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ABSTRACT. It is shown that the algorithms for determining the
generating function and prediction error matrix of multivariate

stationary stochastic processes developed by Wiener and Masani (1957),

(1958) and later by Masani (1960) will work in some more general setting.
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1. INTRODUCTION.

In their papers [3] and [4] Wiener and Masani developed some algorithms
for determining the generating function, the prediction error matrix and an
autoregressive representation for the linear least squares predictor of a
multivariate statiomary stochastic process ;n,—w < n < o, Their algorithms
were obtained under the requirement that the spectral distribution matrix F
of the process gn is absolutely continuous with density £ and

c j.gﬁeie) <d, (1)
where ¢ and d are two positive numbers. Later Masani [2] showed that their
algorithms for determining the generating function and the prediction error
matrix work under some weaker condition , namely

-1 B,
f e L, and Y € Lps | (2)

where 1 and A are the largest and smallest eigenvalues of f; respectively, and
that the autoregressive series for the predictor converges under the condition
1

f e L, and felL, (3)

which is stronger than (2) but still weaker than (l).

In the present paper we show that Wiener and Masani's algorithms for
finding the generating function and the prediction error matrix can be adjusted
to work when the spectral density f can be factored as

f = K(eie)g(eie)g*(eie).
where g is a new spectral density satisfying Masani's condition (2) mentioned
above and P is a certain kind of polynomial (for precise conditions see our
Assumption and Theorem in section 3).

2. PRELIMINARIES.

Let (Q, F, P) be a probability space and H denote the Hilbert space

2
L O(Q, F, P) of all complex valued random variables on Q with zero expectation



and finite variance with the usual inner product ( , ) and norm || |].

Following (3] for 94> 1, Hq denotes the Cartesian product of 4 copies

1

i
of Hyi.e. the set of all column vectors f = (f7,..., fq)T, with £ ¢ H. For

f and g in H? their Gramian pmatrix (f,g) is defined to be the q x q matrix

[(fi, gj)]. It is well known [3] that 1! is a Hilbert space under the inner
pfoduct (£, g)) = trace({,g) and norm ||£J| = ((f, £)), provided their
linear combinations are formed with matrix coefficients. Two elements f and g
in HY are said to be orthogonal (denoted by £ L g) if (£, g) = O which is the
same as saying fi 1 gj, for all 1, j.

Now we introduce a few concepts and state a theorem which is
essential for our study here. For the detail of these and other standard con-
cepts of the prediction theory of multivariate stochastic processes which are
used but not formally presented here see [2, 3, 4].

A bisequence {jn, o <n < )} c¢ HY is said to be a q-variate stationary

stochastic process (SSP) if their Gramian (ﬁm, £n) depends only on m-n. It
can be shown that for such a process one has a spectral representation of the form

-1 27 -i(m-n)6
6 £) =3, 127

-n
where F is a countably additive nonnegative matrix valued measure called the

F(d9), (4)

spectral distribution of in'

For the q—-variate SSP , we define its time domain M(+x) = SP {f H

f
i
- < k < o}, its past M(n) = §§.{£k: -» < k < n}, and its remote past M(-=) =

S M (n). The process is called non-deterministic or purely non-deterministic

according as M(-«) # M(+=) or M(-») = 0. 1In case F is absolutely continuous
with respect to the Lebesque measure its spectral density is given by £f(0) =.g§_.
In this case the Spectral domain of the process denoted by ;3(g) is defined‘de
byléz(g) = {¢: ¢ is a q x q matrix-valued function with trace / ¢ (6) £(6)

&% (6) db6 < «}. It is well known [3] that L?(g) is an inner product space

with inner product given by



((¢, ¥)) = trace (¢, ¥),; where (¢, ¥) = S g(e)_f_(e)f(e)de._ Now if we con~

sider the map I sending _f_n to ain® one can see by (4) that (—f-n’ fm) = (1(_f_n),

I(f )). The well known Kolmogrov Isomorphism Theorem proves that this map I
=*m

can be extended to an isometric isomorphism between the time domain M(+w)
and the spectral domain Lz(_i_:'_). Isometric being in the sense that (g, h) =

(I(g), L(h)) and ((g, b)) = (( I(g), I(h))) for every g, f in the time domain.

