USER'S MANUAL FOR THREE
DIMENSIONAL BOUNDARY
LAYER (BL3-D) CODE

by

O.L. Anderson
B. Caplin

Prepared for:

National Aeronautics and Space Administration
Lewis Research Center

NASA Contract NAS3-23716
Abstract

An assessment has been made of the applicability of a three dimensional boundary layer analysis to the calculation of heat transfer, total pressure losses, and streamline flow patterns on the surfaces of both stationary and rotating turbine passages. In support of this effort, an analysis has been developed to calculate a general nonorthogonal surface coordinate system for arbitrary three dimensional surfaces and also to calculate the boundary layer edge conditions for compressible flow using the surface Euler equations and experimental data to calibrate the method, calculations are presented for the pressure endwall, and suction surfaces of a stationary cascade and for the pressure surface of a rotating turbine blade. The results strongly indicate that the three dimensional boundary layer analysis can give good predictions of the flow field, loss, and heat transfer on the pressure, suction, and endwall surface of a gas turbine passage.

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SUMMARY</td>
<td>I-1</td>
</tr>
<tr>
<td>2.0</td>
<td>INTRODUCTION</td>
<td>II-1</td>
</tr>
<tr>
<td>3.0</td>
<td>GENERAL DESCRIPTION OF BL3D CODE</td>
<td>III-1</td>
</tr>
<tr>
<td></td>
<td>Geometry Analysis</td>
<td>III-2</td>
</tr>
<tr>
<td></td>
<td>Surface Euler Analysis</td>
<td>III-3</td>
</tr>
<tr>
<td></td>
<td>3-D Boundary Layer Analysis</td>
<td>III-4</td>
</tr>
<tr>
<td></td>
<td>Operation of Computer Codes</td>
<td>III-4</td>
</tr>
<tr>
<td>4.0</td>
<td>OPERATION OF SETUP CODE</td>
<td>IV-1</td>
</tr>
<tr>
<td></td>
<td>4.1 Input Format</td>
<td>IV-1</td>
</tr>
<tr>
<td></td>
<td>4.2 Output Format</td>
<td>IV-11</td>
</tr>
<tr>
<td></td>
<td>4.3 Output Data Files</td>
<td>IV-17</td>
</tr>
<tr>
<td></td>
<td>4.4 Diagnostics</td>
<td>IV-19</td>
</tr>
<tr>
<td></td>
<td>4.5 Sample Input</td>
<td>IV-21</td>
</tr>
<tr>
<td>5.0</td>
<td>OPERATION OF BL3D CODE</td>
<td>V-1</td>
</tr>
<tr>
<td></td>
<td>5.1 Input Format</td>
<td>V-1</td>
</tr>
<tr>
<td></td>
<td>5.2 Output Format</td>
<td>V-4</td>
</tr>
<tr>
<td></td>
<td>5.3 Input/Output Data Files</td>
<td>V-10</td>
</tr>
<tr>
<td></td>
<td>5.4 Diagnostics</td>
<td>V-15</td>
</tr>
<tr>
<td></td>
<td>5.5 Sample Input</td>
<td>V-15</td>
</tr>
<tr>
<td>6.0</td>
<td>DESCRIPTION OF SETUP CODE</td>
<td>VI-1</td>
</tr>
<tr>
<td></td>
<td>6.1 SETUP Main Program</td>
<td>VI-1</td>
</tr>
<tr>
<td></td>
<td>6.2 SETUP COMMON Block Variables</td>
<td>VI-3</td>
</tr>
<tr>
<td></td>
<td>6.3 Description of SETUP Subroutine</td>
<td>VI-13</td>
</tr>
<tr>
<td>7.0</td>
<td>DESCRIPTION OF BL3D CODE</td>
<td>VII-1</td>
</tr>
<tr>
<td></td>
<td>7.1 BL3D Main Program</td>
<td>VII-1</td>
</tr>
<tr>
<td></td>
<td>7.2 BL3D COMMON Block Variables</td>
<td>VII-4</td>
</tr>
<tr>
<td></td>
<td>7.3 Description of BL3D Subroutines</td>
<td>VII-13</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Cont'd)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>LIST OF SYMBOLS</td>
<td>VIII-1</td>
</tr>
<tr>
<td>9.0</td>
<td>REFERENCES</td>
<td>IX-1</td>
</tr>
</tbody>
</table>
1.0 SUMMARY

This User's Manual contains a complete description of the computer codes developed and utilized under NASA contract NAS3-23716 "Assessment of a Three Dimensional Boundary Layer Code to Predict Heat Transfer and Flow Losses in a Turbine". The SETUP code calculates a general nonorthogonal surface coordinate system and the boundary layer edge conditions from a known static surface pressure distribution. The BL3D code utilizes this coordinate system and the edge conditions for the calculation of the three dimensional boundary layer on an arbitrary surface such as a turbine blade or end wall. A companion report to this User's Manual which is entitled "Assessment of a 3-D Boundary Layer Analysis to Predict Heat Transfer and Flow Field in a Turbine" documents the technical approach used in the SETUP and BL3D codes and presents results which have been obtained in the application of the three dimensional boundary layer theory to the flow in a turbine passage with blade rotation. Although the primary thrust of this work has been for gas turbine application, the compressible three dimensional boundary layer analysis is very general and can be used for a wide range of applications in internal and external aerodynamics.

The User's Manual is essentially divided into two parts. In the first part, Sections 3.0, 4.0, and 5.0, a description of the input, output, and general operation of both codes is presented. In the second part, Sections 6.0 and 7.0, a detailed description of the computer codes including a listing and description of all FORTRAN variables in COMMON blocks and a detailed description of the subroutines are given. These latter sections of the User's Manual are presented for the user who wishes to obtain a detailed understanding of the codes.
2.0 INTRODUCTION

This User's Manual describes the computer codes known collectively as the Three Dimensional Boundary Layer (BL3D) code which was developed under NASA Contract NAS3-23716. A description of the analysis used in the SETUP code is given by Anderson (Ref. 1). A comprehensive outline of the analysis used in the BL3D code is also given by Anderson (Ref. 1). The three dimensional boundary layer analysis used in the BL3D codes was developed by Vatsa (Refs. 2 and 3). Reference 3, in particular, describes in detail the solution algorithm including the finite difference equations and the matrix inversion method. Assessment of these codes for gas turbine applications is also given in Ref. 1 through 3. The SETUP code contains a prepackaged surface spline fitting routine developed by McCartin (Ref. 6) which is not described.

This report is divided into sections for the convenience of the user. Section 3.0 contains an overall description of the computer codes describing how they are linked together functionally and through data files. Sections 4.0 and 5.0 contain a description of the input and output files so that the user can run the codes and interpret the printed output. These sections also contain a sample input data file to assist the user in setting up new cases. Although these codes are very robust, they sometimes fail. If the cause of the failure is known, a DIAGNOSTIC is printed and the calculation is terminated. A description of these failures and DIAGNOSTICS is also given. Sections 3.0 through 5.0 contain all the information required by the user who wishes to run these codes but does not require a detailed understanding of the codes.
Sections 6.0 and 7.0 contain a more detailed description of these computer codes for the user who wishes to modify these codes. These sections are divided into three subsections. The first subsection describes the MAIN program including a global tree structure chart which provides the user with an overview of the code. This section includes all calling and called subroutines. The second subsection contains a list of all FORTRAN symbols which are contained in COMMON blocks. These FORTRAN symbols may be identified with the corresponding algebraic symbols which are the same as those used in Ref. 1. The third subsection contains a detailed description of each subroutine. These subroutine descriptions are arranged according to the same format. First, the object of the subroutine is described. Second, any input options used in the subroutine are described so that the user can understand any branching that takes place. Third, a list of local FORTRAN symbols is given. Finally a description of the analysis used in the subroutine is given. If the analysis is described in Ref. 1, it is referenced by subsection. If the analysis is not described in Ref. 1, it is described in these subroutine descriptions. In cases where well known analyses, such as interpolation formulas, are used the source reference is given.
3.0 GENERAL DESCRIPTION OF BL3D CODE

The Three dimensional boundary layer (BL3D) code requires three separate analyses: 1) an analysis to construct a general nonorthogonal coordinate system for a twisted turbine blade, 2) an analysis referred to as a surface Euler analysis to calculate the boundary layer edge conditions from a known wall static pressure distribution, and 3) an analysis to calculate the three dimensional boundary layer growth on the turbine blade surface. These analyses are contained in two separate computer codes. The SETUP code contains the coordinate analysis and the boundary layer code analysis. The BL3D code contains the boundary layer analysis. A detailed description of the coordinate analysis and boundary layer edge analysis contained in the SETUP code is given by Anderson (Ref. 1). A general outline of the boundary layer analysis contained in the BL3D code is given by Anderson (Ref. 1). A detailed description of the boundary layer analysis including the finite difference equations and the matrix inversion analysis is given by Vatsa (Refs. 2 and 3).

A flow chart describing the operation of these computer codes is shown on Fig. 1. The geometry analysis calculates a surface coordinate system which is required by both the surface Euler analysis and the three dimensional boundary layer analysis. The surface Euler analysis calculates the boundary layer edge conditions. This data is then input into the 3D boundary layer analysis. A brief description of these codes is given below.
Geometry Analysis

Since the boundary layers lie on the blade surface, a convenient coordinate system is a surface coordinate system \((X_1, X_2, X_3)\) which has the properties that two coordinates \((X_1, X_2)\) lie on the blade surface and the third coordinate \((X_3)\) is normal to the blade surface. \(X_1\) is generally taken to be in the streamwise direction and \(X_2\) is generally in the crossflow direction. This coordinate system, in general, must be a non-orthogonal coordinate system, therefore \(X_1\) is not necessarily orthogonal to \(X_2\). Furthermore we note that a given twisted turbine blade is not a developable surface (i.e., it can not be flattened to a plane surface without distortion). Thus if we describe the turbine blade in Cartesian coordinates \((Y_1, Y_2, Y_3)\), where \(Y_1\) is generally in the streamwise direction, \(Y_2\) in the crossflow direction, and \(Y_3\) orthogonal to \((Y_1, Y_3)\), then a mathematical transformation must be found for the relation between the computational coordinates \((X_1, X_2, X_3)\) and the physical coordinates \((Y_1, Y_2, Y_3)\). In general, the equation of the physical surface can be expressed as \(Y_3 = Y_3(Y_1, Y_2)\). Thus if a unique relation can be found \(Y_1 = Y_1(X_1, X_2)\) and \(Y_2 = Y_2(X_1, X_2)\), then the third coordinate is known \(Y_3 = Y_3(X_1, X_2)\). This unique relation is provided by the transfinite mapping of Gordon and Thiel (Ref. 4). Once the transformation from the computational coordinates \((X_1, X_2, X_3)\) to the physical (Cartesian) coordinates is known, the covariant matrix tensor, metric scale coefficients, and the direction cosines from the computational coordinates to the Cartesian coordinates can be determined using the relations given in Ref. 5. In addition it is noted that since the turbine blade surface is only known as numerical data, the surface spline analysis of McCartin (Ref. 6) and Spath (Ref. 7) is used to
interpolate points on the surface and calculate first and second derivatives of the surface. Details of this geometric analysis are given by Anderson (Ref. 1).

Surface Euler Analysis

The three dimensional boundary layer equations require the boundary layer edge conditions, which include the two free stream velocity components, their derivatives, and the free stream temperature, as boundary conditions over the whole computational domain. These may be obtained directly from experimental data, however, in practice it is very expensive to survey an entire three dimensional flow field. These conditions may also be obtained from a solution of the Euler equations. However, since the generation of the passage vortex is viscous in nature, the Euler solutions may not provide good edge conditions for the crossflow without special treatment. A third method is to obtain the edge conditions from the experimental pressure distribution by integrating the surface Euler equations. These surface Euler equations are obtained from the boundary layer equations in the limit as the normal coordinate approaches the edge of the boundary layer so that normal derivatives of all variables go to zero. Since the pressure distribution is known, only two momentum equations and an energy equation are required for a complete solution of all the dependent variables. These surface Euler equations are hyperbolic in character and may be solved using the same computational (X1,X2) grid, finite difference module, and inflow edge conditions as the three-dimensional boundary layer analysis. A detailed presentation of this analysis are given by Anderson (Ref. 1).
3-D Boundary Layer Analysis

The three dimensional boundary layer analysis used in this computer code is that developed by Vatsa (Refs. 2 and 3). This analysis solves the finite difference form of the compressible three-dimensional boundary layer equations (including the energy equation) in a non-orthogonal surface coordinate system which includes Coriolis forces produced by coordinate rotation. These equations are solved in Levy-Lees variables using an efficient, implicit, fully coupled finite difference procedure. These boundary layer equations are hyperbolic in character and require, besides the edge boundary conditions, the inflow conditions along the computational boundaries where flow enters the domain. These inflow conditions are estimated by solving the 3-DBL equations along the inflow boundary using an assumption of either local similarity or plane of symmetry which reduces the equations to two dimensional differential equations with edge conditions provided by the boundary layer edge analysis.

Operation of Computer Codes

The description of the input and output of the SETUP code is given in Section 4.0 and a description of the input and output for the BL3D code is given in Section 5.0. Sample inputs for both codes are given in the respective sections. Since the BL3D code requires the surface coordinate data and the boundary layer edge conditions, the SETUP code must be run first. The linking of these two codes through data files is shown in Fig. 2. Note on Fig. 2 that output Units 8, 9, and 10 for the SETUP code correspond to the input Units 10, 11, and 12 respectively for the BL3D code. Output Units 13, 15, and 16 are
special output files for CALCOMP or TEKTRONIX plot packages. Since plotting codes are machine dependent, they are not available on the NASA Lewis version of these codes. Unit 20 for the BL3D code serves as both an input and output file.
Fig. 1 Flow Chart of Geometry, Surface Euler and 3-D Boundary Layer Analysis
Fig. 2 Data File Links Between Setup and BL3 D Codes
4.0 OPERATION OF SETUP CODE

4.1 Input Format

The input format is described on the pages which follow. The type and amount of data read by the code is controlled by the input options IOPT1 through IOPT12 and the user should be very careful to be sure that the input data agrees with the input options. In general the input cards are loaded as follows:

- Card(s) 0 Title Card
- Card(s) 1 Computational Grid Data
- Card(s) 2 Computational Boundary Data
- Card(s) 3 Coordinate Surface Data
- Card(s) 4 Pressure Distribution Data
- Card(s) 5 Inflow Conditions Data
- Card 6 Print Options
- Card(s) 7 Reference Flow Variables
- Card(s) 8 Rotor Parameters (load only if IOPT8 = 1)
- Card(s) 9 Upstream Flow Conditions (load only if IOPT11 = 1)

In the loading of the input cards, the variable name, column numbers, and description are given. Integer numbers are right adjusted and real numbers may have any number of significant digits.
Card(s) 0 Title Card (load 72 alphanumeric characters)

Card(s) 1 Computational Grid Data

Card 1a Options (8I10)

IOPT4 1-10 Mesh distribution option
IOPT4 = 0 Calc. uniform grid
 1 Calc. stretched grid
 2 Read grid points

LPLAST 11-20 No. X1 grid points

KPLAST 21-30 No. X2 grid points

Card 1b Stretching Parameter (F10.0) If IOPT4 = 1

A 1-10 Stretching parameter

Card(s) 1b Input grid Points (8F10.0) If IOPT4 = 2

(X1(LP),LP=1,LPLAST) X1 grid points
Load LPLAST numbers (8 numbers/card)

(X2(KP),KP=1,KPLAST) X2 grid points
Load KPLAST numbers (8 numbers/card)

Card(s) 2 Computational Boundary Data

Card 2a Options (8I10)

IOPT2 1-10 Grid boundary option
IOPT2 = 0 Cartesian Grid on a plane
 = 1 Skewed grid on a plane
 = 2 1D mapping Y2=Y2(X1,X2)
 = 3 1D mapping Y1=Y1(X1,X2)
 = 4 2D mapping

LPLAST 11-20 No. X1 input boundary points

KPLAST 21-30 No. X2 input boundary points
Card 2b Boundary Corners (5F10.0) If IOPT2 = 0

<table>
<thead>
<tr>
<th>Card</th>
<th>Boundary Corners</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1L</td>
<td>1-10</td>
<td>Lower Y1 boundary</td>
</tr>
<tr>
<td>Y1U</td>
<td>11-20</td>
<td>Upper Y1 boundary</td>
</tr>
<tr>
<td>Y2L</td>
<td>21-30</td>
<td>Lower Y2 boundary</td>
</tr>
<tr>
<td>Y2U</td>
<td>31-40</td>
<td>Upper Y2 boundary</td>
</tr>
<tr>
<td>SS10</td>
<td>41-50</td>
<td>Initial arc length on X1</td>
</tr>
</tbody>
</table>

Card 2b Boundary Corners (4F10.0) If IOPT2 = 1

<table>
<thead>
<tr>
<th>Card</th>
<th>Boundary Corners</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y100</td>
<td>1-10</td>
<td>Y1(0,0)</td>
</tr>
<tr>
<td>Y101</td>
<td>11-20</td>
<td>Y1(0,1)</td>
</tr>
<tr>
<td>Y111</td>
<td>21-30</td>
<td>Y1(1,1)</td>
</tr>
<tr>
<td>Y110</td>
<td>31-40</td>
<td>Y1(1,0)</td>
</tr>
</tbody>
</table>

Card 2c Boundary Corners (4F10.0) If IOPT2 = 1

<table>
<thead>
<tr>
<th>Card</th>
<th>Boundary Corners</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y200</td>
<td>1-10</td>
<td>Y2(0,0)</td>
</tr>
<tr>
<td>Y201</td>
<td>11-20</td>
<td>Y2(0,1)</td>
</tr>
<tr>
<td>Y211</td>
<td>21-30</td>
<td>Y2(1,1)</td>
</tr>
<tr>
<td>Y210</td>
<td>31-40</td>
<td>Y2(1,0)</td>
</tr>
</tbody>
</table>

Card 2b Y1 Boundary Points (2F10.0) If IOPT2 = 2

<table>
<thead>
<tr>
<th>Card</th>
<th>Boundary Points</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1L</td>
<td>1-10</td>
<td>Lower Y1 boundary</td>
</tr>
<tr>
<td>Y1U</td>
<td>11-20</td>
<td>Upper Y1 boundary</td>
</tr>
</tbody>
</table>
Card(s) 2c Side 2 and Side 4 (8F10.0) If(IOPT2 = 2)

(Y1X11(LB),LB=1,LBLAST) Y1 boundary points side 2 (X2 = 1)
(Y2X11(LB),LB=1,LBLAST) Y2 boundary points side 2 (X2 = 1)
(Y1X10(LB),LB=1,LBLAST) Y1 boundary points side 4 (X2 = 0)
(Y2X10(LB),LB=1,LBLAST) Y2 boundary points side 4 (X2 = 0)

Load 4*LBLAST numbers (8 numbers/card)

Card(s) 2b Y2 Boundary Points (2F10.0) If(IOPT2 = 3)

Y1L 1-10 Lower Y1 boundary
Y1U 11-20 Upper Y1 boundary

Card(s) 2c Side 1 and Side 3 (8F10.0) If(IOPT2 = 3)

(Y10X2(KB),KB=1,KBLAST) Y1 boundary points side 1 (X1 = 0)
(Y20X2(KB),KB=1,KBLAST) Y2 boundary points side 1 (X1 = 0)
(Y11X2(KB),KB=1,KBLAST) Y1 boundary points side 3 (X1 = 1)
(Y21X2(KB),KB=1,KBLAST) Y2 boundary points side 3 (X1 = 1)

Load 4*KBLAST numbers (8 numbers/card)

Card(s) 2b Four Sides (8F10.0) If(IOPT2 = 4)

(Y10X2(KB),KB=1,KBLAST) Y1 boundary points side 1 (X1 = 0)
(Y20X2(KB),KB=1,KBLAST) Y2 boundary points side 1 (X1 = 0)
(Y11X11(LB),LB=1,LBLAST) Y1 boundary points side 2 (X2 = 1)
(Y2X11(LB),LB=1,LBLAST) Y2 boundary points side 2 (X2 = 1)
(Y11X2(KB),KB=1,KBLAST) Y1 boundary points side 3 (X1 = 1)
(Y21X2(KB),KB=1,KBLAST) Y2 boundary points side 3 (X1 = 1)
(Y1X1(LB),LB=1,LBLAST) Y1 boundary points side 4 (X2 = 0)
(Y2X1(LB),LB=1,LBLAST) Y2 boundary points side 4 (X2 = 0)

Load 4*(LBLAST + KPLAST) numbers (8 numbers/card)
Card(s) 3 Coordinate Surface Data

Card___3a_Options____ (3110)

IOPT1 1-10 Surface geometry option
IOPT1 = 0 plain surface
= 1 Y3 = Y3(Y1)
= 2 Y3 = Y3(Y2)
= 3 Y3 = Y3(Y1,Y2)

