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Foreword

This document, The Proceedings of the 1988 Goddard Conference on Space Applications of
Artificial Intelligence, contains a diverse array of papers representing the expanding
utilization of Artificial Intelligence (AI) in the space program. We are pleased to present an
impressive selection of work, not only from Goddard and other NASA centers, but also from
universities and industry engaged in this field. The Third Annual Goddard Conference on
Artificial Intelligence provided an opportunity for researchers and practitioners to present
their work to others, to compare the effectiveness of various approaches, and to discuss
common interests and goals within the Al community.

As we enter the space station era of computing, data systems are becoming more complex
and, hence, demanding more advanced and sophisticated methods to solve the associated
problems. Al has provided solutions to many problems that were previously difficult or even
unsolvable using conventional techniques. Although the true potential of Artificial
Intelligence has yet to be realized, the current utility of this rapidly advancing field has proven
to be highly beneficial to the space program.

To honor the time and effort that the authors and presenters applied to the conference, we
presented two awards on the day of the conference: one for the Best Paper and another for
the Best Presentation. We would like to congratulate R. Bowin Loftin (University of
Houston-Downtown), Lui Wang and Paul Baffes (NASA/Johnson Space Center), and Grace
Hua (Computer Sciences Corp.) who received the Best Paper award for their paper entitled
"An Intelligent Training System For Space Shutttle Flight Controllers". We would also like
to congratulate Amy Geoffroy and Daniel Britt of Martin Marietta Information and
Communications Systems who were awarded the Best Presentation award for their
presentation on "Contingency Rescheduling of Spacecraft Operations".

The conference would not have been so successful without the dedicated efforts of many
people. First, we would like to thank the members of the judging committees who had the
formidable task of choosing the Best Paper and Best Presentation. Second, we thank the
conference committee for the endless time and effort they contributed to the conference.
Third, we thank the Mission Operations and Data Systems Directorate for sponsoring the
conference again this year. Finally, we would like to thank those who truly made the
conference possible: the authors whose research and development efforts are presented here
and who so energetically conveyed their work to the attendees.

Peter M. Hughes
James L. Rash
Co-Chairmen, 1988 Goddard Conference on Space Applications of Artificial Intelligence

°RFTCEDING PAGE BLANK NOT FILMED

iii



Acknowledgments

Awards Presentation

Dr. John W. Townsend, Jr., Center Director

Best Presentation Judging Panel

John Dalton, GSFC
Joseph Rothenberg, GSFC
Dr. John Dorband, GSFC
Dr. Andrew Sage, George Mason University
Dr. Donald Perlis, University of Maryland

Best Presentation
Finalists Selection Panel

William Macoughtry, GSFC
Dorothy Perkins, GSFC
Larry Hull, GSFC
Joy Bush, Computer Sciences Corp.

David Beyer, Bendix Field Engineering Corp.

(also a supplemental judge for Best Paper)

Conference Committee

James Rash (Co-Chairman), GSFC
Peter Hughes (Co-Chairman), GSFC
Dorothy Perkins, GSFC
Carolyn Dent, GSFC
Daniel Mandl, GSFC
Robert Dominy, GSFC
Troy Ames, GSFC
Michael Bracken, RMS, Inc.

iv




Table of Contents

Mission Operations Support

An Intelligent Training System For Space Shuttle Flight Controllers
R. Bowen Loftin, Lui Wang, Paul Baffes, Grace Hua

Artificial Intelligence Costs, Benefits, Risks For Selected Spacecraft
Ground System Automation Scenarios
Walter Truszkowski, Barry Silverman, Martha Kahn , Henry Hexmoor

A Shared-World Conceptual Model for Integrating Space Station Life
Sciences Telescience Operations
Vicki Johnson, John Bosley

Artificial Intelligence In A Mission Operations And Satellite Test
Environment
Carl Busse

Automated Space Vehicle Control For Rendezvous Proximity Operations
Robert Lea

Automated Satellite Control In Ada
Allan Jaworski, J.T. Thompson

Planning and Scheduling

Contingency Rescheduling Of Spacecraft Operations
Daniel L. Britt, Amy L. Geoffroy, John R. Gohring

Knowledge Based Tools For Hubble Space Telescope Planning And
Scheduling: Constraints And Strategies

Dr. Glenn Miller, Mark Johnston, Shon Vick, Jeff Sponsler, Kelly Lindenmayer

The Proposal Entry Processor: Telescience Applications For Hubble
Space Telescope Science Operations
Robert Jackson, Mark Johnston, Glenn Miller, Kelly Lindenmayer,
Patricia Monger, Shon Vick, Robin Lerner, Joel Richon

Candidate Functions For Advanced Technology Implementation In The
Columbus Mission Planning Environment
Audrey Loomis, Albrecht Kellner

A Rule-Based Systems Approach To Spacecraft Communications
Configuration Optimization
James L. Rash, Yen F. Wong, James J. Cieplak

Integrated Resource Scheduling In A Distributed Scheduling Environment
David Zoch, Gardiner Hall

17

33

45

59

67

77

79

91

107

125

141

155



Fault Isolation | Diagnosis

MOORE: A Prototype Expert System for Diagnosing Spacecraft Problems
Katherine Howlin, Jerry Weissert , Kerry Krantz

Achieving Real-Time Performance In FIESTA
William Wilkinson, Nadine Happell, Steve Miksell, Robert Quillin,
Candace Carlisle

Mission Telemetry System Monitor: A Real-Time Knowledge-Based
System
Samih A. Mouneimne

Image Processing and Machine Vision

Low Level Image Processing Techniques Using The Pipeline Image
Processing Engine In The Flight Telerobotic Servicer
Marilyn Nashman, Karen Chaconas

Autonomous Image Data Reduction By Analysis And Interpretation
Susan Eberlein, Gigi Yates, Niles Ritter

An Automated Computerized Vision Technique For Determination Of
Three-Dimensional Object Geometry
P.T. Chiang, J.C.S. Yang, V. Pavlin

An Interactive Testbed For Development Of Expert Tools For Pattern
Recognition
Stephen W. Wharton

Parallel And Distributed Computation For Fault-Tolerant Object
Recognition
Dr. Henry Wechsler

Range Data Description Based on Multiple Characteristics
Dr. A K. Sood, Ezzet Al-Hujazi

Data Management

The Second Generation Intelligent User Interface For The Crustal
Dynamics Data Information System
Nicholas Short Jr., Scott Wattawa

Spacelab Data Processing Facility Quality Assurance/Data Accounting

Expert Systems: Transition From Prototypes To Operational Systems
Lisa Basile

Automated Cataloging And Characterization Of Space Derived Data
William J. Campbell, Larry H. Roelofs, Michael Goldberg

A Design For A Ground-Based Data Management System
Barbara A. Lambird, David Lavine

vi

173

175

191

207

213

215

231

243

259

275

295

311

313

329

343

355



Modeling and Simulation

Automatic Mathematical Modeling For Real Time Simulation System
Caroline Wang, Steve Purinton

The Space Station Assembly Phase: System Design Trade-offs For The
Flight Telerobotic Servicer
Dr. Jeffrey H. Smith, Max Gyamfi, Kent Volkmer, Wayne Zimmerman

A Simulation Engine - Combining An Expert System With A Simulation
Engine
James Spiegel, David LaVallee

Development Tools /| Methodologies

The Advice Taker/Inquirer, A System For High-Level Acquisition Of
Expert Knowledge
Robert F. Cromp

Lisp Object State Saver(LOSS): A Facility Used To Save Partial
Schedules Of The Hubble Space Telescope
Jeffrey Sponsler

Verification and Validation Of Rulebased Systems For Hubble Space
Telescope Ground Support
Shon Vick , Kelly Lindenmayer

The Need For A Comprehensive Expert System Development

Methodology
Dr. John Baumert, Anna Critchfield, Karen Leavitt

vii

371

373

381

397

407

409

425

435

449



Mission Operations Support

An Intelligent Training System For Space Shuttle Flight
Controllers

Artificial Intelligence Costs, Benefits, Risks For Selected
Spacecraft Ground System Automation Scenarios

A Shared-World Conceptual Model for Integrating Space
Station Life Sciences Telescience Operations

Artificial Intelligence In A Mission Operations And
Satellite Test Environment

Automated Space Vehicle Control For Rendezvous
Proximity Operations

Automated Satellite Control In Ada




N88-30331

AN INTELLIGENT TRAINING SYSTEM FOR SPACE SHUTTLE
FLIGHT CONTROLLERS

R. Bowen Loftin Lui Wang and Paul Baffes
University of Houston-Downtown Artificial Intelligence Section, FM72
One Main Street NASA/Johnson Space Center
Houston, TX 77002 Houston, TX 77058
Grace Hua

Computer Sciences Corp.
16511 Space Center Blvd.
Houston, TX 77058

ABSTRACT

An autonomous intelligent training system which integrates expert system technology
with training/teaching methodologies is described. The system was designed to train
Mission Control Center (MCC) Flight Dynamics Officers (FDOs) to deploy a certain
type of satellite from the Space Shuttle. The Payload-assist module Deploys/
Intelligent Computer-Aided Training (PD/ICAT) system consists of five components: a
user interface, a domain expen, a training session manager, a trainee model, and a
training scenario generator. A user interface has been developed which functionally
simulates the FDO environment in the MCC. The interface also provides the trainee
with information on the characteristics of the current training session and with on-line
help (if permitted by the training session manager). The domain expert (DeplEx for
Deploy Expert) contains the rules and procedural knowledge needed by a FDO to
carry out the satellite deploy. The DeplEx also contains "mal-rules" which permit the
identification and diagnosis of common errors made by the trainee. The training
session manager (TSM) examines the actions of the trainee and compares them with
the actions of DeplEx in order to determine appropriate responses. A unique feature
of the TSM is its ability to grant the trainee the freedom to follow any valid path
between two stages of the deploy process. A trainee model is developed for each
individual using the system. The model includes a history of the trainee's interactions
with the training system and provides evaluative data on the trainee's current skill
level. A training scenario generator (TSG) designs appropriate training exercises for
each trainee based on the trainee model and the training goals. All of the expert
system components of PD/ICAT (DeplEx, TSM, and TSG) communicate via a common
blackboard. The PD/ICAT system is currently being tested by both experienced and
novice FDOs in order to refine the system and determine its efficacy as a training tool.
Ultimately, this project will serve as a vehicle for developing a general architecture for
intelligent training systems together with a software environment for creating such
systems.

PRECEDING PAGE BLANK NOT FILMED



1.0 INTRODUCTION

The Mission Operations Directorate (MOD) at NASA/Johnson Space Center is
responsible for the ground control of all Space Shuttle operations. Those operations
which involve alterations in the characteristics of the Space Shuttle's orbit are guided
by a flight controller, known as a Flight Dynamics Officer (FDO), sitting at a console in
the "front room" of the Mission Control Center (MCC). Currently, the training of the
FDOs in flight operations is principally accomplished through the study of flight rules,
training manuals, and "on-the-job training” (OJT) in integrated simulations. From two
to four years is normally required for a trainee FDO to be certified for many of the tasks
for which he is responsible during Space Shuttle missions. OJT is highly labor
intensive and presupposes the availability of experienced personnel with both the time
and ability to train novices. As the number of experienced FDOs has been reduced
through retirement, transfer (especially of Air Force personnel), and promotion and as
the preparation for and actual control of missions occupies most of the MCC's
available schedule, OJT has become increasingly difficult to deliver to novice FDOs.
As a supplement to the existing modes of training, the Orbit Design Section (ODS) of
the MOD requested that the Atrtificial Intelligence Section (AlS) of the Mission Support
Directorate develop an autonomous intelligent computer-aided training system. After
extensive consultation with ODS personnel, a particular task was chosen to serve as a
proof of concept: the deployment of a Payload-Assist Module (PAM) satellite from the
Space Shuttle. This task is complex, mission-critical and requires skills used by the
experienced FDO in performing many of the other operations which are his
responsibility.

The training system is designed to aid novice FDOs in acquiring the experience
necessary to carry out a PAM deploy in an integrated simulation. It is intended to
permit extensive practice with both nominal deploy exercises and others containing
typical problems. After successfully completing training exercises which contain the
most difficult problems, together with realistic time constraints and distractions, the
trainee should be able to successfully complete an integrated simulation of a PAM
deploy without aid from an experienced FDO. The philosophy of the PD/ICAT system
is to emulate, to the extent possible, the behavior of an experienced FDO devoting his
full time and attention to the training of a novice--proposing challenging training
scenarios, monitoring and evaluating the actions of the trainee, providing meaningful
comments in response to trainee errors, responding to trainee requests for information
and hints (if appropriate), and remembering the strengths and weaknesses displayed
by the trainee so that appropriate future exercises can be designed.

2.0 BACKGROUND

During the last two decades a number of academic and industrial researchers have
explored the application of artificial intelligence concepts to the task of teaching a
variety of subjects (e.g., geometry, computer programming languages, medical
diagnosis, and electronic troubleshooting). A body of literature is now extant on
student models and teaching/tutoring methodologies adapted to intelligent tutoring
systems in the academic environment.! The earliest published reports which
suggested the applications of artificial intelligence concepts to teaching tasks
appeared in the early 1970's.2.3 Hartley and Sleeman actually proposed an



architecture for an intelligent tutoring system.3 However, it is interesting to note that, in
the fifteen years which have passed since the appearance of the Hartley and Sleeman
proposal, no agreement has been reached among researchers on a general
architecture for intelligent tutoring systems.4

Examples of intelligent tutoring systems reported to date are SOPHIE5, PROUST® and
the LISP Tutor’. The first of these systems, SOPHIE, was developed in response to a
U.S. Air Force interest in a computer-based training course in electronic
troubleshooting. SOPHIE contains three major components: an electronics expert
with a general knowledge of electronic circuits, together with detailed knowledge
about a particular type of circuit (in SOPHIE this was an IP-28 regulated power
supply); a coach which examines student inputs and decides if it is appropriate to stop
the student and offer advice; and a troubleshooting expert that uses the electronics
expert to determine which possible measurements are most useful in a particular
context. Three versions of SOPHIE were produced and used for a time but none was
ever viewed as a "finished" product. One of the major lacks of the SOPHIE systems
was a user model. It is interesting to note that the development of a natural language
interface for SOPHIE represented a large portion of the total task.

PROUST and the LISP Tutor are two well-known intelligent tutoring systems that have
left the laboratory and found wider applications. PROUST (and its offspring, Micro-
PROUST) serves as a "debugger" for finding nonsyntactical errors in Pascal programs
written by student programmers. The developers of PROUST claim that it is capable of
finding all of the bugs in at least seventy percent of the "moderately complex"
programming assignments that it examines. PROUST contains an expert Pascal
programmer that can write "good" programs for the assignments given to students.
Bugs are found by matching the expert's program with that of the student: mismatches
are identified as "bugs” in the student program. After finding a bug, PROUST provides
an English-language description of the bug to the student, enabling the student to
correct his error. The system cannot handle student programs that depart radically
from the programming "style" of the expert. The LISP Tutor is currently used to teach
the introductory LISP course offered at Carnegie-Mellon University. This system is
based on the ACT (historically, Adaptive Control of Thought) theory and consists of
four elements: a structured editor which serves as an interface to the system for
students, an expert LISP programmer that provides an "ideal" solution to a
programming problem, a bug catalog that contains errors made by novice
programmers, and a tutoring component that provides both immediate feedback and
guidance to the student. Evaluations of the LISP Tutor show that it can achieve results
similar to those obtained by human tutors. One of its primary features is its
enforcement of what its authors regard as a "good" programming style.

3.0 TRAINING VERSUS TUTORING

The PD/ICAT system was developed with a clear understanding that training is not the
same as teaching or tutoring.8 The NASA training environment differs in many ways
from an academic teaching environment. These differences are important in the
design of an architecture for an intelligent training system:



a. Assigned tasks are often mission-critical, placing the responsibility for
lives and property in the hands of those who have been trained.

b. Personnel already have significant academic and practical
experience to bring to bear on their assigned task.

c. Trainees make use of a wide variety of training techniques, ranging
from the study of comprehensive training manuals to simulations to
actual on-the-job training under the supervision of more experienced
personnel.

d. Many of the tasks offer considerable freedom in the exact manner in
which they may be accomplished.

FDO trainees are well aware of the importance of their job and the probable
consequences of failure. While students are often motivated by the fear of receiving a
low grade, FDO trainees know that human lives, a billion dollar Space Shuttle, and a
$100+ million satellite depend on their skill in performing assigned tasks. This means
that trainees are highly motivated, but it also imposes on the trainer the responsibility
for the accuracy of the training content (i.e., verification of the domain expertise
encoded in the system) and the ability of the trainer to correctly evaluate trainee
actions. The PD/ICAT system is intended, not to impart basic knowledge of
mathematics and physics, but to aid the trainee in developing skills for which he
already has the basic or "theoretical” knowledge. In short, this training system is
designed to help a trainee put into practice that which he already intellectually
understands. The system must take into account the type of training that both
precedes and follows--building on the knowledge gained from training manuals and
rule books while preparing the trainee for and complementing the on-the-job training
which will follow. Perhaps most critical of all, trainees must be allowed to carry out an
assigned task by any valid means. Such flexibility is essential so that trainees are
able to retain, and even hone, an independence of thought and develop confidence in
their ability to respond to problems, including problems which they have never
encountered and which their trainers never anticipated.

4.0 SYSTEM DESIGN
The PD/ICAT system is modular and consists of five basic components:

1. A user interface that permits the trainee to access the same
information available to him in the MCC and serves as a means for
the trainee to take actions and communicate with the training session
manager

2. A domain expert (DeplEx) which can carry out the satellite
deployment process using the same information that is available to
the trainee and which also contains a list of "mal-rules” (explicitly
identified errors that novice trainees commonly make).

3. A training session manager (TSM) which examines the assertions
made by the DeplEx (of both correct and incorrect actions in a
particular context) and by the trainee. Evaluative assertions are made
following each trainee action. In addition, guidance can be provided
to the trainee if appropriate for his skill level.




4. A trainee model which contains a history of the individual trainee's
interactions with the system together with summary evaluative data.

5. A training scenario generator that designs increasingly-complex
training exercises based on the current skill level contained in the
trainee's model and on any weaknesses or deficiencies that the
trainee has exhibited in previous interactions.

Figure 1 contains a schematic diagram of the PD/ICAT system. Note that provision is
made for the user to interact with the system in two distinct ways and that a supervisor
may also query the system for evaluative data on each trainee. The blackboard serves
as a common "factbase” and communications interface for all five system components.
With the exception of the trainee model, each component makes assertions to the
blackboard, and the rule-based components look to the blackboard for facts which can
"fire" their rules.

4.1 User Interface

The primary factor influencing the interface design was fidelity to the task environment.
To avoid negative training, it was deemed essential that the functionality and, to the
extent possible, the actual appearance of the training environment duplicate that in
which the task is performed. Figure 2 contains a view of the typical display seen by a
trainee on a Symbolics 3600 series LISP machine. The upper right corner of the
display contains menus that allow the trainee to make requests of other flight
controllers, respond to requests from those controllers, call up displays, obtain
information about the current or previous step in the deploy process, request help from
the training system, and return to a previous step in the process. This menu has as
many as three levels depending on the nature of the action taken by the trainee.
Some actions are completely menu driven while others require the input of one or
more "arguments”. All actions taken by the trainee through these menus and the
arguments that they may require become assertions to the blackboard. All requests
directed to the trainee and all messages sent to the trainee in response to his requests
or actions appear in a window in the upper left corner of the screen. These two
portions of the screen serve to functionally represent the voice loop interactions that
characterize the current FDO task environment. Any displays requested by the trainee
appear in the lower portion of the screen, overlapped, if more than one is requested.
Clicking the mouse on any exposed portion of a background display will bring it to the
foreground. The displays replicate those seen by a FDO "on console" in the MCC.
During development nominal data was supplied to these displays (from a dedicated
ephemeris-generating program or from "dummy" data sets) so that negative training
does not occur. Finally, a "pop-up” window appears approximately in the center of the
screen to provide error messages, context information, and help. Experienced FDOs
using PD/ICAT have expressed satisfaction with the user interface.

4.2 Deploy Expert

The DeplEx is a "traditional" expert system in that it contains if-then rules which access
data describing the deploy environment and is capable of executing the PAM deploy
process and arriving at the correct "answers”. In addition to "knowing" the right way to
conduct the PAM deploy, DeplEx also contains knowledge of the typical errors that are
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made by novice FDOs. In this way, PD/ICAT can not only detect an erroneous action
taken by a trainee, but also, through these so-called "mal-rules”, diagnose the nature
of the error. Thus, the system can produce an error message for the trainee
specifically designed to inform him about the exact error made and correct the
misconception or lack of knowledge which led to the commission of that error.
Through interaction with the trainee model, the nature of the message can be adapted
to the demonstrated skill level of the trainee (see the following section). Another of the
interesting features of the PD/ICAT system is its continual awareness of the
environment (the external constraints dictated by the training exercise) and the context
of the exercise. This feature provides the basis for "user-directed" behavior on the part
of the DeplEx. Rather than DeplEx generating a complete and correct solution to the
deployment problem, only those actions which are germane to the current context are
asserted. Inthis way the expert "adapts” to alternate, but correct, paths that the trainee
might choose to follow. Figure 3 shows schematically how DeplEx operates. This
strategy was adopted because the human experts that perform PAM deploys
recognize that many steps in the deploy process may be accomplished by two or more
equally valid sequences of actions. To grant freedom of choice to the FDO trainee and
to encourage independence on his part, the experts felt that it was essential to build
this type of flexibility into the PD/ICAT system.

4.3 Training Session Manager

The TSM is dedicated principally to error-handling. Its rules compare the assertions of
DeplEx with those of the trainee to detect errors. Subsequently, DeplEx asserts facts
that allow the TSM to write appropriate error messages to the trainee through the user
interface. In addition, the TSM is sensitive to the skill level of the trainee as
represented by the trainee model. As a result, the detail and "tone" of error messages
is chosen to match the current trainee. For example, an error made by a first-time user
of the training system may require a verbose explanation so that the system can be
certain the trainee will have all of the knowledge and concepts needed to proceed. On
the other hand, an experienced trainee may have momentarily forgotten a particular
procedure or may have "lost his place". In this latter case a terse error message would
be adequate to allow the trainee to resume the exercise. The TSM also encodes all
trainee actions, both correct and incorrect, and passes them to the trainee model.

4.4 Trainee Model

Successful intelligent tutors incorporate student models to aid in error diagnosis and to
guide the student's progress through the tutor's curriculum.® The trainee model in the
PD/ICAT system stores assertions made by the TSM as a result of trainee actions.
Thus, at its most fundamental level, the trainee model contains, for the current session,
a complete record of the correct and incorrect actions taken by the trainee. At the
conclusion of each training session, the model updates a training summary which
contains information about the trainee's progress such as a skill level designator,
number of sessions completed, number of errors made (by error type and session),
and the time taken to complete each session. After completing a session, the trainee
can obtain a report of that session which contains a comprehensive list of correct and
incorrect actions together with an evaluative commentary. A supervisor can access
each trainee's model to obtain this same report or to obtain summary data, at a higher

10
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level, on the trainee's progress. Finally, the training scenario generator uses the
trainee model to produce new training exercises.

4.5 Training Scenario Generator

The training scenario generator relies upon a database of task "problems" to structure
unique exercises for a trainee each time he interacts with the system. The initial
exercises provided to a new trainee are based on variants of a purely nominal PAM
deploy with no time constraints, distractions or "problems". Once the trainee has
demonstrated an acceptable level of competence with the nominal deploy, the
generator draws upon its database to insert selected problems into the training
environment (e.g., a propellant leak which renders the thrusters used for the nominal
separation maneuver inoperable and requires the FDO to utilize a more complicated
process for computing the maneuver). In addition, time constraints are "tightened" as
the trainee gains more experience and distractions, in the form of requests for
information from other MCC personnel, are presented at “inconvenient” points during
the task. The generator also examines the irainee model for particular types of errors
committed by the trainee in previous (and the current) sessions. The trainee is then
given the opportunity to demonstrate that he will not make that error again. Ultimately,
the trainee is presented with exercises which embody the most difficult problems
together with time constraints and distractions comparable to those encountered
during integrated simulations or actual missions.

The TSG performs its function by creating an object which represents the parameters
needed to define a training scenario. Figure 4 shows the basic structure of the object
which is created by the TSG. Note that the TSG may dynamically alter the scenario
after the training session has begun in response to rules which it contains. Such
dynamic changes to the training scenario are in response to errors made by the
trainee which are deemed to require immediate remediation.

5.0 SYSTEM INTEGRATION

The PD/ICAT system is currently operational on a Symbolics 3600 series LISP
machine. The user interface and trainee model are written in Common LISP while the
rules of DeplEx, TSM, and the training scenario generator are written in ART 3.0. The
system will ultimately be delivered to the MOD in a Unix workstation environment. To
accomplish this delivery, the ART rules were written to facilitate translation into
CLIPS10 and the LISP-encoded user interface and trainee model will be transferred to
the workstation or rewritten in C.

6.0 CONCLUSIONS

The PD/ICAT system has, so far, proven to be a potentially valuable addition to the
training tools available for training Flight Dynamics Officers in Space Shuttle ground
control. The authors are convinced that the basic structure of PD/ICAT can be
extended to form a general architecture for intelligent training systems for training flight
controllers and crew members in the performance of complex, mission-critical tasks. It
may ultimately be effective in training personnel for a wide variety of tasks in
governmental, academic, and industrial settings.
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Nominal Parameters

Problem Insertions

Satellite: WeStar Il
Weight: 10756 |b

CD: 2.6

Area: 52 sqft
Injection:  Orbit 19/A
1 Rev Late Opp: yes
Sec Constr: default
Offset Time: -70 sec
spring dv: 2.5 fps
RRA: 90

DEC: 20.6641

Start MET: 01:22:25
Dply MET: 06:43:22
LOS MET:
00:23:08-00:23:32
01:00:47-01:01:10

Problem 1

Type: Leaking OMS Propellant;
Predeploy
Notification MET: 00:01:16

Problem 2

Type: Propellant Critical;
Postdeploy; MinSep Required
Notification MET: 00:03:49

Problem 3

Non-Nominal
Paramseters

Time Constraints

Distractions

Frequency: Level 2
Type: Level 1
Criticality: Level 2

Prelim Comp Time:
Level 2

Final Comp Time:
Level 1

Backup Comp Time:
Level 1

Remediation

Error Loc: Step 450
Error Type: C/O>F35 NC
Rec Rem: Dis Insert
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In response to a number of high-level strategy studies In the early 1980s, Expert
Systems and Artificlal Intelligence (AIES) efforts for spacecraft ground systems
have proliferated In the past several years primarily as individuali small to medium
scale applications. It is useful to stop and assess the impact of this technology In
view of lessons learned to date and, hopefully, to determine If the overall

strategles of some of the earlier studies both are being followed and still seem
relevant.

To achieve that end four idealized ground system automation scenarios and their
attendant Al architectures are postulated and benefits, risks, and lessons learned
are examined and compared. These architectures encompass (1) no Al (baseline),
(2) standalone expert systems, (3) Standardized, reusable knowledge base
management systems (KBMS), and (4) a futuristic unattended automation scenario.

The resulting Artificial Intelligence lessons learned, Benefits, and Risks for
Spacecraft Ground System Automation Scenarios are described.
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1.0) Introduction

1.1) Purpose of Comparison -- Four idealized ground system automation scenarios are
examined in light of lessons learned to date from the application of Al to the aerospace domain. The
purpose is to determine which of the feasible alternatives maximize productivity and economic
concerns without adversely affecting mission objectives.

1.2) 4 Scenarios Overview -- The four scenarios evaluated with respect to these issues are now
summarized.

(1) Baseline Scenario -- The entire analysis is based on a baseline conceptual design and
architecture for a ground system. This scenario is an application of advanced ground system
techniques being implemented for the latest spacecraft. All other scenarios are measured as
increments relative to the Baseline.

(2) Individual Expert System Scenario -- In this scenario the problem domain is divided into the
least coupled subproblems, each worthy of an Al development effort. Separate expert systems are
built in a bottom-up fashion for each of the subproblems.

(3) Knowledge Base Management Systems (KBMSs) -- This scenario encompasses the
development of a set of standardized, reusable AI/ES components useful for knowledge base
management (e.g. automated acquisition, self-organization, built in testing, libraries of inferencing
techniques, etc.) that can be used to accelerate the development of, and ease the maintenance and
integration of ESs at individual positions of the ground segment.

(4) Unattended Automation (UA) Scenario -- The unattended Automation Scenario is achieved
by applying KBMSs (scenario #3) to each individual ES application (scenario #2) and by integrating
these into a cooperating whole.

1.4) Benefit/Risk Assessment Methodology -- The scenarios are evaluated for lessons
learned to date and to determine which maximize productivity and economic concerns without
adversely affecting mission objectives.

In addition, the scenarios are evaluated in terms of the recommendations of several high level strategy
studies published in the early 1980's.

2.0) Background on Earlier AVES Studies for NASA

2.1) NASA Study Group -- A report called Machine Intelligence and Robotics : Report of the
NASA Study Group was published in 1980. [7] It recommended the large scale application of Al
throughout NASA. Al and robotics was recommended for application to mission monitoring,
sequencing and control, on-board manipulators, imaging and computer vision, and intelligent
sensors. Standardization of software development was emphasized and research into automatic
programming was recommended.

2.2) CODMAC -- The CODMAC study published in 1982 [5] emphasized (a) real time control of
remote sensing systems, (b) uplink capability to acquire data of interest, and to adjust instrument
operation, (c) onboard processing for data compression as a user option, (d) rapid distribution of data
to users, (e) modular design to ease upgrade in long-lived operation, (f) data systems transportable
through all mission phases, and (g) commitment to archiving and distributing data and its supporting
information (h) documentation, modularization, and standardization of code and data.
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2.3) RAND/SRI -- A 1981 SRl report [6] suggests that Space Tracking and Data System (STDS) can
benefit from the Artificial Intelligence areas of Expert Systems, Natural-Language Processing,
Problem Solving and Planning, and Vision. An Expert System integrated with an Al Planner and a
Natural Language Interface was suggested for spacecraft analysis including monitoring and diagnosis.
It was felt that such a system would merge well with POCCNET and NEEDS. The study also advocates
the development of low-level vision techniques for application in Quality Assurance. Research into
the application of vision techniques for registration of ground-control points was also suggested.

2.4) Sliverman and Associates -- A 1984 report on Space Station era ground system
technologies [1] recommended the extensive use of hierarchically integrated and cooperating expert
systems to achieve a "Japanese factory" style of autonomous control and productivity enhancement.
Unlike the other studies described thus far, this one focused extensively on the actual numerical
quantitative costs vs. benefits in terms of staffing, lines of code, budgets, etc.

2.5) Implications -- A consensus among these studies emerged in which the opportunity was cited
to reduce or at least better support direct human involvement in planning, scheduling, command
monitoring, control, diagnosing, and operating positions. In most cases the problem is seen as a large
scale software development activity in which standardization and modularization of Al software
components appears advisable. Many of the studies also suggested that Al should be coupled with
distributed control, increased spacecraft autonomy, and greater experimenter data processing
responsibility. These recommendations have not been pursued in an integrated manner as now will
be explained in terms of four ground system operations scenarios.

3.0) Baseline Scenario: Ground System Description (NO Al) -- The Baseline Scenario
Ground System is summarized in the following paragraphs and illustrated in figure 1:

(1)_Communications -- Five distinct communication elements are depicted: TDRSS, MODNET,
MODLAN, NASCOM and NASCOM switch.

(2) Bemote Facility -- The Remote Facility generates command and schedule requests.

(3) Command Management -- Command and schedule requests are converted to S/C
constraint-checked command loads by the CMF.

(4) Schedule Management -- Week-long schedule requests for S/C communications are prepared into
a draft schedule by the MPT and sent to NCC for final schedule preparation subject to rejection due to
conflicts. The MOR prepares individual S/C pass plans.

(5) Science Data Handling -- Ancillary data and science data are sent to the POCC for separation.

(6) Beal Time Mission Qperations -- The MOR executes the pass plan, monitors ancillary (health and
safety) data received by the MSOCC, and instructs MSOCC to transmit command loads.

(7) Off-Line Mission Qperations -- Both FDF and SDPF monitor the S/C and on board systems and
they produce predictive values for attitude and orbit. FDF also provides sensor calibration information.

(8) The functional components shown as F1 through F9 in Figure 2 [8] are typical of many ground
control systems. In general, the key functions performed at the ground facilities can be categorized
as: A.) Mission planning, B.)Resource scheduling, C.) Command Management, D.) Command
Transmission, E.) Data capture and preprocessing, F.) Data analysis, G.)Monitoring and control, H.)
Data archiving, I.) Data distribution, and J.) Simulation and predictions.
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Figure 2 and 3 partially illustrates the complexity of the overall ground control function by showing how
some of the different data sets are utilized by various functions involved in generic mission ground
control. Many data sets participate and interact with one another in order to satisfy the functional and
operational requirements for each control function. For example, in Figure 4, the data sets D4 and D5,
which are time reference data and sensor orientation data, respectively, are utilized by the function
F2, i.e., calibrate and locate observations in order to produce/modify the data set D3, i.e., the sensor
calibration data. The figure also illustrates that some functions depend upon other functions and that
some ground control objectives can be realized only by a coordination of several system functions.

The Baseline scenario is itself a highly automated design relative to prior GSFC designs due to the
use of a number of state-of-the-practice automation techniques for the first time at GSFC, eg.,
packetized data switching, extensive electronic networking, and distributed/dedicated institutional
facilities and autonomous software for increased Instrument Team self-reliance. It represents a
conservative no-fail alternative.

4.0) Individual Expert Systems Scenario: The Baseline Scenario consists of numerous
Supervisory Controller Positions (SCPs) defined here as semi-automated workstations operated and
controlled by humans. The human plus the computers comprise the SCP.

An SCP ranges in degree of automation from a real time controller sitting at a console display to an
offline planner studying computer printouts. SCPs are often arranged and organized in a cooperating
though distributed hierarchy of positions and facilities. Supervisory Control Nodes tend to leave the
most intellectually arduous cognitive functions up to the human supervisory operator: e.g., the
anomaly trouble shooting of the Real Time Controller or the stochastic, plausible reasoning of the
Problem Solver & Planner. Even so, with current day Artificial Intelligence (Al) and Expert System (ES)
techniques it is becoming increasingly possible to replace the human at the third and highest level of
local intelligence.

Each of the SPCs at NASA are candidates for individual expert systems. The application of expert
systems for replacement of humans monitoring CRT's at NASA was mentioned in several of the
studies already cited.* Many such expert systems have been developed over the past several years.
Lockheed has developed the Lockheed Satellite Telemetry Analysis in Real Time. (L STAR)

system. Ford Aerospace has developed the Missions Operations Planning Assistant (MOPA).
IntelliTek has developed an Expert Project Management System (EPMS). These and a great many
other Expert Systems are described in the i

icati ifici i ics. Many of these systems are developed to the
point where they can advise, rather than replace human monitors, controllers, and planners.

The proliferation of expert systems for spacecraft ground systems in the early eighties has had the
benefit that many different approaches have been tried. Similar systems, or systems created for the
same function, can now be compared and perhaps new systems proposed which combine the best
features of the current systems. Other expert systems may be combined across functional lines, in
order to cooperatively solve more complex or broader problems. On the other hand, there has
probably been some dupliication of effort and failure to share lessons learned by groups working
independently. The original study suggestions (section 2 of this paper) are being pursued, however,
it seems that it may be too early in the Al technology absorption process to follow the
recommendations for standardization and reusability.

While no NASA applications have yet achieved a significant scale, there is an application from which

* RAND/SRI - pg. 16., NASA pg., 36, Silverman & Associates pg. 4-5.
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"lessons learned” can be inferred. That is the XCON application at Digital Equipment Corp. (DEC).
XCON is an Expert System to configure VAX computer systems from a given customer order. The
system has knowledge of about 500 components of the VAX and about 4,000 pieces of component
information. The system has a conventional architecture with a single Knowledge Base of about
10,000+ rules. Thus the system reflects a fairly large scale ES development effort with the traditional
small scale ES architecture. XCON was a successful system in that it helped in dramatically increasing
productivity in limited, well-defined classes of customer orders, and the throughput rate was increased
significantly. However, during the final test evaluation, XCON failed field test. It was found increasingly
difficult to generate and maintain 10,000+ rules. Knowledge bases lack techniques for knowledge
elicitation, learning, and self-organization of knowledge which could have avoided problems. Another
problem concerns XCON's applicability to a single class of customer order even though all the
knowledge about the VAX components could be used for other types of orders as well, for example,
VAX clusters. The problem origin may be traced to ineffective usage of knowledge, absence of
multiple knowledge bases and lack of new rule generation capabilities. The solution to this problem
requires determining requirements for knowledge representation styles and reasoning strategies to
enable multiple usage and interpretations of the same knowledge. Another major "nightmare" was
found to be a lack of guarantee regarding the consistency of 10,000+ rules. The solution requires
Built In Test (BIT) mechanisms such as, but not limited to, case tests, field tests, sensitivity tests,
constraint relaxation, bias tests and knowledge base consistency tests. For large scale ES
development, a properly integrated architecture and environment is necessary. Scale-up of "single
KB type" architecture to suit the needs for a large scale architecture is not sufficient.

5.0) Knowledge Base Management Systems (KBMSs): This scenario allows the individual
expert systems (scenario 2) to grow, while avoiding the nightmares experienced during the
development of XCON. A key component is the use of standardized reusable parts, as suggested by
the high level strategy studies cited in section 2. Useful Al technologies can be seen to share a
number of commonalities. That is, much of the core Al technology useful to each individual ES
application could be built only once and reused from site to site. A single, shared framework not only
would be cost-effective but also would enhance standardization, understandability, and sharing of
lessons learned. Such an approach would help current missions as well as others to follow. To this
end, an integrated, readily reusable architecture for core Al technology is delineated in terms of three
levels of focus: Knowledge Base Management Systems (KBMSs), agent level technology, and
distributed problem-solving technology. As shown in Figure 4, these serve as three rings of a generic
shell that can be reused from application to application.

At the outermost layer, lies the primary interface that most programmers and users would ultimately
have with the system. This ring encompasses the KBMS's two principal interfaces: a) knowledge
engineering aids such as application tools, automated test suite, and screen interface utilities; and b)
knowledge base and session management that facilitates very large KB organization, storing,
swapping, etc. as well as return to and learning from past sessions.