The innovation process g, of a multivariate SSP gn is defined by

gn = _f_n - (_f_n | M(n-1) ) ,where (gn | M(n-1) )denotes the orthogonal projection of
% on M(n-1). It is easy to see that (g, _gn) =8 o G, where G = (_go, g_o) is
called the prediction error matrix. The process _i_.’n is non-deterministic iff

G # 0 and it is called non-deterministic of full rank if G is nonsingular, which

is in turn equivalent to the requirement log A f e Ll. If the process _fn is

non-deterministic 0f full rank then one can see from the Wold-Decomposition

Theorem that we have the following moving agerage representation

© @ 2
= < o,
£% 5B & by yo wieh B, G ]p < =
Then the function g(ele) =j°§°0 gj ije is the so called generating function of

our process. From the inequality jZO I_Qilé < = it is clear that each entry

of ¢ belongs to Lz, a fact that we expressby ¢ € L, . Furthermore the negative

2
frequencies of ¢ are zero hence ¢ ¢ Lg+. Finally one can easily see that f

*
admits the factorization £f=9¢29.

We close this section by stating the following Uniqueness Theoremdue to
Wiener and Masani which is needed in the next section.

Uniqueness Theorem [3,Theorem 8.12]. If a matricial spectral density

function f has a factor ¢ in Lg+ of the form
*
£(8) = 9(8) ¢ (8)

such that 2_1 € £g+ and g+(0) > 0, then ¢ is unique.



3. DETERMINATION OF THE GENERATING FUNCTION AND THE PREDICTION ERROR
MATRIX :

As we mentioned in the introduction Masani in [2] found a series re-
presentation for the generating function and hence the prediction error
matrix when the spectral density function f of the SSP satisfies condition
(2). Thus, he obtained an algorithm for finding the generating function
and the prediction error matrix. We start with a SSP En whose speétral
density f does not necessarily satisfy condition (2) but can be factored as
f= g.g_gf where P is a special kind of polynomial and g is a new spectral
density which does satisfy (2). Thus one can use Masani's technique to get
the generating function and the predictor error matrix corresponding to g.
Then we will apply our Theorem below to get the generating function and
the predictor error matrix of the SSP corresponding to £,

To be more precise let's state our assumptions:

ASSUMPTION. We assume that £n has an absolutely continuous spectral
distribution with density f such that
2% = pe™®)ge!r* (Y,
where

(a) P is an optimal polynomial with P.(O) =1

(b) g is a new density with g, gfl € L1

(c) 1if A(ele) and u(ele) are the smallest and largest eigenvalues of g(eie),
then u/XA € L. -

1
Note that if f satisfies our Assumption, then the conditions on g are
exactly those in (2), which was required by Masani in [2]. Hence using the
algorithm developed there, one can compute the éenerating function ¥ and
prediction error matrix K of the process corresponding to g. Using the

following theorem one can find the generating function ¢ and the prediction

error matrix G of our process gn.




THEOREM. Let the g-variate SSP En satisfy the above Assumption then

(a) £n is purely non-deterministic of full rank,

(b) If ¢ and Y are the generating functions corresponding to the spectral
densities f and g, and G and K are their prediction error matrices; one

has ¢ =P ¥ and K = G.
PROOF. (a) From our Assumption one can write
log Af = 2 log | AP -| + log Ag.
Since the spectral density g and its inverse _g_—l are in Ll the corresponding
SSP is full rank minimal, and therefore non-deterministic of full rank [2, 2.8
and 2.5]. So, log Ag € Ll. Also since AP is a nonzero polynomial. log l AP ]

€ Ll. Hence log Af € Ll' Therefore £n has full rank, and is purely non-

deterministic of full rank.