LSLAST 11-20 No. input Y1 points

KSLAST 21-30 No. input Y2 points

Card(s) 3b_Surface_Coordinates___ (8F10.0) __If IOPT1 = 1

(Y1(LS),LS=1,LSLAST) Y1 coordinate
(Y3(LS),LS=1,LSLAST) Y3 coordinate

Load 2*LSLAST numbers (8 numbers/card)

Card(s) 3b_Surface_Coordinates___ (8F10.0) __If IOPT1 = 2

(Y2(KS),KS=1,KSLAST) Y2 coordinate
(Y3(KS),KS=1,KSLAST) Y3 coordinate

Load 2*KSLAST numbers (8 numbers/card)

Card(s) 3b_Surface_Coordinates___ (8F10.0) __If IOPT1 = 3

(Y1(LS),LS=1,LSLAST) Y1 coordinate
(Y2(KS),KS=1,KSLAST) Y2 coordinate

Load LSLAST numbers (8 numbers/card)

((Y3(LS,KS),LS=1,LSLAST),KS=1,KSLAST) Y3 coordinate

Load LSLAST*KSLAST numbers (8 numbers/card)
Card(S) 4 Pressure Distribution Data

<table>
<thead>
<tr>
<th>Card</th>
<th>4a</th>
<th>Options</th>
<th>(5I10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPT3</td>
<td>1-10</td>
<td>Pressure data option</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOPT3 = 0 No pressure data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 1 CP=CP(X1,X2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 2 CP=CP(Y1,Y2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 3 CP=CP(Y1,X2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 4 CP=CP(X1,Y2)</td>
<td></td>
</tr>
</tbody>
</table>

| LILAST | 11-20 | No. X1 or Y1 input points |
| KILAST | 21-30 | No. X2 or Y2 input points |

| IOPT7 | 31-40 | SMOOTH CP DATA IOPT7 times |

IOPT8	41-50	Rotor/Stator option
		IOPT8 = 0 Stator
		= 1 Rotor load data hub to tip
		=-1 Rotor load data tip to hub

Card(s) 4b Coordinate Data (8F10.0)

(Y1I(LD),LD=1,LILAST) Y1 Coordinate

Load LILAST numbers (8 numbers/card)

(Y2I(KD),KD=1,KILAST) Y2 Coordinate

Load KILAST numbers (8 numbers/card)

((Y3I(LD,KD),LD=1,LILAST),KD=1,KDLAST) CP (Y1,Y2)

Load LILAST*KILAST numbers (8 numbers/card)
Card(s) 5 Inflow Conditions Data

<table>
<thead>
<tr>
<th>Card</th>
<th>Options</th>
<th>(3I10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOPT5</td>
<td>1-10 Inflow option</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IOPT5 = 0 (\text{U1E} = \sqrt{1-\text{CP}}) : (\text{U2E} = 0.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IOPT5 > 0 integrate bl edge equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 1 (\text{U2}(0,\text{X2}) = 0.0 : \text{U2}(\text{X1},0) = 0.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 2 (\text{U2}(0,\text{X2}) = 0.0 : \text{U2}(\text{X1},0)) Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 3 (\text{U2}(0,\text{X2})) Input : (\text{U2}(\text{X1},0) = 0.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 4 (\text{U2}(0,\text{X2})) Input : (\text{U2}(\text{X1},0)) Input</td>
<td></td>
</tr>
</tbody>
</table>

LULAST 11-20 No. X1 input points

KULAST 21-30 No. X2 input points

Card(s) 5b X2=0 inflow boundary (8F10.0) If IOPT5 = 2

\((\text{Y1} \text{LU}(\text{LP}), \text{LP}=1, \text{LULAST})\) Y1 coordinate

Load LULAST numbers (8 numbers/card)

\((\text{U2} \text{LX}(\text{LP}), \text{LP}=1, \text{LULAST})\) U2(Y1)

Load LULAST numbers (8 numbers/card)

Card(s) 5b X1=0 inflow boundary (8F10.0) If IOPT5 = 3

\((\text{Y2} \text{LU}(\text{KP}), \text{KP}=1, \text{KULAST})\) Y2 coordinate

Load KULAST numbers (8 numbers/card)

\((\text{U2} \text{LX}(\text{KP}), \text{KP}=1, \text{KULAST})\) U2(Y2)

Load KULAST numbers (8 numbers/card)
Card(s) 5b X2=0 inflow boundary (8F10.0) If IOPT5 = 4

(YI1U(LP),LP=1,LULAST) Y1 coordinate

Load LULAST numbers (8 numbers/card)

(U2X1(LP),LP=1,LULAST) U2(Y1)

Load LULAST numbers (8 numbers/card)

(YI2U(KP),KP=1,KULAST) Y2 coordinate

Load KULAST numbers (8 numbers/card)

(U2X2(KP),KP=1,KULAST) U2(Y2) 8 numbers/card)

Load KULAST numbers (8 numbers/card)

Card 6 Print Options (5110)

<table>
<thead>
<tr>
<th>IOPT6</th>
<th>1-10</th>
<th>Print every IOPT6th station</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPT9</td>
<td>11-20</td>
<td>Coordinate print option</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOPT9 = 0 Output Y1 and Y2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 1 Output S1 and S2</td>
</tr>
<tr>
<td>IOPT10</td>
<td>21-30</td>
<td>Set IOPT10 = 1</td>
</tr>
<tr>
<td>IOPT11</td>
<td>31-40</td>
<td>Upstream conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOPT11 = 0 Uniform conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 1 Nonuniform conditions</td>
</tr>
<tr>
<td>IOPT12</td>
<td>41-50</td>
<td>Print data on K = IOPT12th line</td>
</tr>
</tbody>
</table>
Card(s) 7 Reference Flow Variables (6F10.0)

<table>
<thead>
<tr>
<th>Card</th>
<th>Range</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINFI</td>
<td>1-10</td>
<td>Static pressure</td>
<td>(psf)</td>
</tr>
<tr>
<td>TINFI</td>
<td>11-20</td>
<td>Static temperature</td>
<td>(deg. R.)</td>
</tr>
<tr>
<td>UINFI</td>
<td>21-30</td>
<td>Velocity</td>
<td>(ft/sec)</td>
</tr>
<tr>
<td>BET11</td>
<td>31-40</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>XLREF</td>
<td>41-50</td>
<td>Length</td>
<td>(ft)</td>
</tr>
<tr>
<td>DHINF</td>
<td>51-60</td>
<td>Not used</td>
<td></td>
</tr>
</tbody>
</table>

Card(s) 8 Rotor Parameters (Load only if IOPT8 = 1)

Card 8a Rotation Vector (4F10.0)

<table>
<thead>
<tr>
<th>Card</th>
<th>Range</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBTI</td>
<td>1-10</td>
<td>Rotor tip speed</td>
<td>(ft/sec)</td>
</tr>
<tr>
<td>GO1</td>
<td>11-20</td>
<td>Components of omega</td>
<td></td>
</tr>
<tr>
<td>GO2</td>
<td>21-30</td>
<td>in the Y1,Y2,Y3</td>
<td></td>
</tr>
<tr>
<td>GO3</td>
<td>31-40</td>
<td>directions</td>
<td></td>
</tr>
</tbody>
</table>

Card 8b Rotor Parameters (6F10.0)

<table>
<thead>
<tr>
<th>Card</th>
<th>Range</th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RADHI</td>
<td>1-10</td>
<td>Hub radius</td>
<td></td>
</tr>
<tr>
<td>RADTI</td>
<td>11-20</td>
<td>Tip radius</td>
<td></td>
</tr>
<tr>
<td>YRADHI</td>
<td>21-30</td>
<td>Hub Y2 coordinate</td>
<td></td>
</tr>
<tr>
<td>YRADTI</td>
<td>31-40</td>
<td>Tip Y2 coordinate</td>
<td></td>
</tr>
<tr>
<td>GAPI</td>
<td>41-50</td>
<td>Mid span gap</td>
<td></td>
</tr>
<tr>
<td>DELCP</td>
<td>51-60</td>
<td>Not used</td>
<td></td>
</tr>
</tbody>
</table>
Card(s) 9 Upstream Flow Conditions (load only if IOPT11 = 1)

<table>
<thead>
<tr>
<th>Card</th>
<th>Range</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y2RI(K)</td>
<td>1-10</td>
<td>Spanwise coordinate (Y2)</td>
<td></td>
</tr>
<tr>
<td>PTAI(K)</td>
<td>11-20</td>
<td>Inlet absolute total pressure</td>
<td>psf</td>
</tr>
<tr>
<td>TTAI(K)</td>
<td>21-30</td>
<td>Inlet absolute total temperature</td>
<td>deg. R.</td>
</tr>
<tr>
<td>UZAI(K)</td>
<td>31-40</td>
<td>Inlet axial velocity</td>
<td>ft/sec</td>
</tr>
<tr>
<td>BTRI(K)</td>
<td>41-50</td>
<td>Inlet flow angle</td>
<td>deg.</td>
</tr>
</tbody>
</table>

Load KILAST cards
4.2 Output Format

The output for the SETUP code echoes the input data and also lists certain additional calculated data which can be used for input to the BL3D code. The output description is given by headings on the following pages.

Unit 12 Output (file name OUTPUT.DAT)

Title Card

72 alphanumeric characters

Input Options

All input options are listed in order with its value and meaning beside it.

Independent Variables

The input calculation grid points X1(L) and X2(K) are listed as input. If IOPT4 = 0 or 1, the calculated grid points are listed.

Computational Boundaries

The input computational boundaries are listed by sides where:

- **Side 1** \(Y1(0.0,X2), Y2(0.0,X2) \)
- **Side 2** \(Y1(X1,1.0), Y2(X1,1.0) \)
- **Side 3** \(Y1(1.0,X2), Y2(1.0,X2) \)
- **Side 4** \(Y1(X1,0.0), Y2(X1,0.0) \)

are parametric pairs of points describing the boundaries. If IOPT2 \(< 4\), the boundaries are calculated and then listed.
Coordinate Surface Data

The Cartesian coordinates of the computational surface are listed next. It is assumed that the independent variable \(Y_1 \) is only a function of \(L \) and the independent variable \(Y_2 \) is only a function of \(K \). These arrays are listed first. Next \(Y_3(\text{\(Y_1, Y_2 \)}) \) is listed. For \(\text{IOPT1} = 0 \), the computational surface is a plane surface and \(Y_3 \) is not listed. For \(\text{IOPT1} = 1 \) or \(2 \), the surface is a two dimensional (developable) surface \(Y_3=Y_3(Y_1) \) or \(Y_3=Y_3(Y_2) \). With these options only \(Y_1 \) and \(Y_3 \) are listed or \(Y_2 \) and \(Y_3 \).

Pressure Distribution Data

The independent variables are listed first. Again it is assumed that \(Y_1 \) or \(X_1 \) is only a function of \(L \) and \(Y_2 \) or \(X_2 \) is only a function of \(K \) depending upon the input option \(\text{IOPT3} \). The pressure coefficient data is listed next.

Inflow Conditions (If \(\text{IOPT5} > 1 \))

The independent variables \(Y_1 \) or \(X_1 \) are listed first and followed by the inflow velocities \(U_2(Y_1) \) or \(U_2(X_1) \). Then the independant variable \(Y_2 \) or \(X_2 \) is listed followed by \(U_2(Y_2) \) or \(U_2(X_2) \).

Flow Parameters

The following input parameters are listed:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINFI</td>
<td>(p_\infty)</td>
<td>Reference static pressure</td>
<td>(psf)</td>
</tr>
<tr>
<td>TINFI</td>
<td>(t_\infty)</td>
<td>Reference static temperature</td>
<td>(deg. R.)</td>
</tr>
<tr>
<td>UINFI</td>
<td>(u_\infty)</td>
<td>Reference velocity</td>
<td>(ft/sec)</td>
</tr>
<tr>
<td>BET1I</td>
<td>(\beta_{100})</td>
<td>Reference inlet flow angle</td>
<td>atan(UZA/UPR) (deg.)</td>
</tr>
</tbody>
</table>
The following calculated parameters are listed next. These quantities are nondimensionalized in the same manner as the input to the BL3D code and may be used as input to the BL3D code. Note that rotor parameters are only listed if IOPT8 > 0.

- PINF P_∞ Reference freestream static pressure
- TREF T_{ref} Reference static temperature
- TINF T_∞ Reference freestream static temperature
- HINF H_∞ Reference freestream static enthalpy
- DHINF Not used
- XMINFI M_∞ Reference freestream Mach number
- OMEGA Ω Magnitude of rotation vector
OMEGA1
OMEGA2 \quad \text{Cartesian components of rotation vector}
OMEGA3

\text{VBINF} \quad V_{B\infty} \quad \text{Reference rotor speed}
\text{UPINF} \quad U_{\phi\infty} \quad \text{Reference inlet tangential velocity}
\text{ALP11} \quad a_{100} \quad 90. - \text{ BET11}
\text{HTABSF} \quad \bar{h}_{T\infty} \quad \text{Reference absolute total enthalpy}
\text{PTABSF} \quad \bar{p}_{T\infty} \quad \text{Reference absolute total pressure}

\textbf{Nonuniform Inflow Conditions (If IOPT8 = 1)}

The following inflow conditions are input and listed.

\text{Y2RI}(K) \quad Y_2 \quad \text{Y2 coordinate}
\text{PTAI}(K) \quad \bar{p}_T \quad \text{Inlet absolute total pressure (psf)}
\text{TTAI}(K) \quad \bar{t}_T \quad \text{Inlet absolute total temperature (deg. R)}
\text{UZAI}(K) \quad U_z \quad \text{Inlet absolute axial velocity (ft/sec)}
\text{BTRI}(K) \quad \beta_1 \quad \text{Inlet relative flow angle } \text{atan(UZA/UPR)} \text{ (deg.)}

\textbf{Rotor Inlet Conditions (if IOPT8 = 1)}

The following variables are calculated and listed.

\text{Y2RI}(K) \quad Y_2 \quad \text{Y2 coordinate}
\text{PT/PINF} \quad P_T/P_{T\infty} \quad \text{Absolute total pressure ratio}
\text{TT/TINF} \quad T_T/T_{T\infty} \quad \text{Absolute total temperature ratio}
\text{P/PINF} \quad P/P_{\infty} \quad \text{Static pressure ratio}
\text{T/TINF} \quad T/T_{\infty} \quad \text{Static temperature ratio}
Rotor velocity \(V_B \)

Absolute inlet flow angle \(\beta_1 = \text{atan}(UZA/UPA) \) (deg.)

Absolute inlet velocity \(U_1 \)

Absolute inlet tangential velocity \(U_\phi \)

Absolute inlet axial velocity \(U_z \)

Relative inlet velocity \(U_1 \)

Relative inlet tangential velocity \(U_\phi \)

Relative inlet vorticity \(\Omega_s \)

Estimated inlet spanwise velocity \(U_{zs} \)

Boundary Layer Edge Conditions

The boundary layer coordinates and edge conditions are calculated on a LPLAST*KPLAST grid. Depending on the input option IOPT6, the following quantities are listed at grid points which are multiples of IOPT6.

- \(L, K \) Coordinate point
- \(X_1P, X_2P \) Computational coordinates
- \(Y_1P, Y_2P \) Cartesian coordinates
- \(C_P \) Pressure coefficients
- \(U_1E, U_2E \) Boundary layer edge velocity components
- \(DU1EDX1, DU1EDX2 \) Boundary layer edge derivatives of the velocity components
- \(DU2EDX1, DU2EDX2 \) Boundary layer edge derivatives of the velocity components
The output on unit 11 provides a detailed short listing of all L stations for a given K = KPT station. This output is very useful for aligning a computational coordinate with the corresponding Cartesian coordinate and the arc length along the coordinate surface. It also lists the coordinates of a calculated streamline starting at the point (L = 1, K = KPT). The pair of points (S1P, SLS) form a parametric curve of the streamline on the surface starting at the point (L = 1, K = KPT). The following variables are currently listed on the file.

- **L**: Coordinate point
- **X1P**: X₁ Computational coordinate
- **Y1P**: Y₁ Cartesian coordinate
- **S1P**: S₁ Arc length along X₁ coordinate
- **Y3P**: Y₃ Cartesian coordinate of surface
- **CP**: Cₚ Static pressure coefficient
- **U1E**: U₁ₑ Edge velocity components
- **U2E**: U₂ₑ
- **OMEGA3**: Ω₃ Vorticity component normal to surface
- **SLS**: S₂ₛ Spanwise arc length of streamline
- **ALPE**: αₑ Flow angle at streamline
4.3 Output Data Files

The output data files are written on units 8, 9, and 10. These data files contain some of the data which is required as input by the BL3D code. A detailed listing of the files are given below.

Unit 8 Metric Data (7E14.7)

HH1	H1	Metric scale coefficient for X1		
HH2	H2	Metric scale coefficient for X2		
DH11	\(\partial H_1 / \partial x_1 \)	\(D(HH1)/DX1 \)		
DH12	\(\partial H_1 / \partial x_2 \)	\(D(HH1)/DX2 \)		
DH21	\(\partial H_2 / \partial x_1 \)	\(D(HH2)/DX1 \)		
DH22	\(\partial H_2 / \partial x_2 \)	\(D(HH2)/DX2 \)		
GL12	G12	Covariant metric tensor component		
DG	\(G	\)	Determinant of covariant metric tensor
DG121	\(\partial G_{12} / \partial x_1 \)	\(D(GL12)/DX1 \)		
DG122	\(\partial G_{12} / \partial x_2 \)	\(D(GL12)/DX2 \)		
RAD	R	Radius		
DRAD1	\(\partial R / \partial x_1 \)	\(D(R)/DX1 \)		
OMEGA3	\(\partial \Omega / \partial x_2 \)	\(D(R)/DX2 \)		

Unit 9 Boundary Layer Edge Conditions (7E14.7)

U1E	U1e	X1 edge velocity
U2E	U2e	X2 edge velocity
PP	P	Static pressure
DU1DX2	\(\partial U_1 / \partial x_2 \)	\(D(U1E)/DX2 \)
D\frac{\partial u_2}{\partial x_2} = \frac{D(u_2 E)}{Dx_2} \\
D\frac{\partial u_1}{\partial x_1} = \frac{D(u_1 E)}{Dx_1} \\
D\frac{\partial u_2}{\partial x_1} = \frac{D(u_2 E)}{Dx_1} \\
HR I \text{ Rothalpy}

Unit 10 Transformation Variables (7E14.7)

Y1 or S1 \text{ X1 coordinate or X1 arc length}

Y2 or S2 \text{ X2 coordinate or X2 arc length}

((\text{GAM(I,J)}, J=1,3), I=1,3) \text{ Direction cosines}

Note: If IOPT9 = 0 Y1 and Y2 are written

If IOPT9 = 1 S1 and S2 are written
4.4 Diagnostics

A number of checks are made during the course of the calculation. If a minor error occurs, a DIAGNOSTIC message is printed and the calculation is continued. If a serious error occurs, a DIAGNOSTIC message is printed and the calculation stops. A description of the DIAGNOSTIC message is given below. These messages are always of the form

** DIAGNOSTIC NO. XX **

where the number XX refers to one of the errors listed below.

1) **ERROR** X PT DOES NOT CORRESPOND TO GRID LINE or **ERROR** Y PT DOES NOT CORRESPOND TO GRID LINE

This error is detected in Subroutine INTR1D and occurs whenever the computational boundary lies outside the boundaries of the input surface coordinates or outside the boundaries of the input pressure distribution. This is not a fatal error and the calculation continues by extrapolation of the data. However, the input data should be examined to be certain it is correct and the computational boundaries should be inside the input data boundaries.

2) **ERROR** 1-D INTERPOLATION ROUTINE CALLED
 HOWEVER NEITHER X NOR Y LIE ON A GRIDLINE

This error ordinarily should not occur, however, due to round off error, an IF test may fail and the error message occurs. This is not a fatal error and the calculation continues.
3) CONVERGENCE DID NOT OCCUR

This error is detected in subroutine UITER and occurs whenever convergence of the successive substitution iteration did not occur or if only imaginary solutions exist. This is a fatal error and the calculation stops. Check to see if the input pressure distribution is correct and that the input inflow conditions are correct. One may also smooth the input data using the IOPT7 option.
4.5 Sample Input

A sample input to the SETUP code is given below card by card as described in Section 4.1. To assist the user in setting up a new case comments are inserted between blocks of data in lower case letters. These comments of course should not be on the input cards.