In the next, inner layer of the core Al technology shell, lies a library of techniques for crafting agents
tailored to the mission operations industry. These would include the types of representation and
logics that are needed but which are difficult to find in off-the-shelf vendor shells. These include many
techniques including real time, temporal/situational, constraint propagation, and fusion as well as
several others deemed equally important to the GSFC domain such as Al attachable to S/C simulators
(model-based); Al attachable to S/C data banks (expert data base systems); and a generic contract
formalism language for interfacing to a blackboard.
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Figure 4 - Overview Of Core Al Environment For GSFC

At the innermost ring, lies the distributed problem-solving technology required to implement a
cooperative environment. This includes a multilevel, hierarchical and distributed blackboard capability
that is organized into agent-shared knowledge, control level, and meta planning and learning
"panels”. In addition, there should be a capability for distributed computer resource management to
facilitate parallel processing, clone management, and real time response constraints. The individual
technologies shown in Figure 4 will now be discussed in more detail.

1. Automated Knowledge Elicitation (AKE): Most current AKE tools have limited ranges of
applicability in terms of the types of rules they generate. Their direct relevance to NASA applications
needs to be researched and any necessary modifications/extensions created.

2. Automated KB Testing: Testing occurs at many levels in the life of an Expert System ranging
from single rule grammar checking to final field implementation testing. A no-fail spacecraft
environment demands rigorous, repeatable answers to all test issues before an ES module could be

put in service. Automated testing tools are vital if technology insertion is to occur in any reasonable
amount of time.

3. Automated KB Management Utilities: KB compression, pointer schemes, memory
management, optimal partitioning points, rule relations/hierarchies, etc. are but a few of the topics that
need to be examined to flush out a useful KBMS.

4. Alternative Logics and Representations: The design of the first wave of ES shells relied

upon backward and/or forward chaining. NASA's applications warrant alternative
logics/representations. These include Nonmonotonic Logics, Situational/Temporal Logic, and
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Constraint Propagation Techniques.

5. Rigorous Uncertainty Analysis and Fusion Methods: In applications with distributed,
noisy sensors, nonmonotonic logics, and multiple human (or Al) agents, fusion of contradictory results
must occur. Fusion techniques permit the machine to speculate from a rigorous probabilistic
perspective; to update prior judgments; and to merge competing hypotheses while maintaining
uncertainty ascribed to each.

6. Expert Data Base Systems: An Expert Data Base System (EDBS) is defined here to be an ES
that can formulate DB operations on its own. EDBS's hold two potential roles: 1) To be used on
isolated data bases as stand-alone intelligent user interfaces, or 2) to be used as part of a Distributed
Expert System which interfaces with and supports database queries/updates.

7. Model-Based Reasoning: Recently model-based reasoning has been extended to allow the
ES to model itself to test theories it has postulated. In at least one case, an object-oriented simulation
language has also been developed. A distributed agent often needs to test hypotheses on a model
of the spacecraft before finalizing conclusions or commands. The direct electronic hookup of a DES to
spacecraft models is thus potentially interesting.

8. Clone Management for Parallel Operation: ES agents typically work either in Agent Driven
Mode (the agent decides what actions if wishes to pursue next) or Event Driven Mode (the agent is
forced to take action by input from the external worid). To increase the ability of a given agent to
respond to multiple stimuli under either mode it is desirable to create "clones" or duplicate images of
the agent and to run each clone in parallel.

9. Parallel Processing Techniques: A topic vital to ES speed up, to clone management, and to
contingency analysis is the ability to "parallelize " both symbolic and numerical processing tasks. An
important focus for core technology exploration is to identify alternative strategies for algorithm and
KB partitioning so as to improve ES performance as number of processors increases.

10. "Real-Time" Design Optimizer: Guaranteed response time is a prerequisite of expert
systems in a real time environment. More to the point, discussion on this topic inevitably boils down to
“speeding up" expert system technology. The wealth of speed up ideas and techniques available as
well as the research and development on these techniques, combined with the constraints of actual
ground systems suggest that a single universally applicable speed up design might be unrealistic.

11. Machine Learning and Self-Correction: Machine learning techniques include Learning by
Memorization, Learning by Instruction, Learning from Observation, and Learning by Analogy. In each
of these types of learning the KBMS plays a major role in facilitating the incorporation, organization,
and integration of what has been learned into the existing KBs.

12. Blackboard Technique: All of the core technology described up to this point, is considered to
be part of the blackboard. The blackboard can be summarized in terms of Console Agents, Blackboard
Panels, the KBMS and the Blackboard Chair. In the blackboard model, each agent is an intelligent,
self-organizing Expert System tailored by a specific project (e.g., ST or SS) to perform a narrow set of
human console-oriented tasks. The Blackboard chair guides the team of agents toward a shared
objective or goal set (also elicited by the KBMS) and orchestrates the pooling of agent insights.

5.2) STCTM: A TESTBED FOR KBMS STUDIES

To explore key features of a large KBMS and to exempiify its incorporation into the scenario, we have
developed The Space Telescope Command Telemetry Matcher (STCTM) . This is a blackboard
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system designed to be a proof of concept prototype and a testbed for exploring large KBMS design
issues we discussed in the preceding sections.

The Space Telescope is highly automated, and a single command from a scientist is translated into
hundreds of commands before uplink. in addition, the ST internally generates sequences of
hundreds of more commands per ground generated command. Similarly, thousands of telemetries
are downlinked that collectively indicate execution status of command loads as well as side effects and
other onboard activities. STCTM's task is diagnosis and requires assessing as quickly as possible
whether the pattern suggested by the flow of 1000s of Command and Telemetry parameters
unfolding in real time indicates the scientists desires are being observed.

STCTM scans commands and telemetries and filters them to transform the low level CL/TM to an
abstract level. This is accomplished by setting up macro maneuver templates. Each template consists
of a set of low level command types. Templates are also referred to as command packets.

STCTM applies two levels of reasoning mechanisms for verification. The initial level is a comparison of
expected telemetry with their corresponding actual telemetries. We will refer to this as cheap test
reasoning. In cases of discrepancy, spacecraft mode is assessed based on the command context and
a ST model is consulted for a model expected telemetry. Combinations of command packets, time of
command packet uplink, and environmental factors constitute various contexts.This type of reasoning
is known as model based reasoning.

Currently, STCTM uses simulated commands and it only performs the cheap test. After starting the
system, STCTM retrieves the appropriate data and knowledge bases. As part of Blackboard System
Generator (BSGTM ), user is given the system trace of the blackboard including cycles and specialist
activations in a window. The user also observes the current specialist in action in a BSG window for
current specialist. In addition, STCTM provides output report incrementally on the blackboard output
window.

BSG is a skeletal blackboard development environment and offers the capabilities of commonly
available blackboard systems. Additionally, it includes a work breakdown structure to help systematize
the design process as well as to allow for goal driven reasoning. It offers reason maintenance
techniques to help maintain multiple hypotheses and facilitate paraliel reasoning. With STCTM we will
attempt to address a number of research issues under the rubric of KBMS including Fusion Methods,
Model-Based Reasoning, and Machine Learning as well as rudimentary blackboard enhancements,
namely multiple views and hierarchical organization of task domain via work breakdown structure to
help contro! and coordinate problem solving.

We are experimenting with reason maintenance for parallel reasoning. Corrective actions are often
time sensitive and a parallel search for resolving the differences is believed to be required.
Furthermore, temporal techniques such as time map management will be incorporated to maintain
and reason about temporal constraints on commands. This will especially be used for planning
corrective actions.

6.0) Unattended Automation Scenarlo; The Unattended Automation Scenario utilizes robots,
Japanese-style industrial process automation, computer aided manufacturing (CAM), automatic
control theory with distributed machine intelligence, and enhanced onboard (upstairs) as well as
Instrument Team-based (distributed) command and control. Utilizing existing technological
approaches, the scenario achieves a classical automated factory situation in which the ground system
operates in a manned day shift but with caretaker off-shifts.

The result is a 78% reduction in annual operating staff and costs relative to the Baseline (from 76
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positions down to 17 positions) with a simultaneous and significant improvement in achievement of
the CODMAC position.[1] Once the KBMS scenario is achieved, this Unattended Autonomy scenario
becomes feasible.

Every new era such as the "automated factory" one comes only after substantial development costs
and risks. The risks of adapting the automated factory approach to MODSD are minimized via a three
step plan whereby (1) the altered version of the Baseline Scenario is constructed: the alteration
concerns enhanced upstairs and experimenter capabilities; (2) in parallel, an Automated Systems
Testbed is constructed in which one of each of the new technologies is developed, tested,
evaluated, and refined; (3) the automated technologies are gradually phased into the altered baseline
and the excess staff is gradually phased out during the interval from two years after launch through
four years after launch.

6.1) Principles of Al for the Integrated Hierarchy: Unattended Automation in the areas of
facility operation is analogous to the automated factory application which has proven so successful in
other industries but which has failed as yet to penetrate spacecraft operations except in selected
studies and reports, e.g., see [1,2,5,8]. Such a view is fostered in this section.

Spacecraft with their ground systems may be viewed as a manufacturing plant or factory that receives
customer orders (command and schedule requests) and transfers, processes, and transforms these
into finished products (science and ancillary packets) that are then delivered back to the principal
investigators. The factory product in this analogy is science data.

The ES and KBMS technology described in the prior two sections can be seen as contributing to the
automated factory design in a bottom-up fashion. The individual expert systems are designed to
replace each individual human SPC position, while the KBMS is designed to overcome expected
bottlenecks of large scale, multiple ES applications. In this section we present an architecture which
would tie multiple SPC-KBMSs into a single integrated, cooperating system based on the automated
hierarchical factory concept.

Unlike the baseline scenario, the proposed scenario is devoted to the top-to-bottom control hierarchy
needed to move plans, schedules, authorizations and control information down and status
information up. The proposed hierarchy is divided into seven levels as described.

1) Management Planning (Long Range): Overall decision maker for long range goals, internal
investment programs, and users to be serviced.

2) Management Planning (Short Range): Implementer of upper management decisions, day-to-day
overseeing of investment project progress, coordination of customer schedules and requests for
transfer to next lower level.

3) Production (Schedule) Controller: Point of interface between management and the various shops
for determining overall optimized intershop coordination and schedule.

4) Shop Controller: Overall job allocator of workstations, inter-workstation coordinator, and monitor of
workstation emergencies/contingencies.

5. Supervisory Workstation (Cells): Determines and sets the local taskings of all operators and
equipment under its purview, issues control programs and real-time control instructions to the lower
level, recognizes, diagnoses, and responds to emergencies.

6) Operator Workstation: Direct interface with the controller system including issuing real-time
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instructions; taskings for reacting directly to emergencies either internal to the controller system or
externally that may disrupt it; and sending status updates to the supervisor.

7) Controller System: This is the equipment and/or software that performs tasks in slavelike fashion
upon being tasked by the supervisor or operator. Several existing and nonexisting features should be
implemented throughout an automated version of a multilevel control model. In particular, nine
recommend features are: 1) Closed Loop System, 2) Generic Extendible, Reusable Components, 3)
Hierarchical Control, 4) Local Intelligence, 5) State Machines, 6) Control Cycle, 7) Planning Horizon, 8)
Hierarchical Scheduling, and 9) Communication by Common Memory.

6.2) Eacility Advisor: A Proof of Concept Prototype: An early prototype of the automated
factory for ground systems called Facility Advisor was described in 1986. [2] Facility Advisor is a
multi-position KBMS, unlike STCTM. The intent is to show a generic expert system approach (1) to
certain classes of human supervisory positions commonly encountered in many spacecraft ground
facilitates (e.g., facility schedulers, workstation operators, and facility hardware/software fault detection
positions), and (2) to create a cooperating set of expert systems designed to operate in a loosely
coupled hierarchy (i.e., a DES) that can serve as a FACILITY ADVISOR which is a set of ES kernels that
potentially can be tailored to any facility. The prototype modeled three positions cooperating within
the ground system "“factory”: (1) the scheduler who decides when equipment and other resources
may be allocated to support each user (2) the operator who utilizes the resources to perform a user
requested service and who detects and corrects quality problems of the end product (e.g., message
code errors, data set noise, etc.) obtaining inputs from the equipment monitor to assist in problem
isolation tasks, and (3) an equipment monitor who detects and isolates equipment/resource problems
and either corrects them in time for a given service to be completed or suggests an alternative
equipment pathway for the scheduler's consideration. In addition, each of these three SCPs
individually must interact and cooperate with their counterparts at other control centers/facilities to
solve problems and to perform their jobs. The prototype can be described as follows:

The Virtual Machine Hardware -- The virtual machine includes seven parallel boards plus a host. These
"boards" are 4 Xerox Lisp machines, one VAX 11/780, and an IBM PC. One of the LISP machines
also contains a PC emulation board. The "boards" are physically connected via an EtherNet except
the VAX which is separately connected to the host.

Mmmmﬁy_ﬂmmﬂ -- The virtual machines straddles three distinct types of
operating systems (MESA,DOS,VMS) with the aid of the COP capability.

-- The Offline Manager position has been prototyped in LISP on
a separate machine utilizing an in-house blackboard technology (developed for the ARIEL and EPMS
shells). In brief, the Manager places a planning problem or goal on the blackboard, collects and
evaluates Specialist Activation Requests (SARs) from the various position specialists who have
offered to solve part of the problem, and issues Execution Orders for the Specialists (EOSs) it feels
can make the best contributions at the present time. These specialists, in the prototype are on other
"hoards"” of the virtual machine.

Schedule Master -- Objects are created for each piece of hardware, each user service request,
service-pathways, and for each of several types of constraints priority, window, service type, etc. The
final selection is sent to the Real Time FACILITY ADVISOR for execution (at present the Real Time
FACILITY ADVISOR only executes one schedule alternative).

Repairman -- The investigators have collected over 1000 rules used in GSFC Repairman positions,

however, only a very simple prototype has yet been implemented. This Repairman uses seven
LOOPS rules and 21 LISP functions to operate and monitor one piece of equipment. When it detects
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a failure it uses a second set of rules to isolate and correct (or abort) the problem and it reports the
results to the Offline Manager.

Qperator -- Here too, the investigators have collected over one thousand rules used by GSFC
Operators yet only about 15 or 20 rules have been implemented. The Operator is not presently
integrated into the FACILITY ADVISOR, however, it demonstrates the detection, isolation, and
correction of user request message errors as well as one of the explanation and accounting features.

The Real Time FACILITY ADVISOR -- A situational calculus capable of supporting the DES real time
elements has been tested on the VAX with the aid of a DES generator called Hierarchical Control
System Environment (HCSE). HCSE provides a language in which to create fast, deterministic
production-oriented specialists that communicate with each other via a blackboard mechanism.

This prototype demonstrated: (a) the feasibility of offline planning elements being constructed in
different shells, languages, and machines, (b) the role of the Hierarchical Control System Environment
(HCSE) for testbedding of real time elements/modules, and (c) the cloning/virtual entity framework.

8.0) Concluding Remarks: The four scenarios discussed in this paper can be viewed as four
consecutive stages in the maturation of AI/ES technology in the Spacecraft Operations Industry. The
history of Data Base Management Systems (DBMSs) reflects a parallel four stage development.

In the 1950's there was no separation of data and control in DBMSs. This early stage corresponds to
the pre-ES Baseline described in this paper. Inthe 1960's every organizational group managed its
own data files, corresponding to the Individual Expert Systems Scenario discussed in Section 4. The
1970's saw a proliferation of DBMSs that included a full spectrum of the functionality which different
applications required. The KBMS scenario discussed in Section 5 can be viewed as a similar stage in
the development of Al/Es technology. Finally, the 1980's has seen the development of integrated,
distributed DBMSs in which separate DBs are able to communicate. This stage is analogous to the
Unattended Automation Scenario discussed in Section 6.

The goal of the high-level strategy studies (Section 2) and of Al researchers is to reach the highest
stage, Unattended Autonomy. However, the current approach is Individual Expert Systems, and it is
almost guaranteed to pose efficiency improvement opportunities. The original AI/ES strategy studies
in hindsight thus appear to have been ignored from the perspective of integrated, distributed,
reusable approaches.

On the other hand, if one views the current genre of AVES applications as a necessary stepping
stone, the original strategy studies can be said to have been too ambitious. We must learn to walk
before we can run, and many of the applications-to-date have been invaluable from this perspective.

As individual applications grow larger they will undoubtedly begin to encounter the scale-up problems
as described above for XCON: (1) knowledge bases too large to verify and that no one person
understands any longer, (2) inflexibility in the presence of slightly altered domain conditions, (3)
performance degradation concerns associated with slowness, interfaces, etc.

The original strategy studies may have painted a picture that was too ambitious to reach in a single
step. Nevertheless, the picture they painted would seem to be one that must be striven for in a
domain as complex, interconnected, and large-scale as GSFC ground systems operations. For these
reasons we feel that research and development of advanced Knowledge Base Management System
(KBMS) techniques, standards, and reusable modules appears vital for Goddard's future eras. Some
of the questions that need investigating, among others, include: How can heterogeneous KBs best
be integrated? What are the desirable technologies for acquiring, organizing, compressing, and
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storing very large, distributed knowledge bases? Which fusion techniques will prove most effective
for combining conflicting information across supervisory controller positions? Can inconsistencies in
different KBs (or even in a single large KB) be effectively and reliably detected via automated tools
such as built in test? How can the reliability of heuristics, opportunistic, and/or parallel beliefs be
assessed and improved? Can generic symbolic, explanation-based learning (rather than
unexplainable neural nets) be evolved for rule discovery and knowledge generation purposes?

Such an agenda of Al research issues will not be solved any time soon. However, the need to

confront the more difficult Al topics exists and will only grow more prevalent at GSFC as the existing
applications begin to mature.
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Abstract:

Mental models of the Space Station and its ancillary facilities will be employed
by users of the Space Station as they draw upon past experiences, perform
tasks and collectively plan for future activities. = The operational environment
of the Space Station will incorporate telescience, a new set of operational
modes. To investigate properties of the operational environment, distributed
users and the mental models they employ to manipulate resources while
conducting telescience, this paper proposes an integrating shared-world
conceptual model of Space Station telescience operations. The model comprises
distributed users and resources (active elements), agents who mediate
interactions among these elements on the basis of intelligent processing of
shared information; and telescience  protocols which structure the
interactions of agents as they jointly accomplish operational tasks. Intelligent
agents utilize views of the shared world as they engage in cooperative,
responsive interactions on behalf of users and resources distributed in space
and time. An agent's behavior may range from standardized to idiosyncratic,
from naive to intelligent, but the requirement for a common world view,
communicated through standardized telescience protocols, remains essentially
invariant. This model permits partitioning of knowledge, processing and
control between active elements, agents and the infrastructure supporting
telescience. Examples from the life sciences are used to instantiate and refine
the model's principles. Implications for transaction management and
autonomy are discussed. Experiments employing the model are described
which  the authors intend to conduct using the Space Station Life Sciences
Telescience Testbed currently under development at Ames Research Center.
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Introduction

The Space Station will be a multifunction, long-term facility for living and
doing science in space. Users of Space Station resources (both ground-based
and space-borne) will often be distributed and disparate. Many different
technologies will be utilized to connect distributed, cooperating users to their
remote resources; these new modes of operation, and their enabling
technologies, have been termed "telescience" [1]. The activities to be
performed aboard the Space Station will vary widely, from sophisticated
science experiments guided by strict protocols to routine maintenance
operations. On the ground, coordinated planning, rerouting and analysis of
data must be accomplished across distributed facilities. The many physical,
temporal, and cognitive dimensions inherent in Space Station tasks will make
sustained operation impossible unless there is constructed and referenced an
integrating conceptual model of the goals and capabilities of the Space Station
world (the dynamic, operational environment) and shared views of its task
domains. Presented here is a model of users and resources linked together
into a communicating, cooperating whole which has a goal of performing
tasks consistent with the conventions and objectives of their shared world.

The model comprises distributed users and resources (active elements); agents
who mediate interactions among these elements on the basis of intelligent
processing of shared information; and telescience protocols which structure
the interactions of agents as they jointly accomplish operational tasks. This
paper presents an analysis of some of the properties the agents and
telescience protocols must possess to accomplish prototypical life sciences
operational tasks, such as wuser/user collaboration and user/resource
monitoring. Although the concept of shared-world views as a basis for
telescience is perfectly general, the life sciences discipline with which the
authors work imposes several unique requirements on distributed shared-
world views, and these characteristics are used to illustrate and refine the
model in this paper. The authors assert that issues of transaction management
and autonomy are of particular importance to the life sciences, and support
this assertion by examining the roles of autonomous versus teleoperated
agents in the life sciences. Finally, experiments based on the model are
discussed which the authors intend to conduct using the Space Station Life
Sciences Telescience Testbed currently under development at Ames Research
Center.

Motivation r _the M.

The end-to-end architectures for the Space Station Information System (SSIS),
Space Applications and Information System (SAIS) and Life Science
Information System (LSIS) are service based designs: dynamic server-client
sessions are established to provide services such as resource allocation [2,3].
For example, the SSIS offers communication, management and application
services, such as file transfer and transaction management. However,
infrastructure for preserving the character of the information system (e.g.,
its history, purposes, shortcomings and usage conventions) for use across
sessions is not generally an explicit part of the architectural designs, nor are
mechanisms for codifying such attributes as session parameters. Similarly,
discussions of telescience as a mode of operation have in the past been
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generally limited to specific applications and interactions (e.g., telerobotics),
or constituent information system elements (e.g., needed teleoperation
functionality).

It is the authors' contention that the complexity of Space Station operations for
life sciences requires considerable contextual (world) information be
presented to distributed users and intelligent, automated resources (such as
robots) to enable efficiently structured and coordinated interactions. Agents
must have not only a functional understanding of Space Station technologies,
but also a holistic view of the activities in which the technologies participate
[4]; to achieve this, the model makes explicit use of shared-world views. Users
and resources engaged in telescience use views of shared system capabilities,
configurations and plans to condition the conduct and predict the outcome of
their tasks. These views must be presented in a representational form that
matches the "intelligence"”, or information-processing capacity of the active
clement. Thus the responsibilities of an agent go well beyond the
SSIS/SAIS/LSIS server/client role: in their task domain, agents mediate the
interface between the system's periphery -- sensors and effectors, users and
resources -- to assure that transactions with the real world are consistent with
the goals and intentions built into an "ideal" world view. The use of views,
which corresponds to the construction of mental models to integrate
knowledge and  achieve system goals, is an important source of inductive
change in long-term knowledge [5,6].

Telescience protocols incorporate shared-world views into the performance of
operational tasks and enforce orderly, standardized interactions between
agents. Telescience protocols structure and supervise agent interactions,
access and update the base of world knowledge (and possibly its rules of
operation) and obtain infrastructure resources needed to conduct subtasks
inherent in the protocol. As with views, the telescience protocols must be
matched to the agents' capabilities. Thus an end-to-end conceptual model of
the integrating properties of a distributed system employing telescience
operational modes is an important step towards designing information systems
which tie shared world-views to the SAIS/SSIS/LSIS suite of services. The
proposed model is also useful for determining the implications of partitioning
operational intelligence between users, resources, agents and telescience
services, particularly in the maintenance of the shared-world knowledge.

Model Overview

The conceptual shared-world model consists of distributed active-elements
(users and resources); their intelligent cooperating representatives, agents;
and telescience protocols for interacting which link the agents together into a
communicating, cooperating whole capable of performing operational tasks
and maintaining shared-world knowledge. Agent functions and telescience
protocols are summarized in Figure 1; Figure 2 diagrams the model at a high
level for the Space Station operational environment; definitions follow.
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Figure 1
Agent Functionality and Telescience
Protocol Overview
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Active-elements: Examples of Space Station users are: crew, ground-based
operators (e.g., at the Discipline Operations Control Center), principal
investigators, and commercial clients. Resources include discipline
independent entities such as the Space Station Information System and
inventory systems which control the allocation of consumable materials such
as food, water and electrical power, and discipline resources such as the Life
Sciences centrifuge and live experimental subjects. Users and resources are
termed active-elements since they may initiate actions, accept and produce
information and feedback, or undergo changes in physical state. It is useful to
distinguish two classes of active elements: those comprising infrastructure
(e.g., a knowledge base of station-wide power resources and allocation
constraints) and those outside the infrastructure (a self-regulating habitat
airflow subsystem) since the former impacts the world knowledge base much
more than the latter.

Agents: Interactions between active elements in Space Station scenarios are

almost always mediated by technologies such as on-board information systems
and their user interfaces, video links, teleoperations workstations, etc. There
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are also internal idiosyncratic  mediators: skill levels and other cognitive
factors, or machine/machine interfaces (e.g. a humidity sensor/data
acquisition interface). The collective functions and properties of these
mediators are assigned to agents in this model. It is our contention that these
agents must exhibit a degree of intelligence, since an agent acts as a
standardized operator which represents, interprets and informs its active
element (i.e., constructs a view of the shared-world for the active element), as
shown in Figure 1. A group agent represents a collection of agents (see
Figure 2); this arrangement may be hierarchical. Agents develop
increasingly complex roles to reflect enhanced capabilities, responsibilities
and interdependencies of their associated active elements and linkages to
other agents in the system.

Telescience Protocols: Telescience protocols structure and govern the
behavior of agents as they bind to perform tasks. Examples of Space Station
operational modes employing telescience are planning, scheduling, control
and monitoring. Examples of telescience service protocols are resource
allocation, transaction management and telecommanding. Telescience relies
on a base infrastructure, including communication networks and human
teleoperators,  to obtain infrastructure resources needed to conduct subtasks
inherent in the protocol. Telescience protocols can be considered a set of
layers, each providing services (presentation, application, etc); the upper
layers maintain the world information base and present appropriate shared-
world views to agents.

Tasks: Representative distributed Space Station tasks relying on a shared-
world model include revising an experiment protocol, remotely operating a
tool, advising a crew member, or obtaining a reading from an experimental
instrument. Tasks are initiated by active elements and performed through
agents.  Tasks require the identification of necessary agents, establishment of
a telescience protocol of cooperative behavior via selection of a set of services,
the exchange of information and feedback, etc.

Maintaining the Shared-World View: Agents must be cognizant of their own
actions and the effects of actions undertaken by other agents. Their world's
integrating properties must persist and evolve as its elements are replaced,
enhanced, and become more interdependent. A shared-world knowledge base
(or bases, it need not be centralized) and rules embody this knowledge. During
the execution of a task, telescience protocols record each agent's contribution
to the shared-world by maintaining the world knowledge base, a sort of
blackboard. For example, one can initially think of a telescience protocol as
a kind of schema, or script, with roles assumed by the agents. A planning
activity undertaken by two agents might then result in relevant information
being posted to the world knowledge base at the conclusion of the planning
task; the telescience mode governing the planning interaction would
determine the presentation and content of this information. A more powerful
conception than a schema is the incorporation of a dynamic model (e.g. a
mental model) into the telescience protocol. The transient model would
represent  a particular unique operational situation and the expectations that
flow from it; condition-action rules could be used to flexibly construct and
interrelate the shared-world knowledge and to carry out procedures.
Predictions about the attainment of goals would be the major source of
feedback.
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Life Sci ~onsiderati

Performing life sciences research on board the Space Station will require that
the operational environment accommodate a number of needs and constraints
which are specific to life sciences [7,8]:

« a high degree of uncertainty: science involving living systems is
inherently variable and predictive models are often inadequate;
» accommodation of "art" and technique in administering experimental

treatments and subjectivity in interpretation of data;

« support of frequent real-time interactions with experiments (both manual
and automated);

« a high level of crew expertise and PI involvement;

» labor-intensive experiment maintenance;

« ground-truth correlative studies;

+ relatively long duration experiments.

The model proposed here presents conceptual and implementation choices
which are difficult to resolve a priori. The authors believe the nature of the
scientific discipline and its accustomed operational environment (e.g.
SpaceLab experiences) will influence answers to questions such as the
following:

« How does the agent learn about, interface with and represent its active
element? What cognitive loads are reasonable for an agent to impose on a
user?

« How much variation between similar agents is permissible and how much
standardization can be imposed before system functionality is perceptably
degraded? Do "similar agents" imply similar active elements?

« Should telescience protocols and services provide session-based negotiation
mechanisms (e.g. for a needed resource) or should agents utilize global
transaction managers which are independent of the telescience protocol?

« How do semi-autonomous agents request assistance from active elements?
How do active elements understand and respond to an autonomous agent?

The nature of Space Station life sciences research and operations illustrates
the need for discipline-specific agent capabilities and telescience protocols.
In the following sections, three distributed task interaction types, illustrated
through prototypical Space Station life sciences scenarios, are used to explore
such questions.

M ] Distri T Interacti T
Use of the term distributed task implies here that the active elements involved
are typically separated in space and (importantly) time so that telescience
operational modes must be invoked and agents must assist. Three task
interaction types will be discussed below:

e userf/user task
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(illustration: teleconferenced collaboration between 2 primary agents)

| * user/resource task

\ (illustration: habitat monitoring and control between 2 primary agents;
| many secondary information system agents are involved.)

| * user/user/resource task

(illustration: PI assisting crew use of telerobotics; three 2-way interactions,

one 3-way interaction; many secondary information system agents are
involved).

The interaction combinatorics increase exponentially with the number of
active elements. As the telescience protocols become correspondingly richer,
and the world increasingly complicated, agents require ever more refined
shared-world views and dynamic modeling capabilities.

Figure 2 Distribut_ed Model ttor Space
Station Operations
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User/User Distributed Task

A typical (distributed) user/user task is teleconferenced collaboration
between a crew member and ground based scientist, arising, for example, from
an unexpected experiment result. With only a few participants in a
conventional setting, conferencing humans themselves perform  most of the
functions needed, including dialog management, establishing a protocol for
negotiation, selecting the appropriate communications media, and obtaining
or recalling knowledge needed for decision making, etc. [9]. However,
distributed user/user collaboration for Space Station life sciences will
frequently if not typically involve numerous participants (as many as 30 PI's
are anticipated for some synchronous sets of experiments) who will need to
discuss and negotiate the allocation and configuration of numerous
experimental resources, both ground and spaced based, on numerous occasions
over long time periods. The actions of these users will then affect other Space
Station users and resources.

Informal coordination of such a complex process far exceeds the cognitive
capacity that the group can allocate to keeping the process on track. An
explicit model -- a shared-world view -- is needed to facilitate user/user
tasking, render the operating context comprehensible and inform the world of
changes in active elements resulting from carrying out the joint task. In the
scenario for example, the experiment PI will require and be capable of
processing more experiment-specific information than the less experienced
crew member. Thus many of the functions performed by humans in simple
conversational interactions must be migrated to intelligent agents which
understand, enforce and refresh the shared-world view. Some of the needed
model enhancements are cnumerated below.

e Active elements: resources (semi-automated) to coordinate user-to-user
session arrangement; knowledge bases to support decision making;
knowledge bases for recording decisions and forecasting consequences.

» Agent capabilities: knowledge base access; rule-based augmentation of
behavior; multimedia  dialogue support; collaboration; negotiation.

e Telescience protocols: real-time multi-media teleconferencing management;
collaboration and negotiation services; updating of "history” in an archival
world representation or knowledge base.

e World knowledge base elements: collaboration participants, results,
forecasted consequences, affected active elements and agents.

Even for the relatively simple task of teleconferencing, maintaining a shared-
world view and structuring the interactions requires considerable embedded
intelligence in the system's agents and telescience infrastructure.

User/Resource Distributed Task

A typical distributed task in life sciences operations is remote monitoring
and control of a life sciences payload experiment parameter (e.g. some
biomedical factor) by a remote expert [10]. Life science experiments, because
of their unpredictability, will generally require more frequent and skilled
interaction than other discipline experiments. While there are two primary
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agents  (the remote user and the payload sensor), many secondary agents are
involved, including numerous SSIS and payload specific information system
clements. For example, a user agent for the remote expert might reason about
the current operational envelope and assist the expert by establishing a

context for operations activity on a teleoperations workstation. Such
assistance, could automatically make available relevant DBMS's and expert
systems. One of the very important system capability which emerges from

this scenario is the need for transaction management to control distributed
access to the experiment resource.

Transaction management : The objective of transaction management is to

control the effect of transactions (not the transactions themselves) on
payloads, thereby ensuring safety and preventing potential interference [11,
12].  Transaction management is supported by the SSIS Operations Management

System and discipline payload control systems. The PI and other users
initially define the payload operational envelopes, which are sets of required
resource consumptions, environmental requirements and impacts. The

payload's operation is characterized as a time sequence of its operational
envelopes. A payload definition is needed to define controls and interlocks,
but a user is free to control the operation of a payload by sending transactions
as long as their effects do not violate the operational envelopes. Planning and
scheduling subsystems are needed to submit operating envelope requests and
receive envelope schedules; payload operations subsystems format and
transmit commands; and the SSIS Operations Management Application operates
interlocks and verifies the envelopes are consistent with the schedule. Figure
3 illustrates transaction management in accordance with the proposed model.
Since transaction management is an integral part of telescience, it is perhaps
best embedded in the telescience protocol (e.g. teleoperation) rather than as
an agent function.

Figure3  Transaction Management
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A more complex distributed task typical of life sciences operations is a scenario
involving a ground based principal investigator who is interacting with a
crew member to perform an experiment protocol involving a semi-
autonomous resource, such as telerobotics. The crew person will generally
direct and monitor the robot locally, though the remote PI may wish to
occasionally intervene or instruct. The real-time requirements and
interaction complexities require rapid exchange of shared-world data: for
example, near-real time video images of the robot movements.

Implications of Autonomy in a Telescience Context Implementing autonomous
operations at various hierarchical levels is intuitively appealing to Space
Station facility designers, including life scientists, as they attempt to make
scarce resources such as crew time go farther by introducing automated
subsystems. This perspective raises some concerns, however, when the
motivation for autonomy is related to telescience and teleoperation:

« How can autonomy of one active element or group be reconciled with
human-in-the-loop telescience modes?

« What features must autonomous operation of a subsystem embody and
project in order to assure the rest of the system -- including users -- that the
autonomous subsystem is performing adequately? [13]

On the first point, the problem of mixing autonomy with flexibility is
important. Often, for example, the human user may wish to "override"
autonomy temporarily; the system must enable a smooth transition and restore
autonomy after the interrupt.  The operational environment must provide for
the autonomous component to share fully in the common world-view so that
there are no "memory gaps". Such overhead can cut into the cost savings
achievable through autonomy in the first place, so that telescience may dictate
fewer high-level autonomous subsystems.

On the second point, which is a species of the reliability question, autonomous
agents may need to have special agent features to enable the rest of the system
to recognize them as such and act accordingly. This may especially apply to
transactions between autonomous components and live users, from the
standpoint of assuring user confidence in the autonomous element's
performance quality.  Numerous studies in the human factors literature show
the need for humans-in-the-system to be informed frequently that
autonomous processes running "behind the scenes" are normal; otherwise the
operator is likely to perturb the system to investigate, which may degrade
overall performance.

T in Explore Model

The ARC Life Sciences Telescience Testbed is currently under development to
evaluate the application of telescience to Space Station Life Sciences. The
roles of the testbed active elements, agents and telescience modes will be
explored by conducting operational scenarios (e.g. seed planting) with

42



surrogate crew members using one to four patterns of resources in turn. The
phase one testbed operation modes are:
 manual (crew only)
« teleconferenced (manual crew, ground audio-visual communication)
* teleoperated (ground operation of on-board robotics)
* mixed (ground plus crew plus automation)

The relative effectiveness and efficiency of each testbed operating mode will
be measured in such terms as time to complete work, error rates and severity

of errors effects, subjective evaluations of each operational configuration, etc.
[14].

A testbed diagram showing SSIS elements of an ARC telescience testbed
configuration is given in Figure 4a [14]. Figure 4b shows the inclusion of a
robot in the payload and additional components conforming to the proposed
model.

Figure 4a Testbed Configuration
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Figure 4b Testbed Conceptual Model
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The task elements defined to date for the telescience testbed lend themselves to
the model presented here. Discussions with planners indicate that the model
could help provide a framework for planning, implementing and evaluating
larger, interconnected testbeds which better represent the complexity of
Space Station operations and needed functionality.
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Artificial Intelligence in a Mission Operations and o
Satellite Test Environment

Carl Busse, NASA Jet Propulsion Laboratory

A Generic Mission Operations System using Expert System
technology to demonstrate the potential of Artificial
Intelligence (AI) automated monitor and control functions in a
Mission Operations and Satellite Test environment will be
developed at the National Aeronautics and Space Administration
(NASA) Jet Propulsion Laboratory (JPL) . Expert System techniques
in a real time operations environment are being studied and
applied to science and engineering data processing. Advanced
decommutation schemes and intelligent display technology will be
examined to develop imaginative improvements in rapid
interpretation and distribution of information. The Generic
Payload Operations Control Center (GPOCC) will demonstrate
improved data handling accuracy, flexibility, and
responsiveness in a complex mission environment. The ultimate
goal is to automate repetitious mission operations, instrument,
and satellite test functions by the application of Expert
System technology and Artificial Intelligence resources and to
enhance the level of man-machine sophistication.

The work described in this paper was carried out by the Jet
Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space
Administration.

45



Introduction

The NASA Jet Propulsion Laboratory will provide the
functional requirements, conceptual design, and interface
definition, detailed design, software coding, and unit testing
for the development of a Generic Payload Operations Control
Center (GPOCC). The GPOCC will apply Artificial Intelligence
(AI) to support of instrument and satellite test environment, as
well as Mission Operations. The GPOCC will couple current
Expert System (ES) developments with developments in computer
display technology and intelligent man-machine interface features
to develop the imaginative improvements necessary for rapid data
interpretation. Adaptive "Smart card" Input/Output (I/O) ports
will be used for external communications blocking and deblocking.

Expert System technology will be applied to four distinct
areas:
o Mission Flight Planning

- Flight & Instrument Sequence
Planning

- Command Constraint Checking

- Mission Rules
Flight Rules
Spacecraft Status
Instrument Status

- Ground Constraints

- Orbit Cycle Activity Profile
- Sequence of Event Generation

o GPOCC Control of On-Board Data Management

- NASA Standard Tape Recorder
- NASA Standard Spacecraft Computer
- Memory Management
- Memory Comparison
- Instrument Memory Management
- Memory Management
- Memory Comparison

o DSN 26 meter subnet and TDRSS Telecommunications
Scheduling
o Satellite Telemetry Data Monitoring, Trend

Analysis, Prediction Forecast, Anomaly
Detection, Fault Identification, Diagnosis, and
Correction Action Strategy

The Generic Payload Operations Control Center effort is
intended to support the demanding transitions between instrument
and satellite development, integration and test and flight
operations of many classes of Earth orbiting payload.
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The Role of the Jet Propulsion Laboratory

The development of an operational Expert System based
command and control system to prov1de Mission Operations and
Satellite Integration support is directly applicable to JPL's
NASA Mission. This implementation also applies directly to the
JPL Mission Operations Productivity Enhancement Program (MOPEP)
in support of the Voyager spacecraft's upcoming Uranus Encounter
and the application of Expert System Assistance to aid the
Galileo Spacecraft integration effort.

