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SUMMARY

In this paper, the Boundary Force Method (BFM), a form of an indirect
boundary element method, is used to analyze composite laminates with cracks.
The BFM uses the orthotropic elasticity solution for a concentrated horizontal
and vertical force and a moment applied at a point in a cracked, infinite sheet
as the fundamental solution. The necessary stress functions for this
fundamental solution were formulated using the complex variable theory of
orthotropic elasticity. The current method is an improvement over a previous
method that used only forces and no moment. The improved method was verified by
comparing it to accepted solutions for a finite-width, center-crack specimen .
subjected to uniaxial tension. Four graphite/epoxy laminates were used:
[O/t&5/90]s, [0], [t&S]S, and [i30]s. The BFM results agreed well with accepted
solutions. Convergence studies showed that with the addition of the moment in
the fundamental solution, the number of boundary elements required for a
converged solution was significantly reduced. Parametric studies were done for
two configurations for which no orthotropic solutions are currently available: a

single edge crack and an inclined single edge crack.




INTRODUCTION

Previous work for orthotropic materials (ref. 1) used the stress functions
for a concentrated horizontal and vertical force applied at a point in a
cracked, infinite sheet as the fundamental solution. The present work extends
the fundamental solution to include a moment, as in the method for isotropic
materials. The necessary stress functions for this fundamental solution are
formulated using the complex variable theory of orthotropic elasticity (ref. 2).
The addition of the moment DOF to the orthotropic formulation of the BFM is
evaluated by comparing the BFM results to accepted solutions for a finite-width
center-crack specimen subjected to uniaxial tension. Convergence studies are
done comparing the methods for forces only and for moments and forces.
Parametric studies are done for specimens with a single edge crack and an

inclined single edge crack.

NOMENCLATURE

a half length of a center crack or length of an edge crack, m
A, B, AM' BM constants in stress functions, N/m3

i complex constants (i,j = 1,2)
Ex' Ey Young's moduli in the x- and y-directions, respectively, Pa
FI, FII mode 1 and mode II stress-intensity correction factors

[F] influence coefficient matrix, N/m
ny orthotropic shear modulus, Pa

H height of plate, m

K Kig mode I and mode II stress-intensity factors, Pa/m

m, unit moment on the ith boundary element, N-m

M concentrated moment, N-m



N number of boundary elements

N(x), T(x) normal and shear crack-face loading functions, Pa

Pis 9y units loads on the ith boundary element, N

P, Q concentrated forces in the x- and y-directions,
respectively, N

{P}) vector of unknown forces, N

Rx, Ry Xx- and y-components of applied loading, N

{R} vector of external loads, N

S remote applied stress, Pa

t location of load point on crack face, m

T externally applied moment, N-m

ws complex variable, (i = 1 to 4)

W width or half-width of plate, m

X,y Cartesian coordinates, m

g load point, (zO =X+ iyo), m

6 incremental distance, (i = 1 to N), m

$1(2), $,(2)

orthotropic stress functions, Pa

, vV Poisson’s ratios
Xy yX
g, 0., T stresses, Pa
X y Xy
“1’“2'&1'ﬁ2 roots of the characteristic equation

BOUNDARY FORCE METHOD

The Boundary Force Method (ref. 3) is a numerical technique which uses

fundamental solutions for concentrated forces and moments in an infinite sheet
to obtain the solution to the boundary value problem of interest. These

fundamental solutions are used to exactly satisfy the stress-free conditions on



the crack faces. The other boundary conditions are approximately satisfied by
applying the appropriate sets of concentrated horizontal and vertical forces and

moments along the boundary.

Consider, for example, the finite cracked plate subjected to uniaxial
tension shown in Figure 1. In the BFM, an imaginary boundary corresponding to
the finite plate is traced on a cracked infinite sheet. These boundaries are
then divided into a finite number of boundary elements. On each boundary
element, a concentrated force pair Pi and Qi and a moment Mi (i =1 toN)
are applied at a small distance 6i on the outward normal from the mid-point of
the boundary element. This small offset from the boundary element was used to
avoid the inconvenience of singularities in the computation of the stresses on
the boundaries. 1In the present work, 61 was set equal to one quarter of the

element length.