Card(s) 0 Title Card

LSRR76 PRESSURE SURFACE ROTATING RIG (LEADING EDGE START)

Card(s) 1 Computational Grid Data

| 1 | 40 | 40 | .48 |

Card(s) 2 Computational Boundary Data

| 0 | 21 | 21 | .01601 | 0.94699 | 0.01893 | 0.92729 |

Card(s) 3 Coordinate Surface Data

<table>
<thead>
<tr>
<th>3</th>
<th>50</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01000</td>
<td>0.02000</td>
<td>0.03000</td>
</tr>
<tr>
<td>0.09000</td>
<td>0.10000</td>
<td>0.12500</td>
</tr>
<tr>
<td>0.27500</td>
<td>0.30000</td>
<td>0.32500</td>
</tr>
<tr>
<td>0.47500</td>
<td>0.50000</td>
<td>0.52500</td>
</tr>
<tr>
<td>0.67500</td>
<td>0.70000</td>
<td>0.72500</td>
</tr>
<tr>
<td>0.87500</td>
<td>0.90000</td>
<td>0.91000</td>
</tr>
<tr>
<td>0.97000</td>
<td>0.98000</td>
<td>0.99000</td>
</tr>
<tr>
<td>0.1892</td>
<td>0.11828</td>
<td>0.23656</td>
</tr>
<tr>
<td>-.42037</td>
<td>-.40957</td>
<td>-.40300</td>
</tr>
<tr>
<td>-.40933</td>
<td>-.41594</td>
<td>-.43076</td>
</tr>
<tr>
<td>-.47813</td>
<td>-.48006</td>
<td>-.48045</td>
</tr>
<tr>
<td>-.45157</td>
<td>-.44165</td>
<td>-.43026</td>
</tr>
<tr>
<td>-.32973</td>
<td>-.30730</td>
<td>-.28313</td>
</tr>
<tr>
<td>-.09689</td>
<td>-.05780</td>
<td>-.04139</td>
</tr>
<tr>
<td>.03310</td>
<td>.03140</td>
<td>.03140</td>
</tr>
<tr>
<td>-.43945</td>
<td>-.42865</td>
<td>-.42209</td>
</tr>
<tr>
<td>-.42841</td>
<td>-.43489</td>
<td>-.44939</td>
</tr>
<tr>
<td>-.49463</td>
<td>-.49620</td>
<td>-.49620</td>
</tr>
<tr>
<td>-.46393</td>
<td>-.45318</td>
<td>-.44085</td>
</tr>
<tr>
<td>-.33075</td>
<td>-.30621</td>
<td>-.27988</td>
</tr>
<tr>
<td>-.08234</td>
<td>-.04217</td>
<td>-.02543</td>
</tr>
<tr>
<td>.04955</td>
<td>.04785</td>
<td>.04785</td>
</tr>
<tr>
<td>-.46218</td>
<td>-.45138</td>
<td>-.44483</td>
</tr>
<tr>
<td>Card(s)</td>
<td>Coordinate Surface Data (Cont'd)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.45108 -.47142 -.48321 -.49295 -.50078 -.50682 -.51116</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.51384 -.51490 -.51277 -.50858 -.50328 -.49636 -.48778</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.47754 -.46560 -.45193 -.43641 -.41896 -.39957 -.37824 -.35501</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.32990 -.30297 -.27425 -.24375 -.21150 -.17748 -.14170 -.10411</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.06470 -.02342 -.00636 .01101 .02869 .04671 .06145 .06740</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.06913 .06743</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.50768 -.49688 -.49031 -.48639 -.48453 -.48453 -.48639 -.49032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.49628 -.50213 -.51503 -.52570 -.53434 -.54107 -.54601 -.54924</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.55078 -.55066 -.54889 -.54545 -.54029 -.53336 -.52657 -.51385</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.50108 -.48617 -.46906 -.44971 -.42815 -.40445 -.37870 -.35101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.32148 -.29021 -.25728 -.22276 -.18672 -.14922 -.11032 -.07003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.02840 .01453 .03207 .04980 .06773 .08587 .10062 .10657</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.10830 .10659</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.55319 -.54238 -.53581 -.53188 -.53001 -.53000 -.53185 -.53575</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.54132 -.54659 -.55810 -.56744 -.57477 -.58021 -.58387 -.58578</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.58597 -.58445 -.58120 -.57616 -.56926 -.56039 -.54941 -.53611</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.52026 -.50166 -.48022 -.45616 -.42973 -.40121 -.37080 -.33871</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.30503 -.26993 -.23348 -.19578 -.15691 -.11692 -.07589 -.03386</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.00913 .05302 .07083 .08876 .10683 .12502 .13978 .14573</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.14746 .14576</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.57592 -.56511 -.55854 -.55461 -.55275 -.55274 -.55459 -.55850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.56381 -.56877 -.57953 -.58815 -.59479 -.59956 -.60253 -.60374</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.60322 -.60096 -.59691 -.59103 -.58320 -.57331 -.56115 -.54648</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.52898 -.50839 -.48462 -.45801 -.42901 -.40121 -.37080 -.33090</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.29522 -.25830 -.22023 -.18111 -.14100 -.09997 -.05808 -.01536</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.02813 .07237 .09027 .10827 .12639 .14460 .15936 .16532</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.16705 .16534</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.59501 -.58420 -.57764 -.57371 -.57185 -.57185 -.57371 -.57763</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.58270 -.58739 -.59752 -.60554 -.61160 -.61579 -.61818 -.61881</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.61768 -.61479 -.61008 -.60348 -.59487 -.58411 -.57097 -.55514</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.53625 -.51396 -.48822 -.45947 -.42829 -.39515 -.36036 -.32422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.28685 -.24842 -.20899 -.16869 -.12756 -.08566 -.04306 .00021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.04412 .08863 .10660 .12466 .14282 .16105 .17581 .18176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.18350 .18179</td>
<td></td>
</tr>
</tbody>
</table>
Card(s) 4 Pressure Distribution Data

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0160</td>
<td>0.0560</td>
<td>0.0910</td>
<td>0.2380</td>
<td>0.3930</td>
<td>0.5360</td>
<td>0.6630</td>
<td>0.7710</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8620</td>
<td>0.9470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0189</td>
<td>0.1182</td>
<td>0.2365</td>
<td>0.4731</td>
<td>0.7097</td>
<td>0.8279</td>
<td>0.9273</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3417</td>
<td>0.3074</td>
<td>0.2539</td>
<td>0.0870</td>
<td>0.1818</td>
<td>-0.0864</td>
<td>-0.8064</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1040</td>
<td>0.1535</td>
<td>0.3382</td>
<td>0.4825</td>
<td>0.5732</td>
<td>0.5595</td>
<td>0.5595</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1025</td>
<td>0.1250</td>
<td>0.1178</td>
<td>0.3447</td>
<td>0.4638</td>
<td>0.5173</td>
<td>0.5173</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1429</td>
<td>0.2231</td>
<td>0.0399</td>
<td>0.4492</td>
<td>0.5513</td>
<td>0.5635</td>
<td>0.5635</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1500</td>
<td>0.2280</td>
<td>0.3172</td>
<td>0.4517</td>
<td>0.5497</td>
<td>0.5643</td>
<td>0.5643</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0220</td>
<td>0.1032</td>
<td>0.2126</td>
<td>0.3382</td>
<td>0.4119</td>
<td>0.4338</td>
<td>0.4338</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.1285</td>
<td>-0.1132</td>
<td>-0.1184</td>
<td>0.0343</td>
<td>0.1032</td>
<td>0.0700</td>
<td>0.0700</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.5629</td>
<td>-0.5321</td>
<td>-0.4705</td>
<td>-0.4325</td>
<td>-0.3984</td>
<td>-0.4495</td>
<td>-0.4495</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.1739</td>
<td>-1.1650</td>
<td>-1.1342</td>
<td>-1.1083</td>
<td>-1.1075</td>
<td>-1.1675</td>
<td>-1.1675</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Card(s) 5 Inflow Conditions Data

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0000</td>
<td>0.2819</td>
<td>0.4950</td>
<td>0.6669</td>
</tr>
<tr>
<td></td>
<td>0.1000</td>
<td>0.1000</td>
<td>0.1000</td>
<td>0.1000</td>
</tr>
<tr>
<td></td>
<td>0.0200</td>
<td>0.1182</td>
<td>0.2366</td>
<td>0.4731</td>
</tr>
<tr>
<td></td>
<td>0.1000</td>
<td>0.3500</td>
<td>0.4500</td>
<td>0.4500</td>
</tr>
</tbody>
</table>

Card 6 Print Options

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2074.976</td>
<td>516.035</td>
<td>107.314</td>
<td>44.600</td>
</tr>
<tr>
<td></td>
<td>0.52840</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Card(s) 7 Reference Flow Variables

<table>
<thead>
<tr>
<th></th>
<th>107.338</th>
<th>-1.00000</th>
<th>0.00000</th>
<th>0.00000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.8039</td>
<td>4.7158</td>
<td>0.01829</td>
<td>0.92733</td>
</tr>
<tr>
<td></td>
<td>0.956</td>
<td>0.50000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Card(s) 8 Rotor Parameters (load only if IOPT8 = 1)

<table>
<thead>
<tr>
<th></th>
<th>0.0200</th>
<th>2117.000</th>
<th>519.000</th>
<th>75.351</th>
<th>40.000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1182</td>
<td>2117.000</td>
<td>519.000</td>
<td>75.351</td>
<td>40.000</td>
</tr>
<tr>
<td></td>
<td>0.2366</td>
<td>2117.000</td>
<td>519.000</td>
<td>75.351</td>
<td>39.000</td>
</tr>
<tr>
<td></td>
<td>0.4731</td>
<td>2117.000</td>
<td>519.000</td>
<td>75.351</td>
<td>44.600</td>
</tr>
<tr>
<td></td>
<td>0.7097</td>
<td>2117.000</td>
<td>519.000</td>
<td>75.351</td>
<td>42.000</td>
</tr>
<tr>
<td></td>
<td>0.8280</td>
<td>2117.000</td>
<td>519.000</td>
<td>75.351</td>
<td>47.000</td>
</tr>
<tr>
<td></td>
<td>0.9273</td>
<td>2117.000</td>
<td>519.000</td>
<td>75.351</td>
<td>50.000</td>
</tr>
</tbody>
</table>
5.0 OPERATION OF BL3D CODE

5.1 Input Format

The card input format is described on the pages which follow. In addition to the card input, the code also reads input data files contained on units 10, 11, 12 which may be set up by the user or may be set up by the SETUP preprocessor code. In the loading of the cards the variable name, column numbers, and description are given. Integer variables are all right adjusted and real variables may have any number of significant figures.

Card 1 Title card (load 72 alphanumeric characters)

Card 2 Option Card (6I2,8X,3F10.0)

<table>
<thead>
<tr>
<th>Card</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGBAR</td>
<td>Levy-Lees option (recommended 0)</td>
</tr>
<tr>
<td>ITURB</td>
<td>Turbulence option</td>
</tr>
<tr>
<td>IENRGY</td>
<td>Wall heat transfer option</td>
</tr>
<tr>
<td>LINIT</td>
<td>X1 = 0 inflow boundary</td>
</tr>
<tr>
<td>KINIT</td>
<td>X2 = 0 inflow boundary</td>
</tr>
<tr>
<td>NITVC</td>
<td>Max. no. iterations (recommended 20)</td>
</tr>
</tbody>
</table>

IGBAR = 0 Laminar Levy-Lees variables
= 1 Turbulent Levy-Lees variables
ITURB = 0 Laminar flow
= 1 Turbulent/transitional flow
IENRGY = 0 Specify wall temperature
= 1 Specify wall heat flux
LINIT = 0 Local similarity start
= 1 Incompressible flat plate start
= 2 Incompressible stagnation start
= 3 Input profiles (not Programmed)
KINIT = 0 Local similarity start
= 1 Plain of symmetry start
= 2 Input profiles (not programmed)
CONV 21-30 Convergence tolerance (recommended .0001)
AK 31-40 Ratio of adjacent step size (recommended 1.05)
DNI 41-50 Step size at wall (recommended 0.1)

Card 3 Gas Properties (5F10.0)
R 1-10 Gas constant (air 1716.0)
G 11-20 Ratio specific heats (air 1.4)
PR 21-30 Prandtl number (air .72)
PRT 31-40 Turbulent Prandtl number (air .92)
CSTAR 41-50 Sutherland's constant (air 198.6)

Card 4 Flow Conditions (4F10.0)
XMA 1-10 Reference Mach number
TFS 11-20 Reference static temperature (deg. R.)
PFS 21-30 Reference static pressure (psf)
XLREF 31-40 Reference length (ft)

Card 5 Virtual origin/heat flux conditions (4F10.0)
XO 1-10 X1 virtual origin (recommended > .0001)
WO 11-20 X2 virtual origin (recommended .0000)
RHWIN 21-30 Wall temperature ratio (Tw/Tref)
QWSIN 31-40 Wall heat flux (ftlb/ft**2/sec)

Card 6 Transition points (3F10.0)
XT1 1-10 Beginning of transition
XT2 11-20 End of transition
CISO 21-30 Cross flow eddy viscosity parameter
CISO = 1.0 isotropic turbulence
 = 0.4 nonisotropic turbulence
Card(s) 7 Print output station numbers (16I5)

LPRO(L) Load up to 16 numbers
KPRO(K) Load up to 16 numbers
KPT Unit 16 print parameter 1<KPT<IWEND
5.2 Output Format

The output for the BL3D code echoes the input data, lists the computational coordinates, prints certain calculated terms, and prints the calculated solution at selected output (L,K) points. The output description is given on the following pages.

Unit 7 Output (file name OUTPUT)

Title Card

72 alphanumeric characters

Echo Input Data

IE Maximum number of points in boundary layer normal direction (in X3)
IWEND Maximum number of points in spanwise direction (in X2)
IXEND Maximum number of points in streamwise direction (in X1)
KSTOP Maximum number of spanwise points at which boundary layer calculation is performed
LSTOP Maximum number of streamwise points at which boundary layer calculation is performed
IGBAR = 0 Turbulent Levy-Lees variables are used
 = 1 Laminar Levy-Lees variables are used
ITURB = 0 Turbulent flow (transitional)
 = 1 Laminar flow
IENRGY = 0 Heat flux specified at the wall
 = 1 Temperature specified at the wall
NITCV Maximum number of iterations permitted at each station
Maximum error permitted in F2N at the wall

Freestream Mach number

Freestream static temperature (degrees Rankine)

Freestream static pressure (psf)

Gas constant (ft**2/sec**2-degree Rankine)

Ratio of specific heats

Prandtl number

Turbulent Prandtl number

Constant in Sutherland's viscosity law (degree Rankine)

Ratio of adjacent step sizes in boundary layer direction

Step size at the wall in boundary layer

Reference length in feet

Beginning of transition in X1 direction

End of transition in X1 direction

Constant used for scaling eddy viscosity in cross flow momentum equation for nonisotropic turbulent flows

Step size array in streamwise direction

Step size array in spanwise direction

X1 location at first streamwise location

X2 location at first spanwise location

Enthalpy ratio at the wall

Heat flux at the wall

Controls print in the streamwise direction
KPRO

Controls print in the spanwise direction

LINIT

Initial conditions; option at \(L = 1 \)

- \(\text{LINIT} = 0 \) Local similarity
- \(\text{LINIT} = 1 \) Incompressible flat plate
- \(\text{LINIT} = 2 \) Incompressible stagnation line
- \(\text{LINIT} = 3 \) Input profiles

KINIT

Initial conditions option at \(K = 1 \)

- \(\text{KINIT} = 0 \) Local similarity
- \(\text{KINIT} = 1 \) Plane of symmetry
- \(\text{KINIT} = 2 \) Input profiles

Calculated Reference Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_\infty)</td>
<td>Reference freestream velocity (ft/sec)</td>
</tr>
<tr>
<td>(\rho_\infty)</td>
<td>Reference freestream density (slug/ft**3)</td>
</tr>
<tr>
<td>(\mu_\infty)</td>
<td>Reference freestream viscosity (slug/ft/sec)</td>
</tr>
<tr>
<td>(R_{e\infty})</td>
<td>Reference freestream Reynolds number</td>
</tr>
<tr>
<td>(t_{\text{ref}})</td>
<td>Reference temperature (deg. Rankine)</td>
</tr>
<tr>
<td>(\mu_{\text{ref}})</td>
<td>Reference viscosity (slug/ft/sec)</td>
</tr>
<tr>
<td>(R_e)</td>
<td>Reference Reynolds number</td>
</tr>
<tr>
<td>(C')</td>
<td>Normalized Sutherland's constant</td>
</tr>
</tbody>
</table>

Calculated Local Parameters at point \((L,K) \)

These parameters are referenced to an intrinsic coordinate system composed of the boundary layer edge freestream direction and the cross flow (perpendicular) direction. In addition, certain parameters are referenced to their projections onto the \(Y_3 = 0 \) plane. Parameters in the intrinsic coordinate system are labeled (intr.). Parameters in the Cartesian coordinate system are labeled.
Length scales are normalized with respect to the reference length X_{REF} and velocities are normalized with respect to the reference freestream velocity U_{FS}.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1/L</td>
<td>X_1 coordinate</td>
</tr>
<tr>
<td>X_2/L</td>
<td>X_2 coordinate</td>
</tr>
<tr>
<td>Y_1/L</td>
<td>Y_1 Cartesian coordinate or</td>
</tr>
<tr>
<td>S_1/L</td>
<td>S_1 arc length distance</td>
</tr>
<tr>
<td>Y_2/L</td>
<td>Y_2 Cartesian coordinate or</td>
</tr>
<tr>
<td>S_2/L</td>
<td>S_2 arc length distance</td>
</tr>
<tr>
<td>Y_3/L</td>
<td>Y_3 Cartesian coordinate</td>
</tr>
<tr>
<td>C_{fs}</td>
<td>Streamwise wall friction coefficient (intr.) $2\tau_s/(\rho_e U_e^2)$</td>
</tr>
<tr>
<td>C_{fc}</td>
<td>Crossflow wall friction coefficient (intr.) $2\tau_c/(\rho_e U_e^2)$</td>
</tr>
<tr>
<td>Q_w</td>
<td>Wall heat flux</td>
</tr>
<tr>
<td>S_T</td>
<td>Stanton number $(Q_w/(T_a-T_w))$</td>
</tr>
<tr>
<td>$T_{a/TFS}$</td>
<td>Adiabatic wall temperature ratio</td>
</tr>
<tr>
<td>U_{Te}</td>
<td>Total freestream velocity</td>
</tr>
<tr>
<td>α_w</td>
<td>Limiting streamline flow angle (intr.)</td>
</tr>
<tr>
<td>β_1</td>
<td>Characteristic directions (intr.)</td>
</tr>
<tr>
<td>β_2</td>
<td>Characteristic directions (intr.)</td>
</tr>
<tr>
<td>C_p</td>
<td>Pressure coefficient</td>
</tr>
<tr>
<td>V_{1e}</td>
<td>V_1 velocity component (Cart.)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>V_2E</td>
<td>V2 velocity component (Cart.)</td>
</tr>
<tr>
<td>β_e</td>
<td>Boundary layer edge flow direction (Cart.)</td>
</tr>
<tr>
<td>β_w</td>
<td>Limiting wall streamline direction (Cart.)</td>
</tr>
<tr>
<td>δ</td>
<td>Boundary thickness</td>
</tr>
<tr>
<td>δ_S^*</td>
<td>Streamwise displacement thickness (intr.)</td>
</tr>
<tr>
<td>δ_C^*</td>
<td>Crossflow displacement thickness (intr.)</td>
</tr>
<tr>
<td>δ_{US}^*</td>
<td>Streamwise velocity thickness (intr.)</td>
</tr>
<tr>
<td>δ_{UC}^*</td>
<td>Crossflow velocity thickness (intr.)</td>
</tr>
<tr>
<td>θ_{SS}</td>
<td>Streamwise momentum thickness (intr.)</td>
</tr>
<tr>
<td>θ_{CC}</td>
<td>Crossflow momentum thickness (intr.)</td>
</tr>
<tr>
<td>θ_{SC}</td>
<td>$U_C \Delta U_S$ momentum thickness (intr.)</td>
</tr>
<tr>
<td>θ_{CS}</td>
<td>$U_S \Delta U_C$ momentum thickness (intr.)</td>
</tr>
<tr>
<td>θ_{HS}</td>
<td>Streamwise enthalpy thickness (intr.)</td>
</tr>
<tr>
<td>θ_{HC}</td>
<td>Crosswise enthalpy thickness (intr.)</td>
</tr>
<tr>
<td>θ_{DS}</td>
<td>Streamwise dissipation thickness (intr.)</td>
</tr>
<tr>
<td>θ_{DC}</td>
<td>Crosswise dissipation thickness (intr.)</td>
</tr>
<tr>
<td>U_1E</td>
<td>X_1 component of edge velocity</td>
</tr>
<tr>
<td>U_2E</td>
<td>X_2 component of edge velocity</td>
</tr>
<tr>
<td>T_{w}/T_{∞}</td>
<td>Wall temperature ratio</td>
</tr>
<tr>
<td>I_{EDGE}</td>
<td>Index for boundary layer edge</td>
</tr>
</tbody>
</table>
Calculated profiles at the point (L,K)

The following variables are referenced to the intrinsic coordinate system and are normalized to the local boundary layer edge conditions.

