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ABSTRACT 

. 
Mission management, including on-board replanning, is a task that can benefit 

significantly from automation. On-board replanning is required to respond to departures 
from nominal plan execution that result from imperfect knowledge of and temporal 
variability in the mission environment Automation is particularly valuable in the high-risk 
Nap-Of-Earth (NOE) environment, where crew warkloads for tasks of immediate concern 
(such as obstacle avoidance and h a t  engagement) can be quite high. In this situation, an 
on-board, automated planning advisor can continuously monitor resource usage (i.e., fuel, 
ordinance, other expendables), assess risk along the cumnt mission plan and also suggest 
alternative plans that might better satisfy time, resource, and survivability constraints. The 
planning advisor requires an on-board environmental database of terrain, threat locations, 
and winds that is loaded preflight and updated during the mission by vehicle sensors and 
received communications. Also required is a mission database (also updated) indicating 
alternative objectives or bases, their locations, their relative values, and time of arrival 
constraints to ensure coordination with other force elements. Access to current vehicle 
navigation, fuel and expendables, and the absolute timt is essential to the planning advisor. 
Using a l l  of this information in simple models to predict fuel and expendable use, time of 
d v a l  and lethality risk, the planning advisor evaluates the current and alternative mission 
plans according to the probability of successfully accomplishing multiple mission 
objectives while satisfying mission constraints (exs. fuel, time, survivability, exclusion 
zones). 

Mission management tasks can be distributed within a planning hierarchy, where 
each level of the hierarchy addresses a scope of action, an associated time scale or 
"planning horizon", and requirements for plan generation response time. The current work 
is focused on the far-field planning subproblem, with a scope and planning horizon 
encompasing the entire mission and with a response time quired to be about two minutes. 
The far-field planning problem is posed as a constrained optimization problem and 
algorithms and structural organization are proposed for the solution. Algorithms are 
implemented in a development environment, and performance is assessed with respect to 
optimality and feasibility for the intended application and in comparison with alternative 
algorithms. This is done for the h e  major components of far-field planning: goal 
planning, waypoint path planning, and timeline management. It appears feasible to meet 
Performance requirements on a 1.0 Mips flyable m e s s o r  (dedicated to far-field planning) 
using a heuristically-guided simulated annealing technique for the goal planner, a modifred 
A* search technique for the waypoint path planner, and a speed scheduling technique 
developed for this project. 
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SECTION 1 

INTRODUCTION 

This report describes sponsored research performed at the Charles Stark Draper 
Laboratory, Inc. that is directed at developing automation technology for mission 
management functions in new generations of rotorcraft avionics. The research is focused 
on the development and testing of a conceptual framework, algorithmic solutions and 
implementation details to assess performance with respect to alternative approaches and 
hardware requirements. This research was performed over a period of one year but has 
been built upon technology developed for other applications over a period of several years 
at the Charles Stark Draper Laboratory, Inc. The methodology explored in this project is 
one of three alternative approaches that are being investigated for "far-field planning" in the 
Automated Nap-of-the-Earth Flight program for roturcrafl at NASA Ames Research Center 
r11. 

Automation of mission management functions, and the implied integration of 
vehicle control, propulsion, sensor, and weapon subsystems, is viewed as one of the 

technologies that will permit evolutionary improvement in piloVvehicle capabilities. The 
improved capabilities derive from superior assimilation of knowledge of the mission 
environment and superior quantitative planning to take advantage of this knowledge. For 
example, mission effectiveness can be imprdved if vehicles can be coordinated more 
closely and missions executed with lower margins for reserve fuel by use of on-board 
planning. Also, the ability to deal responsively with departures from nominal plan 
execution and with temporal variability in the mission environment will expand the 
envelope of scenarios that nsult in satisfactory outcomes. 

The remainder of this section defies and delimits the scope of this project. Since 
the scope has been limited by timc (one year) and level of effort (one man-year), the current 
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project encompasses but a small  piece of an overall (ultimate) decision support system for 
future generation cockpits. Hence, while delimiting the scope of this project, we also 
illustrate the larger context and framework. The first topic discussed is a proposed 
planning/control hierarchy and the role of "far-term planning" within that hierarchy. Next 
the conceptual basis for far-tum planning is introduced, including the identification of three 
key task areas: goal planning, waypoint planning, and timeline management. These task 
areas also serve as segmentation boundaries for computations performed within far-field 
planning. 

1.2 

The scope of this project is limited to the on-board mission planning function for 
the "far-field" portion of the "planning/control hierarchy." A planningkontrol hierarchy is 
envisioned as an architectural concept for software design to segment the computationally 
intensive components of planning/conml. This segmentation provides for modularity in 
development and maintenance as well as for implementation on limited and/or distributed 
hardware resou~ccs. Each level of the hierarchy addrcsscs a scope of action, an associated 
time scale or "planning horizon," and requirements for planner response time. The 
"planning horizon" is that time interval into the fume after which predictive uncertainties 
render it futile to plan further at that level of detail. Generically, actions that depend on 
sensor inputs are limited to the physical range and information rate for the associated 
sensors. For example, flight control actions such as trimming the vehicle using attitude 
sensor information are not calculated beyond the immediate time frame. To take another 
example, detailed terrain avoidance paths are not planned beyond the ability to predict the 
entry location to a "patch" of tcnain which the vehicle will traverse. 

One example of a hierarchy is illustrated schematically in Figure 1. Starting from 
the bottom at the control level, the vehicle control system translates acceleration and attitude 
commands from the pilot or autopilot into specific actuation commands at an update rate of 
tens of milliseconds. At the next higher (trajectory planning) level, on a time scale of one 
second to one minute, the pilot is constructing a six degree of freedom trajectory to 
accomplish specific tactical objectives in the face of information and situational awareness 
that is available with only a short lead time. The pilot has trained generically for these 
tactics, and perhaps for this specific mission, but the detailed responses to circumstances 

I 
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encountered at the time of execution cannot be pnplanned. This is true because of the 
uncertainties in our knowledge base and limited ability to predict an uncertain future. 

a 

Figure 1. Overall PlanningControl Hiemchy and Components of Far-Field Planning 

Above the trajcctoxy level, near-field planning detcmines detailed ground track and 
tactical maneuvcfs for terrain avoidance and h a t  engagement/avoidance on a time scale of 
several seconds to a few minutes. Far-field planning is the only level whose planning 
horizon encompasses the enthe mission. Although the plan may be changed several times 
during the mission, the far-field planning task generates and maintains a (skeletal) mission 
plan, or several alternative plans, for the entirety of the mission. Each complete plan 
allows for uncertainties in plan execution at lower levels and ensures that fuel use and 
survivability constraints arc obeyed and that goal arrival times are scheduled to permit 
combined forces coordination. Each far-field plan provides information to the next lower- 
level planning task for use as constraints in decision or optimization processes, including 
situation assessment indigenous to each level. The far-field plan is the master plan, the 
glue that holds together all of the specific actions at the lower Ievcls. It is defined at a level 
of detail that is consistent with ability to predict into an uncertain future with imperfect 
knowledge and modcls. Hence, the far-field "plan skeleton" is fleshed out within the time 
scale appropriate to the lower level planning tasks as detailed, lower uncertainty 
infofination becomes available. 

It is important to note that the present concept for far-field planning 
encompasses more than a simple extension of near-field path-planning on a 
coarser grid. In addition to providing information on patch location to initialize near- 
field planning, far-field planning docs significantly more in cases whcre the mission plan 
contains more than a single objective. The present concept specifically addresses highly 
structured mission specifications including: multiple, competing objectives; global and local 
constraints; goalsrdering constraints; mission timeline constraints; the use of multiple 
waypoint paths between goal locations; the use of landmarks for navigation updates; the 
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use of multiple optimization criteria; and the use of time available to replan as a variable in 
the planning process. Constraints are all handled in a direct manner, without resorting to 
an arbitrary apportionment of resource and time use between different objectives and 
without an arbitrary concoction of weightings of different planning factors. Although it 
may be possible to "tune up" a network search to successfully execute a given scenario, 
even small changes from the nominal conditions will demonstrate lack of robustness of the 
pure network search approach. All of these points a1-6 addressed in subsequent sections of 
this report. 

Within the area of far-field planning, the project scope is further limited to 
development of a solution methodology, including setting up the problem, developing 
algorithms, and developing implementations to prove feasibility and demonstrate 
performance. The implementations have all been done in the Macintosh Fortran 
environment, and include modular software with associated data structures for goal 
planning, waypoint path planning, and timeline management functions. Each of these 
pieces has been separately unit-tested. Modcls for fuel useagc, survivability and navigation 
er ro~ have been built in support of these functions. These models are required to be fast- 
running and to exhibit correct functional a n & ,  if not high fidelity. Software to synthesize 
data for test scenarios, simulation test drivers and portable demonstration software has also 
bctn d~i iv~red .  

Items that are of great importance but are llp~ within the present project scope 
include the pilot-planner interface, software and tools for synthesis of the waypoint 
network from terrain and threat databases, information fusion of sensor or communications 
data into the on-board database, situation assessment for mggering of replanning 
processes, near-term planning and tactical maneuvering, and integration of a far-term 
planner with other elements of the planning/control hierarchy. 

4 
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1.3 Far-Field Plannine ConceDw Basis 

The overall structure of the far-field planner includes three principle components: 
goal planning, waypoint planning and timeline management 
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1.3.1 

The focus of the far-field planning process is the mission timeline, fuel use and 
sunrivability. Candidate fax-field plans an evaluated using predictive models, fuel and 
navigation sensor inputs and on-board databases. The models facilitate evaluation of plans 
with different tradeoffs between survivability and probability of accomplishing certain 
objectives. Specifically, a mission plan objective function may be formulated as follows. 
A set of g d s  (objectives) is defhed, usually involving the perfbrmance of some activity at 
some location within some specified time window. The activity may involve 
reconnaissance, patrol, transport, vertical assault, fin support, etc. 

The goal set typically includes mare goals than arc achievable in a single mission by 
virtue of rtsource (i.e., fuel, ordinance) constraints, time constraints or survivability 
constraints. In other words, some of the goals arc necessarily viewed as secondary or 
contingency goals. That is, at any point during the mission, the mission plan includes 
some of the goals as active goals with the remainder being contingency goals. Upon 
replanning during the c o w  of the mission, goals may be migrated between the two 
categories. For example, larger than anticipated fuel usc during the early part of a mission 
may force replanning to adopt a plan with different or fewer goals. More favorable fuel use 
experience during the replanned mission may subsequently permit replanning to include 
some of the goals that were previously dropped or had not been previously included. 
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A relative value (importance) is preassigned to each goal. The expected value or 
"utility" of the entire mission plan is defined to be [2]: 

where 

U r n  = expected value of mission plan MP 
Pr (Gi IMP) = probability that goal Gi is successfully 

accomplished given that mission plan MP is pursued 
Vi (MP) = pnassigned relative value of goal Gi (potentially a 

function of goals in MP and their ordering) 
PFi (MP) = penalty function used to express intergoal or global 

constraints 

Plan utility (Urn) is used to select among candidate far-field plans, the plans with 
the higher utility ranking more favorably. In this manner, goal planning may be posed as 
an opbhtion problem Constraints that a f f ec t  each goal individually are expressed in the 
fornulation of the Pr (Gi I MP). Constraints with intergoal or global impacts such as goal- 
ordering or fuel use and survivability constraints can be expressed by a penalty function 
PFi (MP) applied to those goal values that are involved in the constraint definition. 

The plan utility is uscd to compare candidate plans using the same initial conditions 
(current position, resource levels, absolute time, etc.). As new information is gathered 
during the course of mission execution, through sensor inputs or communications, for 
example, the utility of candidate plans is reassessed in light of the new information. 

The crux of the utility theory formulation is the evaluation of the conditional 
probabilities, Pr(Gi IMP). From the point of view of far-field prediction, a goal is 
anticipated to be successfully accomplished if the following arc all true: 

the vehicle arrives within a statcd position tolerance of the specifled goal location 

thc vehicle arrives at that location within a specifled time window 

the vehicle arrives with sufficient resources and capabilities to perform the tasks that 
are necessary to thc objective 
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Additional factors determine the true likelihood of goal accomplishment in the field, 
including d e p  of difficulty in achieving a firing solution and weapon effectiveness. To 
the extent that these factors arc known a priori (from experience, simulation, or good 
judgement) they can be appended as conditional probabilities to the utility evaluation. 

"le variability of mission progress and resource usage resulting h m  uncertainties 
in h a t  deployments and engagements may be modeled as a "bifurcating" event tree as 
illustrated in Figure 2. For each remaining leg of a prospective mission, a threat model, 
using map data, intelligence data, and the planned flight parameters (altitude, speed, Sensor 
mode, etc.), determines the probability of threat engagement or evasive action and the 
resource and time consequences of such. The model Ilcfd not be elaborate, but should give 
statistically Ieprcsentative estimates of the probabilities, resources and time used for each 
branch. The underlying assumption for this discretization of outcomes is that the principle 
contribution to variability in arrival time and resource use is encounters with threats. In 
Figure 2, each node represents a sequence of events in transit to specified objectives, with 
associated probability of having experienced a particular history of threat encounters. 
Given this history, the resources expended in arriving at the objective can be estimated. 
The m w s  emanating from the nodes represent potential alternative events during vehicle 
transit between pairs of goals in a specified mission plan. The probabilities conesponding 
to each transition or branch are calculated from the threat model. The legs arc of arbitrary 
length and orientation, and may contain an arbitrary number of waypoints (a waypoint 
being a latitudeflongitude point defining the vertices of line segments that approximate a 
planned course). For simplicity, t h m  are two outcomes shown for each leg. The 
enumeration of discrete outcomes can utilize whatever number of event types that is 
sensible for the application. (The msunrival event never needs to be explicitly enumerated 
since the suryival probability can be included implicitly in all enumerated nodes.) 
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No 

Location Location Location Location 
Goal #1 Goal #2 Goal #3 Goal #4 

Figure 2. Event Enumeration For Evaluation of Pr (Gi I h4P) 

For each goal in the mission plan, the s u m  of the node probabilities represents the 
total predicted survival probability for that point in the plan. The Pr (Gi I MP) for each 
goal Gi is obtained by summing the probabilities of the subset of nodes 
whose predicted resource, capability, and arrival times fall within the 
constraints defined for successfully accomplishing activities at that goal. If 
then are more than a handful of goals in the mission plan, the total number of branches in 
the event me becomes formidably large, even with only two branches per leg. This 
influences the selection of solution methods for this pomon of the far-field planning 
problem 
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1.3.2 

In order to predict resource usc and arrival times for each of the enumerated event 
outcomes, fast-running models an applied for fuel and time use as a function of transit 
mode (Le., NOE, contour, cruise), underlying terrain, winds, known threats in the 
database, and intended coarse-level ground track between goal locations. These models are 
initialized to the current time, r~source supply, and estimated location of the vehicle. The 
ground track between goal locations will depart from a great circle or minimum distance 
path for the following nasons: 

ITIhimbtinn of fuel use or transit tim in low altitude flight modes 

usc of t a n i n  features to provide masking of vehicle from threat emitters 

avoidance of known threat concentrations or political exclusion zones 

prescription of conidon for ingresdegrcss that have been covered by lethal or 
nonlethal threat suppression 

requirements for landxnark navigation updates or waypoints for low power 
communications 

A succinct description of the coarse-level paths between goal locations is given by 
the locations of a set of waypoints in two dimensions (e.g., latitude, longitude) between 
goals. The paths between these waypoints (for planning purposes) arc assumed to be great 
circle, or for short helicopter missions, routes with constant heading. In addition to 
location information, waypoint data includes flight parameters (transit mode, relative or 
absolute altitude), arrival time constraints and scheduled arrival t imes that have been set by 
the timeline manager and that arc passed along to determine an airspeed advisory during 
mission execution. 

The waypoint planning process utilizes a grided map database that contains 
elevation and threat information. Apart from the map, the inputs to the waypoint planner 
arc the locations of a pair of goals and the anticipated vehicle state (principally the estimated 
weight) at the beginning of the path. The outputs consist of an ordered set of waypoints 
(defining a "waypoint path") between the goal locations and the associated resource use and 
survivability cost for transit along that path. The waypoint path is more detailed than the 
straight line between goal locations, but coarser than the near-field ground track or 
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trajectory planner outputs. The waypoint path sexves as an input to the lower level 
planners, along with the sensot data that support those planners. 

For limited-range helicopter missions, the grided map that supports the waypoint 
planner may encompass a nominal arca of perhaps 60 by 80 kilometers, with two kilometer 
grid resolution. Depending on the speed of the microprocessor on which the waypoint 
search task is to be implemented, larger map arrays may be accommodated. On-board 
processing may be reduced by storing as map data the results of models of resource use 
and lethality cost. The resources used and cost i n c m d  arc then evaluated by simplified 
operations on storcd data. For example, the fuel used in the NOE transit mode between 
each grid box and its eight surrounding nearest neighbors would be precalculated and 
tabulated as a function of vehicle weight or as coefficients of a C U N ~  fitted to represent 
weight variations. The model used to precalculate fuel use may use more detailed map 
information, equivalent to 50 or 100 foot elevation contours, but the results need only be 
stored on the two kilometer grid for use by on-board waypoint planning. 

The waypoint path between each goal pair is solved (in two dimensions) as a 
constrained optimization problem on a regular network of grid points. The optimization 
criterion is survivability; the constraints arc rtsource (e.g., fuel) and time use. The goal 
planner uses the waypoint paths determined for each goal pair, with resulting cost and 
rcsource use, to determine the ovefau mission plan outiie. Hence, the resource constraints 
to be applied to each waypoint path art not known a priori. Paths corresponding to the 
extreme points of the operating m e ,  the minimum (unconstrained resource) cost (i.e. 
maximum survivability) and the minimum nsource paths, may not be the most sensible 
paths for all legs of a mission plan. The approach taken here in the formulation of 
waypoint planning is to provide the goal planner with paths corresponding to several points 
along the cost-resource operating c w e ,  for each mission leg. Each path represents an 
optimum minimum cost path subject to the value selected for the resource constraint. The 
goal planner then decides which of the paths to utilize for each mission leg according to the 
optbization criteria of maximum expected utility. 

To recapitulate the role of waypoint planning, the waypoint path provides a coarse 
flight path and more accurate estimates of cost and resource use for purposes of selecting 
and sequencing the goal subset by the goal planner. The selected waypoint path also serves 
as a key output to lower levels of planning, such as near-field planning. The latter may 
utilize a simple valley-following metric for terrain following/threat avoidance (V/TA), the 
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far-field waypoint path serving to define the "patch" in which the TF/TA algorithm is 
exccutcd as well as the law deviation of the ground track [3]. 

1.3.3 -Man- 

The specification of absolute time constraints for goal arrival times for an individual 
vehicle is usually related to the need to achieve coordination with other operational elements 
in a larger planning/battle management context. The use of absolute time constraints on 
multiple individual players has been used throughout military histgr, and will continue to 
find use because it docs not n ly  on inter-player communication. Such communication may 
be infeasible or unnliable in situations involving covertness, jamming, large inter-player 
separations, low altitude operations and in situations involving large numbers of players. 