The concentrated forces Pi and Qi and moment Mi acting on the ith

boundary element produce stresses on the other boundary elements. The resultant
forces and moments on each boundary element j are found by integrating the
stresses over the boundary element length (assuming a unit thickness). On each
boundary element j, the sum of all the resultant forces and moments must be

equal to the externally applied forces and moments acting on the boundary

element. Denoting the externally applied forces as Rx and Ry , and the
j j
externally applied moment as Tj’ we can write the following equilibrium
equations for the jth boundary element:
N
Rx. =2 (Fx.p.P M Fx.q.Ql M Fx.m.Ml)
j i=1 jvi j*ti i
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Here N is the total number of boundary elements; F , F , F , F ,
X.P. y.P. X.q. y:q.
ji ji jii jii
F , F , C, , C. , and C.m are called influence coefficients and are
defined as follows.
. - . . . th
FX = force per unit force in the x-direction on the j boundary
i1
element due to unit load P; acting in the y-direction on the ith
boundary element.
. . . . . th
F = force per unit force in the y-direction on the j boundary
yjp1
element due to unit load P; acting in the y-direction on the ith
boundary element.
ij = resultant couple per unit force created on the jth boundary
i
element due to unit load P; acting in the y-direction on the ith
boundary element.
F , F , F , F - C. , and C.m arc defined in a similar manner.
Xj(li iji leni YJni qu J 1



The resulting system of equations for N boundary elements can be written

as

[(Flanwan (Planxy = Rlapa (2)
where [F] 1is the influence coefficient matrix, (P} 1is the vector of
unknowns, P, Q, and M, and (R} 1is the vector of externally applied forces.

The influence coefficient matrix is square, fully populated and non-symmetric.

| Because the influence coefficient matrix and the externally applied load
vector are known, the unknown force vector can be obtained by solving the system
of linear algebraic simultaneous equations. The calculated set of Pi’ Qi’ and
Mi acting on the imaginary boundaries in the sheet will approximately satisfy
the required boundary conditions, and, thus, produce a stress distribution
inside the imaginary boundaries that is approximately equal to the stress

distribution of the desired boundary value problem.
DERIVATION OF FUNDAMENTAL SOLUTION FOR ORTHOTROPIC MATERIALS

For orthotropic materials, the BFM uses the elasticity solution for a
horizontal and vertical concentrated force and a concentrated moment in an
infinite orthotropic sheet with a crack. The formulation of this solution is

presented below.

Stresses in Orthotropic Materials

From Lekhnitskii (ref. 2), the stresses in an infinite orthotropic sheet

r !
can be written in terms of the two stress functions, ¢1 and ¢2, as follows:

<))




ox(x,y) = 2 Re [ p§¢i(zl) + M§¢;(22)]

i

0,(x,y) = 2 Re [¢1<z1> + ¢2<z2)] (3)

Txy(x»Y) = -2 Re [“1¢;—(zl) + “2¢;(22):I

For simplicity, the derivation of the stress functions for the concentrated
forces and for the moment acting at an arbitrary point in a infinite, cracked,

orthotropic sheet will be presented separately.

Concentrated Forces. The derivation of the stress functions for a pair of

concentrated forces acting on a cracked, infinite orthotropic sheet was
presented in ref. 1. For completeness, the derivation of these stress functions

is shown in Appendix A. The stress functions are given below.

. (B, - py)A (ko - By)A
1 2 1 2 1 -
¢1(Zl) = [ Zl - wl f(zl, wl’ a) + . f(zl, wl’ a)
2(;41 - uz) /zi - a2 1 1
(B, - p,)B
+ 2—_2_ f(zl' ‘;,2, a)] + ._A—
- Z, - W
zp - v, 1 1
4)
(B, - u,)B (B, - py)A
' -1 1 2 1 1 -
by(zy) = [ T, Ly @) T 2y, ey, @)
2(;11 - pz) /z% - a? 2 1
(b - py)B ]
+ ——l————%—— f(zz, w2, a)] + ;——%—;—
2 2
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where f(z, w, a) = Jz?2 - a? - Jw? - a? - z + w, and the other terms in

equations (4) are defined in Appendix A.

Moment. Figure 2 shows how superposition was used to determine the
stress functions for a moment acting on a cracked, infinite orthotropic sheet.
The uncracked sheet with the moment applied at z, is shown in Figure 2(b).
The normal and shear stresses acting on the line y = 0, |x| < a, are shown as
N(x) and T(x). The problem with the crack-face loading (Figure 2(c)) is
superimposed on the uncracked problem (Figure 2(b)) to produce the stress-free

crack face shown in Figure 2(a).

The stress functions for a moment in an infinite, uncracked orthotropic
sheet (used for Figure 2(b)) are derived (following ref. 4) in Appendix B.