In an era of extremely limited human resources the use of
the latest technology is mandatory. Expert systems are ideally
suited to appropriately defined and baselined mission operations
as well as instrument and satellite test environments. Artificial
Intelligence technology is rapidly becoming the technological
leading edge of new "User Friendly" systems. 1

The development of a Generic Payload Operations Control
Center at the Laboratory may lead to the development and flight
of a new suite of JPL instruments integrated and supported from
the JPL developed Generic Payload Operations Control Centers.

The Jet Propulsion Laboratory will provide project
management for the development of the Generic Payload Operations
Control Center. Detailed GPOCC Functional and Software
Requirements will be generated prior to prototype implementation.
JPL will also be responsible for integration and systenm
acceptance testing.

Applicability

The application of expert systems in support of NASA, and
Department of Defense (DOD), as well as, the National Atmospherlc
and Oceanographlc Administration (NOAA) Earth observation
missions is a significant step in the acceptance of Artificial
Intelligence.

The Generic Payload Operations Control Center concept could
support a variety of NASA and DOD missions, including Scout
Explorer instruments and payload, Low Earth Orbit missions such
as Shuttle launched Free Flyers and Get Away Specials, earth
observation satellites typified by Landsat, Quick Sat, as well as
enhancing a varlety of other possible missions. These potent
applications include a small, highly portable, and survivable
secure Command and Control center for DOD missions. With the
addition of the NASA Data Link Module (NDLM) which provides a
direct forward and return services to the NASA Tracking and Data
Relay Satellite (TDRSS) the GPOCC provides direct TDRSS forward
and return links. Also with the addition of a 9 meter antenna,
antenna servo drive and Radio Frequency equipment racks, the
GPOCC becomes a miniature and easily transportable integrated
tracking and ground data systen.
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The GPOCC provides significant benefits in areas where
budget, mobility requirements, and manpower limitations restrict
the type of ground process available to project and science team
members. The GPOCC allows the advances in Artificial Intelligence
(AI) technology in the past fifteen years to be applied to a
"real world" mission environment. These technological areas
reduce the impact of limited experienced human resources. j

The use of expert systems in the GPOCC permit improved
control of the decision trees such as the application of flight
rules to the spacecraft command generation process. The
challenge will be to apply these systems to the control of a
large and dynamic knowledge base. The GPOCC is a solution for a
wide range of missions, as well as the kernel on which to expand
or adapt broader applications.

Instrument Test Environment

The GPOCC allows the instrument scientist to carefully
observe instrument operating conditions during development in the
same operations environment and equipment configuration as will
be used in actual mission flight conditions.

Satellite Test Environment

The GPOCC adds a new dimension to the satellite and test
environment. GPOCC data handling flexibility and the
sophistication of integrated display technology lends itself to
the task of releasing satellite integration and test personnel
from constructing and preserving a complex data handling system.

Mission Operations Environment

The GPOCC is unique in that Mission operations support will
be a natural progression from the instrument and satellite
integration and test environment. The GPOCC support of Mission
Operations System will differ little from the prelaunch Ground
Data Systems testing and MOS training activities. The major
difference is the addition of "live" tracking data input to the
Mission Planning and Navigation process. This similarity
significantly aids in the transition from single instrument
integration to full up on orbit operations.

Generic Payload Operations Control Center (GPOCC)

The Generic Payload Operations Control Center (GPOCC) system
is composed of five major elements:

1) the telemetry processor

2) the command generation process

3) the Mission Planning and Navigation process

4) the TDRSS, Deep Space Network 26 meter subnet
telecommunications scheduling process

5) the Analysis and Control process.
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Five expert systems modules interface with these processes.
These expert systems include the:

1) the Flight Memory Module (FMM)

2) the Data Analysis Module (DAM)

3) the Mission Planning Module (MPM)

4) the Mission Rules Module (MRM),

5) the Mission Scheduling Module (MSM).

The GPOCC telemetry, command and mission planning and
navigation processes will also couple current Artificial
Intelligence and expert systems developments with intelligent
display technology to provide more user efficient data

interpretation by use of symbolic representation including
interactive Icons.

The overall GPOCC System is functionally represented in the
following diagram.
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Telemetry Process

The GPOCC telemetry process provides the GPOCC with
communications links to the Tracking and Data Relay Satellite
System (TDRSS), White Sands Ground Terminal (WSGT) and the Jet
Propulsion Laboratory's Deep Space Network (DSN) 26 meter subnet.
NASCOM and DSN Goddard Interchange Blocks (DGIB) are deblocked
via an Adaptive Input/Output Port (AIOP) utilizing a single 256
KB Random Access Memory (RAM) smart card per I/O port. Telemetry
data is frame synchronized, decommutated and channelized, and
archived on optical disks. Multilevel limit checking, and
dynamic alarms are used to alert the user of data value
irregularities.
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The telemetry process contains the expert systems Flight
Memory Module (FMM). Channelized data is passed to the FLight
Memory Module and the Analysis and Control process through a
seamless interface which is invisible to the user. The Flight
Memory Module (FMM) tracks the status of the payload recording
device and inputs into the Mission Planning process record,
erase, and data playback recommendations.

GPOCC Telemetry processing is presented in the accompanying
figure.
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Flight Memory Module (FMM)

The FMM receives input from the telemetry stream following
frame synchronization and data channelization. The FMM will
determine which tape recorder is in use, the data stored on each
recorder, the track being recorded, and the proximity to tape
recorder End-of-File (EOF). The output of the FMM will be
recorder cycle statistics, data volume, time boundaries, T/R
playback and erase schedule requests to the Mission Planning
Process.

The FMM will also contain memory maps for the satellite On-
Board Computer (OBC), and science instrument memories. The FMM
performs a comparison of memory load variables anticipated by
command sequence inputs from the command process against current
memory values derived from the downlink telemetry process. If
discrepancies are detected, command requests are passed to the
Mission Planning Process. Memory variable values are continually
checked against forecasted limits to guard against Single Event
Upsets (SEU), and memory failures. Statistics of memory usage
are calculated to determine memory management strategies.
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Analysis and Control Process

The Analysis and Control Process provides data analysis,
satellite anomaly detection, fault identification, and corrective
action as well as fallback strategy. This process also provides
data plotting, tabulation, and trend analysis. The process
records data metrics for satellite and ground system performance
evaluation.

The Data Analysis Module Expert System resides in the
Analysis and Control Process.

Data Analysis Module (DAM)

The Data Anomaly and Analysis Module monitors data values to
detect event and trend variations for analysis of fault
conditions and recommended corrective action. The DAM receives
input from the telemetry process and performs continual data
monitoring and trend analysis based on historic data archived on
the telemetry process optical storage device. Faults are
identified, a diagnosis is preformed, and corrective action
strategy proposed. 5

This Data Analysis Module will monitor telemetry data and
perform continual data monitoring and trend analysis based on its
knowledge base and historic data archived on an optical disk
storage device. The system maintains a continuous "knowledge"
database of past system performance characteristics.

The Data Analysis Module will be partitioned into four
stages:

MONITORING - monitoring, and interpreting, instrument
and satellite behavior.

DIAGNOSIS - determine origin of system malfunctions
inferred from knowledge base.

PREDICTION - inference of predicted performance based
on historic performance and current trends.

RECOMMENDATION developing and prescribing corrective

action for diagnosed problems.

Command Generation Process

The GPOCC Command generation process accepts command
sequences from the Mission Planning and Navigation Process. The
GPOCC command configuration allows realtime commands to be issued
from the mission data & command workstation display console. The
realtime command display allow for selection of immediate
execution, and timed commands to be stored in the instrument and
satellite memories. The Command process echoes realtime commands
to the Mission Planning and Navigation process for cross-checking
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commands in the Mission and Flight Rules Module. Verified MP&N
and realtime commands can be transmitted automatically, or on
manual user request. All commands are cross referenced against
the current configuration of the spacecraft (from the telemetry
processor) to verify consistency with Mission flight rules,
perform resource conflict resolution, and insure state dependent
command compliance. Transmitted commands are recorded in a
Command Activity Archive.

In the event of a satellite anomaly, the command Generation
process accesses stored contingency procedures and emergency
command sequences for rapid transmission to the satellite. The
recommendation for the contingency and emergency command
sequences are part of the correction action as suggested by the
Analysis and Control Process Data Analysis Module.

The Mission Rules Expert System resides in the command
process.

The command generation process data flow is indicated by the
following diagram.
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Mission Rules Module (MRM)

Command sequences created as part of the Mission Planning
process, as well as realtime commands, are checked for compliance
with mission and flight rules in the Expert System Mission Rules
Module (MRM). Commands are also checked against current and
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expected satellite and instrument states, and the ground station
constraints imposed by the Deep Space Network 26 meter stations
and the Tracking and Data Relay Satellite System. The MRM also
resolves conflicts for satellite and sensor resources. Following
evaluation of the verified commands, the command file, composed
of command mnemonics is translated into a binary commands and
blocked in the Adaptive I/O Port and transmitted to the DSN 26
meter subnet stations or TDRSS White Sands Ground Terminal for
transmission. Commands which fail compliance checks are flagged
to the command operator and transmission denied. A reject over-
ride will be provided. Command sequences are returned to the
Mission Planning Process for regeneration. The command - mission
planning interface is seamless so that the operation and location
to the MRM is invisible to the User.

Mission Planning and Navigation Process

The Mission Planning and Navigation process provides the
GPOCC with a daily mission profile, satellite orbital parameters,
satellite geographic position (from GSFC tracking data) and
attitude (from the telemetry processor), and command sequence
generation. The Mission Profile is provided the
Telecommunications Scheduling Process for TDRSS and DSN support
scheduling.

The Mission Planning and Navigation Process creates command
sequences to meet science and mission requirements. Sequences
are passed to the command process.

The Mission Planning and Navigation process is shown in the
following diagram.
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Mission Planning Module (MPM)

The MPM creates individual orbital profiles from a static
profile skeleton and generates command sequences based on Mission
and Instrument for each orbit cycle. Instrument and satellite
activities are scheduled in detail. Much of the work on the
Mission Planning Module will be based on work previously done a
JPL by the Artificial Intelligence and Mission Planning groups. 4

Telecommunications Scheduling Process

The Scheduling Process receives Mission Profile input from
the Mission Planning and Navigation Process. Using the Mission
Profile the expert systems Mission Scheduling Module generates
DSN 26 meter subnet, TDRSS, and communications line support
requests. These support requests are forwarded to the Goddard
Space Flight Center Network Control Center (NCC) for
confirmation. Schedule confirmation messages are received by the
GPOCC Scheduling process for acknowledgement or modification.

Mission Scheduling Module (MSM)

The MSM receives input from the Mission Planning and
Navigation process. The MSSM is interactive with both the DSN 26
meter scheduling system, the TDRSS Network Control Center (NCC)
at the Goddard Space Flight Center (GSFC). Schedule requests
which cannot be support are reported back to the Mission Planning
and Navigation Process for revision of the orbit cycle activity
profile.

The GPOCC TDRSS/DSN schedule data flow is shown in the
following diagram.
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Display Technology

The GPOCC system man-machine interface will be via easily
interpreted high content graphic displays. These displays will
provide a direct representation of the intrinsic images
associated with the telemetry, command, telecommunications, and
mission planning and navigation processes, as well as the
instrument and satellite systems. Multiple displays screens will
be linked through context and mouse sensitive icons and text.

An example of the top level GPOCC interactive display
showing the satellite systems, telemetry, command, and Mission
Planning and Navigation process icons is shown below.

Telemetry [ _ Command

Analysis,
Planning,
Scheduling

Implementation

The GPOCC System design policy will be to insure the GPOCC
implementation meets the requirements specified in JPL Software
Standard D-4000, as well as appropriate JPL Level II Software
Standards. s

The implementation Generic Payload Operations Control Center
will consist of a phased development program. The goal of this
incremental development approach is to allow a phased step by
step development of elements. The initial implementation will be
the Adaptive I/O Port, telemetry process and the Flight Memory
Module (FMM), and the Data Analysis Module (DAM). This front-end
telemetry development portion is necessary for further GPOCC
development, and to support instrument and satellite integration
and test.
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The following delivery will consist of the command and
telecommunications processes, exclusive of their associate expert
systems, the Mission Rules Module and the Mission Scheduling
Module.

The most difficult phase, Mission Planning and Navigation
process will be the final delivery. This implementation will
include the Mission Planning Module, and Mission Scheduling
Module. Halfway through this implement, development of the
Mission Rules Module and Mission Scheduling Module will be
completed and integrated into the command and scheduling
processes.

This phased implementation will allow early confirmation of
data system integrity and compatibility through the use of top-
down design for the non-expert systems portion of the GPOCC.
Coding will be prioritized and sequential testing will be used to
jinsure that coding cannot proceed until the system requirements
are well understood, documented, approved and that the preceding
code is validated. The detailed design, coding, debugging, unit
testing, and integration of each increment will be performed
sequentially allowing the results to be fed back into subsequent
builds.

The GPOCC expert system modules design from the bottom-up to
allow a carefully understood implementation. The completed
modules will then be integrated will the GPOCC processors.

Over all regression testing will insure preceding
development is not impacted by subsequent software builds.

This methodology will also allow time for system quality
assurance and software documentation to keep pace with code
development. Phased implementation will permit early software
transfer to unit and user acceptance testing providing timely
feedback to the development group, and better understanding of
system capabilities by system user community.

Final User Acceptance Testing will insure compliance will
overall GPOCC system and specific user mission requirements.

Conclusion

The expert systems in the Generic Payload Operations Control
Center provides for consistent, dependable and validatable
performance, will demonstrate thorough and reliable and fast
reasoning, and to greatly reduce the requirements for a sizable
test and mission support staff.
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Automated Space Vehicle Control for Rendezvous Proximity Operations
RobertN. Lea

NASA/Johnson Space Center, Houston, Texas

ABSTRACT

Rendezvous during the unmanned space exploration missions, such as a Mars
Rover/Sample Return will require a completely automatic system from liftoff to
docking. A conceptual design of an automated rendezvous, proximity operations,
and docking system is being implemented and validated at the Johnson Space
Center (JSC).

The emphasis of this report is on the progress of the development and testing of a
prototype system for control of the rendezvous vehicle during proximity operations
that is currently being developed at the JSC. Fuzzy sets are used to model the human
capability of common sense reasoning in decision making tasks and such models are
integrated with expert systems and engineering control system technology to
create a system that performs comparably to a manned system.
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INTRODUCTION

Studies using fuzzy sets in modeling human common sense reasoning in decision
making and applications to control processes such as sensor data editing and state
vector update management in space operations have strongly indicated the utility
of such methods.

In particular, fuzzy sets have been used for pre-editing star tracker data and
controlling the processing of sensor data in prototype simulations of shuttle
rendezvous. They have performed, independently of crew interactions, as well as
the onboard system does, complete with the crew performing their functions of
pre-editing data prior to processing. They have also been used to adequately
perform the task of monitoring residuals during processing of data to guard against
cases where there are unexpected problems that arise during the measurement
processing time segment [1].

In further studies [2], it has been seen that fuzzy sets can be used to model crew
actions in control of the shuttle during proximity operations. For example, if a small
error in closing rate exists a small correction would be made in range rate.
Furthermore, the model is done in such a way that rates and position in the Crew
Optical Alignment Sighting (COAS) device are monitered continually so that if one
of the desired conditions begins to degrade action can be taken to correct the
condition before it becomes critical.

The reason the previously discussed study was undertaken was to create a system on
which engineering studies that require a man in the loop could be done in a much
quicker and less expensive way. The goal was to create a control system that reacted
similarly to a pilot during rendezvous profiles. However,it became clear that if one
can model a human flying the shuttle allowing this system to only process
information that the crewman has available and in a way consistent with his ability
to process information, one should be able to do an even better job if the system is
allowed to process other relevant data that may not be available to the crew butis
readily available to the system. Thus it seemed natural to consider these methods as
applied to the problem of automated rendezvous.

AUTOMATED RENDEZVOUS VEHICLE CONTROL

The objectives of the automated rendezvous study are to create a set of software
that will control the entire rendezvous sequence totally independent of human
interaction. This study focuses on the proximity operations phase of such a mission.
The previously referenced work on pilot modeling using fuzzy sets is applicable here
as any automated vehicle control system should be able to perform the function of a
human operator. In certain areas it seems clear that an automated system should be
able to do a better job. The types of applications of fuzzy sets to piloting modeling
that should be retained are models of decision making rules relating to the
necessity of corrections and magnitude of such corrections to maintain a correct
approach path.
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Typical rules used for rendezvous vehicle control and modeled with fuzzy sets are
the following.

If the rendezvous vehicles orientation with respect to a desired
pointing vector to the target vehicle is close to the required
orientation then no action is necessary.

If the orientation signficantly deviates from the required then take
appropriate action to correct the problem.

In the control system reported on here it was decided to use the m and S functions as

given in [3] to model these rules since they are easily adjusted for varying degrees of
fuzziness" by varying the parameters that define their width and shape. The

equations of the m and S functions are given below and their graphs are given in

figure 1.

S(x,a,b,c) =0 forx<a
= 2((x - a)/(c-a))**2 fora<x<b
=1-2((x-c)/(c-a))**2 forb<x<c
= forx >c¢

m(x,b,c) = S(x,c-b,c-b/2,¢) forx <c
=1-S(x,c,c +b/2,c + b) forx>c

“4s(x; a,b,c) “4u(x; b, c)

05 0.5

o

figure 1

Graphs of the functions used to mode! “significantly high", "significantly low" and
"near" the desired position are given in figure 2. The desired position or state is
labeled E in the diagram.

As can be seen one can effect a rapid or slow transisition from complete
membership to complete non-membership by altering the parameters a, b, and cor
b and ¢ for the S or pi function respectively. Using these functions allow flexibility in
the simulator for selecting a control strategy. Strategies can vary from the extremes
of keeping the actual position and rates very close to their desired values, or only
keeping the actual position and rates in some preset window of acceptable values.
The way the functions are used will now be described.
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Fuzzy sets are defined for "somewhat greater than", "somewhat less than", and
"approximately equal to" the desired closing rate. They are also defined for
"high”, "low", and "near" with respect to the desired position. During some time
interval (every two seconds for the shuttle) the fuzzy sets are evaluated and a
determination is made as to whether an action needs to be taken to restore a rate
or position to its desired value. If the no change function, such as "approximately
equal to” or "near" the desired value, is larger than the corresponding change
function, such as "somewhat greater than" or "low" with respect to the desired,
then no action is taken. Otherwise an appropriate action is taken to restore the rate
or position to the desired. The appropriate action is determined from an estimated
action A(u), where u is the current value of the state, required to restore the active
vehicle to the desired position. This action A(u) is then weighted by the change
function S(u) and an action S(u)*A(u) is commanded to the system under control.
Furthermore, there are no extreme accuracy requirements for the function A(u). For
example, referring to figure 2, if uj is the current value of x, then 7 (u1) > S(uq) and
no action is taken. On the other hand, if uj is the current value of x, then

S (u2) > 7 (u) and an action S (u3)*A (u3) is commanded. More than one action can
be commanded at a time so long as a constraint of the system under control is not
violated. For the shuttle the actions commanded are jet firings and are determined
in the following way.

[
N

The required velocity change to effect a position change and/or an increase or
decrease in range rate is divided by the proper setting of the digital autopilot
(DAP). The DAP has two settings that are preloaded with values that control the
magnitude of the jet firings. Typical values are 0.02 and 0.05 which translates into
0.02 or 0.05 feet per second change in velocity per pulse depending on which value
has been selected. The nominal DAP setting is the larger of the two and is the
proper setting if it is smaller than the required velocity change. If this setting
exceeds the required velocity change then the proper setting is the smaller value.
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This number, which can be considered the appropriate number of pulses under ideal
conditions, is then weighted by multiplying by the fuzzy set evaluation that has
been saved. This is the number of pulses that is commanded to the system for jet
firings in the required direction. However, no more or less firings than is physically
possible for the system are executed. Any additional ones are simply dropped since
the evaluation procedure on the next cycle will command additional firings if they
are still necessary.

To illustrate the number of pulses computation consider figure 3.

r

v-bar

figure 3

In this case the shuttle is “low” with respect to the desired position on thev_ bar.
By using the shuttle-target range and angle o an approximate change in vélocity
can be computed using the equation

AV = f(a )wRk-Ra

which relates range R in feet to required change in velocity AV in feet per second to
move the shuttle up to the v-bar, w is the orbital rate, and k is a constant of
proportionality. This estimate of AV is adjusted according to whether the shuttle is
currently moving up or down relative to the tar?et. The function f(a ) is the fuzzy
function corresponding to target “high” in the field of view and the number of
pulses to be applied is given by

N = (Av/d)* f(a )

Here w Rk/d represents the action function A referred to earlier and d is the current
DAP setting. In a similiar way fuzzy sets are used for controlling closing rates, out of
plane angles, and elevation and azimuth rates.

These studies indicate a general approach to the automated rendezvous problem. in
fact, they have implications in a general problem of vehicle control. In a problem of
this type, "n" control rules would be modeled with fuzzy sets. Each of the fuzzy sets
would be evaluated separately, the most critical identified, and an appropriate
action determined. The decision making process would integrate all of the existing
and new technology in the areas of expert system development tools and
engineering control systems with the new fuzzy control methods.
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RESULTS

Many different scenarios have been run with the automated system and
performance with respect to flight profile and AV requirements have been very
good. Not all automated scenarios were tested against manual control but those
that were have performed better. For example, comparisons of AV requirements
foga man-in-the-loop versus automated controller gave the results in the following
table:

SCENARIOS MAN-IN-THE-LOOP  AUTOMATED CONTROLLER
AV REQUIRED AV REQUIRED
Stationkeeping at 150’ 0.54 ft/sec 0.1 ft/sec

for 30 minutes

V-bar approach from
500’ to 40’ 2.99 ft/sec 2.12 ft/sec

25 minute time interval

Noise free data was used for both cases since the intent is to simulate filtered and
smoothed data.

To further demonstrate the capability of the system for proximity operation, ail of

the phases shown in figure 4 have been run (i.e., terminal phase rendezvous,
labeled (1), V-bar approach, labeled (2), and separation, labeled (3)).

TARGET

Oh 2

figure 4 R

The system will allow transition from one point to another in the proximity
operations region. For example, one can transition from a point on the V-bar to a
point on the r-bar and stationkeep, or one can transition from a point on the r-bar
to a point on ageneral approach vector to the target that may or may not be in the
plane of target motion.




STATUS AND CONCLUSIONS

The preliminary results of an automatic controller for a rendezvous vehicle
proximity operations simulator that controls maneuvers based on fuzzy decision
functions indicate the goal of complete autonomy is achieveable. Indeed the results
of tests of the controller have shown it is possible to simulate the common sense
reasoning of a pilot using fuzzy decision functions to express rules obtained from
experienced pilots and integrate this with more sophisticated engineering control
concepts in such a way that an efficient system is achieved.

Many general proximity operations scenarios for rendezvous vehicle control have
been run to test the system. In particular test runs have been made with the active
vehicle both in and out of the plane of the target vehicle and above or below the
desired approach path to the target. Approach angles to the target have been
varied to show that approaches are possible along any vector to the target.
Stationkeeping can be performed at any range or time and transition from one
stationkeeping position to another is possible while keeping the relative range rate
nulled. For example the system can support a maneuver from stationkeeping on the
v-bar to stationkeeping on the r-bar.

As the approach is extended to other applications, or possibly to speed up use of the
present application, it is realized that a fuzzy function chip of the type described by
Togai [4] or Yamakawa [5] could be used to offload a great deal of the
computation. This will be especially appropriate as the system is expanded to
include larger and larger parts of the guidance, navigation, and control functions. It
is intended to investigate the usefulness of such hardware as soon as it is available.

The current model of the controller assumes that the data it recieves from sensors is
smooth. It does not require extremely accurate data however. If sensors giving
relative position and rates are very noisy or have large biases some type of filtering
will be desirable but it will not have to be an extremely sophisticated filter.

The control system will be applicable to performance testing in a variety of
rendezvous profiles and to determining the accuracy required for rendezvous
sensors, as well as required redundancy in the system, and propellant requirements.
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Abstract

This paper describes the Advanced Ground Segment, a prototype
satellite/payload operations control center workstation, which
represents an evolutionary effort to improve the automation of
control centers while improving software practices and supporting
distributed control center functions. Multiple 1levels of
automation are supported through a rule-based control strategy.
The architecture provides the necessary interfaces and modularity
for future inclusion of more sophisticated control strategies.

Introduction

A significant portion of a spaceflight mission's 1life cycle cost
is associated with the development, maintenance, and operation of
the ground control system. Moreover, as the life of a spacecraft
increases, so does the percentage of ground cost to total project
cost. The spacecraft complexity made possible by modern launch
systems and flight technology has resulted in an increased
operational burden and an increased risk of loss of spacecraft
function through human error. These issues must be addressed as
part of the preparation for the Space Station era. The
preliminary Space Station Operation requirements clearly state:

"Flight and ground systems design shall consider automation
for effective resource utilization ... Subsystems shall be
automated to the fullest extent practical, wusing man's
capability to provide a cost-effective alternative."

A modern payload/spacecraft operations control center can be
quite expensive to build and operate. For example, the NASA
Space Telescope Operations Control Center will involve a network
of six large DEC VAX computers, seventeen VAX workstations, and
multiple communications processors linked together by several
networks. Over 1.2 million lines of custom software have been
developed for the system. Ground operations will involve at
least 39 full-time staff over the 20 year life of the Space
Telescope.
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Control requirements for the Space Telescope are exceedingly
complex, as a result of the extensive redundancy and cross-
strapping of the spacecraft. The state space of the flight
system consists of a large number of discrete and analog
parameters governed by complex interactions and control delays.
For example, the DF-224, one of five types of elements in the
Space Telescope Data Management System (DMS), has 3076 possible
configurations. The Data Management Unit, another element of the

DMS, has over a thousand possible configurations. When taken
together these two units alone have over 3 million possible
discrete configurations. The thermal model for the Optical

Telescope Assembly integrates 240 analog sensor measurements,
related in a time delayed manner to the DMS states (e.g.,
response of a thermal sensor to a heater state). When taken
together, even this relatively small subset of spacecraft
variables results in an overwhelmingly complex control problem.
However, real-time tracking of these complex configuration states
-— confirmation of commands, detection of anomalous conditions,
and cross-verification of subsystem states -- without automation
will be increasingly labor-intensive and error prone.

Complex Space Station era spacecraft such as the polar platforms
being planned for earth sensing applications will present even
more challenging control problems. Also, as spacecraft users
demand more direct and transparent access to payload .resources
control center implementers will need to rely more and more on
automation techniques to improve system response.

Significant savings in development, maintenance, and operations
costs for these complex systems are, however, feasible. For
example, estimates made in the initial phases of the project
being reported here indicated that at least 60% of the long-term
personnel budget for the Space Telescope Operations Control
Center could be saved through the introduction of relatively
simple automation techniques.

Software which represents nearly 70% of initial systems cost 1in
ground control facilities and a larger proportion of ongoing
systems maintenance is also an obvious target for improvement.
Automated software systems clearly have a potential to reduce
staffing requirements but any effort to develop such systems must
weigh the benefits of automation against the potential costs of
software development and maintenance. The Ada programming
language and related methodologies and software development
environments being developed by the Department of Defense are a
promising means to controlling these costs.

This paper describes a portable distributed workstation
architecture which uses Ada and artificial intelligence
techniques to address these Iissues. It also describes a
prototype which implements this architecture using an object-
oriented design.
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Objectives

Ford Aerospace has initiated a project to develop an advanced
architecture and reusable software components which will support
NASA's needs for highly reconfigurable payload and spacecraft
control centers during the 1990's. Objectives of the Advanced

Ground Segment (AGS) project are to develop an architecture
which:

0 reduces the need for large numbers of spacecraft
operators and schedulers;

© minimizes danger of spacecraft or payload damage due to
operator error;

O supports distributed planning and scheduling of
spacecraft/payload resources;

0 supports rapid but controlled access to payload services
by operators and users;

o 1is sufficiently modular to incorporate new automation
techniques as they become available including classic
control algorithms, rule and frame based expert systems,
model-based reasoning, and neural networks;

0 1is applicable to both small single workstation pafload—
oriented control centers and large-scale multi-
workstation distributed control centers, and;

O supports eventual migration of function to onboard
processors.

System Architecture

In this section we describe the architecture of the currently
implemented prototype which runs on MicroVAX based workstations
and uses the DEC VAX Ada environment for software implementation.

Figure 1 is a pictorial representation of the AGS architecture as
currently implemented in the prototype system. The method for
representing the design is based on a widely used notation for
Ada program designs developed by R.J.A. Buhr of Carleton
University. Trapezoids indicate computer processes which may
occur in parallel using the Ada tasking paradigm. Boxes with a
clipped upper right corner represent Ada data types, each capable
of replication and dynamic allocation to processors.

Separate collections of Ada tasks are used to provide emulation
of a spacecraft and communications 1links (including 1line noise
and dropouts). All telemetry and commands are generated and
stored in a manner consistent with the most recent versions of
the Space Station standards currently proposed by the
Consultative Committee for Space Data Systems (CCSDS). The use
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of these standards alone effectively automates one major task of

spacecraft control centers, reconfiquration associated with
changing communications formats.

Centralized functions are responsible for modeling and predicting
spacecraft state, managing a data base of telemetry information,
comparing expected to measured states, triggering automated
functions based on measurements, and scheduling command 1loads.
Plans are underway to provide additional capabilities for
distributing the scheduling function based on a network-oriented
scheduling protocol being developed by Ford Aerospace Jjointly
with the University of Colorado at Boulder.

Each user or operator who logs onto the system is provided with a
separate expert assistant responsible for checking of |user
privileges, initial checking of command sequences prior to a
centralized command verification function, automated monitoring
of specific functions, and generation of command sequences for
submission to the command scheduler. Interfaces with the user
subsystem have been engineered to allow future substitution of
custom assistants. The current assistant strategy uses a rule-
based expert system which is downloaded through a network from an
offline Lisp-based system described below. Network interfaces
for the user subsystems are engineered to allow distribution of
functions over both local and wide area networks.

All system functions are configured through data bases which may

be modified by suitably privileged users in real-time. Even
graphics displays are configured through a simple data Dbase
addition or modification. This 1is a natural evolutionary

improvement over current control centers which typically allow
real-time reconfiguration of alphanumeric displays but rely on
relatively static graphics. Efforts are underway to further
improve reconfigurability by providing a MacIntosh-like resource
editor which will allow users to rapidly construct custom
displays out of reusable Ada components through a click-and-drag
mouse interface.

Expert System Implementation

The expert system contained in the present system was created
with the aid of the Ford Lisp-Ada Connection (FLAC), an
integrated development environment designed to support direct
entry and testing of rule-based knowledge on a Lisp machine and
network downloading of a data base to an inference engine which
has been implemented in the Ada language. The overall structure
of FLAC is shown in Figure 2. FLAC consists of two components,
the Knowledge Editor Graphics System (KEGS) and the Ford Ada
Inference Engine (FAIE).

Knowledge 1is entered through KEGS, an easily 1learned knowledge
base Computer Assisted Design (CAD) system which provides
integrated features for rule development and knowledge base
testing. An expert can us a set of menu- and mouse-driven
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Lésources to develop a knowledge base which is graphically
represented as an and-or gate diagram. Tools are provided for
the expert to rapidly enter, test, and debug knowledge base logic
paths. The wuser interface is similar to those found in CAD
systems for integrated circuit logic design.

The knowledge base can be downloaded to FAIE, an extremely fast
portable Ada-based inference engine which is capable of firing
more than 1500 rules ber second on a MicroVAX 1II workstation.
FAIE supports both forward and backward chaining modes of
inference. The FAIE run-time environment has previously been

used 1in a prototype of the Space Station Operations Management
System implemented .by McDonnell-Douglas.

Within the specific application domain of a workstation-oriented
control center FAIE provides more than adequate performance for
real-time monitoring and control of individual spacecraft
subsystems. Our general approach to automation has been to focus
on construction of multiple relatively simple expert systems to
perform subsystem monitoring and avoid the construction of large
multi-thousand rule expert systems which are difficult to test or
run in real-time.

Substantial consideration was given to the level of autonomous
control to be provided. Although some expert systems are

affect the health and safety of a spacecraft which may cost many
hundreds of millions of dollars. This problem was attacked 1in
two ways:

1. We limited the scope and size of the expert systems to
relatively small rule bases which could be thoroughly
tested for a large number of logic paths. Offline
tools for this testing are provided within KEGS.

2. We support four basic levels of automation:
a. fully autonomous (no operator involvement)
b. automatic (operator is advised of command actions)
C. advisory (operator is advised of command actions
and can edit commands before they are uplinked or
appended to the command schedule)
d. fully manual (expert system is disabled)

3. A central command verification function is provided.
Although this function is not automated in the current
prototype we expect to eventually replace this function
with a separate automated system.

The current systems provides adequate performance and
characteristics to automate a large amount of the routine
monitoring and commanding requirements for a control center,
However, a significant amount of work in improving Ada-based
expert system technology must be done before such a system can be
trusted to perform non-routine satellite control or recovery
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activities. Until such capabilities are available 1logic paths
for many anomalous conditions must either result in an operator
message or a recommended safe-hold strategy.

Future Plans

Future plans for the AGS system include:

o Improving the distribution of its data base and ‘control

mechanisms -- The end objective is a fully distributed
hierarchical planning and command architecture. This
will be well-supported by the system's object-oriented
design.

o Optimizing the performance of the current software design
-- Surprisingly, the Ada design performs as well as
similar Fortran-oriented software in spite of its object-
oriented layering for portability and reuse. However,
substantial improvements in performance are feasible
through the use of a number of design enhancements
associated with the use of the Ada tasking constructs.

o Adding additional artificial intelligence technologies --
Two separate efforts are planned, both with the aim of
decreasing the software cost of automation:

- A model-based reasoning system based on Ford
Aerospace's Paragon tool for knowledge data capture
and structural reasoning. This tool is currently
being ported from its Lisp implementation to an Ada
implementation.

- A sentinel system based on a neural network emulation
in Ada. The objective 1is to develop a robust
assistant which can learn about anomalous telemetry
conditions from previous examples and react to
similar conditions.

Neural networks in many ways are the ideal control structure for
automated control centers since they can be trained through a
sample connection of anomaly scenarios and react to conditions
which are similar but do not precisely resemble the training
scenarios. However, it is difficult to fully test a neural
network and visibility into the internal decision structure is
somewhat limited. As a result we plan to focus primarily on the
use of neural networks for monitoring telemetry streams and
flagging conditions for other types of analysis such as model-
based reasoning.
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Conclusion

The AGS architecture is envisioned as the forerunner of future
control centers to be built to Ford Aerospace. The 1long-term
vision 1is to construct a control architecture whose components
can eventually be freely replicated and distributed across
geographic 1locations and across space and ground systems. The
AGS effort has already had a strong influence on the design
philosophies for Ford Aerospace's most recent control center
designs for the Space Telescope and the GOES I-M satellite
series.
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ABSTRACT

Spacecraft activity scheduling has been a focus of
attention in artificial intelligence recently. Several
scheduling systems have been devised which more-or-less
successfully address various aspects of the activity scheduling
problem, though most of these are not yet mature, with the notable
exception of NASA’s ESP. Few current scheduling systems, however,
make any attempt to deal fully with the problem of modifying a
schedule in near-real-time in the event of contingencies which may
arise during schedule execution. These contingencies can include

resources becoming unavailable unpredictably, a change in
spacecraft conditions or environment, or the need to perform an
activity not scheduled. In these cases it becomes necessary to
repair an existing schedule, disrupting ongoing operations as
little as possible. Normal scheduling is Jjust a part of that

which must be accomplished during contingency rescheduling.

A prototype system named MAESTRO has been developed for

spacecraft activity scheduling. This paper briefly describes
MAESTRO, with a focus on recent work in the area of real-time
contingency handling. Included is a discussion of some of the

complexities of the scheduling problem and how they affect
contingency rescheduling, such as temporal constraints between
activities, activities which may be interrupted and continued in
any of several ways, and different ways to choose a resource
complement which will allow continuation of an activity. Various
heuristics used in MAESTRO for contingency rescheduling will be
discussed, as will operational concerns such as interaction of the
scheduler with spacecraft subsystems controllers.
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I. Introduction

Spacecraft in operation have a multitude of ongoing

simultaneous activities, each having its own set of timing
requirements, resource consumptions, and environmental conditions
requirements and effects. When all operations are running as

projected, and conditions and resource availabilities occur as
predicted, spacecraft will operate smoothly. Frequently, however,
some of these projections and predictions turn out to be wrong;
some experiment may take longer to perform and more data
transmission time than initially planned for, there may be a
partial power loss, or some target of opportunity may arise,
causing the spacecraft operators to attempt to add some activity

to the timeline. All of these deviations from the set of
operations originally scheduled can require revision of the
initial operational schedule. These revisions must be done well

and in a timely manner to ensure that the spacecraft continues to
operate efficiently and safely.

In the following sections we describe some important
aspects of the problem of revising a schedule in a contingency
situation, and the solutions embodied in the prototype scheduling
system MAESTRO. We begin with a description of the scheduling
problem in general, then describe MAESTRO, focussing on its
contingency handling mechanisms. The next section describes some
of the problems associated with embedding a scheduler into an
operational context, and we conclude with an indication of
problems yet to be addressed.

IT. Scheduling

Scheduling may be defined as the placement of performances
of activities on a timeline such that those activities may
actually be performed as placed. Activities include experiments,
maintenance or repair of equipment, meal preparation and
consumption, etc. In order to ensure that an activity can be
performed as specified on the schedule, it must be verified that
all constraints which are absolute requirements for the
performance of that activity are met. These constraints may
include resources and conditions requirements, allowable time
windows, number of performances required, and timing relative to
the performance of other activities. Other constraints, such as
preferences in resource use or performance placement, may be
considered as well.