The tim constraint farmulaton for each goal can be stated in the following way: for 
a goal to be successfully accomplished, the vehicle must arrive no earlier than a certain 
absolute mission time, the "lower time window limit," and no later than a second limit, the 
"upper time window limit" F I I I ~ ~ ~ I T I I ~ ,  there may be a specification of a desired arrival 
time within the window. Indeed, window limits may not be symmetrical with respect to 
the desired time of arrival (TOA), hereafter referred to as the "designated TOA." The 
interval between the upper and lower limits, the "window width," will usually, but not 
always be small relative to the duration of the mission. Finally, the window constraints 
may be one-sided, with or without specification of a designated TOA. Any given mission 
plan may include goals representing a variety of time constraint specifications, including the 
abscncc of time constraints on many goals. 

The specification of a time window of finite width is a recognition of the practical 
difficulty in managing anival time to be at a specific instant. In the simplest incarnation, 
the window limits are "hard constraints" in that the potential conmbution of a goal's value 
to the mission plan utility is forfeited completely as the predicted arrival time crosses the 
constraint boundary. When the pndicted arrival time falls anywhere within the window 
limits, the full contribution is allowed, resource constraints permitting. 

Timeline management requires at least two components. There is a planning 
component and a mission execution component. The planning component selects and 
sequences goal points that ase consistent with vehicle speed capabilities along the planned 
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trajectory. It also &texmines an arrival time schedule for the entire mission that can serve 
as the basis for speed advisories to the pilot during mission execution. The execution 
component &als with discrepancies between planned and actual winds, threat encounters, 
navigation, etc., making on-line adjustments to null the difference between actual and 
scheduled arrival times. The adjustments can be in the form of speed control, path 
stretching or, in the case of vertical take-off aircraft, loitering to burn up time. Path 
stretching can be accomplished by inserting a zig-zag tacking pattern or adjustable &lay 
orbits distributed throughout each mission leg. Speed control may be preferrable to path 
stretching, since the latter involves a more complicated trajectory, necessarily overflies 
more ground track and may suffer greater survivability cost. Loitering in mid-mission to 
burn up excess time also may not be viable from a survivability point of view. 

If there are delays in progressing along the mission plan, the flexibility afforded by 
speed scheduling may enable the successful completion of downstream goals with time 
constraints without massive alteration of the mission plan or sacrifice of goals along the 

way. The execution component of specd control cannot handle these situations in general 
because its authority to adjust the vehicle's s p u d  is limited to the speed required to reach 
the next goal. It docs not have the look-ahead capability nor authority to make global speed 
cornctions. Such comctions may significantly impact resource utilization and need to be 
proc~ssed through the far-field planning a h i n q .  

1.4 

In the following three sections, a quantitative formulation of the far-field planning 
problem is presented, including a discussion of the complexity of the problem and 
proposed algorithmic and structural solutions to the problem for each of the three task areas 
within far-term planning. A solution methodology is &scribed to address requirements in 
the context of the NOE application. Preliminary results for unit testing of a microcomputer 
implementation in each task area are presented. Modeling issues are discussed in 
Section 5. 
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SECTION 2 

G 0 A L P L A " G  

2.1 

The goal planning problem contains two combinatorially complex components. 
The evaluation of the goal completion probabilities, R (Gi I MP), is exponentially complex. 
If there axe only two event types and ten mission legs, the number of possible outcomes for 
the mission is 210 = 1024. This is not prohibitively expensive to evaluate a single time, but 
it is excessive when the evaluation is nested inside a loop requiring evaluation for 
numcrOus candidate plans. Also, if the number of event types is increased to four, or the 
number of mission legs doubled, the computation time for only a single evaluation can be 
excessive for an on-board processor. The second combinatorially complex component of 
goal planning is akin to the travelling salesman problem, with factorial complexity. In the 
classical travelling salesman problem, the list of N cities to be visited is given, each city is 
visited exactly one time, and the objective is to construct a "tour" that minimizes the total 
distance travelled. Because the distance metric is unaffected by the direction of the tour, 
there is a twofold degeneracy resulting in only N!/2 unique tours. For a ten city problem, 
this number is 1,814,400. In the goal planning problem, the number of goals to be visited 

may range from one to the maximum number of goals, the utility is to be maximized, and 
the equivalent of tour costs for each leg axe not symmetrical with respect to direction of 
travel. "he complexity for the ten goal problem is thus: 

lo! + ('i )(9!) + ( '! )(8!) +.. ( ' y  )(1!) = 9,864,100. 

The solution for the optimal tour can be visualized as the construction of a search 
me. Systematic pruning of the search tree is possible by the use of dynamic programming 
techniques. In this case, the complexity of the N goal problem is reduced to exponential 
growth. For a fixed number of goals, the complexity by dynamic programming is: 

(N-1)(N-2)[2N-2-1] 
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When the number of goals to be included is not a priori known, the complexity for the 
problem with a maximum of ten goals is 1,129,095. Although this is a dramatic 
improvement over direct enumeration of all possible plans, the computational cost and 
memory required by the dynamic programming technique axe prohibitive even for ten goal 
missions. 

In general, algorithmic approaches that arc feasible for this problem trade 
computational cost for guarantees of optimality. Specifically, the guarantee of finding an 
optimal solution is sacrificed for the alternative objective of finding a near-optimal, or very 
good plan in a constrained time available for planning. 

The relative performance of different algorithmic approaches to the goal planning 
problem has recently been explored in the "Artificial Intelligence Design Challenge" 
conference session [4]. A modified travelling salesman problem was posed, with a utility 
theory-bascd, stochastic optimization function and local and global constraints. University 
and industry (team) participants submitted algorithmic solutions that were implemented in 
executable computer code for desktop microcomputers. The different solutions were then 
evaluated for optimality, robustness and computational speed with a battery of problem 
variations that were not known a priori to the participants. There were eleven 
submissions, with implementations in Pascal, Foman and C languages for execution on the 
IBM W A T ,  Apple Macintosh and Commodore cornputen. The methods were mostly 
heuristically-based, including simulated annealing [J], multi-algorithm heuristics, an expert 
system approach, bounding + enumeration approaches and a linear programming approach. 
For a problem with ten "frec" goals (the initial and final goals were specified), optimal 
solutions wcrc consistently obtained in under ten seconds computation time on 0.1 Mips 
class microcomputers. 

Addressing the inner loop problem of evaluating the R(Gi  IMP), there appear to be 
two feasible approaches. The first approach involves approximating the discrete 
probability density represented by the node probabilities in Figure 2 by a Gaussian 
appximation. Calculation of the two paramters of the Gaussian approximation involves 
summing the costs and the square of the costs for all of the intcrgoal waypoint paths in the 
mission plan. If more than two event types are enumerated for each mission leg, the 
calculation of the standard deviation of the discrete probability density is only slightly more 
complicated. The use of the Gaussian approximation introduces both Type I and Type II 
crrors with respect to the hypothesis that a candidate plan satisfies global constraints (e.g., 
minimum survivability, maximum fuel use). In the former case, candidate plans that are 
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not.feasible within the problem constraints a erroneously accepted in the approximation; 
in the latter, candidate plans that are feasible are enoneously rejected by the use of the 
approximation. The Type I errors are easy to filter out by use of a mort accurate evaluation 
to be described shortly. That is, all candidate plans that are accepted as new "best plans" 
are reevaluated. Since the number of new "best plans" is relatively small, there is little 
computational cost to avoiding Type I mors. The Type 11 errors arc more insidious, and 
have been addressed by relaxing constraints when using the Gaussian approximation. This 
reduces the frequency of Type 11 e m  at the expense of increased frequency of the more 
benign Type I errors. 

The second approach to the inner loop problem is a Monte Carlo approach. This 
involves estimating the Pr (Gi I MI) by repeated independent niah or sampling of the event 
me represented in Figure 2. For each trial, a random number is used to select which 
branch to follow fix each leg to the end of the plan. The variance of the estimate is reduced 
by the use of importance sampling techniques, and sample sizes as small as 25 to 100 trials 
may yield acceptable accuracy in the evaluation of the utility. The technique is akin to 
executing a "mini-simulation" of the remainder of the mission, using the current vehicle 
state as the initial condition. A large number of event typcs (branches per leg in Figure 2) 
arc easily accommodated with little degradation in performance (variance per unit 
computational cost). Whereas the exact evaluation of the Pr (Gi I MP) exhibits exponential 
cost growth with the number of goals in the mission plan, the Gaussian and the Monte 
Carlo approximations exhibit linear cost growth. The Gaussian approximation method is 
generally more economical than the Monte Carlo method, but the latter may be used in 
conjunction with the Gaussian method to deal with the Type I and Type 11 errors. 

2.2 overview 

This section provides an overview of the methodology for each subproblem in far- 
field planning. Detaikk are &cussed in succeeding sections. 

The solution method for the NOE goal planner application is the heuristically- 
guided simulated annealing approach [2]. The basis of the method is the "generate and 
test" search paradigm. Candidate plans are generated, the utility evaluated and the plan 
with the best utility is selected. The candidate plans arc built up incrementally, by applying 
successive modifications of a simple type to a "working plan." The initial "working plan" 
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may be the current mission plan or the "degenerate" plan that includes only the return home 
goal. Other candidate plans are generated by modifications such as adding inactive goals, 
deleting or reordering active goals, reversal of goal sequences, etc. To guide the working 
plan toward optimality, a variation of the "hill-climbing" paradigm, simulated annealing, is 
employed as follows. A candidate plan whose utility value is superior to the previous 
candidate plan is accepted unconditionally as the new working plan from which new 
candidates will be generated by plan modifications. Caddate plans with inferior utility are 
generally (but not always) rejected Le., they do not replace the current working plan from 
which they were g e n e r a d  

Because the optimality criteria is a surface with many local maxima, a strict hill- 
climbing approach will fiqucntly get trapped in one of these locally optimal solutions. The 
simulated annealing method allows downhill moves to be conditionally accepted, thereby 
providing a mechanism to transition out of locally optimal solutions. The probability of 
accepting downhill moves is a function of the size of the downhill jump and the current 
"annealing temperature." The "annealing tempcram" is initially set to a large value and is 
gradually reduced. The simulated annealing process is analogous to the physical annealing 
process wherein the crystalline structure of a metal is established by slow cooling from a 
high-temperam, disordered state. Rapid cooling does not permit complete crystal growth 
and results in trapping of crystalline defects. This is reflected in the *-energy function of 
the metal failing to relax to the ground state. In the simulated annealing process, plan 
modifications are the analog of the t h d  motion of atoms, and the achievement of a 
working plan that exhibits the optimal utility is akin to the achievement of the lowest 
energy, most perfect crystalline state of the metal. 

The goal planner structure with simulated annealing is illustrated in Figure 3. The 
heavy lines indicate the primary dataflow of mission plans. As already mentioned, the 
initialization box installs either the current plan or a degenerate plan in the working plan 
buffer. The plan modification box then generates a new candidate plan based on a 
heuristically-guided modification of the working plan. The candidate plan is evaluated to 
determine its objective value (Le., utility) and the result is passed to the decision box for 
accepting or rejecting this candidate as a new working plan on which to base subsequent 
modifications. If the &creme in utility with respect to the working plan is denoted by AU, 
and the current annealing temperature is T (kT in utility units), then the probability of 
accepting the modification is given by: 
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1.0 

P r =  I e - +  

In other words, increased utility modifications are accepted unconditionally and 
decnased utility modifications are more likely to be accepted if the decnase is slight and the 
temperature is high. The use of the Boltrmann factor in this decision process, along with 
certain thmt ica l  constraints on the rate of cooling (i.e., temperature decrease), guarantees 
that a globally optimal solution will be obtained, at least asymptotically [a. 

When applying simulated annealing as a real-time methodology, the asymptotic 
convergence to the global optimum may not result in performance that satisfies the 
constraints on time to plan. Hence, the methodology is modified to incorporate parameter 
scheduling and heuristics for plan modifications. These modifications accelerate the 
convergence to desireable plans with the possible sacrifice of solution optimality. 

The decision to accept or reject the newly accepted working plan as the new "best 
plan" is based primarily on utility. Because of statistical errors in the evaluation of the 
utility, however, plans whose utility values lie within a narrow band of each other are 
treated as being identical in utility value. Consequently, the decision for best plan is based 
on secondary diSniminants such as higher survivability or lower resource use. The best 
plan buffkr is maintained because the utility of the working plan fluctuates, decreasing upon 
acceptance of downhill moves. 
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Figure 3. Goal Planner Functional Architecture. 

The block labelled "heuristic scoring process" in Figure 3 guides the plan 
modification process to yield rapid convergence for the overall search. Plan modifications 
are sampled probabilistically from dismbutions provided by heuristic scoring (to be 
described in detail later). All possible modifications within several modification types are 
enumerated, and a heuristic score is assigned to each modification. These scores are then 
n o r m a k d  ' and used to form a sampling distribution. When there m a number of inactive 
goals and ample resources remaining with the current working plan, for example, 
modifications that add goals are sampled more frequently than modifications that drop goals 
from the candidate mission plan. When resource or survivability constraints are exceeded 
in the working plan, modifications that reorder or drop goals are sampled more frequently. 
Every modification that has been enumerated has at least a small possibility of selection. If 
the modification with the highest heuristic score were deteministically selected, then 
situations could occur where the same goal is alternately added and dropped from the 
working plan. Probabilistic selection of modifications is impurtant to the avoidance of such 
limit cycling and to avoid the pitfalls of imperfect heuristics. The heuristics tend to 
emphasize modifications that are believed to be beneficial. Probabilistic selection allows 
the entire range of modifications to be tried, overcoming frailties of the heuristics in 
unanticipated scenarios. 
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The parameter scheduling box in Figure 3 adapts the skewness of the heuristic 
scaring sampling distributions as a function of the convergence of the search process. 
Early in the process, when the best plan utility is far from the utility upper bound and the 
resource use and survivability for the working plan arc far from constraint boundaries, the 
parameters are scheduled to sample more uniformly from the range of possible 
modifications. At this stage, the search is venturesome. At later stages, the scope of the 
search is n m w e d  and the sampling emphasizes only those modifications that have high 
heuristic scores. The time available for planning can also be used in scheduling. At all 
stages, the ratio of incremental value added to incremental cost incurred is the basis for a 
powerful heuristic. 

Tempcram scheduling for simulated annealing may be performed according to a 
number of different prescriptions. For example, the temperature may be scheduled as a 
monotonically decnasing function of time, or it may be scheduled adaptively as a function 
of the working plan utility and the utility upper bound. If a reliable upper bound can be 
determined, the adaptive scheduling can yield improvement in convergence rate at the 
expense of occasionally freezing into a near+ptimal solution. Research is currently under 
way on systematic approaches to optimal temperature scheduling. 

The tQmination criteria include timeout for the m h  process and several variations 
on a diminishing r e m s  test. The latter compares the best plan utilities at successive time 
intervals. 

In planning applications involving a variety of constraint fonnulations, it has been 
observed that the plan modification heuristics are of first order importance in achieving 
rapid convergence to near-optimal solutions. With good heuristics, acceptable results are 
obtained at high temperatures (i.e., accepting all modifications) as well as along an 
annealing schedule. Hence, the use of good heuristics decreases the sensitivity of the 
search process to the annealing schedule. However, the simulated annealing architecture 
dots Seem to provide a greater degree of robustness to the search process. For the 
stochastic mvelling salesman problem [4] involving ten frez goals, the heuristically-guided 
goal planner with simulated annealing yields the optimal solution in all cases studied in an 
average time of 2.5 seconds on a 68000-based microcomputer. 
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. .  2.3 iecuve Funcnon E V- 

The formalism for the o b j d v e  function ("utility") evaluation has been discussed in 
Section 1.3.1. At this point, we elaborate further on computational details. The process 
for evaluating the utility is illustrated in Figure 4. Three methods are discussed. (1) direct 
enumeration, (2) Monte Carlo and (3) Gaussian Approximation. 

Event Tree 
MOdClS b Branch R(Gi I MP) 

~ Probs. 

utility 
Evaluation 

Figure 4. Steps In The Utility Evaluation Process For A Mission Plan (MP) 

Proceeding from right to left, the last box is the trivial evaluation of Equation (1). The 
evaluation of the Pr (Gi IMP), as discussed in Section 1.3.1, depends on the expansion of 
the event trce illustrated in Figure 2, yielding values of the planning state variables (i.e., 
arrival time, cumulative resource use, survivability) and probabilities comsponding to each 
possible manner of arrival at location Gi. The probabilities associated with the individual 
nodes in the event me am evaluated as the product of conditional (branch) probabilities that 
describe the likelihood of outcomes comsponding to particular events given the entry 
conditions at the beginning of each leg. The conditional (branch) probabilities, in turn, are 
evaluated for the assumed event types for each mission leg by the use of models (i.e., 
resource use, survivability) applied to the onboard database and using the waypoint paths 
that have been generated by the (far-term) waypoint planner. The onboard database 
includes a griddcd map indicating elevations, threats (or probabilitiy densities for threats), 
and winds in the environmental portion of the database and goal locations, values, etc., in 
the mission plan portion of the database. 

The utility evaluation process is initialized with the currcnt values of the time, 
resources (Le. fuel and ardinance), estimated location, and the particular mission plan (MP) 
to be evaluated. The mission plan may be the current plan or any candidate alternative plan. 
For the samc waypoint paths and onboard database, a given MP will exhibit different utility 
values depending on the initial conditions. For example, different values of the absolute 
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time or fuel remaining at a given cunrcnt vehicle location will result in diffennt R (Gi IMP) 
and diffennt utility values. 

The r~source use and survivability models use the specified initial conditions and 
onboard database to calculate predicted arrival time, resource use, and survivability for each 
of the possible sequences of events that can occur on the way to each goal location. The 
model cdcu€iuions cannot bepe@onnedprejlight and used as stored data because both the 
initial conditions and onboard database may change during the execution of a mission. 
That is, at a given time, the vehicle location and resource usc may differ from that predicted 
by the prefight mission plan and the database may be modified as a result of fusion of 
information €tom onboard sensors and/or received communications. In addition, the 
number of possible mission plans is combinatorially large. For all of these reasons, the 
probabilities associated with the nodes of the event m e  must be calculated in-flight and 
cannot be precomputed and stored in the onboard database. 

The following example will help illustrate the process of enumerating nodes of the 
event tree. Consider that the vehicle tactical response is triggered on detection of hostile 
emitter activity by a radar warning receiver and the assessment that this corresponds to a 
valid k a t .  The pilot initiates deployment of electronic warfare countermeasures (i.e., 
jamming), masking countermeasures (i.e., chaff, flare decoy resources) and/or evasive 
maneuvers. For purposes of far-term planning, the entire mission is anciticipated to consist 
of zcro to perhaps a half dozen of such tactical responses. (It is unlikely that low- 
survivability missions resulting in engagement by dozens of surface-to-air anti-aircraft 
assets will be planned). For each tactical response, the expected impact on resources (Le., 
fuel, expendable decoys) and time is specified as a function of information that is available 
in the mapped database such as threat type, terrain, etc. The resource and time impacts can 
be estimated fmm combat experience or fiom detailed engagement simulations. 