These stress functions are

-A -B

! M
¢1(zl) - (

[CREETE (5)

where

PR S W 2 g Wl - Gt
M 2 M 2

The terms By By, cll' C12' C21, and C22 are defined in Appendix A.

The stress functions for the loads N(x) and T(x) applied to the crack

face in Figure 2(c) are given in Appendix A, equations (A4). Here,



N(x) = ay(x,O) and T(x) = rxy(x,O) in the uncracked sheet in Figure 2(b).

From equations (3) and (5),

Ay By 2]

ay(x,O) = -2 Re [(zl " w1)2 + (22 " Wz)

(6)

F18y HoBy ]

ry(x,O) = 2 Re [(21 - w1)2 + (22 - w2)2

Using equations (6) and remembering that 2 Re(f(z)] = f(z) + f(z), the
loading functions in the integrands in equations (A4) can be simplified as

follows:

A B I AM p.B
M M 1 2°M
“2N(x) + T(x) = -2 sze [(X N w1)2 + (x - w )2] + 2 Re [(X w]_)2 (x - W2)2]
(“2 - ﬂl)AM (#2 -'ﬁl)AM (“2 - LZ)EM
(x - wp)? (x - wp? k- wp?
(7)
A B s A ©,B
M M 1M 2°M
pN(X) + T(x) = -2 pRe [(X ) X w2)2] + 2 Re [(X Twp)? - w2)2]

(#1 - pl)AM (”1 - “Z)BM (Fl - “Z)BM

) (x - &1)2 - (x - w2)2 (x - Qz)z

Substituting these expressions in equations (A4), integrating, and then
adding equations (5), the following expressions are found for the stress

functions for the loading shown in Figure 2(a):



where

$.(z,) = ————— [ (4, - p) A, D(z,,w,,a)
N T 2 T F Ay PiEph

4 (ﬂ2 - ﬁl) AM D(zl,ﬁl,a) + (pz - ﬂz) BM D(zl,ﬁz,a)]

(8)
1

2(#1 - Fz) /25 - a?

$,(z,) = [ (8 - By) By D(zy,v,,a)

+ (#1 = ﬁl) AM D(zz;&l:a) + (ﬂl = Lz) BM D(zzy&zra)]

-BM

+ _——__—__—2
(z2 - w2)

(w2 - a2) Jz%2 - a? + (32 - wz) Jw?2 - aZ

(w2 - a2)(z - w)2

D(z,w,a) =

The stress functions used in the fundamental solution for orthotropic

materials are found by combining equations (4) and (8). Once the stress
functions are known, it is a simple step to calculate the stresses at any
point in the body using equations (3). Then, as mentioned earlier, the

stresses are integrated over each element length to obtain resultant forces

for use in equation (2).

follows:

Stress-Intensity Factor Equation

From Snyder and Cruse (ref. 5), the stress-intensity factors for

orthotropic materials may be expressed in terms of the stress functions as

10



lim { Jz. - a ¢ (z.) ) (9)
2 ”2 zZ,+ a 1 1

1
By substituting from equations (4) and (8) into the above equation and
taking the limit, the mode I and mode II components of the stress-intensity
factor for a horizontal and vertical force and a moment in an infinite cracked

orthotropic sheet may be written as follows:

K _
K, + -ﬁi - ;i Ja7a { (uy - ) [A GQup,a) + A H(w,a)]

+ (By - B [AG(w,a) + Ay H(wy,a)]
(10)

+ (by - iy (B GGiy.a) + By HCGy,a)]

where
2 . .2 . 2 _ .2
C(w,a) = Jw a W+ a H(w,a) = a Jw a
w - a 2 2
(w~ - a)(a - w)

RESULTS AND DISCUSSION

The following four graphite/epoxy (gr/ep) laminates were used in the
analysis: [O/i45/90]s, (0], [145]5, and [0/i45]s. Table 1 presents the
laminate constants for the four laminates. The 0° lamina properties (ref. 5)
were used with lamination theory to calculate the elastic constants for the
other laminates. (Here, the 0°-direction is defined parallel to the load
axis.) The results for the [0/145/90]S quasi-isotropic laminate were compared

with isotropic solutions from the literature. To show the effects of the

11



specimen boundaries, the results are presented using the following stress-

intensity correction factors FI and FII:

K. = S/na F K,. = S/ra F

I I 11 II

Verification

To evaluate the improved Boundary Force Method for orthotropic materials,
the BFM stress-intensity factor solutions were compared to results from Snyder
and Cruse (ref. 5) for a center-crack tension specimen with a finite width of
H/W = 3.0. 1In Figure 3, the curves represent the BFM calculations, while the
symbols indicate the values taken from Snyder and Cruse. The stress-intensity
correction factors calculated by the BFM agree, within *3%, with the values
from Snyder and Cruse for all laminates considered. For the [O/il+5/90]S
laminate at 2a/W = 0.8, the solution from Snyder and Cruse was 2% lower than
the solution for an isotropic material (ref. 6), whereas the BFM solution for
the [O/tA5/90]S laminate was only in error by .005% compared to the accepted
isotropic solution. Therefore, for the other laminates considered, the 3%
difference between the present results and those of Snyder and Cruse may

represent an error in the solution of Snyder and Cruse.

Convergence Studies
To demonstrate the benefit of the addition of the moment, a convergence
study was done for a single edge crack in a quasi-isotropic plate. Figure 4
shows the convergence of the solution for an a/W ratio of 0.6. The solution

with both forces and moments converged to within 1.5% of the solution in ref.

12



7 with 63 DOF; the solution with only forces required 117 DOF to converge to

the reference solution.

Convergence studies such as that shown in Figure 4 were done for other
laminates shown in Table 1 with an edge crack to determine if the material
properties had any effect on the convergence rate. Although each converged to
a different solution, the number of degrees of freedom required for
convergence was similar for all the laminates. In general, with the moment
included, between 80 to 100 DOF were required for convergence for
configurations with deep cracks (a/W = 0.6). Fewer DOF are required for

smaller a/W ratios.

Edge Crack Solutions
Stress-intensity correction factors were also calculated for a single
edge crack and an inclined edge crack for a range of crack-length-to-width
ratios and material properties. Other orthotropic solutions for these two

problems were not available for comparison.

Single Edge Crack. Figure 5 shows the stress-intensity correction factor

F for a single edge crack for four graphite/epoxy laminates: [0/145/90]5,
(07, [iAS]S, and [90]). The results for the quasi-isotropic laminate agreed
within 0.005% with the isotropic results for this configuration. For very
small a/W ratios, the solutions for the different laminates do not tend
toward a single value, as is the case in the center crack configuration
(Figure 3). Thus, the anisotropy of the material has more effect for small
edge cracks than for small center-cracks. Table 2 lists correction factors

plotted in Figure 5.

13



Inclined Edge Crack. Figures 6 and 7 show F_. and F respectively,

I 117’
for an inclined edge crack for three graphite/epoxy laminates: [0/i45/90]s,
[0], and [90]. 1In Figure 6, the mode I component does not converge to a

single value for small a/W ratios, much as in Figure 5. The mode II
component shown in Figure 7 varies less with anisotropy than the mode 1
component shown in Figure 6. Tables 3 and 4 list the correction factors

plotted in Figures 6 and 7.

CONCLUDING REMARKS

In this paper, the Boundary Force Method (BFM), a form of an indirect

boundary element method, is used to analyze composite laminates with cracks.

The BFM uses the orthotropic elasticity solution for a concentrated horizontal
and vertical force and a moment applied at a point in a cracked, infinite
sheet as the fundamental solution. This formulation is an improvement over

a previous method that did not include the moment but used only the horizontal
and vertical forces on the boundary. The necessary stress functions for this
fundamental solution were derived using the complex variable theory of
orthotropic elasticity. The orthotropic formulation of the BFM was verified
by comparing solutions for a center-crack specimen subjected to uniaxial
tension to other solutions. The BFM results agreed well with accepted

solutions.

Parametric studies were also done for a single edge crack, and an
inclined edge crack, both loaded in uniaxial tension, with a variety of
materials properties. Only a slight effect was scen due to material

anisotropy. No other orthotropic solutions were available for comparison.

14



The additions of the moment degree of freedom to the orthotropic BFM was
shown to greatly increase the convergence rate of the solution. Thus, fewer

boundary elements were required to achieve the same accuracy.

This work has resulted in a further extension of the Boundary Force
Method in the analysis of composite iaminates with cracks and notches. This
method yields accurate solutions with minimal modeling effort, even for
complex configurations. The accurate stress-intensity factors obtained with
this method should be useful in predicting fracture strengths of arbitrarily

shaped composite laminates.
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APPENDIX A - DERIVATION OF STRESS FUNCTIONS FOR POINT LOADS

IN CRACKED, ORTHOTROPIC SHEET

This appendix (taken from ref. 1) presents the derivation of the stress
function for a pair of point loads in a cracked, infinite orthotropic sheet.
Figure 8 shows how superposition was used to determine the stress functions.
The uncracked sheet with the point loads applied at z, and the stresses
along y = 0, |x| < a, are shown in Figure 8(b). The point loads in Figure
8(b) are superimposed on the stresses due to the crack-face loadings in Figure

8(c) to produce the stress-free crack face shown in Figure 8(a).