- ZETA3: ξ_3 Levy-Lees normal coordinate
- X3/L: X_3 Normal distance from wall
- US/UTE: U_S/U_Te Streamwise velocity ratio
- UC/UTE: U_C/U_Te Crossflow velocity ratio
- UT/UTE: U_T/U_Te Total velocity ratio
- ALPC: α_c Flow angle (deg)
- T/TE: T/T_e Static temperature ratio
- VIS: $(\rho \mu)/(\rho_e u_e)$ Levy-Lees stretching parameter
5.3 Input/Output Data Files

The input data files are units 10, 11, 12 which are read by the main program MAIN. The output data files are units 13, 15, and 16. Unit 20 serves as both an input and output temporary file. The data on units 10, 11, 12 are written by the SETUP code or the user may setup this data independently. The data on units 13, 15, 16, and 20 are written by subroutine ROUTPT. A detailed description of these files are given below.

Unit 10 (IDRM1) Metric Data

The first set of data on this file is the number of points in the computational mesh. FORMAT(3I5)

IE
Number of points in the X3 direction

IXEND
(No. of pts.) - 1 in the X1 direction

IWEND
(No. of pts.) - 1 in the X2 direction

The second set of data is IXEND X1 coordinate differences and IWEND X2 coordinate differences. FORMAT(7E14.7)

DXV(L),L=1,IXEND
X1 coordinate difference

DWV(K),K=1,IWEND
X2 coordinate difference

The final set of data consists of the metric data for each mesh point (L,K) having a FORMAT(7E14.7/7E14.7). This data is arranged to be read by a DO K LOOP nested within a DO L LOOP. At each mesh point (L,K) the following data is read.
The data on this file consists of the boundary layer edge conditions for each computational point (L,K). This data, like the data above, is read by a DO K LOOP nested in a DO L LOOP. At each mesh point (L,K) the following data is read. FORMAT(7E14.7/1E14.7).

U(K) U_{1e} X1 velocity component
V(K) U_{2e} X2 velocity component
PP(K) P Static pressure
DUDW(K) \partial U_{1e}/\partial X_2 D(U1)/DX2
The data on this file consists of the direction cosines for each computational point \((L,K)\). This data is read by a DO \(K\) LOOP nested in a DO \(L\) LOOP. At each mesh point the following data is read. FORMAT(7E14.7/5E14.7).

\[
\begin{align*}
Y_1 & \quad Y_1 \\
S_1 & \quad S_1 \\
Y_2 & \quad Y_2 \\
S_2 & \quad S_2 \\
Y_3 & \quad Y_3
\end{align*}
\]

\(((GAM(I,J,K),J=1,3),I=1,3)\) Direction cosines

The following data is output for each mesh point \((L,K)\) by a DO \(K\) LOOP nested in a DO \(L\) LOOP. FORMAT(2I3,9E12.5).

\[
\begin{align*}
K & \quad \text{X2 index} \\
L & \quad \text{X1 index} \\
Y_1(K) & \quad Y_1 \\
S_1(K) & \quad S_1 \\
V_{CAP} & \quad U_{le} \\
C_{V_{CAP}} & \quad U_{2e}
\end{align*}
\]

X1 edge velocity

X2 edge velocity
Static pressure coefficient c_P
Streamwise displacement thickness δ_s^*
Crossflow displacement thickness δ_c^*
Streamwise momentum thickness θ_{SS}
Crossflow momentum thickness θ_{CC}
Stanton number S_T

Unit 15 (IDRM5) Contour and Vector Plotting Data

The following data is output for each mesh point (L,K) by a DO K LOOP nested in a DO L LOOP. FORMAT(2I3,9E12.5)

K	X2 index	
L	X1 index	
Y1	Y_1	Y_1 Cartesian coordinate or ϵ_1 strain
S1	s_1	s_1 arc length along X_1
Y2	Y_2	Y_2 Cartesian coordinate or s_2 arc length along X_2
S2	s_2	
Y3	Y_3	Y_3 Cartesian coordinate
CFS	C_{fs}	Streamwise friction coefficient
CFC	C_{fc}	Crossflow friction coefficient
U1E	U_{1e}	Y_1 Cartesian component of velocity or e_{1w} strain
V1E	V_{1e}	X_1 component of velocity
U2E	U_{2e}	Y_2 Cartesian component of velocity or e_{2w} strain
V2E	V_{2e}	X_2 component of velocity
EPS1W	ϵ_{1w}	
F2N(1)	e_{1w}	X_1 component of strain
Unit 16 (IDRM6) Special Crosssection data

The following data is output for each mesh point (L,KPT) where KPT is an input parameter. FORMAT(2I3,9E12.5).

K X2 index
L X1 index
Y1 Y1 Cartesian coordinate or S1 arc length along X1
S1

CFS \(C_{fs} \) Streamwise friction coefficient
ST \(S_t \) Stanton number
TW \(T_w \) Wall temperature
TWAD \(T_a \) Adiabatic wall temperature
STE \(S_{te} \) Local Stanton number

Unit 20 (IDRM7) Wall Temperature Data

The following data is output/input for each mesh point (L,K) in a DO K LOOP nested in a DO L LOOP. If \(QW = 0 \), the wall temperature is the adiabatic wall temperature and is output onto file 20. If \(QW > 0 \), the adiabatic wall temperature is read from file 20. FORMAT(E12.5).

TW,TWAD \(T_a \) Adiabatic wall temperature
5.4 Diagnostics

A number of checks are made during the course of the calculation. If a minor error occurs, a DIAGNOSTIC message is printed and the calculation is continued. If a serious error occurs, a DIAGNOSTIC message is printed and the calculation stops. A description of the DIAGNOSTIC messages is given below.

1) NEGATIVE TEMPERATURE DETECTED IN MOLVIS AT K=

where K is the spanwise station where the error is detected. This error is detected in subroutine MOLVIS and indicates that a negative temperature is calculated in MOLVIS. This negative temperature only occurs if the iteration at the (L,K) mesh point does not converge. The usual problem is that negative spanwise velocities occur at this spanwise station producing instabilities. The calculation is continued by indexing L to the next streamwise station.

5.5 Sample Input

A sample input to the BL3D code is given below card by card as described in Sect. 5.1. To assist the user in setting up a new case comments are inserted between blocks of data in lower case letters. These comments of course should not be on the input cards.
Card 1 Title card (load 72 alphanumeric characters)
GAS TURBINE CASCADE - ROTATING PRESSURE SURFACE

Card 2 Option Card (6I2,8X,3F10.0)
1 1 1 0 020 .0001 1.05 0.10

Card 3 Gas Properties (5F10.0)
1716.0 1.4 0.72 0.95 198.6

Card 4 Flow Conditions (4F10.0)
.0985114 519.0 2117.0 0.9233

Card 5 Virtual origin/heat flux conditions (4F10.0)
00.1000 000 1.0 000.0

Card 6 Transition points (3F10.0)
00.1002 00.1003 1.0

Card(s) 7 Print output station numbers (16I5)
1 5 18 29 39 40
1 10 20 30 40
6.0 DESCRIPTION OF SETUP CODE

6.1 SETUP Main Program

The main program for the SETUP code opens and closes all input and output files and calls the subroutines which execute the primary tasks depending on the input options IOPT1 through IOPT12. An overall view of the SETUP code is shown on the Global Tree Structure Chart shown on the following pages. This tree structure is arranged by tasks and labeled as they appear in the main program SETUP. Column 1 shows the main program which calls the subroutines in column 2. Each subroutine in column 2 executes a major task and calls the subroutine in column 3. For any given calculation not all branches of the tree are called.
<table>
<thead>
<tr>
<th>SETUP</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Read Input Data</td>
<td>INPDAT</td>
</tr>
<tr>
<td>2.0</td>
<td>Setup Reference Conditions</td>
<td>REFCON</td>
</tr>
<tr>
<td>3.0</td>
<td>Setup Pressure Distribution</td>
<td>ROTORP</td>
</tr>
<tr>
<td>4.0</td>
<td>Calculate Rotor Inlet Conditions</td>
<td>RINLET</td>
</tr>
<tr>
<td>5.0</td>
<td>Smooth Pressure Distribution Data</td>
<td>SMTHD</td>
</tr>
<tr>
<td>6.0</td>
<td>Echo Input Data</td>
<td>OPTDAT</td>
</tr>
<tr>
<td>7.0</td>
<td>Compute Metric Data and B. L. Edge Conditions</td>
<td>SOLVE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOLVE</th>
<th>INTRB</th>
<th>LAG4PT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INTRC</td>
<td>LAG4PT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPLINE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EVAL</td>
</tr>
<tr>
<td>METCO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRCOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTRD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLEDGE</td>
<td>INTR1D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INTR3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INTREK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INTREL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UIER</td>
</tr>
</tbody>
</table>
6.2 SETUP COMMON Block Variables

PARAMETERS

LPL (101) Max. no. \(X_1 \) mesh points
KPL (61) Max. no. \(X_2 \) mesh points
LBL (51) Max. no. input \(X_1 \) boundary points
KBL (51) Max. no. input \(X_2 \) boundary points
LSL (51) Max. no. input \(X_1 \) surface points
KSL (51) Max. no. input \(X_2 \) surface points
LDL (21) Max. no. input \(X_1 \) inflow points
KDL (21) Max. no. input \(X_2 \) inflow points
IDRM1 8 Output unit for metric data
IDRM2 9 Output unit for edge conditions
IDRM3 10 Output unit for transformation variables
IDRM4 11 Output unit for length scales
IDRM5 12 Output unit for setup code

COMMON /INTV/ Integer Variables

LPLAST No. input \(X_1 \) mesh points
KPLAST No. input \(X_2 \) mesh points
LSLAST No. input \(X_1 \) surface points
KSLAST No. input \(X_2 \) surface points
LBLAST No. input \(X_1 \) boundary points
KBLAST No. input \(X_2 \) boundary points
LDLAST No. output \(X_1 C_p \) data points
KDLAST No. output X_2 C_g data points
LULAST No. input X_1 inflow points
KULAST No. input X_2 inflow points
LILAST No. input X_1 C_p data points
KILAST No. input X_2 C_p data points

COMMON /IOPT/ Input Options

IOPT1 Surface geometry option
IOPT2 Grid boundary option
IOPT3 Pressure data input option
IOPT4 Mesh distribution option
IOPT5 Inflow option
IOPT6 Print option
IOPT7 Pressure smoothing option
IOPT8 Rotor/Stator option
IOPT9 Coordinate output option
IOPT10 Relative eddy option
IOPT11 Upstream inflow option
IOPT12 Not used

COMMON /INDV/ Independent Variables

$X_1(L) \quad X_1^T \quad X_1$ coordinate array
$X_2(K) \quad X_2,K \quad X_2$ coordinate array
DX1(L) \(\Delta x_1 \) \(x_1 \) step size
DX2(K) \(\Delta x_{2,K} \) \(x_2 \) step size
X1P \(x_1 \) \(x_1 \) coordinate
X2P \(x_2 \) \(x_2 \) coordinate

COMMON /SURFC/ 2D Coordinate Surface Variables

YY(LK) \(y_{1,L} \) or \(y_{2,K} \) \(Y_1 \) or \(Y_2 \) Cartesian coordinates
YY3(LK) \(y_{3,K} \) \(Y_3 \) Cartesian coordinate

COMMON /SMIX/ 3D Coordinate Surface Variables

Y1M(L) \(y_{1,L} \) \(Y_1 \) Cartesian coordinate of surface
Y2M(K) \(y_{2,K} \) \(Y_2 \) Cartesian coordinate of surface
Y3M(L,K) \(y_{3,L,K} \) \(Y_3 \) Cartesian coordinate of surface

COMMON /ARCL/ Arc Length Variables

SS1(K) \(s_{1,K} \) \(S_1 \) arc length array
HS1(K) \(h_{1,K} \) \(H_1 \) metric coefficient array
SL1 \(s_1 \) \(S_1 \) arc length
SL2 \(s_2 \) \(S_2 \) arc length
SS10 \(s_{10} \) \(S_{10} \) \(S_1 \) arc length start

COMMON /COMB/ Computational Boundary Variables

Y10X2(K), Y20X2(K) Side 1 input boundary
Y1X11(L), Y2X11(L) Side 2 input boundary
Y11X2(K), Y21X2(K) Side 3 input boundary
Y1X10(L), Y2X10(L) Side 4 input boundary
COMMON /TRANSV/ Transformation Variables

\[Y_1, Y_2, Y_3, Y_1P, Y_2P, Y_3P, \quad Y_1, Y_2, Y_3, \quad Y_1, Y_2, Y_3, \quad Y_1, Y_2, Y_3, \quad Y_1, Y_2, Y_3, \]

Cartesian coordinates

\[\frac{\partial Y_1}{\partial x_1}, \frac{\partial Y_1}{\partial x_2}, \frac{\partial Y_1}{\partial x_3} \]

First partial derivatives of Cartesian coordinates

\[\frac{\partial Y_2}{\partial x_1}, \frac{\partial Y_2}{\partial x_2}, \frac{\partial Y_2}{\partial x_3} \]

with respect to surface coordinates

\[\frac{\partial Y_3}{\partial x_1}, \frac{\partial Y_3}{\partial x_2}, \frac{\partial Y_3}{\partial x_3} \]

\[\frac{\partial^2 Y_1}{\partial x_1 \partial x_2}, \frac{\partial^2 Y_1}{\partial x_2 \partial x_3}, \frac{\partial^2 Y_1}{\partial x_3 \partial x_1} \]

Second partial derivatives of Cartesian coordinates

\[\frac{\partial^2 Y_2}{\partial x_1 \partial x_2}, \frac{\partial^2 Y_2}{\partial x_2 \partial x_3}, \frac{\partial^2 Y_2}{\partial x_3 \partial x_1} \]

with respect to surface coordinates

\[\frac{\partial^2 Y_3}{\partial x_1 \partial x_2}, \frac{\partial^2 Y_3}{\partial x_2 \partial x_3}, \frac{\partial^2 Y_3}{\partial x_3 \partial x_1} \]

COMMON /METRIC/ Metric variables

\[G_{ij} \]

Covariant metric tensor components

\[g_{ij} \]

Contravariant metric tensor components
DG |G| Determinate of metric tensor

HH1,HH2,HH3 \(H_1,H_2,H_3\) Metric scale coefficients

DH11 \(\frac{\partial H_1}{\partial x_1}\)
DH12 \(\frac{\partial H_1}{\partial x_2}\)
DH21 \(\frac{\partial H_2}{\partial x_1}\)
DH22 \(\frac{\partial H_2}{\partial x_2}\)
DG121 \(\frac{\partial G_{12}}{\partial x_1}\)
DG122 \(\frac{\partial G_{12}}{\partial x_2}\)

Derivatives of metric scale coeff.

GAM(I,J) \(\gamma_{ij}\) Direction cosines
GAMI(I,J) \(\gamma_{ij}^{-1}\) Inverse of direction cosines

COMMON /DIRC/ Direction cosines variables

Y1D(L) \(Y_1^L\) Output Y coordinate
Y2D(K) \(Y_2^K\) Output Y coordinate
Y3D(L,K) \(C_{P,L}^K\) Output pressure coeff.
Y1I(L) \(\hat{Y}_1^L\) Input Y coordinate
Y2I(K) \(\hat{Y}_2^K\) Input Y coordinate
Y3I(L,K) \(\hat{C}_{P,L}^K\) Input pressure coeff.

COMMON /INPEDG/ Pressure Distributions variables

COMMON /BLEDGE/ Boundary Edge Variables

U1E \(U_{1e}\) X_1 Edge velocity
U2E \(U_{2e}\) X_2 Edge velocity
PP \quad P \quad \text{Edge static pressure}

\begin{align*}
\text{DU1DX1} & \quad \frac{\partial U_1e}{\partial x_1} \\
\text{DU1DX2} & \quad \frac{\partial U_1e}{\partial x_2} \\
\text{DU2DX1} & \quad \frac{\partial U_2e}{\partial x_1} \\
\text{DU2DX2} & \quad \frac{\partial U_2e}{\partial x_2}
\end{align*}
\text{Edge velocity gradients}

CP \quad C_p \quad \text{Static pressure coefficient}

\begin{align*}
\text{DCPDX1} & \quad \frac{\partial C_p}{\partial x_1} \\
\text{DCPDX2} & \quad \frac{\partial C_p}{\partial x_2}
\end{align*}
\text{Static pressure gradients}

ERROR \quad \varepsilon

\begin{align*}
\text{DU1DX} & \quad \frac{\partial U_1e}{\partial x_1} \\
\text{DU2DX} & \quad \frac{\partial U_2e}{\partial x_1}
\end{align*}
\text{Explicit velocity gradients}

HR \quad I \quad \text{Edge rothalpy}

\text{COMMON /INFLO/ Inflow Conditions}

U2X2(K) \quad U_{2e,K} \quad \text{Side 1 input inflow velocity}

U2X1(L) \quad U_{2e}^L \quad \text{Side 4 input inflow velocity}

YI2U(K) \quad Y_{2,K} \quad \text{Side 1 input coordinate}

YI1U(L) \quad Y_{1}^L \quad \text{Side 4 input coordinate}

\text{COMMON /UBLED/ Stored arrays}

U1(K) \quad U_{1e,K} \quad \text{X}_1 \text{ velocity array}

U2(K) \quad U_{2e,K} \quad \text{X}_2 \text{ velocity array}

CPD(K) \quad C_{P,K} \quad \text{Pressure coefficient}

ROTHLP(K) \quad I_{K} \quad \text{Rothalphy}
COMMON /GASP/ Constants

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GASR</td>
<td>R</td>
<td>Gas constant</td>
</tr>
<tr>
<td>GAMM</td>
<td>γ</td>
<td>Ratio of specific heats</td>
</tr>
<tr>
<td>TI</td>
<td>0.01745329</td>
<td>Reference static pressure</td>
</tr>
<tr>
<td>PI</td>
<td>3.1415926</td>
<td>Reference free stream static temperature</td>
</tr>
</tbody>
</table>

COMMON /FLOWI/ Input Flow Conditions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINFI</td>
<td>P_∞</td>
<td>Reference static pressure</td>
</tr>
<tr>
<td>TINFI</td>
<td>T_∞</td>
<td>Reference free stream static temperature</td>
</tr>
<tr>
<td>ROINFI</td>
<td>ρ_∞</td>
<td>Reference density</td>
</tr>
<tr>
<td>UINFI</td>
<td>u_∞</td>
<td>Reference velocity</td>
</tr>
<tr>
<td>XMINFI</td>
<td>M_∞</td>
<td>Reference mach number</td>
</tr>
<tr>
<td>BETII</td>
<td>$\beta_{1\infty}$</td>
<td>Not used</td>
</tr>
<tr>
<td>XLREF</td>
<td>ℓ</td>
<td>Reference length</td>
</tr>
</tbody>
</table>

COMMON /FLOW/ Output Flow Conditions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PINF</td>
<td>P_∞</td>
<td>Reference static pressure</td>
</tr>
<tr>
<td>TINF</td>
<td>T_∞</td>
<td>Reference freestream static temperature</td>
</tr>
<tr>
<td>TREF</td>
<td>T_{ref}</td>
<td>Reference temperature</td>
</tr>
<tr>
<td>HINF</td>
<td>H_∞</td>
<td>Reference enthalpy</td>
</tr>
<tr>
<td>PINFL</td>
<td>P_L</td>
<td>Rotor inlet static pressure</td>
</tr>
<tr>
<td>HRINFL</td>
<td>I_L</td>
<td>Rotor inlet enthalpy</td>
</tr>
<tr>
<td>DHINF</td>
<td>ΔH</td>
<td>Side 4 delta enthalpy</td>
</tr>
<tr>
<td>ALPLI</td>
<td>α_{100}</td>
<td>Not used</td>
</tr>
</tbody>
</table>
COMMON /FLOW/ Output Flow Variables

PTABSF \(P_{T\infty} \) Absolute total pressure
HTABSF \(T_{T\infty} \) Absolute total enthalpy
PTABSL \(P_{TL} \) Absolute rotor inlet total pressure

COMMON /ROTOR/ Input Rotor Parameters

VBTI \(V_{Bt} \) Rotor tip velocity
G01,G02,G03 \(\gamma_{0i} \) Direction cosines for vorticity vector
RADHI,RADTI \(R_H,R_T \) Hub/Tip radius
YRADHI,YRADTI \(Y_H,Y_T \) Hub,Tip coordinates
GAPI \(G \) Rotor midspan gap

