate constrained node along the edge common to an element
which is not a member of the group will be eliminated.
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5. If a group of elements is eligible for coarsening, then the node
along the edge common to this group and its neighbor group will
- become constrained.

6. If a group of elements is eligible for coarsening, then the
intermediate node along a domain boundary edge is eliminated.

Use of the above rules can be illustrated by considering the uniform grid

of four elements shown in Fig. B-3a. Suppose element A is marked for refine-

ment. By applying element rules 1 and 3, element A is divided into sub-
elements, I, II, III, IV as shown. Application of node rules 1 and 2 dictates
that the nodes marked by circles be constrained. Nodes marked X are un-

constrained.

Next, let element III be chosen for further refinement. Element iII
cannot be refined since one of its neighbors, B is at a lower level. Refine-
ment of element III before element B would violate element rule 1. Therefore,
element B is refined as shown in Fig. B-3b. Note that node B is no longer |
constréined, sincevnode rule 2 no longer is satisfied. Node Cl remains

constrained.

Now that element B has been divided into elements V, VI, VII, VIII,

element rule 1 can be applied. Figure B-3c illustrates this division.

Suppose the group of elements V, VI, VII, VIII shown in Fig; B-3c¢ is
marked for coarsening. This group is not eligible for coarsening until the
group of elements, .a, B, ¥, w has been coarsened. Element VII has neighbors B

and w which are a higher level. This violates element rule 4.

Now, let the group of elements, a, B, Y, w be marked for coarsening.
Element rule 4 is satisfied and elements a, B, Y, w are replaced by element
I1I. The intermediate constrained nodes associated with elements a, B, Y, w
are eliminated through use of node rule 4. The intermediate node along the

upper domain boundary is eliminated using node rule 6.
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Appendix C

I. Fast Refinement/Unrefinement and Moving

Mesh Methods for Unstructured Meshes

J.T. Oden, P. Devloo, and M. Howe

Texas Institute for Computational Mechanics,
Department of Aerospace Engineering
and Engineering Mechanics
The University of Texas at Austin

ABSTRACT. New adapiive finite element methods are presented for the

analysis of unsteady inviscid compressible flow in arbitrary two-dimen-
sional domains. The procedures described herein are used in conjunction
vifh a sémiéegplicit two-step algorithm for solving the time-~dependent
Euler-equations in two space dimensions. Two schemes are pfesented for
monitoring the evolution of error, and error estimates are used as a
basis for a mesh refinement strategy. The capability of unrefinement
(adaptively coarsening the mesh) is also included. The ﬁethods do not

require a structured mesh and are. applicable to quite general geometries.



1. INTRODUCTION

Many would agree that the most fundamental and important questions
facing users of modern computationhl methods for flow predictions are the
following:

| I. How good are the answers?
II. How can one obtain the best possible answers for a fixed
computational effort (or a fixed computing budget, fixed
.manpower level, or a fixed and limited computing

‘capability)?

The first duesfion is exceedingly difficult since it includes both the
issue of the validity ;f the physical and mathematical model of the flow
phenoména itsglf aé.weil ;s tﬁe issue of the qualityvof the numerical
approximation of the equations characterizing the model. To simplify
matters for purposes of the present discussion, we shallvdispense with the
first issue and take for granted that the classical Nayigr-Stdkes or, in
the present paper, the Euler equations are adequate models of nature for
the applications in mind. Thus, the first question reduces to a word:‘
accuracy —— how accurate are the numerical solutions?

The seéond question is seldom asked, but it is intrinsically con-
nected to the first., It is commou practice in applications of computa-
tional fluid dyanmics to the complex flow domains, to generate extreme-
ly fine finite difference meshes in hopes of capturing all important

features of the flow, even though the location of these special points

of interest changes in time. This leads some to employ fine meshes in
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all positions of the flow domain where some Iimportant aspect of the
flow might possibly ménifest itself. The quality of.results is gen-
erally judged by the invariance of solutions to further refinement if
one can afford the cost of another calculation. The fact that coarse
mesh solutions may be adequate in much of the domain af most instants
"of time cannot be exploited in traditional fixed mesh schemes.

After some thought about these issues, rather broad answers to
the fundamental qﬁestions present themselves:

I. Accuracy. To determine the accuracy of a computed

sclution, one can attempt to develop reliable a-posteriori estimates

of local error. In other words, one might hope to be able to develop

procedures which use the evolving computed solution to determine sharp

estimates of local -errors in various norms over each mesh cell and at

each time step.

II. "Optimal" Meshes. Use adaptive procedures to contin-

ually change the structure of the mesh -~ the size of mesh cells, the

"location of grid points -- so as to keep the local errors within a

preassigned limit,

Obviously, the second answer assumes that one has some means to

measure the local quality of the numerical solution and, therefore,

" presumes the availability of some-type of a-posteriori error estimate.

We describe, in this paper, algorithms and results developed in

an attempt to more sharply resolve these answers, particularly that to

~ question II, for a class of problem in compressible flow. More speci-

fically, we describe here a class of very effective adaptive schemes

for time-dependent Euler equations in two dimensions which employ both

Cc-3



mesh refinement (when the local error is large) and mesh "unrefinement"
(when the local error is small) and whicﬁ generate the appropriate mesh
changes as the solution evolves in time. This requires that we estimate
the local approximationlerrors at each timelstep. Howevér, only an indi-
cation of the relative error between successive qeshes is essential in our
hethods; the issﬁe of very sharp a-posteriori estimates of local error (our
answer to question I) 1s one of great concern to us and is the subject of
other papers [8,18,19].

In designing an adaptive scheme for Euler equations, we keep the

following guidelines in mind:

(1) Unstructured Grids. The method must be virtually grid
independent and global-coordinate free. While an initial
mesh can-be defined to model the basic geometry of the flow
domain and the initial data, thereafter it must be possible
to automatically add or eliminate cells and grid points as
needed to monitor local accuracy levels. This requirement
considerably iessens‘the attractiveness of body-fitted
coordinates, many elliptic/algebraic mesh generators, and
various factorization algorithms which exploit such regular

mesh topologies,

(2) General Geometries and Boundarv Conditions. The method nust
be applicable to arbitfary flow domains with virtually
arbitrary geometry, general in-flow and out-flow conditions,

and general boundary conditions.

(3) Solid Mathematical Basis. Since, by its nature, any sound

a&aptive method must employ some type of local error

C-4
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estimator, it is important that the meth&ds employed have a
reasonably firm mathematical basis, e.g., that a;priori:or
a-posteriori error estimates exist and that the convergence
characteristics of the method are acceptable.

(4) High Accuracy. The method should be capable of delivering

high~order accuracy.

(5) Robustness. The method must be numerically stable and not
sensitive to singularities, distortions in the mesh, or
irregularities in the data.

(6) Supercomputing. The method should lend itself to modern

supercomputing methods for accelerating computational speed,
such as easy vectorization or implementation on parallel
processors, etc.

(7) Computational Efficiency. The method and the supporting

algorithms and data structures must be computationally

efficient,

We feel that these criteria can be best met by finite element nmethods.
In the present work, we use as the basis of‘our adaptive schemes a semi-
explicit method used by several other authors (e.g., [19,4,15,16,21]): a
two-step Lax-Wendroff/Taylor-Galerkin scheme. It is far from optimal (and
does not satisfy all of our criteria), but 1s perfectly adequate to use in
conjunction with our adaptive scheme. Schemes which fulfill all of these
criteria are under development and will be reported in subsequent papers.

We reﬁark that there is a growing literature on adaptive methods in
ccuputaticnal fluid mechanics. 5daptive procedures for incompressible

viscous flow problems were developed by the authors‘in a series of recent

Cc-5



papers (see, e.g., [8,18,19]). These methods employed a variety of differ-
ent adaptive strategiles, but did not come'as close td satisfying the above
criteria as the methods discussed in the present work. The general subject
of adaﬁtive finite element methods is dealt with in a forthcoming volume of
collected papers edited by Babuska, Zienkiewicz;'@ago, and Oliveira [2].
For a survey of adéptive'finite difference schemes, seé the works of ‘
Anderson [1]. Also, Berger and Oliger [4] and Berger and Jameson [5] have
recently developed adaptive finite difference methods for hyperbolic
conservatién laws. Still other types of adaptive methods for hyperbolic
prbblems have been recently proposed by Demkowicz and Oden [10,11].
Following this Introduction, we deveiop weak formulations of a class
of problems in compressible gas dynamics,_ These space-time formulatiohs
are shown to be the.basis of a class of Lax~Wendroff/Taylor Galerkin
schemes. Our derivation.of this family of algorithms is nonstandard, in
that we show that a two-step scheme follows easily from the use of a
numerical quadrature écheme for evaluating appropriate flux inﬁegrals. In
Section 3, finite element nodels of the space-time formulation are
intrbduced, and in'Seétion 4, we discuss the important issue of a
posteriori error estimation. Section 5 of this paper is devoted to a
detailed discussion of adaptive strategies. These include an h-methéd,
wherein the mesh is refined or unrefined when local errors fall outside a
preassigned upper and lower bdunéi and an r-method, in which the mesh is
automatically distorted to equidistgibute erfor. In Section 6 of the
paper; we present the results of several numerical e#periments on
two-dimensional problems. These reSQlts iilustrate that the performances
of the adaptive schemes are quite acceptable for a class éf_complex flow

problems,
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2. PRELIMINARIES

We consider the motion of a perfect gas flowing through a domain @
over a time interval [0,T]. We shall confine our attention to two-
dimen;ional cases, S2C:R? ; we denbte by D the space-time domain,
D=0Qx (0,T) and by 092 the boundary of 2 . The mofion of the gas is
goverﬁed by the global balance laws of physics and the second law of ther-
modynamics. Thus, if U= g(g,t) . (§,t)‘G D , is the 4-vector of conser-
vation variables, U = {p, o, E}T , with p the mass density, m the
linear momentum, and E the total energy, and if dQ? and dS denote

tebesque measures of area (volume) and length (area) of Q and 3Q

respectively, then we demand that U satisfy the following system of

conservation laws:-.

S f Ude = - J Q(0)n ds (2.1)
Q" an

Here, Q(U) 4is the flux and n is the unit outward normal to 3Q . If

my ,‘m2 denote Cartesian components of m , then

- T
g={p,m1,m2,E}

B ‘ , 1
™ ) o
v p-lmf + p(y)- , 0 mm,
Q) = - o (2.2)
- 1m m 1m2 + p(U)
S K [ P P2 7P
p-lml(E + p(D)) l p—lmz(E + p(D)) |

n=fn ,n) 5 P = (v~ DE-p"" @+ w/2)
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In (2.2), p 1is the thermodynamic pressure and y is the ratio of specific
heats, assumed here to be constant. In addition to (2.1), U must satisfy

the entropy production inequality

& J pn(Y) da + J n e« (@n(@ + 0" q)ds 20 (2.3)
Q N .
with n(g) the entropy density of the gas, 6 the absolute temperature,
and q the heat flux, as well as an initial céndition,
U(x,0) = Uy(x) , x6q (2.4)

where gO is given.

It 1s of fundamental importance to note the smoothness requirements on
'y in ofder that (2.1) ﬁake.sense mathematically. Conservation laws (2.1)
hold when the components of U ;re_bounded measurable (with respect to
Lebesque measﬁre in. x ) functions on D . Thus, we may seek solutions in
the function space

T

Ve V= {V, V,, Vg V1|V, =V (x,8)

6 L7(0,7 ; L'(@) 5 1= 1, 2, 3, 4} (2.5)

In particﬁlar, (2.15 is not equivalent to thg classical Euler equations,

U .+ div Q) =0 S (2.6)
(witﬁ gt = 3U/3t and 'div Q= § aQai/a#i) since solutions of (2.1) may
not possess derivatives across surfaces in D . However, the conservation
laws and initial conditions are fully equivalent to the following weak
boundary-initial value problem:

Find g 6 Y such that

c-8
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J (" ¢, + QW) : Yg)dnde
D

T

+ J Uz 6(+,0)dn = J } Fl ¢ dS de (2.7)
Q 0/an

for all $6W

where F 1is the actual prescribed flux through 32 and W 1s a suitable
space of test functions; e.g.,

T
W= {Q = {¢19 ¢29 ¢3) d,l;} l ¢i = ¢i(§,t)’
6, 6C'® L 6, =0, 1=1,2,3,4 (2.8

In (2.7), we use the notation

T I S B
U m I U5 5 9:Tes %t T
t a=l © at : i=]1 a=1 al axi

On the other hand, if U is known to have integrable derivatives in

D everywhere except on a family of surfaces {Fk}§=1 » then we may

consider the problém
Find U 6 V such that

fu [gi ¢ + (div g(g))T Q]dﬂ dt - J gT(-,O) $(+,0)dQ

Q

8! {s Hgﬂ‘— IQ nl}ds dt

R
L,

T o
J Ug ¢ 42 + J J @7 4 ds. dr
Q 0 Jan

k

+

T
( J Fl §dSdt ~  forall 46 W (2.10)
70 Jaq . _



Here, Sy are the speeds of propagation of discontinuities across Fk and

V and W are appropriately redefined,ve.g.,
o0
Ve {V=(V, ¥, Y, V) |V, €L°(0D),

VvV, 6 HI(D

{ k) » D

ki =D Tigql

W={g] 4 6@ , 4D =0}

where rki are the surfaces on which Vi suffers a jump. If_ g is not
a prescribed flux but 1is merely a notation for Qn , then these flux terms
cancel and do not appear in the formulation.