The different branches in Figure 5 correspond to the possibilities for 0 through k 
tactical responses for each mission leg a subsequent survival. In other words, "0 
responses & survival" implies that hostile forces either are absent, or that they fail to 
target the vehicle or that they otherwise fail to successfully engage the vehicle even though 
then are no vehicle maneuvers. The branch labeled "1 tactical response and survival" 
corresponds to the case when the vehicle perfoms one response resulting from either a 
m e  or a false alarm, and that hostile forces are either absent or otherwise fail to target or 
successfully engage the vehicle. 
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0 tactical responses and survival 
1 tactical response and survival 
2tacticalresponses and survival 

k tactical responses and survival 

Figure 5. Enumeration of Event Tree Possibilities 

The threat models used to predict the probabilities for each branch reflect the probability of 
detection given the intcrvisibility and the hostile radar performance parameters (i.e., range, 
clutter rejection, probability of being functional and turned on, etc.), the probability of 
successful engagement by hostile forces given no vehicle countermeasures or maneuvers 
and the weapon effectiveness in the presence of tactical responses. The arcal density or 
areal probability density of threat systems along the path, the vehicle exposure time in the 
vicinity of these h a t s ,  and vehicle flight parameters such as flight mode and altitude arc 
additional factors in the models used to prcdict the branch probabilities. In the context of 
far-term planning, given the uncertainty in knowledge of threat deployments and 
capabilities, the emphasis in modeling is placed on the capture of c o m t  trending and fast 
extcution rather than on (argueable) high fidelity. 

Hence, each of the nodes at any goal location represents a particular sequence of 
possible events along the legs of the mission plan leading to that goal location. Each node 
has an associated arrival time, resource use and survivability estimate. The sum of the 
probabilities of all (survival) nodes at any goal location gives the net vehicle survivability 
given the initial conditions, mission plan and underlying database and models. The sum of 
the subset of nodcs whose arrival time, resource use and vehicle capability estimates 
simultaneously satisfy a l l  mission plan constraint specifications (unique to each mission) is 
identitied as the probability of successfully completing that goal, Pr (Gi I MP). 

Far a simplified system involving only uniform branch probabilities and the 
simplest of modcls ("stochastic travelling salesman problem" [4]), the computation time to 
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evaluate the objective function by direct enurnration, by Monte Carlo techniques and by a 
Gaussian approximation is plotted in Figure 6. 
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Figurt 6. Computation T i  For Different Methods For Objective Function Evaluation. 

This figure clearly illustrates the exponential (in the number of goals) growth of 
computation time of the dircct enumeration procedure just described. In generating the data 
for Figure 6, there wcn only wo branches per mission leg (Le., the portion of the mission 
between two goals). When there are sevcral event branches per leg and less trivial models 
to be evaluated for the branch probabilities, direct enumeration becomes computationally 
intractible except for missions with only a few goals. 

The Monte Carlo evaluation involves the estimation of the Pr (Gi I MP)  by repeated 
mission simulations via branch sampling. The R(Gi  IMP) are all initialized to zero. Each 
trial then consists of a simulation of one particular sequence of events for a mission plan, 
starting with the currcnt location, time, and nsource level and predicting forward to the end 
of the mission. The selection of the branch to be followed for each mission leg is 
performed by sampling from a probability distribution (formed from the branch 
probabilities) using (pseudo) random numbers. As each leg is sampled, the cumulative 
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time and resource use and node probability value is generated for that trial. The estimate 
for each Pr (Gi I MP) is incrcmented by the sampled nodc probability if the corresponding 
time and resource use satisfy the problem constraints. When the last leg has been sampled, 
the process is repeated. After a fixed number of trials have been completed, the 
Pr (Gi IMP) estimates arc normalized by the number of trials to yield the final results. 
Alternatively, the second moment of the Pr (Gi I MP) can be estimated at the same time as 
the mean value, and the standard deviation in the estimate used to control the number of 
trials taken according to some sptcificd level of estimation accuracy. This is not generally 
done except for test purposes because of the additional multiplication and addition steps that 
arercquircd 

The Monte Carlo estimation process can be viewed as a "mini-simulation" of the 
IMllitindQ of the mission according to the mission plan. The uncertainties of plan execution 
are modeled as stochastic selections between branches corresponding to different events on 
each mission leg. In the Monte Carlo pmess, however, the probability distribution used 
to select between branches can be altered for purposes of improving numerical efficiency, 
provided that the estimator is modified to result in an unbiased estimate [7]. For example, a 
strict ("analog") simulation would enumerate the non-survival nodes. When those nodes 
wen sampled during the Monte Carlo estimation process, that trial would terminate when a 

nonsurvival node was sampled, resulting in no conmbution to the Pr (Gi I MP) of the goals 
downsaeam of that nonsurvival node. This results in a deterioration of accuracy (i.e., 
larger ratio of standard deviation of sample mean to sample mean for the Pr (Gi I MP) ) for 
goals later in the mission plan relative to the goals close to the c m n t  vehicle location. To 
achieve a stated level of statistical accuracy for all goals then requires a larger number of 
trials, with computational cost scaling linearly with the number of trials. 

Another possibility is to sample uniformly for which branch to choose for each 
mission leg and to weight the contribution to the estimate of Pr (Gi IMP) by the actual 
branch probability, multiplied for each successive leg. This also is an unbiased estimate, 
but with even worn statistical Mor characteristics! The best estimator appears to be 
obtained by sampling according to the normalized ratio of the survival branch probabilities 
(i.e. p&, where pi = probability of node i and the summation extends over all nodes for 
a given location). The branches that contribute most to the solution are sampled more 
frequently (Le., "importance-sampled"), and the use of the survival branches only (node 
probabilities conditioned on survival) is akin to the use of the "expected value estimator" 
from the theory of Monte Carlo estimation [8]. For far-field planning applications 
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involving 20 goals, the importance -sampled process with expected value estimator has been 
observed to yield satisfactory statistical accuracy (Le., -5% relative deviation, where 
relative deviation is defined to be the standard deviation divided by the sample mean) for 
the Pr (Gi IMP) with as few as 25 trials. When new "best plans" arc found and for other 
critical decisions in the optimization proccss, the number of aials can be increased to 100 or 
400 for greater accuracy. The relative deviation scales inversely as the square root of the 
number of trials, with 100 trials showing a factor of two improvement and 400 trials a 
factor of four improvement over the 25 trial estimate. 

We see in Figure 6 the results for the case of 25 trials for the stochastic travelling 
salesman problem with only two branches and uniform branch probabilities. When there 
arc more than two brances, the Monte Carlo time is almost unaffected whereas the direct 
enumeration computational time increases substantially. If there were four branches for 
each mission leg, for example, the Monte Carlo would be less expensive than the direct 
enumeration when then wen only four goals remaining in the mission plan. The Monte 
Carlo process permits tractable estimation for event tfccs of arbitrary length and structure. 
The Gaussian approximation, however, is seen to be substantially cheaper than both Monte 
Carlo and direct enumeration. The linear growth with number of goals for both Monte 
Carlo and Gaussian approximations arises from the operations involved in prediction of 
time and resource usc for each mission leg in the remainder of the mission. The timing 
results for the Gaussian approximation arc reproduced on an expanded scale in Figure 7. 
The time-axis intempt of about 5 msec arises from the evaluation of an approximation to 
the error function that is used in the Gaussian approximation. 

The Gaussian approximation consists of accumulating the mean and standard 
deviation of the time and resources used to each goal of the mission plan and then using the 
statistics of the Gaussian distribution to evaluate the probability that the timc and resources 
simultaneously satisfy the specified problem constraints. When the number of nodes in 
Figure 5 is quite dense, it is to be expected that the discrete probability density (=presented 
by the node probabilities) may be reasonably approximated by a continuous distribution 
such as a multivariate Gaussian disrribution. The Monte Carlo estimation process must 
nonetheless be used to filter out the effects of the Type I and Type 11 errors discussed in 
section 2.1. 
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2.4 

The function to be optimized (maximized) in the application of simulated annealing 
to planning is the mission plan utiZity. The optimization proceeds by selecting and 
sequencing a subset of goals and the multiple path choices between goals. In practice, 
several hundred candidate plans out of the N! possible plans are generated and compared 
on the basis of their expected utility. The candidate plans arc interrelated in that they are 
constructed incrementally, or in other words, each successive candidate plan is a 
modification of the preceeding plan. The modifications involve adding, deleting, 
reordering, swapping between active and inactive goals, and reversal of segments of the 
mission plan according to a random sampling from a set of possible modifications. At 
every step in the sequence of candidate plan generation, a modification that is vastly 
deleterious to the utility value is rejected and a different modification is attempted. The 
utility value can decrcase as a result of deleting high value goals or constraint violations 
(time or resource). At every step, a modification that is slightly deleterious to the utility 
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value is accepted probabilistically, with higher probability if the loss in utility (with respect 
to the previous candidate plan) is small and the "temperature" is high. The temperature is 
initially set to %igh'* values that permit almost all modifications to be accepted and 
gradually lowered as the process converges. At the end of the process, at low 
tempcraaucs, only modifications with improved utility are accepted. At high temperatures, 
the process considcrs modifications across the range of the configuration space enabling the 
c o a m  structure of the mission plan to be determined. At low temperatures, the process 
resolves the finer details of the mission plan allowing only minor substitutions and 
transpositions of goals [9]. 

Given the definition of the mission plan, the search space and the objective 
function, the crux of the simulated annealing optimization process is the generation of the 
candidate plans and the scheduling of the tempcram parameter. Candidate plan generation 
is completely specified by the selection of the initial candidate plan and the recursive 
algorithm for generating modiflaions at each step of the process. The initial plan can be 
set to the trivial plan of "go directly home" from the current vehicle location. In this case, 
the annealing proccss will add goals and build up a plan that maximizes the value of goals 
expected to be successfully completed while satisfying all constraints, including global 
resource and survivability constraints. Alternatively, the initial plan can be set to the 
mission plan that is currently being executed (but is perhaps no longer viable). Although. 
the globally optimal plan will be produced asymptotically, regardless of initialization, the 
outcome in h i t e  time (Le., af'tcr only a few hundred candidate plans) will tend to preserve 
morc of the features of the c m n t  plan if the current plan is used for initialization. There 
an typically a number of plans of approximately the samc utility in the neighborhood of the 
optimal solution. Although thm may not be much difference between the utility of plans 

derived from diffennt initial conditions, it may be *able to present the pilot with a plan 
that shows some relation to the cumnt plan. 

The most important contributor to good performance is the p l a  modification 
algorithm. The components of this algorithm are termed heuristics and are described 
mort fully in the next section. We have found a number of heuristics that appear to be 
robust across a spectrum of problem specifications. Nonetheless, then is always some 
domain dependence to heuristics. 

For travelling salesman optimization problems where random plan ("tour") 
modifications are employed, the scheduling of the annealing temperature can significantly 
a f k t  the performance (Le., the speed of convergence and ultimate de- of optimality) of 
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the annealing process. When powerful heuristics arc employed in order to ensure rapid 
convergence to near-optimal plans, the temperature scheduling becomes less important. It 
is st i l l  recommended to start the process at a relatively high temperature and terminate at a 
low temperature as such scheduling will enhance the robustness of the optimization 
process. The fact that good solutions will (usually) be obtained regardless of the 
temperature schedule is due, in part, to the scheduling of heuristics with the degree of 
convergence of candidate plans to known upper bounds on plan utility. Hence, 
venturcsome plan modifications arc propostd early in the annealing process and "finishing" 
or "polishing" modifcations arc sampled preferentially when a working plan with a high 
utility value has been selected. 

Regarding the annealing temperature schedule, Figure 8 shows a number of 
schemes that have been proposed in the literature [ 10,11,12]. All curves have been 
normalized to a starting temperature of 2 utility units. In other words, the initial 
temperature is twice the maximum (upper bound) utility. The curve identified as 
"l/h(l+t)" represents the fastest rate of cooling that can be theoretically demonstrated to 
yield a globally optimal solution. Each time point represents an "equilibrium" point in that 
the fluctuations in the objective function value averaged over a number of mWications at 
that temperature arc allowed to "settle" to approximately steady levels. The time interval 
spent equilibrating at each temperature point is sometimes called an "epoch." There are 

theoretical prescriptions for the tumination criteria, in other words, the lowest temperature, 
but a value of -0.2 utility units may be taken as a practical approximation to zero 
temperature. Hence, to anneal from T=2.0 to T4.2 with the "l/ln(l+t)" theoretical 
schedule requires on the order of 10,OOO epochs. Since the temperature is changing so 
slowly between epochs, the epoch-size can be unity (Le., one modification) after the frrst 
several epochs. Nonetheless, this process has been found to be far too slow for practical 
application. 
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Figure 8. Roposed Annealing Tempcram Schedules 

The curve labeled 'Tl+l = .95*Ti" nprcscnts a morc practical prescription. It can 
be seen to decrease morc slowly than the theoretical schedule until the intersection at the 
21st epoch. The factor of ten temperature drop is achieved after approximately 45 epochs, 
but the cpoch-size may need to be 8 to 64 modifications for a total of perhaps one to several 
thousand modifications. The same functional fonn can be used but with other multipliers, 
as in the Ti+1 =L .9O*Ti" and Ti+1= .,Tit' curves. In these cases, the epoch-size needs 
to be slightly larger than for the 'Ti+1= .95Tf  case, but the total number of modifications 
can be substantially less. The use of these morc rapid cooling schedules frequently results 
in convergence to suboptimal solutions. There is a tradeoff between the degree of 
optimality (or the probability that an optimal solution will be obtained) and the time allowed 
for cooling. Since the (time or ensemble averaged) objective function value is known to 
exhibit an "S-shaped" variation with annealing temperature (reminiscent of the internal 
energy as a function of temperature for a fmt-order phase transition), it has been 
recommended [lo] that the temperature can be cooled rapidly (i.e.,Ti+l = .8*Ti ) on the 
initial high temperature, flat portion of the S-curve, switched to a slow cooling (Le., Ti+l= 

.95*Ti ) for the rapidlychanging (phasc-transition) region, and switched back again to 
rapid cooling for the low-tempcram flat-portion of the curve. The "l/(l+t)" curve 
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represents an even more radical departure wherein rapid.cooling is used along with a 

replacement of the Boltzmann e 'm factor with the Cauchy-Lorentian factor: 
AU 

and with the use of the Cauchy-Lorcntzian distribution to generate (kV 
[(kV2 + (m21 

modifications [12]. This has been labeled "Fast Simulated Annealing" and has shown 
impressive results in comparison with random modifications (i.e., no heuristics) and the 
theorctical schedule. 

For planning applications, we have devised an adaptive temperature schedule that 
uses information on the known upper bound of the mission plan utility and that 
incorporates intuitively correct trends. Defining the dimensionless quantities a, p as: 

a = &, O S a  S 1  (3) 

-AU B = O ! q  S 1  

when 
U, = Utility value of current working plan 
Urnax = Utility upper bound 

AU = Decrease in utility of candidate plan with respect 
to UC 

The probability of accepting downhill modifications is: 

aP 
f(a,P) = e - (4) 

Note that the temperature is in units of Urnax. For an adaptive schedule, we desire the 
following trends for f ( sP)  : 

We also desire that the rate of approach to these limits should be a-dependent and steeper 
as a + 1. One example of a functional form that exhibits the desired trends (at least for 
Equation 6) is: 
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This is labeled the "NH" recipe and is plotted parametrically in Figure 9. The likelihood of 
accepting downhill modifications decreases as the utility of the current working plan 
approaches the utility upper bound and as the size of the downhill jump increases. 
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Figure 9. YV"' Recipe Adaptive Temperatun Schedule 

Another functional form that exhibits the corrcct wends is: 

as -- 

- * -  

This is labelled the "OLD" recipe and is plotted in Figure 10. This recipe represents 
somwhat slower cooling and allows largez downhill jumps as U, + Urn=. Either recipe 
gives acceptable performance in terms of the best plan utility in finite time, the relative 
performance depending on the problem specification and being largely masked by the 
overwhelming effcct of the heuristics. 
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Figure 10. "OLD" Recipe Adaptive Temperature Schedule 

2.5 Heraistics 
2.5.1 ModificationTvgs 

As previously mentioned, the modifications to the working plan to generate new 
candidate mission plans are drawn from a set of modification types. Typical modification 
types include: 

Inactivdactive goal swap 
Addition of an inactive goal 
Rtardcring of an active goal 
Segment deletion 

'Twwpt" (combination segment deletion and reversal) 
order swap between two active goals 

segmcntnvcrsal 

Heuristics can be constructed with a reduced set of modification types, such as add, drop, 
and nordcr. The morc complex modifications must then be constructed from consecutive 
generation and acceptance of the simpler modification types. The incorporation of the 
larger set of modification types has been found to yield more robust finite-tim performance 
in terms of degree of optimality and fiequcncy of finding the optimal solution for problems 
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where this is known [4]. The set of modification types listed above encompasses 
essentially of the order N2 (or more) modifications, that is, the modifcations involving 
enumeration of I@ possibilities when N is the total (active+inactive) number of goals. 
Since the heuristics involve the enumeration and "quick scoring" of each possible 
modification followed by sampling for a particular modification for the generation of each 
candidate mission plan, the limitation to order @ (or fewer) is a practical necessity to 
accomodatc problem definitions involving as many as 20 or 30 goals on near-term flyable 
processors. Of course, heuristics could be constructed using higher-order modifications if 
the methodology of enumerating each possible modification were abandoned and the 
resulting modifications could be scored efficiently. In any case, the total computational 
time budget is apportioned between two major components: time spent in generating 
modifications and the timc spent in evaluating the objective function for each candidate 
mission plan. For a fixed total time budget, if more time is spent in generating good 
candidate mission plans (i.e., plans more likely to be accepted), then fewer candidate plans 
can be evaluated. At the limits of random (Le., unintelligent) plan modifications, very little 
time is spent in finding modifications but the quality of the resulting candidate plans is 
poor. At the other extreme, all of the time budget can be spent in devising a single 
candidate plan. The quality of the final solution is apt to be poor at both extremes of 
apportioning time between plan modification and plan evaluation. 

Illustrative examples of the Merent modification types are depicted in Figures 1 1 - 
17. A portion of a mission plan with five active goals (filled dots) labelled A,B,E,F, and G 
and three inactive goals (unfilled dots C,D, and J) is shown along with the directed links 
between goals. This is highly schematic in that a waypoint path between goals is 
represented as a single vector. In Figure 11, the inactive goal D is swaped for the active 
goal B. In other words, B becomes inactive and D becomes active. The sequence location 
of D in the plan is coincidentally but not necessarily the same as that for the goal it is 
replacing. In general, that are ordcr N possibilities for goal substitutions and order N 
possibilities for the sequence location of the substituted goal for a total of order N3 
possibilities for this type of modification 
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Figure 11. Inactivdactive Goal Swap Modification Type. 

Figure 12 shows a goal addition type modification. Formerly inactive goal D is 
added in the sequence between goals E and E Here again, there arc order fl possibilities 
for this type of modification. This is true for a l l  of the remaining types as well. Figure 13 
shows a reordering type modification wherein the sequence order of (active) goal F is 
changed so that goal F is executed immediately after goal A, the sequence order of the 

remaining goals being unchanged. 

I 

Figm 12.Addition Of An Inactive Goal Modification Type. 

OC 

. 