Take as a simplified example the scheduling of a few
hypothetical Space Station experiments - say one using a targeting
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Figure 1. Example experiments for the Space Station, with their resource,

' . : conditions, and
coordination requirements.

instrument, another involving a crew member’s observation of some
spiders, and another involving the generation and centrifuging of
some samples (see Fig. 1). For each of these activities certain
resource requirements must be met in terms of power (for the
targeting and sample experiments), crew time (for the spider and
sample experiments), etc. Insofar as these resources are limited,
different activities may compete for these resources, requiring
the coordination of the activities. Conditions for each of the
experiments must also hold - the targeting instrument must be able
to acquire its target and may require a minimum vibration, while
the centrifuging phase of the sample experiment may generate a
certain amount of vibration. Additionally, there may be a
requirement for filming of a crew member performing observations
in the spider experiment for a publicity film, and this will
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require coordination of the film’s timing, resource, and
conditions requirements with those of the spider experiment.
The process of producing a schedule which provides the necessary
coordination of resources and conditions for these activities can
be quite complex.

In addition to assuring that activities may be performed
as placed on a timeline, scheduling is involved with the attempt
to produce a "good" schedule, getting as many activities performed
as possible within limits on resource availabilities, respecting
differing priorities various activities may have associated with
them, etc. This is a crucial function, especially with respect to
scheduling of activities aboard spacecraft, as the cost of
providing the opportunity to perform these activities is
astronomical.

Scheduling includes not only initially generating a
schedule to be followed, but also altering that schedule to
reflect any changes in the assumptions upon which that schedule
was based. Contingencies which can occur include equipment
breakdowns, resource availability changes, a change in spacecraft
conditions or environment, the need to perform an activity not
scheduled, or simply an activity requiring more time or resources
than anticipated. The scheduling problem in these cases becomes
one of repairing an existing schedule, disrupting ongoing
operations as little as possible. Contingency operations
typically include all the complexities of initial scheduling with
the additional need to perform heuristically-guided unscheduling
and alteration of performances in progress at the time of the
interruption.

To continue with the example above, suppose a schedule is

being executed wherein the principal investigator for the
targeting experiment finds an unexpected opportunity to gather
valuable and seldom-accessible data. This opportunity may require

repointing the instrument during a scheduled spider observation,
causing vibration which would interfere with that observation.
The scheduler must revise the timeline, rescheduling the
observation around the pointing phase of the targeting
experiment. If that observation was to be the subject of a public
relations film, that filming also would need to be rescheduled.
These reschedulings may free some resource(s) needed by the
crystal growth experiment, which could then be added to the
schedule.
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III. The MAESTRO Scheduling System

Much of the general scheduling problem is addressed in the
MAESTRO scheduling system, described below.

Activities.

During scheduling, the entities placed on the timeline are
activities. = Activities within MAESTRO are represented
hierarchically. An activity group is a set of activities
representing different ways to accomplish a particular goal. An
activity, in turn, is a linear sequence of subtasks which, when
performed in the order specified, satisfies that goal. A subtask
is a portion of an activity whose resources and conditions
requirements do not vary over its duration. That duration can
vary, as can delays between subtasks. A subtask description
includes its minimum and maximum duration, the minimum and maximum
delay allowable from the end of the preceding subtask, the ways
the subtask can be dealt with if interrupted, and a representation
of the various constraints which must be satisfied in order to
execute the subtask. The constraints MAESTRO handles are
described below.

Constraints.

Constraints representable within MAESTRO on the
performance of an activity are of four basic types:

1) The availability of resources or conditions necessary

to the performance of a subtask. There are several kinds of
constraints within this category. Rate-controlled resources are
those whose availability returns the moment a subtask consuming
them ends. Examples of this type are crew time, thermal
rejection, electrical power and equipment. These can be
contrasted with consumables, which, once depleted, stay depleted
until some activity specifically replenishes them. Water,
liquid nitrogen and lubricating fluids are examples of this type
of constraining resource. Conditions, another kind of

constraint, are states the spacecraft must maintain in order to
perform a subtask, and include spacecraft attitude and position,
temperature ranges, acceleration, vibration, etc. In general,
conditions cannot be consumed by an activity requiring them, which
differentiates them from rate-controlled resources.

Some of these constraints can be satisfied by more than
one resource or condition. An example of this is the case where
a subtask could be performed by either of two crew members trained
to use a particular piece of equipment, but not by any of the
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other crew members. This is referred to as a resource
disjunction, a case where one resource or another can satisfy a
requirement. The existence of a resource disjunction in a
subtask description greatly increases the complexity of finding
all times during which a subtask can run, as opportunities to
perform the subtask depend on which resource is chosen. This can
be further complicated by the fact that a resource choice in one
subtask can control that in another, e.g. the crew member who
performs the calibration of an instrument should be the same one
who read the manual at the start of the activity.

2) Constraints relating the performance of two subtasks in
the same activity. Sequencing of subtasks, their durations, and
the delays between them are included in these, as are more general
ways of relating subtasks in an activity. There may be a minimum
separation between the first and fourth subtasks, for example, or
a maximum duration for the whole activity.

3) Constraints relating the performance of a subtask in
one activity to that of a subtask in another. These can be used
to ensure that one subtask is performed before or after another,
or that two subtasks start or end within some time period of one
another. Multiple constraints of this type can be specified
between two subtasks as long as they are not contradictory. For
example, one subtask could be forced to begin and end at the same
time as another.

4) Constraints relating the performance of an activity or
subtask to some event or interval on the timeline. An interval
may be specified during which an activity or a subtask must be
performed, or one can specify a time interval during which a
subtask must start or end.

Schedule generation.

MAESTRO creates a schedule by repeatedly executing three
steps, referred to as the select-place-update cycle. The first
step involves evaluating every activity requested for scheduling
with respect to a set of selection criteria, and choosing one
activity to schedule on that cycle. These criteria include the
base priority associated with each activity, the percentage of
performances requested that have been scheduled for each, and the
relative constrainedness of each. Relative constrainedness is a
rough measure of how many different opportunities each activity
has to be placed on the schedule. These criteria are combined
using user-selectable weightings which reflect the importance of
each criterion to the user. An activity chosen for scheduling
will have higher priority, a lower percentage of requested
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performances scheduled, and/or fewer opportunities to be scheduled
than other activities.

Once an activity has been chosen to be scheduled, one
performance of it is placed on the schedule. The calculation
resulting in the measure of constrainedness mentioned above
actually determines all allowable start and end times for all
subtasks in each activity. This information can be used during
placement to position a performance acording to soft constraints
(preferences) imposed by a user. He can, for example, maximize a
data collection subtask, or can schedule a activity as early or as
late in the scheduling period as possible. If there is a resource
disjunction in a subtask’s requirements, a preference can be
specified and adhered to. A set of possibly contradictory soft
constraints can be specified, along with an ordering in their
importance. In order to pay attention to a preference for a
maximum data collection duration, for example, the scheduler may
have to schedule an activity later than crew use preferences would
dictate.

The final step in the scheduling cycle involves updating
resource availability profiles to reflect the activity’s
consumption of resources. The cycle then repeats for as long as
the user wishes or until there are no opportunities to schedule
any activity. The combination of weightings on selection criteria
aand attention to soft constraints during placement allows the
scheduler to be tuned for a variety of scenarios.

Under certain circumstances the scheduler will perform a
fourth step in the cycle described above. The calculation which
determines all allowable start and end times for each subtask,
called opportunity calculation, recognises differences in
priorities among activities. If opportunity for a high-priority
activity cannot be found, the scheduler may choose to ignore the
projected resource use for some lower-priority activities, placing
the high-priority activity in such a way that resource
overbookings occur. This necessitates exercizing a portion of the
contingency handling function described below in order to remove
these constraint violations. This typically requires that one or
more of the lower-priority activities be unscheduled. Once they
are removed, the scheduler can proceed to the next iteration of
the cycle.

Contingency operations.
The previous paragraphs described how MAESTRO creates or

adds to a schedule. Additionally, there are a number of
situations in which a schedule must be altered to accommodate
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various changes. It may become known that resource or conditjons
availabilities will change or have changed, or that an activity
not previously known about needs to be added to the schedule.
These situations are handled within MAESTRO by a process similar
to that wused during initial schedule generation. The system
repeatedly executes a cycle consisting of four steps: 1) detection
and quantification of a resource over-use, Or just detection in
the case of a conditions constraint violation, 2) selection of an
activity performance to perturb which will alleviate the problem
to some extent, 3) unscheduling or alteration of that activity
performance on the schedule, and 4) checking and possibly
unscheduling all activity performances temporally constrained by
the perturbed activity. This process continues until no resource
or conditions constraint violations remain, and is described in
more detail below.

The scheduler first determines the exact extent of the
resource over—use, quantifying it so that each activity’s use of
the resource can be compared to the over-use.

Next the scheduler evaluates all activities using that
resource during the time it is overbooked. Each activity is rated
according to a set of criteria designed to determine what
activities to alter or unschedule to solve the problem with the
least impact on the schedule. These criteria include how well an
activity’s use of the resource fits the amount of overbooking,
whether the activity is in progress or not, the activity’s
priority, amount of <crew involvement, use of other resources,
other opportunities to be scheduled, success level, and
others.

The activity chosen to be perturbed is then either
unscheduled, if it has not yet begun, or altered to reflect its
progress and the necessary changes to it, if it is already
executing. An activity which is unscheduled may be rescheduled
after all constraint violations are removed.

There are several ways in which a performance of an
activity on the timeline may be altered, and these must be
specified by the user of the system when first describing the
activities. An activity which 1is interrupted during the
performance of a subtask may be continued in any of several ways.
It may be possible to just continue that subtask when resources
become available, and there may be a maximum delay before
continuing. Alternatively, it may be possible to just skip the
rest of that subtask, going on to the next. This might be the
case with a data collection subtask wherein the minimum required
amount of data has been collected. Finally, the interrupted

86




subtask may be restarted, proceeding from the end of the previous
subtask.

Certain resources being used by a subtask affected by a
contingency may be able to be replaced with others, allowing the
subtask to continue wuninterrupted with a different resource
complement. In this case the alteration just involves changing
subtask descriptions and resource availability profiles to reflect
this change in resource use.

Whether any of these options - to continue, skip or
restart the interrupted subtask, or to switch resources - is
viable depends upon the nature of the interrupted subtask and
those around it, and upon the specific point within the subtask at
which it was interrupted. The user must specify the viable
options for contingency alteration when describing the activity.

Finally, all activities constrained by the activity whose
performance is altered or unscheduled must be checked to see if
those constraints have been violated. For example, suppose a data
collection subtask in one activity must follow a calibration
subtask in another which gets altered such that it ends fifteen
minutes later. The data collection subtask may have to be
delayed. Since it is part of an activity, other subtasks in that
activity may need to be moved. It could even happen that one of
these constrains a subtask in a third activity. All such
constraints must be checked, and alterations made to the schedule
when they are found to be wviolated.

When it is determined that an activity not scheduled must
be added to the timeline, the scheduler first tries to find a way
to schedule it which will not disturb anything already scheduled.
If no opportunity exists, MAESTRO will try to find opportunities
which will result in only lower-priority activities being
perturbed, and if found will unschedule or alter one or more of
those.

The last thing MAESTRO tries to do after removing resource
over-uses in a contingency is to try to schedule any activities
whose requests have not been fully met, possibly using resources
released when some other activity was altered or unscheduled.

IV. Scheduler-subsystems interactions
There is a difficult aspect of handling contingencies

aboard spacecraft which has not yet been mentioned. The scheduler
creates a schedule but does not execute it or even monitor its
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execution. To be useful, a schedule must be communicated to the
entities responsible for <carrying out the activities scheduled.
In many cases these entities will be humans, either ground control

personnel or crew members. In other instances various
subsystems will automatically initiate and <carry out actions
according to the schedule. Any of these entities may also

occasionally need to perform actions which are at odds with the
schedule, and the effects of these decisions must be communicated
back to the scheduler. It then can revise the schedule such
that ongoing operations will be minimally perturbed. Thus the
scheduler must be interfaced with a variety of other systems.

MAESTRO has been applied to a variety of related domains.
In one application the scheduler is interfaced directly with a

power management and distribution (PMAD) breadboard at Marshall
Space Flight Center [1]. This breadboard is intended to simulate
the electrical power system onboard a Space Station Module (SSM),
and as such incorporates a high degree of automation [2]. Given a

schedule and some additional information, the PMAD system extracts
a list of power system events, times at which a power system
component must change its state to support some activity onboard
the SSM. This list is used to control switching at the lowest
levels in the PMAD system. It also contains power level and
current information which is used to detect faults in the system.

In the event of a fault, activities may be interrupted or
their resource use altered. Activities may no longer be able to
access the resources they were scheduled to use. Changes such as
these can cause the schedule to become invalid. Activities may be
begun which cannot be completed, or these changes may interfere
with others already in progress. The scheduler is equipped to
handle these problems, as described previously. However, there
are a number of timing issues which must be recognized and dealt
with, four of which are described here.

Reaction Time.
While the scheduler 1is making changes, the power system

and other subsystems will be trying to continue execution of an
old and possibly invalid schedule, which can result in a cascade

of faults registered by these subsystems. The scheduler must
become informed of faults and produce an altered schedule as
quickly as possible to minimize the disruption to ongoing
operations caused by the fault. Fast reaction time is thus an

important aspect of efficient handling of contingencies.
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Implementability of Revisions.

Not only must the scheduler react quickly, but it also
must not make changes to the schedule which are not implementable.
Suppose the scheduler is informed that a fault occurred,
interrupting an activity at 10 o’clock, and generates a revised
version of the schedule which calls for the activity to resume
using a different resource complement 5 minutes later. However,
it requires 8 minutes to finish revising the schedule and
communicate it to the subsystems and personnel executing the
activity to be resumed. At the point the schedule is received it
is already invalid. In this case the scheduler must make a
projection as to when the schedule could be acted upon and what
states the various systems will be in at that time. Using this
information it can revise the schedule to be consistent with the
state of the spacecraft not at the time of the fault, but at the
time the new schedule is in place.

Consistency of Revisions with Spacecraft State.

Another timing issue must also be dealt with for
contingency operations to proceed smoothly. A fault within the
power system may require some sort of testing by power system
software or personnel, or may result in a temporary loss of power
in a non-faulted branch of the power system which could be
remedied fairly quickly. If an activity is interrupted by such a
fault, the scheduler may attempt to revise the schedule using
information about the power system gathered while it is in an
unknown state or a state of flux. In this situation it is likely
that the revised schedule will be in error, and may cause further
problems for the power system. Thus it is important that a steady
and known state be reached and communicated to the scheduler
before it revises the schedule.

Communication of Variance from a Schedule.
Faults or other unscheduled events within a power system

often require that power users (loads) be turned off immediately,
even though the hardware supplying that power is in operating

condition. This can happen when a power source outside the module
reduces its output, or when a high-priority activity must be begun
immediately and requires power some other activity is using. In

these cases the scheduler does not have time to alter the schedule
and communicate it to the power system. The PMAD system just
opens some switches according to a dynamic prioritization scheme,
interrupting activities using power from those switches. This
is known as load shedding. When a situation arises requiring
load shedding, the scheduler must be capable of determining which
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activities were interrupted, and take this into account when
fixing the schedule. There are various methods by which the
scheduler can be apprised of the new situation, and perhaps the
most efficient of these is a direct communication from the PMAD
system to the scheduler. The scheduler can then determine what
other subsystems are affected and communicate changes to them. In
general, there is a large volume of information to be passed
petween the scheduler and the various subsystems, necessitating a
fairly direct communications path between these systems.

V. Conclusion

This paper has addressed some of the more fundamental

issues related to rescheduling of spacecraft operations in
contingency situations. There is much work which still needs to
be done to further the concepts introduced here. The prototype

scheduling system named MAESTRO continues to be a good vehicle for
exploring and finding solutions for problems involving scheduling
and rescheduling, and we intend to continue expanding its
capabilities. We deem it especially important to study the
aspects of rescheduling involving interactions between the wvarious
systems and personnel responsible for providing information,
making decisions and carrying out operations onboard spacecraft.
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Abstract

The Hubble Space Telescope (HST) presents an especially challenging scheduling problem since a
year's observing program encompasses tens of thousands of exposures facing numerous coupled
constraints. This paper discusses recent progress in the development of planning and scheduling
tools which augment the existing HST ground system. General methods for representing activities,
constraints and constraint satisfaction, and time segmentation have been implemented in a
scheduling testbed. The testbed permits planners to evaluate optimal scheduling time intervals,
calculate resource usage and to generate long and medium range plans. Graphical displays of
activities, constraints and plans are an important feature of the system. High-level scheduling
strategies using rule based and neural net approaches have been implemented.
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1. Introduction

NASA's Hubble Space Telescope (HST) will provide important new capabilities for astronomical
observation. HST will orbit the Earth above the distorting effects of the atmosphere, allowing
unprecedented angular resolution, sensitivity and wavelength coverage using six scientific
instruments (for more details, refer to Hall 1982). The Space Telescope Science Institute (STScI)
is responsible for conducting the science operations of the HST, including planning and scheduling
observations. Planning and scheduling HST observations is a particularly challenging problem for
several reasons: A year's observing program will consist of a large number of activities (about
30,000 exposures of approximately 3,000 celestial targets). Many constraints must be satisfied,
including proposer specified constraints (e.g. timing, precedence), orbital viewing constraints (e.g.
Earth, Sun and Moon occultations), and spacecraft power and communications constraints.
Detailed schedules must be prepared days to weeks in advance in order to obtain communications
contacts and to generate spacecraft computer command loads. Schedules must be repaired to
account for disruptions due to unpredictable astronomical events (e.g. a supernova) and due to
spacecraft anomalies.

In this paper we describe the Science Planning Interactive Knowledge Environment (Spike)
System planning and scheduling tools which are being developed at the STScI to augment existing
ground system scheduling capabilities. Initial work has resulted in the development of an
“Exposure Evaluation Tools” testbed which provides both manual and automated tools for long
term scheduling.

The next section provides a brief overview of the HST planning and scheduling problem. The
reader should consult Miller, et al. (1987) for more details. Section 3 describes the problems of
long term planning for HST. Section 4 focuses on Spike's Exposure Evaluation Tools and how
they provide the necessary functions for long term scheduling. Automated strategies for scheduling
are the topic of section 5. The development methodology, including the use of artificial intelligence
techniques and rapid prototyping are discussed in section 6. The interfaces between the Spike
system and other ground system components are described in section 7. The last section discusses
some planned extensions of the current system and the application of these tools to other
scheduling problems.

2. Overview of HST Planning and Scheduling

An astronomer wishing to observe with the HST submits a scientific observing proposal. Based on
the the recommendations of a peer review committee, the Director of the STScI selects which
proposals are awarded observing time and assigns each proposal to one of three priority categories:
high, medium and supplemental. Unless precluded by unforeseen technical problems, all high and
medium proposals will be executed. The difference between the high and medium categories is that
medium priority observations may be rescheduled to accommodate rescheduling of a high priority
observation. High and medium priority proposals will consume about 70% of the estimated
observing time. The supplemental proposals form a pool used to fill out the remainder of the
schedule and the choice of a particular supplemental proposal is likely to be based on scheduling
and operational considerations. The supplemental pool oversubscribes the available time, so there
is only a moderate chance that a particular supplemental program will actually be executed.

At this point, the scheduling process begins. A year's scheduling pool of about 300 proposals
comprises tens of thousands of exposures on a few thousand targets. Proposal information is
contained in the Proposal Entry Processor (PEP) System (Jackson, et al. 1988), which provides
tools for entry, editing, evaluation, selection and transformation of proposals. A proposal includes
target specifications (position, brightness, etc.) and a list of exposures (target, instrument,
operating mode, exposure time, etc.). In order to express scientific constraints on the exposures, a
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proposal can specify a wide range of properties and inter-relationships. For example, exposures
may be designated as acquisition or calibration exposures. Some exposures must be executed at
particular times or at specific spacecraft roll angles. Ordering and grouping of exposures may be
specified as well, and these links may couple exposures separated by many weeks or months.
Exposures requiring low background light conditions are identified for execution when HST is in
the Earth's shadow.

In addition to the constraints imposed by the proposer's scientific program, there are a large
number of other constraints which must be considered. Many orbital factors exert a strong

influence on scheduling: targets are occulted (blocked) by the Earth for up to 40™ each 95M orbit.
Observations cannot be taken during HST's passage through the South Atlantic Anomaly (SAA),

which may last 20™. The telescope cannot point too closely to the Sun, Moon or bright Earth limb.
The roll orientation of the spacecraft is constrained in order to maintain correct power and thermal
balance. Communications with HST is via the Tracking and Data Relay Satellites (TDRS) and links
will be available for only part of an orbit (this also limits the amount of real time interactions with

the HST and instruments). Slews are relatively slow (900 in ~15M), so efficient ordering of
telescope pointing is important. Available electrical power limits the number of instruments that can
be in “standby” or “operate” modes, and cycling between instrument can take several hours. (Refer
to Miller, et al. 1987 for details.)

As a consequence of these and other factors, the operation of HST is almost entirely pre-planned.
Long range plans must ensure the overall feasibility of the program. Short term plans must be
consistent with the long range plan. Changes to the schedules caused by unexpected astronomical
events (e.g. a supernova), instrument anomalies, changes in TDRS schedules, etc. must be
accommodated and factored into the long term plan and to related exposures.

Currently, HST planning and scheduling is supported by the Science Operations Ground System
(SOGS) Science Planning and Scheduling System (SPSS), which was developed by TRW. Initial
population of the SPSS scheduling data structures is via the PEP Transformation Subsystem, an
expert system which takes the astronomer-oriented proposal from the PEP system and creates the
detailed implementation parameters required by SPSS (Rosenthal, et al. 1986). While SPSS has
been successfully used to generate detailed schedules of a few days duration, there are several
factors that severely limit its use on the long-range planning problem: SPSS scheduling algorithms
only examine a few possible times to schedule exposures, and can therefore easily miss good
scheduling opportunities. SPSS always considers detailed orbital events and conditions, even
when they are uncertain or unpredictable. This makes it computationally very expensive to
construct and evaluate long-range plans. A significant number of scheduling constraints are not
considered by SPSS, and, because of the design and implementation of the system, they are
difficult to add to the software. Coordination of related exposures which fall into different short
term plans is essentially a labor intensive, manual process. Even for short term plans, the
throughput of the overall system (people plus software) remains a concern.

Work towards enhancing the scheduling capabilities of the HST ground system is directed along
two lines: 1. increasing the performance, reliability, maintainability and functionality of the existing
SPSS software, and 2. creating new tools which augment the existing software. The latter work,
the Spike system, is the subject of this paper. These two efforts are being carefully coordinated.
The current focus in the Spike system is the development of long term planning tools, the first
phase of which are the Exposure Evaluation Tools.
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3. Long Term Planning

For HST science operations there are several key considerations for long term planning:
« plan must cover a long time interval (multi-year)
« planning is far in advance of execution, and many constraints can not be predicted in
detail in advance
« plan must incorporate a large number of exposures
« constraints can couple exposures separated by long time intervals
« replanning will be required

Multi-year planning is an essential part of HST science operations. The basic observing cycle is
one year long, and it is necessary to consider observations in preceding and succeeding cycles:
Priority observations from the preceding cycle may, for various reasons, not be executed and will
be “carried over” into the current cycle. Although most proposals will be completed in one cycle,
some proposals are for multi-year observation programs, and the effect of these on future
observing cycles must be considered. Additionally, in the first few years of HST operations, the
Science Verification (SV) proposals from the Instrument Teams are mixed with General Observer
(GO) proposals from the scientific community. Long term planning will be vital to ensure that
short term schedules are consistent with the overall SV and GO objectives. Long term planning is
also necessary to evaluate the effects of changes in the spacecraft, e.g. replacement of scientific
instruments, slow decay of electrical power, etc.

The position of HST within its orbit can be predicted accurately about 3 months in advance.
Beyond this, the in-track error grows so large that timing of events which depend on HST position
(e.g. occultation by the Earth, SAA entry and exit) cannot be accurately predicted. A primary cause
of this is fluctuations in the atmospheric density at HST's altitude due to fluctuations in solar
activity. Fortunately, the orientation of plane of HST's orbit can be forecast with reasonable
accuracy about one year in advance. This allows an average treatment of certain constraints. It
should be noted that due to the large number of exposures in a long range plan, even if it were
possible to predict HST orbital events with infinite accuracy, it would not be desirable to do so. A
simpler approach for some constraints reduces the amount of computation while supplying the
needed accuracy for long term plans. We consider the long term planning problem to range from
several years to approximately 3 months before execution of the exposure.

South Atlantic Anomaly (SAA) passage serves to illustrate how constraints dependent upon the
HST position can be meaningfully treated in an average sense for long term planning. The exact
times of SAA entry and exit depend on the orbital location of HST. However, the fraction of time
per day a target is unocculted by the Earth while the HST is outside the SAA depends only on the
orientation of the plane of the orbit, and therefore can be estimated in advance (Sherrill 1987). In
other words, for a particular day in the future, we cannot know the absolute time of SAA-free
observing opportunities, but the number and duration of such opportunities can be known and
used in a long term plan. The effects of scattered light from the Earth, Sun and Moon on faint
targets can be treated in a similar manner.

Another important category of constraints are those which constrain the long term plan itself. This
includes constraints on thé consumption of various limited resources such as time, data volume,
power, TDRS contacts and real-time operations. The efficiency of a plan is also another important
metric in construction a long term plan.

The notion of hierarchical planning from a coarse to a fine level of detail has been explored in many
scheduling problems (see, for example, Smith, Fox and Ow 1986) and will be useful for HST
scheduling. Long term plans will span a few years, with perhaps a two month time resolution (two
months is the precession period of the HST orbital pole, so this interval will encompass a complete
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cycle of orbit dependent scheduling opportunities such as SAA passage and continuous viewing).
As the long term plan is populated, subplans will be scheduled with perhaps a week's time
resolution. Sufficiently detailed plans will then be sent to SPSS for detailed scheduling.

Replanning of two distinct types will be necessary. In going to a more detailed level (say a two
month plan to a one week plan), it may be found that the high level plan was overly optimistic and
that some observations allocated to a particular week cannot be executed due to some constraint. In
this case, information from the lower level plan must be used to modify the higher level plans and
the effects propagated (perhaps to other two month plans due to linkages between observations).
The second type of replanning occurs when an observation fails to execute properly. For example,
one of the stars in a guide star pair may be a binary star, which prevents tracking by the HST. Not
only will it be necessary to replan that observation, it will be necessary to examine the effects on
other observations which attempt to use that guide star. When an instrument shows some
unexplained behavior, it will be necessary to suspend normal observations, schedule the necessary
diagnostic operations and replan the suspended observations for some point in the future.
Observations of targets of opportunities (e.g. a comet or supernova) will also cause schedule
disruption and replanning.

Given this view of long term scheduling for the HST, the next section presents the Spike Exposure
Evaluation Tools, demonstrating how they provide the required capabilities.

4. Spike Exposure Evaluation Tools

The Exposure Evaluation Tools were designed with the following features:
* uniform representation and manipulation of scheduling constraints
* express human value judgments and tradeoffs (“shades of gray” are handled as well as
£0/no-go criteria)
* easy to modify relative importance of constraints, and to add new constraints
* the interaction of constraints and tradeoff options are visible to human planners
* provide a means to track resource usage
» effective user interface
« ability to build automated scheduling tools on top of exposure evaluation tools

4.1 Activities, Clusters, Constraints and Suitabilities

An activity is the lowest level scheduling entity and is used to represent exposures (or possibly
groups of exposures) and other planned actions such as instrument configurations, slews,
communications contacts, etc. Exposures have a very few properties: duration, constraint list,
priority and a flag to mark if the exposure is executed. As the duration of an activity may depend
on its time of execution and relationship to other activities (e.g. slew time, exposure time,
instrument configuration), the duration of an exposure is implemented as a function, not a
constant.

Activities are grouped into scheduling clusters. These are the lowest level entities which can be
scheduled. Scheduling clusters can represent SPSS scheduling units, branching sequences, logical
components of an observing proposal, etc. To preserve scheduling flexibility, ordering of activities
within scheduling clusters is not required. The default is one activity per scheduling cluster.
Clustering reduces the number of entities to be considered by the scheduler.

A constraint is any factor that effects when it is possible or desirable to plan activities. This

includes such strict constraints as “never point the HST closer than 40° to the Sun” and
preference constraints such as “its preferable to execute the observation when 3 independent
pairs of guide stars are available, but one pair is acceptable”. There are two categories of
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constraints: activity and segment constraints. Activity constraints limit the opportunities for a
particular activity. An absolute activity constraint is independent of when any other activities
are planned (e.g. Sun avoidance, orbital dark time, guide star availability, roll). A relative
activity constraint relates two or more activities and depends on the suitabilities of other
activities (e.g. precedence constraints, minimum and maximum time separation between
exposures). Absolute activity constraints are fixed when planning begins, while relative constraints
change as activities are fixed in the scheduling process. Segment constraints represent limitations
on the overall plan and are defined later.

A fundamental component of any scheduling system is the representation of constraints.
Constraints are represented in the Spike system as suitability functions (see Figure 1). A
suitability function gives the desirability of starting an activity at a particular time. A suitability of
zero means that a start at that time is forbidden, while a positive suitability indicates that the activity
can begin at that time. A suitability of 1 is defined as the nominal suitability, with suitabilities
greater than 1 indicating a more favorable starting time and suitabilities less than 1 indicating a less
favorable starting time. A suitability function can be considered as a generalization of binary
planning windows. The fact that suitabilities are not limited to a binary “yes/no” allows a powerful
and natural way to express preferences and allowable tolerances on constraints. A suitability can be
interpreted as the degree of constraint satisfaction. The formal properties of suitability functions are
discussed in more detail in Johnston (1988b).

In the Spike software, constraint suitabilities are implemented as non-negative piecewise-constant
functions (PCFs). This class of functions was chosen since it allows a particularly efficient
representation of constraints and propagation of the effects of constraints. PCFs are closed under
the operations of addition and multiplication, i.e. the sum or product of two PCFs is another PCF.

An important feature of the Spike software is that new constraints can be readily added to the
system, or invoked as planning proceeds from long range to medium range to short range
planning. Human judgment is required to establish the shapes of the suitability functions and the
scale factors.

scale is implied, not displayed
” r solid line shows original PCF ;_‘ 5

N

underline shows segment
interval if committed shaded region shows current PCF

time ———p»

Figure 1 - Suitability function.
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Figure 2 - Combination of two constraints on an activity to form the overall suitability.

The use of suitability functions allows a natural and expressive means to combine the effects of
constraints. The overall suitability of an activity is the product of the suitability functions of all
constraints (both relative and absolute) attached to that activity. In Figure 2 it can be seen that the
strict constraint of Sun avoidance excludes certain times, while the guide star constraint
“modulates” the suitability outside the Sun exclusion.

The suitability of a scheduling cluster is the geometric mean of the suitability of all component
activities. This requires that all activities have non-zero suitability at that time (since the activities
within a scheduling cluster are not necessarily ordered, it must be possible for all to begin at that
time).

Constraints are used to restrict the times when it is possible to schedule an activity. The manner in
which constraints are propagated in Spike is illustrated in the following example: Let A and B be

activities with absolute suitabilities S A2DS and Sp2bs derived from their absolute constraints. Let
C1 and Cj be relative constraints where C1 expresses a constraint of activity A on activity B and
Cp expresses a constraint of B on A. Given initial values for the suitabilities of activities A and B
tobe SpA =S Aabs and Sg = sBabs, the constraint processing algorithm evaluates the effect of A
on B via Cy (which depends on S ) and stores the result in a temporary suitability Sgt*MP. The
suitability of activity B is then updated via Sg := Sg2bs * SptemP, Recalling the way suitabilities

are defined, any times of zero suitability in Sg!*™P will result in zero suitability in Sg, other times

will result in a larger or smaller suitability depending on the preference expressed in the constraint.
The effect of activity B on activity A via constraint C is next calculated in a similar fashion. This

iteration continues until there are no more changes in suitability. It can be seen from this that
mutual effects of constraints will be propagated onto both activities and that this method is quite
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general: no specific assumptions as to the nature or the number of the constraints is required.
Constraint propagation is described in more detail in Johnston (1988b).

A dependency cluster is a set of activities which are related by relative constraints. They reduce
the computational complexity of constraint propagation since the constraint propagation algorithm
need only consider clusters in the same dependency cluster.

4.2 Segmentations and Commitments

In Spike, a long range plan is called a segmentation. Within a segmentation, time is divided into
intervals called segments. Segments are simply a convenient means to discretize time, creating
time “bins” or “buckets”. For long term planning, this allows a significant reduction in the time
dimension of the problem without being artificially limiting. The duration of a segment is subject
only to the restriction that the time spanned by the segment is greater than an orbital timescale and
the duration of activities, i.e. the duration of a segment > 1 day. Segments need not have equal
duration, nor need they be contiguous.

A scheduling cluster may be committed to a segment, that is, restricted to start during the time
interval of the segment, so long as its suitability is non-zero somewhere in the segment. When a
cluster is committed to a segment, the cluster suitability function is set to zero outside the segment
and the effect of this is propagated automatically. Thus a commitment may further restrict other
clusters related via constraints such as precedence or time separation. Note that a cluster may have
times of zero suitability within a segment due to the operation of some strict constraint such as Sun
avoidance. Any limitations more stringent than that imposed by the segment boundaries are
preserved and propagated, thus preserving the maximum scheduling information.

Commitment only requires that the cluster begin within the segment; it does not require that the
cluster end within the segment (which would be unnecessarily restrictive). Multiple clusters may
be committed to segments (subject to constraints) and no ordering of clusters within a segment is
imposed by the commitment.

A segment may have one or more segment constraints. These express limitations segment
resources consumed by clusters committed to that segment (e.g.total time, data volume,
communications contacts and real time interaction). Given a segment with many clusters already
committed, the segment constraint may allow a cluster of short duration to be committed, but
prevent the commitment of a cluster of long duration exposures.

4.3 User Interface

Given a problem as complex as HST scheduling, an important aspect of the Spike system is a user
interface which facilitates human-machine interaction and rapid comprehension of scheduling
constraints, dependencies and commitments.

The main system interface for the Spike software is the Command Hierarchy Interpreter (CHI).
This is a general-purpose utility for accessing Spike commands. Commands are organized
hierarchically and are accessed by using the mouse and menus. The user of CHI need not ever
remember function names or spellings. Context-sensitive help is provided as well as a simple
command dependency checker (e.g. command A must be selected before command B).

Within the Exposure Evaluation Tools, the focus of the user interface is the window-oriented
planning environment (Figure 3). Time is displayed horizontally, while the suitability function for
clusters, activities and constraints can be displayed vertically (refer to Figure 1). This display gives
a powerful means to understanding the schedule. The foreground window in Figure 3 displays the
suitability functions for 5 related exposures (an acquisition, two science exposures and two
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calibration exposures). The background screen displays components of the suitability function for
one of the exposures. Functions to access clusters, activities, constraints and the timeline are
activiated via the mouse and popup menus.

Most of the interaction involves using the mouse and various popup menus: The mouse can be
used to zoom in on times of interest. Segmentations, segments, clusters, activities and constraints
are all mousable, providing various options which invoke commands. For instance, selecting a
constraint's description tells the user the type of constraint, various parameters and the affected
activities (e.g. a proposer-specified time separation constraint of 30210 days between activities A1
and A2).

The user can create multiple planning windows; each showing a different view of the segmentation
so far, for example, different time intervals or different sets of scheduling clusters. A change to the
plan effected from one window will be reflected in the global database and thus may show up in
other windows. The user can also spawn a new, independent segmentation. This is useful for
exploring the effects of different commitments in parallel.

Another subsystem that has been incorporated into the Spike system is the Lisp Object State Saver
(LOSS, Sponsler 1988). This tool saves memory-resident data structures to an ASCII file. The file
can later be reloaded into Lisp memory and and the recreated data structures restored to a logically
equivalent pre-save state. In Spike, it is used to save partial schedules; a planner using Spike can
take a LOSS “snapshot” of memory for use at some later time.

4.4 Operations Concept

In this section we give a brief outline of how the Exposure Evaluation tools can be used in HST
science operations. Long term planning begins with the pool of approved proposals in the Pep
system. These proposals have also been validated to remove syntactic and semantic errors.
Processing of proposals through Pep Transformation, which defines SPSS scheduling data
structures, can also be performed at this point, but is not essential for long term planning.

A planner can use the entire accepted proposal pool or any subset (e.g. just high priority and time
critical proposals). The relevant proposal information is extracted from the Pep database and
transferred to a Spike workstation (see section 7). Next, the planner creates a segmentation
timeline, with the time interval of the plan divided into a number of time segments or “buckets”.
The planner then issues a command to load a set of proposals into Spike. The planner can invoke a
command which checks proposals for inherently unschedulable conditions. Such conditions
include circular precedence constraints (execute exposure A before B, B before C and C before A)
and inconsistent constraints (a proposer specified time window that occurs while the target is too
near the Sun for observation). Proposals with inherently unschedulable exposures can be
modified, according to policy, to correctly implement the proposer's science objectives.

Exposures are then grouped to form scheduling clusters. One clustering option is to group
exposures according to the results of Pep Transformation (either preserving the strict ordering
imposed by the SPSS data structures or allowing a more flexible scheme where activities inside
SPSS scheduling units are not ordered). In either case, estimates of the amount of resources
consumed by a cluster (e.g. time, communications contacts, real time usage, etc.) are calculated.
Clustering exposures on the basis of other criteria such as target proximity, instrument usage or
relationship to other exposures in the proposal will be explored in future work.
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Figure 3 - Exposure Evaluation Tools Timeline Display.
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At this point, long term planning can begin, with the goal being to commit each cluster to a
segment in what will typically be a year-long or multi-year plan. Several options are available to the
planner. Clusters can be committed manually via the user interface, or automatic scheduling
software can be invoked (see section 5). The timeline display provides visual information on the
commitments and clusters which become unschedulable as the result of other commitments. The
schedule is iterated until a suitable solution is found. During the commitment process, the planner
can create new segmentations in order to explore different scheduling choices. The state of the
system can be saved to a file for use in later planning sessions.

Hierarchical planning fits naturally in this scheme. The planner can create a new segmentation
which covers a smaller time interval with finer time resolution in the segments. The commitments
from the higher-level plan can be transferred to the more detailed plan for further commitment.
Tools to automate hierarchical planning will be developed in future work. When clusters are
committed to segments of approximately a week's duration, the commitments can be transferred to
SPSS for detailed scheduling.

5. Strategies

Given the large number of observations to be executed by HST in a year, automated tools to
schedule the bulk of the observations are clearly necessary. This section discusses three types of
automated commitment strategies which have been prototyped: procedural, rulebased and artificial
neural networks.