COMMON /ROTOR1/ Output Rotor Parameters

OMEG1,OMEG2,OMEG3 \(\Omega_i \) Vorticity components in Cartesian coor.
RAD \(R \) Radius
DRAD1 \(\partial R/\partial x_1 \) Derivatives
DRAD2 \(\partial R/\partial x_2 \)

COMMON /ROTOR2/ Rotor Inlet Parameters

VBINF \(V_{B\infty} \) Rotor blade reference velocity
UPINF \(U_{\phi\infty} \) Rotor reference tangential velocity
VBLNFL \(V_{BL} \) Rotor blade inlet velocity
UPINFL \(U_{\phi L} \) Rotor inlet tangential velocity
SGNR \((+/-)_U \) Sign on radius vector
SGNU \((+/-)_L \) Sign on rotor tangential velocity
DELCOP \(\Delta C_p \) Rotor CP correction
COMMON /UPSTR1/ Input Upstream Flow Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y2RI(K)</td>
<td>(Y_2, K) (Y_2) input coordinate</td>
</tr>
<tr>
<td>PTRI(K)</td>
<td>(P_{T,K}) (P_T) absolute total pressure</td>
</tr>
<tr>
<td>TTRI(K)</td>
<td>(T_{T,K}) (T_T) absolute total temperature</td>
</tr>
</tbody>
</table>

COMMON /UPSTR2/ Input Upstream Flow Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UZRI(K)</td>
<td>(U_{z,K}) (U_z) upstream axial velocity</td>
</tr>
<tr>
<td>BTRI(K)</td>
<td>(\beta_{1,K}) (\beta_1) upstream relative flow angle</td>
</tr>
</tbody>
</table>

COMMON /UPSTR3/ Output Upstream Flow Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1A(K)</td>
<td>(U_{1,K}) (U_1) absolute total velocity</td>
</tr>
<tr>
<td>UPA(K)</td>
<td>(\bar{U}{\phi,K}) (\bar{U}{\phi}) absolute tangential velocity</td>
</tr>
<tr>
<td>U1R(K)</td>
<td>(U_{1,K}) (U_1) relative total velocity</td>
</tr>
<tr>
<td>UPR(K)</td>
<td>(U_{\phi,K}) (U_{\phi}) relative tangential velocity</td>
</tr>
<tr>
<td>U2S(K)</td>
<td>(U_{2s,K}) (U_{2s}) est. initial rotor spanwise velocity</td>
</tr>
</tbody>
</table>

COMMON /UPSTR4/ Output Upstream Flow Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UZA(K)</td>
<td>(U_{z,K}) (U_z) absolute axial velocity</td>
</tr>
<tr>
<td>VBB(K)</td>
<td>(V_{B,K}) (V_B) rotor velocity</td>
</tr>
<tr>
<td>BTA(K)</td>
<td>(\beta_K) (\beta) absolute inlet flow angle</td>
</tr>
<tr>
<td>OMS(K)</td>
<td>(\Omega_{S,K}) (\Omega_S) ratio relative vorticity/rotor speed</td>
</tr>
<tr>
<td>RDK(K)</td>
<td>(R_K) (R) rotor radius</td>
</tr>
<tr>
<td>Variable</td>
<td>Symbol</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>PK</td>
<td>P_K</td>
</tr>
<tr>
<td>TK</td>
<td>T_K</td>
</tr>
<tr>
<td>HK</td>
<td>H_K</td>
</tr>
<tr>
<td>PT,K</td>
<td>$P_{T,K}$</td>
</tr>
<tr>
<td>TT,K</td>
<td>$T_{T,K}$</td>
</tr>
</tbody>
</table>
6.3 Description of SETUP Subroutines

BLEDGE Integrate boundary layer edge eqs.
CUBA See subroutine CUBTWO
CUBB See subroutine CUBTWO
CUBTWO Calculate two dimensional cubic spline fit
DIRCOS Calculate direction cosines and inverse
EVAL Evaluate function and derivatives of spline fit
INPDAT Read input data
INTRB Establish the mapping of the boundaries
INTRC Establish surface geometry
INTRD Calculate pressure coeff. and derivatives
INTREK Interpolate inflow velocity on L=1 boundary
INTREL Interpolate inflow velocity on K=1 boundary
INTR1D Linear interpolation on 1d grid
INTR3D Linear interpolation on 2d grid
LAG4PT Lagrangian 4 point interpolation
MATRIX See subroutine CUBTWO
METCO Calculate metric data
OPEC Calculate one sided proximate end conditions
OPTDAT Echo input data
PERM See subroutine CUBTWO
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFCON</td>
<td>Setup reference conditions</td>
</tr>
<tr>
<td>RINLET</td>
<td>Calculate rotor inlet conditions</td>
</tr>
<tr>
<td>ROTOR</td>
<td>Estimate upstream total enthalpy and pressure</td>
</tr>
<tr>
<td>ROTORP</td>
<td>Setup pressure distribution for relative eddy approx.</td>
</tr>
<tr>
<td>SETUP</td>
<td>Main program</td>
</tr>
<tr>
<td>SMTHD</td>
<td>Smooth input CP data</td>
</tr>
<tr>
<td>SOLVE</td>
<td>Compute metric data and b. l. edge conditions</td>
</tr>
<tr>
<td>SPLINE</td>
<td>Setup derivatives on boundary for surface spline fit</td>
</tr>
<tr>
<td>UITER</td>
<td>Iteration algorithm for U1E, U2E</td>
</tr>
</tbody>
</table>
Subroutine BLEDGE(L, K)

Object

This subroutine integrates the boundary layer edge equations using the input pressure (CP) distribution. The boundary layer edge equations are solved at the point X1, X2 for the velocities U1E, U2E and the enthalpy HE for the given input static pressure.

Options

IOPT3 = 0 No pressure data
 = 1 CP = CP(X1,X2)
 = 2 CP = CP(Y1,Y2)
 = 3 CP = CP(Y1,X2)
 = 4 CP = CP(X1,Y2)
 = 5 Analytical pressure data

IOPT5 = 0 U2E = 0.0 ; U1E calculated from the Euler equation
 = 1 U2E(0,X2) = 0.0 ; U2E(X1,0) = 0.0
 = 2 U2E(0,X2) = 0.0 ; U2E(X1,0) input
 = 3 U2E(0,X2) input ; U2E(X1,0) = 0.0
 = 4 U2E(0,X2) input ; U2E(X1,0) input

List of Symbols

A0 to A10 Coefficients of edge equations
C1 to C6 Coefficients of edge equations
D1 to D6 Coefficients of Euler equations
E1 to E3 Coefficients of energy equation
L, K Index for X1 and X2
Theory

The basic equations are described in Sect. 3.11 of Ref 1. This subroutine first calculates the coefficients of the differential equations. Then it determines if the point \(L, K \) is on an inflow boundary \((L=1)\) or \((K=1)\) or an interior point.

If \(L=1 \) and \(IOPT5 = 1 \) or \(2 \) ; \(U2E = 0 \)

If \(L=1 \) and \(IOPT5 = 1 \) or \(2 \) ; \(U2E \) is interpolated from the input data using subroutine INTREK

If \(K=1 \) and \(IOPT5 = 3 \) or \(4 \) ; \(U2E = 0 \)

If \(K=1 \) and \(IOPT5 = 3 \) or \(4 \) ; \(U2E \) is interpolated from the input data using subroutine INTREL

IF \(L>1 \) and \(K>1 \) ; \(U2E \) and \(U2E \) are calculated by integrating the boundary layer edge equations

After \(U1E, U2E \) and \(HE \) are calculated, all the remaining boundary edge variables required by the BL3D code are then calculated.

References

Subroutine CUBTWO(Arg. List)

Object

This subroutine performs a two dimensional cubic spline fit to unequally spaced data.

Options

None

List of Symbols

- N: Max. X array size
- M: Max. Y array size
- $X(I)$: Input Y_1 coordinate
- $Y(J)$: Input Y_2 coordinate
- $U(I,J)$: Input Y_3 coordinate
- $P(I,J)$: DY_3/DY_1
- $Q(I,J)$: DY_3/DY_2
- $R(I,J)$: $D^2Y_3/DY_1/DY_2$
- $A(I,J,K,L)$: Spline coefficients
- CDX: Work arrays
- DY
- ZX
- ZY
- ORD
- UNB
- F
Theory

This subroutine performs a two-dimensional cubic spline fit to the input blade surface using the theory of Ref. 1. This subroutine is called by subroutine SPLINE, and calls subroutines PERM, MATRIX, CUBA, and CUBB.

References

Subroutine DIRCOS

Object

This subroutine calculates the direction cosine tensor and the inverse of the direction cosine tensor for the transformation from the computational to the Cartesian coordinates

Options

None

List of Symbols

See COMMON blocks

Theory

The theory for calculating the direction cosine tensor is given in Sect. 3.10 by Anderson (Ref.1).

References

Subroutine EVAL(Arg. List)

Object

This subroutine evaluates $Y_3, \frac{DY_3}{DY_1}, \frac{DY_3}{DY_2}, \frac{D^2Y_3}{DY_1/DY_1}, \frac{D^2Y_3}{DY_1/DY_2}, \frac{D^2Y_3}{DY_2/DY_2},$ at the point (Y_1P, Y_2P) using the Spline coefficients calculated in subroutine SPLINE.

Options

None

List of Symbols

- $A(I,J,K,L)$: Spline coefficients
- L_{11}: No. Y_1 input points
- K_{11}: No. Y_2 input points
- L_{1}: Corner point Y_1 index
- K_{1}: Corner point Y_2 index
- DY_{31}: DY_3/DY_1: First derivatives
- DY_{32}: DY_3/DY_2
- DY_{33}: $D^2Y_3/DY_1/DY_1$
- DY_{34}: $D^2Y_3/DY_1/DY_2$
- DY_{35}: $D^2Y_3/DY_2/DY_2$

Theory

The function and its derivatives are evaluated using the formulas derived in Ref. 1. For the function we have:

$$Y_3 = \sum_{k=1}^{4} \sum_{l=1}^{4} A_{ijkl} (Y_1 - Y_1^i)^k (Y_2 - Y_2^ok)^l$$

(1)
The partial derivatives are evaluated by analytically differentiating Eq. (1).

References

Subroutine INPDAT

Object

This subroutine reads all input data for the SETUP code according to the input options IOPT1 through IOPT12

Options

IOPT4 = 0 Uniform (X1,X2) computational grid calculated
IOPT2 = 0 Uniform (Y1,Y2) Cartesian grid calculated
 = 1 Skewed (Y1,Y2) grid calculated
 = 2 One dimensional mapping using sides 1 and 3
 = 3 One dimensional mapping using sides 2 and 4
 = 4 Two dimensional mapping

List of Symbols

See COMMON blocks

Theory

This subroutine reads all input data required by the SETUP code and calculates certain grids by default since they do not require all the input data for general grids. See Options List.
Subroutine INTRB

Object

This subroutine establishes the mapping of the physical boundaries to the computational boundaries.

Options

None

List of Symbols

See COMMON block variables

Theory

The theory for this calculation is given by Anderson (Ref. 1). The physical boundaries are known from the input data as ordered pairs of points for the four sides of the physical boundary as shown on Fig. 1. These are given by:

\[
\begin{align*}
Y_1(0,X_2P), Y_2(0,X_2P) & \quad \text{KBLAST points for Side 1} \\
Y_1(X_1P,1), Y_2(X_1P,1) & \quad \text{LBLAST points for Side 2} \\
Y_1(1,X_2P), Y_2(1,X_2P) & \quad \text{KBLAST points for Side 3} \\
Y_1(X_1P,0), Y_2(X_1P,0) & \quad \text{LBLAST points for Side 4}
\end{align*}
\]

where

\[
\begin{align*}
0.0 < X_1P < 1.0 \\
0.0 < X_2P < 1.0
\end{align*}
\]
Then considering Side 1, we note that the boundary is only a function of X_2P. Thus the Side 1 boundary can be written in parametric form as a function of X_2P by establishing an array $X_2B(KB)\; KB=1,KBLAST$ at equal increments $0.0 < X_2B < 1.0$ so that there is a one to one correspondence of points. The same procedure follows for the other three sides. With the boundaries established in parametric form, the Cartesian coordinates (Y_1,Y_2) of the of the boundary is known as a function of the computational coordinates (X_1P,X_2P). Given the computational coordinate (X_1P,X_2P), the corresponding Cartesian coordinates of the boundary on the four sides is obtained by interpolation using the four point Lagrangian interpolation formulas contained in subroutine LAG4PT.

The interior Cartesian coordinate point (Y_1P,Y_2P) corresponding to the computational coordinate point (X_1P,X_2P) is obtained by the transfinite mapping of Gordon and Thiel (Ref. 2) as shown in Sect. 3.10 of Ref. 1. With the mapping established, the derivatives of Y_1 and Y_2 with respect to X_1 and X_2 are obtained by analytically differentiating the algebraic mapping formula. Subroutine LAG4PT also returns the first and second derivatives of the Cartesian coordinates Y_1 and Y_2 of the boundaries with respect to the appropriate computational coordinate X_1 or X_2 so that the first and second partial derivatives can be obtained.
References

Subroutine INTRC

Object

This subroutine establishes the complete surface geometry by calculating the first and second partial derivatives of the surface coordinate Y3 with respect to Y1 and Y2.

Options

IOPT1 = 0 \(Y3 = 0.0 \)
IOPT1 = 1 \(Y3 = Y3(Y1) \)
IOPT1 = 2 \(Y3 = Y3(Y2) \)
IOPT1 = 3 \(Y3 = Y3(Y1, Y2) \)

List of Symbols

See COMMON blocks

Theory

The Cartesian coordinate of the surface Y3 and the partial derivatives of Y3 with respect to Y1 and Y2 are obtained by interpolation.

IOPT1 = 0 \(Y3 \) and all derivatives are zero.
IOPT1 = 1 \(Y3 \) and its derivatives are obtained by interpolation
IOPT1 = 2 using a four point Lagrangian interpolation contained in subroutine LAG4PT.
IOPT1 = 3 \(Y3 \) and its derivatives are obtained using a surface spline interpolation contained in subroutine EVAL.

The spline coefficients are calculated first when L=1 and K=1 by calling subroutine SPINE.
Subroutine INTRD

Object

Calculate pressure coefficient CP and derivatives.

Options

IOPT3 = 0 No CP data
IOPT3 = 1 CP = CP(X1, X2)
IOPT3 = 2 CP = CP(Y1, Y2)
IOPT3 = 3 CP = CP(Y1, X2)
IOPT3 = 4 CP = CP(X1, Y2)
IOPT3 = 5 CP Analytical function

List of symbols

AX Logical variable (if TRUE X1P lies on grid line)
AY Logical variable (if TRUE X2P lies on grid line)
ONED Logical variable (If TRUE X1P or X2P lies on grid line)

Theory

The pressure coefficient CP and its derivatives with respect X1 and X2 are calculated in this subroutine. If X1 or X2 lie on a grid line, then CP and its derivatives with respect to the input variables (X1 or Y1) and (X2 or Y2) are calculated using a one dimensional interpolation contained in subroutine INTR1D. If X1 and X2 do not lie on a grid line, then CP and its derivatives with respect to the input variables (X1 or Y1) and (X2 or Y2) are calculated using a linear two dimensional interpolation contained in subroutine INTR3D. Then depending on the option IOPT3, the partial derivatives with respect to the coordinates are calculated.
Subroutine INTREK

Object

This subroutine interpolates for the inflow velocities along the \(X_1 = 0.0 \) boundary.

Options

None

List of Symbols

See COMMON Blocks

Theory

The input arrays are \(Y_{I2U}(K) \) and \(U_{2X2}(K) \). Then given \(Y_2 \), along the \(X_1 = 0.0 \) boundary, the inflow velocity \(U_{2E} \) is interpolated from the input arrays using the four point Lagrangian interpolation contained in subroutine LAG4PT.
Subroutine INTREL

Object

This subroutine interpolates for the inflow velocities along the $X2 = 0.0$ boundary.

Options

None

List of Symbols

See COMMON Blocks

Theory

The input arrays are $YI1U(L)$ and $U2X1(L)$. Then given $Y1$, along the $X2 = 0.0$ boundary, the inflow velocity $U2E$ is interpolated from the input arrays using the four point Lagrangian interpolation contained in subroutine LAG4PT.
Subroutine INTR1D

Object

Interpolates between data points which lie on a gridline.

Options

None

List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Ordinates</td>
</tr>
<tr>
<td>Y</td>
<td>Abscissa</td>
</tr>
<tr>
<td>F</td>
<td>Function $F(X,Y)$</td>
</tr>
<tr>
<td>L,K</td>
<td>Indices of Interpolation</td>
</tr>
<tr>
<td>XP,YP</td>
<td>Interpolation Point</td>
</tr>
<tr>
<td>FP</td>
<td>$F(XP,YP)$</td>
</tr>
<tr>
<td>DFDX</td>
<td>$\frac{d(F(XP,YP))}{dx}$</td>
</tr>
<tr>
<td>DFDY</td>
<td>$\frac{d(F(XP,YP))}{dy}$</td>
</tr>
<tr>
<td>LD,KD</td>
<td>Dimensions: $X(LD)$, $Y(KD)$, $F(LD,KD)$</td>
</tr>
<tr>
<td>LL,KK</td>
<td>Actual sizes: $X(LL)$, $Y(KK)$, $F(LL,KK)$</td>
</tr>
<tr>
<td>AX,AY</td>
<td>Logical: $AX = .true.$ denotes interpolation is along an X gridline. $AY = .true.$ denotes interpolation along a Y gridline.</td>
</tr>
</tbody>
</table>

Theory

The function F is evaluated at the point (XP,YP) using simple divided differences. This routine differs from INTR3D in that interpolation is strictly along a gridline.
Subroutine INTR3D

Object

This subroutine interpolates a function \(F \) to a point in between gridlines, using linear interpolation of a first order tensor product approximation of the function \(F \).

Options

None

List of Symbols

- \(X \) : Ordinates
- \(Y \) : Abscissa
- \(F \) : Function \(F(X,Y) \)
- \(L,K \) : Indices of Interpolation
- \(X_P,Y_P \) : Point of Interpolation
- \(F_P \) : \(F(X_P,Y_P) \)
- \(DFDX \) : \(d(F(X_P,Y_P))/dx \)
- \(DFDY \) : \(d(F(X_P,Y_P))/dy \)
- \(DFDXY \) : \(d^2(F(X_P,Y_P))/dy^2 \)
- \(LL,KL \) : Dimensions: \(X(LL) \)
 \(Y(KL) \)
 \(F(LL,KL) \)
The function F is locally approximated by the first order tensor product:

$$F = (ax+b)(cy+d)$$ \hspace{1cm} (1)

where a, b, c and d are chosen so that the local approximation agrees with the actual function values at the four corners of grid box whose lower lefthand corner has indices (L,K). The returned function value and derivatives are evaluated directly from F'.

Subroutine LAG4PT

Object

This subroutine interpolates the function and the first and second derivatives using a four point Lagrangian interpolation.

Options

None

List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(I)</td>
<td>Input abscissas</td>
</tr>
<tr>
<td>Y(I)</td>
<td>Input ordinates</td>
</tr>
<tr>
<td>XARG</td>
<td>Output abscissa</td>
</tr>
<tr>
<td>YARG</td>
<td>Output ordinate</td>
</tr>
<tr>
<td>DYDX</td>
<td>Output first derivative</td>
</tr>
<tr>
<td>D2YDX</td>
<td>Output second derivative</td>
</tr>
</tbody>
</table>

Theory

The four point Lagrangian interpolation formula is:

\[
Y = \frac{(X - X(I+1))(X - X(I+2))(X - X(I+3))Y(I)}{(X(I) - X(I+1))(X(I) - X(I+2))(X(I) - X(I+3))} \\
- \frac{(X - X(I))(X - X(I+2))(X - X(I+3))Y(I+1)}{(X(I) - X(I+1))(X(I+1) - X(I+2))(X(I+1) - X(I+3))} \\
+ \frac{(X - X(I))(X - X(I+1))(X - X(I+3))Y(I+2)}{(X(I) - X(I+2))(X(I+1) - X(I+2))(X(I+2) - X(I+3))} \\
- \frac{(X - X(I))(X - X(I+1))(X - X(I+2))Y(I+3)}{(X(I) - X(I+3))(X(I+1) - X(I+3))(X(I+2) - X(I+3))}
\]

The first and second derivatives are obtained by analytically differentiating Eq. (1).
Subroutine METCO

Object

This subroutine calculates the covariant metric tensor components G_{LIJ}, the contravariant metric tensor components G_{UIJ}, the metric coefficients H_{HI}, and their derivatives.