Figure 13. Reordering Of An Active Goal Modification Type. 
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Figure 14 is an example of a segment deletion modification type. The mission plan 
segment between goals A and F is deleted, including goals B and E, and the goals at the 
endpoints of the deleted segment have their links connected There are order N possibilities 
for the beginning of the segment to be deleted times order N possibilities for the length of 
the segment. The segment reversal modification illustrated in Figure 15 shows a change in 
dircction for the segment between goals B and F, with the links to the segment endpoints 
appropriately connected. The "two-opt" type modification in Figure 16 is a hybrid 
modification that can be thought of as a segment reversal (B-E-F) followed by a segment 
deletion resulting in the dropping of goal E from the active goal list. Figure 17 shows an 
example of a (sequence) order swap between (active) goals A and F. That is, after the 
modification, goal F becomes the beginning of this portion of the mission plan and goal A 
follows goal E (Le., the old sequence position of goal F). Although hybrid modifications 
can be constructed from simpler modification types, the likelihood of acceptance of 
successive candidate plans embodying the simpler modifications may render these 
constructions unlikely when only several hundred modifications axe generated. 

I 

A 0 
D 

B O  O E  

"C 

0 
J 

~~~ 

Figure 14. Segment Deletion Modification Type. 
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Figure 15. Segment Reversal Modification Typt. 
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c, 

Figure 16. Two-opt Modification Type. 
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Figure 17. Order Swap Between Two Active Goals Modification Type. 

The modifications are implemented in software by reassigning sequence pointers 
(forward and backward-linked) and reassigning logical variables used as goal "activity 
flags." The time, resources used, and survivability cost for the transit along the waypoint 
path between euch goal and every other goal is stortd in a square matrix (revemability is not 
assumed). Hence, the impact on time, rcsouces, and survivability for each modification 
can be evaluated by table lookup and a few additions or subtractions. For example, for the 
inactive goal addition example of Figure 12, the impact on fuel used is: 

Ahel = fuel(E,D) + fuel@,F) - fuel(E,F) (10) 

where 
fuel(E,D) = fuel required to transit path between E and D 

In this manner, time, resource, and survivability impacts for all modifications can be 
quickly assessed and the global resource use and survivability evaluated recursively with 
only a couple of addition operations instead of beginning the summation over the entire 
mission plan anew. The time, resource, and survivability impacts of each modification are 
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used to form probability densities that are used to sample for a particular modification to 
fonn the new candidate mission plan. These probability densities need only be regenerated 
upon acceptance of a new candidate mission plan as the current working plan. Upon 
rejection, for example, a new modification is sampled from the same distributions with a 
"new" (pseudo-) random number. 

. .  2.5.2 -sac S t r u c m  

The heuristic structure for the goal planner has been derived from a few underlying 
concepts and from much experimentation. The underlying concepts are (1) the use of the 
incremental value to cost ratio heuristic, (2) the detection of global constraint violations to 
govern alternation between plan construction and plan reorganization strategies, (3) the use 
of an approximate utility heuristic to compare modifications and (4) the use of a multi-start 
strategy. 

In the present incarnation of goal planner software and design, there are three 
heuristic sampling algorithms embodied in thrce subroutines and labelled as "stages" 
A,B, and C (note: no relation to the goal labels in the examples above). In stage A, 
only goal additions and increasing value swaps between active and inactive goal sets are 
considered. Recall that each goal has an associated value assigned during the initial 
problem specification by human planners. M m  impartant goals are assigned higher values 
than are goals of lesser importance. In stage A, only those swaps between an inactive goal 
of higher value than an active goal are considered along with straight goal additions. The 
probability density that is used for sampling one modification out of the entire set of 
possible stage A modifications is constructed using a value-to-cost heuristic. That is, a 
sampling distribution is formed: 

Where 
mi = incremental vdue to cost ratio for the i* modification 
pro = I lomahd . sampling density for all M modifications 
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In stage A, modifications arc sampled successively h m  this heuristic for a fixed number 
of successive modifications or until there are no more modifications that show an 
increasing value. To avoid the numerical effort of the normalization process in Equation 
12, the distribution of values for the numerator in Equation 12 (the "heuristic scores") are 
sampled by binning into 50 equal intervals between the minimum and maximum scores and 
sampling from the populated bins with the highest heuristic scores. Once a bin is selected, 
the particular modification whose score falls within that bin is sampled uniformly from 
among all modifications falling within that bin. The selection of the particular functional 
form for the heuristic score, the use of 50 bins, and the prescription for sampling the 
topmost bins represent engineering choices. It is difficult to establish optimality of all of 
these choices by virtue of the size of the parameter space and the statistical difficulties in 
conelating the choices with performance measures. 

In stage 8, the goal reorder, segment reversal, and equal-valued goal swap 
modifcation types are considered. In all of these modifications, the sum of goal values 
(irrtspcctive of the R(Gi I MP) which are unknown prior to evaluation) remains invariant 
as a result of the modification. The purpose of stage B is to rationalize the working plan by 
rearranging links or goal swapping to minimize resource use, maximize survivability, or 
otherwise contribute to higher R(Gi I MP) values. Stage A assembles a set of goals in 
approximately the right sequence and stage B attempts to minimize resource use and allow 
more goals to be added in a subsequent cycle ofstage A. The sampling distribution is 
fomwd as: 

j-1 

where 

Afuelj = incremental fuel for the j* modification 

The use of the second power of the fuel saving biases the distribution to favor fuel saving 
modifications and is a simple evaluation relative to the range of functional forms that could 
be used. If a modification results in extra fuel expenditure, then it is excluded h m  the set 
of M' mDdifications of the indicated types. If any modification results in violation of global 
constraints on time, resources or survivability, it too is excluded from consideration in 
either stageA or stage B. The binwise sampling technique is applied in stage B as it is in all 
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stages. Stage B is continued until either a k e d  number of successive modifications have 
been sampled or thcrc arc no xmdifications that result in fuel savings. 

In stages A and B, modifications wen excludcd from consideration if the expected 
value of time, resources or survivability violated global constraints. In stage C, all 
modification types are considered using a quick Gaussian approximation for scoring the 
modifications as described blow. Given a -me constraint Rc and a finimum r e q u w  
proba-- we require: .. . .  

rN@ , z ) d E  2 kr (14) 
90 

whcrc 

it = mManresourceuse - 
cr = true standaxd deviation of resource use 
N = assumed Gaussian distribution of resource use 

A A 

Since the true mean and standard deviation must be estimated, resulting in Rand a, 
respectively, the constraint expressed in Equation 14 is postulated to be equivalent to the 

A 

q-tthatas G O ,  when: 
A 

Rc - R 
erEl(2kr - 1) 00 = 

Since is a problem specification, the expensive inverse error function in the denominator 

of Equation (15) need only be evaluated once during initialization. The values of aand a, 
for each modification in stage C are then used in apenultyjiutction that multiplies the sum 
of the goal values for all active goals in the mission plan. The penalty function takes on 
values near unity when cr S .90*a,, it takes on a small but non-zero value when 

cr2 l.lO*cro. and it varies linearly in between these limits. The heuristic scoring in stage 
C thus factors in the uncertainty caused by the different possibilities of the event tree and 
the effects of the global constraints in an approximate but quickly executing manner. 
Hence, all modification typcs may be scored on the same basis, without arbitrary weighting 
factm to cxpxess the relative importance of resources versus survivability, etc. Otherwise, 
goal addition modifications which generally use more nsources andpotentially add value 
(but may actually lower the utility because of constraint violation) cannot be compared with 
goal reorder modifications that do not change the sum of goal values but may well change 

A 

n 

A 
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the Pr(GilMP) and hence the actual utility. Stage C is repeated until either a fixed number 
of modifications have been sampled or there are no favorable modifications to be sampled. 
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Figure 18. Tnal Plan Generation Heuristic Structure 

If there are better plans that result after the stage B and C modifications relative to 
the best plan at the outcome of stage A, then stage A is entered once again with initialization 
from the outcome of stage C (total time permitting). This is done because the plan 
rationalization that has o c c d  in stages B and C may now permit more goals to be added 
within the global constraints. If then was no detected improvement between stages A and 
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C then a new working mission plan is initialized and the process is repeated until timeout. 
The trial plan generation heuristic structure is illustrated in Figure 18. The beszplan that 
has been found is available at all times. Because of the sampling involved in the 
generation as well as acceptance of modifications, the trajectory of working plans is apt to 
be different even if the same initialization is used on subsequent cycles through stages A 
through C. The reinitialization is tantamount to the selection of "non-local" modifications, 
that is, modifications that an radically different from the currcnt working plan. For finite- 
time in which extremely fast convergence to optimal or near-optimal solutions is desired, 
this feature of the heuristic structure seems to be quite impartant. 

2.6 To Other P b i n e  Elements 

Apart from the specification of goals and associated values and constraints (i.e., time, 
ordering, survivability), the goal plannerrequires an array of cost, resource and transit time 
between evay pair of goals (in both directions) for a multiplicity of paths between each pair 
reflecting different points on the cost-resource operating curve. With this infomation and 
on-board infomation on location, time and resource supply, the goal planner can project 
lethality cost, resource and timc use along any pposed mission plan by simple addition 
over a l l  intergoal links in that plan. This interface information is summarized in Table 1. 

Note that the environmental database information (Le., terrain, winds, threat locations, 
exclusion zones) is not used directly by the goal planner, nor is the detailed path 
information from the waypoint planner. With regard to the latter, only the time, fuel, 

expendables and lethality cost numbers an used by the heuristics. The utility evaluator 
uses these numbers along with the additional infomation of branch probabilities and 
(models of) fuel, time, resource and lethality consequences for each of the branches. 
Hence, relatively few numbers arc input to the goal planner and these arc updated slowly if 
at all (i.e., low bandwidth inputs). 
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Item 

Mission Specifications 

Cumnt Vehicle Status 
(pndiction initial data) 

Waypoint Path Data 

Description 
~~ 

Goal locations, values, time constraints, ordering constraints, 
goal status (i.e., already executed), position tolerance, 
goal actions (and associated time, lethality cost, resource use) 

Estimated location, estimated navigation error, fuel supply, 
ordinancc/expcndables (chaff, decoys) supply, 
quipmcnt operability (propulsion, ESM, offensive avionics, 
navigation, communication), time 

Lethality cost, fuel use, expendables usage, transit time for 
a multiplicity of resomx constrained optimal paths 
(Le., -5 paths per pair) Also, event tree branch probabilities 
or mtrics from which branch probabilities can be estimated 
for each intergoal path 

Table 1. Interface I n f o d o n  Inputs To The Goal Planner 

The fuel, time, resource and lethality cost for each waypoint path, along with the 
event me branch information, is generated by the waypoint planner. The waypoint planner 
uses the terrain, winds, h a t ,  and exclusion area information in the environmental 
database, along with predictive models for lethality cost and resource usage, to determine 
the waypoint paths and the summary information that is required by the goal planner. To 
reduce the computational time requirements for the on-board system, the information in the 
environmental database is processed preflight into a database for waypoint planning. The 
processing is done in a way that allows the waypoint planner to estimate fuel, time, 
resource and lethality cost by summing prestored internodal quantities. In addition, a 
multiplicity of waypoint paths between all known goals is generated preflight. As the 
onboard database is updated with new sensor information or communications, only the 
nodes and paths thus affected need be recalculated in-flight. 

In the present concept, none of the far-field planning components interface to high 
bandwidth or imaging sensor data or communications directly. All of this information is 
merged into the databases that support far-field planning. The near-field or trajectory 
planning levels deal with the high bandwidth information in rendering tactical decisions in 
concert with the mission management executive and its associated situation assessment 
function. 
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Finally, the output from the goal planner is the ordered sequence of goals that 
achieve the highest objective value within the problem constraints (including calculation 
time) and the coarse-level waypoint path selectcd for each intergoal segment. The arrival 
time/spd schedule is calculated by the t imehe management function called internally by 
the goal planner. The coarse-level waypoint path is used by lower levels of 
planning/control. The goal planner may also be configured to provide information to the 
waypoint planner on the subset of intergoal links that need to have waypoint path 
parameters calculated. This selective thinning of the array of intergoal links may be used to 
help cut down the total calculation time required by the waypoint planning process that 
supports the goal planner. 
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SECXION 3 

WAYPOINTPLANNING 

The waypoint planning problem is a shortest-path problem over a network of 
nodes. In the context of waypoint path planning, the term nodes is used to indicate the set 
of possible spatial locations through which the planned vehicle trajectory must pass. The 
nodal network concept maps the path-search process onto a discrete, finite dimensional 
space. The problem may be described as that of fmding a path that minimizes the path cost, 
Zc(i,j), over all possible paths from node point S to node point G, subject to some form of 
constraint on the expended nsources, wid). Here, c(i,j) and r(ij), respectively, represent 
the path cost andresowccs expended in &tion from node i to node j, and the summation 
extends over all transitions along each path starting at node S and ending at node G. 

Procedures for finding the mincost path are generally recursive in nature, with the 
recursive step involving the growth of a "tree" of path branches to "successor" nodes from 
a suitably chosen "parent" node. In case of more than one path-branch to a node, branch 
pruning logic is employed to select the branch on the min-cost path. The tree generation 
process terminates when the goal node has been reached and upon satisfaction of exit 

criteria. 

3.2 Overview 

An efficient implementation of the above process can be carried out using the A* 
algorithm, involving a bookkeeping arrangement of two types of stacks, namely "open" 
and "closed", for the nodes on the tree [ 131. Associated with each node is the cost of the 
path from the start node, and a pointer that indicates the parent (predecessor) node. The 
search starts by placing the start  node on the open stack. The recursive step of tree 
growing involves the selection of a node for expansion and the generation of its successor 
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nodes. The node n with the minimum of value of the "expansion function", f(n), among all 
nodes on the open stack is selected for expansion. The expansion function for the 
successor nodes, n', is given by Equation 16 

f(n') = f(n) + b(n,n') 

f(S) = 0 (Start node initial condition) (16) 

Thus, the expansion function is additive and its nature is determined by the function 
b(n,n'), of which there arc several logical choices. For a "uniform cost expansion," the 
function b(n,n') is the path cost function c(n,n'); for a "uniform resources expansion," 
b(n,n') is the resource use function r(n,n'); for a "breadth-first" expansion, b(n,n') = 1. 
Upon expansion, node n is placed on the closed stack. As regards its successors, every 
successor n' of n is placed on the open stack and the cumulative path cost function is 
incremented: 

C(n') = C(n) + c(n,n') 

C(S) = o  
If any n' was already on either stack prior to expansion of n, then the lower of the 

two C(n') is selected and the parent node pointer is set to reflect the chosen branch. If n' 
had previously been on the closed stack and its newly expanded cost is lower than its 
previous cost, then n' is switched to the open stack. 

The search is terminated when the node chosen for expansion is the goal node, or in 
other words, when n' = G and f(G) is the minimum for all nodes on the open stack. The 
mintost path is then obtained by tracing the parent node pointers back to the staxt node. 

For the uniformcost expansion, the expansion function can be modified to include 
a heuristic function h as follows [13]: 

f(n') = g(n') + h(n') 

The heuristic function h(n') represents an estimate of the minimum cost to go from 
n' to the goal node. It has a strong influence on the computational time for the search and 
on the optimality of the path that results. Optimality is guaranteed if h(n') is bounded from 
above by the me optimal path cost from n' to the goal node. Larger values of h(n') are 
termed "inadmissible heuristics," and result in faster searches with potentially suboptimal 
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results. For heuristics, we have investigated the use of measures of the distance between 
n' and G, and (embedded) A* solutions obtained firom a backward search (Le., from G to 
S) on a coarser nodalhation. If optimal solutions are desired, we have not found any 

general prescription that leads to a faster search than h(n') = d(n')-minimum ( c(i,j) 1, 

where d(n') represents the minimum number of moves from n' to the goal node. The A* 
search with h(n') = 0 corresponds to Djikstra's uniform-cost algorithm [ 131. Among the 
search processes without heuristics, Djikstra's algorithm is the most efficient, with 
no node chosen more than once for expansion and, in general, no more than one path 
expanded to the goal. 

1J 

. .  3.2.1 PIPD) T- 

For searches other than the uniform cost expansion, many more nodes are 
expanded than for Djikstra's algorithm and more than one path is expanded to the goal 
before the optimal path is reached. The latter feature can be exploited to yield the entire 
curve of resource used versus cost for all resource-constrained optimal paths. We have 
labeled this modified A* search process as the "Eath Independent Eerformance 
&termination" (PIPD) technique. A separate open stack is maintained for each resource 
level attainable during the expansion. Considerable simplicity obtains when the operating 
curve rather than the associated optimal paths is desircd The bookkeeping of parent node 
pointers is dispensed with and open stacks arc maintained only over a finite resource 
window. 

For a given cost map and start and goal nodes, the PIPD technique yields a set of 
(cost,rcsourcc) points associated with various resourceconstrained optimal paths. This is 
precisely the information that is most useful to the goal planner. Once the goal planner has 
chosen an Operating point from this set, the corresponding (optimal for the specified 
constraints on rtsources) path is nconstructed by executing an A* search using a Lagrange 
multiplier modification to the function: 

g(n') = g(n) + c(n,n') + X r(n,n') (19) 
The value for A is obtained as the slope of the cost-resource curve at the point selected on 
the curve, and is calculated in the PIPD pnxxss. The path determination is insensitive to 
small CTLWS in I., with a path remaining unchanged as X is varied inbetween discrete values 
of the Operating c w e  slope corresponding to the discrete PIPD solutions. 
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3.2.2 pesulg 

Some results for the waypoint search algorithm are shown in Figures 19 and 20. 
The example presented in Figure 19 contains a 20 by 30 network of nodes with cost 
function synthesized by correlated random sampling. The number or dot printed in the 
position for each node reprtsents the cost for traversing that node. A dot is the lowest cost, 
with numbers 0,2,4, ..., 8 representing increasing cost values. The map shows many low 
cost channels, presenting the waypoint planner with a "soft maze," one of the more 
challenging types of problems. A mazc with hard boundaries would permit earlier pruning 
of the search tree. The start and goal nodes are labeled, and two paths are shown: the 
broader line indicates the unconstrained resource minimum cost path; the lighter line 
indicates an optimal cost path corresponding to a specific resource constraint. In this 
example, the resource use is modeled as being Proportional to distance, with one horizontal 
or vertical segment equal to 10 units and a diagonal segment equal to 14 units. The 
unconstrained mincost path has cost value = 3.523, with resource expended = 375. The 
resource-constrained optimal path has cost = 3.747, with constrained resource use S 269. 
The goal planner might opt to use the lower resource but higher cost path if the resource 
saved (1) enabled additional goals to be added, or (2) permitted lower cost (and higher 
resource use) paths to be used to advantage elsewen in the plan. 
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Column Number 