The stress functions for a point load in an infinite, orthotropic sheet

(used for Figure 8(b)) are derived from Lekhnitskii (ref. 2):

A B

$,(z)) - o $,(2,) = o (A1)
where

A = C/ P+ C1,0Q B = Cy P + C,,Q

wj = X5+ pjyo zj =x + pjy (j=1,2)

c, - py (L + v popy) + iy +opy)

2"i(ﬂ1 - “2)(“1 - ﬂl)(ﬂl - Lz)
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. By ((ry + oyl + pBop, + ny]

12 . - -
2niCpy - pp) (g - BBy - py)
(A2)
. po [(L 4 v pip by + py + 1yl
21 . - -
2ni(py - ) By - By) By = Bq)
. By [(By + pdy + pypy + v ]
22 . - -
2ripy - p)(By = By) By - Bp)
Here ny and ny are the Poisson’s ratios; Bys Ho» By, B, are the
4 Ex 2 Ex
complex roots of the characteristic equation [p + (E_ - 2vxy)p + E " 0];
Xy y

and the barred quantities represent the complex conjugates of the underlying

functions.

For isotropic materials, the roots of the characteristic equation are
s i, and the term (“1 - “2) in the denominator of equations (A2) is
zero. When using the orthotropic equations for isotropic materials, a small
perturbation was introduced in the values of By and py SO that By =

i(l + €¢) and By = i(l - €) where ¢ = 0.0001.

To find the stress functions for the loading shown in Figure 8(c), the
stress functions for a point load applied at an arbitrary point on the crack
face are used. From Savin (ref. 8), the stress functions for this loading are

as follows:

18



“HoP - Q 1 Ja?_- ¢?

¢'(z ) = — -
VY am(uy - wy Jz2ar P F
(A3)
iy - —aP A 1 Ja? - ¢?
¢2(22 2 2 .3 Z, - t
”(“1 - ”2) Jzz - a 2

where P and Q are the normal and tangential point loads applied to the
crack face, and t 1is the location of the load point on the crack face (-a <

t < a), as shown in Figure 9.

By integrating equations (A3) over the crack face, the stress functions
for the non-uniform distributed loads applied to the crack face can be written

as follows:

a —
' . 2 _ 2
b (zy) = L — 1 f [ N(E) + T(e)] 12=E% g
1471 = — 2 z, - £
”(“1 - #2) le - a -a 1
(A)
a ————e.
' 2 _ 2
by(zy) = 1 —L— [ upneo s B
27"(/‘1 - 1“2) \/23 - a? -a 2

In order to make the crack stress free along the crack line -a < x < a,
the loadings N(x) and T(x) are specified to be the same as the stresses
found in the equivalent uncracked sheet shown in Figure 8(b). That is,

N(x) = ay(x,O) and T(x) = rxy(x,O). Thus, from equations (3) and (Al), the

normal and shear stresses on the line y = 0 are

19



A B
o (x,0) = 2 Re ( + T )
y X - W X - W,
(A5)
BA BB
T (x,0) = -2 Re (x vt )
y 1 2
Using equations (A5) and remembering that 2 Re [f(z)] = f(z) + f(z), the

loading functions in the integrands in equations (A4) can be simplified as

follows:
pBiA B,B
A B 1 2
#ZN(X)+T(x)=2p2Re(x_w+x_w)'2Re(x_w+x_w)
1 2 1 2
(By - A (B - p)A () - p))B
- - w1 + N + _
X - Wy X - W,
(A6)
A usB
- A B s 2
pNG + T(x) = 2 4y Re (7 Wy *x - WZ) - 2 Re (7 Wy tx - w2)

_ (l‘l - /-‘2)8 N (l‘l - f‘l)A N (“1 - l‘2)B
X =¥ - w -
X 1 X w2

Substituting these expressions into equations (A4), integrating, and then
adding equations (Al), the following expressions are found for the stress

functions for the loading shown in Figure 8(a):

20



. (B, - By)A (B, - B)A i
¢1(zl) = 1 i 1 f(zly wll a) + —2_}—- f(zlr wl’ a)