Options

None

List of Symbols

See COMMON blocks

Theory

Given all the partial derivatives of the transformation calculated in subroutine INTRC, the metric data is then given by:

$$G_{ij} = \frac{dY_K}{dX_i} \frac{dY_K}{dX_j}$$ \hspace{1cm} (1)

$$H_1 = \sqrt{G_{11}}$$ \hspace{1cm} (2)

$$H_2 = \sqrt{G_{22}}$$ \hspace{1cm} (3)

$$H_3 = 1.0$$ \hspace{1cm} (4)

$$G = \text{det}(G_{ij})$$ \hspace{1cm} (5)

$$G_{ij} = (G_{rs}G_{xt} - G_{rt}G_{xs})/G$$ \hspace{1cm} (6)

where the groups (i,r,l) and (j,s,t) are cyclic permutations. The derivatives are obtained by differentiating Eq. (1).
Subroutine OPEC(X,F,FPA,FPB,NP1)

Object

This subroutine calculates the one sided proximate end conditions for
the surface spline interpolation.

Options

None

List of Symbols

X Abscissas
F Ordinates
FPA Left hand derivative end condition
FPB Right hand derivative end condition
NP1 Number of ordered pairs of data (NP1>4)

Theory

This subroutine evaluates the derivative boundary conditions for the
cubic spline which is fitted to the input coordinates of the blade surface
using the theory of McCartin (Ref 1.). This subroutine is called by sub-
routine SPLINE.

References

1. McCartin, B. J.: Theory, Computation, and Application of Exponential
Subroutine OPTDAT

Object

This subroutine echo prints the input data.

Options

None

List of Symbols

See COMMON blocks

Theory

This subroutine echo prints the input data, prints the reference conditions calculated in subroutine REFCON, prints the smoothed pressure CP data calculated in subroutine SMTHD, and finally prints the rotor inlet conditions calculated in subroutine RINLET.
Subroutine REFCON

Object

This subroutine calculates the reference conditions to normalize all input variables.

Options

IOPT8 = 0 (Stator) No coriolus forces
IOPT8 = 1 (Rotor) Load pressure data hub to tip
IOPT8 = -1 (Rotor) Load pressure data tip to hub

List of Symbols

See COMMON blocks

Theory

The reference conditions are defined in Ref. 1 as used in the BL3D boundary layer code.

References

Subroutine RINLET

Object

This subroutine calculates the rotor inlet conditions.

Options

IOPT8 = 0 (Stator) Non coriolus forces
IOPT8 = 1 (Rotor) Load pressure data hub to tip
IOPT8 = -1 (Rotor) Load pressure data tip to hub
IOPT11 = 0 Uniform upstream conditions
IOPT11 = 1 Nonuniform upstream conditions
IOPT11 = 2 Approx. upstream cond. for rotor

List of Symbols

DUPDR Derivative of absolute tangential velocity
GAP Gap normal to flow direction
HGT Span
OMEGZ Axial component of absolute vorticity
Axial component of relative vorticity
Steamwise component of relative vorticity
Average relative vorticity
Steam function

Theory

The total pressure PTAI(K), total temperature TTAI(K), axial velocity UZAI(K), and rotor inlet relative angle BTRI(K) are known from the input data. Both the relative and absolute velocity components can be calculated from the velocity triangles. Knowing the absolute velocities, the static enthalpy and static pressure can then be calculated.
The relative rotor inlet vorticity and the initial spanwise velocities as estimated using the theory of Dring and Joslyn, Ref. 1. The absolute vorticity is given approximately by

\[\omega_z = \frac{1}{R} \frac{\partial}{\partial R} (RU_\phi) \]

(1)

and the relative vorticity by

\[\zeta_z = \omega_z - 2\Omega \]

(2)

The component of vorticity in the streamwise direction is then

\[\zeta_s = \zeta_z U_z/U_1 \]

(3)

An estimate of the initial spanwise velocity on the rotor blade is obtained by solving Poisson's equation using the area average vorticity.

\[\nabla^2 \psi = \zeta_{ZA} \]

(4)

A Fourier series solution of Eq. (4) is given by (Ref. 2) as

\[\psi = -\frac{\zeta_{ZA}}{2} x (g-x) + \frac{4\zeta_{ZA} R^2}{\pi^3} \sum_{k=1}^{\infty} \sin \left[\frac{k\pi x}{g} \right] \frac{\cosh \left[\frac{k\pi}{g} (y-h/2) \right]}{k^3 \cosh \left[\frac{k\pi}{g} h/2 \right]} \]

(5)

where \(K \) is odd. The estimated spanwise velocity at the leading edge is given by
\[V(0,Y) = g \xi_{SA} \left\{ \frac{1}{2} - \frac{4}{\Pi^2} \sum_{k=1}^{\infty} \frac{\cosh \left[\frac{k\pi}{g} (Y-h/2) \right]}{k^2 \cosh \left[\frac{k\pi}{g} h/2 \right]} \right\} \]

(6)

References

Subroutine Rotor

Object

This subroutine calculates the upstream total pressure, total enthalpy (rothalpy) and local vorticity component normal to the surface.

Options

IOPT8 = 0 (Stator) Non coriolis forces
IOPT8 = 1 (Rotor) Load pressure data hub to tip
IOPT8 = -1 (Rotor) Load pressure data tip to hub
IOPT11 = 0 Uniform upstream conditions
IOPT11 = 1 Nonuniform upstream conditions
IOPT11 = 2 Approx. upstream cond. for rotor

List of Symbols

See COMMON blocks

Theory

The upstream conditions PTABSI, TTABSI, UZABSI, BETARI, are linearly interpolated from the input data. The velocities are then calculated from the velocity triangles and the relative total enthalpy and rothalpy are given by,

\[H_T = H_T - U_\phi^2 - V_B^2 / 2 \] \hspace{1cm} (1)

\[I = H_T - V_B^2 / 2 \] \hspace{1cm} (2)

The component of vorticity normal to the surface is then

\[\Omega_3 = \gamma_1 \Omega_1 + \gamma_2 \Omega_2 + \gamma_3 \Omega_3 \] \hspace{1cm} (3)
Subroutine SMTHD

Object

This subroutine smooths the input CP data

Options

IOPT7 = 0 Do not smooth data
IOPT7 > 0 Smooth data IOPT7 times

List of Symbols

See COMMON blocks

Theory

The input data is first interpolated from the input LILAST*KILAST grid to a LDL*KDL grid. Then the CP data is smoothed by averaging with its neighboring points using the formula

\[f^L_K = \frac{f^L_{K+1} + f^L_{K} + f^L_{K+1} + f^L_{K-1}}{8} + \frac{f^L_K}{2} \] (1)
Subroutine SOLVE

Object

This subroutine calculates the geometric coordinate data and the boundary layer edge conditions for use by the UTRC boundary layer code.

Options

IOPT6 Print every IOPT6'th station

IOPT9 = 0 Output coordinates Y1 and Y2

IOPT9 = 1 Output arc lengths S1 and S2

List of Symbols

See COMMON blocks

Theory

This subroutine first calculates the computational step size in both the X1 and X2 directions. A double DO LOOP sweeps through the mesh and calls the subroutines as follows:

INTRB Establish mapping of boundaries

INTRC Establish surface geometry

METCO Calculate metric data

DIRCOS Calculate direction cosines

ROTOR Calculate upstream total enthalpy, total pressure and vorticity component normal to surface

INTRD Interpolate pressure distribution

BLEEDGE Calculate b. l. edge conditions
At each L,K mesh point the following data is written on the output files:

<table>
<thead>
<tr>
<th>IDRM</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>metric data</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>edge conditions</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>transformation variables</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>length scales</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>setup code output</td>
</tr>
</tbody>
</table>
Subroutine UITER(Arg. List)

Object

This subroutine solves finite difference equations for the boundary layer edge velocities \(U_{1E} \), \(U_{2E} \) using an iteration algorithm based on successive substitution.

Options

None

List of Symbols

\(A_0 \) to \(A_{14} \)
Coefficients of edge equations

\(C_1 \) to \(C_{6} \)
Coefficients of edge equations

\(B_1 \) to \(B_{12} \)
Coefficients of algebraic equations

\(L, K \)
Index for \(X_1 \) and \(X_2 \)

Theory

This subroutine solves a set of quadratic algebraic equations by successive substitution as described in Sec. 3.8 in Ref. 1.

References

7.0 DESCRIPTION OF BL3D CODE

7.1 BL3D Main Program

The main program for the BL3D code opens and closes all input and output files and calls the subroutines which execute the primary tasks depending on the input options described in Section 5.1. An overall view of the BL3D code is shown on the Global Tree Structure Chart shown on the following pages. This tree structure is arranged by tasks and labeled as they appear in the main program BL3D. Column 1 shows the main program which calls the subroutines in Column 2. Each subroutine in Column 2 executes a major tasks and calls the subroutine in Column 3. For any given calculation not all branches of the tree are called.
Chart II Global Tree Structure by Task

<table>
<thead>
<tr>
<th>MAIN</th>
<th>PREP</th>
<th>RINPUT</th>
<th>RINIT</th>
<th>START OUTER DO LOOP (L=1, IXEND)</th>
<th>4.01 Read Metric Data, Edge Conditions, and Direction Cosines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>START INNER DO LOOP (K=1, IWEND)</td>
<td>5.01 Set Boundary Layer Edge Conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EDGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.02 Calculate Molecular Viscosity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MOLVIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.03 Calculate Turbulent Viscosity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TURBL</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td>5.04 Calculate Coefficients of P.D.E.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AXCOEF</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>MOLVIS</td>
<td>TURBL</td>
<td></td>
<td>6.01 Calculate Coefficients of Matrix Equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDcoef</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task Number</td>
<td>Task Description</td>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.02</td>
<td>Set Boundary Conditions on Matrix Equations</td>
<td>BNDCND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.03</td>
<td>Invert Matrix Equations</td>
<td>SOLVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.04</td>
<td>Set Solution Arrays on Inflow Plains</td>
<td>SYMSET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.05</td>
<td>Check for Convergence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.06</td>
<td>Calculate and Write Output Data</td>
<td>ROUTPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.07</td>
<td>Reinitialize Solution for Next Point</td>
<td>NEXTPT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>End Inner Do Loop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>End Outer Do Loop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>Close Input/Output Files</td>
<td>POSTP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.2 BL3D COMMON Block Variables

PARAMETERS

\begin{align*}
\text{NPHI} & \quad (61) \quad \text{Max. no. } X_2 \text{ mesh points} \\
\text{NXDIM} & \quad (101) \quad \text{Max. no. } X_1 \text{ mesh points} \\
\text{NORM} & \quad (201) \quad \text{Max. no. } X_3 \text{ mesh points} \\
\text{IDRM0} & \quad (7) \quad \text{Printed output unit} \\
\text{IDRM1} & \quad (10) \quad \text{Coordinate and metric data input unit no.} \\
\text{IDRM2} & \quad (11) \quad \text{Boundary layer edge data input unit no.} \\
\text{IDRM3} & \quad (12) \quad \text{Direction cosines data input unit no.} \\
\text{IDRM4} & \quad (13) \quad \text{Contour and vector plot output unit no.} \\
\text{IDRM5} & \quad (15) \quad \text{Crosssection plot output unit no.}
\end{align*}

COMMON /AXFCGB/ Coefficients of Partial Differential Eqs.

\begin{align*}
\text{AX(I)} & \quad A \quad \text{Coefficients of partial differential eqs.} \\
\text{Q} & \quad q \quad \text{Levy - Lees length scale parameter} \\
\text{Q0} & \quad q_0 \quad \text{Levy - lees length scale parameter at } X_2 = 0. \\
\text{GBAR(K)} & \quad \bar{\varepsilon}_{\text{ref}} \quad \text{Reference turbulent/laminar viscosity ratio}
\end{align*}

COMMON /CNTRL/ Integer Parameters

\begin{align*}
\text{IE} & \quad \text{No. } X_3 \text{ mesh points for energy eq.} \\
\text{IM} & \quad (\text{IE-1}) \quad \text{No. } X_3 \text{ mesh points for momentum eq.} \\
\text{IXEND} & \quad \text{No. } X_1 \text{ mesh points} \\
\text{IWEND} & \quad \text{No. } X_2 \text{ mesh points}
\end{align*}
R85-956834-1

ITURB
Turbulence model input option

IGBAR
Levy - Lees input option

IENRGY
Wall boundary condition on energy eq.

ITC
Flag for negative temperature

IFL
Pointer for direct access files

KTC
K counter for BL3D failure

KTC1
KTC - 1

KSP
K counter

KSP1
KSP - 1

KSTOP
Max. no. calculated X2 mesh points

NIT
Iteration counter

NITCV
Max. no. iterations

CONV
Convergence criteria

LSTOP
Max. no. calculated X1 mesh points

LINIT
X1 inflow option

KINIT
X2 inflow option

COMMON /EDGECB/ Boundary Layer edge Conditions

U(K)

U1e
X1 edge velocity

PP(K)
P_e
Edge static pressure

V(K)

U2e
X2 edge velocity
\[\begin{align*}
\text{DUDW}(K) & \quad \frac{\partial u_1}{\partial x_2} \\
\text{DUDX}(K) & \quad \frac{\partial u_1}{\partial x_1} \\
\text{DVDX}(K) & \quad \frac{\partial u_2}{\partial x_2} \quad \text{Velocity gradients} \\
Y_1(K) & \quad Y_1 \quad \text{Y}_1 \text{ Cartesian coordinate} \\
Y_2(K) & \quad Y_2 \quad \text{Y}_2 \text{ Cartesian coordinate} \\
Y_3(K) & \quad Y_3 \quad \text{Y}_3 \text{ Cartesian coordinate} \\
\text{GAM}(I,J,K) & \quad \gamma_{ij} \quad \text{Direction cosines} \\
\text{HR}(K) & \quad I \quad \text{Rothalpy (enthalpy)}
\end{align*} \]

\text{COMMON /EWINPT/ Input Wall Heat Transfer Variables}

\text{EWIN}(K,L) \quad q_w \quad \text{Wall heat flux array} \\
\text{RHWIN} \quad H_w/H_\infty \quad \text{Wall enthalpy ratio} \\
\text{QWSIN} \quad q_w \quad \text{Wall heat flux}

\text{COMMON /FLORF/ Reference Conditions Parameters}

\text{XMA} \quad M_\infty \quad \text{Reference freestream Mach no.} \\
\text{TFS} \quad t_\infty \quad \text{Reference freestream static temperature} \\
\text{PFS} \quad P_\infty \quad \text{Reference freestream static pressure}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFS</td>
<td>Reference freestream velocity</td>
</tr>
<tr>
<td>ROFS</td>
<td>Reference freestream density</td>
</tr>
<tr>
<td>AMUFS</td>
<td>Reference freestream viscosity</td>
</tr>
<tr>
<td>TREF</td>
<td>Reference temperature</td>
</tr>
<tr>
<td>XLREF</td>
<td>Reference length scale</td>
</tr>
<tr>
<td>AMURF</td>
<td>Reference viscosity</td>
</tr>
<tr>
<td>RE</td>
<td>Reference Reynolds no.</td>
</tr>
<tr>
<td>REFS</td>
<td>Reference freestream Reynolds no.</td>
</tr>
<tr>
<td>R</td>
<td>Gas constant</td>
</tr>
<tr>
<td>PR</td>
<td>Prandtl number (laminar)</td>
</tr>
<tr>
<td>PRT</td>
<td>Prandtl number (turbulent)</td>
</tr>
<tr>
<td>G</td>
<td>Ratio of specific heats</td>
</tr>
<tr>
<td>CSTAR</td>
<td>Constant in Sutherland's law</td>
</tr>
<tr>
<td>R1</td>
<td>Not used</td>
</tr>
<tr>
<td>D</td>
<td>Constant for isentropic flow</td>
</tr>
<tr>
<td>HO</td>
<td>Reference rothalpy</td>
</tr>
<tr>
<td>CPRIME</td>
<td>Constant</td>
</tr>
<tr>
<td>VK</td>
<td>Constant</td>
</tr>
<tr>
<td>CP</td>
<td>Pressure coefficient</td>
</tr>
</tbody>
</table>

COMMON /METCB/ Coordinate Data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1(K)</td>
<td>X metric scale coefficient</td>
</tr>
<tr>
<td>H2(K)</td>
<td>X metric scale coefficient</td>
</tr>
</tbody>
</table>
Derivatives of metric scale coefficients

\[
\begin{align*}
\text{DH1DX(K)} & \quad \frac{\partial H_1}{\partial x_1} \\
\text{DH1DW(K)} & \quad \frac{\partial H_1}{\partial x_2} \\
\text{DH2DX(K)} & \quad \frac{\partial H_2}{\partial x_1} \\
\text{DH2DW(K)} & \quad \frac{\partial H_2}{\partial x_2} \\
\text{G12(K)} & \quad G_{12} \\
\text{DG12DX(K)} & \quad \frac{\partial G_{12}}{\partial x_1} \\
\text{DG12DW(K)} & \quad \frac{\partial G_{12}}{\partial x_2} \\
\text{GM(K)} & \quad |G|
\end{align*}
\]

Covariant metric component

Derivatives of covariant metric component

Determinant of metric tensor

COMMON /PCOEF/ Matrix Elements

\[
\text{AU1F, BU1F, CU1F, BU1V,}
\]

Matrix elements

\[
\text{BU1G, BU1T, BU2F, BU2V,}
\]

\[
\text{AU2G, BU2G, CU2G, BU2T,}
\]

\[
\text{AEF, BEF, CEF, AEG,}
\]

\[
\text{BEG, CEG, AET, BET,}
\]

\[
\text{CET, ACF, ACG, BEV,}
\]

\[
\text{DU1, DU2, DE, DC}
\]

COMMON /PPROCB/ Print Control Parameters

\[
\text{LPRO(L)} \quad \text{L Print control array}
\]

\[
\text{KPRO(K)} \quad \text{K Print control array}
\]
COMMON /ROTAT/ Rotor Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD(K)</td>
<td>Radius</td>
</tr>
<tr>
<td>DRADX(K)</td>
<td>$\frac{\partial R}{\partial x_1}$</td>
</tr>
<tr>
<td>DRADW(K)</td>
<td>$\frac{\partial R}{\partial x_2}$</td>
</tr>
<tr>
<td>OMEGA</td>
<td>Rotor rotational speed</td>
</tr>
<tr>
<td>OMEGA3(K)</td>
<td>Ω_3</td>
</tr>
</tbody>
</table>

Derivatives of Radius

COMMON /STPSIZ/ Step Size Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI1(L)</td>
<td>ξ_1</td>
</tr>
<tr>
<td>DXI1(L)</td>
<td>$\Delta \xi_1$</td>
</tr>
<tr>
<td>DXV(L)</td>
<td>Δx_1</td>
</tr>
<tr>
<td>XO</td>
<td>x_{10}</td>
</tr>
<tr>
<td>WV(K)</td>
<td>$x_{2,k}$</td>
</tr>
<tr>
<td>DWV(K)</td>
<td>$\Delta x_{2,k}$</td>
</tr>
<tr>
<td>W0</td>
<td>x_{20}</td>
</tr>
<tr>
<td>XN(N)</td>
<td>ξ_3</td>
</tr>
<tr>
<td>DN(N)</td>
<td>$\Delta \xi_3$</td>
</tr>
<tr>
<td>DNI</td>
<td>$(\Delta \xi_3)_{\xi=0}$</td>
</tr>
<tr>
<td>AK</td>
<td>ξ_3</td>
</tr>
</tbody>
</table>

Coordinate step size in X_1 direction

COMMON /TURBCB/ Turbulent Flow Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1(K)</td>
<td>$1 + \frac{E_1}{\mu}$</td>
</tr>
<tr>
<td>E2(K)</td>
<td>$1 + \frac{E_2}{\mu}$</td>
</tr>
</tbody>
</table>

Ratio turbulent/laminar viscosity X_1 momentum eq.