~ 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3  ~~- - .  

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0  
4 0 8  . .  2 0 . . 0 9 . 0 . 4 . . 0 .  . .  2 . 4 4 . . . . 2 .  
2 . . 4 4 4 . . . . 4 4 4 . 4 . 6 . 6 4 . . 4 4 4 4 6 6 4 2 0  

4 . . . 4 . . . 2 4 6 8 8 8 6 .  
5 . 2 . . 4 4 4 4 . . 0 0 . .  

. 4 2 0 . . .  

. 0 2 4 . . 6 . . 2 .  

2 0 8 6 4 2 . 0 . , 0 . 0 2 2 2 .  

Figure 19. Cost Map And Optimal Waypoint Paths Between S And G Nodes. - Indicates Unconstrained Min-Cost Path - Indicates Resource Constrained Min-Cost Path. 
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Figure 20. operating curve for constrained optimal paths as determined by PIPD method. 

The operating curve as detedned  by the PIPD search for this example is shown in 
Figure 20. Points with incrementally higher resource and higher cost (i.e., points not in 
the monotonic set) are not obviously useful for planning. Additionally, only those points 
on the convex hull to the operating curve (square symbols in Figure 20) can be guaranteed 
for finding a path by the Lagrange multiplier approach. The convex hull is defined by the 
geometric construction of a sequence of tangents to the operating curve, starting with the 
leftmost point and continuing recursively from the point of tangency. The PIPD software 
determines the uscable points and selects a range of points that arc distributed on the cost 
axis. These points are indicated by the shaded squares in Figure 20. The upper path in 
Figure 19 corresponds to the point indicated by an arrow in Figure 20. 

For the size network above, the computation time to solve for a waypoint path 
between each goal pair is typically only a few seconds on a 68000-based microcomputer 
(7.8 MHz, 16 bit, no coprocessor, -0.1 Mips). The PIPD process can take five to ten 
times as long, a time that seems to be problematic for even mart powerful processors if far- 
field planning responsiveness on the order of a few minutes is desirable. However, since 
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the underlying threat map wil l  only change incrementally during the mission, and since plan 
departures will also require only incremental waypoint pathfinding, most of the waypoint 
search process can be executed before takeoff. In other words, path-cost integrals (sums) 
can be calculated subsequent to threat map updates and compared to the values before the 
update. Waypoint paths need to be regenerated using the updated information for only 
those mission segments where comparison thresholds arc exceeded. The incremental 
updates required during mission execution should be manageable with a 1 Mips flyable 
processor. 

3.3 F u n c m  

The survivability cost and resources used in transiting between a network node and 
each of its immediate neighbors (in each of eight discretized directions: 
N,NE,E,SE,S,SW,W,NW) is precalculated for the entire network using survivability and 
fuel usc models. The cumulative path cost and resources used (Le., C(n') and T(n'), Eqs. 
17 and 20, respectively ) are evaluated as summations during the process of searching the 
network for the waypoint paths between each pair of goal points. S ina  the fuel use is such 
a strong function (usually linear) of vehicle weight, (Le., fuel and ordinance already 
expended), the scheme outlined above is modified such that coefficients of a linear fit of the 
fuel consumed in transiting each node in each direction are prccalculated.for the entire 
network. During the network search, the resource used for the traversal between 
neighboring nodes is evaluated by table look-up followed by a multiplication and an 
addition. Hence, the path cost and nsourcc usc calculation remains a simple summation. 

The examples presented in this report utilized "synthesized cost maps. The cost 

for each node was initially assigned a value by a uniform random number. These values 
were then replaced by a locally smoothed average and local smoothing around randomly 
choosen sites around which the costs are assumed to be highly correlated. The correlated 
random data were then normalized to a maximum cost of unity. Channels wen etched into 
the cost surface in order to represent a maze-like surface with penetrable walls (i.e. "soft- 
maze"). The details of this process are not so important as the fact that interesting cost 
maps were generated. 

The fuel use for these examples was simply modelled by assuming that each 
horizontal or vertical transit (Le. N,S,E, or W) consumed 10 units and each diagonal transit 
consumed 14 units. Hence, the test cases assume that the fuel used is (approximately) 
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proportional to the distance travelled..  his quitization results in cumulative resource use 
for any path integral equal to an even integer. When the fuel-use model discussed in 
Section 5 is integrated with the waypoint planner, the distance mcmc wil l  be abandoned but 
quantization will be retained to enable the use of faster integer arithmetic in the search 
process. 

The bookkeeping for the search algorithm requires the storage of the cumulative 
path cost C(n9 (Equation 17). the cumulative resome us& 

T(n') = T(n) + r(n,n9 

T(S) = o  (20) 

and the parent node pointer for each node in the network. In addition, an indication of the 
nodal status (i.e., unexpandcd, open, or closed) must be provided. The array used to store 
the T(n') value far each node may also be used to store the opedclosed nodal status by use 
of the sign bit. Unexpanded nodes are detected by a zero (initialized value) for T(n'). 

As depicted in Figure 21, the scarch begins (after initialization of all arrays) by 
placing the start node on the open stack. The open stack is then scanned for the node with 
the minimum cost for uniform cost expansion or minimum resource use for uniform 
resource expansion. Djikstra's method, as mentioned in scction 3.2, is the uniform cost 
(UC) expansion. If resource use is defined as the expansion function, the uniform 
resource (UR) expansion can also be identified as a dynamic programming (DP) solution. 
Upon selection of a node n (i.e., parent node) for expansion of successor nodes, (n'), the 
node n is removed from open status and a test is made for exit from the recursion as 
follows. If the node selected as the minimum cost node on open is the goal node, the 
uniform cost search is completed. If the goal has been selected as the minimum resource 
node on open and is also the minimum cost on open, the uniform resource search is 
completed. In either case, the optimal path is reconstructed by backtracking via the parent 
node pointas to the start no&. 
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Following the boxes down the page in Figure 21, in the determination of costs to 
successor nodes (n'}, the costs and resources,C(n') and T(n'), for each node n' accessible 
from parent node n are calculated and stored. For a node in the interior of the network, 
there are eight surrounding nodes in the directions (N,NE,E,SE,S,SW,W,NW). For 
nodes on any of the boundaries or in the comers, there are five or three successor nodes, 
respectively. The next boxes labelled "cost and resource pruning" are straightforward and 
use parameters (cost and resource thresholds) determined from the PIPD search. If the 
successor node has been previously expanded (i.e., is currently on closed) and the 
previous path cost is less than the new path cost, the present expansion is eliminated from 
further consideration. Otherwise, the new (lower) cost is put in the cost m y  for that node 
and the parent node pointer reset to the parent node on the current expansion. The 
cumulative resource use is also stored for n', and n' is placed on the open stack. The 
expansion process is repeated until all successor nodes have been expanded. At that time, 
the recursion continues by choosing the next parent node from among all nodes on the open 
stack. 

Both uniform cost and uniform resource (alias "dynamic programming") 

expansions yield the same final solutions for the unconstrained minimum cost path. The 
uniform cost method without heuristics (Le., h 4 ,  Djikstra's method) is considerably more 
efficient than the "dynamic programming" solution. Figures 22 and 23 present timing data 
for a number of different problems but with each method executed on the same set of 
problems. "he computation time on a Macintosh Plus computer (-0.1 Mips) is plotted as a 
function of the number of nodes (i.e., size of the network), and parameterically as a 
function of the distance between start and goal nodes as a fraction of the long dimension 
across the network. The network sizts included 20x30 (600 nodes), 30x40 (1200 nodes), 
40x60 (2400 nodcs), and 60x80 (4800 nodes). The same technique was used at all sizes to 
generate a correlated random cost map with a channelized, soft-maze type characteristic. 
With the exception of the 100% curve, where the distance between start and goal nodes 
spans the entire network, the other curves start at a node located 12.5% of the length from 
the left boundary and end at 37.595, 62.5%. and 87.5% of the distance from the left 
boundary. 
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Figure 22. Near Linear Cost Growth For A* (Uniform Cost, Djikstra Method) Expansion. 
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Figure 23. Exponential Cost Growth Versus Network Size For DP Expansion. 

Then are four problems for each network size because the calculation time is a 
function of the separation between s m t  and goal nodes. Although the underlying cost 
surface is the same (for each set of four problems for each method), the different start-goal 
pairs render each problem unique. In fact, different timings would be obtained with 
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different start-goal pairs for the same start-goal separation, and of course, for different cost 
maps. Hence, the timing data presented is representative but does not apply to all problems 
of a given size. Nonetheless, the observed a n d  of computation time with network size 
and start-goal separation is useful for comparing different methods and for estimating 
(within a factor of two) the o d  computation timc requirements. 

In Figures 22 and 23, the times for the Djikstra (labeled A*) and uniform resource 
expansion (labeled DP) methods show an approximately linear increase in computation time 
with the number of nodes for the former and an exponential growth curve (I' the DP curse 
of dimensionality") for the latter. Moreover, the Djikstra solution is 15 to 40 times less 
costly than the DP expansion for the large networks and typically 2 to 4 times less costly 
for the smaller networks. When resource-constrained optimal solutions are generated 
(Equation 19) subsequent to a PIPD calculation, the computation times are further reduced 
by factor of 2 to 10 due to more effective cost and resource pruning. These data are 
illustrated in the lower cuycs of Figwe 22 (labeled A*C) where the times to calculate the 
minimum cost solution for the a resourceconstrained operating point (obtained from PIPD) 
arc plotted below the data for the unconstrained minimum cost solutions. 

If the exit criteria are changed in the DP approach, it is possible to determine the 
minimum cost path from the start node to every other node, or alternatively, from every 
node to the goal node, in a single calculation. The price for this capability is even larger 
calculation times than plotted in Elgun 23 , with the additional paths being largely useless 
information. 

56 



3.5 

The bookkeeping for the PPD method, a variant of the uniform resource 
expansion, requires an open stack corresponding to each quantized resource level and one 
closed stack. The cumulative costs for each node on an open stack needs to be stored. A 
storge-efficient bookkeeping scheme is to use the path cost arrays to implicitly represent the 
open stacks. The path cost arrays for each resource level are initialized to zero, and 
subsequently, all nodes with non-zero values are known to have been expanded (Le., 
placed on the open stack). For a uniform resource expansion, the number of quantized 
resource levels that need to have open stacks simultaneously maintained is seven, 
corresponding to all of the possibilities of resource use by combinations of 
horizonWvertical (10 unit) and diagonal (14 unit) segments. The possibilities for 
quantized resource use are 10,14,20,24,28,30,32,34,36, ..., achieving all even numbers 
when five or more segments are added. Because the expansion is ordered by resource 
level, the maximum difference between the current level and a successor level corresponds 
to the resource used to traverse one diagonal segment. Since the resouce level is quantized 
in units of two, a "ltsource window" of seven levels is the maximum number of stacks that 
need to be maintained. 

As seen in Figure 24, the PPD semh begins by placing the start node on the first 
(lowest quantized resource use) open stack and incrcmenting the resource level RL 
(initialized to zero) to be expanded. All expanded nodes at RL arc put on the closed stack 
and the closed stack is checked for inclusion of the goal node. If affirmative, the cost and 
resource RL for this node represents one of the points on the cost-resource operating curve 
and they are stored for later use. If the goal node is not on the closed stack at RL, but has 
been expanded at some (higher) resource level, the lowest path cost for the goal at any level 
is used for pruning at the RL level. 
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Figure 24. Functional Block Diagram For PIPD Search 
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Following the diagram down the page, the exit test consists of checking the 
resource level RL against a threshold, usually the resource corresponding to the 
unconstrained minimum cost path. If then are more nodes on the closed stack (with 
resource level RL ), they are expanded in turn, with cumulative path cost storcd for each 
successor node n' on the appropriate open stack (Le., at the corresponding quantized RL), 
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as seen in the continuation of the flow diagram in Fig 24. The next two blocks exercise 
cost and resource pruning, followed by a check as to whether the successor no& n' is 
already expanded at RL with cumulative path cost greater on the current than on the 
previous expansion. For the affirmative case, the node is not reexpanded and the next 
successor node to n is expanded. Othcrwise, the next block checks whether the cumulative 
path cost for n' on the c m n t  expansion exceeds the path cost to n' on any of the open 
stacks in the neighborhood (resource window) below RL. This check is performed to 
enforce local monotonicity in the cost-resource operating curve. If this is affirmative, n' is 
skipped on the current expansion. Otherwise, the path cost to n' is stored on the open 
stack for resource level RL. The expansion of all successor nodcs to n is completed, n is 
removed from the closed stack, and the d o n  then expands the next node on the dosed 
stack at RL. When there arc no more nodes on the closed stack at RL, the recursion 
proceeds back to the block when RL is incremented 

Figure 26 shows the computation time for the PIPD method as a function of 

network size and start-goal separation. The time growth with the number of nodes shows 
an exponential type character, similar to the dynamic programming uniform resource 
expansion. The absolute times, however, arc typically two to five times lower for PIPD 
than for the DP solutions. A comparison of uniform cost (Djikstra, labelled A*)* uniform 
cost with resource constraint (labelled A*C), PIPD, and DP solution times versus network 
size is shown in Figure 27. These data correspond to the 50% start-goal separation case. 
The DP solution goes off scale right after the 2400 node point. The time for the PIPD 
solution will dominate the total time spent in path determination for waypoint planning. 

The dependence of computation time on start-goal separation for the 1200 node case 
is plotted in Figure 28. These data wen generated for one start-goal pair for each data 
point using a single 0.1 Mips processor. The real application will use at least a 1.0 Mips 
processor, but wil l  require calculations for a number of goal pairs within-a solution time 
requirement of perhaps several minutes. Also note that the (100%) case of start and goal 
nodes located at opposite boundaries of the network is an atypical case. Although there 
may be goal pairs that are widely separated, it is to be expected that the mission map will be 
laid out to include a buffer boundary so that goals arc not located on network boundaries. 
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Figure 28. Variation of Computation Time For PIPD With Start-God Node Separation. 

3.6 

Given the search times determined in the previous sections, the maximum feasible 
network size to perform waypoint (PIPD) planning on a 1.0 Mips processor appears to be 
the 30 by 40 network. Assuming conservatively that the timing data for the 50% start-goal 
separation is representative of the average search time in a real application, this results in 
3.8 seconds for the PIPD detexmination and another 0.2 seconds for the subsequent path 
determination per goal pair. Assuming that the goal planner and speed scheduler 
together consume about 20 seconds computation time on the 1.0 Mips processor, and that a 
total latency in far-field replanning of two minutes (Le., -24% of the mission duration) is 
acceptable, this implies that about 25 goal pairs can be considered. Of course, the use of 
faster technology or the availability of parallel processing architectures will increase our 
capability to do in-flight waypoint planning. If the replanning database is updated by 
communication and sensor infoxmation, only those goal pairs whose preflight waypoint 
paths traverse the changed mas will need to be rcsolved. This can be detected quite simply 
by recalculating the path cost and resource use with the updated network data and 
comparing with the preflight cost and resource values with respect to a comparison 
threshold. With the exception of the addition of new goals and the return to course 
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calculation, waypoint paths should not need to be recalculated unless the underlying data 
changes. 

Preflight PIPD calculations for the entire set of N*(N-1) goal pairs, where N = 
number of goals, is estimated to be on the order of 6 minutes for 10 goal missions and 25 
minutes for 20 goal missions. There are a number of ideas for reducing both the preflight 
and inflight waypoint path calculation time that should be explored further during 
integration of the waypoint path and goal planners. For example, it may be anticipated that 
only a fraction of the intergoal links wil l  actually be used by the planner in constructing 
candidate mission plans. The goal planner heuristics can be driven by approximating the 
points on the cost nsourct c w e  given only the corner points of minimum cost and 
minimum rcsource paths. More accurate and costly PIPD calculations can then be 
perfomed for only that subset of intergoal links that are likely to be selected for inclusion 
in candidate plans. Although the calculation time for waypoint planning may be reduced by 
these means, it is also to be anticipated that then will be additional computational 
requirements for the collection of minor tasks that have not yet been addressed. Hence, 
potential computational time savings are to be applied to balance potential computational 
time growth factors, the maximum feasible network size nzmaining at 1200 nodes. 

Given a hypothetical NOE mission protile of: 

15 minutes contour flight ingress @ 275 km/hr 

@75km/hr 40 minutes NOE flight 

15 minutes contour flight egress @ 275 km/hr 

this implies a total ingress (and egress) path of about 70 km and an NOE path of about 50 
km. Assuming a 2: 1 folding of path length for the NOE segment and a 1.2: 1 folding for 
countour segments, this implies a linear ingress (and e p s s )  distance of about 60 km and 
an NOE extent of about 25 km. Assuming that a 5 node buffer area will be employed 
smunding  the mission m a  so that paths do not hug an artificial boundary, the layout of 
nodes in the mission area and the schematic mission profile arc depicted schematically in 
Figure 29. 

63 



..... ..... ..... ..... ..... ..... ..... ..... 

. . e . .  ..... ..... ..... ..... ..... ..... ..... ~..... I..... 

................................... ..................... ........ ........ 
....... 
........ 

e o e e . . a  ........ ................... ......... ................................... .................... ..............~..... ........................................ ........................................ ........................................ ........................................ ........................................ 
Figurc 29. Hypothetical Mission Pmfde In 20 By 30 Area Contained In 30 By 40 Network. 

It is apparcnt that the best resolution that can be accomodated is approximately 2 km 
(1.25 miles) for the spacing between nodes on the network. The resolution required for 
far-field planning is driven by the distance scale for h a t  projection and topographical 
features. If the waypoint planning database resolution size substantially exceeds the scale 
distance for threat projection and topographical featuns, then the ability to accurately model 
the effects of threat avoidance and NOE flight on fuel use and survivability will be 
degraded. The 2 km resolution is perfectly acceptable regarding threats, as this 
corresponds roughly with the effective range of the ZSU-23 mm h a t  and underbounds 
the range of a l l  other threats. The 2 km resolution should also be adequate for far-field 
modelling of fuel use in NOE flight since substantial differences in the character of the 
underlying ttrrain ought not to occur within a spatial wavelength of 2 lan. 

In this section, we mention in passing a number of ideas for accelerating the 
waypoint search process that did not prove successful from the perspective of search 
time/optimality tradeoff. 
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One of the ideas for accelerating the search was to shorten the expairsion loop by 
considering only a subset of transition directions in place of the standard eight directions. 
Subsets examined included different combinations of two through five directions. 
Although the search time was substantially reduced in some cases, the optimality of the 
solution was dwavg compromised and severely degraded. This was not an acceptable 
tradeoff. 

Another idea that was considend was the use of an embedded A* (min-cost ) 
search to generate the cost-to-go ( h(n') ) heuristic. That is, a Djikstra method search was 
performed from the goal node back to the start node to generate a cost-to-go (back to the 
goal node) from every node in the network that is likely to be expanded in the forward 
search. Since the computational effort in this process is equivalent to that of the forward 
search process, the embedded backward search is executed on a coarser nodalization such 
that transitions skip over every other node (although the cumulative path cost is itemized on 
the original grid). Since, as we have Seen, Search time is exponential in the number of 
nodes, the backward search consumes a fraction of the time for the fine grid search and 