Consider an arbitréry time interval [11,12] < [0,T] and include
in W functions ¢(§,12) 20. Let w be a subset of o such that

WO Ty = @ , and - let  F-z Qn . Then another weak statement of the system
k - : - :

conservation laws over G_x [11,32] is:

Find U 6 V°*T  such that

T
2 |
I' (-u" 4, + (div @ g)da ac
Tl Jw
s [ @ty gCar = 0Tt $Car)da = 0 (2.11)
J, B gten) = Tl AN y

for all $ € Wt

with v2°T and w*'T appropriate Spaces of trial and test functioné.
Remark. It is well known that .(2.7), (2.10) and (2.11) may all-
possess non-physical solutions sinée none of these formulations involve the
entropy inequality (2.3). Thus; in general, we seek solutions to (2.7),
(2.10) or (2.11) in the subset KCV ; K={ve6V, v satisfies (2.3) for

appropriate 6 , q(ve)} .

c-10
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3. FINITE ELEMENT APPROYIMATIONS

Finite element approﬁimations of the gas dynamics problem are obtained
By a Qirect approximation of (2.10) or (2.11) on fiﬁite-dimensional spaces
approximating the spaces V and W . The spatial domain 1) iS'paréitioned
into.a collection Th of finite elements Qe over which the components of
trial functions V are approximated by pdlynomials of degree k . In this

way, we construct a family {Vh} of finite dimensional spaces of the type

_qoh b h h  hT
vh-{y = (v}, V,, V5, V;} 6V |
Wwer @) 1=1, 2,3, 4 (3.1)
i k e’ ? e N

where Pk(ﬂe) 1s the space of polynomials of degree k defined over Qe .

. - Sh
Alternat;vely, we can use Vilﬂe 6 Qk(ﬂe) , where Qk(ﬂe) is the sp;ce of

.tensor products of polynomials of degree k on Qe (e.g., Ql(Qe) is

spanned by bilinear functions, QZ(Qe) by biquadratics, etc.). In addi-
tion, a family {Wh} of finite dimensional spaces of test functions is
alsé constructed. We thén consider Galerkin approximations of (2.7),
(2.10) or (2.115 by seeking éolutions to these equalities in Vh , with V

h

and W replaced by V and Wh » respectively.

3.1 A Two-Step, Lax—Wendroff/Tavlor-Galerkin Scheme. We next derive .
a special semi-discrete, weak formulation from (2.11) which provides the
basis for the construction of a popular family of finite element schemes.

We proceed with the following steps:
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i) Partition the time interval [O0,T] according to 0 = t_ < t

0 1

< tz < 4 60 < tN =T ;

11)  Apply the weak balance law (2.11) to a typical time interval

[tn, t

n+1] (with 1, = tn' and t, =t

1 2 n+l )i
Lii) Set Qt = 0 1in (2.11) suggesting the ultimate use of a
time-invariant grid (we relax this assumption later);

iv) Replace the time integrations in (2.11) by the elementary

midpoint quadrature rule

t

n+l \
J £(t)dt ~ At gs
¢ _
n
v _ v n+s _ ]
At = tn+1 -t f = f(gn + At/2)

Thus, with w

Q , we obtain the semidiscrete approximation

I o U™ an = I g U" da + At J ot V¢, da
Q Q Q

-t d an(@™ g)as
|

for all Qh (3.2)

where y; = Uh(g, tn) » ete., Uy being the approximation of

U, and Qn+% is the flux at the half step,

n+3§)

™% = g(of (3.3

o 1 )
v) To obtain an approximation g:+ﬁ » we use (2.11) again for time

interval [tn, Fn+%] , this time replacing the time integrals by

a simple strip rule and integrating by parts the divergence terms
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T . n+k - T.n
J ¢y Uy 9% JQ ¢y Uy 49
e e
At 1 Tlaiv qMag
Y]
e

for all ¢ (3.4)
We thus arrive at the algorithm,

1) With (QE s Qn = Q(g;)) known at the n th time step,

compute g;+% using (3.4)

2)  Compute gn+% using (3.3)
1

3) Compute g§+ﬁ using (3.4)

4) Go to 1)

This algorithm is the finite-element based two-step Lax-Wendroff/Taylor

Galerkin scheme (see [20,7]). It is one of a family of methods advanced by

.Donea [12], studied by Baker and Kim [3], and successfully refined and used

by Lohner et al. [15,16]) and Bey et al. [6] in finite-element applications
in fluid dynamics. This semi-explicit ﬁethod’is of.second order in tiﬁe
and can experience spurious oscillations near shocks and other types of,
irregularities in the solution. These deficiencies must be reckoned with

in implementing the method.

" 3.2 Artificial Viscosity. As noted earlier, artificial viscosity

terms are usually added to schemes such as that employed here so as to

dampen out oscillations in the numerical solutions near shocks, The
calculations described subsequently were performed adding a Lapidus-

viscosity term, which, at time step t, is of the form
-7 . (el - U™ (3.5)
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where

: . | ,
ci(g) c | Feen | (no sum on 1)

C 1is the Lapidus constant, u = mi/p is the ith component of the flow
velocity, and a 18 a parameter which determines if viscosity is to be
included implicitly (a = 1) or explicitly (¢ = 0). The viscosity term,

written out in component form, is

2
9 ( 9 n+g
- ) 5= (= v, ") ; B=1,2,3,4
k=1 axk k axk B

Setting a=1, we obtain for step 2 of the procedure [instead of

(3.2)),

T n+1 n+l
J ¢ Uy dn+AtJu§1:tZ ey () U 1¢a1

S g @
aq

for all admissible test functions Qh .

3.3 Details of the Finite Eleﬁent Algorithm, The'details ofvthe
implémentation of the algorithm described above are crﬁcial to successful -
computations. In this work, we use meshes of four-node quadrilateral (Ql)
elementsvbver which the components Ua(a =,1,2,3,4) of U are plecewise

bilinear functions. Similar approximations and algorithms are used by Bey

Cc-14
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et al., [6]. 1In addition, so-called group approximations of the flux

Oai(a =1,2,3,4; 1 = 1,2) are emploved so that these components are also

piecewise bilinear functions determined by their values at element nodes.
In general, this finite element approximation will be of the form,

Ug(t) ¢

(%)
1 =

(=]
"
lde
Il o~

(3.7

N .
- J
0y © .Z 0y, (t) ¢.(x)

h|
where N denotes the total number of nodes in the discretization, and
vl Qii are values of gh gh at node j , and ¢j are the global

a

piecewise bilinear basis functions.

As noted earlier, we advance the solution in time in two steps. It is

important to note that the first step is essentially local, computed over
each element, while the second is global and contains the artificial
viscosity terms:

First Step: For each element Qe , calculate a constant element vector .

1
Un+2 from
a,
w [ gne 1Y e obn
U J dQ = f ¢,d) U’
®e ) g =17 ot @
e e
9¢ -
At b i,n
e
. j,n+l
Second Step: For each node j , calculate Ua ~ by solving the

following system of equations
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N dd, 3¢ N
i j,n+l j,n
{J [¢¢ + T ———1]dQ}U ) (J $,6,-da) U
jzl Q 1%] 8 axB axB a y=1 Jg 1i%] a
o 9¢d 1
nts 71 J n+s =n
+ At J Q — df - At n [Q -0 )¢ ds
Q aB 3x8 " B aB aB’ 1
- At I n, Q" ¢, ds (3.9)
a0 B "af "1

Here, §n denotes the elementwise averaged value of the flux. The

coefficients TB are defined to be constant over each element,

Ju

" where ¢ 1s a global constant (¢ =1 in the examples), Ae denotes the
area of Qe ’ ug denote the components of the fluid velocity.
To speed up the calculation, we precalculate and store the following

‘element integréls before the time stepping 1s started:

I .
¢, da , J —= dq
q I g 9%

e e B
3¢, 3¢
ROUL.E I =, T O
2, : a, 8 B

-7 - 1,j = 192)3)4; g =1,2,3,4

An element-by-element Jacobi Conjugate Gradient method is used to ob-
tain the solution of the matrix problem in the second step. Due to the
structure of the mass matrix, the iterative solver requires only a few

iterations to converge fully.
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3.4 Boundary Conditions. In the finite element schemes developed

here, we implement the following three types of boundary conditions:

(a) Supersonic Inflow. On the part of the boundary with

supersonic inflow, the values of all the conservation variables are
imposed;

(b) Supersonic Outflow., On the outflow part of the boundary,

thé values of the conservation variables and the normal flux are
unknown. - Boundary conditions of supersonic outflow are implemented by °
adding the contribution of the boundary integral of the normal flux to
the right-hand side of the equations of the second step; and

(¢) Solid Boundaries. On a solid boundary, the normal component

of the velocity u, = is zero. We note that, in general, the

ug ng
nodal directions are not uniquely defined. In such calculations, we
compute the normal directions at the nodes which satisfy global mass

conservation at the steady state, namely,

3¢ 2 'a¢
né=f =da/ | ] [J a—idn]z
Q %% 1 Ug °%

B B=

3.5 Hourglass Instabilities. We now show that the Taylor-Galerkin

[

et

scheme presented above can propagate undetected spurious solutions. To
demonstrate this, let us consider.the scheme applied on the 2-D Burger's
equations on a mesh of rectangular elements. Burger's equatibns may ‘be

~ obtained from the above formulation by redefining the flux as follows:
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2 .
U u.u
. 2 372
{Qal} =< > ’ {QGZ} =< ?
' ) 2
U2U3 U3
0 0
\ J ' \ J

Consider a rectangular element with the following nodal solution at time

t
n

1yn v t
{u }* = 10, 1, 1, 0]

(W2} = 0, 1, -1, 01°

{B}" = 10, 1, 1, 01°
41n t

{u }" = [0, 1, -1, 0]

Then the scheme gives,
(ue}™% = [0, 1, 0, 01

and, by letting ¢ = 0 (no artificial viscosity), we get:
{Ua}n+1 - {Ua}n

This means that the scheme propagates "hourglass" solutions undetected.

This fact explains why in the numerical examples the method produced oscil-

lations near the oufflow boundaries. This hourglassing phenomenon can be
eliminated by considering each quadrilateral as a patch of two triangular

elements joined along one diagonal of a quadrilateral.
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-space of test functions W

4. ERRORS

The adaptive finite element methods described_here involve two basic
components:
1) . Error estimatioﬁ -~ the determination of a-posteriori éstimates
Vof the evolution of efror in the numerical solution; and
2) Adaptation ~- the autométic restructuring of the approximation so
as to redu¢evlbca1 element errors and the computational effort.
In this paper, adaptive procedures are based on estimates of-érror in

a single principal dependént variable, such as the density, pressure or the

entropy. We shall choose'the density p as the driving factor in adaptiv-

ity, although other choices could be used in the algorithms developed here.

Two basic procedures are used to estimate local element errors.