5.1 Procedural Strategies

Two simple procedural strategies are available in the Spike software: most suitable cluster-
segment, and most absolute constrained cluster. The first strategy finds the cluster-segment pair
with the highest suitability of all clusters in all segments and commits that cluster to that segment.
The effect of this commitment is propagated through the relative and segment constraints to find the
effects on other clusters. This will usually limit the scheduling choices for these remaining clusters,
i.e. the suitability at some times will be smaller (perhaps zero) due to the commitment. Suitabilities
are recalculated and the highest cluster-segment suitability of the non-committed clusters is
identified. The process is repeated until all clusters are committed or all remaining clusters are
unschedulable. This strategy is one implementation of the so-called “greedy” algorithm.

The second algorithm operates in a similar manner, with the cluster which has the smallest time
span of non-zero suitability (i.e. most constrained) being committed to the segment with highest
suitability at each step.

The advantage of these strategies is the speed of execution. The disadvantage, as is well known in
scheduling problems, is that such simple strategies can lead to grossly sub-optimal schedules and
an unacceptable number of unschedulable clusters. More flexible strategies which take into account
both resource and cluster bottlenecks are required to solve a problem as complex as HST
scheduling (Smith, Fox and Ow 1986).

5.2 Rule Based Strategies

In order to provide a more flexible and intelligent approach to scheduling, a rulebased scheduler
has been implemented. The rulebase is a control layer directing the Exposure Evaluation tools
which serves as the representation layer. Essentially, the rulebase replaces a human planner
making commitments via the window interface. The rulebase chooses what commitments to make
and analyzes the results of commitments, while the Exposure Evaluation tools spawn alternative
schedules, execute the commitments and propagate constraints. The rulebase system was
implemented in KEE (a product of IntelliCorp).
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Communications between the two layers is through a schema in the rulebase. For each
segmentation (partial schedule) in the representation layer, there exists a corresponding schema in
the control layer. The schema contains a number of slots which hold summary information about
the segmentation, e.g. segmentation name, most suitable cluster and segment, most absolute
constrained cluster, highest priority cluster, unschedulable clusters, etc. All reasoning about
commitments uses this summary information. When a commitment is made the representation layer
creates a new segmentation and the control layer creates a new schema. A method is executed
which populates the schema with summary information. Both the schemas and the segmentations
can be thought of as a tree where each node is a partial schedule.

The search strategy conducts a “best-first” search based on the A* algorithm. Two classes of rules
were used: search and commitment. The search rule class identifies which one partial schedule is
most promising (in some sense, see below). The commitment class of rules decides for the most
promising node, what is the best commitment to make (e.g. highest priority cluster, most absolute
constrained cluster).

Definition of the “best” or “most promising” partial schedule is of central importance to this
strategy. Work to date has primarily used the sum over all clusters of the highest suitability in any
segment. This allows the rulebase to identify poor solutions (since the suitability of some clusters
becomes low), but does not provide enough discrimination between schedules before poor
solutions are generated. This is largely due to the fact that the summed suitability neglects the
effects of segment constraints until a cluster becomes totally unschedulable. In other words, it is
focusing too closely on scheduling clusters in suitable segments without considering the effects on
the diminishing resources of the segments themselves. Smith and Ow (1985) have addressed the
similar problem of task versus resource based views in factory scheduling. We have also made
preliminary investigations of using the rulebase to identify resource bottlenecks in order to
schedule critical clusters first.

A typical commitment rule might be:
For the best partial schedule
if there is a high priority exposure
and it is the most absolutely constrained exposure
and this rule hasn't been applied to this partial schedule
then commit the exposure to its most suitable segment
populate the schema with segmentation information
add this partial schedule to the list of open schedules

This example is paraphrased from the Kee code, however implementing a natural language tool to
take the above and translate to executable code is not a difficult task. In the event that more than
one commitment rule is instantiated for the current best node, the rule with the highest weight is
chosen. More sophisticated strategies for choosing among competing commitment rules are under
investigation.

5.3 Artificial Neural Network Strategies

An artificial neural net has been implemented as another approach to automated scheduling. Neural
nets are based on models of how biological “computers” work and have been applied to a variety
of problems including pattern recognition, classification, memory, and speech understanding (see
Tank and Hopfield 1987 for an introduction to neural nets).

In SPIKE scheduling, a version of the Hopfield neural net model is used. The network can be

considered as a rectangular matrix, where the columns represent segments (time) and the rows
represent scheduling clusters. A particular network element (neuron) represents the potential
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commitment of a particular cluster to a particular segment. When the network has relaxed (found a
solution), a neuron in the “on” state signifies a commitment of that cluster to that segment. For
each neuron, a bias term expresses the absolute suitability of that cluster-segment combination,
with the bias term proportional to the suitability in that cluster (or a large inhibitory bias if the
suitability in that segment is zero). Several factors determine the connections strengths between
neurons: All neurons in the same column (same segment) are connected to express the segment
constraints. All neurons in the same row (same cluster) are connected so that a cluster committed to
a segment will inhibit the commitment of that same cluster to another segment. The effect of the
commitment of cluster Al to segment S1 on the commitment of cluster A2 to segment S2 is
implemented as a connection between the corresponding neurons. The strength of the connection
(weight) is determined using suitabilities derived from the relative constraints relating A1 and A2.
Additionally, there is a set of “guard neurons”, one for each row (cluster) which apply a bias to
force each cluster to be committed to some segment. Without the guard neurons, the network could
converge to solutions where many clusters were not committed to any segment. However, the
addition of guard neurons also breaks the symmetry of the basic Hopfield model so that the
network is no longer guaranteed to always converge to a solution. With the network connections
established, the neural network tends to frequently find “good” solutions (most suitable
cluster/segment commitments) very quickly. When the network fails to converge it can be stopped
after a fixed number of neuron state changes and then restarted. In this way is is possible to
quickly generate and evaluate a number of partial or full schedules. The neural network approach
appears particularly promising for replanning: the network does not need to be rebuilt since
changing only the neuron biases is sufficient to indicate which activities have been executed. It also
offers the potential for implementation on parallel hardware, which would provide even more
dramatic performance improvements.

6. Development Methodology

The software described in this paper has been developing using “artificial intelligence” tools,
including Lisp, object oriented programming, expert systems and artificial neural networks. The
use of a Lisp software development environment on a workstation (Texas Instruments Explorer
and Apple MacIntosh) provided an unparalleled development and implementation environment.

A rapid prototyping methodology is a key component of our approach, since many requirements of
the problem are not understood in detail - the HST scheduling problem is orders of magnitude
more difficult than that found at any other observatory. Examples of areas requiring substantial
investigation include the relative importance between various constraints, the choice of scheduling
strategies in various situations, metrics for schedule quality, replanning from schedule disruptions
and display tools. Our development approach is to quickly provide the users an initial set of tools
with fundamental scheduling capability. This testbed will allow users and developers to explore the
problems together, better understand the requirements and implement improvements quickly and
efficiently (see Agresti 1986 for more on rapid prototyping).

Most of the system is implemented in Common Lisp. Currently we are using the Flavors object
system but we expect to migrate to the Common Lisp Object System when it becomes available.
The graphics and user interface utilities are based on IntelliCorp's Common Windows. The use of
expert system shells such as KEE (from IntelliCorp) or ART (from Inference) to control
scheduling decisions is under investigation. Careful attention has been paid to standardization and
portability: portions of the system have been used on TI Explorer, Symbolics, Vax, MacIntosh and
Sun computers. Although development takes place on Explorers and Maclntoshes, we are
investigating the utility of other machines for operational use including general purpose
workstations (such as Sun computers) or hybrid machines (such as the Macintosh II-micro
Explorer).
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7. Interfaces

The Spike system has interfaces to two other systems: Pep and SPSS (see Figure 4). Currently,
the Pep interface has been partially implemented. Interfaces to the SPSS system will be added as
development continues.

As noted earlier, the Pep system contains proposal information includin g the proposer's target list,
exposures and their interrelationships, and the initial SPSS data structures generated by the Pep
Transformation software. Migration of this information from the Pep relational database to the
Spike system is a two step process: First, a general purpose database report writer is used to
extract the proposal information into a file, formatted as calls to Lisp functions. In the second step,
a Lisp program reads the database report file and creates a second file, again writing calls to Lisp
functions. When loaded into the Spike system this file creates data structures such as targets,
constraints, activities and clusters. The first step is simply an extraction of the information from a
relational database, while the second step performs the mapping between the Pep and Spike data
structures. For example, binary links between exposures are stored as tuples in a relation in the
Pep database. These links are mapped to different Spike constraints depending on the type of the
exposure link (acquisition, precedence, conditional, etc.).

Files are transferred from Pep to Spike using Decnet or TCP/IP and can be initiated from either
system. Currently, extraction of Pep information must be initiated on a computer running the Pep
system. The second processing step can be performed on either a Pep or Spike computer. We plan
to implement remote procedure calls so that all processing can be initiated from the Spike
workstation.

Initially, a unidirectional interface from SPSS to Spike will be implemented in order to provide
Spike with HST and TDRS orbit models and HST Project Database parameters relevant to long
range scheduling. The interface will be extended to provide bi-directional transmission of
scheduling windows and planning data structures, e.g. transmission of medium and short range
plans from Spike to SPSS for detailed scheduling and the feedback of these results into the Spike
plans. The interface will be patterned on the Pep-Spike interface as the relevant SPSS information
resides either in a relational database or in disk files.

8. Discussion

The Spike Exposure Evaluation Tools provide a powerful means for long range scheduling of HST
observations. Essential aspects in reducing this to a tractable problem include the representation
and propagation of constraints, clustering exposures to reduce the number of entities scheduled,
discretization of time to reduce the number of places examined and a user interface which displays
the relevant information in a succinct manner.

The problems faced in scheduling HST observations are common to other telescopes and the Spike
system has been designed with this in mind: The concept of suitability functions as a means of
expressing constraints and constraint satisfaction is a general one. Likewise, propagation of the
effects of constraints is not tied to the nature of the constraint or schedulin g problem. Indeed, this
approach should be applicable to many classes of scheduling problems outside the realm of
telescope scheduling.

Traditionally, little emphasis has been given by observatories to integrated, efficient scheduling
programs: For the most part, ground-based telescopes are scheduled manually (perhaps with
limited software assistance), often by granting blocks of time (days or weeks) to observers who
execute the observations. More sophisticated scheduling techniques can be found in some space-
based telescopes. These schemes can limit the scientific efficiency of an observatory: repeated
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observations of short duration over a long timespan are very difficult to accommodate in the block
time scheduling. An observation requiring outstanding atmospheric or orbital conditions may find
useless time that would be more than adequate for other, less demanding observations.
Simultaneous observations of a target from several observatories only exacerbates the problem.
Given the high oversubscription rate of all major astronomical facilities, an increase in efficiency
can be very important. Concurrent with the increased abilities of scheduling software, there is a
growing awareness of the need for automated planning to increase scientific productivity (Johnston
1988a). Plans for the University of Texas-Penn State 8m Spectroscopic Survey Telescope (SST),
the European Very Large Telescope (VLT) and Space Station Science and Applications Information
System (SAIS) call for increased scientific return through sophisticated scheduling and reactive
replanning. We have made preliminary investigations in scheduling other observatories with the
Spike software (Johnston 1988c).

We would like to thank Hans-Martin Adorf (ST European Coordinating Facility), Robert Jackson
(STScI), Don Rosenthal (NASA Ames), Tom Sherrill (Lockheed), Dave Skillman (NASA
Goddard), Steve Smith (Carnegie Mellon University) and Monte Zweben (NASA Ames) for
stimulating conversations on planning and scheduling problems. We also express appreciation to
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The Proposal Entry Processor (PEP) System supports the submission, entry, technical evaluation
review, selection and implementation of Hubble Space Telescope observing proposals. This paper
describes the PEP system, concentrating on features which illustrate principles of telescience as
applied to the HST. These principles are applicable to other observatories, both space and ground
based.

The PEP proposal forms allow a scientist to specify scientific objectives without becoming
needlessly involved in implementation details. The Remote Proposal Submission System (RPSS)
allows proposers to submit proposals electronically via Telenet, SPAN and other networks. RPSS
performs syntax and semantic checks on proposals. PEP uses a fourth generation database system
to store proposal information and to allow general queries and reports. The Transformation
subsystem uses an expert system written in OPS5 to cast a scientific description of an observing
program into parameters used by the planning and scheduling system. The TACOS system is a
natural language database which supports the proposal selection process. Technical evaluations for
resource usage and duplicate science are performed using rulebased systems.

1 Staff member of the Space Telescope Science Insitute
2 Operated by the Association of Universities for Research in Astronomy for the National
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1. Introduction

The PEP System at the STScI is an interface between the HST user and the planning and
scheduling software. The purpose of this system is to accept a high level description of an
astronomical observing program and to produce from this the parameters necessary for the
planning and scheduling software. Additionally, PEP provides tools for technical evaluation and
selection of observing proposals. Traditionally, the processes of solicitation, selection, evaluation
and implementation have been largely manual. The tools provided by the Pep system provide a
novel approach and may be useful as a model for proposed ground and space-based observatories.

This paper describes the Pep system and how it assists in proposal processing. Section 2 describes
from a general point of view the process of soliciting and implementing an astronomical observing
program and describes some of the high level requirements of this process. Section 3 describes the
STScI proposal forms which allow an astronomer to describe an observing program at a high
level, without being needlessly burdened by implementation details. Section 4 examines the
architecture of the Pep system and provides an overview of the major subsystems: Entry,
Evaluation, Transformation and Time Allocation Committee support. Section 5 discusses the PEP

Remote Proposal Submission System in detail. The last section discusses PEP in the context of
Telescience and applications to other observatories.

2. The Observing Process

Consider first the observing process, from the formulation of a scientific problem through the
collection of data: An astronomer poses a question, decides what observations would answer the
question, identifies a telescope and instrumentation which are capable of obtaining these
observations, plans the observations, and finally executes the observations and collects the data.
For example, an astronomer may ask “what is the distribution of stellar ages?” Knowing that
lithium abundance is correlated with age would lead to observing red giant stars to obtain lithium
spectral line profiles. An observing proposal for time on a telescope with a suitable aperture and
spectrograph would be submitted. Prior to observing, a sample of red giants stars would be
picked, and parameters such as wavelength ranges and exposure times would be determined.
Lastly, observations are made, perhaps adjusting the program to compensate for changes in
weather, instrument performance, etc.

This is, of course, a very brief and idealized sketch of what is often a long and complicated
process! The essential point is that during this process, the expression of the observing program
must undergo a number of transformations, from general descriptions to specific implementation
details.

For many observatories, there has been no need to explicitly enumerate these observing steps as
one person, the observer, was responsible for most aspects of the program. The transformation
from general program to specific instrument and telescope operations was implicitly performed by
the observer, often “on-the-fly”. This is particularly true for classical, ground-based telescopes,
and to a lesser extent for space-based telescopes.

There are two reasons why it may be necessary or desirable to consider the observing process
more explicitly: First, the operation of some telescopes is so complex that an observer has neither
the time nor the motivation to acquire the necessary expertise to implement the program
singlehandedly. HST serves as a good example of this. The input to the planning and scheduling
software requires a detailed understanding of the HST, orbital conditions, and the software data
structures. The ground system requires that most observations are planned in detail weeks in
advance of execution. Observers are not in continuous communications contact with the HST.
Telescope and instrument operations must be carefully examined to ensure the health and safety of
the spacecraft.

108




A second reason is that important gains in scientific efficiency can be achieved. Johnston ( 1988a,b)
has addressed the need for automated scheduling of ground and space based telescopes.
Interleaving of observations from different programs, instead of block scheduling of time can lead
to increased scientific return by minimizing instrument changes and calibrations, and
accommodating programs which require short observations over long time periods. Many
observatories offer “service observing” where observatory staff members execute observations for
the proposer. At ground based observatories, it is all too common for a program requiring
excellent atmospheric conditions to be executed during a time of mediocre seeing, while a program
with less stringent requirements happens to occur during the best seeing conditions.

Computer science, in particular, the field of artificial intelligence (AI) has matured sufficiently that
we can begin to tackle these problems. Although there is still much debate over whether computers
exhibit any form of intelligence, it has been clearly demonstrated that computers are solving
problems which formerly required highly trained humans and that traditional (non-AI) computing
paradigms are inadequate to deal with these tasks.

The thesis of this section is that the observing proposal form and proposal processing must be
considered in view of the above. A proposal is not simply used by an observatory to select
observers. The proposal form must contain sufficient information that the observatory can enhance
the observing process and increase the scientific productivity of both the observatory and the
observer. This includes proposal selection, evaluating proposals for feasibility and efficiency,
implementation and data archiving.

The process of elaborating the scientific program can be thought of as progressing from Asking
Questions to Identifying Data Needed and finally to Specifying Instrument Activities . Before
describing the “Astronomer oriented” vocabulary by which the HST user characterizes their
programs, it is useful to consider various possible vocabularies. A user might describe their
programs at three levels of abstraction: Answers, Data, and Spacecraft Activities

A scientist could simply ask a question, e.g., “What is the relationship between mass of a galaxy
and its central velocity dispersion?” Software would determine the data required and either locate
the data in archives or else determine the telescope activities needed to obtain the data. However,
such software does not yet exist and is beyond the state of the art of Al today.

The next level of abstraction would be for the user to specify the data they wanted. The
characteristics of astronomical data include: spatial range, spatial resolution, spectral range, spectral
resolution, time range, time resolution, and signal to noise ratio for the flux. The software would
search the archives and determine the best choice of spacecraft activities which would generate the
desired data. The software faces a much more limited range of possible inputs than when
answering a more general question, but it would still need detailed knowledge about the spacecraft
capabilities and how to obtain the required data. Such a software tool could be built with today's
technology, but it would be a significant undertaking.

Instead of having the proposer specify the questions or the data, the proposer would specify the
spacecraft activities needed to obtain the desired data. Here, an analogy with computer languages
becomes relevant. A programer can work in assembly language or in a high-level language like
Fortran or Pascal. Similarly, in specifying the spacecraft activities, the proposer could specify the
actual spacecraft command loads on a timeline or else could specify very high-level commands in a
“friendly” language.

When specifying detailed spacecraft activities, it is all too easy to request physically impossible,

unpermitted, or internally inconsistent activities. This problem is much less likely to occur when
specifying higher level commands. The complexities of modern spacecraft and of spacecraft

109



operations require detailed knowledge which is costly to acquire. The syntax used in specifying
the activities must be validated to assure that only legal syntax was used and that the activities are
feasible.

3. HST Proposal Forms

Users of ground based telescopes and previous spacebased telescopes have traditionally been
granted specific time periods in which they control the telescope in real time. The proposal forms
for these facilities have only contained information needed for proposal selection and for providing
necessary staff and hardware resources at the telescope. The forms have not contained a detailed
description of exactly what observations are to be done. The situation with HST is quite different.
Real time communication with HST is available about 20% of the time, due to HST being in a low
earth orbit and sharing the 1 MHz Tracking Data Relay Satellite data link. Thus the proposer must
specify on the proposal forms all the information needed to execute the observations. An
analogous situation for a ground based telescope would be if the astronomer had to write a
computer program which would command the telescope and perform all the desired observations.

Planning and scheduling of HST observations is currently performed with the Science Planning
and Scheduling System (SPSS) of the Science Operations Ground System (SOGS) developed by
TRW. SPSS requires its input to be in a syntax and form which is set by the design of the SOGS
software and internal data structures. A scientist would need to have a great deal of specialized
knowledge about the internal operations of SOGS in order to properly describe his series of
desired exposures in the SOGS syntax. The burden on the scientist would be much too great, and
the probability of error in the specification of the exposures would be much too high.

To meet this limitation of SOGS, the STScI developed the HST proposal forms; described in the
Call For Proposals and Proposal Instructions (1985), with the following goals:

Be oriented towards the user community - easy to understand, and concise and logical in
the amount and sequence of data requested

To accommodate both simple and sophisticated observations

To allow the proposer to specify what data should be collected without becoming
needlessly encumbered by telescope and instrument specific details

To allow data entry by entry clerks directly from the submitted forms with a minimum
amount of training.

The following sections describe the Proposal Forms, i.e., the Coverpage and General Form, the
Targets Lists, and the Exposure Logsheet.

3.1 Coverpage and General Form

The Cover Page is an “executive summary” of the proposal, and contains the proposal title,
scientific category, the principal investigator, the number of targets to be observed, the amount of
exposure time requested, a scientific abstract, and the amount of funding requested.

The General Form largely expands on the Coverpage information. There are General Form
sections listing all the investigators and their address. There are other sections in which the
proposer describes in detail the scientific justification of the project, why HST is needed, why
special scheduling or calibration requirements are necessary, what the data analysis plans are, etc.
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The information on these forms are used primarily in the proposal selection process and for
contacting the proposers, but they also provide a written description of the proposer's intended
observations. The only limitation on the content of the forms is that PEP cannot enter graphical
data or non-alphanumeric characters, e.g., Greek letters.

3.2 Target Lists

The HST proposal forms allow for three categories of targets: Fixed, Solar System and Generic,
each with its own Target List. This division is necessary since the specification of target position is
different for each class.

Fixed targets are defined by a specific position on the sky. The proposer may specify a particular
right ascension and declination (along with uncertainties), or an offset in coordinates from another
fixed target. Specification of extended or area targets (e.g. nebulae, galaxies) is also possible.

The positions of Solar System targets are specified in one of a number of ways, including standard
names (e.g., Jupiter), orbital elements (e.g., a new comet), or positions relative to other solar
system objects (e.g., satellite or planetary surface features). The positions can also be restricted to
specific time intervals or periods when certain planetary events occur (e.g., maximum elongation
of a satellite). The Moving Object Support System (MOSS) was developed by JPL and converts
these position and time specifications into a time series of position vectors which are used by
SOGS in scheduling the observations.

Generic targets provide added flexibility to the proposer. These targets are identified by general
target characteristics or broad locations in the sky. Examples of generic targets include targets of
opportunity (nova, supernova, comet, etc.) or certain types of targets in large regions of the sky
(e.g. any field within 10 degrees of the north galactic pole.) Generic targets are useful when it is
unduly restrictive or impossible to select a specific target at the time of proposal submission.

Each Target List requests a target name, target description, anticipated HST acquisition problems
and target brightness data. Target names and description are important in the construction of useful
astronomical archives and in understanding the proposer's intent. The STScI Proposal Instructions
give detailed guidelines for naming and describing targets. Target brightness data is requested so
that exposure times can be independently verified and adjusted to compensate for orbital conditions
(e.g. scattered earthlight)

3.3 Exposure Logsheet

The Exposure Logsheet provides a powerful mechanism for expressing the observations to be
done at the positions specified on the Target Lists. It provides both a simple to use form for the
common types of observations, and yet a powerful means of expressing complicated programs
with many interdependencies. This form ties the exposure information to the target list information
and contains all the information provided by the user describing the spacecraft activities desired.

For simple observations, the user specifies on this form the Target Name, Configuration,
Operating Mode, Spectral Element, Entrance Aperture, Flux Reference Number, Number of
Exposures, and Exposure Time. For more complicated observations, the Optional Parameters
allow the user to change the instrument settings from the default values. This is especially useful
for onboard target acquisition modes, where the nature of the field determines the best set of search
parameters. The use of default settings allows the HST user to ignore those settings which are not
relevant to his needs and allows STScI to use the best values based on recent experience without
having to alter the contents of the Exposure Logsheet whenever an improved value is determined.

The Special Requirements section of each Exposure Logsheet line allows the user to specify:
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Relationships between exposures, €.g8.,
Early Acquisition For <line>
Same Orientation For <line> As <line>
Calibration For <line>
Real Time Analysis For <line>
After <line>
Sequential <lines> Within <time>

Additional properties of an exposure, €.8.,
Position Target <X,Y>
Spatial Scan
Critical Observation
At <date> +/- <range>
Dark Time

Branches and conditional exposures, e.g.,
Branch To <line> If <condition>
Conditional If <condition>
Select <number> of <lines> Or <lines> ...

Each exposure on the Exposure Logsheet is labeled with a line number. The <line> in these
Special Requirements refers to a single line number or a range of line numbers.

These Special Requirements must be described using syntax which is listed in the Proposal
Instructions. The syntax limitations allows the user's needs to be processed by software
automatically and without any human interpretation.

The Exposure Logsheet provides several constructs which allow the user to express a set of
exposures in a succinct fashion. The Sequence Definition or Usage column can be used to Define
subroutines of exposures and then to Use such subroutines. In the Define lines, some of the
columns can have placeholder symbols, which get substituted with specific values from the Use
lines. In the Special Requirements column, the user can state

Do For Targets <numbers>
or
Repeat <lines> Every <time> For <number> More Times

to either execute an Exposure Logsheet line for a number of targets or to execute a number of lines
at the stated interval.

Not only does this eliminate bulk and repetition, it can also make the proposer's intent more clear
to both humans and software. This subroutine or do-loop ability is functionally similar to block
structured computer programs.

There are two additional forms which are used in the small number of proposals where additional
information is needed. The Proper Motion/Parallax Form is used to specify the apparent motions of
fixed targets when these motions are significant (e.g. could affect target acquisition). The Scan
Data Form is used when the HST Pointing Control System scanning capability is used, i.e., when
the Spatial Scan special requirement is stated.
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While the forms and syntax are more complicated than proposal forms for ground based
telescopes, they provide a compact and expressive representation of the series of activities and
decisions desired by the user. The information required for software to execute an observing
program with a ground based telescope would be similar in volume to that required for HST.

4. PEP System Overview and Design

The PEP system was designed to support the Entry, Evaluation, Selection, and Transformation of
HST observing proposals as described in the ST Proposal Entry Processor System Requirements
(1987). The process by which proposal information flows through the PEP system is illustrated in
the following diagram.

Proposal

Forms RPSS

Validation

Internal
Data
Base

Transformation

Transformation
Data
Base

Figure 1 - Overview of PEP System

The Entry subsystem consists of RPSS (described in Section 5) and other software tools and
provides entry and editing capabilities for the Entry Data Base (EDB) and the Validation function
which populates the Internal Data Base (IDB). The Evaluation subsystem is a set of tools which
uses IDB information to check feasibility problems, find duplicate exposures, etc. The Selection
subsystem uses EDB and IDB information to aid the proposal selection process. The
Transformation subsystem converts the IDB information into the SPSS data representation which
is stored in the Transformation Data Base (TDB) for later transmission to SPSS.

4.1 PEP Development Environment
The PEP software was developed in a rapid prototyping environment where the developers had as
much understanding of the system requirements as the users had. This combination of a rapid,

iterative code enhancement cycle and a high level of domain expertise by the developers provided a
working PEP system quickly and economically.

The Entry Data Base (EDB), Internal Data Base (IDB), and Transformation Data Base (TDB) are
relational data bases in a Britton-Lee BL700 data base machine. The interface between the BL700
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and the VAX's is provided by Signal Technology's Omnibase, a fourth generation language tool.
The extensive querying capability provided by Omnibase is very useful in an environment where
not all the operational requirements are known in advance.

All the code was developed in a VAX environment under the VMS operating system, i.e., the same
hardware environment as SOGS. The computer languages were chosen to match the needs of the
subsystem. The Entry subsystem is largely written in C and uses the flexible data structures
available there. A large portion of the Transformation subsystem was written in OPS5, a rule
based production language ideal for handling large numbers of special cases. The core of the
Selection subsystem was written in Common LISP, a language well suited for natural language
processing. The ability to choose the best language for the task has help to quickly create the
software tools needed for each subsystem.

4.2 PEP Entry Subsystem

The Entry Subsystem takes the user's information from the proposal forms or RPSS files
(described in Section 5) and enters it into the Entry Data Base (EDB). The Entry Subsystem was
designed to be robust and to allow entry of any alphanumeric information on the proposal forms.
It was also designed to be easy to use and require a minimum of training for the entry clerk.

The ease of use was met by having the clerk enter data into terminal screen templates which closely
resemble the proposal forms. The robustness was met by having the entry tools allow any
alphanumeric information on the form to be entered and stored in the database. The ability to enter
the entire contents of the paper form means that illegible characters or incorrect syntax will not halt
the entry process.

Since the EDB information is in the form of free text and thus can contain either valid or invalid
syntax, there is a Validation tool which verifies that the user has followed the Proposal Instructions
and has used only legal syntax. For example, Validation will verify that the user has requested a
filter which exists for the desired instrument configuration and operating mode. The Validation
tool takes the free text input, generates error messages describing any illegal syntax, and populates
the Internal Data Base (IDB) relations. Whereas the EDB relations contain free text and are
organized along the lines of the proposal forms, the IDB relations contain specific numeric or
character values organized in a hierarchy which describes exposures and targets, their properties,
and their interrelations. If the Proposal Forms and syntax is a computer language, then Validation
is a compiler.

The EDB provides an insulating layer between the proposal forms and the IDB representation of
the proposal information. Should the proposal forms be changed, none of the subsystems which
get their input from the IDB will be affected by the change. The only changes would be to the
EDB, to the Entry tools, and to Validation which takes the EDB information and populates the
IDB.

The screen based entry tools can also be used to search the EDB for information in a specific
proposal. There is also a very powerful interactive query language and report writer which can be
used to make complex queries and format the results of the queries.

Another requirement of the PEP system was to provide proposal security and change tracking.
The security is provided by allowing only people in certain lists the ability to read or edit proposal
information. When a user edits a line on a form, a record in sent to a proposal history relation
which tracks who changed what and when. There is also a Signoff facility which allows pending
changes to be accepted or rejected by staff having this level of access to the system. With these
security features and the backups of the EDB, PEP is able to limit access to proposal information
and to recover from erroneous user changes.
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This subsystem has been extensively used in entering the 307 Guaranteed Time Observer
proposals, the approximately 250 Orbital Verification and Science Verification proposals, and more
than 100 General Observer proposals. Since its initial delivery, the PEP Entry Subsystem has
been enhanced to deal with additional forms and with new syntax, and has proven to be a
successful and operational system.

4.3 PEP Evaluation

The purpose of the PEP Evaluation subsystem is to evaluate proposals and assist STScI staff in
reviewing the technical feasibility of proposals. This includes identifying possibly redundant
exposures, spacecraft resources consumed by the exposures, and impossible to implement
exposures. The Evaluation Subsystem has three general functions: Duplication Checking,
Resource Usage , and Feasibility.

4.3.1 Duplication Checking

Since HST time is such a scarce resource, it is important to check for the possibility of duplications
with either previously executed and archived exposures or concurrently proposed exposures.
However there are more than 10,000 exposures scheduled each year and the number of possible
pairs of “duplicate science” exposures is very large, of order N squared. The purpose of the
Duplication tool is to identify a small number of possible duplications for more detailed evaluation
by a human scientist. No proposed exposure is rejected without a scientist evaluating the
significance of, or the need for, what appears to be a scientific duplication. The could be situations
where duplicate science is necessary, e.g., confirming suspected time variability of a phenomenon.

Scientific duplication is assessed both by positional similarities and by instrument usage
similarities. Due to the wide field of view of certain HST detectors and to the uncertainties in the
coordinates provided by the users, there are degrees of position matching criteria. Similarly, since
equivalent scientific information can be obtained with different instrumental setups, there are
several degrees of instrument matching.

The Duplication tool is written in C, OPSS, and the data base query language, IQL and is described
in Jackson (1987). The position matching and instrument matching code is written in OPSS5,
which allows for rapid development and modification of the algorithms to meet new input syntax
or new definitions of “duplication”.

4.3.2 Resource Usage

Individual proposals can vary quite widely in the resource overheads needed to execute the same
total exposure time. For example a one second HRS exposure in the middle of a string of other
HRS exposure on the same target would take one second to execute. But a lone one second
WFPC exposure could take 10 minutes to slew the spacecraft, 12 minutes to acquire guide stars, 1
second to expose the CCD, and 4 minutes to read out the data. The Resource Usage tool estimates
how much of the limited spacecraft and ground system resources an individual proposal consumes.
This resource information is used by the Time Allocation Committee (TAC) to prevent the
oversubscription of the available resources, e.g., total spacecraft time, data volume, etc.

The tool is written largely in OPS5 and uses the same set of rules used by Transformation to
assemble exposures into the scheduling aggregates, as described in Jackson (1987). The overhead
times for Earth occultations, slews, and guide star acquisitions depend on the number and
durations of these scheduling aggregates. The earth occultation overhead times are calculated
assuming a conservative estimate of the average viewing time. The Resource Usage tool's
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overhead time estimates could not be significantly improved upon without actually scheduling the
proposal’s exposures.

4.3.3 Feasibility

The purpose of the Feasibility tools is to identify problems with exposures before the exposures
are scheduled or executed. By identifying these problems early, the proposer and STScl staff have
more time to devise problem-free exposures which meet the proposer's scientific needs.

Currently there is a tool to check that exposures are not requested at times which conflict with the
sun distance or moon distance limits, and a tool to verify that uncalibrated filters or entrance
apertures are not used. The next tools to be implemented will:

Determine if and when guide stars are available for an exposure;

Check that the proposer has not requested exposures which are syntactically legal
but which are inconsistent, absurd, or missing crucial related exposures;

Verify that the exposure time is consistent with the instrument used, the target
brightness, and the signal to noise ratio and verify that the instrument will not be
damaged by an overexposure.

The list of possible Feasibility tools is almost endless.
4.4 Selection

The Selection function is provided by a set of tools which are used to assign proposals to referees
and to support the decision making process of the TAC (Time Allocation Committee) and the
STScl Director on which proposals to select. The most important tool is called TACOS, a natural
language interface to a single table data base and described in Hornick, Cohen, and Miller (1987).
The TACOS user can create querying or editing commands either in real time or by procedures
stored in the user's initialization file. A potential query might be the average referee score of all
Solar System proposals. Potential data editing could be modifying referee scores or entering the
TAC priority of a single proposal.

TACOS is used by the TAC to track the resources allocated and balance the accepted program
between the various subdisciplines and proposers. For example, the TAC must make sure that
European Space Agency member nation proposers receive 15% of the HST observing time and that
real time spacecraft contacts

The TACOS tool is written in Common LISP and can be used on any single table database. The
syntax, grammar, and data base structure are all determine by initialization files and the tool could
be used on a completely non-HST problem. Once the initialization files are created, the users can
create their own commands and procedures with this meta-tool.

4.5 Transformation

The Transformation Subsystem, described in Rosenthal, Monger, Miller, and Johnston (1986),
converts the information in the IDB into the representation required by the ground system data base
(PMDB). It is an expert system written in OPS5 and C and currently contains about 550 rules. It
provides an interface between the Astronomer-friendly syntax of the Proposal Forms and the
complex and voluminous syntax of the ground system.
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The subsystem is designed and built in an environment where the users were developing and
would continue to develop the procedures for populating the SOGS input data structures from IDB
data structures in PEP. Transformation has been in operation for more than two years and is
continually being enhanced to deal with additional proposal syntax and with new procedures.
Converting the data using a rule based expert system has proven to be a very effective way of
meeting the rapidly evolving requirements of the users.

5. Remote Proposal Submission System

An alternative method of entering proposal data into the PEP Entry Data Base is via the Remote
Proposal Submission System (RPSS). The goals for RPSS were to provide an easy to use system
with wide user access. The system is consistent with the paper forms and allows the users to
detect and fix syntax problems with their proposals.

A standalone computer was used to provide the PEP Entry Subsystem functions to users logged in
to RPSS from remote sites. The separate computer provides necessary processing power, network
connections, and security provisions. Based on the successful experience with this concept, we
are beginning distribution of parts of the RPSS software to remote sites for local usage.

Under the current procedures for proposal processing, the prospective HST user will send the
Coverpage, General Form, and the Observation Summary Form, to STScl in the period called
Phase I. The Director and TAC will select proposals, based on this information. The successful
proposers (General Observers or GO's) will then use RPSS to transmit their Target Lists and
Exposure Logsheets to STScI, in the period called Phase II. The following sections describe the
operation of RPSS in more detail.

5.1 RPSS File Format

The RPSS representation of the proposal forms was intended to resemble the paper forms as
closely as possible and to be simple to use. The RPSS remote proposal file is an ASCII flat file,
with each line containing either a RPSS keyword and optional value or else a comment, i.e.,

Keyword : Value
The RPSS remote proposal file is organized in blocks, records, and lines. Lines are the

smallest element are grouped into records. Records are grouped into blocks. Blocks
correspond to different parts of the proposal forms. The valid blocks are:

Proposal RPSS
Form Block Keywords
Coverpage coverpage
abstract
General Form general_form_proposers

general_form_text

general_form_address
Target List fixed_targets

generic_targets

solar_system_targets
Exposure Logsheet exposure_logsheet
Scan Data scan_data
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A record in analogous to single line on the Target List or Exposure Logsheet and is a logical
collection of RPSS lines. The start of a record is signaled by the use of a record keyword. For
example, the Fixed Target List paper form can contain several different targets, each with a line of
data on the paper form. The fixed_targets block would contain several records, each
corresponding to one target on the paper form. There will be as many records in this block as there
are targets on the form.

The following diagram of an abbreviated proposal shows the Block, Record, Line structure, using
the actual keywords.

coverpage:
title_1: AN EXAMPLE
sci_cat_1: GALAXIES AND QSOS

fixed_targets: ]
targnum: 1 JLine
name_1: NGC4486 JLine |Record
descr_1: GIANT ELLIPTICAL GALAXY JLine
9 Line Block
targnum: 2
name_1: NGC224
descr_1: NEARBY SPIRAL GALAXY

exposure_logsheet:

Figure 2. RPSS File Sample

A special keyword is include: <filename>. It is used to break a large proposal file into several
smaller files. Since file transfer can be very slow, this keyword allows a small portion of a large
proposal to be transferred. This is especially useful when editing on the user's computer and
validating on the RPSS computer.

5.2 The RPSS Process for Phase II Observers

The successful proposers (Observer) will receive a letter from STScI announcing their selection.
This letter includes instructions on how to access the RPSS node, their account name, and
password. They can reach the RPSS computer via three different networks: TELENET, SPAN,
and ARPANET. TELENET uses the x.25 protocol and files can be transferred using KERMIT.
SPAN and ARPANET use the Decnet protocol and files can be transferred using the COPY
command or VaxMail. To increase the account security, the password given to them is pre-
expired, and the observers must change their password after logging into the account. If they
forget, they must contact STScI to re-enable the account.

Waiting in the new account will be two VaxMail messages. The first message gives them some
instructions on how to use RPSS. The second message contains the proposal information which
has already been entered by STScI, i.e., the Coverpage and General Form. They can execute the
VaxMail command EXTRACT/NOHEAD <filename> to create the RPSS remote proposal file in
their RPSS directory.

118




The remote proposal file is normally transferred to the observer's home institution computer and
edited there. Although the RPSS system supports on-line editing, the limits of current packet
switched networks can make on-line editing very slow and suitable only for very small changes.
The proposer edits the RPSS remote proposal file to enter all the information for the Target List
and Exposure Logsheet sections. Once all the proposal data is entered into the RPSS format file,
the file is transferred back to the observer's account on the RPSS computer.