Ratio turbulent/laminar viscosity X_2 momentum eq.
E3(K) \[1 + \frac{P_T}{P_R} \] \(\frac{E}{\mu} \) \(E/\mu \) Ratio turbulent/laminar viscosity energy eq.
EM(K) \(E/\mu \) Ratio eddy/laminar viscosity
XT1 \(X_{T1} \) Start of transition
XT2 \(X_{T2} \) End of transition
CISO \(C_{S0} \) Ratio E2/E1
XTRAN \(X_T \) Transition coordinate length

COMMON /VELL/ Boundary Layer Edge Parameters

VCAP \(U_{1e} \) \(X_1 \) edge velocity
TCAP \(T_e \) Edge static temperature
CVCAP \(U_{2e} \) \(X_2 \) edge velocity
PCAP \(P_e \) Edge static pressure
DTCDX \(\frac{\partial T_e}{\partial X_1} \) Derivatives of edge temperature
DTCDW \(\frac{\partial T_e}{\partial X_2} \)
DVCDX \(\frac{\partial U_{1e}}{\partial X_1} \) Derivatives of \(X_1 \) edge velocity
DVCDW \(\frac{\partial U_{1e}}{\partial X_2} \)
DCCDX \(\frac{\partial U_{2e}}{\partial X_1} \) Derivatives of \(X_1 \) edge velocity
DCCDW \(\frac{\partial U_{2e}}{\partial X_2} \)
DPCDX \(\frac{\partial P_e}{\partial X_1} \) Derivatives of static pressure
DPCDW \(\frac{\partial P_e}{\partial X_2} \)
VR \(U_{ref} \) Reference edge velocity
DVRDX \(\frac{\partial U_{ref}}{\partial X_1} \) Derivatives of reference edge velocity
DVRDW \(\frac{\partial U_{ref}}{\partial X_2} \)
HE H_{Te}
DHEDX $\partial H_{Te}/\partial x_1$
DHEDW $\partial H_{Te}/\partial x_2$
ROCAP ρ_e
ROMU L
AMUE μ_e/μ_{ref}
DCCDWX $\partial^2 u_{2e}/\partial x_1 \partial x_2$

Derivatives of edge rothalpy
Edge density
Edge Levy - Lees parameter
Edge viscosity
Limiting derivative at symmetry boundary

COMMON /VISC/ Dependent Variables

VIS(N) L
V2(N) v_{1K}^L
V3(N) v_{1K-1}^L
F3N(N) $(\partial F/\partial \xi_3)^L_{K-1}$
G3N(N) $(\partial G/\partial \xi_3)^L_{K-1}$
F2(N) F_{1K}^L
G2(N) G_{1K}^L
T2(N) T_{1K}^L
F2N(N) $(\partial F/\partial \xi_3)^L_K$
G2N(N) $(\partial G/\partial \xi_3)^L_K$
F1(N) F_{1K}^{L-1}
G1(N) G_{1K}^{L-1}

Levy - Lees stretching function
Normal velocity ratio
Normal velocity ratio
Derivative of X_1 velocity ratio
Derivative of X_2 velocity ratio
X_1 velocity ratio
X_2 velocity ratio
Static temperature ratio
Derivative of X_1 velocity ratio
Derivative of X_2 velocity ratio
X_1 velocity ratio
X_2 velocity ratio
<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1(N)</td>
<td>(\frac{\partial F}{\partial \varepsilon_3}) (L^{-1}) (K)</td>
<td>Derivative of (X_1) velocity ratio</td>
</tr>
<tr>
<td>G1(N)</td>
<td>(\frac{\partial G}{\partial \varepsilon_3}) (L^{-1}) (K)</td>
<td>Derivative of (X_2) velocity ratio</td>
</tr>
<tr>
<td>Y(N)</td>
<td>(Y_3)</td>
<td>Distance from wall</td>
</tr>
<tr>
<td>F3(N)</td>
<td>(F_{L-K-1}^L)</td>
<td>(X_1) velocity ratio</td>
</tr>
<tr>
<td>G3(N)</td>
<td>(G_{L-K-1}^L)</td>
<td>(X_2) velocity ratio</td>
</tr>
<tr>
<td>TT1(N)</td>
<td>(H_{L-K}^L)</td>
<td>Total enthalpy ratio</td>
</tr>
<tr>
<td>TT2(N)</td>
<td>(H_{L-K}^L)</td>
<td>Total enthalpy ratio</td>
</tr>
<tr>
<td>TT3(N)</td>
<td>(H_{L-K-1}^L)</td>
<td>Total enthalpy ratio</td>
</tr>
<tr>
<td>TT1(N)</td>
<td>(\frac{\partial H}{\partial \varepsilon_3}) (L^{-1}) (K)</td>
<td>Derivative of total enthalpy ratio</td>
</tr>
<tr>
<td>TT2(N)</td>
<td>(\frac{\partial H}{\partial \varepsilon_3}) (L) (K)</td>
<td>Derivative of total enthalpy ratio</td>
</tr>
<tr>
<td>TT3(N)</td>
<td>(\frac{\partial H}{\partial \varepsilon_3}) (L-K-1) (L)</td>
<td>Derivative of total enthalpy ratio</td>
</tr>
<tr>
<td>TT4(N)</td>
<td>(\frac{\partial H}{\partial \varepsilon_3}) (L^{-1}) (K+1)</td>
<td>Derivative of total enthalpy ratio</td>
</tr>
<tr>
<td>F4(N)</td>
<td>(F_{L-K+1}^L)</td>
<td>(X_1) velocity ratio</td>
</tr>
<tr>
<td>G4(N)</td>
<td>(G_{L-K+1}^L)</td>
<td>(X_2) velocity ratio</td>
</tr>
<tr>
<td>V4(N)</td>
<td>(V_{L-K+1}^L)</td>
<td>Normal velocity ratio</td>
</tr>
</tbody>
</table>
7.3 Description of BL3D Subroutines

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXCOEF</td>
<td>Calculate coefficients of differential eqs.</td>
</tr>
<tr>
<td>BNDCND</td>
<td>Set boundary conditions for matrix eqs.</td>
</tr>
<tr>
<td>EDGE</td>
<td>Set boundary layer edge conditions</td>
</tr>
<tr>
<td>MAIN</td>
<td>Main program</td>
</tr>
<tr>
<td>MOLVIS</td>
<td>Calculate Levy-Lees function</td>
</tr>
<tr>
<td>NEXTPT</td>
<td>Reinitialize solution arrays for next point</td>
</tr>
<tr>
<td>PDCOEF</td>
<td>Calculate coefficients of matrix equations</td>
</tr>
<tr>
<td>POSTP</td>
<td>Close input/output files</td>
</tr>
<tr>
<td>PREP</td>
<td>Open input/output files</td>
</tr>
<tr>
<td>RINIT</td>
<td>Initialize parameters and arrays</td>
</tr>
<tr>
<td>RINPUT</td>
<td>Read input data</td>
</tr>
<tr>
<td>ROUTPT</td>
<td>Calculate and write output data</td>
</tr>
<tr>
<td>SOLVE</td>
<td>Invert matrix equations</td>
</tr>
<tr>
<td>SYMSET</td>
<td>Set solution arrays at starting planes</td>
</tr>
<tr>
<td>TURBL</td>
<td>Calculate turbulent viscosity</td>
</tr>
</tbody>
</table>
Subroutine BNDCND(Arg. List)

Object
This subroutine sets the boundary conditions on the matrix equations.

Options

- KINIT = 0 Local similarity start at X2 = 0.0
- KINIT = 1 Plane of symmetry start at X2 = 0.0
- IERNGY = 0 Specify wall temperature
- IERNGY = 1 Specify wall heat flux

List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE</td>
<td>Edge value of total enthalpy function</td>
</tr>
<tr>
<td>EW</td>
<td>Wall value of total enthalpy function</td>
</tr>
<tr>
<td>EWP</td>
<td>Wall value of enthalpy derivative function</td>
</tr>
<tr>
<td>FIE</td>
<td>Edge value of X1 velocity function</td>
</tr>
<tr>
<td>GIE</td>
<td>Edge value of X2 velocity function</td>
</tr>
<tr>
<td>L, K</td>
<td>Index for X1 and X2 respectively</td>
</tr>
</tbody>
</table>

Theory

The boundary conditions are given Sect. 3.6 of Ref. 1. At the edge of the boundary layer the conditions are:

\[
F_e = 1.0
\] \hspace{1cm} (1)

\[
H_e = 1.0
\] \hspace{1cm} (2)

\[
G_e = U_3/U_{ref}
\] \hspace{1cm} (3)
At the wall the conditions are

\[G_e = \begin{cases} 1.0 & \text{if } KIN\text{T}=1 \text{ and } K=1 \end{cases} \] (4)

\[H_e = \frac{T_w}{T_\infty} \frac{H_{T\infty}}{H_T} \] if IENRGY=0 \] (5)

\[\left(\frac{\partial H}{\partial \xi_e} \right)_w = \frac{-q_w \ell}{\left(H_{T\infty} U_\infty^2 \right)} \sqrt{\frac{2 \xi_1}{R_e}} \left(\frac{\rho_w}{\rho_e} \frac{u_w}{u_e} \right) \left(\rho_e \nu_e \right) \frac{h_2}{U_{le} \nu_{ref}} \] if IENERGY = 1 (6)

References

Subroutine EDGE(Arg. List)

Object

This subroutine sets the boundary layer edge conditions.

Options

LINIT = 0 Local similarity start at X1 = 0.0
LINIT = 1 Flat plate similarity start at X1 = 0.0
LINIT = 2 Stagnation point similarity start at X1 = 0.0
LINIT = 3 Input profiles (not programmed)
KINIT = 0 Local similarity start at X2 = 0.0
KINIT = 1 Plane of symmetry start at X2 = 0.0
KINIT = 2 Input profiles (not programmed)

List of Symbols

See COMMON blocks

Theory

Given U_{1e}, U_{2e}, I_e, and P_e, the remaining edge conditions are given as follows

\[V_B = RΩ \] \hspace{1cm} (1)

\[H_{Te} = I_e + V_B^2/2 \] \hspace{1cm} (2)

\[U_e^2 = U_{1e}^2 + U_{2e}^2 + 2U_{1e}U_{2e}G_{12}/(H_1H_2) \] \hspace{1cm} (3)

\[T_e = \frac{γ-1}{γ} [H_{Te} - U_e^2/2] \] \hspace{1cm} (4)

\[P_e = P_e/T_e \] \hspace{1cm} (5)

VII-16
where the derivatives of the edge conditions are obtained by differentiating Eqs. 1 through 5. The reference conditions are set as follows:

\[U_{ref} = U_{le} \quad \text{KINIT\#1} \]
\[U_{ref} = U_{2e} \quad \text{KINIT\#1, K=1} \]

The edge viscosity is obtained from Sutherland's law.

\[\mu_e = T_e^{3/2} \frac{1 + \frac{C'}{T_e + C'}}{T_e + C'} \]
Subroutine MOLVIS(L,X)

Object

This subroutine calculates the Levy-Lees variable and the static temperature.

Options

None

List of Variables

UTESQ \(u^2_e \) Velocity squared

X Not used

Theory

The total velocity is given by:

\[
U_e^2 = (U_{le} F)^2 + (U_{ref} G)^2 + 2(U_{le} F)(U_{ref} G) \frac{G_{12}}{(H_1 H_2)} \tag{1}
\]

Then the static temperature is given by

\[
\Xi = \frac{\gamma - 1}{\gamma} \frac{1}{T_e} \left[H_{TeH} - \frac{U_e^2}{2} \right] \tag{2}
\]

and the Levy-Lees function is calculated from Sutherland's viscosity law where the static pressure is constant in the boundary layer

\[
L = \frac{\rho U}{\rho_e U_e} = \frac{\zeta^{1/2}}{\zeta + \zeta_c} \frac{1 + \zeta}{\zeta + \zeta_c}
\]

A check is made on the static temperature during the iteration.

If \(\Xi > 0.0 \) then ITC = 0

If \(\Xi < 0.0 \) then ITC = 1
Subroutine NEXTPT(K,L,IFLAG)

Object

This subroutine reinitializes the solution arrays for the next point.

Options

IFLAG = 0 The solution has converged
IFLAG = 1 The solution has not converged
KINIT = 1 Plane of symmetry start on X2 = 0.0

List of Symbols

KSP K
KTC K counter for convergence failure
KTCl KTC - 1
KSP1 KSP - 1
IFL Record counter

Theory

This subroutine writes the current solution on Unit 8 and reads the appropriate record from Unit 8 to set up the solution arrays at the next point. The record counter IFL is reset to IFL=1 each time L is indexed. Let us define the following vector arrays each representing one record.

\[
\begin{align*}
 f(L,K-1) &= (H(N), F(N), G(N), V(N))_{K-1}^{L} \\
 f(L,K) &= (H(N), F(N), G(N), V(N))_{K}^{L} \\
 f(L-1,K) &= (H(N), F(N), G(N), V(N))_{K}^{L-1} \\
 f(L-1,K+1) &= (H(N), F(N), G(N), V(N))_{K+1}^{L-1}
\end{align*}
\]

The Unit contains the following records (see Fig. 1):

\[
\begin{align*}
 \text{for IFL} &= 1,K & f(L,K) \\
 \text{for IFL} &= K+1,KSP & f(L-1,K)
\end{align*}
\]

(2)
where KSP < IWEND. Hence to update the arrays we have:

\[
\begin{align*}
 f_1 &= f_2 = f(\text{IFL}) \\
 f_3 &= f(\text{IFL+1}) & 1 < K < \text{KSP} \\
 f_4 &= f(\text{IFL+2}) \\
 f_1 &= \text{not needed} \\
 f_3 &= f(1) & K = 1 \\
 f_4 &= f(2)
\end{align*}
\]

After the new arrays are set, the normal derivative of the dependent variables are calculated numerically.
Subroutine PDCOEF(L,K,PR)

Object

This subroutine calculates the coefficients of the matrix equations.

Options

None

List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU1F, BU1F, CU1F, BU1V, BU1G, BU1T, DU1</td>
<td>Coeff. of X1 momentum eq.</td>
</tr>
<tr>
<td>AEF, BEF, CEF, BEV, AEG, BEG, CEG, AET, BET, CET, DE</td>
<td>Coeff. of energy eq.</td>
</tr>
<tr>
<td>ACF, ACG, DC</td>
<td>Coeff. of continuity eq.</td>
</tr>
</tbody>
</table>

Theory

In this subroutine the equations of motion are quasi-linearized and discretized to form a set of matrix equations as outlined in Section 3.9 of Ref. 1.

References

Subroutine POSTP

Object

This subroutine closes all input/output files.

Options

None

List of Symbols

See COMMON blocks

Theory

See Sect. 5.3 for a description of all input/output files for the three dimensional boundary layer code.
Subroutine PREP

Object

This subroutine opens all input/output files.

Options

None

List of Symbols

See COMMON blocks

Theory

See Sect. 5.3 for a description of all input/output files for the three dimensional boundary layer code.
From Sutherland's law we have

\[\mu_{\text{ref}} = 2.27 \times 10^{-8} \frac{t_{\text{ref}}}{(t_{\text{ref}} + C^*)} \] \hspace{1cm} (4)

\[\mu_{\infty} = 2.27 \times 10^{-8} \frac{t_{\infty}}{(t_{\infty} + C^*)} \] \hspace{1cm} (5)

The reference total temperature and total enthalpy are

\[t_{t_{\infty}} = t_{\infty} \left[1 + \frac{\gamma - 1}{2} H_{\infty}^2 \right] \] \hspace{1cm} (6)

\[H_{T_{\infty}} = \frac{\gamma}{\gamma - 1} \frac{t_{t_{\infty}}}{t_{\text{ref}}} \] \hspace{1cm} (7)

and the reference Reynolds numbers are given by

\[R_e = U_{\infty} \rho_{\infty} \ell / \mu_{\text{ref}} \] \hspace{1cm} (8)

\[R_{e_{\infty}} = U_{\infty} \rho_{\infty} \ell / \mu_{\infty} \] \hspace{1cm} (9)
Subroutine RINPUT

Object

This subroutine reads input parameters and flow conditions.

Options

None

List of Symbols

See COMMON blocks

Theory

See Sect. 5.1 for input variables used.
Subroutine ROUTPT

Object

This subroutine calculates output data in an intrinsic coordinate system aligned to the freestream flow direction.

Options

IERNGY = 0 Specify wall temperature
IERNGY = 1 Specify wall heat flux

List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>US(N)</td>
<td>U_s Velocity component tangent to freestream</td>
</tr>
<tr>
<td>UC(N)</td>
<td>U_c Velocity component normal to freestream</td>
</tr>
<tr>
<td>UN(N)</td>
<td>U_n Not used</td>
</tr>
<tr>
<td>UT(N)</td>
<td>U_T Total (magnitude) velocity</td>
</tr>
<tr>
<td>ALPC(N)</td>
<td>α_c Angle between \vec{U} and \vec{U}_e</td>
</tr>
<tr>
<td>ES(N)</td>
<td>e_s Rate of strain tangent to freestream</td>
</tr>
<tr>
<td>EC(N)</td>
<td>e_c Rate of strain normal to freestream</td>
</tr>
<tr>
<td>EN(N)</td>
<td>e_T Total (magnitude) rate of strain</td>
</tr>
<tr>
<td>TS(N)</td>
<td>τ_s Rate of stress tangent to freestream</td>
</tr>
<tr>
<td>TC(N)</td>
<td>τ_c Rate of stress normal to freestream</td>
</tr>
<tr>
<td>ALP(N)</td>
<td>α Angle between \vec{U} and \vec{n}_1</td>
</tr>
<tr>
<td>THE</td>
<td>θ Angle between \vec{n}_1 and \vec{n}_2</td>
</tr>
<tr>
<td>UT1E</td>
<td>U_{T1e} Edge velocity tangent to \vec{n}_1</td>
</tr>
<tr>
<td>UN1E</td>
<td>U_{N1e} Edge velocity normal to \vec{n}_1 and \vec{n}_3</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>ALPE</td>
<td>α_e Angle between \mathbf{U}_e and \hat{n}_1</td>
</tr>
<tr>
<td>UTE</td>
<td>U_{Te} Total edge velocity</td>
</tr>
<tr>
<td>UT1</td>
<td>U_{T1} Velocity tangent to \hat{n}_1</td>
</tr>
<tr>
<td>UN1</td>
<td>U_{N1} Velocity normal to \hat{n}_1 and \hat{n}_3</td>
</tr>
<tr>
<td>E13</td>
<td>e_{13} X1 component of $(\mathbf{E} \circ \hat{n}_3)$ rate of strain</td>
</tr>
<tr>
<td>E23</td>
<td>e_{23} X2 component of $(\mathbf{E} \circ \hat{n}_3)$ rate of strain</td>
</tr>
<tr>
<td>ET1</td>
<td>e_{T1} Rate of strain $(\mathbf{E} \circ \hat{n}_3)$ tangent to \hat{n}_1</td>
</tr>
<tr>
<td>EN1</td>
<td>e_{n1} Rate of strain $(\mathbf{E} \circ \hat{n}_3)$ normal to \hat{n}_1 and \hat{n}_3</td>
</tr>
<tr>
<td>ET</td>
<td>e_T Magnitude of rate of strain $(\mathbf{E} \circ \hat{n}_3)$</td>
</tr>
<tr>
<td>ALPEE</td>
<td>α_{ee} Angle between $(\mathbf{E} \circ \hat{n}_3)$ and \hat{n}_1</td>
</tr>
<tr>
<td>ALPEC</td>
<td>α_{ec} Angle between $(\mathbf{E} \circ \hat{n}_3)$ and \mathbf{U}_e</td>
</tr>
<tr>
<td>T13</td>
<td>τ_{13} X1 component of $(\mathbf{T} \circ \hat{n}_3)$ rate of stress</td>
</tr>
<tr>
<td>T23</td>
<td>τ_{23} X2 component of $(\mathbf{T} \circ \hat{n}_3)$ rate of stress</td>
</tr>
<tr>
<td>TAUT1</td>
<td>τ_{T1} Rate of stress $(\mathbf{T} \circ \hat{n}_3)$ tangent to \hat{n}_1</td>
</tr>
<tr>
<td>TAUN1</td>
<td>τ_{N1} Rate of stress $(\mathbf{T} \circ \hat{n}_3)$ normal to \hat{n}_1 and \hat{n}_3</td>
</tr>
<tr>
<td>TAU</td>
<td>τ Magnitude of rate of stress</td>
</tr>
<tr>
<td>ALPT</td>
<td>α_T Angle between $(\mathbf{T} \circ \hat{n}_3)$ and \hat{n}_1</td>
</tr>
<tr>
<td>ALPC</td>
<td>α_c Angle between $(\mathbf{T} \circ \hat{n}_3)$ and \mathbf{U}_e</td>
</tr>
<tr>
<td>DY3</td>
<td>ΔY_3 Difference - normal coordinate</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>DELS</td>
<td>δ_s^*/ℓ Streamwise displacement thickness</td>
</tr>
<tr>
<td>DELC</td>
<td>δ_c^*/ℓ Crossflow displacement thickness</td>
</tr>
<tr>
<td>DELUS</td>
<td>δ_{us}^*/ℓ Streamwise velocity thickness</td>
</tr>
<tr>
<td>DELUC</td>
<td>δ_{uc}^*/ℓ Crossflow velocity thickness</td>
</tr>
<tr>
<td>THETSS</td>
<td>θ_{ss}/ℓ Streamwise momentum thickness</td>
</tr>
<tr>
<td>THETCC</td>
<td>θ_{cc}/ℓ Crossflow momentum thickness</td>
</tr>
<tr>
<td>THETSC</td>
<td>θ_{sc}/ℓ $U_c \Delta U_s$ momentum thickness</td>
</tr>
<tr>
<td>THETCS</td>
<td>θ_{w}/ℓ $U_s \Delta U_c$ momentum thickness</td>
</tr>
<tr>
<td>THETHS</td>
<td>θ_{HS}/ℓ Streamwise enthalpy thickness</td>
</tr>
<tr>
<td>THETHC</td>
<td>θ_{HC}/ℓ Crosswise enthalpy thickness</td>
</tr>
<tr>
<td>THETDS</td>
<td>θ_{DS}/ℓ Streamwise dissipation thickness</td>
</tr>
<tr>
<td>THETDC</td>
<td>θ_{DC}/ℓ Crosswise dissipation thickness</td>
</tr>
<tr>
<td>HSS</td>
<td>H_{SS} Shape factor</td>
</tr>
<tr>
<td>YEDGE</td>
<td>δ Edge of boundary layer</td>
</tr>
<tr>
<td>CFS</td>
<td>C_{fs} Streamwise wall friction coefficient</td>
</tr>
<tr>
<td>CFC</td>
<td>C_{fc} Crossflow wall friction coefficient</td>
</tr>
<tr>
<td>QW</td>
<td>Q_w Wall heat flux</td>
</tr>
<tr>
<td>ST</td>
<td>S_t Stanton number</td>
</tr>
<tr>
<td>TWAD</td>
<td>T_a Adiabatic wall temperature</td>
</tr>
<tr>
<td>TW</td>
<td>T_w Wall temperature</td>
</tr>
<tr>
<td>RECFAC</td>
<td>R_{ec} Recovery factor</td>
</tr>
</tbody>
</table>
Consider a vector \mathbf{A} in a nonorthogonal coordinate system (X_1, X_2, X_3) with the corresponding unit vectors ($\mathbf{\hat{n}}_1, \mathbf{\hat{n}}_2, \mathbf{\hat{n}}_3$). Then, neglecting the normal component, we have for the contravariant components:

$$\mathbf{A} = A^1\mathbf{\hat{n}}_1 + A^2\mathbf{\hat{n}}_2 + 0\mathbf{\hat{n}}_3$$ \hspace{1cm} (1)