4,1 Evolution Equation for Error. Consider the continuity equation

for the evolution of mass density through a domain @ with known flow

velocity u . A weak fofm of the continuity equation is
f ¢ p, 402 = - J Ve(u p)¢ dQ
Q Q

for all ¢ 6 W ' (4.1)

A semi-discrete Galerkin approximation of (4.1) consists of seeking an

approximate density ph such that, over some suitable finite-dimensional
h’
: h
f ¢hp}t'd9-,-f Ve(u p )¢, da
Q : Q
for all ¢, 6 W (4.2)
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If W CW, we may choose ¢ = ¢y 1In (4.1), subtract (4.2) and obtain the

following evolution equation for the error éh(g,t) = p(x,t) - ph(g,t):
_ I '¢h e: e = J - Ve (u eh)<£h dq
f 1]
‘for all ¢h € Wh (4.3)
The exact and approximate solutions are related according to
p = ot 4 e - | (4.4)

where eh is the approximation error. Thus, the error satisfies the

evolution equation,

IQ (¢e: + Z°g>eh¢)dQ = <rp,¢$>

for all ¢ 6 W - (4.5)
where <rh,¢>‘ is the residual functional,
<r 4> = - f (0% + 7-u o"g) a0 (4.6)
. Q t .

~ 1f we replace ¢ﬂ by ¢h . <rh,¢> = 0 by (4.3) and the evolution equation

reduces to merely the orthogonality condition (4.3), which 1s automatically

satisfied by error.
We obtain an approximate evolution equation for the error as follows:

let E' denote a fine-grid approximation of el i.e.,

x,0) 1 B = ] B0 vy (4.7)
L |

where ¢N(§) denotes a polynomial basis function defined on a subgrid of
finer mesh size than that used to calculate ph « Then, introduction of

(4.7) into (4.5), and replacing ¢ by ¥, gives
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}Z{ (mNM EN + k(g)NM z") - rN(t:) =0

N=1,2, ..., ¥ . (4.8)
vhere
)
oy = JQ wN wM a9
k(g)NM = JQ Ve (u wN)wM aa & (4.9)
Ty T <Tye¥y J

Many possible ways for implementing (4.9) present themselves., These
equations, for example, need not be global in the sense that an element-by-.
~element or patch'of elements in.a fine mesh obtained through a mesh re—
finement may produce sufficient acciiracy to allov for an adequate indication
ofvthe.evolutioﬁ of error. The local velocities u and residual r, can
be interpolated using Ql-approximations on a fine mesh level. Several of

these alternatives are under study and are to be the subject of a forthcom-

- ing report.

4.2 1Interpolation Errors. . Let u be a smooth function defined over a

regular domain £ ., The WP () semi-norm of u is defined by

' 1/p
i+
lul - I z 9 'iju' P dQ }f
wr’p(g) [ i+j=r axlax% J ([4.10)
i,j=0

where 1 S p=« and r 1is a non-negative integer.

The Sobolev norm of u 1s
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1/p
Tul =37 |ulP :
WPy  lk=0  wErP(@) (4.11)

Let G be an arbitrary convex subdomain (a finite element) of 8
over which u 1is interpolated by a function ;h which contains complete
plecewise polynomials of degree k . Then, it can he shown (see Oden and

Carey [17]) that the local interpolation error in the WP (G)-gsemi-norm 1is

lu - u |
" W P(o)
k+1 2=
h P' p .
SCA—-h [ul
o™ WPy (4.12)

where
h - the diameter of the domain G

'p = the diameéér of the largest sphere that can be inséribed inside G
n = the dimensioﬁ of the domain A
p' = p/(p-1)
Cv= a constant independent of h, p , and u. .

If p 4is proportional to h and if it remainsvproportional in refinements

of G defined by parametrically reducing h , we have

T A _li kil -m
|e scuP P ' ul (4.13)

|msP’G k+l,p

with I'I s et;. and Eh =q - uh .

n.p,c " | Iw”"p(c)
Such estimates can be used to devise crude adaptive schemes. Suppose
that u on the right side of (4.13) is replaced by a finite elemen§

+ 0(h) . Then, (4.13)

approximation u, and that Juh|k+l,p'= I“'k+1,p
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indicates that the local errcr in the wm’p(G) seminorm is proportional to

v -
hﬂ/P n/p + k+l - m [u! Some choices are:

thé error indicator, kel,p °

1) n=2, m=0, k=1, p=p' =2
h .
"E "LZ(G) =C h2|u|2,2’c

In this case, one must approximate the W?’2-semi-norm of u over G ;

i.e., the L%-norm of second partial derivatives of u ,

h
= (h2
L) Ch IEaveragel

WA

Chalul1 ©. G

1§

Ch? max|¥-u(x)|
xX6G

Such estimates can give only rough indications of local errors in
sufficiently fine meshes. However, they are usually easv to implement and

our experience is that they can provide a very effective basis for mesh

refinement strategies.

5. ADAPTIVE MESH STRATEGIES

Let us suppose that we can calculate an error indicator @e for each

~finite element Qe in a given mesh at a time t . This indicator is, in
geﬁeral, a real number reﬁresenting the local error in a suitable norm, and
it ié computed using one of the procedures‘described in the preceding sec-

tion. The decision to adapt the numerical procedure (to refine the mesh or

- C-23



to move nodal points) 1s based on whether or not local error indicators

exceed preassigned tolerances. We shall describe two adaptive procedures

in this section.

5.1

An h-Refinement/Unrefinement Method. Our h-procedure involves

the following steps.

1)

2)

3)

4)

For a given domain 9 , such as that shown in Figure la, a coarse

finite element mesh is constructed which contains only a number

of elements sufficient to model basic geometrical features of the

flow domain.

As our adaptive process will be designed to handle groups of four

elements at a time, we generate a finer starting grid by a
bisectidnfptocéss, indicated in Figure 1lb, to obtain an initial
set of element groups.
We initiate the numerical solution procedures on this initial
coarse grid, and compute error indicators ee over all‘ M
elements in the grid. Let

<] =v max ©

. MAX 1sesM

Next, we scan groups of a fixed number P of elements and

compute
e = 0
GROUP k=1 Sk
where e, is the element number for group k . We take P = 4

in our current codes.
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(a)
Q-
REFINE
———e
\ 4
UNREFINE '
———————
o—

Figure 1.

(b)

(a) A coarse initial mesh consisting of 4-element
groups and (b) the refinement and uhrefinement of

a greup of elements,
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5) Error tolerances are defined by two real numbers, 0 < a,B < ] ,

If
e 280

e MAX
we refine element Oe . This is dome by bisecting Ge into four
new subelements. If

k S ab

eGROUP ‘ MAX

we unrefine group k by replacing this group with a single new
element with nodes coincident with the cormer nodes of the group.
This is always possible because each group 1s itself the result
of an initial bisectioning.
This general process can be followe§ for any choicé of an error
indicator. Moreover, it can also be implemented at each time step in the

vnumerical schemes discussed in Section 3.

5.2‘ Data Structures. An important consideration in all adaptive

schemes is the data structure and»associated algorithms needed to handle
- the changing number of elements,.théir node locations and numbers, and the
element labels;

As noted iﬁ'thg preceding paragraphs, the algorithm 1is designed to pro-
cess (refine or unrefine) in groups of four elements at each local refine-
ment /unrefinement step. Consider, for example,‘the case of aﬁ initial mesh
of 20 square elements shown ih Figure 2, We assign to each eiement in this
mesh an element number, NEL = 1,2,.v.,NELEM and to'each global node a label
NODE. The array, NODES(J,NEL) relates the local node number JWJ = 1,2,
3,4) of element NEL to the global node number NODES . 1In addition, the
coordinates X,,Y of each node afe also provided relative to a fixed

J'J

global coordinate system. We file these numbers in two arrays,
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Figure 2, Mesh, node, and ccnnectivity numbering in a model problem.
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NODES(J,NEL) = the array of global node numbers
assigned to'nOAe J of element NEL

XC0(JCO,NODE) = the.array of JCO ~-- coordiéntes of
global node NODE(JCO = 1 or 2) .

Suppose that an error indicator is computed that signals that an
element. should be refined, say element 11, in the example. We must have
some systém for assigﬁing appropriate laBels to the new elements and nodes.
Toward this end, we can establish a convention that defines the connectivity
of the specified element with its neighbors in the mesh, This information
is provided by a third connectivity array,

NELCON(NC,NEL) = the NC th connection of element
NEL NC = 1,2,...,8 ;
As seen in Figure'2, each side of an element may be connected to two other
elements so that Dimension NELCON = (8,MAXEL); (with MAXEL an appropriately
large ﬂumber).

The_entiré refinement (or its inverse -~ the unrefinement process)
just described 1s accomplished by specifying a series of'element.levels.
For e#ample, the initial coarse mesh‘could be assigned level 0 . When an
element i§ refined, 1ts subelements belong to a higher level, level 1, and
when these sub—elements.are refined, elements of levél 2 result, and so on.
In this way, if the maximum level any element in the mesh can achieve {is
limited, then the animum number of elements the mesh can contain is also
limited., 1In general, no such limit need be set.

Thus, the bookkeeping of element and node numbers evolving in a re-
finement process is monitored by the arrays NODES(.,.) , XCO(.,.) ,

NELCON(.,+) , and an array LEVEL(NEL) which assigns a ievel number to

c-28

- — ey —— ——

——

—tay PUSE Y — ey ——— #—*r PN—




— e

—

b

J — LA

element NEL .

and this level is arbitrary parameter prescribed in advance by the user.
Thus, provisions are now in hand for an arbitrary, dynamic renumbering of

elements and nodes. If, for example, for the mesh in Figure 2, if element

Initially, the same level can be assigned to all elements,

11 is to be refined, we proceed through the following steps:

(1

()

3)

(4)

Loop over the neighbors of element 11 (which is

made possible with the NELCON

array) and check

the level of the neighboring elements relative to

the level of element 113

If any neighboring element has a level lower tﬁan

11, then the element cannot be refined at this

stage;

If 11 can be refined (as is the case in Fig. 2),

we generate new element numbers (thus changing

NELEM and new node numbers for unconstrained

nodes);

Compute the connectivity matrix NELCON for the new

elements;

[

(5) Adapﬁ the conne;tivity matrices for the neighboring
elements (since the refinementiof 11 has now
changed this connectivity); and
(6) 1Interpolate the solution between the unconstrained
nodes. |
It is clear that some strategy is needed to test if a designated element is

appropriately connected for a refinement to take place.
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Conaider, for éxample. the uniform grid of four elements shown in
Figure 3a and suppose that the error estimators dictate that element A 1is
to be refined. Thus, A 1s divided into four elements, I, II, III, IV, ‘as
v shown, and the.solution values at the junction nodes, shown circled in the
figure, are constrained to coincide with the averaged values between those
marked X . Note that'the.connectivities change in this process, e.g., the
connectivities 4 and 8 of element B aré different,

Next, assume that an.additional refinemenf is required, and that we
must next refine element III. We impoée the restriction that each element
side can have no more than two elements connected to it. Thus, before III
can be refined, element B must first be refined, as indicated in Figure
3b. The constrained node Bl 1in Figure 3a now becomes active, while node
Cl remains a constrained node. With B bisected, we proceed to refine
I1I into sub-elements ' a,B,Y,d, and new constrained nodes, again circled
in Figure 3c, are produced. 1In this case, only element B had to bg
refined first_in order to refine III, but, in general, the numbe; of
elements that must be refined in order to refine a particular element
cannot be specified. The.following subroutine determines the necessary

refinements prerequisite to refining an element NELIL:
SUBROUTINE DIVIDE(NEL1,NEL2)

NEL1 = the input element that needs to be refined

]

MEL1 1if NEL1 has

been divided

NEL2 = output element =ﬁ '
NELD = element that needs

to be divided prior to NEL1
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Figure 3. Sequence of refinements of a uniform mesh.



Then, symbolically, we have the algorithm (for the example in Fig. 3),

Repeat

NEL1 = III

CALL DIVIDE .(NELI,NEL2)
— WHILE (NEL2.NE.NEL1)
NEL1 = NEL2

CALL DIVIDE (NEL1,NEL2)
-— END WHILE

—— UNTIL (NEL2.EQ.III)

5.3 Moving Mesh (Node Redistribution) Methods. Another family of

adaptive schemes we have considered is a node-redistribution scheme which
progrésﬁively moves a fixed number of nodes as to reduce local error. One
basis for such sché&es.is to equidistribute error at each time step.