The observer can also execute a command on the RPSS computer which generates a complete
(albeit, empty) template file. The template file has all the valid keywords and is a blank proposal,
waiting to be filled in. The observer may fill in or replicate the sections needed and delete the
sections or lines that do not apply.

Once the proposal has been entered into the RPSS format file in the observer's account back on
RPSS computer, it must be checked for valid RPSS file syntax and for valid proposal syntax.
Invalid RPSS syntax can be misspelled keywords or improper format for a keyword's value. The
RPSS syntax is checked by executing the command

CHECK <filename>
which writes an error file, syntax.err, in the observer's RPSS directory.

Invalid proposal syntax can include an invalid filter for a certain instrument or an unrecognizable
Special Requirement. The proposal syntax is checked by executing the command

VALIDATE <filename>

which writes two error files, by_line.err and by_message.err, in the observer's directory and
sends VaxMail to the observer's account when it is done. Because of the large CPU resources
required by this function, the command adds an entry to a batch queue which allows only one
process running at a time. This prevents the RPSS computer from being bogged down by
simultaneous VALIDATE jobs.

If the observer has a copy of the RPSS software on a local VAX, they can perform the syntax and
validation checking at their institution. Otherwise they must transmit the erroneous section of the
proposal file to their home institution, edit it, transmit back to the RPSS computer, and rerun the
command.

Once all errors are corrected the observer must use the SUBMIT command on RPS. For those
observers with their own copy of the RPSS software, they will have to transmit the proposal to the
RPSS computer and then use SUBMIT. This command runs both the CHECK and VALIDATE
commands and will not accept a proposal with any CHECK or VALIDATE errors. This
requirement forces the observer to create a Validation error-free proposal following the Proposal
Instructions syntax.

If SUBMIT accepts the proposal, it will concatenate the proposal into one file, and place that file in
a secure area. SUBMIT will also notify the proposer by sending a VaxMail message, which
includes the remote proposal ID. The observer will need this ID number when sending the signed
copied of the coverpage to STScl.

When STScI receives the signed coverpage with remote ID, they will notify the PEP Data Base
Administrator (DBA). The DBA then fetches to remote proposal from the secure area and loads it
into the PEP EDB. As part of the load procedure, the remote file is compared to what was entered
previously into the EDB. The proposal title and principle investigator's name must match before
the file will be loaded.
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After the proposal has been loaded, a VaxMail message will be sent to the observer's RPSS
account. By logging into their account regularly, the observer will know when the proposal has
been loaded.

5.3 Security

Since the proposals are on a computer with public access, security of the data is a key feature of the
RPSS design. The proposals are kept secure by using very tight file protections and limiting the
commands a proposer may execute. RPSS users are confined to their own directories, and no file
can ever be made publicly readable. As a further protection of the system, only a few VMS
commands are permitted, and, of those permitted, the power of the commands has been greatly
reduced.

For SUBMIT to work, it needs special privileges to write the proposal file to the secure area. This
is not a privilege that a RPSS user should have, so SUBMIT is split into two parts. The first part
is activated when the user types the SUBMIT command. This part “wakes-up” the second part and
tells it which file to process. The user has no access to the second part, and the first part is smart
enough to preserve the security of the system.

The process of storing the proposal file in a secure area, converting it to data base commands, and
loading the proposal in the data base is all outside the control of the user. While RPSS allows
proposals to be entered in the PEP EDB, the user has only one-way, one-time, single-proposal
access to the EDB. It is not possible for a RPSS user to corrupt large portions of the PEP data
base.

5.4 RPSS Hardware

The RPSS node is a MicroVax2 with 7 megabytes of memory. It has two 75 megabyte disk
drives. Additional memory and disks are being purchased in order to reduce execution time for the
Validate function and to give the users larger disk quotas.

5.5 Advantages for the RPSS User

It may seem like much more work for the GO to use RPSS instead of just sending in his proposal
on paper forms. However, there are advantages for the GO using RPSS. First, there is the
accuracy of the proposal. With RPSS, the GO knows that the proposal the Institute has in its data
base is an exact match to what the GO entered. There is no risk of entry errors or of unreadable
entries on the forms. Target coordinates are a prime example of where entry errors might have
disastrous results.

Another advantage is fast turn-around on errors. A GO using RPSS can find and fix problems
with the proposal quickly. A GO relying on paper forms must wait for STScI to enter, validate,
evaluate errors, contact the GO, and make corrections. If the error correction process drags on too
long, then the proposal may miss scheduling opportunities.

When changes to the proposal are needed, the GO with a RPSS format copy of the proposal can
make the quickly changes and re-submit the proposal via RPSS.

With RPSS, the person who knows the most about the scientific requirements, the GO, is the same
person who finds the legal syntax to express those requirements. The scientific staff at STScI can
only make an educated guess about what the proposer wants, and sometimes those wants can not
be easily communicated via letter or phone.
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5.6 Advantages for STScl

STScl realizes several benefits from having GOs use RPSS. The Institute will have less staff time
spent on proposal entry and correcting syntax and validation errors, This allows more time to be
spent on evaluating and scheduling the proposals. Less computer resources, 1/0, CPU, and
Memory, will be needed on the main STScI computers if most of the proposals received have been
validated on RPSS, and can be automatically loaded into the PEP data base.

With the entire process of proposal entry and validation being done more quickly, less time will
elapse between when the GO writes the proposal and when the GO receives their HST data. Even
for Astronomy with its billion year time scales, fast turn around is important.

6. Telescience and Applications to Other Observatories

In the area of proposal processing, the next generation of space based and ground based
astronomical instruments have needs quite similar to those of HST. The sophistication of the
NASA Great Observatories (e.g., AXAF) and of the European VLT require more than a cursory
reading of a user manual. To adequately exploit the time variation in the capabilities of the new
facilities, it may be necessary to have the observer completely specify the observations needed,
which will be executed when conditions are best.

It may no longer be sensible to grant a user a fixed block of time and have the user directly control
the facility in real time. The HST experience with proposal forms, syntax, remote entry, and
validation are all directly relevant where the user does not make most of the telescope operation
decisions in real time.

Telescience has been described as providing direct, iterative, and distributed user access to the
remote device. Clearly Telescience is not possible for the user directly controlling HST.
However, some of the software systems which take the proposer's information and convert the it
into spacecraft commands can have Telescience aspects.

With the development of RPSS and with the distribution of RPSS software to remote user sites,
the PEP Entry Subsystem now operates as a Telescience environment. RPSS allows the HST user
to Enter, Edit, Validate, and Report on their proposal. RPSS allows the person most familiar with
the scientific requirements to create a set of spacecraft activities to be scheduled in SOGS/SPSS.

Additional software tools to aid the user in preparing a HST proposal could also be added to the
RPSS system. Such a tool might aid the user in selecting the configuration, mode, filter or
grating, and optional parameters. This tool would be akin to the Al system, considered in Section
2, which would take the data requirements and determine the spacecraft activities. Another tool
might combine the user's information about the target brightness with the choice of instrument and
calculate an exposure time for the desired signal to noise ratio. In fact, prototypes of both of these
tools have been developed at the Space Telescope European Coordinating Facility (ECF).

What of the Evaluation Subsystem functions? Can these be made more direct, interative, and
distributed? A Duplication function might be provided as a part of an HST Archive query system.
The PEP Duplication tool could be enhanced to take a RPSS file and check for duplications against
the archives. However, a RPSS version could not check for duplications against other GO
proposals. Such a capability would require GO access to other GO proposal data, and this would
violate the data privacy requirements.

The Resource Usage tool should be distributed if the users are to verify that their proposals meet
any TAC imposed resource constraints. However, there would be a danger than the user ‘would
attempt to fine tune the proposal to reduce the resource usage and due to extra timing restrictions



make the proposal much harder to schedule. The Resource Usage estimate is made without
creating an actual schedule and without knowledge of the actual orbital events. The orbital events
seldom match the statistical assumptions of the tool, and any attempt at micro-scheduling are
doomed to failure.

The Feasibility tools are the ones most suited to being made available to the user and in a
distributed fashion. These tools would help the user to identify inconsistent or impossible to
schedule observations at an early enough stage to allow modification by the person who knows the
scientific needs best. The sooner these tools are added to RPSS, the sooner the proposer will be
able to know that they have asked for legal AND feasible spacecraft activities. There will always
be feasibility problems which only appear when actually scheduling the activities, but the more
problems which are caught earlier, the better.

Portions of the proposal Selection function could be converted to a Telescience environment. This
would eliminate the need for mailing proposals to referees and even for the Telescope Allocation
Committee (TAC) to meet in the same room when selecting proposals. Once the proposals were in
machine readable form, the distribution to referees and the collection of referee scores could all be
handled electronically. A non-Telescience but still useful software tool would aid the TAC meeting
by identifying scenarios where accepting proposals with the highest referee rankings violates
resource limits or other constraints. The actual TAC meeting itself is not so easily replaced by
distributed users communicating electronically. Existing technology does not provide the
flexibility and high bandwidth which can sometimes be achieved in a face to face meeting.

7. Conclusion

The Proposer Entry Processor (PEP) system at STScl is a set of software tools which support the
Entry, Evaluation, Selection, and Transformation of HST Proposals. With the addition of the
Remote Proposal Submission System (RPSS), the PEP Entry Subsystem can now operate as a
Telescience environment and provides the HST user with a faster and more responsive method of
specifying exposures o be executed by the Hubble Space Telescope. Adding feasibility and
proposal preparation tools to RPSS will further aid the user in creating efficient and scientifically
productive HST proposals. Telescience operations of PEP can increase the system's usefulness
while reducing it's operating costs. Telescience can do more than just save trees.
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Abstract

The Columbus project is the European Space Agency’s contribution
to the International Space Station program. Columbus is planned
to consist of three elements - a laboratory module attached to
the Space Station base, a man-tended freeflyer coorbiting with
the Space Station base, and a platform in polar orbit. System
definition and requirements analysis for Columbus are underway,
scheduled for completion in mid-1990.

This paper gives an overview of the Columbus mission planning
environment and operations concept as currently defined, and
identifies some of the challenges presented to software
maintainers and ground segment personnel during mission
operations.

The use of advanced technologies in system implementation is
being explored by the authors. Both advantages of such solutions
and potential problems they present are discussed, and the next
steps to be taken by Columbus before targeting any functions for
advanced technology implementation are summarized.

Several functions in the mission planning process have been
identified as candidates for advanced technology implementation.
These range from expert interaction with Columbus’ data bases
through activity scheduling and near-real-time response to
departures from the planned timeline. Each function is
described, and its potential for advanced technology
implementation briefly assessed.
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1.0 The Columbus Context

This section provides a brief introduction to Columbus and its
current mission planning concept.

1.1 The Columbus Program

The European Space Agency (ESA) is a partner with the United
States in the International Space Station program. ESA’s
contribution to the International Space Station is Columbus,
currently the highest priority project in the European space
program. Columbus is composed of four elements:

o The Attached Pressurized Module (APM), a laboratory module
permanently attached to the Space Station infrastructure;

o The Man-Tended Freeflyer (MTFF), a coorbiting platform
intended to operate unmanned, but be man-visited for periodic
reconfiguration, servicing, and sample recovery;

o The Polar Platform (PPF), a platform in Sun-synchronous
polar orbit.

Columbus is currently completing concept and architecture

definition, gnd is about to enter a two-year detailed definition
phase that will be followed by system implementation.
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MBB-Erno is ESA’s Prime contractor for the flight segment, with
system engineering responsibilities in areas affecting all of
Columbus’ elements. CSC participated in defining the Columbus
Phase B2 ground mission planning concept as a contractor to the
Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt
(DFVLR) , and is currently a subcontractor to MBB-Erno, supporting
Columbus definition work.

1.2 Columbus Mission Planning Concept

The current Columbus mission planning operations concept shows
three levels of planning - strategic, several mission periods in
advance of a mission; tactical, one mission period in advance of
a mission; and operations, during a mission. Strategic and
tactical planning establish a mission’s payload complement and
resource baseline, and are primarily the responsibility of the
European Mission Control Center (EMCC), an ESA facility. For APM
operations, final planning is a U.S. responsibility.

Operations planning subdivides resource allocations from the
tactical plan by User Support Operations Center (UsSOC) and then
by user within each USOC, reserving resources required by the
spacecraft/system. Each user plans his activities and submits
his plan to his USOC. The USOC generates a composite plan and
passes it to the POCC. The POCC prepares a composite of all USOC
plans, which is merged with the spacecraft plan prepared by the
Mission Control Center (MCC) and foreign POCC plans, if
applicable. At this time, it appears likely that each element’s
MCC will be colocated with its POCC. Final plans are nominally
one week long. A high degree of commonality in the planning
software for an element, across planning levels and especially
across locations involved in planning, is desirable, but may not
be obtainable.

Columbus expects to support telescience. Users may plan to the
command level or may not produce a refined plan at all, retaining
their operations envelopes as assigned. Flight software is
expected to be able to generate commands from a high-level,
mnemonic-and-parameter form called an action.

A basic data structure supporting this process is the action
description. Each action resembles a goal statement, and is
hierarchically decomposed into successively lower-level goals
until the level of individual onboard subsystem activities is
reached. Each lowest-level action maps onto a group of
spacecraft or instrument commands called an automated procedure.
Each level of action is accompanied by information describing
timing flexibility, resource profiles, and constraints. Coarse
planning is done using a high-level action; detailed planning
accesses the lowest-level actions.
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2.0 Assessment of Artificial Intelligence (AI) for Columbus
Mission Planning

This section presents the challenges that make AI solutions look
attractive for Columbus and summarizes the advantages and
disadvantages of using AI. It also outlines additional work that
must be accomplished before Columbus can actually target specific
mission planning applications for AI implementation.

2.1 cChallenges for Columbus Implementation

Columbus implementation presents special challenges in the
following areas.

o Mission philosophy. Columbus, in common with the U.S. Space
Station program, plans to emphasize decentralized planning,
scheduling, and command generation, and to support
telescience. 1In order to provide effective support, software
must be modular, very flexible, and possess a high degree of
commonality across facilities. Support for telescience will
require innovative software designs and as much automation as
possible.

o Spacecraft and experiment support. The International Space
Station era will see continued growth in the variety and
complexity of spacecraft and instrument hardware. Columbus
must support spacecraft designed to provide services to a wide
range of experiments and to instruments with different degrees
of intelligence. Platforms, the Space Station base, and
instruments will certainly evolve during the International
Space Station mission, and support software must evolve with
themn.

o Maintenance. With payload changeovers up to every 90 days,
Columbus will be driven by the need for efficient software
updates. Software and data bases must be developed, tested,
integrated, and made operational faster than ever before.

o Operations. The cost of operations support during the
lifetime of Columbus may be a significant portion of the cost
of the program, and must be carefully controlled. The cost of
operations can be reduced through the use of a highly
automated, user-friendly ground support system.

These challenges apply across the Columbus mission. Some
specific considerations are mentioned in Section 3.

In order to meet its challenges, Columbus will need flexible
software to perform functions that are commonly either manual or
non-interactive and relatively inflexible. Some of these
functions are currently manual because attempts to automate them
have not been successful. Some currently automated functions

128




require innovative implementations in order to perform acceptably
in the Columbus environment.

2.2 Suitability of AI Solutions

Before discussing the advantages of AI solutions for Columbus, we
present our definition of AI. We wish to avoid philosophical
discussions relating to the amount of "intelligence" in AI
software; our definition is based on the information processing
characteristics of the system. An AI system is characterized by

o Use of knowledge represented symbolically, such as by facts,
relations, and structured abstract knowledge, in addition to
numeric data;

0 Generalized information processing methods, such as feature
recognition, pattern matching, and data driven search; and

0 Separation of knowledge (and data) from reasoning mechanisms.

Well-applied AI technology in the Columbus mission planning
context will provide benefits in several areas. Such systems
should be capable of handling problems of greater complexity than
a human operator can handle within an acceptable time frame. The
inference engine/knowledge base structure eases the software
maintenance problem by allowing the software implementing
strategies and approaches to remain unchanged when the
environment upon which it operates changes. The cost-
effectiveness of operations will increase with increased
automation, as long as the software is user-friendly. AI
technology has the potential to explain the software’s processing
to the user, simplify data presentation by locating the data with
the most significant information content, and provide associated
information based on an understanding of the user’s intent.

Benefits of applying AI technology to specific functions are
given in Section 3.

2.3 Requirements on AI Technology

The use of AI systems as mainstream, operational software will
undoubtedly present technological challenges in the areas of
knowledge representation and reasoning. Such research problems
are already receiving attention, and more focussed work will be
done as the International Space Station requirements develop.

The integration of AI software into a complex operations
infrastructure; its interface with numerous program elements and
data sources; and the need to generate, verify, and maintain
large knowledge bases, raise challenges in the management area.
These problems are receiving less attention, and we identify two
here.
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2.3.1 AI software development and management

Before deciding on AI developments, it must be possible to plan a
cost-effective development effort. Operational software must
work correctly and on schedule.

A suitable development environment, tailored to the types of AI
implementations being targeted, is required.

A commitment to early prototyping is also required. The
feasibility of each application must be proved, especially in
those areas in which the technology itself must be stretched. We
cannot assign a difficult job to an expert system, only to find
out during development that the desired system is not feasible.
Also, sizing estimates and productivity estimates are not easy to
make for AI software; too little commercial history is available.
Construction of prototype software will help to scope the
difficulty of the job so that the full-scale implementation can
be scheduled correctly.

Finally, AI development should be guided by the use of a
development methodology just as traditional software development
is. We find a comprehensive development methodology is necessary
to monitor and control the implementation of traditional systems.
Less well-understood AI implementations are at least equally in
need of monitoring and controlling.

2.3.2 Knowledge management

In order to be effective, AI systems for spacecraft support must
be able to access and process extremely large amounts of data and
knowledge. For example, an Al-based mission planning and
scheduling system would require descriptions of a potentially
significant number of operations envelopes (actions) for
spacecraft and payload activities. Each envelope is a large data
structure. Roughly twenty additional distinct types of input
have been identified.

The effort and cost involved in generating, verifying, updating,
and maintaining such large knowledge bases could be great. Large
portions of the required information are already being provided
by the ground infrastructure; they are part of the mission data
bases. However, the ability to extract and reformat the
information for use by AI software is not currently available.

If data base information could be transformed into knowledge
bases, or used as such, the problem of knowledge management could
be relegated to a large extent to the development, verification,
and maintenance of data bases which are already an integral part
of the ground system. This would eliminate the need for parallel
development, verification, and maintenance of knowledge bases.
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2.4 Next Steps for the Columbus Program

We have begun to consider AI applications for Columbus in the
early stages of system definition, because we realize that, for
such applications to be feasible, they must be planned for.
However, before any specific mission planning applications can be
targeted for AI implementation, several analysis steps must be
performed by the Columbus program.

First, a more detailed understanding of the requirements placed
upon the Columbus mission planning system is necessary. No
implementation can be effectively designed until the requirements
are complete and consistent.

Policy decisions about the mission planning system architecture
are also required. Mission planning functions are needed in a
number of different physical locations and by a number of
different types of users. If common mission planning software is
not used, the various planning systems must be built to very
restrictive specifications, so that, as timelines progress from
the users to the USOCs to the POCCs, they are treated
consistently. Opportunities for options such as expert system
support for scheduling might be limited, even if they are
technically indicated. If common software is used, the use of AI
techniques should be much more possible.

Finally, the management challenges mentioned in Section 2.3 must
be addressed.

3.0 cCandidate Functions for AI Implementation

This section describes mission planning-related functions that
are candidates for AI implementations and briefly assesses the
potential of each implementation.

3.1 Data Base Interactions

Data base interactions are those functions related to definition
or retrieval of data base information.

3.1.1 Action definition/validation

Action definition is the task of populating the action portion of
the mission planning data base. Action validation is the task of
determining the consistency (and, if possible, the completeness
and correctness) of the defined actions. Action definition and
validation software should execute either interactively, as a
user defines an action (definition and validation functions), or
in batch, to check pre-determined actions (validation function
only).

The definition task does not require expert system
implementation; however, it lends itself to hierarchical
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implementations such as structured objects or search
trees/graphs. If such structures are used, they automatically
provide a foundation for capabilities such as inheritance between
levels of actions. Checking for consistency and completeness is
also simplified.

The task of determining the correctness of action definitions is
traditionally a human responsibility. However, it seems to be a
direct candidate for expert system implementation, where the
expert system would function as an assistant to the responsible
person. An action-checking expert system might be extended to
check automated procedures.

These tasks can be implemented without extending the state of the
art in AI, and they do not present severe performance
restrictions. The risk associated with defining these functions
as AI candidates is minimal.

3.1.2 Report format validation

The report format validation task is a simplified version of
action validation. Columbus users will be allowed to define
their own reports using SQL-like functionality. Inexperienced
users are not always aware of which parameters are relevant

in a particular context, and may benefit from such advice (for
example, all reports dealing with stored commands should include
their timetags in spacecraft clock counts as well as in GMT).

The same type of software that checks the completeness of actions
could check the completeness of report formats.

3.1.3 Knowledge base validation

The introduction of knowledge-based software into an operational
system raises the problem of knowledge base maintenance,
especially in the case of large or dynamic knowledge bases.
Although modifying rules, or input logically equivalent to rules,
is generally easier than modifying software, it is not
necessarily straight-forward. A detailed knowledge of the
inference engine that uses the data is required in order to gauge
the effects of a knowledge base update. The best solution to
this problem, on paper, is to construct a comprehensive set of
benchmark tests including the exercise of different planning
strategies and rerun them with every change of the knowledge
base. Experience has revealed that this is not practical, and
work is currently being done in the area of designing expert
systems to help limit the scope of the problem.

Complete knowledge base changeovers also require extensive
debugging to check syntax, dependencies, consistency, and
structure (order, use of triggers, etc.). Different development
environments provide different degrees of support for this job.
Some debugging must obviously be done through test runs. If an
expert system could be developed to "fill the gap" between
development environment capability and functional tests, it would
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be a cost-reducing contribution to system maintenance. Columbus’
frequent payload changeovers will create an unprecedented need
for fast, absolutely correct software system updates.

Current expert system technology is equal to the knowledge base
update problem; identifying effective, efficient techniques for
knowledge base interpretation is a current research topic.

We suspect that Columbus’ largest knowledge bases will not belong
to the planning tool, but to interfacing subsystems such as on-
orbit fault diagnosis; the issue is raised here for completeness.

3.1.4 Scheduling software interaction with action data base

Columbus anticipates using a relational data base to store action
definition and expansion data needed by the scheduling software.
In a recent exercise, CSC modeled the scheduling of a simple
instrument activity for Landsat 6 using Columbus’ action concept.
Although the instrument commanding was trivial, the supporting
spacecraft commanding was dependent upon the context in which the
instrument activity was scheduled. The definition and retrieval
of these context-sensitive activities was very difficult.

One approach to solving this problem is to implement an
intelligent data base access capability in the mission planning
software. This function would use the "core" action and the
current scheduling context to identify, retrieve, and
instantiate supporting actions.

The most difficult part of this task is identifying supporting
actions based upon context. This problem has been solved in the
past by developing multi-pass software with fewer degrees of
freedom as more passes are completed. This approach has been
very successful when the scheduling of one type of activity
essentially determines the rest of the schedule or when one
heuristic heavily outweighs all others. In a well-balanced
world, such an approach generates either inefficient schedules or
inefficient software.

Columbus’ scheduling drivers have not yet been identified, and
the prevalence of context-sensitive activities is not known.
Therefore, no specific approach to the problem can be suggested
at this time. However, the instantiation of context-sensitive
actions is recognized as one class of scheduling software / data
base interactions requiring an innovative solution.

3.2 Scheduling Functions

Scheduling functions are those related to the definition of a new
timeline or the addition of information to an existing timeline.

3.2.1 Scheduling strategies

The efficiency of the scheduling function strongly depends upon the
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strategy embodied in the process of selecting requests for the
generation of a constraint-free timeline. The more complex the
scheduling process itself becomes, the more likely the need for
heuristics in request selection becomes. A set of well-chosen
heuristics may produce much better results than a simple
algorithm would produce, due to the nature of the factors to be
considered. Priority factors, such as scientific priority,
degree to which scientific goals have been met, and geographical
return, will already have been factored into the data base before
execution of the scheduling software. The request selection
function must consider factors such as urgency (number of
remaining opportunities to schedule a request), interruptibility
of the request, duration of the request, resource usage
(especially usage of over-committed or difficult-to-obtain
resources), and the amount of flexibility the request presents to
the scheduler (size of scheduling window, specification of
alternate resources), in addition to the data base priority.
Factors such as these will produce conflicting selections;
therefore, the use of heuristics is indicated.

The biggest challenge this implementation is likely to present is
performance. There is a tradeoff between amount of intelligence
and software performance, particularly as the number of requests
to select between rises, or as the number of requests with nearly
identical characteristics rises, depending upon the actual
heuristics chosen. Request selection heuristics should be
developed in tandem with scheduling heuristics, so as to provide
the most effective preprocessing for the scheduler. Performance
tradeoffs should consider the performance of the scheduler; if
more intelligent request selection makes a significant difference
in scheduling performance, then the extra execution time is
worthwhile.

3.2.2 Realization aspects

Automatic spacecraft scheduling employing AI techniques is a
common research topic at present. We have seen several small
systems, some of which are operationally useful, but none that
can handle a problem of Columbus’ magnitude. Examination of
systems under development presents a variety of ideas to guide
the definition of a system for Columbus.

Performance requirements dictate that the scheduling system
should not be more general than necessary. When Columbus’
problem is more fully understood, it will be possible to further
1imit the scope of the implementation. Issues to be investigated
include
- balance (or lack of it) in resource oversubscription
(is one particular resource a bottleneck?)
- percent of unconstrained time available for an activity
type or experiment (how easy is it to locate potential
time slots?)

134




- percent of input that can be scheduled (will almost all
of a set of requests fit onto a timeline, or only a
small part?)
Answers to these questions and related issues will help to define
effective heuristics for manipulating timing variability
associated with an activity and selecting a good placement on the
timeline.

Even within the Columbus environment, overgeneralization is
possible. Desirable scheduling heuristics for crew activities
may differ from heuristics for experiment scheduling. (A
heuristic that schedules the minimum duration for an activity and
then expands it may be valuable for crew activities, because it
would provide a time cushion for the performance of an activity.
The same heuristic, applied to experiments, would tend to allow
the maximum amount of time to warm up an instrument and the
minimum amount of time to use it.)

System performance may still be a concern, even after avoiding
too general a solution. The development hardware and software
weaknesses must be identified and avoided. Standard problems
include various memory limitations and performance elbows related
to system characteristics such as depth of nesting of inheriting
objects, number of rules, number of variables in a pattern-match,
and number of LHS clauses. A modular system design can overcome
many of these problems and also allow for easier expansion.
Options include use of objects, particularly generic ones; use of
triggers and demons, so that some context is defined when an
action takes place; knowledge base partitioning; and use of a set
of cooperating expert systems, each concerned with a single
aspect of the problem. The most significant key to performance
lies in the right choice of scheduling heuristics, strategies,
and methods of search space reduction. Heuristics designed to
diagnose scheduling failures may be helpful. Current scheduling
work shows that scheduling by use of time zones with constant
resource usage and constraint characteristics is more efficient
than using time zones of constant duration.

Finally, such a system must not be under-automated or linked
together with manual processes. Current systems originally
designed as tools are evolving toward full automation and batch
execution. An operator probably cannot materially improve a
complex, constrained schedule generated by software, and cannot
afford to be tied to the keyboard attempting to construct one
manually.

Columbus will push the limits of current technology, not so much
in concept as in the sheer size of the problem. Detailed
analysis of potential implementation techniques and scheduling
heuristics will undoubtedly surface questions requiring
additional research to answer. The problem of knowledge base
implementation will be non-trivial due to the vast amount of data
required. Unlike traditional software, AI does not have a rich
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commercial history from which to draw lessons on the use and
maintenance of a large, long-lived, operational system.

The primary benefits of an automatic scheduling implementation
are expected to be an increased probability of obtaining a
satisfactory schedule in a reasonable amount of time, greatly
increased maintainability, and, if modular knowledge organization
is used, universality; an experimenter can use only those
portions of the knowledge base that apply to him, while the
entire knowledge base is available to the POCC/MCC.

3.3 Support Functions

Support functions are part of the scheduling subsystem, but not
part of the scheduler itself.

3.3.1 Priority adjustment

The Columbus Flight Operations Office (FOO) wishes the
operational mission planning system to be able to recommend
alterations to user/experiment priorities during a mission.
Priority adjustment software would use planned timelines (or,
possibly, as-flown timelines) as input, and make recommendations
based upon criteria such as geographical return, degree to which
science goals were met, relative priority of the particular
science, and political considerations. An expert system with a
good explanation facility would be a natural format for this
software.

3.3.2 Command and command parameter generation

The task of deriving a detailed description of support
activities, command sequences, and command parameters can be very
complex. For example, while - it may be sufficient to indicate the
start and end of a TDRSS downlink on a timeline, an operational
description of the desired contact currently requires up to 56
parameters, which must be internally consistent. As system
automation increases, the demand for this type of processing is
expected to increase. This function is regarded as a candidate
for AI implementation, but cannot be analyzed further at this
time.

3.3.3 Command checking

A great deal of command checking is traditionally automated at
various points during command generation, command load
generation, and load uplink. The incorporation of telescience
produces an inability to assemble the total commanding picture
for an element during the preplanning time frame, and demands a
new approach to the current command checking process. Although
the core of the solution to this problem is the development of an
innovative operations concept, command checking may directly
benefit from AI technology by an expansion of the scope of the
automated checks. Semantic checks have not traditionally been
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automated. (Semantic checks are those which validate the
selection of a particular command or the composition of a
procedure, through understanding the meaning of the command(s) .)
Pre- and post-condition checks, on the command level, are closely
related to semantic checks. If this type of validation were
automated, some of the risk incurred by permitting separate
command stream uplinks would be alleviated.

3.4 Rescheduling Functions

Rescheduling functions are those related to the modification of
an existing timeline due to a change in the baseline under which
it was created.

3.4.1 Replanning strategies (reintercepting a timeline)

The task of reintercepting a timeline following recovery from a
deviation from planned activities has generally been handled in
one of two ways - either manually or by replanning the entire
timeline in software, effectively ignoring the problem.
Reinterception is defined as bringing actual conditions to match
planned conditions at some point of time, after which the planned
timeline may be reactivated. Intelligent replanning strategies
need to select a reintercept point (which might be the end of the
planned timeline), recognize what to do in order to bring about
convergence, factor in the amount of time between the start of
the replan and the time of convergence, and generate all required
activities. Sample heuristics include minimizing time to
convergence and minimizing the number of affected activities.

Automated replanning is a very difficult task. The complexity of
the job rises as the number of conditions that must be
manipulated rises, or as the efficiency requirements placed upon
the new plan become more stringent. The number of conditions to
be manipulated determines the difficulty of locating a
convergence point, and of generating actions to promote
convergence. If a near-optimal replan is required, then
comparatively easy solutions such as dropping activities from the
schedule until remaining activities are constraint-free are not
acceptable.

Performance, data availability, and heuristic limitations combine
to make any implementation difficult, and Columbus’ problem is
not well-bounded. As Columbus’ requirements develop, the
following analyses should be made:

- How many conditions are important to convergence? (How hard
is the replanning problem?)

- How capable is the onboard safing system? (What will cause
a need for replanning?)

- What do the planning heuristics look like? How closely can
replanning tie into the initial planning capability? (wWhat
is the cost/risk of implementing automated replanning?

There is a trade-off between acceptable cost/risk and the
amount of real need for sophisticated replanning.)
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Test-bed software will be very useful for analyzing the problem
of identifying information required by replanning software and
for experimenting with heuristics once a semi-realistic data

environment has been generated.
3.4.2 Command execution monitoring

Columbus, and other International Space Station era projects,
will need a far more sophisticated capability for command
execution monitoring than has yet been implemented. Telescience
will cause a large impact on traditional system designs, which
typically assume that at some point in time, command streams can
be assembled and checked. 1In the future, the first chance to
examine the results of issuing a command may well be during real-
time execution monitoring.

An ideal system would have a highly advanced capability to
monitor command execution, detect any undesirable consequences
early and identify the cause, decide what to do (safe the
spacecraft? safe the payload? request replanning?), and take
jinitial steps to maintain spacecraft health and safety and as
much science as possible. Some of the primary considerations for
successful implementation are:
- provision of sufficiently inclusive monitoring points,
so that command execution can be effectively monitored
- implementation of a system~-wide approach to safing that
allows options to be unambiguously defined, and that
describes criteria for selecting between options
- recognition of the limitations of onboard computer capacity,
both storage and processing speed

In this context, we are interested in command execution
monitoring because of its potential for requesting replanning.
Eventually, it would be desirable to see onboard software that
could determine the minimum shut-down necessary to maintain
health and safety and generate some replanning parameters such as
how soon a new timeline must be received and characteristics of
the new timeline (e.g., 20% less power, no SSA downlinks).

Performance and reliability are two of the many challenges this
problem presents. Performance will almost certainly be a
problem, due to the need to keep pace with input from monitors,
the extensive processing required to analyze such input, and the
occasionally complex nature of the required analysis. Telemetry
input to expert systems is frequently handled by using a separate
front-end processor, sometimes running on special hardware, to
subset and reformat telemetry points at selected intervals. This
solution is not promising for onboard systems. The amount of
processing attempted by a monitoring system can be scaled to
given performance limits, but in so doing the system may become
trivial. The reliability problem is two-fold. First, an active
system must not make mistakes; it must execute consistently and
reliably. Second, the system must be perceived as reliable.
People who are responsible for the health and safety of onboard
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crew, or of expensive spacecraft, must be persuaded to allow an
active command execution monitoring system to handle complex

safing and request replanning. This may be as great a barrier
as any technology issue.

4.0 Summary

This paper introduced the Columbus mission planning environment
and described key advantages and problems associated with
implementing parts of the mission planning software as AI
systems. Functions identified as potential AI candidates include
several types of data base interactions, scheduling functions,
support software, and rescheduling functions. Before actually
targeting any of these for implementation using AI techniques,
Columbus’ concepts and requirements must be precisely defined,
and research into solutions to the problems of developing usable,
large-scale, mainstream AI systems must be undertaken.
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Abstract -- An experimental rule-based system for optimizing user spacecraft communications configurations
has been developed at NASA to support mission planning for spacecraft that obtain telecommunications services
through NASA's Tracking and Data Relay Satellite System. Designated ECCO (Expert for Communications
Configuration Optimization), and implemented in the OPS5 production system language, the system has shown the
validity of a rule-based systems approach to this optimization problem. This paper discusses the development of
ECCO and the incremental optimization method on which it is based. A test case using hypothetical mission data
is included to demonstrate the optimization concept.

I. INTRODUCTION

Spacecraft in low earth orbit may obtain tracking and communications services through NASA's Tracking and
Data Relay Satellite System (TDRSS), provided they are TDRSS compatible [1]. Such user spacecraft span a wide
range of mission types, including scientific satellites and planetary probes, Space Shuttle, and Space Station.

Complexities of mission requirements and the wide variety of TDRSS users call for a tool to analyze the
communications performance, and TDRSS compatibility, of user spacecraft. Such a tool, the Communications
Link Analysis and Simulation System (CLASS), has been developed by the NASA Goddard Space Flight Center in
Greenbelt, Maryland [2]. CLASS performs its function by end-to-end modeling of all elements of the
communications link.

Within CLASS, the Flight Performance System (FPS) is a software capability for predicting performance of
TDRSS-supported missions under simulated flight conditions, orbital or nonorbital. FPS is designed to generate
all required mission and communications performance data and channel condition indicators, both in real time and in
a mission planning mode.

FPS is now being given the capability to find the user spacecraft communications configuration that will
provide optimum communications performance under given constraints in a computer simulation environment,
This paper presents ECCO (Expert for Communications Configuration Optimization), a rule-based system
providing this capability to mission planners. Section I below discusses the optimization problem and the method
for its solution, while Section III discusses the design and implementation of ECCO. Section IV presents a test

case illustrating the optimization concept. Finally, Section V summarizes current status and possible further
development.

IIL. COMMUNICATIONS CONFIGURATION OPTIMIZATION

A major objective of spacecraft mission planning is assurance of reliable space communications. For some time
now it has been possible for mission planners to accomplish this by means of CLASS software tools that predict
and evaluate communications link performance [2]. The CLASS also can be used to perform various kinds of
optimization. Of great interest to mission planners is the optimization of spacecraft communications
configurations based on bit error rate (BER) performance.
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A. TDRSS Telecommunications Service Overview

The Tracking and Data Relay Satellite System consists of a space segment and a ground segment as shown in
Fig. 1. The ground segment of TDRSS consists of a ground terminal at White Sands, New Mexico. Ultimately,
the operational space segment of TDRSS will consist of two in-service satellites in geostationary orbit at 41 and
171 degrees west longitude. By this arrangement, communications coverage of user spacecraft will be at least 85%
[1]. Though not planned for use except in emergency, an additional satellite will be stationed as a spare at 61
degrees west longitude.

TDRSS provides tracking and data acquisition services to user spacecraft, with multiple access at S-band (SMA)
and single access at S and Ku band (SSA and KSA).

Spacecraft utilizing TDRSS have wide-ranging communications characteristics -- differing numbers of defined
communications links; antennas of different types, sizes, and number; different data coding schemes and
transmission rates; different signal polarization and power levels; etc. These and all other pieces of information
necessary to characterize the communication systems of TDRSS and user spacecraft, as well as the channel
environments, are captured in CLASS data bases.

B. Optimization Concepts

The rule-based system discussed in this paper, ECCO, assumes that all characteristics of the user spacecraft
communications system (frequency, data rate, transmitter power, etc) are compatible with TDRSS.

Given a user spacecraft and its mission constraints, and given a specific time point during the mission, the goal
of communications configuration optimization is simply the selection of the best alternative from among all
allowable communications configurations of the user spacecraft.

A user spacecraft communications configuration is defined as a set of link combinations. Each link combination
is specified by four controllable parameters together with a measure of communications performance (BER margin).
For the present discussion, the four controllable parameters are (a) user antenna, (b) supporting TDRS, ©)
supporting TDRS antenna, and (d) user communications link in use at the mission time point in question.

ECCO uses BER margin as calculated by FPS to determine the user communications configuration (i.e., the set
of link combinations) that will provide optimum communications performance.