*
(b) On one hand we have g = ¥ ¥ and on the other hand we can factor g as

1 -1 1

=l o = @l @7 ) (s)

g_:P f_P.;

In order to show that ¢ = P ¥, or equivalently _1:-19_ = Y, we appeal to

the Uniqueness Theorem presented in section 2. To do this we first show that

TR S ¢ S SR A

Since by our Assumption g ",g €L, and ¥ is the generating function of g

we know that (cf. Lemma 2.1(c) in [2]) functions ¥, X_l are in Lg+. Now let

i0 i6 ike -1
P(e”’) =1 +Ee +...+ E_ke . From our Assumption P*f = belongs to _I_.2 (D
so that it has an isomorph x in M (+=*). By Kolomogrov isomorphism we have
1 - , - {5 .
(o 0 = 5 o 2xe™®E THet?p(e®)ao 6)
and
1 . - . . . X
WEY = 5 1o7 B THetiee™ a0 = 1 127 px(e!®)e™® ao.

Since we have P(ele) =1 <+ Elele + EzeZie +..0F _1:7._keike » We get
*  dif n = l, ..., k,

» if n =0, : (7)

E
(x’f)="‘ﬂ
= 4 1

0

, otherwise.



By Part (a) our process ﬁn is of full rank so that the normalized innovation
En=§flﬂnis well defined. By (7),'§§—1) 1 x; But for a purely nondetermin-
istic SSP gn which is of full rank, Egn) = 5P {hk; k < n}, for every n,
which implies that X € §§.{§k: ~® < k < »} and X L §§.{§k: k < —1} since
the innovation process hn is;orthogonal, we get

X = ‘E _A_.h-) Of |A.!2 < o, (8)
j-_-o 1] J=0 J E

By the moving average representation of section 2 we have

£ = T Ch _. (9)
“n 3=0 §—n -]
n : .
(8) and (9) imply (x’fn) = jio éj—g—j’ for each nonnegative integer n. Hence
by (7) we get E iy . )
n * = 1 n = se 009Ny
5o At I if ne0, (10)
0 otherwise.

Now taking Qj to be the j-th Taylor coefficient of gfi(z) P(z) and noting that

ie, -1, i8 i6 ike, _ i6, . 218
9(e™7) & T(eT)(IHE e+ . AE ) = ItE;e” HEje t.. HE e
we get E ifn= 1,...,k,
T C o (11)
jEO -2y 1 if n=0,
0 otherwise.

By taking adjoint from (l11), and comparing the result with (10) we get

n n
1 ACK .= L DxC* ., for all n > O.
jeo I3 yop TITm]
Now noting that EO = G is invertible, a simple inductive argument shows that
= : -1..-1 O+
A = D%, for all n> 0. This shows that (P "¢) L, .
n - = - = =2

Since P is a polynomial each entry of gfl is the quotient of a polynomial

to A(P). Now since ¢ ¢ L, each of its entires belongs to L0+. Thus each

2 2
entry (g—¥g)ij of £f¥2 has the form
i6
vigle ) with v, € Lg+ (12)

ae(e®y)



Furthermore since g belongs to Ll’ from (5) we conclude _13_-_13 € gz. which implies
Y o
ij eLZ«, i, j=1,...,9. (13)
16 .
A(B(e™ 7))
Since by our Assumption P is optimal one can see that A(gﬂeie)) is optimal. Using

(12) and (13) one can conclude that (cf. [1, page 75])

Ehetet®y, - T . el

A(P(e ))
which means gflg_is also in £2+.
Now we check the other requirements of the Uniqueness Theorem: Note that
-1
(e 9, 0) = L_(O) = G >0 ,Now _!’_,_(0) > 0 follows from [3, 7.5].
~1

Thus, the Uniqueness Theorem can now be applied to conclude ¥Y=P "dor

= P ¥. The last part, namely K =G , is easy. In fact, G = _g'_(O) -
(B ¥, (0) =¥ (0) =K. L
REMARK. In conjunction with this work and f2], [3], [4] there is one
more question to be settled, and that is to get an algorithm for finding the

best linear predictor.
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