For example, let ee be an error indicétor for element Qe in a mesh
coﬁtainihg a fixed number M of elements in a two-dimensional mesh. tet
| h = h(xl,xz) vbe a mesh function such that
h(xl,xz) = he = dia(ﬂe) for (xl,xz) 6 2,

and note that, approximately,

M:J g—fzz— ' (5.1)
Jg n ,

with dQ = dxldx2 (this being exact for domains which are unions of square
elements). Let 0 = e(xl,xz) be mesh function which gives the local error
indicator when evaluated at a point (@ = Oe for X 6 Qe ). We wish to
minimize the total error indicator functional,

M 2 '

Je) = | J o, da | (5.2)
e
e=1 ‘0
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éubject to the constraint (5.,1). Using Lagrange multipliers, this leads to

the optimality condition,

§(J + A(J hlda-w) =0,

0
or
30 -3 -
]2 J (6, 55 = Ah ")shda = 0
e Q
e
or i
20
3 e _
hl 0, 57— -1=0

Suppose that meas(ﬂe) = oohz and that ee is of the form

ee = hZf(u) . Then, integrating this last result over a typical element

gives

I oh30. 0 £(u)da = ro h®
Q e e e 0o e

e
Heﬁce, the optimal mesh size distribution results when
J 0% 4@ = A0_/o = cowsT. (5.3)
Q ¢ )
e

In other words, to obtain the optimal mesh, we must equidistribute the

indicators JGZ -

To use this result to redistribute nodes, we proceed as follows (cf.

Diaz et al. [12]): -

1) Generate an initial (generally regular) mesh with a fixed number

M of elements and compute a trial solution on this mesh at one time step;

2) Compute the corresponding error indicators *ee H
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Figure 4. Calculation of area center-of-error

N . .
X  to equidistribute element error

~

indicators in a cluster of four'elements.
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3) For a group k of P elements (with P always 4 in this
work), let Ae denote the area of element 1 in the group. The
i

area-weighted indicators for group k are the P-numbers,

eei/Aei.

4) Let Yo denote a vector from the origin of a global coordinate
i .

system to the centroid of element e, of group k . Then the center of

i

error of group k 1s defined as the vector

X = — (5.4)

5) Relocate the node at the éenter of group k to lie at the vertex
of 1

6) Continue this seqﬁence of operationé over each group h of four
elements until the new location of each node does not changé more than a
preassigned tolerance.

“This process should approximately equidistribute the element error

indicators.

6. NUMERICAL EXAMPLES

In this section, we present the results of several numerical

experiments on representative test problems. Six examples are presented,
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the first five involving steady-state solutions and the last a transient

problem.

is used:

(a)

(B)

In the steady-state examples, one of the following two strategies

A.l,

A.2,

A.3.

B. 1.

B.2.

B.3.

The numerical solution is computed on a fixed mesh and is
advanced in time until a steady state is reached.

After convergence to a steady state, error indicators ee
are computed over each element. In the calculations dis-

cussed below, we employ the iInterpolation estimates and use

h|2

_ h
0 = Aelp 2,2,8 = A, { lap /3nlds (6.1)
e 398

e
where Ae is the area of the element.:

The mesh isvrefined/unrefined using the criteria and
algéfitﬂms‘discussed in the preceding section. .

Same as step A.l.

After convérgence to a steady state, error indicators Ge

are computed according to

6 =A J Vph . Vph dQ (6.2)
e e Q

e

In applying the node redistribution (moving mesh) algorithm,

a modified error indicator 6e is employed which is designed

to be always greafer than unity even when Oe ~ 0., 1In par-
ticular, we use

aOé
R [ —
e B + yee

In our examples, a =81, B=1, and y =8 .
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B.4. Nodes are redistributed a total of K times using the
procedure described in Section 5.3. In the examples, we
take only two iterations (K = 2).

We proceed tc the examples.

6.1 Shock Reflection Problem., We begin with a problem for which an
exact solution is known and which has beén used as a benchmark problem by
others.

The problem involves the steady flow of a perfect gas in a rectangular
duct in which density, Velocity, and energy are prescribed in each 6f'four
triangular wedges in such a way.that the appropriate jump conditions (the
Rankine-Hugoniot copditions) are exactiy satisfied. Thus, a problem of
shock reflection for which an exact solution is known is obtained. Dimen-
sions and data are given in Figure 5. In this and all the other problems,
the solution is considered to have converged to steady state when the
magnitude of the L2-norm of the density is reduced.by three orders of
magnitude.

The time step is monitored by the formula

f 0.50vA
At = min T—T—_—{%—
e gl
Here, C2 = %2- and lglz = u% + hg s Y =.1,40 . The constants

multiplyving the artificial viscous terms were selected locally as:
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I II p =1.7
m,=4.45145
p =1.0 m2=—0.86071
m.=2.9 E =9.8702
1— .
m,=0.0
=5.99
= 11

ZShock- Lines

p— g P Y P —

Figure 5. A shock reflection problem. Inflow values of the conserva/t'ion
variables are prescribed as indicated in regions I and II, and

outflow values are computed in III to satisfy the conservation

laws.
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" with this mesh. ' |

where the bar denotes average element values. A Lapidus constant of 1.0
was used {n all calculations.

The results of a uniform coarse initial mesh appreximation are shown
in Figure 6. The computed density contours are also shown in this figure.

Note that only a rough indication of the location of the shock 1s possible

\
A much better resolution is given in Figure 7 where the adaptively

refined mesh shown is computed with refinement parameters a = 0,10 ,
8 = 0.50 (recall Section 5). Note that no "unrefinement" appears to have
taken place with these parameter choices, bet tﬁat the simple error
estimation scheme is capable of detecting the general area of the shock
line. The much improved density profiles are indicated in the figure.

Still better results are obtained with the same ; and B but with
two. levels of refinement, as indicated in Figure 8. Note that in this case
latge elements appear in the mesh, indicating unrefinement as well as
refinement. of the original mesh. The corresponding density surface is
given in figure 9 where quite sharp shock fronts are observed. Note some
spurious oscillation is encountered near the outflow boundary, as should be
expected from the deficiencies of the algorithm noted in Section 4.-

The same pfeblem ﬁas elso analyzed.using the node redistribution
algori;hm discussed in Section 5.3 with 20 node redistribution iterations.
Results are shown in Figure 10. -;here, the original coarse.initial mesh of

Figure 6 is progressively distorted to conform to the reflected shock

locations. Corresponding density contours are also given in the figure.
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gure 6. Reflecting shock problem.
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Figure 7. Reflecting shock problem. Mesh and density contours obtained

- vith one Teveél of refinement (a = 0.10, 3 = 0.50).
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Figure 8. Reflecting shock problem. Mesh and density contours obtained

with two levels of refinement (a = 0.10, 8 = 0.50).
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Figure 10.

Reflecting shock problem., Mesh and density contours obtained

after 10 applications of the mesh redistribution algorithm.
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6.2 NACA 0012 Airfoil in Supersonic Wind Tunnel. 1In this example,

the supersonic flow through a narrow wind tunnel containing a NACA 0012

airfoil is studied. The inflow Mach number was set at M, =2, with

Y = 1,40 and éymmetry is exploited to reduce the computational effort,
l‘The initial coarse mesh and density computed contours Are given in

Figure 11, Note that the critical features of the solution -- the

reflected shock and contact discontinuity -- are lost with this coarse

mesh. A refined/unrefined mesh, obtained with parameters @ = 0.10 ,

B = 0.10 is shown in Figure 12 together with a greatly improved density

approximation. In these and subsequent calculations, a CFL number of 0.5
and a Lapidus constant of 1.0 were employed. Results of a node-redistri-
bution scheme for the coarse mesh are shown in Figure 13. In these

results, ten iterations of the node redistribution algorithm were used.

6.3 Supersonic Flow in a Wind Tunnel with a Step. The steady-state

- solution of the problem of a wind tunnel with a step introduced into the

flow is next considefed. The inflow Mach number was selected M_ = 3.0
and Y = 1.40 . The initial coarse mesh is shown in Figure 14 with the
corfesponding density profiles, and results of the adaptive refinement/
unrefinement scheme with @ = 0.15 and B = 0.20 are shown in Figure 15.
The megh refinement algorithm was also used, with the mesh and density
profiles obtained after 10 itera;ions shown in Figure 16. We see that the
adaptive scheme captures well the féatures of the flow including the con-
tact discontinuity at the top near the point of reflection of the bow

shock. However, some oscillaticns are present downstream, and they are

believed to be due to the non-mcnotonicity of the soluticn algorithm. The
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results presented for the refinement-unrefinement procedure have bheen con-
strained by a maximum number of 2000 nodes or 2000 elements that can be

allowed. In the refined mesh shown, this constraint has been achieved.

6.4 Supersonic Flow Over a 20° Ramp. We next consider the steady

supersonic flow through a conduit with a 20-degree ramp. The gas (with
Y = 1.4) enters as a uniform M = 3.0 flow through the left side of the
ramp and a shock develops at the ramp root. A coarse initial mesh and the
computed density contours are illustrated in Figure 17. For this problenm,
a reasonablyvgood indication of the orientation of the shock.is obtained.
Adaptive mésh results ére shown in Figures 18 and 19 for choices of
the parameters of a = 0,20 and B = 0.50° with one and two levels of
refinement, respectively.  Notice that‘spurious oscillations at the outflow
boundary above the ramp rbot, due to the hourglass oscillations described
in Section 3, cause unnecessary refiﬁements in this region. Similarly, in
regions between the shock and the ramps, éome unnecess;ry refinement re-
sults from oscillations in the numerical solutionf Nevertheless,;striking
improvement in the quality of the solu;ioh is seen to result from the
refinement proceduré.
In thié particular problem, the node redistribution algorithm works
_ remarkabl& well. A computed distorted coarse mesh, obtained after ten
applicatibns of the nodelredistr;;ution algorithms, is shown in Figure 20

with the resulting density contours.

6.5 Blunt Leading Edge of 8' HTT Panel Holder in Hypersonic Flow,

The problém of the blunt leading edge of the 8' HTT panel holder in a

supersonic flow field with freestreaq Mach number ﬂn =6.57 , vy = 1,38
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Figure 12. NACA 0012 airfoil in supersonic wind tunnel.

Mesh and density contours obtained with one

level of refinement (a« = 0.10, B8 = 0.10)
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Figure 13. NACA 0012 airfoil in supersonic wind tunnel.
Mesh and density contours obtained after 10

applications of the mesh redistribution algorithm.
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Figure 14. Supersonic flow in a wind tunnel with a

step. Initial mesh and density contours.
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Figure 15. Supersonic flow in a wind tunnel with step.
Mesh and density contours obtained with one level

of refinement (a = 0.15, B8 = 0.20).
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Figure 16. Supersonic flow in a wind tunnel with a step.

Mesh and density contours obtained éfter 10

applications of the mesh redistribution algorithm.

’

Cc-52




TV

LI

[LILLERANY

JTETTTRNNAY

LELTRTRNRAN

1V

LV

ULV

ALV

HaﬂaﬂMM/Mv

LAV VAN
\\

ULV
1\ M\

Supersonic flow over a 20° ramp.
Initial mesh and desnity contours.
C-53

Fioure 17.




ke~

Mesh and density

Supersonic flow over a 20° ramp.
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Figure 19.

Supersonic flow over a 20° ramp.

Mesh and densitv contours

obtained with two levels of refinement (0 = 0.20, B8 = 0.50).
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contours obtained after 10 applications of the mesh

redistribution algorithm.
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and 0° angle of attack was solved to obtain the steady-state solution,
This problem has also been studied by Bey et al. [6].

4 coarse mesh solution is indicated in Figure 21 and an adaptively
refined/unrefined ﬁesh and solution, obtained for a = 0,05 and B = 0.15 ,
are shown'in‘Figure 22, A distorted mesh and corresponding density map are
indicated in Figure 23. 1In this particular problem, neither the h-method
nof the r-method gave particularly good results, as a poor abproximation of
the solution between the shock and blunt body results from spurious oscilla-
tions in the basic time-marching algorithm. 1In the case of mesh adaptation
using redistribution, the solution actually diverges after four passes
through the adaptive scheme due to the badly graded (hourglassed) mesh

produced from the oscillations of the adaptive scheme downstream of the

shock.