Assuming that there exists at least one viable communications configuration of the user spacecraft at the given
mission time point, ECCO performs optimization incrementally by means of successive eliminations from the set
of all allowable communications configurations that exist for that time point. Each of these elimination steps is
essentially a test to be applied to all of the alternative configurations in that set. ECCO is designed to apply these
elimination steps in a particular order of priority.

This approach to finding the optimum communications configuration is referred to as an incremental
optimization method and is described formally as follows:

(a) Form the set K of all user spacecraft communications configurations that are allowable at the
mission time point in question.

(b) Incrementally apply all elimination steps, in the prescribed order, to the set K.

(c) If the resultant set K contains more than one member (i.e., no way exists, based on the elimination
rules, to discriminate between members of the set, thus identifying one as better than another), then
select a member of K at random and designate it as the optimum configuration.

A set of optimization rules following this general strategy will be discussed below in Section III. E.

III. ECCO DESIGN/IMPLEMENTATION
A. ECCO Design/Implementation Overview

ECCO is a rule-based system to find an optimum communications configuration of the user spacecraft at a
prescribed mission time point, if such a configuration exists. The experimental version of ECCO discussed in this
paper performs single point optimization in which the discovered optimum configuration is independent of earlier or
later events. The future operational version of ECCO, however, will perform multipoint optimization which will
reflect the effects of earlier and later mission events. As a consequence of the single point optimization
requirement, the present experimental version of ECCO must read in all necessary input relative to the given
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mission time point prior to beginning the optimization process. The future operational version of the system
ultimately must function in a completely unattended mode, performing all input and output activitics automatically.
Initial capabilities of ECCO must accommodate all TDRSS-compatible spacecraft except Space Shuttle.

B. FPS/ECCO Data Interfaces

Fig. 2 depicts the data interfaces between FPS and the future operational version of ECCO. As illustrated in
Fig. 2, the sources of FPS input data are (1) mission data tapes supplied by the user spacecraft project, (2) CLASS
data bases, (3) data from attitude/orbit generators, and (4) real-time update terminals. FPS performs all calculations
pertaining to mission and communications performance. These calculations include:

o Signal margin (BER)

o TDRS visibility

o Environment data (atmospheric loss, RFI loss, sun interference, etc.)
o Vehicle multipath/blockage

o Probability of loss of lock

TDRS visibility and vehicle blockage calculations are needed only to determine whether a line-of-sight path
exists between a given TDRS and a given user spacecraft antenna. Only signal margin (BER) is used directly by
ECCO. Other parameters calculated by FPS are not considered in the present experimental version of ECCO.

C. ECCO Input

ECCO depends on FPS to calculate BER margin for each possible communications link between the user
spacecraft and TDRSS. These BER margins, if acceptable (i.e., nonnegative), are contained in the link combination
table generated by FPS. As indicated in Fig. 2., the other required inputs for ECCO are the link definition table and
the link substitution table which are provided in the form of CLASS data base inputs by the user.

1. Link Combination Table
The link combination table contains the following data items:

(1) Link combination sequence number (arbitrarily assigned by FPS)

(2) Link ID

(3) User antenna ID

(4) Supporting TDRS ID

(5) TDRS antenna ID

(6) BER margin (dB) for I-channel if link is a return link or for entire link if it is a forward link

(7) BER margin (dB) for Q-channel if link is a return link

(8) Total BER margin (dB)
For forward links this is simply the forward link BER margin. For return links this is the sum of the
I-channel and Q-channel BER margins.

FPS generates a link combination table for each mission time point where ECCO is enabled. To generate this
table, FPS calculates the BER margin (items (6) and (7)) for all possible link combinations from the user spacecraft
to each in-service TDRS (by letting the values of items (2) through (5) take on all allowable values). Each link
combination found to have an acceptable (nonnegative) BER margin is included in the link combination table,
whether the link ID is marked as active or not.

2. Link Definition Table

The link definition table (supplied in advance by the user) contains the following data items:

(1) Link ID
(2) Link type (Forward/Return)

(3) Service category (Multiple Access/S-band Single Access/K-band Single Access)
(4) Frequency in Hz x 100
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(5) I-channel data rate (bits per second)
If link is a forward link, this is the data rate for the entire link.
(6) Q-channel data rate (bits per second)
If link is a forward link, this is set to zero.
(7) Data Group
(8) Mode
The data group and mode are arbitrary parameters used as a means for classifying transmission signal
characteristics (data rate, spread/unspread spectrum, and coherency/noncoherency).
(9) Priority designation (Priority/Nonpriority)
(10) Status (Active/Inactive)

Each link ID defined for the mission is included in this table. If a link ID is active and is designated as a priority
link, it will be given highest preference in optimization.

3. Link Substitution Table

The link substitution table (supplied in advance by the user) lists ordered pairs of link IDs. The second link ID
in each pair is a valid substitute for the first, as prescribed by the user spacecraft project office. Any given link may
have more than one substitute, or none.

D. ECCO Output

Output from the present version of ECCO consists of the discovered optimum communications configuration of
the user spacecraft for the given mission time point. It can be used by a mission planner in revising the mission
plan to improve overall communications performance during the mission.

The future operational version of ECCO will have an automatic mode of operation allowing FPS to modify the
mission plan itself, based on ECCO output, in order to obtain optimum communications performance for the
mission as a whole.

E. Optimization Rules

The processing steps in ECCO are derived from a set of rules based on TDRSS telecommunication system
design as well as the mission planning knowledge of a domain expert, and follow the general strategy referred to
earlier as the incremental optimization method. These rules are as follows:

(1) Data input.
Input the link combination table for the given mission time point. Input both the link definition table
and the link substitution table for the mission.

(2) Link substitutions.

(3) Generation of communications configurations.
Generate the set of all allowable user spacecraft communications configurations based on links marked as
active,
Note: This rule is unconstrained as to the number of elements in the generated set of configurations, and
may easily give rise to a combinatorial explosion as the number of TDRSs, the number of defined links,
and the number of user antennas increase. Therefore, as these variables increase, the execution time of
ECCO would be expected to increase dramatically.

(4) TDRSS restrictions.
Remove any configuration which violates TDRSS restrictions:
-- a TDRS may not simultaneously support two links at the same frequency to the same user spacecraft.
-- a TDRS may not simultaneously support two MA forward links to the same user spacecraft.
-- a TDRS may not simultaneously support two SSA or two KSA links with the same TDRS antenna.

(5) Optimization on priority links.
Remove any configuration such that the active priority link (if any) has a total BER margin less than
the reference value. The reference value is determined as follows: examine the entries in the link
combination table corresponding to the priority link, find the one which has the largest total BER
margin, and reduce this value by 1 dB tolerance.
Note: In this and following rules, tolerance values are used to "soften” the discrimination between the
configurations under consideration in order to reflect the fact that small differences in the computed BER
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margin may not be significant and to permit subsequent rules to have some effect in the elimination
process.

(6) Optimization on forward links.
Remove any configuration such that the sum of the BER margins of all forward links in that
configuration is less than the reference value. This step is not performed if there are no active forward
links. The reference value is determined as follows: for each configuration, sum the BER margins for
all forward links in that configuration; the reference value is the largest such summed value reduced by 1
dB tolerance for each active forward link.

(7) Optimization on return links.
Remove any configuration such that the sum of the total BER margins (I-channel BER margin plus Q-
channel BER margin) of all return links in that configuration is less than the reference value. This step
is not performed if there are no active return links. The reference value is determined as follows: for
each configuration, sum the total BER margins (I-channel BER margin plus Q-channel BER margin) for
all return links in that configuration; the reference value is the largest such summed value reduced by 1
dB tolerance for each active retumn link.

(8) Optimization on links having the highest data rate on the priority channel.
(a) For each link defined in the link definition table, determine which channel is the priority channel
based on the link type and the data group and mode.
(b) For each defined link, determine the data rate for the link's priority channel, and find the largest of
these data rates.
(c) Determine which defined links have this data rate for their respective priority channels, and calculate a
tolerance value equal to the number of such links times 1 dB.
(d) In each configuration, (i) find the sum of the BER margins for the priority channels having the
highest data rate, (ii) find the largest such sum among all the configurations, and (iii) remove any
configuration having such sum less than the largest such sum reduced by the tolerance value calculated
in (c).

(9) Optimization on largest minimum BER margin,
For each configuration determine the smallest BER margin for all links in that configuration, and
determine the maximum of such minimum margins. Remove any configuration having minimum
margin less than that maximum.

(10) Optimum selection.
If more than one configuration remains, select one at random and designate it as the optimum
configuration. Display the optimum configuration.
Note: This rule reflects the fact that all configurations uneliminated at this step are considered to be
equally good, i.e., there exists no way to determine that one is any better than another.

F. ECCO Implementation

While this optimization problem may be attacked using a procedural language such as FORTRAN or C, certain
considerations, including our desire to extend rule-based programming methodology into CLASS applications (with
previous success at doing so [4]), led to employing the widely used rule-based programming language OPSS5 [5] to
build the experimental prototype discussed in this paper. OPSS was considered superior in expressive power and in
its ability to handle the potential combinatorial explosion entailed in generating communications configurations
(see rule (2)). It should be noted that despite the use of a rule-based programming approach, many would not
classify this prototype as a full expert system. This would be due mainly to the fact that it has no interactive
interface for inputs from humans during execution, and does not operate on uncertain domain data.

To express the 10 optimization rules given above required approximately 110 OPSS rules. Implementation of
the prototype was carried out on a Hewlett-Packard Vectra personal computer (compatible with IBM PC/AT).

Fig. 3 presents the straightforward logical structure of ECCO. The block comprising the "elimination sequence”
represents the majority of ECCO code as well as the majority of ECCO processing time.

As an example of the code in ECCO, Fig. 4 contains the OPSS rules corresponding to rule (4) above conceming
TDRSS restrictions.
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TDRS COMMUNICATION LINK RESTRICTIONS

;* This file contains the TDRS communication link restrictions.

-
»
R
’
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»
’
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1) can not have two links with same frequency to same TDRS
2) can not have two MA forward links to same TDRS

3) can not have two SSA or two KSA links to same SA antenna

(p RESTRICT:10: 10-2-links-with-same-frequency-to-same-TDRS

; IF two links with same frequency to the same TDRS
; THEN remove configuration
(goal “name restrictions)
(defined-link Alink-id <I>
AMrequency <f> )
(defined-link Alink-id { <I1> <> <I> }
Afrequency <f> )
(link-combination Alink-id <I>
Asequence-num <s>
Asupporting-tdrs <t> )
(link-combination Alink-id <11>
Asequence-num <sl1>
Asupporting-tdrs <t> )
(uconfig-element Auconfig-num <n>
’\link-combination—sequence-num <s>)
( uconfig-element uconfig-num <n>
Alink-combination-sequence-num <sl> )
->
(make remove-uconfig <n> ))

(p RESTRICT: 10:20-2-ma-forward-links-to-same-TDRS
; IF two ma forward links 1o the same TDRS
; THEN remove configuration
(goal Aname restrictions)
(defined-link Alink-id <I>
Aservice ma
Alink-type f )
(defined-link Alink-id { <l1> <> <I> }
Aservice ma
Alink-type f )
(link-combination Alink-id <I>
Asequence-num <s>
Asupporting-tdrs <t> )
(link-combination Alink-id <i1>
Asequence-num <s1>
Asupporting-tdrs <t> )
(uconfig-element Auconfig-num <n>
"link-combinalion-sequence—num <s>)
(uconfig-element Auconfig-num <n>
Alink-combination-sequence-num <sl> )
->

(make remove-uconfig <n> )

FIG. 4.

OPSS Rule Corresponding
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(p RESTRICT:10:30-2-ssa-or-2-ksa-links-to-same-sa-antenna

; IF two ssa or two ksa links of same type
;  to the same sa antenna
; THEN remove configuration
(goal *name restrictions)
(defined-link Alink-id <I>
Aservice <serv>
Alink-type <type> )
(defined-link Alink-id { <l1> <> <I> }
Aservice <serv>
Alink-type <type> )
(link-combination Alink-id <1>
Asequence-num <s>
Asupporting-tdrs <t>
Mdrs-antenna-id <ta> )
(link-combination Mink-id <11>
Asequence-num <s1>
Asupporting-tdrs <t>
Mdrs-antenna-id <ta> )
(uconfig-element Auconfig-num <n>
Alink-combination-sequence-num <s> )
(uconfig-element Auconfig-num <n>
Alink-combination-sequence-num <s1> )
->
(make remove-uconfig <n> ))

(p RESTRICT:10:50-no-valid-uconfigs
; IF there are no valid uconfigs
; THEN stop
(goal Aname restrictions)
-(uconfig-element)
->
(write out (crlf) (crif))
(write out | No possible user configuration due to |
| TDRS restrictions. I)
(write out (crif) (crlf))
(closefile out)
(halt))

(p RESTRICT: 10:60-change-goal-warnings
; goto warnings (WARNINGS.OPT)
{ (goal ~name restrictions) <goal> }
->
(modify <goal> Aname wamings ))

to Rule 4 (TDRSS Restrictions).
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TABLE1

Defined Link Table
Link Status Service Type DataIRate (Bits Per Se(;ond) Frequency Data Mode Priority Level
1D Category Channel Chonnel (Hz x 100) Group
H1l | Inactive SSA R 32000 32000 22875 1 1 Nonpriority
H2 Active SSA R 32000 512000 22875 1 3 Nonpriority
L3 Active SSA R 1000 1000 22875 1 1 Nonpriority
H4 Inactive MA R 1000 32000 22875 1 1 Nonpriority
LS Active SSA F 1000 0 21064 0 0 Priority
L6 Active SSA F 125 0 21064 0 0 Priority
L7 Inactive MA F 125 0 21064 0 0 Priority
L8 Inactive MA F 1000 0 21064 0 0 Priority
Note: SSA - S-Band Single Access MA - Multiple Access R -ReturnLink  F - Forward Link
TABLE II
Link Substitution Table
Link Substitute
ID Link ID
H1 H4
H1 H2
LS L7
L6 L7
TABLE III
Link Combination Table
e
Sequence | Link User Supporting TDRS BER Margin (d8)
Number | ID | AntennaID | TDRSID | AntennalD Chalmel Cha?mel }r:tg
1 H1 HIGH E w 0 10 10
2 Hl HIGH w w 9 11 20
3 H1 HIGH w E 8 10 18
4 H2 HIGH w E 21 11 32
5 H2 HIGH w w 12 22 34
6 L3 OMNI w E 23 13 36
7 L3 OMNI w w 21 15 36
8 L3 OMNI E E 5 8 13
9 13 OMNI E w 7 10 17
10 L5 HIGH w w 12 0 12
11 LS HIGH w E 7 0 7
12 L7 HIGH E M 10 0 10
13 L7 HIGH w M 5 0 5

Note: OMNI - Low Gain Antenna M - Multiple Access ~ E-East W -West
HIGH - High Gain Antenna

150




Iv. TEST CASE

The experimental version of ECCO has been tested using input data based on telecommunications system
specifications for a planned scientific mission [6].

Input data for an illustrative test case is shown in Tables I, II, and III, showing, respectively, the defined link
table, the link substitution table, and the link combination table for a hypothetical mission time point.

When ECCO is executed using this input data, the rule on substitutions (optimization rule (2)) will be invoked
because there is no entry in the link combination table for defined link L6, indicating that FPS found no acceptable
(i.e., nonnegative) BER margin for link L6 at the mission time point in question; however, as provided in the
defined link table, this link is scheduled to be active at that time. The link substitution table shows that link L7
can be substituted for L6. Since the link combination table shows acceptable BER margin for this substitute and
since L7 is not active, the substitution is made. When the substitution is made the status of L6 is changed from
active to inactive, and the status of L7 is changed from inactive to active.

Applying the definition of user communications configuration given earlier (Section II. B.), we see that 32
different configurations are possible using the four defined links (links H2, L3, LS, and L7) that are now active
following action by the link substitutions rule (optimization rule (2)). Each of the following groupings of four
link combination sequence numbers represents one of these 32 possible configurations as generated by optimization
rule (3) (also see Table IV):

5 5§ 5 5 5 5 5 5
9 9 9 9 8 8 8 8
1 11 10 10 11 11 10 10
13 12 13 12 13 12 13 12

As shown in Table 1V, twenty-four of these alternative configurations are eliminated by optimization rule (4)
due to violations of TDRSS restrictions. Optimization rule (5) concerning priority links eliminates four more,
leaving only four configurations. None are eliminated by optimization rule (6) (forward links), but each of rules

(7), (8), and (9) eliminates one. Since only one alternative configuration then remains (comprising sequence
numbers 5, 9, 10, and 12), it is designated as the optimum (see Test Case Output in Fig. 5).

SUBSTITUTED LINKS

Due to unacceptable EIRP margin at time 1
OPTIMIZER required the following link substitutions

link-id 17 forlink-id 16

OPTIMUM CONFIGURATION

The OPTIMUM CONFIGURATION is user configuration 4
It has the following links ...

SEQ-NO LINK-ID USER-ANT TDRS TDRS-ANT I-FWD-BER Q-BER

9 13 omni e w 7 10
10 15 high w w 12 0
12 17 high e m 10 0

5 h2 high w w 12 22

Fig. 5. Test Case Qutput.
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TABLE IV

LINK COMBINATION ELIMINATIONS FOR TEST CASE.
A COMBINATION ELIMINATED BY A RULE IS INDICATED

BY "X" IN THE COLUMN FOR THAT RULE.

THE DISCOVERED OPTIMUM IS INDICATED BY "O"

OPTIMIZATION RULE

Con{ igur- | Link Combination Max :
ation | Sequence Numbers In TDRSS Priority Forward Return High Data Min Op“m.um
# Configuration Restrictions Link Link Link Rate Link Margin Selection
1 13 11 9 5 X

2 12 11 9 5 X

3 13 10 9 5 X

4 12 10 9 5 o
5 13 10 8 5 X

6 12 11 8 5 X

7 13 10 8 5 X

8 12 10 8 5 X

9 13 11 7 5 X

10 12 11 7 5 X

11 13 10 7 5 X

12 12 10 7 5 X

13 13 11 6 5 X

14 12 11 6 5 X

15 13 10 6 5 X

16 12 10 6 5 X

17 13 11 9 4 X

18 12 11 9 4 X

19 13 10 9 4 X

20 12 10 9 4 X

21 13 11 8 4 X

2 12 11 8 4 X

23 13 10 8 4 X

24 12 10 8 4 X

25 13 11 7 4 X

26 12 11 7 4 X

27 13 10 7 4 X

28 12 10 7 4 X

29 13 11 6 4 X

30 12 11 6 4 X

3 13 10 6 4 X

32 12 10 6 4 X
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A number of additional test cases based on other missions have been devised and found consistent with the rules.

Exhaustive testing remains to be done, but results to date support the conclusion that the rule-based approach used
in ECCO is valid.

V. CONCLUSION

(incremental optimization method). Successful demonstration of the ECCO prototype is an important step toward
incorporation of rule-based programming methodology into CLASS applications.

Future development of ECCO will focus on the following areas: optimizing communications performance by
means of user spacecraft attitude adjustments, optimizing while precluding user antenna toggling, and multipoint
optimization relative to mission phase. Optimum communications performance will also be extended to include
stochastic losses (RFI, multipath, etc.) and synchronization (e.g., probability of loss of lock).
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ABSTRACT

The Space Station era presents a highly-complex multi-mission
planning and scheduling environment exercised over a highly
distributed system. In order to automate the scheduling
process, customers require a mechanism for communicating their
scheduling requirements to NASA. An expressive scheduling
notation that captures a wide range of customer requirements
and scheduling options is one solution to this problem.

The NASA planning and scheduling environment is itself
distributed: The SSIS ADD defines at least six types of
elements that will Play a major role in the planning and
scheduling process (e.g., PSC, ssSsC, NSTS MCC, POCC's etc.).
Each of these elements is responsible for the creation and
maintenance of schedules that are related (via shared
resources, for instance). These schedules need to be
integrated in such a way that inconsistencies are resolved. An
important step in this schedule inconsistency resolution
process is the identification and definition of the inter-
scheduler messages that will be needed by each scheduler.

This paper describes a request language that a remotely-located
customer can use to specify his scheduling requirements to a
NASA scheduler, thus automating the customer-scheduler
interface. This notation, which we have nicknamed FERN
(Flexible Envelope-Request Notation), allows the user to
completely specify his scheduling requirements such as resource
usage, temporal constraints, and scheduling preferences and
options. FERN also contains mechanisms for representing
schedule and resource availability information, which are used
in the inter-scheduler inconsistency resolution process.

Additionally, this Paper describes a scheduler that can accept
these requests, Process them, generate schedules, and return
schedule and resource availability information to the
requester. The Request-Oriented Scheduling Engine (ROSE) has
been designed to function either as an independent scheduler or
4s a scheduling element in a network of schedulers. When used
in a network of schedulers, each ROSE communicates schedule and
résource wusage information to other schedulers via the FERN
notation, enabling inconsistencies to be resolved between
schedulers. Individual ROSE schedules are Ccreated by viewing
the problem as g3 constraint satisfaction problem with a
heuristically guided search strategy.
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INTRODUCTION

The Space Station/CDOS era presents a highly-complex planning
and scheduling environment with many new challenges.
Telescience, an operations concept that allows users to control
their instruments from their home institutions must be
supported. As part of this approach, telescience users need a
distributed and hierarchical planning and scheduling capability
that parallels the architecture of the Space Station and
assoclated elements.

The scheduling process, which is currently manual with some
computer assistance, must become highly automated. This
requires that user scheduling requirements be encoded in such a
way that they can be understood by an automated NASA scheduling
system. Two approaches are possible. One approach is to
encode the knowledge used to plan the activitles of each
instrument in a knowledge-based system and build this knowledge
into the scheduler. This approach has been successfully
demonstrated in the Mission Operation Planning Assistant (MOPA)
as being feasible for instruments on board the UARS (Upper
Atmospheric Research Satellite). In this approach, the
scheduler knows what each instrument is trying to accomplish,
and the appropriate instrument operating modes and requirements
necessary to support a specific data-gathering activity. It
keeps track of the observations that have been made by each
instrument and can re-plan the instrument's operations in case
of an unexpected target of opportunity.

This approach has three major drawbacks: A sizable
knowledge-engineering task is required in order to specify the
planning and scheduling requirements of each instrument.

Secondly, this knowledge-engineering must be repeated for each
new instrument or to support changing scientific objectives.
Thirdly, and most importantly, the approach places a great deal
of responsibility on the NASA scheduling system, making it
responsible for the operation of the instruments, which is
contrary to the concept of telescience, in which users are
responsible for instrument operations.

A more promising approach to support multiple distributed users
is the telescience approach in which users operate their
instruments from their home institutions and submit requests
to a NASA scheduler specifying their scheduling support
requirements. Scientists then receive an allocation of
resources in what is commonly called the "resource envelope".
This approach has several advantages (1) the NASA scheduling
system 1is simplified, since it |is only responsible for
allocating "resource envelopes" to each user (2) since resource
envelopes are being scheduled instead of individual commands,
there are fewer items to schedule, (3) the re-scheduling
problem is simplified, (4) users are free to operate their
instruments as they choose, as long as the experiment can be
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performed within the allocated "resource envelope", and (5) No
additional knowledge engineering or software changes have to be

made when a new payload is added or suddenly takes on a new
objective.

An additional complication in the Space Station planning and
scheduling architecture is that there are many schedules
involved in the overall Process; these schedules will be
developed by different organizations within NASA (at possibly
different 1locations) with different scheduling objectives.
Generating one large schedule is not feasible. Unfortunately,
the schedules of one organization will impact other schedules
and, therefore, the different schedulers must communicate
scheduling information to each other in order to resolve
"inter-scheduler conflicts" (For instance, if scientists want
to make a coordinated observation using two instruments that
have schedules that are generated by different schedulers then
the two schedulers need to coordinate in order to ensure that
the observations are scheduled at the same time.

PROBLEM

As previously mentioned, Space Station presents many new
planning and scheduling challenges. The goal of our
prototyping effort is to demonstrate a planning and scheduling
environment that shows the essential concepts needed to support
the Space Station Customer Data and Operations System (CDOS).

After choosing a distributed architecture (see Figure 1) as
recommended in (FAC,1987,1], it was apparent that the problem
could be divided into three steps:

l. Define the types of scheduling information that need to
be communicated between schedulers and between scientific
users and NASA schedulers.

2. Implement a scheduler that can accept and process these
"scheduling messages" and send appropriate messages to
other schedulers.

3. Build a network of these schedulers, in order to
demonstrate a distributed scheduling environment.

Figure 1 shows a simplified distributed scheduling
architecture. Users send requests (scheduling messages) from
any remote location (Instrument Planning Software) to any one
of a number of PRMC's (Payload Resource Management Centers)
where schedules are created for a specific group of
instruments. Schedule information is then returned to the user.
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Figure 1. A Distributed Scheduling Architecture

Similarly, each PRMC sends scheduling messages to request
resources from its parent node, the Platform Scheduler, and
receives resources. Temporal Constraint information
(information concerning experiment coordination and sequencing)
is also communicated at each level in the hierarchy.

In order to automate the first step in the scheduling process,
accepting user requests for the scheduling of an instrument,
a "request lanquage" must be defined in which a scientific user
can express all of his scheduling requirements.

FERN (Flexible Envelope-Request Notation) 1is the request
language that resulted from a Jjoint effort between Ford
Aerospace and the scientists who control the SME (Solar
Mesospheric Explorer) at the University of Colorado LASP
(Laboratory for Atmospheric and Space Physics). FERN allows
the user to completely specify his scheduling requirements such
as resource usage, temporal constraints (request sequencing and
coordination), request priority, preferences, alternatives, and
environmental impacts. Additionally, FERN provides several
user-oriented convenience features, such as allowing the user
to specify repetitive requests, for instance, "Schedule this
request twice per day". While primarily designed for
communicating information between the scientific user and the
PRMC (i.e., a NASA automated scheduler) the resulting
scheduling messages are also useful for expressing scheduling
requirements and schedules throughout the entire distributed
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scheduling system.

The Request-Oriented Scheduling Engine (ROSE) is a scheduler
that demonstrates the feasibility of accepting and processing
requests 1in the FERN notation. ROSE was designed to function
as a general scheduler, and thus can be used at each of the
NASA scheduling nodes in Figqure 1 (i.e., PRMC scheduler,
Platform Scheduler, Core Subsystems Scheduler)

This paper describes the features of the FERN request language
and the ROSE scheduler.

SCHEDULING LANGUAGE FEATURES

The FERN request language was designed to provide a scientist
user with a mechanism to specify all of his scheduling
requirements. The FERN "Preliminary Request" message is used
to make this initial specification (there is also a "Refined
Request" message that is used later in the scheduling process).
Additionally, FERN was designed to allow the user to specify
these requirements in a manner that is consistent with the way
users think about payload scheduling. For instance, users
often perform an experiment that consists of several different
steps, or "phases" each of which might have varying resource
requirements. FERN supports this by allowing multiple phases
with varying resource 1levels to be specified within the
request.

The following types of information can be represented in the
REQUEST message:

1. Resource Requirements -- specifies any number of
"phases" for a request and the duration and resources
needed for each phase (described in more detail below).

2. Temporal Constraints ~-- specifies where this request
can be scheduled in relation to orbital or other events
(for example, "schedule this request within 3 minutes of
an equator crossing"). Also used to specify experiment
sequencing, e.g., schedule REQUEST A before scheduling
REQUEST B

3. Priority -- specifies a measure of the importance
of this request to the user on a scale of '1 (not
critical) to 10 (very important).

4, Identification Information -- specifies the sender
of the message, a name, and the time that the message
was sent.

5. Repetitive scheduling Information - specifies that
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a request 1is to be scheduled multiple times, for
instance, "Schedule this request 2 times per day."

6. Preference Information -- specifies a user temporal
reference. A temporal preference is similar to a
temporal constraint except that it places no actual
restriction on the scheduling of the envelope. For
instance "Schedule this request as close to Wednesday as
possible" specifies a preference, while "Schedule this
request before wednesday" specifies a temporal
constraint.

7. Environmental Requirements/Impacts --specifies (1)
the possibly negative impacts that this experiment will
have on other experiments, £for instance, causing
excessive amounts of vibration, and (2) the
environmental requirements needed in order to schedule
this request

Many of these user scheduling requirements are viewed as being
flexible and can be relaxed in one way or another. For
instance, FERN allows the user to specify a desired quantity of
a resource and also a minimally acceptable amount.

Figure 2 shows a screen image of a pretty-printed request
message (the underlying request language uses a LISP-like
syntax). The request shown has three phases (which will be
performed contiguously) each of which specifies the resource
requirements for that phase of the experiment. Two types of

requirement relaxation are shown in this request: phase
duration relaxation and resource relaxation. In phase 1 of the

resource section, the user has requested that the desirable
duration of this phase is 48 minutes, but that if it makes a
difference in getting the request scheduled, 36 minutes is
sufficient. Also in phase 1, the user has specified that 10
units of power is the nominal amount required, but 4 is
sufficient. A user is not required to specify any relaxation
amounts but can do so in order to increase the probability that
his request will get scheduled.

Temporal Constraint Notation

Temporal Constraints are used in request messages to express
the desired relationship of the scheduled request to pre-
defined orbital (or user-defined) events (for instance,
n"spacecraft day") or to other requests. "Schedule this request
any time on Wednesday" and "Schedule this request any time
after request SOLAR-OBSERVE-3 is scheduled" are both examples
of temporal constraints that can be specified in a request.
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REQUESI-ORIENTED SCHEDULING ENGINE
Communications Interface
Process Uperations ]

initiallze System FRIMG Wot 7 PROCESS RUN-STATE  Z-STATE  STP-RESN ACTIVITY

Send Tast Messa stop prme N
ges Schedule R‘: aat +DOM(w DIINNTNG Sleep
N e A Output H — —

From: ICOC_1 sl L o
Ta: PRMC ecp
Message Type: PREL IM-REQUEST Sleep
Time Sent: 3/85/95 12:30:00
Name: 2-0RBIT-SCAN 1
Request Priority: 1.8
Preference: Schedule as soom as possible )
Repeat : Schedule this request 4 times every 2 days 16 minutes - fess Honitor Windou

Resource Envelope Phases:

Phase 1
Duration: 48 minutes (MINIMUM of 36 minutes)
POWER Nominal: 10 Minimum: 4 .
UV-SPEC 1
COMMAND-LINK 8
HIGH-RATE-RETURN-LINK 190
Phase 2

Duration: 48 minutes
POKER
UV-SPEC 1 L\
COMMAND-LINK 8
Phase 3
Ouration: 1 hour 36 minutes
POWER 10

UV-SPEC 1
COMMAND-LINK 8
HIGH-RATE-RETURN-LINK Nominal: 100 Minimum: 80

Temporal Constraints:

Schedule AFTER »MONDAY
Schedule BEFORE #THURSDAY w
Schedule DURING #SPACECRAFT-NIGHTw

Schedule HFTER COORDINRTED-PROBE -1

Figure 2. A formatted Request Message

Figure 3 gives a pictorial representation of the ?ossible
relationships between two time intervals and the notation FERN

uses to express the relationship. (The request formatter
translates these symbols in the request language to words such
as "before," "after," and "during" as in Figqure 2.) Each

temporal relation consists of three symbols: the fir;t defines
the relationship between the start times of the two intervals,
the third defines the relationship between the end times of the
two intervals, and the second describes the overlap between the
two intervals ("o" means there is some overlap, "x" means there
is no overlap, and "!" means that the intervals abut each
other.) Using the above symbols in conjunction with the "dqn't
care" symbol, "-", and the standard numeric comparison
operators, ("<", ">", "=% etc,) provides a powerful notation

for concisely expressing the temporal interval relations shown
in Figure 3.

The temporal constraint portion of the request message is .also
used to specify scheduling alternatives using some addlt{opal
operators. For instance, the notation "A xxx B". specifies
that requests A and B are "mutually exclusive," 1i.e., that
either one or the other (or neither) of them ghogld be
scheduled, but not both. By assigning a higher priority to
request A, a user has effectively specified that request B
should be scheduled if request A cannot be scheduled (since the

scheduler will naturally attempt to satisfy the higher priority
request flrst). '
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TEMPORAL REPRESENTATION
RELATIONSHIP l_
1 l A | B A <X< B
2 B A | A >X> 8
3 A A <0> 8
all s A >0< B
5 A l 8 | J A <0< 8
6 8 | A l ] A >0> 8
Al
7 ’ 5] A =0< B
3
8 , =] A =0> B
9 ) A =0= B
8
10}] A 8 | A <0= 8
1 8 A | A >0s= B
12 A | B | A <l< 8
13§18 | A} A >I!> 8
' | A STARTS 8EFORE 8 STARTS A <-- 8
2 | A STARTS AT THE SAME TIME AS B A =-- 8
3 | A STARTS AFTER B A >-- 8
4 | A ENDS BEFORE 8 ENDS A --< 8
5" | A eNDS AFTER B ENDS A --> B
6 | A ENDS AT THE SAME TIME AS B A --= B
7 | A overiars 8 A -0~ 8
8 | A DOES NOT OVERLAP B A -Xx- 8
KEY
symsoL INTERPRETATION SYMBOL  INTERPRETATION
b3 DOES NOT OVERLAP | < BEFORE
0 QVERLAPS > AFTER
! ABUTS - DON'T CARE
= SAME TIME

Figure 3. Temporal Relation Operators

162




ROSE _CAPABILITIES

ROSE is currently under development as a tool to demonstrate a
scheduling system that supports telescience concepts. The
current major capabllities of ROSE are (1) to recelive
scheduling messages via a file transfer protocol from any
machine located on the host network and respond with
appropriate scheduling messages, (2) to create an initial
schedule from these requests, and (3) to reschedule (if
appropriate) in order to satisfy local scheduling goals.

ROSE was originally implemented on a Texas Instruments Explorer
and has been ported to the Symbolics 36xx environment under
releases 6.1 and Genera 7.

Communications Capabilities

ROSE supports inter-scheduler communication through the
transmission of resource requests and scheduled resource data.
Users transmit requests to ROSE, described 1in the FERN
notation. The user receives two responses from ROSE. The first
is an acknowledgment of the message, confirming receipt of the
message by ROSE. After ROSE completes processing of the
request it will transmit one of three responses to the user.
The first possible response ROSE generates 1is a scheduled
request message. Contained in this message is the name of the
scheduled request, the time assigned to the request, and the
resource levels dedicated to the request. The second
possibility i1s a scheduling fallure message. The third
possibility 1s an erroneous request message, indicating an
improperly formed request.

Scheduler Capabilities

"Scheduling" in the ROSE system is the ability to create an
initial schedule from a set of requests and scheduling
heuristics. Selection of scheduling heuristics allows creation
of alternative resource schedules from the same requests. This
capability provides several advantages in both the operational
and development modes. The primary advantage is the ability to
tailor the scheduling system to the current mission
environment. The Space Station environment is dynamic in
nature, due to changing mission objectives, equipment
deterioration, and targets of opportunity. This flexibility
provides a mechanism for responding to short term changes of
standard operating procedures by allowing preplanned rules of
scheduling to be defined. For example, if a shortage of a
resource is anticipated for a short period, ROSE can create
schedules optimizing that resource. ROSE also ailds 1in the
development of scheduling heuristics by allowing comparison of
different schedules. The final advantage is the abllity to use
ROSE as a drawing board for performing "what 1f" scheduling by
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mixing request selection and placement strategies.

Rescheduling Capabilities

It is unlikely that an initial schedule can be created that
satisfies all of the requests all of the time. Conflicts
between requests will frequently occur. Rescheduling will
usually be a necessary step after the initial schedule |is
created. In a simple, centralized scheduler the only way ¢to
resolve conflicts is to choose the higher priority request.
In a network of ROSE schedulers, each allowing flexible
requests, there are several options:

1. Overbook the resource -- in our distributed scheduling
environment, overbooking is a viable conflict resolution

scheme since additional resources can potentially be
acquired from another scheduler.

2. Relax this request -- a minor adjustment to the scheduling
requirements of the request might allow it to be scheduled.

3. Relax other requests -- if it is important to schedule more
requests, higher priority requests might have their
requirements relaxed in order to accommodate lower priority
requests.

4. Acquire additional resources -~- 1In a network of
communicating schedulers, it might be desirable to actually
request and obtain resources from another scheduler

5. Simply choose the higher priority request.

Four of these five re-scheduling options are currently
available in ROSE. In the next release, we will implement a
network of ROSE schedulers, allowing implementation of strategy
4, and the automatic selection of the appropriate re-scheduling

strategy. Currently, rescheduling options must be manually
selected.
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User Interface

The wuser interface consists of four screens containing ROSE
command menus and scheduling data. Each screen 1logically
groups the various scheduling operations and data simplifying
user interaction with the system. The integration of graphics
and text presents request and schedule data in an easily
understood manner. Interaction with the system 1is performed
almost exclusively through mouse/menu operations reducing
operator typing. ROSE provides a Communications screen, a
Scheduler screen, a Resource/Schedule screen, and an
Unscheduled Request screen. A description of each screen
follows.

Communications Screen

The Communications screen (Figqure 4) provides a top level view
of the user network. The screen is divided into four areas: the
Process Operations menu, the Process Monitor window, the
Scheduling Messages window, and a Notifications window. The
Process Operations menu, located in the upper left hand corner
of the screen, presents the available "housekeeping"
operations. The center of the Communications screen contains
the Scheduling Messages window, displaying all scheduling
messages received and transmitted by ROSE. The remainder of the
screen contains the Notifications window, allocated for ROSE
system generated messages to the ROSE operator.

The Scheduling Messages window contains all active messages
received and transmitted by ROSE. The message display provides
type, origination, destination, and name data for the message.
If the wuser desires, mouse selection of the message will
display the entire message in a pop-up window. Scrolling
through the Scheduling Messages window allows the Rose user to
view all messages.

Scheduler Screen

The Scheduler screen (Figure 5) provides schedule generation
commands and displays. This screen is useful from a development
point of view because it provides all operations necessary for
the creation of a schedule. The left hand portion of the
screen contains the five Scheduler Options menus, useful for
tailoring a scheduling strategy. Located to the right of the
Schedule Options menus is the Alternative Schedules window.
This feature aids system developers by displaying schedule
statistics for a scheduling run. The Alternate Schedule portion
of the screen 1is divided into three areas allowing the
comparison of three schedules simultaneously.
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Resource/Schedule Screen

The Resource/Schedule screen (Figure 6) provides a graphical
representation of schedule data. The top half of the screen
presents a normalized plot of remaining resource data. The
resource plot is useful because it allows the user to determine
the amount of resource utilization. The bottom half of the
screen displays the generated schedule in a timeline format.
The timeline is an easily used display to verify a schedule.