2(u) - ny) J2F - a2 1 Zp - W

l-w

- W

(B, - u,)B
+ ——2————%—— f(z), w,, a)] + ;——A———

z1 w2 1 1
(A7)
(B, - B,)B (B, - p)A
' -1 1 2 1 1 -
¢2(22) - [ 22 R wz f(ZZ' wzx a) + , ] ‘:’ f(zz; wlr a)
2(py - #y) Jz% - a? 2 1
(by - B,)B )

b —L 27 £(z,, W, a)] 4 —B
- Z, - W
zy - w, 2 2

where f(z, w, a) = /22 - a? - fu? - a? - z + w.
(These stress functions are identical to those presented by Snyder and Cruse

(ref. 5), derived by formulating the problem as a Hilbert problem.)
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APPENDIX B - DERIVATION OF STRESS FUNCTIONS FOR MOMENT

IN INFINITE, UNCRACKED ORTHOTROPIC SHEET

This appendix presents the derivation of the stress functions for a moment
applied in an infinite uncracked orthotropic sheet. This derivation follows the

procedure outlined in ref. 4.

Consider the pair of forces applied as shown in Figure 10(a). By
superimposing the stress functions for concentrated forces in the y-direction,

the stress functions for this loading are
¢1(zl) = C12Pylog(z1 - wl) - C12Pylog(z1 - Wyt €)

(B2)

¢2(22) = C22Pylog(z2 - w2) - szPylog(z2 - W, - €)

To obtain the stress functions for a moment due to a force pair in the y-
direction, set M = -Pye and take the limit of equations (B2) as € approaches
zero.

-C..M -C,,M

12 22

P10 7 $(2)) =3 (B3)

Consider the pair of forces applied as shown in Figure 10(b). By
superimposing the stress functions for concentrated forces in the x-direction,

the stress functions for this loading are

22



¢1(zl) = Cllleog(z1 - wl) - Cqulog(z1 - Wy + ple)

(B4)

¢2(22) = CZlleog(z2 - w2) - C21leog(z2 - v, + pzey)

To obtain the stress functions for a double force due to a moment in the x-
direction, set M = -ch and take the limit of equations (B4) as ¢ approaches

zZero.

Al ByCoM

¢1(zl) = zy - Wy ¢2(22) Tz, - w (B5)

2

By superimposing these stress functions, the solution for a concentrated

moment due to the two force pairs (M = -2Pe¢) can be written as

(B1C1q - Gy M (ByCoq - Cy M
16853 L TP #2029 = T2z, ~w,) (B6)
' “(81Cyq - CyH ' “(ByCyq - Cyo)M
¢1(zl) = 2(21 - w1)2 ¢2(22) = (B7)

N 2
2(z2 w2)
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Table 1 - Laminate Constants

Laminate Ex, GPa Ey' GPa ny <y’ GPa
[0/t45/90]s 60.04 60.04 0.259 23.85
[0] 11.72 144 .8 0.017 9.65
[14515 31.18 31.18 0.615 38.03
[130]s 17.64 66.99 0.262 30.94
{90] 144 .8 11.72 0.210 9.65
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Table 2 - Stress-Intensity Correction Factors for Edge Crack

a/w F
[0/145/90]S (0] [t&S]s [90]

.1 1.1894 1.1589 1.2861 1.1889
.2 1.3656 1.3576 1.4537 1.3600
.3 1.6567 1.6923 1.7623 1.6397
.4 2.1062 2.1884 2.2088 2.0594
.5 2.8015 2.9034 3.0347 2.9772
.6 4.0021 4.2344 4.2323 3.7939
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Table 3 - Stress-Intensity Correction Factors for Inclined Edge Crack

a/w FI
[0/145/90]s (0] [90]

.1 0.7113 0.7495 0.7164
.2 0.8130 0.8180 0.8043
.3 0.8713 0.8987 0.8759
.4 1.0091 1.0407 1.0113
.5 1.1952 1.2095 1.1969
.6 1.4442 1.4792 1.4462
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Table 4 - Stress-Intensity Correction Factors for Inclined Edge Crack

a/w FII
[0/1%5/90]S [0] [90]

.1 0.3739 0.3737 0.3760
.2 0.3957 0.4029 0.4001
.3 0.4452 0.4451 0.4472
.4 0.5024 0.5026 0.5047
.5 0.5795 0.5804 0.5815
.6 0.6804 0.6855 0.6820
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