6.6 Transient Adaptive Solution for Supersonic Flow Over a 20° Ramp.

In all the examples presented above, a time-accurate time stepping scheme
is used, but the adaptive scheme waé not used stepwise for the transient
solution since our primary interest was to increase accuracy in the steady-
state solution. The adaptive method used to track transient fronts 1is
described as follows::

1) A Choose a structured mesh with the finest mesh size to be allowed
in the calculation to ;; the initiai ﬁesh. This is done to avoid
large variations of the time-step during the time-stepping.

2) Ever N »time steps (N = 50 in the present problem) go through

the refinement-unrefinement process (only unrefinement after the

first N time steps).
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Blunt leading edge in hypersonic flow field.

Initial mesh and density contours.
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Figure 22 Blunt leadiug edge in hypersonic flow field.
Mesh and density contours obtained after, with
one level of refinement ( = 0.05, = 0.15).
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Figure 23.
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Blunt leading edge in -
hypersonic flow. Mesh‘
and density contours
obtained after 4
applications of
the mesh
redistribution

algorithm.
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The above adaptive strategy was employed to solve the problem of a 20°
ramp which is suddenly introduced in a supersonic flow field with M_ = 3.0,
v =.1,40 ., The solution was integrated to steady state, and.it is demon-
strated that the mesh adapts to the sﬁock front as the shock front moveg
from its initial to its steady-state position.

The initial coarse mesh 1s shown in Figure 24 and the evolution of a

refined/unrefined mesh for various time intervals is illustrated in succes-

sive figures, Figures 25-~29., The refinement parameters used were a = 0.05
and 8 = 0.25, and a total of 250 time steps were used to track the solution
from its initial to the final steady state. The final steady result is

similar to that obtained earlier and shown in Figures 18 and 19.

—_——
oy
pond - =EEE§§_
- -
SSEZZZ=23ZSZ2Z2Z22
S222222222ZZ2222222
ot am B ™ s =
SEZZZaEESSSSSSE2Z222222222
1™ ;F - - E; o se
q‘:‘ﬂ - =
‘—ﬂ,—; - —,::::;;ﬁ:; -~
CHHH :*'ﬂSEﬁﬁ'
-1 - 111
—”; ﬂd a”
1. Lt -
ﬂ—:ﬂ ; o’
1T T
’Er”ﬁ
‘ﬂ

Figure 24. Transient supersonic flow over a 20° ramp. Initial mesh.
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. Figure 25.

Transient supersonic flow over a 20° ramp. Mesh

density contours after 50 time steps (a = 0.05,
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Figure 26. Transient supersonic flow over a 20° ramp. Mesh and

density contours after 100 time steps (a = 0.05,
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Figure 27. Transient supersonic flow .over a 20° ramp. Mesh and density

contours after 150 time stebs (a = 0.05, B8 = 0.25).
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Figure 28.

Transient supersonic flow over a 20° ramp. Mesh and density

contours after 200 time steps (a = 0.05, B8 = 0.25).
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Figure 29. Transient supersonic flow over a 20° ramp. Mesh and

density contours after convergence to steady-state,

(a = 0.05, 8 =0.25).
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THE COMPUTATIONAL MECHANICS COMPANY, INC.
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TECHNICAL LETTER - FINAL REPORT
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September 30, 1987

Chapter 1

- This report concerns an adaptive finite element code, capable of solving
transient and steady-state problems in compressible inviscid fluid flow.
Unstructured triangular finite element meshes were used for the basis of the

“adaptivity.

Some research has been carried out in the area of adaptivity (see [2],[4],[7]
and [10]), although many different approaches have been pursued. For example, an
approach involving quadrilateral elements was seen to provide accurate results in
[4]. Devloo, [4], used one type of quadrilaterial element di'vision, resulting in the
generation of contrained nodes (i.e., the nodal solution is contrained in terms of
other nearly nodal solutions.) This approach combined with a scheme (FEM-FCT,
see Chapter 3), capable of capturing line discontinuities in the flow, was seen to
improve the accuracy of the results. Others, such as Bank [2], have opted for
triangular elements and two different types of division. This choice of two divisions
results in a mesh of unconstrained nodes, noted to provide accurate pictures of fluid-

flow interaction.

In all these references, adaptivity was seen to improve the solution and the

- speed with which the solution was computed. Considering the types of problems

(i.e. compressible fluid flow), an adaptive triangular element approach with a
suitable numerical scheme was hence adopted as the basis of this report. The
adaptive part of the code forms the basis of the work carried out an an already coded
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FCTG-FEM "solver" (that used by Strouboulis in [13]). Parts of the "solver" had to
- be changed to accommodate triangular elements. Full details of the adaptive part are
~presented in Chapter 4.

Several classical fluid flow problcms were analyzed. The initial conditions
and solutions were obtained from references such as [11], [12], thereby enabling
valid comparisons to be made. The problems all involved some form of line
discontinuities such as shock/shock-interaction. The adaptivity was seen to help
capture the true form of these discontinuities, providing similar solutions to those
contained in [12]. The shock resolutions were accurate enough to justify the use of
such a scheme.

A brief summary of this report would thus be as follows: Chapters 2 and 3
describe the FEM-FCT numerical scheme used; Chapter 4 describes the adaptive
strategy; Chapter 5 includes numerical examples and; Chapter 6 gives suggestions
and recommendations for further developments.
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CHAPTER 2
FINITE ELEMENT APPROXIMATIONS

Before describing the details of the Flux-Corrected Method (adapted to the
Finite Element Method - See Chapter 3), a brief background to the class of problems
and method of solution will be given.

All of the problems analysed involve the time-dependent flow of a
compressible inviscid fluid in two-dimensions. If we denote the domain of flow by
Q and the time interval of this flow by [0,T] then the true domain D is defined by
D= Q, X [O,T]. A sketch of such a domain is given m Figure 2.1 including 992, the
boundafy of the domain. This domain is then used to compute a solution vector U,

consisting of the following four components :

U-_-[p,pu,pv,pc]t @2.1)

where : p =density
pu =linear momentum in the x-direction.
pv =linear momentum in the y-direction.

pe =total energy.



n = boundary normal

/———an

>

D=Qx[0,T]

T = final time

P x .'

Figure 2.1 The space-time domain (D) of problems

where : 0 =initial time.
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These four conservation variables can be used to calculate the followin g four

" primitive variables: p, u, v and p.

where : u = velocity in the x-direction.
v = velocity in the y-direction.

p = pressure.

Note that the pressure is calculated from the following formula for a perfect

2, .2
u +v
p= (v-l)p[c i ]
where : p, e, uand v are as specified in equation (2.1).
v = ratio of specific heats for the gas/liquid

under consideration.

The fluid flow is governed by the balance laws of mass, momentum and
energy conservation. These equations, expressed in integral form, are known as the
Euler equations for flow of a compressible inviscid fluid. This integral form can be

written as follows :

d |
S fud=-[Q-nd 2.2)
d‘:{ ajn ;

where : U = solution vector.
dQQ, ds = Lebesgue measures of length and area.

n = vector normal to the boundary.



Q = pair of flux vectors E, F.

The forin of Qs as follows:
i pu pv ]
pu2+ P pvu
Q=[E.F]=|. y
: puv pv +p
i (petp)u  (pv+p)u ]

Besides satisfying equation (2.2), U must also satisfy an initial condition

givenat t=0,ic.
U(x,0) = Up(x) xe Q

Now to obtain a Galerkin approximation, we must consider the differential

form of equation (2.2).

au

ﬁ. + V'Q =0 (2.3)
2 E’Qoci
here:V.Q = 2, ——
ycrc Q Z'l oy

If we multiply equation (2.3) by a test function @T and integrate, we obtain
the following weak boundary-valué problem which is equivalent to the conservation

laws, the initial conditions and jump conditions :
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CHAPTER 3
FLUX-CORRECTED TRANSPORT METHOD

In Chapter 2, a weak variational statement of the conservation laws was

fdrmulated, governing the flow of a fluid through a region 2 (see equation 2.4). For

such flows, point and line discontinuities can occur in the primitive variables in use.

Dcpcnding upon the scheme being used, these discontinuities can cause problems.
In particular it is known that those schemes of order greater than one will tend to
cause osciﬂations in the solution at and about such discontinuities. If these
oscillations are large enough, the solution will eventually become unstable and
diverge. A method able to deal with these oscillations would hence enhance the

solution greatly.

The Elux-Com;ctcd Transport (FCT) Method is such a method as it employs
the use of both. a high- and low-order numerical scheme. The idea behind this is to
use the high-order scheme in areas where the ;;rimitivc variables change smoothly
and not abrupﬂy. The low-order scheme is then employed in those areas where the
variables vary abruptly (such as along the line of a shock-wave). The combination of
these two sghemes near such discontinuities tends to provide an accurate picture
although Slight oscillations can still mar the solution. For this reason, a strong
diffusion term is added to the low-order sdiution which tends to reduce the

magnitude of these spurious solution oscillations.
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Before a detailed description of the high- and low- order schemes is given, a

rough outline of the FCT method is given:

If we discretize equation (2.3) with respect to time, we obtain an equation of
the following form (using the standard high-order method) : '

PRI L L - (3.1)

where : A Uh = the increment in the solution vector corresponding

to a change in time from t;; to t;,].

The FCT method computes a A Uh of high enough order to capture the
solution with few oscillations. Rewriting equation (3.1) in terms of low- and high-
order contributions yields the following :

n+l

) vsavt+aut-auh

=u' +(aut-auh

where : U! = low-order solution at t=t;,;.

A Ul = low-order increment in U from t=t, to t=t;, .

Hence the FCT method limits the second term above and sets it equal to AU®
1 1 b
U™ =U +avU | (3.2)

where: AU® =(AUh -AU!)
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Ob?iously A U* must be "limited" very carefully so as to avoid either
oscillations or lack of resolution in the solution. Before describing any finer details
of the FCT method, the high- and low- order schemes will be described.

High-order Scheme : Taylor-Galerkin meth

First we discretize U with respect to time using the midpoint formula :

1
ou M3

)

n+l

u™ - Ut s 2By + O(ALY)

2 "t

. . 1
n+_
=U"+ A (%J-) 2 | (3.3)

where : Un+l = solution vector at t=t+],
UM = solution vector at t=t?,

(80U / 0t )n+12= solution derivative at t=tn+1/2,

* From Chapter 2 and the governing differential equation (equaton 2.3) :

. 1 1 1
U ™3 oE ™3

3 oF ™7
(50 P=0 g T (3.4)
(obmincd'by substtuting :V-Q = V.[E , F]
_ _B_E_:_ . oF )
T ox  dy
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If equation (3.4) is substituted into equation (3.3), the variational form of

equation (3.3) becomes :

1
T 1 T, 6K oE ™3 oF M=
‘{ y U ‘{ Und‘c-AtI(pj((a ) 2+(W) 2y 4
(3.5)
Now, we know that :
] l e 9 T J0E ™73
2 2 T 2 _ ) ook 2
ax(E @) =E "3 % (3% or
1 1 2. T
E ™7 T no T vy Oy
&) "% =%E "9) - E 50
Similarly for F
T
1
F ™7 T 3 My T 3 Of;
('5;) )} "a"'(F cPj)‘F —y—
D-11



Using the above, equation (3.5) becomes :

;{ ™! q)de‘C =A u" qﬁT dr
T R

1
m_ o .
2 ) 2 )
+At |(E e + F 3y ydt

mi

1
0 M7 T T
‘o g ))de

d
-8t f(3c(E P op) + 5o(F

+At_[(Em
Q

© |-

+ F

3<Pjtr ned 3g"
3 2 _J yar
ox dy

2 2
-MtJ(E *n, + F %ng)ds (3.6)

where : n,, ny = rectangular vector components of the

normal to the boundary (see Figure 2.1).
dQ =boundary of Q (see Figure 2.1).

Finally, the solution vector U is discretized by :

n+1 O ml T n 9 !l T
U =2U ¢ ., U =20 o
=l =1

where : NNODE= number of nodal points.
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@; = Galerkin shape functions (provide

a basis of finite dimension).

Equation (3.6) thus becomes :

NNODE NNODE
1 T T n TT
g,lUi Aqﬁ%‘k:glji q:xlqﬁdr

H

+At) (E.