provides the cost-to-go heuristic for the forward search. Optimality is guaranteed only if 
the cost-to-go heuristic always underbounds the me cost-to-go. Because of the coarse- 
grid approximation, however, the cost-to-go heuristic must be multiplied by a factor when 
used in the farward search (Le., the E in A*&) to insure underbounding ("admissibility"). 
Values of E needed to preserve optimality ranged from E = 0.3 to E = 1.0, depending on 
the particular search problem. Larger values of E resulted in faster searches but 
significantly poorer solutions. When all computation time for the two-stage (embedded 
A*& ) search was properly accounted for, there was no net time saving compared to the 
single-stage forward (Djikstra) search when optimality was required. Additionally, there 
appears to be no general and efficient way to determine E to guarantee optimality other than 
E = 0. Two-stage searches with coarser nodalization on both stages saved even more time 
but failed to give even good solutions on some problems. 

Crude approaches to formulating a cost-to-go heuristic include synthesis of 
functions involving start-to-goal node separation distance and moments of the path integral. 
These approaches arc completely unsatisfactory except when the cost surface is known to 
be paxticularly trivial. 

Finally, regarding the solution for constrained optimal paths, a modified Lagrange 
multiplier approach was implemented wherein the expansion function f(nl) in Equation 18 
is unaltered during the search until the cumulative resource use violates the resource 
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constraint. After that point, a (Lagrange) multiplier multiplying the incremental r c s m e  
use is appended to the expansion function. Hence, the path choice is (unconstrained) 
optimal until the resource constraint is hit and then switches to a constrained optimal path. 
Overall, the path solution is not optimal as in the case where the rcsourcc constraints 
and Lagrange multiplier azlt determined by the PIPD method and a pure Lagrange multiplier 
approach is used. It may also be remarked that other ad-hoc approaches that limit the,nodal 
expansion bascd on a resotme constraint cannot guaiantec optimal solutions and may yield 
particularly poor solutions far some problems. Also, iterated (trial and emor searched) 
solutions for the Lagrange multiplier are computationally costly and not guaranteed to 
succeed. 
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SECTION 4 

TIMEUNEMANAGEMENT 

4.1 Backgxound 

Planning a mission at a nominal speed for all mission legs may lead to missed 
opportunities for successful completion of goals with time constraints. When vehicle speed 
is scheduled with respect to time constraints, the planned fuel use will be greater than for 
identical missions without time-constrained goals. The objectives of the timeline 
management planning component (speed scheduling) arc to maximize opportunities for 
achieving goals with time constraints (within the vehicle spetd capabilities) and, at the same 
time, to schedule the most fuel-economical speeds for all mission legs. The feasibility of 
arrival time control is borne out by recent experience with speed advisories in the air traffic 
control domain. It is apparent that arrival time can be controlled to within 10-20 seconds 
over a complicattd dcscent trajectory of about 25 minutes duration [ 141. 

On the one-hand, vehicle spetd impacts fuel use and predicted survivability. On the 
other hand, altitude, vehicle weight, flight mode, terrain and winds will impact the speed 
envelope (i.e., the maximum and rangeoptimal speeds). Given the current time, the 
vehicle location, the rime window (one or two-sided) and the goal value specifications for 

each goal, the functions of timline management are: 

To provide speed advides to allow fine adjustments in predicted anival time 
To detcxmine whether it is feasible to meet arrival time specifications at each goal 
To trade-away minimal goal value in disregarding some goals for speed scheduling 

To schedule fuelefficient speeds that enable time constraints to be satisfied. 
so that othcrs may be satisfied 

The approach that is taken is based on the determination of the back-projection and 
intersection of speeds required to satisfy time constraints within the physical speed 
envelope of the vehicle. Any latitude in speed scheduling is allocated by the use of 
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heuristics. For example, if the window width is very large and t h m  is a range of speeds 
that wil l  result in constraint satisfaction for a mission leg, heuristics determine the time 
'kim-point" within that window. It is assumed that the maximum (level flight) speed is 
flutter-limited as opposed to power-limited and that the variation of maximum speed with 
weight and altitude is negligible for low-level operations. The variation of the speed 
envelope with weight and altitude arc important in fixed-wing applications where the 
fraction of the vehicle weight (and variation in vehicle weight) for fuel is significantly larger 
and where stall/power/flutter limits all shape the speed envelope. In the rotorcraft 
application, the speed envelope is determined by terrain and threats. For low-level 
operations in both NOE and contour flight regimes, the lower end of the speed range is 
bounded by survivability considerations (enhanced exposure to small-arms fire) whereas 
the upper boundary is defined by ground avoidance (clobber) considerations. To avoid 
detailed modelling and parameter adjustment in support of speed scheduling, the NOE 
speed range is defined (for now) as the range (40,80) knots, and the contour range is 
(80,160) knots. The preferred speeds within these ranges arc taken as 60 and 120 knots, 
nspcctively. Finally, the effects of winds is explicit in the algorithm since these effects can 
be significant for arrival time in low sped vehicles. 

Hemistic 
b Selection of speed 

Scheduling 
Plan 

4.2 

The input to the speed scheduling algorithm is the candidate plan that has been 
generated by the plan modification step of the goal planner. The plan modification 
heuristics calculate scheduled arrival times for a l l  waypoints based on nominal speeds for 
the intended flight mode. The speed scheduler refines the anival time schedule before the 
mission plan is evaluated by the utility evaluator, as seen in Figure 30 below. 

Utility 
b Evaluator 

I I L I I I 

Figurc 30. Proposed Integration of Speed Scheduling in Far-Field Planning 

Before describing the details of the speed scheduling technique, it is necessary to 
emphasize design conservatism to avoid plan "brittleness" (Le., excessive replanning or the 
failure to successfully follow any given mission plan). The combination of finite window 
width and the avoidance of arrival scheduling on window limit boundaries provide safety 
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margins. Additionally, the vehicle speed envelope that is used in (far-field planning) speed 
scheduling is conservative with respect to the physical spced envelope. In other words, the 
maximum speed used in far-field planning is shy of the physical maximum speed and the 
minimum planned speed is higher than the physical requirement In this manner, there will 
be an extra margin of speed control authority during near-field execution in order to cope 
with discrepancies between predicted and realized futures. Also, all speed commands are 
given as airspeed commands, ensuring executability regardless of errors in wind 
prediction. 

The functional diagram shown in Figure 31 represents a speed scheduling algorithm that 
has been implemented and tested in a simulation environment The algorithm is labeled the 
"Look-Ahead Speed Schedule" (LASS) algorithm. The speed scheduler has two major 
components: the left-hand side of Figure 31 detennines (1) the maximum consistent subset 
of the goals in the mission plan that include time constraints and a vehicle weight profile for 
all mission legs; (2) the right-hand side uses this information to determine an arrival time 
schedule. The vehicle model is initialized to the current vehicle weight, absolute time, and 
mission plan, including the spud (arrival time) schedule and flight parameters (altitude, 
mode). It then uses the vehicle resourcc use model to predict the vehicle weight for all 
subsequent legs of the mission. Although the vehicle weight profile is one of the principle 
determinants of the physical speed envelope in fixed-wing applications, it is used mainly as 
an input to fuel flow calculations for the low-level rotorcraft far-field planner. Using the 
mission plan as an input, the "Feasibility Check of all (Gi) from now" detennines if any of 
the goals with time constraints are individually within the vehicle speed capabilities. In 
other words, arrival times arc computed for all goals while travelling at the fastest vehicle 
speed for each mission leg and another set of arrival times for the slowest vehicle speed. 
These arrival times define a "feasibility window". If some portion of the specified time 
window constraint falls within this feasibility window, then that goal passes the initial 
feasibility test. The output of this set is a subset (Hi) of goals that axe individually feasible 
with respect to arrival times from the current time. Infeasible goals arc not removed from 
the plan, but arc treated the same way as goals without time constraints. If they were 
removed from the plan, the overall mission timeline might change drastically from that 
assumed by the heuristics in the construction of that candidate plan. The decision to 
remove goals whose time constraints cannot be satisfied is a decision made by the goal 
planner. 

69 



Vehicle 
Weight 
Model 

L 'I 

Check of all 

Goal 

All Consistent? 
No 

Vehicle 
Weight 
Model 

- Revise window 
Limit for Last 

Goai From Now 

Successively 
Revise Windows 
By Baclrprojection 

I 

Heuristics 
To Get TOA 

Figure 31. Functional Diagram Of The LASS Algorithm. 

The next box computes the pairwise consistency of all goal pairs in (Hi). If two 
goals in (Hi) both have timC window constraints, the goals are consistent if it is possible to 
arrive within the later goal's time window after departing at some time within the earlier 
goal's time window while traveling within the vehicle speed envelope. In Figure 32, the 
disposition of time window constraints for two goals is depicted: 
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Figme 32. Spttd/arrival Time Relationships Far Goal Pair Consistency. 

The superscipts LWL and UWL stand for lower and upper timc window limits, respectively. 
The VelOCitits Vi and V2 are: 

The velocity Vi is the slowest speed that will allow both goals to have their respective time 
constraints satisficd; V2 is the corresponding greatest speed. If the speed range denoted by 
(V1,Vd intersects the physical speed envelope, then this goal pair is "consistent". If a goal 
pair is inconsistent, then an accumulator variable ("inconsistency value") for each goal is 
incrementcd by the value of the goal with which it is inconsistent. For example, if goal 1 

with value Vi is inconsistent with goal 2 of value V2, then the inconsistency value of Vi is 
incrcmntcd by V2 and conversely. If not all timeconstrained goals i i ~ c  consistent, then the 
goal with the maximum inconsistency value is marked to be mated as a goal without time 
constraints. The consistency test is repeated iteratively until the maximally consistent 
subset of constrained goals is determined. 

The box labelled "Revise Window Limit for Last Goal From Now" projects the 
vehicle track along the mission plan to the last goal with a time constraint at both the limits 
of the speed envelope (which is changing from leg to leg), as was done for the initial 
feasibility check. The two times that are obtained are compared with the time window 
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=ts of that goal and the intersection (i.e., minimum of the upper limit, maximum of the 
lower limit) is storcd as the "revised window limits." The revised limits of the last goal are 
then "back-projected" (rccursively) to the previous constraint goal. The upper (later) time 
winQw limit of the last constrained goal is propagated backward at the lowest physical 
speed, the lower (early) limit at the highest physical speed. The intersection of the back- 
projected times with the window limits is then stared as the revised limits for that goal and 
the process continues until all constrained goals have revised window limits. This step is 
necessary because the pairwise consistency determination only guarantees that there is 
some speed range that wil l  ensure mutual satisfaction of the time constraints of the pair. 
That spced range may not be the entire speed envelop, and so the back-projection insures 
that all constrained goals in (Hi) can be simultaneously satisfied. The revised window 
limits will generally be narrower than the original specification, and one-sided 
specifications may become two-sided in the revised limits. 

The next step is to apply heuristics to get the planned arrival schedule. Starting 

with the first constrained god on the list, the revised limits are compared to the a priori 
desired time of arrival. If the window center falls outside of the revised limits, the 
scheduled arrival time is set to the limit closest to the window center. Otherwise, it is set 
equal to the window center. If the range of speeds that will result in arrival within the 
revised limits is large (any speed wil l  do), or if the currcnt time is already past the revised 
upper limit (it is already too late), then a suwivability-optimal nominal speed is used to 
compute the scheduled arrival time. The scheduled arrival times for the remaining 
constrained goals art computed successively, and arrival times for all waypoints are 
generated to be used by the execution portion of speed scheduling. 

Given the currcnt time and the "time aimpoint" for the first timeconstrained goal, 
the logic for deriving the sped schedule for all intervening mission legs is illustrated in 
Figure 33. This logic is applied mursively to all downstream constraint goals. 
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Figure 33hgic For Scheduling NOE and Contour Flight Airspeeds Given Time Aimpoint 

All speed assignments are in tenns of airspeed. Arrival time is calculated after vector 
combination with wind speed to predict ground speed. Airspeeds considered for any 
mission leg must lie within the defied speed range for the flight mode on that segment. 
The exposure versus clobber tradeoff is assumed to be most demanding during NOE flight 
and so the logic attempts to leave the NOE speed at the nominal setting unless it is 
physically impossible to sat isfy the time constraints. In other words, all slack in arrival 
time is taken up by adjusting speed along the contour segments. If the contour speed hits 
the allowable boundaries, then the planned speed on the NOE segments is varied (as a last 
resort) from nominal in ordcr to satisfy the time constraints. 

The speed schedule is determined with uniform airspeed (commands) for all NOE 
segments, and a different unif' airspeed for all contour segments between each pair of 
constraint goals. The effects of winds axe incorporated to the extent that they axe known a 
priori. By planning with constant airspeeds, the pilot workload should be reduced with 
respect to continually changing airspeeds. Although near-field adjustments will cause 
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departures from planned speeds, the uniform speed basis should help to minimize the 
fluctuations in speed commands to the extent that this is possible a priori. 

Finally, the vehicle weight profile is nxalculated based on the new speed schedule 
and the result is compared with the weight profile calculated at the beginning of the 
process. If there is a substantial discrepancy at the last goal, of the order of a hundred 
pounds, for example, then the speed scheduling process is iterated until convergence. For 
fixed-wing applications, one iteration is usually sufficient for convergence whereas most 
rotorcraft applications will not qu i r e  any iteration on the weight profile. 

4.3 &y& 

The specd scheduling algorithm was unit-tested by constructing a ten-goal mission 
plan with several NOE legs and with time constraints on several goals. The intergoal 
distances were sampled from a Gaussian distribution with a mean and a standard deviation 
of 7.5 nautical miles for contour segments, and half that distance for NOE segments. The 
cumulative distance to each goal is listed in Table 2. The NOE segments extended from 
goal 4 to goal 7. A uniform wind magnitude of 20 knots was assumed, and wind direction 
relative to ground track was sampled uniformly over 360'. For the first problem, time 
constraints in the form of two-sided windows wcrc imposed on goals 3,6, and 8. All of 
these goals had equal goal value and the time window (full) widths were 1.5-minutes with 
window centers randomly perturbed about a nominal timeline. The window centers and 
lower and upper limit boundaries arc also listed in Table 2 in units of hours. Large 
numbers of test problems like the one described above were randomly generated to assess 
the robustness of the algorithm. The cases presented here represent selections that are 
interesting and simple to visualize in the accompanying figures. Many cases were run with 
varying numbers of goals, constraint goals, NOE segments, distribution of NOE segments, 
variation in time window parameters, etc. 
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Goal 
NUlllbcr 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

5.18 
14.21 
27.80 
29.80 
36.50 
43.64 
49.09 
68.04 
75.37 
88.03 

.332 

.429 

.628 

.319 

.416 

.615 

.344 

.44 1 

.640 

Table 2. Cumulative Distances and Time Consmints For Problem P1. 
NOE Segments Terminate On Goal #s 5,6, and 7. 

To provide a baseline of comparison for the speed scheduling algorithm, a simpler 
alternative algorithm was derived. The simple algorithm, referred to as the "Next Goal 
Speed scheduler" (NGSS), computes a desired ground speed for each segment by dividing 
the total distance to the next constraint goal by the difference between the window center 
and the departure time from the previous constraint goal (or the current time for the first 
constraint goal). The ground speed is converted to an air speed and bounded by the 
suvivability/clobbcr speed envelope for each flight mode, as previously discussed. Since 
the NGSS algorithm does not look-ahead it functions in a responsive as opposed to the 
anticipative modc of the LASS algorithm 

For the problem described, labelled problem P1, the results for both speed 

plotted versus arrival time, with time windows on constraint goals indicated by the span 
between horizontal e m  bars at those goals. The slope of each line segment indicates the 

with larger (Le., more nearly vertical) slopes indicating higher ground 
speeds. The shaded plotting symbols indicate the nsults for the LASS algorithm, the open 
symbols results for the NGSS algorithm. The initial timc is offset by -.2 hours, indicating 
that there is a timc surplus at the beginning of the mission relative to the preflight plan 
timcline. The LASS algorithm determines at the outset that the time consuaint for goal #3 
is inconsistent with the constraints at goals number 6 and 8. Hence, the LASS schedule 
docs not attempt to pass through the window at goal #3, and schedules a constant airspeed 
on the first four segments of 136.8 knots (contour flight modc), followed by an NOE 

schedulers are presented in Figures 34,35, and 36. In Figure 34, the distance travelled is 
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speed of 60 knots to goals 5 and 6. The arrival at goal 6 is well within the window 
boundaries, and the speed schedule for the next segment is 80 knots (NOE) followed by 
160 knots to arrive at goal #8 just inside of the right hand boundary. Since there are no 
time constraints after goal #8, the final two segments rn scheduled for the nominal contour 
airspeed of 120 knots. The achieved ground speed varies between constant airspeed 
segments because of wind variations. 

In contrast, the NGSS algorithm tries in vain to achieve al l  time constraints with a 
scheduled airspeed limited to 80 knots (minimum) on the fmt h e  contour segments. 
Upon arriving too early at goal #3, the airspeed is scheduled to the next two constraint 
goals on the upper limits of allowed airspeed for both NOE and contour segments. 
Because of the slow-speeds in the futile attempt to capture goal #3, however, there is 
insufficient speed to capture either goal #6 or goal #8 within their respective time windows. 
The NGSS algorithm missed all constraint goals by failing to recognize the inconsistency 
between constraint goals. These goals might have been consistent under the conditions that 
the initial time line was established, but they have become inconsistent by the virtue of the 
progress along the mission on the way to the first goal. 
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Figure 34.Goal Arrival Times For NGSS, LASS and Specified Constraints For P1. 
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A comparison of scheduled airspeeds for each mission leg is shown in Figure 35. The 
sacrifice of the first timc-constrained goal by the LASS algorithm is clearly visible. Figure 
36 shows the arrival time discrepancy relative to the window boundaries (indicated by the 
heavy lines) for both methods. Too early an arrival is indicated by a negative number, too 

180 
m -  

l6O1 - 
1 2 3 4 5 6 7 8 9 10  

Mission Leg 

Figure 35.Comparison of Scheduled Airspeeds For NGSS and LASS Algorithms For P1. 

late with respect to the window center by the positive number of hours. These plots 
complement the picture provided by Figure 34. For a single 1200-shp engine and 9O00 Ib 
initial vehicle weight, the LASS schedule results in a 560 Ib fuel burn as opposed to a 550 
Ib fuel burn for the NGSS schedule. 
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Figure. 36. Satisfaction of Time Constraints By NGSS and LASS Schedules For P1. 

In the next example, problem P2, the goal distances and wind directions are the 
same as in the first case, but the wind magnitude is increased to 35 knots and the time 
window constraints arc shifted slightly with respect to the fmt case. Since the initial 
timeline (is.* time window constraints) is laid out with a zcro wind assumption for these 
problems, the high wind speed makes the scheduling problem particularly challenging. 
The distance versus timc trajectories plotted in Figure 37 far NGSS and LASS algorithms 
appear quite similar. On closer inspection, it may be observed in Figure 39 that both 
schedules achieve goal #3, but that only the LASS algorithm successfully captures goals #6 
and #8. The NGSS algorithm fails because it does not recognize that adverse wind 
conditions on subsequent legs require time to be banked on the leg between goals #3 and 
#4. 
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Figure 37.Goal Arrival Times For NGSS, LASS and Specif~ed Constraints For P2. 
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Figure 38.Comparison of Scheduled Airspeeds For NGSS and LASS Algorithms For €2. 

The greater stability in scheduled airspeeds for the LASS speed schedule relative to the 
NGSS schedule is illustrated in Figure 38. 