The angle between A^1 and A^2 is given by

$$\cos \theta = G_{12}/(H_1 H_2)$$ \hspace{1cm} (2)

Let us now resolve the vector in components tangent to $\mathbf{\hat{n}}_1$ and normal to $\mathbf{\hat{n}}_1$.

$$\mathbf{A} = A_T \mathbf{\hat{n}}_1 + A_N (\mathbf{\hat{n}}_1 \times \mathbf{\hat{n}}_3) + 0 n$$ \hspace{1cm} (3)

Clearly as shown in Fig. 1 we have:

$$A_T = A^1 + A^2 \cos \theta$$ \hspace{1cm} (4)

$$A_N = (A^2 + \sin \theta)$$ \hspace{1cm} (5)
Let us now define an intrinsic coordinate system referenced to the freestream direction. Then applying the above formulas for \(A = U \) we have:

\[
\begin{align*}
|\vec{A}| &= (A_T^2 + A_N^2)^{1/2} \\
\alpha &= \tan \left(A_N/A_T \right) \quad (7)
\end{align*}
\]

Then for any velocity in the boundary layer we have:

\[
\begin{align*}
U_{Te} &= U_{le} + U_2 \cos \theta \\
U_{Ne} &= U_2 \sin \theta \\
U_e &= (U_T^2 + U_N^2)^{1/2} \\
\alpha_e &= \tan \left(U_{Ne}/U_{Te} \right) \quad (11)
\end{align*}
\]

Then for any velocity in the boundary layer we have:

\[
\begin{align*}
U_{T1} &= U_1 + U_2 \cos \theta \\
U_{N1} &= U_2 \sin \theta \\
U_T &= (U_T^2 + U_N^2)^{1/2} \\
\alpha &= \tan \left(U_{N1}/U_{T1} \right) \quad (15)
\end{align*}
\]

Hence the angle between the local flow direction and the free stream flow direction is:

\[
\alpha_c = \alpha - \alpha_e \quad (16)
\]

and the velocity components tangent and normal to the freestream direction are:
For the rate of strain components and rate of stress components we form the vectors

\[\dot{\lambda} = \bar{E} \circ n_3^+ = e_{13} \hat{n}_1 + e_{23} \hat{n}_2 \]

where the components are given by

\[C_0 = \sqrt{R_e} \rho_e \frac{U_1 e}{H_2/\sqrt{2 \xi_1}} \]

\[C_1 = \frac{C_0}{R_e} \frac{u_o/\bar{u}_{ref}}{\bar{\xi}_1} \]

\[\bar{e}_{13} = \frac{C_0}{U e} \frac{\rho/\rho_e}{\bar{\xi}_1} \]

\[\bar{e}_{23} = \frac{C_0}{U e} \frac{\rho/\rho_e}{\bar{\xi}_1} \]

\[\bar{\tau}_{13} = \frac{C_1}{U e} \frac{\bar{\xi}_1/\bar{\xi}_{ref}}{\bar{\xi}_1} \]

\[\bar{\tau}_{23} = \frac{C_1}{U e} \frac{\bar{\xi}_1/\bar{\xi}_{ref}}{\bar{\xi}_1} \]
and apply the same formula. With the flow angles determined, the characteristic directions are given by:

\[\beta_1 = \text{MAX}(\alpha_c) \]
\[\beta_2 = \text{MIN}(\alpha_c) \]

The boundary layer integral parameters are defined relative to the intrinsic coordinates and are given by:

\[dY_3 = \frac{1}{C_o} \rho/\rho_e \, d\xi_e \]
\[\delta_{\alpha}/\ell = \int [1 - \frac{\rho \, U_s}{\rho_e \, U_e}] \, dY_3 \]
\[\delta_{\alpha}/\ell = -\int \rho \frac{U_c}{\rho_e U_e} \, dY_3 \]
\[\delta_{\alpha}/\ell = \int [1 - \frac{U_s}{U_e}] \, dY_3 \]
\[\delta_{\alpha}/\ell = -\int [1 - \frac{U_c}{U_e}] \, dY_3 \]
\[\sigma_{\alpha}/\ell = \int \frac{\rho \, U_s}{\rho_e U_e} \left[1 - \frac{U_s}{U_e}\right] \, dY_3 \]
\[\theta_{cc}/\ell = -\int \frac{\rho U_s}{\rho U_e} \frac{U_c}{U_e} dY_3 \]

(35)

\[\theta_{sc}/\ell = \int \frac{\rho U_s}{\rho U_e} [1 - \frac{U_s}{U_e}] dY_3 \]

(36)

\[\theta_{cs}/\ell = \int \frac{\rho U_s}{\rho U_e} \frac{U_c}{U_e} dY_3 \]

(37)

\[\theta_{HS}/\ell = \int \frac{\rho U_s}{\rho U_e} [1 - \left(\frac{U_s}{U_e}\right)^2] dY_3 \]

(38)

\[\theta_{HC}/\ell = \int \frac{\rho U_s}{\rho U_e} \left(\frac{U_c}{U_e}\right)^2 dY_3 \]

(39)

\[\theta_{DS}/\ell = \int \frac{\tau_s}{\rho U_e^2} \frac{e_s}{U_e} dY_3 \]

(40)

\[\theta_{DC}/\ell = \int \frac{\tau_c}{\rho U_e^2} \frac{e_c}{U_e} dY_3 \]

(41)

The wall friction coefficients are given by

\[C_{fs} = 2 \frac{\tau_{sw}}{(\rho U_e^2)} \]

(42)

\[C_{fc} = 2 \frac{\tau_{cw}}{(\rho U_e^2)} \]

(43)
and the Stanton number by

\[S_t = \frac{Q_w}{(T_a - T_w)} \]

(44)

where

\[Q_w = \frac{\gamma - 1}{\gamma} \frac{C_o}{R_e^p} R_e \left(\frac{\rho w \nu w}{\rho_e \nu_e} \right) H \nu \frac{\nu}{\nu_{ref}} \left(\frac{\partial H}{\partial \xi_3} \right)_w \]

(45)

The projection of the velocity vector on the Y3 plane are:

\[V_{1e} = \gamma_{11} U_{1e} + \gamma_{21} U_{2e} \]

(46)

\[V_{2e} = \gamma_{12} U_{1e} + \gamma_{22} U_{2e} \]

(47)

The limiting wall streamline is defined by

\[\lim_{\xi_3 \to 0} \frac{V_{2e}}{V_{1e}} = \frac{\varepsilon_{2w}}{\varepsilon_{1w}} \]

(48)

hence

\[\varepsilon_{1w} = \gamma_{11} \varepsilon_{13w} + \gamma_{21} \varepsilon_{23w} \]

(49)

\[\varepsilon_{2w} = \gamma_{12} \varepsilon_{13w} + \gamma_{22} \varepsilon_{23w} \]

(50)

\[\beta_w = \tan^{-1} \left(\frac{\varepsilon_{2w}}{\varepsilon_{1w}} \right) \]

(51)
Subroutine SOLVE(Arg. list)

Object

Solve a set of three second order and one first order partial differential equations forming a block tri-diagonal matrix.

Options

IERNGY = 0 Specify wall temperature
IERNGY = 1 Specify wall heat flux

List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIE</td>
<td>Edge value of total enthalpy function</td>
</tr>
<tr>
<td>EW</td>
<td>Wall value of total enthalpy function</td>
</tr>
<tr>
<td>EWP</td>
<td>Wall value of enthalpy derivative function</td>
</tr>
<tr>
<td>FIE</td>
<td>Edge value of X1 velocity function</td>
</tr>
<tr>
<td>GIE</td>
<td>Edge value of X2 velocity function</td>
</tr>
<tr>
<td>AU1F, BU1F, CU1F, BU1V, BU1G, BU1T, DU1</td>
<td>Coeff. of X1 momentum eq.</td>
</tr>
<tr>
<td>AEF, BEF, CEF, BEV, AEG, BEG, CEG, AET, BET, CET, DE</td>
<td>Coeff. of energy eq.</td>
</tr>
<tr>
<td>ACF, ACG, DC</td>
<td>Coeff. of continuity eq.</td>
</tr>
<tr>
<td>PF, QF, RF, SF, TF, PG, QG, RG, SG, TG, PE, QE, RE, SE, TE</td>
<td>Coeff. of upper triangular matrix</td>
</tr>
</tbody>
</table>
Theory

The block tri-diagonal matrix is reduced to the upper triangular matrix using block factorization in which the continuity equation is eliminated from the matrix reduction by direct substitution. The center block is inverted using Cramer's rule. The reduction process starts at the outer edge (N = IE) where the boundary conditions are known explicitly and continue to (N=1) where the derivative boundary condition is evaluated. In the backward substitution the coefficients for the normal velocity are evaluated from the other coefficients.
Subroutine TURBL(K,L,X,ICNTRL)

Object

This subroutine calculates the turbulent viscosity and the turbulent Levy-Lees parameter.

Options

ICNTRL = 0 Not used at the present time
 = 1

ITURB = 0 Laminar flow
 = 1 Turbulent/transitional flow

IGBAR = 0 Laminar Levy-Lees variables
 = 1 Turbulent Levy-Lees variables

List of Symbols

BET X3 X3 Distance normal to wall
EMO \(\epsilon_o/\mu \) Eddy viscosity outer layer
L , K Mesh point indices
X X1 X1 coordinate distance
XTRAN X_T Intermittancy factor

Theory

A detailed description of the turbulence model is given in Sect. 3.7 of Ref. 1. The basic turbulence model is that developed by Cebeci and Smith Ref. 2. Then in Levy-Lees variables we have the distance normal to the wall is given by
The outer layer eddy viscosity is then given by

\[\frac{\varepsilon_o}{\mu} = \chi \frac{\sqrt{R_e} \left[\sqrt{2} \frac{\xi_1}{H_1} \right]}{[\xi L \left(\frac{u_e}{\mu_{ref}} \right) \right]} X_3 (\xi) \]

(2)

where the terms in the brackets are coded as local variables. For the inner layer, the eddy viscosity is

\[\frac{\varepsilon_i}{\mu} = L^2 \left| \frac{dU}{d\xi_3} \right| \]

(3)

where the mixing length is given by

\[L^2 = \left[\frac{\kappa^2 \sqrt{R_e} \left(\sqrt{2} \frac{\xi_1}{H_1} \right) X_3^2}{\xi^2 \left(\xi L \left(\frac{u_e}{\mu_{ref}} \right) \right) \right] D^2 \]

(4)

and the damping factor by

\[D = 1 - \exp \left\{ \frac{X_2 - X_3}{26 \left(\xi L \left(\frac{u_e}{\mu_{ref}} \right) \right)} \left[\sqrt{\left(\frac{\sqrt{2} \xi_1}{H_1} \right) \left(\frac{L_{\mu_{ref}}}{\xi^2 \left(\frac{u_e}{\mu_{ref}} \right) \left(\frac{dU}{d\xi_3} \right) \right) \right] \right\} \]

(5)
The Clauser outer layer constant is usually taken to be

\[\chi = 0.0168 \]

and the Prandtl constant by

\[K = 0.4357 \]

The eddy viscosity is then given by

\[\frac{\varepsilon}{\mu} = \frac{\varepsilon_i}{\mu} X_T \text{ if } \frac{\varepsilon_i}{\mu} < \frac{\varepsilon_o}{\mu} \]

\[= \frac{\varepsilon_o}{\mu} X_T \text{ if } \frac{\varepsilon_i}{\mu} > \frac{\varepsilon_o}{\mu} \]

where \(X_T \) is the intermittancy factor derived from Dhawan and Narasimha, Ref. 3.

\[X_T = \{ 1 - \exp\left[-4.6513 \left(\frac{X - X_1}{X_{T2} - X_{T1}} \right)^2 \right] \} \]

The turbulent Levy-Lees parameter is then determined by the eddy viscosity in the outer layer

\[\varepsilon_{\text{ref}} = 1 \quad \text{IGBAR} = 0 \]

\[= 1 + \frac{\varepsilon_o}{\mu} X_T \quad \text{IGBAR} = 1 \]
References

LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_n, c_n</td>
<td>Coefficients of boundary edge equations</td>
</tr>
<tr>
<td>A_n, K_n</td>
<td>Coefficients of boundary layer equations</td>
</tr>
<tr>
<td>c_p, c_v</td>
<td>Specific heats</td>
</tr>
<tr>
<td>C_f</td>
<td>Wall friction coefficient</td>
</tr>
<tr>
<td>C_p</td>
<td>Pressure coefficient</td>
</tr>
<tr>
<td>e_i</td>
<td>Unit vectors Cartesian coordinates</td>
</tr>
<tr>
<td>F</td>
<td>X_1 velocity ratio $\left(\frac{u_1}{u_{1e}}\right)$</td>
</tr>
<tr>
<td>g_{ij}, G_{ij}</td>
<td>Covariant metric tensor components $\left(\frac{g_{ij}}{l^2}\right)$</td>
</tr>
<tr>
<td>G</td>
<td>X_2 velocity ratio $\left(\frac{u_2}{u_{ref}}\right)$</td>
</tr>
<tr>
<td>h_i, H_i</td>
<td>Metric scale coefficients $\left(h_i/l\right)$</td>
</tr>
<tr>
<td>h, H</td>
<td>Static enthalpy $\left(h/u^2\right)$</td>
</tr>
<tr>
<td>h_T, H_T</td>
<td>Total enthalpy $\left(h_T/u_{\infty}^2\right)$</td>
</tr>
<tr>
<td>H</td>
<td>Total enthalpy ratio $\left(h_T/h_{Te}\right)$</td>
</tr>
<tr>
<td>i, I</td>
<td>Rothalpy $\left(i/u_{\infty}^2\right)$</td>
</tr>
<tr>
<td>k</td>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>l</td>
<td>Reference length</td>
</tr>
<tr>
<td>L</td>
<td>Levy - Lees parameter $\left(\rho\mu/\rho e u_e\right)$</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>M</td>
<td>Mach number</td>
</tr>
<tr>
<td>(\hat{\mathbf{n}}_i)</td>
<td>Unit vectors surface coordinates</td>
</tr>
<tr>
<td>(p_T, P_T)</td>
<td>Static pressure (\left(\frac{p}{\rho_{\infty}u_{\infty}^2} \right))</td>
</tr>
<tr>
<td>(p, P)</td>
<td>Total pressure (\left(\frac{p_T}{\rho_{\infty}u_{\infty}^2} \right))</td>
</tr>
<tr>
<td>(Pr, Pr_T)</td>
<td>Prandtl number laminar/turbulent (\left(\frac{c_p \mu}{k} \right))</td>
</tr>
<tr>
<td>(q)</td>
<td>Levy - Lees length scale parameter</td>
</tr>
<tr>
<td>(r, R)</td>
<td>Radius (\left(\frac{r}{1} \right))</td>
</tr>
<tr>
<td>(Re)</td>
<td>Reynolds number (\left(\frac{\rho_{\infty}u_{\infty}}{\nu_{\infty}} \right))</td>
</tr>
<tr>
<td>(s, S)</td>
<td>Arc length distance (\left(\frac{s_i}{1} \right))</td>
</tr>
<tr>
<td>(St)</td>
<td>Stanton number</td>
</tr>
<tr>
<td>(t, T)</td>
<td>Static temperature (\left(\frac{t}{t_{\text{ref}}} \right))</td>
</tr>
<tr>
<td>(u_i, U_i)</td>
<td>Velocity components surface coor. (\left(\frac{u_i}{u_{\infty}} \right))</td>
</tr>
<tr>
<td>(u_z, U_z)</td>
<td>Axial velocity (\left(\frac{u_z}{u_{\infty}} \right))</td>
</tr>
<tr>
<td>(u_r, U_r)</td>
<td>Radial velocity (\left(\frac{u_r}{u_{\infty}} \right))</td>
</tr>
<tr>
<td>(u_\phi, U_\phi)</td>
<td>Tangential velocity (\left(\frac{u_\phi}{u_{\infty}} \right))</td>
</tr>
<tr>
<td>(u_{\text{ref}}, U_{\text{ref}})</td>
<td>X_2 reference velocity (\left(\frac{u_{\text{ref}}}{u_{\infty}} \right))</td>
</tr>
<tr>
<td>(v_i, V_i)</td>
<td>Velocity components Cartesian coor. (\left(\frac{v_i}{u_{\infty}} \right))</td>
</tr>
<tr>
<td>(V)</td>
<td>X_3 reduced velocity</td>
</tr>
<tr>
<td>(v_B, V_B)</td>
<td>Rotor velocity (\left(\frac{v_B}{u_B} \right))</td>
</tr>
</tbody>
</table>
\[x_i, X_i \quad \text{Surface coordinates} \quad (x_i / 1) \]
\[y_i, Y_i \quad \text{Cartesian coordinates} \quad (y_i / 1) \]
\[\beta_l \quad \text{Relative inlet flow angle} \]
\[\gamma \quad \text{Ratio of specific heats} \]
\[\gamma_{ij} \quad \text{Direction cosine tensor components} \]
\[\gamma_{ij}^{-1} \quad \text{Inverse tensor components} \]
\[\delta^* \quad \text{Displacement thickness} \]
\[\varepsilon \quad \text{Eddy viscosity} \]
\[\bar{\varepsilon} \quad \text{Viscosity ratio turbulent/laminar} \]
\[\bar{\varepsilon}_{\text{ref}} \quad \text{Reference viscosity ratio} \]
\[\theta \quad \text{Momentum thickness} \]
\[\Xi \quad \text{Static temperature ratio} \quad (\tau / \tau_{\text{ref}}) \]
\[\mu \quad \text{Molecular viscosity} \]
\[\mu_{\text{ref}} \quad \text{Reference molecular viscosity} \quad \mu(\tau_{\text{ref}}) \]
\[\xi_i \quad \text{Levy-Lees transformed coordinates} \]
\[\rho, \varrho \quad \text{Density} \quad (\rho / \rho_\infty) \]
\[\tau_{ij} \quad \text{Stress components} \]
\[\omega, \Omega \quad \text{Rotor speed} \quad (\omega l / u_\infty) \]
Subscripts

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>Edge conditions</td>
</tr>
<tr>
<td>h</td>
<td>Hub</td>
</tr>
<tr>
<td>L</td>
<td>Rotor inlet conditions</td>
</tr>
<tr>
<td>t</td>
<td>Tip</td>
</tr>
<tr>
<td>T</td>
<td>Total or stagnation conditions</td>
</tr>
<tr>
<td>∞</td>
<td>Freestream or reference conditions</td>
</tr>
</tbody>
</table>

Superscripts

<table>
<thead>
<tr>
<th>Superscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~</td>
<td>Absolute rotor reference frame</td>
</tr>
</tbody>
</table>

Tensor Notation

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i, j, k</td>
<td>Subscripts covariant tensor components</td>
</tr>
<tr>
<td>i, j, k</td>
<td>Superscripts contravariant tensor components</td>
</tr>
</tbody>
</table>
9.0 REFERENCES