=
|3,
7

1

Mo T Mo T
-A;I(E ‘g + F ‘ng)dt
Q

If we denote (p;r (pJT dt as M; T the mass matrix, equation (3.6) can be written

as follows :

MU =MU + Q (3.7

1~.T 1 A T
399 2 99
where: Q = Atj(E “—— + F ——)drt
d ady
-Atf(E "x‘pj + F nycpj )ds

Note that Q is expressed in terms of En*Y2 and Fn+1/2 which are both

functions of Un+1/2 .Evcrylhing else in equation (3.7) is known or can be computed
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(e.g. Un*+l ) if UM+122 can be computed. To calculate Un+1/2 | we again use equation
(2.3), formed in Chapter 2. The process is identical to the one for computing Un+1

except for the time interval which spreads from t=t" to t=t™1/2, Hence we use :

ml n
U 2=u“+-2--(%-tj—) + 0(AD)
n At n n
=~ U -—Z—(Ex + Fy)

The following weak statement is made:

1
™ —
vy T n T At n n T

fU % dt = !U (pj dt - —:Z-!(IZx + Fy)(Pj dt (3.8)

UP (and hence Ex , Fy ) are known, enabling Un+172 to be computed. A

brief summary of the high-order process is as follows :
(1) Using equation (3.8), compute Un+1/2, knowing U, E? and F™.
(2) Substitute Un*1/72 into equation (3.7) and compute Un+1,

(3) Repeat process to advance a further time-step.

3.2 Low-order scheme : Lumped mass matrix.

As mentioned earlier, the low-order scheme is used really to capture line or

point discontinuities. As such, it should provide an oscillation-free solution to

D-14
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prevent possible later numerical instability. The scheme uses a lumped mass-matrix

M, instead of the matrix used in the high-order scheme (M). M, is obtained by

summing the elements of each row and placing the sum in the diagonal position ,e.g.

(5000 0] "f41000]
04000 12100
M1=°°3°° 01110
00040 00022
_ 0000 5] 10003 2]

The form of the resulting equation is similar to equation (3.7) except for the
addition of a strong diffusion term. This diffusion term, V , aids in dampening out
any oscillations in the solution near the discontinuities (shocks) and is included as

follows :

MUY = MU+ Qe+ V (3.9)

)| ive form

The low- and high- order schemes have the following form :

1
M Un+ =M Un + Q  (high-order)
1
Ml Un+ = Ml Un + Q + V  (low-order)
D-15



Equation (3.7) can be rewritten as :

1

MU + MlUml -MlUn+l - MUn +Q

s~ (M -MI)Un+1 + MIU'“+l = MU" + Q

The iteration is as follows :

n+l

1
M Uy = MU' +Q- (M- M)UG,
where : UEJH = "i'th" iteration of Un+1

n+l n

U[0]=U

D-16
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4 Flux limiting pr: ure :
’ \
If we take equations (3.9) and (3.10) and subtract them, we get :

M UE - Uty = (M- MU - (M- MU - Voo

MUy = MU MU
-(M-MI)UE:; -V or

n+l

n+1
Um = Ul + f[l'l]

which is similar in form to equation (3.2). The limited increment A U* then

corresponds to f[;.y).

3.5 Error estimate,

As the "solver” based on the FCT-FEM method was to be used with
adapuvity (see Chapter 4), an error estimator, capable of identifying abrupt changes
in the solution vector U, was needed. The error estimator had to be accurate enough
to control refinement/unrefinement in areas in the mesh of large/small error. Many
references were available in the area of error estimates (see [11], [12]) enabling an

appropriate error estimator to be chosen. The form of this estimator is given by the.
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normalized gradient of one of the four conservation variables. In this case density

was chosen :

P )=

max|?ﬁ|
=12 Ox

P

where : A, = area of the element.

ph = average value of the density over element Q.

3.6 Implementation of the Flux-Corrected Transport method,

An existing FCT-FEM "solver” using quadrilateral elements was used (see
[13]). As this "solver” was written with quadrilateral elements in mind, it had to be
converted in order to use triangular elements. This involved going through the code
and changing all loops and subroutines involving elemental calculations (c.g. number
of sides/nodes per clement changed from 4 to 3). The common blocks and
'variablcs/arrays were then used as the basis for the adaptive part of the code (see
Chapter 4). This ensured a convenient way of linking the FCT-FEM "solver" and the

adaptive algorithm described in Chapter 6.
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CHAPTER 4

MESH REFINEMENT STRATEGY

Many refinement strategies presently involve meshes consisting of

“quadrilateral elements. These strategies have to use constrained nodes (ic nodes

generated by the refinement whose nodal values are constrained by the nodal values
of the two nodes .on the same element side) . These constraints have to be
incorporated when computing a finite element solution and hence result in a more
complicated and less efficient code in general. When considering a triangular finite
clement mesh, however, one can devise refinement methods involving two
alternative element divisions which would eliminate the need for constrained nodes.
Such a method would thus improve the speed with which the code computed the
solution. This is important as tl;c majority of the running time is spent on computing
a solution rather than on refining/unrefining the mesh after a specified time interval.
This indicates that the more cfficicﬁt and quicker adaptive codes involve triangular

elements and unconstrained nodes.

Taking the above into account, an adaptive triangular element strategy was
adopted. Two different element sub-divisions are used in this strategy so certain
unsatisfactory refinement/unrefinement arrangements can occur unless particular
rules are devised and implemented. For the sake of ease of reading, the type of sub-

divisions will be described before the rules governing refinement/unrefinement.
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4.1 Types and uses of each division type

The two types of division, following the example described in [1], are
known as "regular” division and "green" division. The "regular” divisibn results in
the generation of four identical triangular elements which are all geometrically similar
to the original "father” clement. This node is then connected to the vertex on the

. opposite side, thus dividing the element into two unsimilar elements.(See Figure 4.1

for a schematic representation)
The way in which these alternative divisions are used is as follows:

(1)Based upon some a-posteriori error estimate, "regular” division is carried
out throughout the mesh in such a way that there are no other elements with
more than one constrained node per side, i.c. after "regular” refinement, the
mesh consists of only triangular elements and degenerate quadrilateral
clements (degenerate because of the fourth node introduced by refinement-
nodes 1-3 are such nodes for the shaded elements in‘Figurc 42a).

(2) "Green" refinement is then carried out throughout the mesh on all of the

degenerate quadrilatéral clements. This effectively "cleans up” the mesh and

yields no elements with constrained nodes (refer to Figure 4.2 b).
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a) "Regular” division

NODE3 NODE3 NODE3

3 3 [ELI JIEL2
[EL2 EL1 .
1 2 1 2 1 2N 2

NODE1 NODE2 NODE! NODE2 NODE1 NODE2

b) "Green" division

igure 4.1: T ivision
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a) Mesh after "regular” refinement

b) The mesh after "cleaning up” the degenerate quadrilateral elements

jcure 4.2 : f n a mesh of "cleaning up”
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4 2Gen Rul verning Refin

As the refinement/unrefinement must produce reasonably shaped elements

without constrained nodes, two general rules can be immqiiatcly defined:

(1) The interior angle of each element must be boundcd from zero to ensure a

reasonable solution ,i.c. long, slender elements are not desirable.

(2) The size difference between neighboring elements must not be such that

constrained nodes are produced.

4,3 Rules governing successive refinements

Rule number (1) above prohibited long, slender elements. The combination
of both "grcén" and "regular” divisions, however, can contradict this rule as can be
seen in Figure 4.3. These figures show situations which could contradict rule (1)

and the solutions to these situations.

Rule (2) dissallowed constrained nodes. Figure 4.4 shows situations which
could lead to at least two constrained nodes if care is not taken in refinement.
Depending on the element numbering, the "cleaning up” of the mesh (see Figure
4.2) with "green” divisions would reduce these two nodes to one constrained node

which is still unsatisfactory.The following logic is used to solve these problems:
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elements requiring "regular” refinement
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(@)

o : constrained nodes resulting from
incorrect refinement.

O
)

(b)

Figurc 4.4 Funther examples of correct and incorrect successive refinements

1
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NOTE: In the following, NEL1=the element that is to be refined due to
a large a-priori error estimate.
NEIG=any neighbouring elements of NEL1
NNEI=any neighbouring elements of NEIG
LEVEL(NEL)= level of refinement of NEL

( =0 for a non-refined element)

1) If NEL1isa "green" triangle , NEL must be "un-greened” and
then"regularly” divided before NEL can be divided( Figure 4.3 a)

@) If any NEIG is a "green" Triangle, NEIG must be " un-greened"” and
"regularly” divided bfore NEL1 can be divided( Figure 4.3 b )

(3) If any NEIG has one or more "regularly” divided ncighbouxg(NNEIG),
then NEIG must be "regularly” refined before NEL can be dealt with (see
Figure 4.4 2a).

(4) If LEVEL(NEL) is greater than LEVEL(NEIG), NEIG must be refined
"régularly".(Figurc 44b) |
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4.4 Rules goveming successive unrefinements,

In. the case of unrefinement, the two general rules (see section 4.2) must
again be obeyed. If refinement has been carried out in the correct manner,
unrefinement cannot cause long, slender elements (rule (1)). Hence rule (1) will
automatically be obeyed in unrefinement. Constrained nodes (rule (2)), however,
can occur if certain rules are not obeyed. One clear case can be seen in Figure 4.5
where removal of the shaded group would cause two constrained nodes to occur,

destroying the continnity of the solution. The following logic is hence used:

NOTE: In the following: NG1= group number requiring unrefinement.
NEIGRP=any neighbouring group of NG1.
NNEIGRP=any neighbouring group of NEIGRP. j
"REGULAR" group : group of "regular” elements. |
"GREEN" group : group of "green"” elements.

i

(1) If NG1 is a "green” group, unrefinement is not carried out.

(2) If NGI1 contains a further group (NG2), group NG2 must be unrefined

before NG1 is considered again (see Figure 4.6) .

(3) If two or more of the three NEIGRP's are “green” groups, unrefinement

is immediately possible (see Figure 4.7).
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_ O : Group NG1

@) : Group NG2

Figure 4.6 Unrefin n 1 which contain 2 as a member

Figure 4,7 Two cases that can be immediatelv unrefined,
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(4) If two or more of the three NEIGRP's are "regular” groups,then the
three NNEIGRP's of these NEIGRP's must be examined:
a) If two or more NEIGRP's have one or more "green” NNEIGRP's
unrefinement is carried out (see Figure 4.8).
b) If one or more NEIGRP's have one or more "green" groups as
neighbours and one NEIGRP is a "green” group, unrefinement is
possible (see Figure 4.9). |
c) If neither situation a) nor b) exists, then unrefinement is deemed -

impossible.

4.5 Practical implementation of Refinement/Unrefinement

Before describing the subroutines which control refinement and
unrefincment, a brief outline of the data structures used is necessary. The data arrays
necessary for refinement/unrefinement will be explained in detail as well as the

original data structures contained within the finite element "solver".

4.5.1. Data structures used:

The original code (ie the "solvcr';) needs the following data structures to
provide a solution: .

NELEM-= number of elements.

NNODE-= number of nodes.

NODES(I,NEL)= Global node number of the I'th node of element "NEL".
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Figure 4.8 Two neighbouring "regular” groups (@) have one or more

Figure 4.9 Group NG1 has one :
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X(I,INOb)= I'th coordinate of global node number "INOD".
QTN(I,INOD)= I'th component of the solution for global node "INOD".
The following arrays were introduced for refinement:
NELCON(I,NEL)= I'th connection/neighbor of element "NEL".
LEVEL(NEL)= level of refinement of element "NEL".
ERR(NEL)= an a-posteriori estimate of the local error of the solution in
element "NEL".
A brief explanation of the NELCON and LEVEL arrays follows:
(1) NELCON array : this array stores the neighbours of a particular element.
The connectivity numbering of an arbitrary element is shown in Figure 4.10.
The dimension of NELCON is (6, MAXEL) as each side of the element can
be connected to two 'diffcrcnt elements( MAXEL = maximum number of
elements ). |
(2) LEVEL array : every time an element is refined, the level of the resulting

two or four elements ("green"” or "regular” division) is increased by one.

For unrefinement to occurr, we need three additional data arrays . One of
these is used to store some history of the refinement process and the other as an
error indicator for each group of elements generated by refinement (unlike

ERR(NEL) which is specified per element).
NELGRP(I,NG)= I'th member of group number NG.

If > 0 : Refers 10 an element.