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Figure. 39. Satisfaction of Time Constraints By NGSS and LASS Schedules For €2. 

The last example, problem P3, includes four constraint goals (#s 2,4,6 and 8) and 
five (non-contiguous) NOE mission legs (#s 2,3,6,7 and 9). The goal distances and winds 
arc somewhat different than for the first two problems. The NGSS algorithm fails to 
achieve arrival times within constraints at goals #2, 6, and 8. This is most clearly visible 
in the arrival time discrepancy plot of Figure 42. The LASS algorithm anticipates the 
slower mission progress on future NOE legs and banks time on contour flight segments to 
balance the slower speeds. The LASS arrival time discnpancy was near zero for all four 
constraint goals in this problem. 
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Figure 4O.Goal Arrival Times For NGSS, LASS and Specified Constraints For P3. 
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Figure 41.Comparison of Scheduled Airspteds For NGSS and LASS Algorithms For P3. 
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Fig. 42. Satisfaction of Time Constraints By NGSS and LASS Schedules For P3. 

The computation times for the NGSS and LASS algorithms arc 0.2 and 1.3 
seconds, nspectively on the Macintosh Plus microcomputer for the first two problems, and 
0.2 and 1.5 seconds for the last example. Although this represents a significant fraction of 
the t i m  allocated for far-field planning (when 200 candidate plans are considered on a 1 .O 
Mips processor), the computation time should be manageable within the overall time 
budget. 

4.4 

Planned arrival times will not be achievable with open-loop control. The execution 
component of speed scheduling is necessary for compensation for actual versus planned 
winds, threat encounters, navigation, etc. The pilot speed advisory can be computed from 
the ratio of the "distance to go" to the next waypoint and the "the to go" (scheduled arrival 
time minus current time). This mechanism can be quite simple because a situation 
assessment function is using the vehicle weight model and associated inputs to regularly 
update predictions of total resources and time expended during the mission. The 
thresholding of the difference between the current prediction and the planned value 
provides the basis for triggering in-flight far-field replanning. This monitoring capability 
prevents the execution speed scheduler from commanding excessive and futile expenditure 
of resources before far-field replanning can address the underlying problem at a higher 
level. It might also be noted that situation assessment will trigger replanning when 
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resource expenditures are substantially better than planned so that far-field replanning can 
take advantage of new opportunities. 

Given a scheduled arrival time at pverv waypoint from the arrival time scheduler 
(even though only one or two goals may have time constraint specifications), the speed 
control algorithm has three steps: 

calculate quircd ground speed based on estimated position and time to go until 

convert to airspeed 
apply vehicle maximum and minimum spceds to bound the commanded (setpoint) 

arrival time 

airsped 

The equation for the first step is: 
(SF) (Dta 

go vs = 

w h m  

Vg =groundspeed 

SF 
Dm go =distance between estimated cunrtnt position 

Tm go = time interval between ament time and arrival 

= safety factor (- 1.05) 

and next waypoint 

time scheduled for next waypoint 

If the time to conduct a search and "homc-in" on the waypoint location to within the 
specified tolerance is a non-negligible fraction of the transit time, then the factor Tto 
must include allowance for this starch time. If Tt, go is negative, indicating that the 
current time (plus search time) exceeds the scheduled arrival time, then the spced for the 
remainder of that leg is set to the nominal airspetd for that flight mode. 

The safety factor (SF) with value slightly greater than unity results in slightly higher 
speeds on the initial portion of each leg that gradually decrcase along a nominal, uneventful 
track. It provides an extra margin of time control to counteract the effects on arrival time of 
unplanned or off-nominal circumstances. The cost of this extra margin is a slightly higher 
fuel use. 

The conversion to airspttd in the second step is given by: 
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where 

Va 
VW =windspeed 

= airspetd cmsponding to ground speed Vg 

= ground track azimuth %! 
b =winddirectionazimuth 

The third step is represented by: 

where 
vmax 

Vmin 

V& set 

= maximum airspeed for vehicle weight, attitude of 

= minimum ampeed for vehicle weight, altitude of 

= resultant set-pint airspeed advisory 

segment 

segment 

The values of Vmh, V-, and the range-optimal airspeed may be obtained from 
previously implemented functions or from an interpolation procedure. 

4.5 

The primary function of situation assessment is to monitor the execution of the 
current mission plan and trigger a replanning event when there are indications that the 
current plan is becoming untenable and also when then arc new opportunities that may be 
realizable through replanning. The kinds of information available to situation assessment 
are the time and fuel remaining at selected locations such as waypoints/goals, or 
alternatively, the distance and fuel remaining at selected times. In prior incarnations of 
planning, the utility evaluator could be initialized at an arbitrary location in the plan and the 
current plan utility would also be available as a monitarcd variable. 

Given the current planner structure, the distance and fuel remaining at selected times 
are the p r e f d  monitor variables. This does not require the attainment of locations that 
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may be unaccessible by virtue of conditions that are not known a priori in the on-board 
database or models. The discrepancy between modeled and predicted performance and 
actual Pcrfonnance, as well as statistical variability in the environment will be the principle 
challenge to successful execution of a mission plan. Situation assessment and on-board 
replanning arc critical to meeting this challenge. Situation assessment must trigger 
replanning with enough lead time so that replanning can be effective in revectoring and 
reconfiguring the mission for a changing environment. On the other hand, if situation 
assessment is "hair-triggered," or set off by measurement noise, then replanning at too 
frequent intervals may preclude the successN execution of any plan. 

One concept for mechanizing situation assessment is to calculate position and fuel 
milestones in the far-term planner and include this information in the mission plan to be 
passed to situation assessment. The latter would then periodically compare estimated 
position and mcasured fuel remaining with interpolation between milestones and apply a 
threshold to the discrepancies to trigger replanning. This concept has several deficiencies, 
the principle one being the potential inconsistency between planner models and data and the 
(simulated) "real world." It is not likely that the assumed and "real" drag coefficients and 
specific fuel consumptions, for example, will be a close match to the real data throughout 
the mission. Such discrepancies do not necessarily detract from the usefulness of these 
mociels/data for planning. F O ~  plkning purposes, it is only necessary that the mociels/ciata 
provide a consistent relative evaluation of different candidate plans and that consistency 
with respect to the "real world be present in some integral or global sense. 
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A simpler and mom robust schema for situation assessment is to analytically predict 
the fuel use and final time for the entire mission. These quantities are calculated and saved 
in situation assessment when a new mission plan is installed. They are then periodically 
recalculated, used to update a recursive filter estimate, and the filter estimate thresholded 
against the prediction at plan installation. The fuel used wil l  depend on the spetd control 
and so situation assessment will predict fuel use using the speed control model actually 
implemnted in the near-field planner. The quantities needed for the prediction are: 

currcnt vehicle weight, altitude and time 

ground track distance, scheduled arrival time and altitude for all remaining 
waypoints/goals 

wind magnitude and direction for each remaining segment (average) 

weight-altitude interpolation of (air density, vehicle speed envelope plus range- 
optimal specd) and vehicle fuel consumption models. 

The analytic solution for the fuel consumption along a mission leg is discussed in 
Section 5. The fuel use rate is fitted to a linear function of vehicle weight for each mission 
segment. This is an excellent approximation, and leads to analytically simple results. 

The calculational steps for the fuel and time prediction are as follows: 
initialize TmW to the current time, WGTl to the currcnt weight 

for a l l  remaining mission legs: 

- evaluate Dt, go, the distance remaining on this leg 

-evaluate Ttogo =Tscheduledanival- Tnow 

- evaluate desired ground speed Vg from Equation (23). 

- convert to airspeed and bound by vehicle envelope as indicated 
earlier in discussion of speed control. Va = commanded airspeed 

- evaluate power nquircd and fuel burn rate at WGT1, and at 
altitude for this leg and speed Va 

- extrapolate weight to the end of the leg: 
W G W  = WGTl - (fuel ratel) Tw go 

-evaluate power required and fuel burn rate at WG- 

- linear fit of fuel burn vs weight: - %= A W + B 
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fuel ratel - fuel rate2) 
(WGTI - WGTC9) A =I 

B = .5[ (fuel ratel + fuel raw - A( WGT1+ W G m )  ] 

- evaluate analytic solution for wight at end of leg 

- update TmW and WGT1 for next leg 

The rtcursive filter equation is: 

when 
e.&.> indicates the filter estimate at the kth data sample 
WGTkfinal indicates the analytic prediction at the (kth data sample) 

and c - .7 to yield a long filter time constant. 
Cumnt time 

The exponential tcrm in Equation 29 can usually be replaced by the fmt ordcr expansion. 
Then is an identical equation for the final elapsed mission time. The sample (i.e., update) 
time inmal would probably be on the order of 30 seconds. 

The thresholding of the filter estimates with the initial data at plan installation is a 
test on absolute value of the difference of the quantities. The determination of an 
appropriate threshold value will require some trial and error, but a value between 3% and 
5% is probably appropriate. In some cases, a scheduling of this threshold with mission 
time may lead to improved pcrfomance with respect to false negative and false positive 
indications that rcplanning is desireable. 

In summary, the concept for situation assessment is not sensitive to early and late 
errors in individual waypoint arrival times that may cancel through the effects of speed 
control. The impact of speed control on fuel useagc is explicitly modeled. The updates to 
the final fuel and time use include the measured (estimated) fuel remaining and vehicle 
position. Hence, discrepancies between the initial data (at plan installation) and later filter 
estimates reflect discrepancies between initially predicted and actual fuel and time 



consumption. The assessment process should not require any substantial processor time. 
Finally, the effects of a failure affecting fuel use and timeline such as loss of one engine, 
the effects of extraordinary winds and the effects of unplanned delays should all be 
manifest in the monitored variables. The scheme will &tat  slow drift in modeled versus 
"nal world" discrepancies as well as the sudden appearance of such discrepancies. 
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SECTION 5 

MODELS 

5.1 Backmound 

In this section we describe the principle models that support the goal and waypoint- 
path planners and the testing (simulation) environment. In all instances, the models are 
used in non-real time to initialize databases that are subsequently used during on-board 
replanning. In some instances, the models are used in real-time by situation assessment 
and goal-planning functions. The fuel use model is the most readily derived from 
phenomenological rotorcraft "theory" and is one of the most important models. 
Survivability modeling is equally important, but is not deducable in as generic a form as the 
fuel use model. Finally, there is a brief discussion of the navigation error model and a 
windfield model. These models have not been integrated with the goal and waypoint path 
planners during the current phase of this project. Upon integration, all of these models will 
affect the utility (objective function) evaluation and some will be utilized by the heuristics as 
well. 
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5.2 Fuel-Use 

The fuel usage determination for a given flight path, x(t), may be broken up in four 
steps as follows: 

(1) Determination of the non- gravitational force , E 

This follows from the path acceleration, (t ), needed on the flight path with _F (t) 

given by 
.. 

EO) = m ( t ) * ? m  - g (3 1) 
where 

m = mass of the vehicle 
g = gravity vector. 

(2)  Determination of rotor thrusts & 

Rotor thrusts for the force and moment balancing requirements are such that : 

- F(t) = & + &  (32) 

where 
= non-rotor (and nongravitational) force 

5 = rotor thrust 

Further assumptions are needed on the directionality of TA to help determine TR, 
given E. We shall assume a flight attitude such that non-rotor aerodynamic force is 
primarily drag with negligible components along the lift axis and the lateral axis. Above 
implies that all turning motion is coordinated with zero side angle of attack. 

Since Tq is not actively controllable, it can be determined as a function of the flight 
condition and the airfrsune characteristics. 

(3)  Determination of rotor power *Pmr 

Rotor power to generate the main and tail rotor thrusts for a given flight condition 
and airframebtor characteristics. 

90 



(4) Fuelflow rate , WF, 

Fuel flow rate required to supply the rotor power and the auxilliary power based on 
the engine fuel- power characteristics. 

We shall now elaborate further steps (2), (3) and (4) above. 

5.2.1 Rotor Power Determination 

The power applied to the rotor is dissipated in performing three different functions: 

(1) inducing a change of momentum in the air mass flowing through the disc of the 
rotors, with power expended, Phd , "induced power." 

(2) moving the blades through the moving air, i.e. overcome the rotor drag, with 
power expended, Pprof, "profile drag." 

( 3 )  overcoming the parasitic drag associated with the movement of the air past the 
non- rotor components, with power expended termed, PPm , parasitic power. 

Analytical modelling of the airflow is difficult in the face of important effects such 
as stalling, compressibility etc. A simpler approach based on momentum and blade element 
theories is favored [15]. Further, the rotor power, Pmmr, is determined for level flight with 
additive corrections for changing the energy-level [ 161, i.e. 

protor = Plevel flight + PAenergy level (33) 
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with flight in horizontal plane at unchanging energy-level, Es, defined by: 

where 
h = altitude 
W = weight 
I = rotorinertia 

R = rotor speed 
v =airspeed 

The power required to change the energy-level may be determined from (34) , viz. 

dEs dh+vdv  I Q d n  
dt dt gdt W dt - = -  -- +-- 

and the relationship 
W d B  

PAenergy level = & 

(35) 

where n is the efficiency factor. Of particular interest are the two cases with reported values 
of climb/descent and level acceleration with values of n as below: 

- climb/descent condition [15]: 

n = .75 - 3 5  for dh/dt > 0 
= 1  for BNdt c 0 (37) 

- level acceleration [ 161 : 

n = 0.8 - 1.0 (38) 

The power required for level flight is calculated in terms of the three components 
described earlier: 

Plevel flight = P i d  + Pprof + ppara (39) 

We give below the detailed equations of the three components: 

Rotor induced power, Pid 

Pid  = Tm Vi 

where 

Tm = rotor thrust (based on earlier steps 1 and 2) 
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= induced velocity given by Equation (41) 

1 m r  
(the induced velocity at hover) (42) 

2p~Rmr*E~ 

=0.95 [15] 

= main rotor radius 

(effective non-dimensional rotor radius 
where tip losses become significant) 

= air density 
= vehicle forward air speed 

Rotor blade profile power, Ppmf 

where 

(rotor solidity ratio) bc 
ZRmr 

CJ = -  

b 

C = blade chord 

= number of rotor blades 

- 
q = blade section drag coefficient 

p = -  (rotor advance ratio) 

vt = tiprotorspeed=QR, 

V 
"I 

Typical values for these parameters are: 
- 
cd = 0.0()8 (main rotor) 

= 0.0107 (tail rotor) 
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Parasitic Power, Pm 

where 

fe = equivalent flat plate area of non-rotor drag 

Typical Values: From Figure 1.4 of [15], we have following trend values for production 
helicopters: 

= 200 lbs/ft2 for high drag designs 

= 400 lbs/ft2 for average drag designs 

= lo00 lbs/ft2 for exceptionally clean designs 

Additional gects: 

It may be remarked that effects such as the non-uniform downwash effect, 
compressibility effect, parasitic power correction,etc. give rise to corrections to the 
expressions above. These corrections, however, are higher order (and hence negligible) 
terms from the perspective of modelling for fuel-use planning. 

Tail Rotor Power, Pt, 

As described earlier, the tail rotor thrust, Tt,, is determined h m  moment balancing 
considerations , specifically to overcome the main rotor toque. Thus, 

(45) 
Pmr Tw = 

Qmr& 

where 
Pmr = main rotor power, ft-lb/sec 

Qm = main rotor speed, radsec 

Lt, = tail rotor moment arm, (ft). 
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Shaft Power, Psh 

Having determined the main and tail rotor power requirements for a given flight 
condition as above, we can determine the required shaft power at the engine from 

The tail rotor power, Pm, requirements are detemined from [ 151 

(46) Pu =Tt ,Vie+gOmEdJ 1 1 +4.7 ~ ~ 2 ) p x R ~ 2 ~ t ~ ’  

where Vi follows from equations of the same form as (41) and (42) with Tm and Rmr of 
(42) replaced by Tt, and Rt, associated with the tail rotor and pu and vt are defined 
similarly. 

where 
nt = transmission efficiency 

APXc = accessory losses 

We can express the shaft power conventionally in terms of hp units with 
Psh 
5 5 0 (hp) (48) SHP = - 

Typical Values [ 151: 

nt = 0.95 for low and intermediate speed bevel and planetary 
@ars 

= 1.0 for high speed bevel gears 
and 

APzc = 2 9% of shaft power, related to engine plus transmission 
cooling blowers, electric power generators and 
hydraulic power supplies. 
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5.2.2 

of 

Engine Fuel Flow Model 

Engine rating 

We size the engine with maximum continuous rating at sea level standard conditions 

SHP,c = k P ( hover, sea level std, max wt) (49) 

where 
k = factor > 1. 

For the utility/transport type helicopter of [ 151, k = 1.04. For an agile attack helicopter, a 
more appropriate choice is k = 2.0. The second factor represents the shaft power required 
for hover at sea level and standard day temperature, pressure and density conditions and 
maximum weight conditions as evaluated from Equation 48. A higher power level called 
the "intermediate continuous" power ( S H P I C )  is available for a limited stretch of time (no 
more than 4 hrs, [ 151) for takeoff or emergency situations. A typical ratio [ 151 for SHPIc 
/SHPMC = 1.23. Both power ratings change with pressure altitude and ambient 
temperature as: 

SHP, = S H P O 6 + i  

where 

SHP, = engine rating at sea level standard atmosphere 

6 = ratio of ambient pressure to sea level std pressure 

8 = ratio of sea level std absolute temp to ambient temperature 

The engine rating for different vehicles may be specified to support hover requirements at 
higher altitudes, hotter ambient temperatures, or to support maneuver requirements. 

Fuel Flow Model 

Given the required shaft power, SHP as per Equation (48), we can determine fuel 
flow rate , WF , from the engine characteristics. We shall assume an engine with Specific 

- fuel consumption, (sfc 2 WF/ SHP) characteristics as given in Figure 1.8 of [15], that 
also reflects the sfc trend of typical engines with sfc = .5 lb/hp-hr at the design cruise 
condition. 
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Based on Figures 1.8 and 1.9 of [15] , we can determine the following fuel flow 
model: 

096 S H P  
sfc = 0.404 + .+ 

WF = 0.404 S H P  + 0.096 SHPIC (52) 

5.2.3 Selection of Hypothetical NOE Mission Helicopter Parameters 

We have chosen many parameters from standard design considerations and from 
[ 151. We still need to determine the basic rotor parameters of solidity, rotor radius and 
rotor speed along with the weight of the vehicle. This will then complete the specification 
of all parameters that are of significance for fuel flow modelling. 

The prominent considerations for the selection of rotor parameters may be simply 
stated as below. 

- rotor radius , i.e. disc loading, is selected large enough such that disc loading and 
hence induced power losses are low. It may be remarked that induced power at hover 
primarily determines the size of the engine and hence the fuel load required for a given 
mission, with lower disc loading leading to improved fuel-to-weight ratio. 

- rotor speed/solidity are selected to minimize the rotor blade profile power based 
on minimizing the rotor tip speed subject to stall angle limitations. The minimum profile 
power loss is achieved for blades operating, on the average, at as high an angle of attack as 
is possible without stalling and such that the requisite thrust is produced. The tip speed is 
selected based on stall and compressibility considerations at maximum forward speed 

whereas the solidity is picked from power efficiency considerations. 

The NOE mission hypothetical helicopter parameters for fuel flow modelling 
purposes are as below: 

Weight Parameters 

Design gross weight = 7500 Ibs 

maximum weight = 1.2 7500 lbs , using same fraction as in [15]. 
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Rotor Parameters 

I MainRotor 
I 
I 

I 20 ft 
28 radsec 

4 
0.75 ft 

Parameter Tail Rotor 

3.5 ft 
28 radsec 

4 
0.75 ft 
23.5 ft 

radius R 
rotorspeed R 
no of rotors b 
rotorchord c 
momentarm LW 

Table 3. Rotor Parameters For Baseline Helicopter Model 

The rotor radius is sized so as to provide rotor loading, , defined as 
rotor thrust (hover) t c =  (53) 

P V t L  rotor area 0.7 

of approximately 0.3 ( see [ 16 1, also [15] helicopter has the same value). Further we 
select the same rotor speed, and same type of blades as [ 151. 

Calculation of lift required for turning-climbing flight 

We shall consider the case of a coordinated turning-climbing flight at unchanging 
speed. The figure below defines the forces on the point-mass model vehicle. The required 
lift for the coordinated turning-climbing flight at unchanging speed can be determined from 
the steady state equations of motion in the lateral as well as longitudinal plane. 
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4 
A L  cos & cos $ 

Lift vector 
L 

I LsinE Longitudinal Axis 

L cos & sin $ 

~~ 