If <0 : Refers to a group of elements.
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GRERR(NG)= an error estimate for groups of elements generated by
refinement (GRERR= the sum of ERR's of each element in
the group).

IELGRP(NEL)= the number of the grdup containing element NEL.

For a schematic representation of the NELGRP array, see Figure 4.11,

noting the differences between "green" and "regular” groups. Lastly, in order to
control the generation of new nodcs. clements and groups, an additional structure

obtained from [2] was implemented.

INODFR(I)= an array containing a list of "free” nodes, ie nodes not
currently being used, "freed” by unrefinement .
INELFR(I)= an array containing a list of "free” elements caused by
unrefinement (as opposed to INODFR(I) which contains "free”
' nodes) . '
IGRFR(I)= an array containing a list of "free” groups caused by
unrefinement.
IELCH(I)= an array containing a list of elements which have either been
refined or unrefined and are also still in use (as opposed to "free”

elements).
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GROUP NG1

IELl {——

IELA

NELGRP(1,NG1) = IEL1
NELGRP(2,NG1) = [EL2
NELGRP(3,NG1) = [EL3
NELGRP(4,NG1) = [EL4

a) "Regular” group

4~ GROUP NG1

NELGRP(I,NG1) =0
NELGRP(2,NG1) = IEL1
NELGRP(3,NG1) = IEL2
NELGRP(4,NG1) = 0

b) "Green" group

Figure 4.11 Schematic representation of NELGRP array.
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4,5.2 Subroutines controlling Refinement/Unrefinement,
4.5.2.1 Refinement
Refinement is obtained mainly through the use of subroutines REFINE and

DIVIDE(NEL1,NEL2). REFINE decides which elements need to be refined based
on our error array ERR(NEL) and provides DIVIDE with these element numbers

<(sc'c Figure'4.12 for a flowchart). Subroutine DIVIDE then operates as follows:

SUBROUTINE DIVIDE(NEL1,NEL2)
NEL1 : (input) .
NEL2 : (output) =NEL1 if NEL1has been been refined.
= NELO if NELO has to be refined first to enable
NEL1 to be refined.All the rules outlined

in section 4.3 are implemented in DIVIDE.

Once all the elements have been considered for "regular” refinement, a final
loop over the elements (in REFINE) identifies any degenerate quadrilateral elements
and "green's" these elements to ensure no constrained nodes. Note that once an

element is to be divided, the following steps are necessary:
(.1) Generate new element numbers.

(2) Changc NELCON array of neighbours.

(3) Generate NELCON array for new elements.
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FOR IEL=1,NELEM :

IS ERR(IEL) >EMAX ?
— > ‘
NELI1=IEL
SUBROUTINE
DIVIDE (NEL1,NEL2)
A
| S
IS NEL2=NEL1? Z
’ (=¥
yes
— 1S I=07? I=I+1
no NELI=NEL2 _____
NL({I)=NEL1
NEL1=NL()
' P
I=[-1

Figure 4.12 Flowchart of how subroutiné REFINE calls subroutine DIVIDE
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(4) Generate new nodal numbers.
(5) Fill in the NODES array for the new elements.
(6) Interpolate the solution over the new nodes.

4.5.2.2 Unrefinement,

‘Unrefinement is obtained through the use of subroutines REFINE,

' UNREFINE(NG1,NG2) and UNDIVIDE(NG) (see Figure 4.13). REFINE again

decides which groups require unrefinement (based this time on the group error array
GRERR(NG)) and provides UNREFINE with these group numbers as follows.
Subroutine UNREFINE then operates as follows:

SUBROUTINE UNREFINE(NG1,NG2)

NG1 : (input) : group to be unrefined.

NG2 : (output) = NG1 if NG1 has been successfully unrefined.
= NGO if Group NGO has to be unrefined first in
order to unrefine NG1 (see Sectdon 4.4 for
unrefinement rules).

= 0 if unrefinement of group NG1 is impossible.

NOTE : that if NG2 has a group error which does not demand unrefinement, then

NG1 will not be unrefined although its group error does require unrefinement. This
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FOR NG=1,NUMGRP :
>IS GRERR(NG) >EMAX ?
NG1=NG

N SUBROUTINE
UNREFINE (NG1,NG2)

7y

. O

IS NG2=NG1 ? Z

[=H

yes no =

yes ’
<4— IS I=07 I=I+1
o NG1=NG2 ______
' NLI)=NGl
NG1=NL(I)
' »
I=I-1

Figure 4,13 Flowchart of ho'w subroutine REFINE calls_subroutine UNREFINE
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is unlike Subroutine DIVIDE(NEL1,NEL2) which will refine any elements just to
divide NEL1.

Again once a group is to be unrefined, the following steps are required:

(1) Select one element number from the group (of two to four elements).
(2) Adapt the NODES array of the neighbouring elements.

(3) Adapt the NODES and NELCON arrays for the selected clement.

(4) Add one or three elements to the list of free elements depending upon
whether the group was "green” or "regular”.

(5) Add the group number to the list of free nodes.
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CHAPTER 5
NUMERICAL EXAMPLES

In this section, examples of both stcady-stafc and transient problems-in
supersonic compressible flow are prcscnted. The Flux-Controlled Transport (FCT)
algorithm together with the adaptive refinement/unrefinement algorithm was seen to
pioducc very good results especially in those problems involving shock waves (i.e.
line discontinuities) and Prandtl-Meyer expansion waves. In almost all of the
examples exact theoretical solutions were available to compai'c with the computed
solutions, allowing direct comparisons. The FCT algorithm was cmployéd in all the

problems beside problem 5.2 with a value of ¢ = 0.125.

5.1 Supersonic flow over a 20° concave corner (ramp),

In this case, supersonic fluid flow over a 20° ramp was observed. When
supersonic flow i; deflected upwards through an angle 6 , the ﬂow streamlines have
to change dkccdon very abruptly. This takes place across the shock wave which is
oblique to the initial flow direction and stems from the poiﬁt at which the flow is
deflected. All the dcﬂccdoﬁs are alike meaning that the flow remains parallel after the
shock. Across the shock, the fluid velocity decreases and the density, pressure and
temperature all increase. Refer to Figure 5.1 for a sketch together with the initial

coarse mesh.
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(a) Supersonic flow over a concave COmer.

Figure 5.1 Sketch of supersonic flow over a concave comer plus initial mesh
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Two levels of refinement were allowed and the constants controlling
refinement/unrefinement were f§ = 0.20 and a = 0.01, i.e. the error estimate for each
- element ideally lies between a*EMAX and B*EMAX (EMAX is the maximum
element error estimate, selected by looping over all the elements) . Uniform inflow
conditions of Mach 3 and y=1.40 (y=cy/c, ) were specified. After less than 500
time steps, the shock profile had been accurately captured except for some small
disturbances which dissapeared after further dmc-stcpping. The solution at this time
~ is shown in Figure 5.2 tog’éther with the final refined mesh. The concentrated area
of level 2 elements (level 0.= unrcﬁncd clcmcn;s) corrt;létcs excellently with the line
of the shock. The slight oscillatory naturé of 'thc sélution is characteristic of the FCT

method.

5.2 Supersonic flow over a convex 1Q° comer,

In contrast to ﬂow over a concave comer (scctibn 5.1), flow over a convex
comer results in the fluid being deflected away from itself to remain parallel with the
surface. This change in direction is accomplished through an expansion wave which
is centered at the point at which the corner begins. The flow streamlines are all
uniformly curved by the expansion fan until they are again parallel to the surface.
Unlike the discontinuities across a shock wave, the flow properties change smoothly
and continuously over an expansion wave. In addition the flow vclbcity increases

whereas density, pressure and temperature all decrease (see Figurc 5.3 for a sketch)

Two levels of refinement were allowed together with the following

refinement/unrefinement constants y=1.38,, f=0.20 and «=0.01. The inflow
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(a) Final computed solution

(b) Final refined mesh (maximum level of refinement =2)

Figure 5.2 Final solution and the correspondine refined mesh,
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(a) Supersonic flow over a convex comer.

a7

(b) Initial mesh

Figure 5.3 Sketch of an expansion fan and the initial coarse mesh,
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conditions were specified as a uniform Mach 6 flow. Various values of ¢ were

allowed ranging from c= 0.0 to 1.0 . The difference in the amount of diffusion

correlates to the value of ¢ as can be observed from Figur_e 5.5. The final solution

(c=0.125) and the corresponding refined mesh are shown in Figure 5.4.

Again the results compared very well with the exact solution. The area of the
expansion fan is made up from level 2 elements as expected. Because of the high-
speed inflow conditions, a shock wave is generated at the second (concave) corner
after the expansion wave. This is as expected remembering that the fluid velocity
increases through an expansion wave, ensuring continued supersonic (if not

hypersonic) flow.

5.3 Intersection of two shock waves of the same family,

A sketch of the double-ramp problem (appropriate to this class of problems)
is given in Figure 5.6 as is the initial coarse mesh. The supersonic inflow conditions
are specified so as to generate two different oblique shock waves (similar to problem

5.1) , one at A and one at B. Shock wave BC, because of the increased ramp angle

. at point B, will be inclined at a sfccpcr angle than shock wave AC. Hence the two

shock waves intersect at point C resulting in the propagation of a single shock CD.

Now the flow direction and pressure in region 3, p3 and 63, result from the
upstream conditions in area 2.Likewise p, and 8, are a result of upstream conditions

in area 1, so p3 and 83 are affected by both shocks AC and BC. Properties in area 5
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(a) Final computed solution
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(b) Final refined mesh

Figure 5.4 Final solution and the corresponding mesh.
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slip line

weak reflected
wave

A

(a) Intersection of two shocks generated by a double ramp.

(b) Initial coarse mesh

Figure 5.6 Sketch of two shocks intersecting and the initial mesh,
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(ps and B5), however, are processed by a single shock CD. As the entropy changes

across the single shock (CD) and the two shocks (AC and BC) will be different, a

slip line must originate from point C (ie a line across which the pressures and flow

directions are equal). To get ps=p3 and 85=03 simultaneously is virtually impossible

. and hence a weak reflected wave is generated from point C (either a weak shock or

an expansion wave). All this wave really does is to ensure that p4=ps and 684=05,

satisfying all shock relations.

Three levels of refinement were specified with y=1.38, B=0.20 and «=0.01.

The inflow conditions were uniform Mach 5 flow with ¢=0.125.

The results as can be seen in Figure 5.7 correspond excellently to the
expected appearance (that contained in Figure 5.6). Two shock waves are generated
and intersect, combinin g to form a third wave. A weak shock wave can be seen to
originate from point C to saﬁsfy all physical relations between area 1 and area 5, and
between areas 1, 2, 3 and 4. The area of most refinement is concentrated about all

four shock waves (three strong waves and one weak wave) as was expected (see

Figure 5.6).

5.4 Shock Reflection problem.

This problem is generated by specifying initial conditions corresponding to
four different triangular areas. It is important that these initial values of density,

momentum, and energy satisfy the Rankine-Hugoniot jump conditions over a shock
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() Final computed solution for the double-ramp problem

(b) Final refined mesh

Figure 5.7 Final solutign and the final mesh for double-ramp problem
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wave. Although this problem might seem a little contrived, the solution is identical

to, say, that of a conventional supersonic diffuser. In this case, the domain is a lot

less complicated (see Figure 5.8).

The inflow conditions correspond to a Mach number of 3.5 and y=1.4. The

refinement/unrefinement parameters are again =0.20 and a=0.01.

Figure 5.9 is a plot of the interpolated initial conditions and the mesh that

results from initial refinement (before time-stepping has begun). The computed

solution (after 500 time-steps) is then shown with a further refined mesh in Figure
5.10. One can observe that more elements have resulted from additional refinement.
The mesh compares favourably with those obtained in [12] as does the converged
solution. The FCT algorithm again gives the solution an oscillatory appearance.

which does not detract from the overall appearance of the solution.

5.5 Supersonic flow over a step,

This problem is analagous to flow in a wind tunnel or a long tube over 2
small step (in this case the step height was a quarter of the tube diameter). The mesh
and solution plots have all been intentionally scaled incorréctly for reasons of detail.

The initial mesh in both scales is given in Figure 5.11 to illustrate this.

The inflow conditions were specified as Mach 3 and y=1.4 on the left vertical

~ mesh edge (the right vertical edge was specified as outflow). All other edges

correspond to no-flow conditons.
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p =17

ml1=4.45145
> m2=-0.86071
p =10 ' =9.8702
ml=2.9
m2=0.0
E=5.99

Q. ® ®
L- lines of shock waves

(a) Initial conditions

WP P IIIIIIIIINIS

M>1

VPPl

(b) Reflected waves inside a diffuser

Figure 5.8 Initial conditions for reflected wave problem and a phvsical example.
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() Initial interpolated conditions

(b) Ininal refined mesh (time = 0 sec. )

Figure 5.9 Initial conditions and mesh for reflected wave problem.
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(a) Final computed solution (nsteps = 500)
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(b) Final refined mesh (time = tfinal)

Figure 5.10 Final solution and mesh for reflected wave problem.
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The solution to this problem involves several shocks/ shock interactions and
took 1000 time-steps to converge. The problem was run for two cases of different
MAXLEYV (= maximum level of refinement for an element). The final converged
Solutions and the corresponding refined meshes are included in Figures 5.12 and

5.13.

Figure 5.12 (MAXLEV=2) shows a similar shape solution to that contained
in Figure 5.13 (MAXLEV=3) although the shock’s resolution is better defined and
clearer in Figure 5.13. The basic form of the solution involves an upstream bow
wave caused by the step. This wave then reflects off first the upper surface then the
lower before exitting. A Prandtl-Meyer expansion wave is generated at the comer of
the step. The areas of large error (corresponding to the areas contining the shocks)
- are again well "covered” by the smaller (more refined) elements. Because of the
complexity of the solution, the oscillatory nature of the FCT method is clearer

especially in the second and third (reflected) waves.

D-56

S —

FN— ——

- et ey o — i .



l‘l

(a) Final computed solution

(b) Final refined mesh

Figure 5.12 Final solution and corresponding refined mesh (MAXLEV=2),
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(b) Final refined mesh

Figure 5.13 Final solution and corresponding refined mesh (MAXLEV=3).
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CHAPTER 6
RECOMMENDATIONS AND CONCLUSIONS

The main aim of this reportwas to provide a code capable of providing high-
resolution solutions to a variety of problems involving strbngly unsteady
éomprcssiblc flow. This was to be done with the minimum number of elements

necessary.

As far as these two objectives are concerned the code performed very well,
providing both accurate pictures of shocks and shock interaction as well as optimal
mcshcs (due to the refinement/unrefinement capabilities of the code). The
combination of ihc FEM-FCT numerical scheme and adaptivity was seen to be well
suited to the class of problems of analysis. All the solutions were true to the

calculated or experimentally-obtained exact solutions.

The success of this scheme would seem to prompt the development of a
three-dimensional code. There are several references to the multi-dimensionality of
the Flux-Controlled Transport method (see References [14],[10]). The types of
refinement/unrefinement could also be generalized to three-dimensions. In the case
of "gfccn" divisions (see Chapter 4), the three-dimensional equivalent would
generate four tetrahedral elements. Similarly, "regular” division would cause the

generation of eight geometrically similar (to the parent element) tetrahedra. The
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combination of these two divisions would result in three-dimensional meshes with
no constrained nodes, again indicating possible time savings in the solution
computation. 'I'lu'éc-dimcnsional solutions to the integral form of the Euler equations
would have great use and potential, providing information about the cffccts of

surface shocks in three dimensions.
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Appendix E

This appendix documents the implementation of an adaptive strategy using

Lockheed-Huntsville GIM/PAGE code as the flow solver. A concise and complete

discussion of GIM/PAGE methodology and its application to practical flow

problems can be found in the work of Spradley et al.

The implementation of the adaptive strategy using the GIM/PAGE code is

possible because the adaptive strategy does not have to be used with any

particular solution algorithm. For this reason, many existing CFD codes can

be made adaptive without a major effort. The CFD code must be able to properly

treat "constrained" nodes which will exist along the interface between the

different levels of refinement. If this capability is not present it must be

added. Routines must be added to transfer information between the CFD code

and the adaptive strategy.

A.general adaptive strategy for the computation of steady-state solutions

of the equétions of compressible gas dynamics involves the following steps:

1.
2.
3.

4,
5.

For a given mesh, compute the steady-state solution.
Compute the local error for the mesh.

‘Survey the error field and determine where mesh restructuring

is needed.
Refine or coarsen the mesh as needed.
Go to step 1.

The general tendency is to combine the adaptive strategy and flow solver

into one large, complex computer program. However, a closer examination of

the general adaptive procedure suggest that the development of another large

*Spradley, L.W., Stalnaker, J.F., Robinson, M.A., and Xiques, K.E., "Finite
Element Algorithms for Compressible Flow Computation on a Supercomputer,"”
Finite Elements in Fluids (eds R.H. Gallagher, G. Carey, J.T. Oden and 0.G.
Zienkiewicz), Vol. 6, 1985.
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computer program can be avoided. The Lockheed-Huntsville PAGE code can already
perform step 1 of the adaptive strategy. Furthermore, steps 2 through 4 do not
.require the resources of a supercomputer. They could be executed using the

less expensive resources of a front-end machine or workstation.

This adaptive strategy using the GIM/PAGE code has been implemented
through a Solution-Adaptive Analysis System (SAAS). This system operates in a
computational environment consisting of a supercomputer and a front-end
machine. The SAAS concept is shown in Fig. E-1. The adaptive processor and
the adaptive database together with pre- and post-processors used to transfer
data to and from the PAGE code reside on the front-end side of the SAAS
environment. The PAGE code is used on the supercomputer side of SAAS. This
segregation of the mesh restrﬁcturing from the flowfield computation will
allow SAAS to be used with other existing CFD codes. Only custom pre- and
post processors need to be developed to facilitate data transfer between the
adaptive processor and the CFD codes. Currently, only pre- and post- |

processors which interface with the PAGE code are available.

The SAAS performs solution-adaptation through its adaptive processor.
Utilizing the current geometry and solution, the adaptive processor first
assesses the solution quality over the entire domain. It then‘refines-or
coarsens the mesh as required based on'user-supplied refinement and coarsening

tolerances. - When refinement (coarsening) is indicated, the physical grid

spacing in each of the computational coordinate directions is halved (doubled),

the local nodal connectivity is reconfigured, and all geometric and flowfield
variables are updated. Flow field quantities at grid points which fall on the
boundaries between refined and non-refined elements are constrained to values
determined by linear interpolation between the associated connected nodes.

The pré} and post-processors convert the geometry and solution data to and
from PACE code format. The PAGE code is then used to compute a new solution

using the adapted geometry. The SAAS work environment creates no computer

resource penalty during the actual flowfield integration. This is because the ‘

grid refinement is removed from the integration process and is performed on a

less expensive workstation or front-end computer.
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The following test cases were run to determine the utility of the SAAS

adaptive work environment. The refinement threshold was held at 0.65. First,

the flow -of an ideal Mach 2.4 freestream up a 14.04 deg ramp was computed on a

relatively coarse grid using the PAGE code. The grid and resulting solution
are shown in Fig. E-2. SAAS was used to adapt the grid and compute an en-
hanced solution using the PAGE code. The adapted grid and the subsequent PAGE

code solution are shown in Fig. E-3.

Second, a viscous shock-expansion test case was run on the same config-
uration and with the same inflow. A Reynolds number of 1000 was used. SAAS
wés used to adapt the mesh four times. The PAGE code was used to comﬁute an
intermediate solution between each adaptation. Figure E-4 shows the final

grid and subsequent PAGE code solution.

Figures 5 and 6 show an inviscid shock reflection calculation. The con-
ditions were the same as the previous cases with a solid upper boundary. This
case was run to test the ability of SAAS to capture and refine multiple inter-
ac;idns of shocks and expansions. The mesh shown in Fig. E-5 was refined

twice yielding the pressure results shown in Fig. E-6.
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Appendix F

The three-dimensional adaptive scheme is divided into subprocesses each

of which performs a specific task or function. The subprocesses are:

. Feature detection

. Mesh adaption

. Boundary condition application
. Data translation

& W=

These subprocesses surround a central data pool as shown in Fig. F-1. This
arrangement is essentially the same organization used by Dannenhoffer and

Baron (Ref. 1) in their hybrid expert system.

Two-way data transfer is allowed between each subprocess and the central
data pool. There is no communications between any two subprocesses. As
Dannenhoffer and others have previously stated, this type of communication
structure benefits the overall system design and development. Each subprocess
may be developed and tested separately. Each subprocess is independent of the
other subprocess. Any algorithm change in a subprocess will not impact any
other subprocess. All requests for data by any subprocess is handled by a
collection of procedures which read and write data to the data pool. The data
pool consists of a éollection of files which can reside on more than one

directory or machine.

The data manager processes information transfer requests between any sub-
process and the data pool. The data manager keeps track of available elements
and groups, retrieves information about a particular element or group and

checks for non-existing data request.

The feature detection subprocess determines which regions of the mesh

should be refined or unrefined. The mesh adaptation subprocess does the
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mesh refinement and unrefinement. The boundary condition application sub--
process applies boundary conditions on the adapted mesh. The data translation

subprocess converts the data to a form which can be used by a CFD code.

The rest of this appendix describes the mesh adaptation subprocess. The

other subprocesses have not been completed except for the data manager.

Mesh Adaptation

The mesh adaptation subprocess refines and unrefines the mesh using a list

of instructions generated by the feature detection subprocess. This list

resides in the data pool.

Two pieces of information are necessary to adapt the mesh. These are the
relatibnship of an element with its neighbors (connectivity array) and the
lineage of the element (group array). Using the connectivity and group arrays,

the mesh can be adapted.

Connectivity Array

A connectivity array is employed within the integer space to facilitate
mesh refinement and unrefinement. This array keeps track of the dynamic
topological relationéhips between the elements of the mesh. Mesh adaptation

is performed by operating on this connectivity array.

The three-dimensional connectivity array consists of a 4 x 4 x 4 array.
Each element of this array is referred to as an atom. The array consists of a
group of core atoms surrounded by neighboring atoms and neutral atoms. A con-
nectivity arréy is illustrated in Fig. F-2. There is one connectivity array
for each nonboundary element in the mesh. This array contains the topological
data which relates one element with its immediate neighbors. Using this array
the relative level of an element with its neighbor can be easily determined.

Constrained nodes can also be identified.
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Group Array

The group array is used to facilitate the unrefinement process. This
array contains the elements which are created when an existing element is

refined. It keeps track of element lineage.

Refinement Algorithm

The following algorithm outlines the steps required to perform the

refinement operation for a single element.

Step 1. Copy the connectivity array of the element to work the array.
Step 2. Get the next available group and initialize the new group array.

Step 3. For each core location of the work array:
3a. Get the next available element and place it in the core
location.
3b. Initialize next available element's connectivity array.

Step 4. Copy core locations of the work array to the new group array.

Step 5. For each group location of the group array:
Sa. Get the element stored in that group location.
5b. Transfer connectivity data from the work array to each
element's connectivity array.

Step 6. For each neighbor location of the work array:
6a. Get the element stored in the neighbor location.
6b. Update the neighbor element's connectivity array.

Step 7. Update the old group array which the element belonged to.

Step 8. Delete the element connectivity array and add element to the
: available element heap.

This refinement algorithm is illustrated in Fig. F-3. A single group of eight
elements is successively refined until it consists of 13 groups totaling 98
elements. One can see from these figures that there is a maximum of one level

of refinement difference between any two adjacent elements. An exploded view
of the final grid is shown in Fig. F-4. '
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Fig. F-4 Exploded View of the Grid After Three Refinement Passes
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Unrefinement Algorithm

The following algorithm outlines the steps required to perform the

unrefinement operation for a single group.

Step 1: Copy the group array to the core of the work array.

Step 2: For each core location of the work array: (a) Get the element
stored in the core location and (b) transfer connectivity data
to the work array. :

Step 3: Get next available element.

Step 4: Store this element in each core location of the work array.

Step 5: For the group array: (a) Get an element for the group array,
(b) update the connectivity array of each neighbor of this

element, and (¢) add the element to the available element heap.

Step 6: If this is an embedded group then replace any reference to the
group by the next available element.

‘ Step 7: Add each member of the group array to the next available
element heap.

Step 8: Add}group to the next available group heap.

Figure F-5 is a refinement/unrefinement cycle using the above algorithms.
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