Figure 43 Lift Vector Components Along Longitudinal Axis And In Lateral Plane 

In the lateral plane, the lift components are required to overcome the component of 
gravity as well as provide turn acceleration. Thus, 

mgcosy = LCOSECOS$ 

mri$ = LCOSESin$ 

where 

E 

y 
$ =bankangle 
r = turningradius, 

y/ = turnrate = v c o s y / r  

= angle of tile of lift vector out of lateral plane 

= flight path angle (positive is climbing) 

(54) 

(55)  

. 
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In the longitudinal plane, the lift vector is tilted by E to overcome drag and the component 
of gravity along the longitudinal axis. Thus: 

L s i n ~  = D + mgsiny (57) 

Combining equations (54) and ( 5 3 ,  we may derive: 

L cos E = -\I cos*y+ r i 2  - 
mg g 

From (27) and (28) , we can determine the required lift ( Le. the rotor force ) with 

Given the vehicle forward speed, the net drag force D is estimated as: 

fte P v2 
2 D =  

where 
fE = equivalent flat plate area for total drag 

After adding the wind velocity to derive an inertial velocity, vi,,, and given a rate of climb, 
k , the flight path angle is inferred: 

(61) 
il siny = - 

vin 

- G2 
Hence, given the flight conditions of altitude, speed, climb rate, and g (the number of 
g's pulled in turning maneuvers), Equation (59) can be evaluated for the rotor thrust 
required for that flight condition. Equations (39) through (48) are then evaluated for the 
power required and equations (35) through (38) are applied for the energy-state correction, 
PAenenrgy level. 

The following figures illustrate the power and fuel rate trends as a function of 
vehicle weight and airspeed at different flight conditions. Figure 44 shows the power 
required, fuel rate for an assumed engine rating, and fuel economy as a function of airspeed 
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and vehicle weight. The boundaries of the shaded regions correspond to the 6000 and 
7500 Ib vehicle weights for level flight. The minimum fuel rate occurs at a slightly higher 
airspeed than the minimum power requirement. The maximum "fuel economy" in terms of 
distance travelled per pound of fuel consumed occurs at a still higher airspeed. The 
variation of the lower curves is somewhat suppressed by the scaling, but the fuel economy 
is slowly varying over the high speed region above 150 ft/s. The variation with vehicle 
weight (Le. across the shaded areas) at a given speed is highly linear over the indicated load 
range. 

800 I 1 
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400 

200 

0 
onomy ( d b  x 200) 

0 50 100 150 200 250 

Airspeed (ft/s) 

Figure 44 Power, Fuel Rate, and Fuel Economy For Vehicle Weight 6OOO - 7500 Ibs. 

The next figure shows the variation of power requirement with vehicle weight and airspeed 
for a level turn at 2G turn acceleration at sea level compared to the level flight power 
requirement at the same conditions. The shaded region again represents the variation with 
vehicle weight. The fuel use rate and fuel economy show similar parametric variation with 
flight conditions and vehicle weight. 
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Figure 45. Power Requirements For Level Flight and 2G Maneuvers (Sea Level Std.) 

Finally, Figure 46 shows the power requirements for flight conditions corresponding to 
two different climb rates in the same format as the previous figures. The power and fuel 
use for any combination of altitude, airspeed, climb rate, turn acceleration, and vehicle 
weight can be obtained from the models described in this section. 

In order to use all of the above in planning, it is first necessary to establish a 
correspondence between terrain features at the underlying map resolution (-2 km) with a 
program of flight conditions (t ) for each of several flight modes, including NOE, 
contour flight, and cruise. For example, the program of flight conditions in traversal of 
any grid box must be summarized as a function of a few parameters that distinguish one 
grid box area from another. The fuel-use models are used with the assumed flight 
conditions to infer the fuel use in traversal of each category of grid box, or possibly for 
each grid box. These calculations are performed preflight and are part of the preparation of 
the database that is used for planning. Parameters are stored for each grid box that can be 
used in the on-board planning process to evaluate the fuel-use in traversing that grid box as 
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a function of speed, direction, and flight mode. The software and methodology for 
preparing this database have not been addressed in the f ist  year's effort as currently 
reported. 

1500 

- 

1000 

500 

I I I 

100 150 200 

Airspeed (ftls) 

Figure 46. Power Requirements For 20 and 40 ft/s Climb Rates (Sea Level Std) 
Upper and Lower Boundaries of Shaded Regions Correspond To 7500 and 6OOO lb 

Vehicle Weights, Respectively. 

5.3 Survivabilitv 

The basis for waypoint planning is the network search for a minimum cost 
(lethality) path subject to a resource constraint. The path costs are assumed to be additive 
over the nodes that are traversed. The path cost reflects the impact on survivability for 
transit between nodes of the nctuork. Detailed and high-fidelity modeling of threat 
engagement and outcomes is not  s o  important for path determination as the expression of 
relative cost between alternative paths. 

From an intutitive basis, i t  is to be expected that the lethality cost per unit time (or 
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distance) will be a function of the vehicle location, flight mode (Le., NOE or contour), and 
vehicle speed. The location dependence arises from differences in terrain features that 
reflect the vehicle detectability in different flight modes. For example, at several hundred 
feet altitude over flat terrain or water, the vehicle is detectable at great distances by ground- 
based radar and electrooptic sensors. When there are terrain features such as trees and hills 
and the flight mode is NOE, vehicle detectability can be made quite small by using 
intervisibility constructions to provide terrain masking between vehicle and (known) threat 
emitters. The location-dependence also derives from the number (or number-density) and 
type (i.e., capability) of threats and their geographic distribution. The vehicle speed 
influences the lethality cost because the dwell or exposure time within threat range is 
inversely proportional to the vehicle speed. Slow speeds permit more time for acquisition, 
targeting, and weapon employment against the vehicle. This holds true for infantry small 
arms fire as well as surface to air missiles. 

The comct functional trends for lethality cost should be produced by the following 
model: 

where 

x = detection rate per unit time 

At = transit time from node i to node j 

co = normalization constant 

For a given threat environment and flight mode, the cost is an exponentially saturating 
function of exposure (transit) time between nodes. The detection rate, a, will depend 
linearly on the known threat density or probability of their being a threat of a given type 
within detection and engagement range of the nodal segment. The exposure time can be 
converted to a distance as: 

As 
At = - V 

where 

As = internodal distance 

V = average ground track speed 

Finally, the terrain will influence h by intervisibility considerations and multiple 
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threat types can be separately enumerad  

where 

h m  = detection rate per unit time for threat type m 

PT = threat density per unit area 

R = local topography 

The speed to be used in Equation (64) is a nominal vehicle speed for the flight mode 
indicated for that node. The flight mode is determined by the density and capability of 
threats in the mission area. Contour flight is preferred in lower risk areas to minimize flight 
time, pilot and vehicle stress and fuel use. NOE flight is indicated when the assessed risk 
exceeds a certain threshold and low, slow and concealed transit is preferred. 

The exponentially saturating model is appropriate to a random encounter model 
wherein threat locations are not precisely known, or are known only probabilistically as 
density functions. Assuming a detection range, distribution of threats, and a detection 
model involving coherent integration of information received over a period of time, the 
detection rate h can be derived phenomonologically. It is sufficient for our purposes, 
however, to assume that there is some known function hm(pTp ) that can be evaluated to 
yield lethality costs for transit between all pairs of adjacent nodes. This information is 
processed preflight and results are stored in an array to support waypoint path planning. 
The cost numbers may not be in a form easily relatable to quantitative survivability, but 
they are nonetheless useful in evaluating different paths for cost-incurred versus resource- 
used tradeoffs. In addition, the goal planner will use the cost information (and possibly 

other information stored for the network) to evaluate the branching probabilities discussed 
in Section 2. 

5.4 Navigation Error 

A navigation error model is to be used by the goal planner to assess the probability 
of achieving goal arrival within specified positional tolerances and to assess the time and 
fuel-use needed for landmark search to support a navigation update. These considerations 
will affect the evaluated utility for any mission plan and will indirectly affect the converged 
mission plan when the effects of navigational uncertainty cannot be assumed to be 
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negligible. Some goals and associated goal actions will require tight positional tolerance 
whereas other goals need not be overflown to high accuracy, if at all. In general, provision 
should be made in any planner design to accomodate the real likelihood of navigation 
errors, navigation uncertainty and navigation requirements. 

Without detailed modeling of any particular inertial navigator, the following model 
captures the essence of the navigation error and uncertainty propogation in time. The 
velocity errors are assumed to be described by a first-order Markov process: 

where 

u(t) 

z = time constant 

= unit variance white noise 

ov2 = steady state velocity error variance 

Together with the position error equation, 

6; = 6v 

the coupled system can be written in discrete time form as 

where 

6P(O) - N(O,OpO*) 

6 ~ ( 0 )  - N(0,0a2) 
ul(t),u2(t) = unit variance, zero mean, independent 

sequences of white Gaussian noise 

a(At) = 

b(At) = 

d(At) = 
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The covariance is ppogated  as: 

in between landmark updates, and 

after the update. Numerical examples of the evaluation of the above model are shown in 
Figures 47 and 48. In the first figure, the positional enor trajectory is plotted at a number 
of discrete time points, showing the meandering growth of positional error (without 
navigation updating). In Figure 48, the positional error is plotted as a function of time 
along with the ? lo error position uncertainty from the covariance equation. 
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Figure 47. Position Error Trajectory For First-Order Markov Process. 
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Figure 48. Position Error And I 'ncenainty (Covariance) Without Landmark Updates. 
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5.5 Windfield Model 

The prevailing winds as a function of altitude, month and location may be predicted 
by use of semi-empirical models and an associated database [18,19]. The basis is the 
geostrophic wind relation: 

1 a p  v =  
2 p o s i n ~  

where 

U 

V 

P = atmospheric density 

0 

$ = latitude 

= eastward (horizontal) wind component 

= northward (horizontal) wind component 

= angular velocity of the Earth's rotation 

= north component of horizontal pressure gradient ap 
F 
ap = east component of horizontal pressure gradient 

This relation is valid away from the equatorial belt &e., ? 15' latitude) and for altitudes 

from about 1 to 25 kilometers above ground level. It is derived from the force balance 
between the pressure gradient and the Coriolis effect; and neglects friction, time changes of 
wind, and vertical motion (usually c .03 ft/s). In a band around the equator, an 
interpolation scheme between wind values at the boundaries of the band is used to predict 
wind values inside the band. 

In addition to the mean geostrophic winds inferred from the monthly mean pressure 
and density data, there are corrections for "Quasi-Biennial Oscillations" (QBO) in the 
pressure, density, temperature, and winds with an 870 day period sinusoidal oscillation 
and with amplitude and phase varying with altitude and latitude. Also, there are smal l  scale 
random perturbations that represent the effects of turbulence and gravity waves and large 
scale random perturbations representing tides and planetary waves. The random 
perturbations are correlated spatially across relaxation distances of several to several tens of 
kilometers. 
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Data for (monthly mean) pressure, temperature, density, and perturbation (daily) 
variances are stored in a database containing a total of 3490 latitude,longitude points 
including the National Meterological Center (NMC) grid, a northern hemisphere equatorial 
(EQN) grid, and a southern hemisphere (SH) grid, with empirical data for every one 
kilometer altitude up to 25 kilometers and for every month of the year. An elaborate 
interpolation scheme is used along with a finite difference approximation of equations (7 1) 
and (72) to calculate the predicted windfield. The correlations for the random perturbations 
are also fairly elaborate, and the random contributions are appropriately sampled. Since the 
variance in the windfield components is typically a good fraction of the mean value of those 
components, the output windfield is one sample point from a random distribution. If actual 
meterological measurements are available, however, the windfield model can be used to 
extrapolate from the measured data out to a distance on the order of the correlation 
distances. 

The windfield model is not obviously useful at NOE or even contour flight 
altitudes, but may be used nonetheless to generate simulated windfields for testing. The 
planning database requires terrain, threat (i.e., intelligence), and meteorological inputs 
arrayed on a common basis and reduced to representations that facilitate rapid access and 
utilization. The construction of these databases to support operational use of planning 
software is a substantial task by itself that has been largely ignored to date. 
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SECTION 6 

CONCLUSION 

6.1 Summary 

The major components of a far-field mission planner have been studied and 
algorithmic solutions implemented in a microcomputer environment. These include a goal 
planner, waypoint path planner, speed scheduler and associated models. The 
microcomputer environment was the Fortran language on the Apple Macintosh PlusTM 
Computer, a 68000-based computer (without math coprocessor) with approximately 0.1 
Mips processor speed and with 5 12 Kbytes memory usage. 

The overall planning framework for multi-objective missions with multiple 
constraints is based on a utility theory formulation. That is, the probability of successfully 
accomplishing each objective given an environment, initial conditions and a mission plan to 
be followed, is estimated using models for fuel use, survivability, transit time, etc. The 
overall worth of a multi-objective mission plan, in comparison to other candidate plans, is 
determined from the product of the probability of accomplishing each objective with the 
relative value of that objective, summed over all objectives. Constraints may not permit all 
objectives to be accomplished. Local and global constraints are expressed directly in the 

estimated probabilities, and in some instances, in a penalty function that modulates the set 
of relative values. Examples of such constraints include global constraints on fuel, 
resources and survivability , and locul constraints associated with time windows, goal 
ordering and minimum probability of success. Using a generate and test paradigm, the 
mission plan with the best utility value is constructed. Good mission plan solutions are 
available quickly in the face of the combinatorial (i.e., factorial) complexity of the problem. 
The globally optimal solution is frequently obtained within the solution time requirements, 
but is only guaranteed asymptotically with solution time. 

The solution methodology for the goal planner is the heuristically-guided simulated 
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annealing method. The annealing algorithm is a variation on the hill climbing method that 
permits unfavorable downhill moves (conditionally) so as to avoid the trapping in locally 
optimal solutions that frequently occur with pure gradient search techniques over objective 
surfaces. The heuristics are formulated to operate on generic parameters such as relative 
goal values and normalized resource use (viz a constraint). The heuristics also use a 
probabilistic sampling technique to avoid limit cycling and to schedule the degree of 
venturesomeness of the search within the available solution time. In comparison with 
alternative algorithms for a stochastic travelling salesman problem, the goal planner 
algorithm outperforms other algorithms based on dynamic programming, multialgorithm 
heuristics, enumeration, linear programming and expert system approaches. The 
performance evaluation is based on robustness (i.e., the frequency of obtaining optimal 
solutions within a given solution time limit), the degree of optimality when averaged over 
all solutions on a battery of test problems and the time to obtain the optimal solution. 

The waypoint path planner supports the goal planner by providing lethality cost, 
fuel and resource use and transit time for multiple path solutions between each pair of 
objectives. The multiple solutions are each a minimum (lethality) cost optimal solution 
subject to different resource constraints distributed on the cost-resource operating curve. 
The waypoint path problem is formulated as a network search problem and a combination 
of uniform cost and uniform resource A* expansion techniques are developed to generate 
the entire cost-resource operating curve and to find paths corresponding to selected points 
on that curve. The algorithms selected are compared to a dynamic programming approach 
to network search wherein resource use is identified as the dynamic programming stage 
variable. The methods selected are shown to be considerably more efficient than the 
dynamic programming approach for the range of network sizes in the intended application. 
The technique to generate the entire cost-resource operating curve is a new and significant 
development. The solution time budget and NOE mission profile seem to indicate that 
12Wnode networks with 2 km internodal distance are feasible when computation times are 
scaled to the target 1 .O Mips processor. 

The speed scheduler is the third major far-field planning component and affords 
flexibility to enable successful completion of downstream objectives with time constraints 
without massive alteration of the mission plan or sacrifice of goals along the way. The 
speed scheduler algorithm determines the maximally 
plan most likely to satisfy respective time constraints. 

valued subset of goals in a mission 
When there is latitude in scheduling 
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an arrival time at a goal that will satisfy all constraints, heuristics are used to select a time 
aimpoint that minimizes fuel use and maximizes survivability. The approach taken is based 
on the determination of the back-projection and intersection of speeds required to satisfy 
time constraints (in a given windfield) within the speed envelope constraints of the vehicle. 
In both the NOE and contour flight regimes, the speed envelope is determined by the 
balance between survivability (Le., time exposure to threats) and ground avoidance 
considerations. Two different speed ranges are postulated for missions encompassing a 
mixture of both NOE and contour flight mission segments. The algorithm ("LASS" 
algorithm) is compared to a simpler algorithm that schedules speed to the next constraint 
goal without any look-ahead or consistency checking with regard to multiple constraint 
goals ("NGSS" algorithm). A number of random scenarios are generated and it is easily 
seen that the LASS algorithm far surpasses the NGSS algorithm in its ability to schedule 
speeds that satisfy time constraints given mission time changes (i.e., delays or advances) 
and unexpected wind conditions. 

Finally, preliminary modeling was performed to support fuel use and lethality cost 
predictions that are made in constructing the databases used by the planning components. 
Given the basic helicopter parameters such as rotor parameters, engine rating, etc., the fuel 
use can be estimated for any combination of weight, altitude, speed, lateral (turning) 
acceleration and rate of climb. 

6.2 Future Work 

Substantial development and integration activities remain to be accomplished. 
Although the database that each of the far-field planning components operate upon is well- 
defined functionally at this point, the software design for the databases in an integrated 
planning system remains to be evolved. Another large task involves the construction of the 
network database from the application of models to an underlying database of terrain, threat 
and weather parameters. Although much of this will be performed preflight in any 
operational system, there remains 3 rrsidual need for an on-board capability for that portion 
of the underlying database that is updated by sensors or communications. 

As a subtask related to the construction of planning databases from mission 
environment databases, there mu\[ be further work to relate the NOE and contour flight 
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profiles to the variables of the fuel-use model as a function of the underlying terrain. Also, 
the lethality cost model needs to be fleshed out with information relevant to survivability in 
low-level helicopter operations. 

The integration of far-field planning with any mission management executive 
requires the development and testing of a (far-field) situation assessment module. This 
function will trigger far-field replanning to respond to departures from nominal plan 
execution that have time, fuel-use and survivability impacts. The situation assessment 
function will also respond to communications that change objectives, objective values and 
environmental features. 

Upon testing of an integrated far-field planning system within its own test 
environment, the next step is to begin integration with near-field planning and with 
simulation and test facilities such as the NASA Ames Crew Station Research and 
Development Facility. Among other tasks, it is at this point that man-machine interface 
issues will need to be addressed. It is anticipated that there will be much useful feedback 
from pilots to mission software developers and that mission planning software will be used 
in ways that are not easily forseen by those developers. 

. 
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