A mouse click within the resource plot portion of the screen
presents the user with a pop-up menu. Possible user selections
are: view unscheduled requests,or choose new resource
parameters to be plotted. By viewing an unscheduled request and
plotting the most constraining resources the user can determine
a close resource fit for the request. Depending on the
closeness of the fit the user may take the appropriate
scheduling action to accommodate the request.

Using the timeline presentation the ROSE user can verify a
schedule. The scale of the timeline is user selectable,
providing the capability to zoom in on a time period of
interest. If the timeline is to large to fit into the time
scale selected, the user can scroll through the timeline.
Individual scheduled requests are selectable allowing user
review of the fine detail of a request.

Unscheduled Requests Screen

The Unscheduled Requests screen (Figure 7) displays a list of
requests that could not be scheduled due to resource conflicts
or unsatisfiable temporal constraints. The top portion of the
screen displays all unscheduled requests and an indication of
the reason(s) for the failure to schedule that request. The
most constraining resource is given for each request, along
with an indication of how much this specific resource limits
the scheduling of the request ("moderate" indicates that the
request is constrained to 50% of the entire week-long schedule,

"high" indicates 20%, etc.). An indication is also given of
how much the request's temporal constraints restrict its
placement on the schedule. For example, the highlighted

request in Fiqure 7, "2-ORBIT-SCAN", is primarily limited by
its need to use the HIGH-RATE-ANTENNAE. This display provides a
good indication of overall resource shortages.

The bottom portion of this screen is used to plot available
start times for a request with respect to user-selected
resources. The user can select any combination of resources.

The plot in Figure 7 shows that (1) the "command link" resource
did not limit the scheduling of this request, (2) the temporal
constraints placed on this request limited its scheduling to
one three-day window near the middle of the schedule, and (3)
sufficient power was available during six intervals. The
RESULT (the intersection of the other three plots) shows where
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this request can be scheduled with respect to these two
resources and its temporal constraints. It is also possible to
Plot a graph that shows where the request can be scheduled with
respect to all of its resource requirements.

SUMMARY

We have demonstrated the effectiveness of FERN by encoding a
wide range of requests for experiments on the SME spacecraft.
The "smart request language" approach has many benefits that
will be important in the Space Station planning and scheduling
environment:

1. The user is allowed to specify a wide range of
requirements and scheduling options that are not

typically supported by schedulers that use simpler
mechanisms such as tables or data records.

2. The user can tailor the language to his application in a
manner similar to STOL and CSTOL (we don't expect the

user to generate request manually, we expect that the
user's COMPUTER will generate the requests; the user
is free to define any interface to the scheduling
language.

3. Provides high functionality -- for instance, users may
state requirements in terms of orbital, atmospheric,
solar, stellar, etc. events instead of window start
and stop times. Users can also define their own
"events".

4. Provides a consistent interface across Space Station
elements

5. Provides users with "smart" requests which will reduce
the number of messages sent and provide increased

security. .(8ince users specify their requirements
instead of a "Specific start time, users do not need
to be allowed to "probe" the system by sending

repeated requests

6. Better schedules can be generated using the "flexible"
approach. If ‘high resource utilization is required,
flexible requests can be relaxed to fit.

i
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FUTURE WORK

The next step towards our goal of defining a potential Space
Station/CDOS scheduling environment is to build a network of
communicating ROSE schedulers in order to further refine
distributed scheduling concepts.
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ABSTRACT

MOORE is a rule-based, prototype expert system that assists in
diagnosing operational Tracking and Data Relay Satellite (TDRS)
problems. It is intended to assist spacecraft engineers at the
TDRS ground terminal in troubleshooting problems that are not
readily solved with routine procedures, and without expert
counsel., An additional goal of the prototype system is to
develop in-house expert system and knowledge engineering skills.

The prototype system diagnoses antenna pointing and earth
pointing problems that may occur within the TDRS Attitude Control
System (ACS). Plans include expansion to fault isolation of
problems in the most critical subsystems of the TDRS spacecraft.

Long term benefits are anticipated with use of an expert system
during future TDRS programs with increased mission support time,
reduced problem solving time, and retained expert knowledge and
experience.

Phase II of the project is intended to provide NASA (Code 405)
the necessary expertise and capability to define requirements,
evaluate proposals and monitor the development progress of a
highly competent expert system for NASA’s Tracking Data Relay
Satellite. Phase 1II also envisions addressing two unexplored
applications for expert systems, spacecraft Integration and Test
(I&T) and support to launch activities.

The paper will discuss the concept, goals, domain, tools,
knowledge acquisition, developmental approach, and design of the
expert system. It will explain how NASA obtained the knowledge
and capability to develop the system in-house without assistance
from outside consultants. Future plans for a Phase II will also
be presented.
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1.0 INTRODUCTION

NASA/Goddard Space Flight Center, Code 405, Tracking and Data
Relay Satellite (TDRS) Project developed a prototype diagnostic
expert system to assess the feasibility of Artificial
Intelligence (AI) technology in the form of an expert system for
diagnosing on-orbit spacecraft problems. The proof of concept
project was introduced in October 1986. Investigations of the
technology, applications, and tools were initiated in January
1987 with attendance of the Knowledge Engineering Methodology
Course by Teknowledge Inc. Knowledge acquisition and system
design commenced in July 1987; the prototype and final reviews
were complete in March 1988.

This paper describes the Phase I prototype expert system project.
Section 2 defines the concept and objectives of the project.
Ssection 3 describes the resources utilized to implement the
system. Section 4 explains the capturing of the expert knowledge
and Section 5 relates how the knowledge base was designed.
Sections 3, 4 and 5 include lessons learned during development.
Section 6 presents the recently approved future project plans.

USER I/F INFERENCE ENGINE KB

¢ Collect Data

¢ Analyze Data

Explanation * Narrow Solution Space Y
and Help Lap [ Rules
Facility ¢ Isolate Fault
L@ * Identify Redundancy
« Identify Recovery Procedure S/C
Knowledge

Figure 1 - The relationship of the prototype expert system to the
current problem solving activities at the ground terminal.
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2.0 CONCEPT AND OBJECTIVES

2.1 Phase I Concept

It 1is conceivable that an expert system can effectively be used
to diagnose faults on an operational geosynchronous
communications satellite. Use of such an expert system could
reduce problem solving time, increase mission support time, and
provide an ideal operator training tool. It was the intent of
this prototype effort to prove that it is feasible and worthwhile
to model an expert’s knowledge and reasoning about a spacecraft
subsystem and retain his experience utilizing expert system
technology for use in solving on-orbit problems.

2.2 Phase I Objectives

There 1is reason to believe that contractors’ proposals for the
forthcoming Advanced Tracking and Data Relay Satellite (ATDRS)
program will include an expert system(s); therefore, the NASA
Tracking and Data Relay Satellite (TDRS) Project Office must have
the capability to scope, define, evaluate and monitor anticipated
expert system development and implementation. The objective of
the prototype effort was to demonstrate how an expert system can
be employed to diagnose problems in the scope of a finite domain
and to gain the above designated capabilities. Furthermore, the
objective included identifying a single, recognized expert for
one of the TDRS subsystems (Attitude Control System {ACS]; Power;
Telemetry, Tracking and Command [TT&C}; etc.) and capturing his
reasoning, unique problem solving heuristics and thought
processes using knowledge engineering techniques. Another
objective was to determine whether a commercially available
development tool may be tailored to the specific requirements of
a diagnostic, spacecraft application.

The role of the prototype expert system MOORE is defined in
Figure 1. The system was intended to support the spacecraft
engineer in the diagnosis of the observed anomalous event and
indirectly in the recovery activities, often executed in parallel

with the diagnosis. MOORE was designed to operate in an
environment where certain activities are performed prior to its
involvement. These activities include validating that the

identified problem 1is an actual spacecraft event rather than a
ground station equipment, operator, or a command link problem.
This function also includes validating the telemetry. The expert
system requires wvalid spacecraft symptoms as input in order to
reach meaningful conclusions. Placing the spacecraft in a safe
mode configuration is another activity the off-line prototype
does not attempt to perform. Even though the prototype is not
responsible for performing these activities, the system does
query the user about validation and safe mode status in order to
ensure these functions have been addressed before proceeding with
fault isolation and problem diagnosis.
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3.0 RESOURCES

3.1 Selection of Domain, Expert and Development Tool

The domain, expert and development tool were selected in concert
to ensure the success of the expert system development. The
nature of the problem domain suggested specific features required
of the development tool. Similarly, the expert was instrumental
in better defining the scope of the problem domain.

Application of an expert system appeared to be more feasible and
beneficial to some TDRS subsystems than to others. The TDRS
Attitude Control System (ACS) was suitable because its complexity

warrants expert system development, however, it is not as
multifarious as the Payload or Telemetry, Tracking and Command
(TT&C) subsystems. Furthermore, there was a history of well

understood ACS problems which could be used to develop the expert
system.

The selection of a qualified expert was more critical than the
selection of a problem domain. Fortunately, the person with the
necessary personality traits and highly regarded expertise, was
the specialist for the ACS. Not initially obvious was the fact
that it 1is rare for an identified expert to be a specialist in
all aspects of a particular spacecraft subsystem. Mr. Robert J.
Moore, of TRW, however, has been intimately involved with the
design, assembly, integration, test and operations of the ACS.

The time of the expert, Mr. Moore, was hard to obtain. The
specialist who is most in demand, therefore the least accessible,
is the type of expert essential for the success of an expert
system. Fortunately for the project, and surprisingly to most,
Mr. Moore was willing to support the effort since he advocates a
mechanism for retaining valuable expertise and experience of
retiring or transferring engineers. The scope of the domain was
then better focused based on preliminary knowledge acquisition
discussions with Mr. Moore.

In addition to meeting criteria such as cost, availability, ease
of assimilation, speed, size, and vendor support, the tool
selected for the project had to complement the problem domain
characteristics. The characteristics of the domain specify the
required adequacies in the following areas: inference strategy
(forward or backward chaining or a combination); a rule-based,
frame-based or object-oriented scheme for representing knowledge;
ability to handle wuncertainty and wuse of certainty factors;
knowledge base size; and graphics interface.

Since ACS problem resolution is goal oriented, a backward
chaining inference strategy was desirable. However, a forward
chaining capability was also desirable if available in the same
tool. Uncertainty was anticipated in the domain, therefore, the
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tool had to be able to handle various levels of confidence in
problem evidence. The system required explanation facilities to
support varying levels of users, especially since it was built as
a demonstration expert system for a diverse audience.

Since the intent was to characterize an expert’s thought
processes and heuristics, a rule-based system, where knowledge is
stored in the form of if-then rules, was most suitable for
representing ACS facts and relationships. Object-oriented or
frame-based tools could have been effectively employed, but were
not absolutely necessary given the funding resources available.

3.2 Tool Comparison and Recommendations

The tools under consideration were tested by building a small
prototype. M.l by Teknowledge and Personal Consultant Plus (PC
Plus) by Texas Instruments were tested by building rules similar
to those anticipated for the expert system. The final decision
to use PC Plus resulted from this informative exercise. PC Plus
was selected over M.l because it provided:

Smoother graphics integration,

Superior editing capability,

Preferable development environment, and
Attractive local support and documentation.

0000

Furthermore, the PC Plus development package was available for
less than half the cost of the comparable M.l package.

In addition, the areas in which M.l was stronger than PC Plus
were not meaningful to this project. Teknowledge emphasized
M.l’s greater speed and ease of integration with external
databases and programs. The off-line prototype system did not
require maximum speed; likewise, it was not a prototype objective
to interface with existing software applications.

It was desirable for the development tool to be well suited to
the computer skill 1level of the domain expert. The PC Plus
software provided English translations of the SCHEME (a simple,
modern version of LISP) rules. Also, there were only two
function keys to remember during consultation; all other user
interaction is menu-driven or directed with a prompt.

3.3 Hardware and Graphics Selection

For prototype development, PC Plus was installed on an IBM AT
compatible with expanded memory, enhanced color graphics board
and an 80386 microprocessor. The 80386 microprocessor provided a
significant increase in speed over the 80286 version.

The final selection was the graphics package. It was difficult

to find a package in-house which was compatible with both the
hardware and the software. Of the many examined, FREELANCE by
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LOTUS Development, Inc. was the only graphics package which
interfaced satisfactorily with PC Plus and the selected hardware.
It was later evident during demonstrations how critical graphics
were to ultimate system acceptance; the persistent search was
justified. Once FREELANCE was selected, integrating the created
graphics into the knowledge base was straightforward with a
compression routine and a simple function call.

4.0 KNOWLEDGE ACQUISITION

The most challenging and time consuming component of constructing
the expert system was obtaining the knowledge from the expert.
Discussed in the following four sections are the steps undertaken
to achieve this goal.

4.1 Preparation

Documented preparation techniques for the knowledge acquisition
process were applied effectively. For example, prior to the
first interview, the knowledge engineers familiarized themselves
with the TDRS Attitude Control System. Reading appropriate
specifications, documents ‘and schematics enabled the knowledge
engineers to better communicate with the expert. This
familiarization with the expert’s domain prevents unnecessary
interruptions by the knowledge engineers as the expert recounts
his thought processes. In order to more clearly understand how
the knowledge acquisition process transpires, an auto mechanic
was interviewed with respect to another diagnostic domain. Based
on that session, the knowledge was organized into a 20 rule
prototype system. This preliminary groundwork provided for an
overall approach and better prepared the knowledge engineers.

4.2 Motivation

The enthusiasm of the knowledge engineers was essential. 1If the
expert perceived a true sense of interest in his subject, he was
complimented and readily motivated. Rapport building approaches
suggested by experienced knowledge engineers proved effective,
such as wusing the expert’s name in the title of the system.
Fortunately, peaking the expert’s interest was not the greatest
challenge. Mr. Moore, approaching retirement, was more than
interested in retaining his expertise for posterity. However, in
the early stages of knowledge acquisition it became apparent that
the expert had his own idea of how to capture his problem solving
strategies, which was not compatible with expert system
techniques. This presented a problem, that to our knowledge, had
not yet been encountered; no suggested solutions were readily
available. To steer him in the proper direction, a demonstration
of a diagnostic expert system was beneficial. This provided Mr.
Moore a clearer understanding of the system to be produced and
exactly what type of information was required of him.
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4.3 Initial Knowledge Acquisition

Initial knowledge acquisition interviews provided the knowledge
engineers a foundation for building an understanding of the
problem domain and the expert’s recognized problem solving
approach. Furthermore, the preliminary questions provided a
skeletal structure of the entire anomaly resolution process.
Questions such as how the current problem solving practice
evolves and when the expert’s contribution 1is required were

asked. The expert was also queried with respect to how he
categorizes problems within the ACS domain. The knowledge
engineers learned, in the initial phases of knowledge

acquisition, what resources the expert wutilizes in solving
problems such as TDRS documentation, schematics component failure
histories and respected colleagues.

4.4 Knowledge Acquisition Approach

The approach to extracting knowledge was case-directed. Actual
spacecraft events documented in the Spacecraft Orbital Anomaly
Reports (SOAR) in which the expert was an integral part in
solving, were used as a basis for knowledge acquisition. It was
easier for the expert to recall an actual thought process rather
than reason about a set of hypothetical conditions. There were
times when the expert, lacking confidence in his response,
consulted with reference material or a colleague. This was done
outside the interviewing session since it was not proposed to
deal with multiple expert input.

Trying to extract every step of the thought process the expert
used to arrive at a conclusion was difficult due to the expert’s
natural heuristic leaps. A list of key phrases was effectual in
uncovering those steps that the expert skips over due to his
vast experience. Specific questions such as "Try to recount
aloud how you proceeded and recall each discrete thought that
went through your head at the time you were solving this anomaly"
and "What is common knowledge; would anyone else know this?" were
used to gquide and focus the expert on crucial problem solving
steps. All knowledge acquisition sessions were taped for the
benefit of the knowledge engineers and for reference during
knowledge base reviews with the expert.

5.0 DESIGN AND DEVELOPMENT

5.1 Methodology

The design methodology wutilized was based on the model of the
development phases for building expert systems in "A Guide to
Expert Systems" by Donald A. Waterman. A domain consisting of
the TDRS ACS is obviously far too comprehensive for a prototype
effort. Therefore, based on initial knowledge acquisition in the
reformulation cycle, the domain was narrowed to a more manageable
subset of the ACS. With the domain better defined, the knowledge
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engineers extracted specific knowledge which was then organized
and formed into rules. These rules were then validated by the
expert which generated two iterative cycles. 1In the redesign
cycle, the knowledge base was expanded with new knowledge (i.e.,
expanded in breadth). In the refine «cycle, the knowledge
previously obtained was made more accurate (i.e., expanded in
depth). 1In the review cycles, the expert consulted the system to
verify content; he was not trying to understand how the coded
rules were generated. All cycles were repeated through many
weeks of interviews extending over a seven month period,
Approximately 72 hours of the expert’s time was used.

Knowledge acquisition experience suggested that the optimum
conditions for building a comprehensive expert system include
knowledge engineers working full time, collocated with the
expert. Long periods between knowledge engineering sessions were
detrimental to development due to the complexity of the subject.
The technical details were quickly lost. Both the expert and
knowledge engineers continually needed to be refreshed.

The refine cycle was also executed with several project managers
and members of the AI community. It was important to obtain key
managers input in the design process so that when the proof of
concept was challenged, substantial support had already been
secured.

5.2 System Functions

As a result of this development process, MOORE was constructed,
as depicted in Figure 1. The system operates by querying the
user for the spacecraft problem symptoms. The relevant data is
collected, analyzed and via forward chaining rules, leaps of
inference are made that provide intermediate conclusions. These
intermediate conclusions explain to the user how the system is
proceeding and why it has identified or eliminated certain
components. The solution space is narrowed, primarily operating
on a backward chaining mechanism until the most probable fault is
isolated. The system then identifies redundancy and recovery
procedures when necessary. In conjunction with the inference
engine, the knowledge base provides the essential rules and
specific spacecraft knowledge needed to deduce conclusions.
Graphics, created with FREELANCE by LOTUS Development
Corporation, are accessed to provide the user additional
technical spacecraft information. At any time during the
consultation, the wuser can question the reasoning of the expert
system or obtain additional information through the explanation
and help facility.
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The MOORE knowledge base includes approximately 100 rules. The

rules were created in the Abbreviated Rule Language (ARL) or in
SCHEME (TI's form of LISP) in the format,

IF: Combination of CONDITIONS THEN: CONCLUSIONS AND ACTIONS

If 1) the corresponding GDA reference data is as expected in the telemetry,
and
2) null widths are shorter than expected, and
3) the signature of the null telemetry is Indication Wor ked
Intermittently Before Complete Loss Of Null,
Then 1) Inform the user of this decision, and
2) display a graphic picture, and
%) display a graphic picture, and
4) it is definite (100%) that the null switch is not operating properly.

IF: GDA-TLM AND SHORT-NULL-WIDTHS AND NULL-SIGNATURE = "Indication Worked
Intermittently Before Complete Loss Of Null"

THEN: FRINT :ATTR QUOTE RED "The system has determined that there is a Null
Switch problem” :ATTR QUOTE WHITE :LINE 2 "The shorter than normal null
widths imply that the switch may have been closing late and/or opening
early indicating degradation of the switch. Since, the null switch 1is
an electromechanical device it is possible that it could fail
intermittently in contrast to the electronic devices that would not fail
intermittently. Therefore, there is a strong possibility that the null
switch has failed." :LINE 12 AND FICTURE “SWITCH" AND PICTURE “NULLDETE"
AND NULL-SWITCH-FAILURE

FREMISE: ($AND
{SAME FRAME GDA-TLM)
(SAME FRAME SHORT-NULL-WIDTHS)
(SAME FRAME NULL~SIGNATURE "Indication Worked Intermittently
Before Complete Loss Of Null™))
ACTION: (DO~ALL
(MEFRINTT :ATTR
(QUOTE
(RED)) "The system has determined that there is a Null Switch
problem" :ATTR
(QUOTE
(WHITE)) :LINE 2 "The shorter than normal null widths imply
that the switch may have been closing late and/or opening early
indicating degradation of the switch. Since, the null switch is an
electromechanical device it is possible that it could fail
intermittently in contrast to the electronic devices that would not
fail intermittently. Therefore, there is a strong possibility that
the rull switch has failed." sLINE 12)
(FICTURE "SWITCH")
(FICTURE "NULLDETE™)
(CONCLUDE FRAME NULL-SWITCH-FAILURE YES TALLY 100))
UTILITY: 99

Figure 2. Rule 76 represented in three formats: English
translation, Abbreviated Rule Language (ARL), SCHEME.

Specific spacecraft knowledge, facts and relationships were
stored within parameters used by the rules as well as in the
rules. The rules were grouped into what Texas Instruments refers
to as "frames" so that the inference engine efficiently accesses
a limited subset of rules in any diagnosis, as opposed to
exhaustively searching through all rules. An example of a rule
(RULE 76) represented in English, ARL, and in SCHEME,
respectively, is provided in Figure 2.
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Rule 76 fires, or is executed, during a consultation only when
all three conditions in the premise become true. The first
condition, or value of the parameter, GDA-TLM, is determined by
another rule (RULE 111). In order for Rule 111 to fire, input is
requested from the wuser with a graphic prompt, created by the
developer, represented in Figure 3.

The value of the second parameter, SHORT-NULL-WIDTHS, in the
premise conditions is determined by directly prompting the user
as depicted in Figure 4. Since only a TDRS ACS expert can
determine whether a particular null width is "short" or not, HELP
is available to the user through the help facility by selecting
the F1 function key. The graphic help associated with the prompt
is presented in Figure 5, The value of the third parameter
traced is determined with a prompt similar to that in Figure 4.

The System is Collecting Data

Indicate which null reference (or combination of refere nces)
is not being obtained during the null search procedure?

1. GDA1T  NULL REF
2. GDAZ  NULL REF
3. GDA3  NULL REF
4. GDA4  MNULL REF
5. GDAS  NULL REF

o GDAS NULL REF

"F‘r‘n:nbler”l“l = Cubtljl'r"ll'r’n‘ E:E‘ver’Cll/""‘GIl null

references

Figure 3. Example of a graphic prompt to the system user. The
user selects the appropriate number.
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MOORE ACS DIAGNOSTICS

°iiiiiii§iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii;;i@
fThe system is considering a Null Switch problem? ¢
b4 ?
fIs the null width shorter than expected for the particular actuator, GDA3Z 7 ?
1 ?
? YES ?
b4 NO ?
? ?
? ?
? ?
? ?
? 4
? ?
b4 b
? 1
? ?
? ?
? ?
? t
t 1. Use the arrow keys or first letter of item to position the cursor. ?
t 2. Press RETURN/ENTER to continue. ?

1
_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii‘ﬂ

Figure 4. Example of a user-interface window and the prompt for
the value of the parameter, SHORT-NULL-WIDTHS.

TDRSS FLIGHT 1 GDA Mull Locations

(Data from GDA Accegtance Test Baoka)
o . . it MNull Width
S/ Location EJé”f“;}A I,‘:?ttgps] Deter’n’uinel.d o
[CW) ' Drbit or in AkT
G7A 3GL ESW—F 13 14
7B SGL E/W-R 14 16
OBA 5GL N/ S-P 15 15

Ges SGL N/5-R 14 14

O9A SAC—1 E/W-P 15 Mat Lvailable
098 SAC~1 E/W-R 13 13
104 SAC—1 N/S—P 18 16
108 SAC—1 H/5-R 18 G
114 SAC-2 ESW-F 15 16

115 SAC—0 E/W—R 18 16
124 SAC—2 N/5—P 14 14

~R 14 15

L

128 SAC—2 N/

Figure 5. Example of a graphic help available to the user.
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Figure 6. Example of a graphic displayed as a result of a Rule’s
action, Rule 76. On the CRT the null switch appears in red.

Lo PELUCTENCE
PCLE RIECES.

REED SWITCH -k

Hull ’ Hul

Switch Switch
A -
A
.{. - -_‘.l o % 4
) Mote: GDA drive
T matar rotor
. -y - - — containg permanent

ragnets which
actuate reed
Lo switch,

Figure 7. Sample of technical information available to the user
during problem diagnosis with the use of an expert system. Also
displayed as a result of a Rule’s action (RULE 76).
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If all three conditions become true during diagnosis, Rule 76
fires and performs four actions. As a result of the first
action, text is printed stating the conclusion. Two explanatory
graphics are displayed as represented in Figures 6 and 7. The
last action concludes NULL-SWITCH-FAILURE with a certainty factor
of 100. NULL-SWITCH-FAILURE was one of the intermediate goals or
subgoals of the expert system diagnosis.

When a final diagnosis is made, the system identifies the
appropriate redundant configuration. Figure 8 delineates the
redundant configquration to be used in the case of a null switch
failure.

Mote:  The redundart corfiguration is
ndicated bv the blug lines, The ©
represents the cornection for ofl Lo

f:_‘, M D

o - — T — — = 9

¥

- —~ SEACE
T GROUND
e LM

|

|

|

|

|
1

|

_—— = —

A
L
N EIN TEA-R -
Figure 8. Identification of the recommended redundant
configuration based on an identified fault. Appropriate

connections are highlighted in blue on the color monitor.

The areas of the TDRS ACS currently characterized in the
prototype, MOORE, are depicted in Figure 9. The problem domain
is shaded; problem sources are identified in black. As evident
in the diagram, the system can identify one of many failures as
the cause of the spacecraft problem given a set of symptoms.
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Solar Array
Control
| 1 | 1 1
Momentum Autotrack | Antenna Pull | Calibrate Open
Dump Slew In :

Ram HIT in Ram HIT in
S Bias RW Bias

Null Poll Up

Switch Souwce

RW

Flectronics

Control

Figure 9. Scope of the problem domain for the prototype expert
system, MOORE. Areas currently characterized are shaded.

6.0 FUTURE DIRECTIONS

6.1 Phase II Purpose

Phase I, development of the prototype expert system (MOORE), was
implemented to prove that a diagnostic expert system was feasible
and had a beneficial application to the TDRS program. Upon
successful demonstration of the expert system capabilities,
Phase II was approved. The objectives for Phase II are currently
being finalized.

The wultimate goal is to provide NASA, Code 405, an expert system
which can be wutilized for TDRS fault isolation and problem
diagnosis. It is expected that such a system will be a contract
deliverable with the next generation of TDRS spacecraft. Phase
IT is intended to provide Code 405 the necessary expertise and
capability to define requirements, evaluate proposals and monitor
the development progress of a highly competent diagnostic expert
system for NASA's Tracking Data Relay Satellite.
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6.2 Phase II Objectives

The expertise will be developed by studying, implementing and
evaluating the more complex knowledge engineering and expert
system tasks that were beyond the scope of Phase I. The
following are targeted objectives for Phase II:

l. Interview potential wusers to optimize operator interface.
Elicited user feedback will be utilized to make the interface
efficient and user friendly. Special attention will be given
to effectiveness and standardization of colors, symbols and
prompts. Targeting the system to the technical level of the
most frequent user is most crucial to user acceptance of the
system.

2. Interfuse knowledge of multiple experts. Due to the lack of
availability of a particular expert for each subsystem, it
becomes necessary to interview more than one for a given

subsystem. Conflicting information and differences 1in
problem solving rational must be handled with no detriment to
the system. Schemes for dealing with this will be explored

and evaluated.

3. Assess the applicability of expert system technology to the
spacecraft Integration and Test (I&T) program. I&T problems
are often of a different nature than those experienced on
orbit. Examples of these type problems are operator errors,
software problems, and cabling and test equipment errors.
Additionally, problems discovered in testing are similar to
on-orbit anomalies.

4. Accessing external data bases. The spacecraft manufacturer
maintains a data base of all problems discovered at box and
higher 1level testing. All on-orbit problems are catalogued.
Additionally, there is a GSFC data base of all problems
observed on Goddard managed spacecraft. A method will be
devised to access this type of information in existing
formats.

5. Evaluate a Real Time Telemetry Interface. The transition
from a passive (off-line) to an active (on-line) system that
would accept a real-time telemetry input, evaluate spacecraft
status, and make recommendations to the operators for
commands and corrective action is a major step. The degree
of sophistication and operator confidence required to
implement this approach will require considerable
investigation and evaluation. This is an important direction
to explore in a step towards making spacecraft autonomy more
realizable.

6. Evaluate application to launch activities. Utilizing the
expert system as a training tool for the flight support team
and a diagnostic tool during simulation and launch will be
investigated.
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7. Expand cognizance of available tools and technology. With
Artificial Intelligence software and expert system technology
evolving so rapidly, application and implementation options
must be continually reviewed.

The scope of the problem domain for accomplishment of Phase II
objective will either be an expansion of the prototype to include
a more comprehensive subset of the ACS, or it will include a
second TDRS subsystem selected by management for its criticality
to the TDRS mission and the existence of viable experts. 1In
either case, it is understood that the knowledge characterized by
the prototype will be incorporated into the Phase II system.

Having completed the Phase II tasks, the project should have the
experience and expertise to understand, define and scope the
task, ask technical questions from a position of insight, and
assess proposals. Also, as a result of the Phase II activities,
the project should be capable of adequately monitoring the
selected contractor’s progress in development and implementation
of a comprehensive expert system.
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Abstract

The Fault Isolation Expert System for TDRSS
Applications (FIESTA) is targeted for opera-
tion in a real-time online environment. Ini-
tial stages of the prototype development con-
centrated on acquisition and representation of
the knowledge necessary to isolate faults in the
TDRSS Network. This paper describes recent
efforts focused on achieving real-time perfor-
mance including: a discussion of the meaning
of FIESTA real-time requirements, determi-
nation of performance levels (benchmarking)
and techniques for optimization. Optimization
techniques presented include redesign of crit-
ical relations, filtering of redundant data and
optimization of patterns used in rules. Results
are summarized.

1 Introduction

The Fault Isolation Expert System for TDRSS
Application (FIESTA) is an operator decision
aid targeted for deployment in NASA/GSFC’s

*1761 Business Center Dr., Suite 400, Reston, VA
22090.

tFIESTA development has been undertaken by
Stanford Telecommunications, Inc. as a subcontrac-
tor to Computer Sciences Corp. under NASA contract
NAS5-31500.

tCode 532.3, NASA /Goddard Space Flight Center,
Greenbelt, MD 20771.

Network Control Center (NCC). FIESTA is in-
tended to assist operators who isolate and di-
agnose faults in the Space Network. Operation
is to be continuous. The automated inputs to
FIESTA are a stream of network control and
status messages. This paper covers our efforts
to prepare FIESTA for keeping up with that
message stream in real time.

Section 2 is an overview of the FIESTA
environment. [lowe87] is a more comprehen-
sive introduction that covers operational is-
sues and some architectural details. Section 3
discusses FIESTA'’s real-time performance re-
quirements. Optimization techniques are cov-
ered in Section 4; the implementation plan is
sketched in Section 5. Sections 6 and 7 present
results and a brief conclusion.

2 Background/Overview

FIESTA’s domain focuses on fault detection
and diagnosis of NASA’s Space Network (SN).
The SN combines space and ground elements
to provide tracking and data relay services
for spacecraft in near-earth orbit. The space
segment of the SN baseline is currently one
operational geostationary Tracking and Data
Relay Satellite (TDRS) which will grow to a
multi-satellite constellation over the next five
years. Through a systematic program of satel-
lite replenishment and ground refurbishment,
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the SN is expected to support programs such
as the space station and space telescope well
into the next century.

User spacecraft telemetry and commands
are relayed through Tracking and Data Re-
lay Satellites (TDRSs) and downlinked to the
White Sands Ground Terminal (WSGT) in
New Mexico. Collocated with the WSGT is
the NASA Ground Terminal (NGT) which
provides communications interfaces for trans-
ferring data from WSGT to the other SN
elements and users, via the NASA Com-
munications Network (NASCOM). The Net-
work Control Center (NCC) is the opera-
tional control facility responsible for manag-
ing this geographically distributed network of
elements. Primary NCC functions include re-
source scheduling, equipment configuration di-
rection, and service quality monitoring and as-
surance. The NCC coordinates all SN problem
resolution. Figure 1 is a network overview.

Based on requests from user spacecraft con-
trol facilities, the NCC schedules events, con-
sisting of one or more communications ser-
vices for a single user for a single pass by a
TDRS. During support of these events, per-
formance and status data from network ele-
ments are transmitted to the NCC where the
contents of these messages are combined and
presented on display screens. NCC operators
known as Controllers and Performance Ana-
lysts monitor these displays, as well as ground
control (e.g., reconfiguration) messages that
alter scheduled equipment configurations or ef-
fect operational changes to detect problems
and determine appropriate courses of action.

FIESTA’s purpose is to provide an intelli-
gent assistant to network operators that will
continuously monitor selected communication
services. FIESTA detects and notifies con-
trollers of faults, isolates problem sources to
major system component levels (e.g., WSGT)
and recommends resolution strategies. In or-
der to adapt to the dynamic nature of the op-

erational environment, FIESTA was designed
to recognize the various states of a user ser-
vice and detect transitions from state to state
(Figure 2). The three primary states for a
user are acquiring, nominal, and anomalous.
FIESTA’s knowledge base is partitioned into
context-limited rule sets applicable only in the
appropriate service state.

FIESTA reasoning must first determine pos-
itive signal acquisition to identify the tran-
sition from acquiring to nominal. The sys-
tem then monitors the service and detects
variances from expected behavior, recognizing
nominal to anomalous transitions. Transition
into an anomalous state opens a diagnostic
episode, in which FIESTA verifies the fault
condition, hypothesizes potential fault loca-
tions and fault causes, and ranks these hy-
potheses based on rule interaction [miks87].
Once a diagnostic episode has been resolved,
the system determines that a transition from
anomalous to nominal has occurred.

Control and Status Messages

FIESTA’s primary source of information
about the situation of the Space Network is
a series of control and status messages called
“High Speed Messages” or HSMs. The four
types of HSMs currently used in FIESTA are:

SHO Scheduling Orders allocate resources to
given users.

OPM Operations Messages notify operators
of various events or request/acknowledge
various actions.

ODM Operations Data Messages are reports
on the health and status of every ongoing
service every 5 seconds. Contents vary by
type of service. ODMs are the primary
source of data for detecting faults. They
are used for the example of Section 4.
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FIMS Fault Isolation Monitoring System
messages contain data reported by mon-
itoring equipment called “frame analyz-
ers.” FIMS reports are sent every 5 sec-
onds for each ongoing service that is being
analyzed (an option at NGT).

FIESTA views Network function in terms of
services. SHOs are organized by events. The
major organization of ODMs and FIMS mes-
sages is in terms of TDRS satellites and band-
widths. OPMs are organized by service.

The Off-Line Environment

FIESTA is currently a prototype that resides
in STT’s software development laboratory. For
our development, testing and benchmarking
we use copies of actual HSMs from the Space
Network. In addition, network-wide simula-
tions called “ESTL tests” provide additional
data. The off-line suite (Figure 3) consists of a
VAX/VMS system hosting the FIESTA Front
End Processor (FFEP) connected to a Sym-
bolics Lisp machine hosting the expert system.
FIESTA was built using the Automated Rea-
soning Tool (ART) from Inference Corp.

The FFEP performs two major functions.
It translates HSMs into s-expressions® for use
by the expert system and it feeds them to
the expert system at a controlled rate. The
rates used most often are 1) as fast as possible
and 2) driven by the encoded wall clock time
of the original messages (or limited by avail-
able resources). FIESTA is designed so that
the Lisp machine software is oblivious to the
fact that it is in an off-line testbed. With the
possible exception of a timer to detect mes-
sage dropouts, we anticipate no major design
changes in the on-line expert system software.
We currently lack a real-time timer on the Lisp
machine side; the development process often

1symbolic expressions, in our case using Lisp list
syntax.

requires that we stop and look at the current
process or that we back up and resubmit situ-
ation data to the expert system after software
modifications. These stoppages would appear
as message dropouts to a system with a timer.

3 Real-Time
Requirements

We are preparing to move the FIESTA proto-
type out of the laboratory and connect it to
live data in the NCC. This motivates our con-
sideration of real time.

Real-ttme in the software realm is many
things to many people. Fuzzy definitions
abound, many having to do with software in-
teracting with physical items external to the
host computer system and characterized by
unpredictability. In some sense, all interac-
tive software is real-time in that it synchro-
nizes with unpredictable external devices (hu-
mans) via input mechanisms.

A fundamental problem now being ad-
dressed in real-time Al research is that
most Al problems involve searches and other
computations which are often NP complete
[norm85, orei85), i.e., the time taken to com-
plete a calculation is a nondeterministic poly-
nomial function. The amount of computation
required to solve them often cannot be com-
puted a priori and sometimes cannot even be
bounded. The state-of-the-art for such prob-
lems is often to build something and see if it
works in real time. Analysis to guarantee re-
quired responses is frequently lacking. The an-
alytical foundation to do so in general does not
exist. Performance problems are solved via the
bigger hammer theory: if it isn’t fast enough,
buy a faster machine. Software engineering
tools are needed to answer questions such as:

e How can response times be calculated
or bounded, especially when required re-
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sponse time is not known a priori?

o When distributing systems, how does one
decide when it is no longer profitable to
divide and conquer a problem because of
communications or other overhead?

e How can real-time knowledge-based sys-
tems be verified/validated?

Currently research is heavily weighted in fa-
vor of examination of ways to make systems
faster over ways to insure that they are fast
enough.

O’Reilly and Cromarty [orei85] present “a
simple but nonetheless formal definition of
real-time performance” that does quite well
for our purposes. They claim that real-time
systems are absolutely required to provide out-
puts by some deadline time. They also suggest
ways in which systems can monitor progress
towards solutions and take appropriate ac-
tions as deadlines approach. [less88]’s ap-
proach involves choosing approximation tech-
niques based upon solution time available.
[1aff88] surveys the state-of-the-art of real-time
KBS but does not dwell on O’Reilly and Cro-
marty’s definition in its survey of existing sys-
tems. We shall do the same.

FIESTA is currently subject to loose real-
time requirements such as “inferencing delay
shall not exceed 3 minutes” and “determina-
tion that a fault exists shall be made within
one (1) minute of receipt of data (by the ex-
pert system component) which indicates a pos-
sible anomaly . ..Results of the initial diagno-
sis shall be available with [sic] one minute of
fault detection” [sti87a]. What these require-
ments say is that the FIESTA system is al-
lowed to lag real-time data by some maximum
period. Average lags in processing of situation
data? should be much smaller than maximum

2We refer to situation data as distinct from conirol
data like operator commands (which have their own
real-time requirements).

allowed lag.

FIESTA requirements seemingly mandate a
hard real-time architecture. Deadlines are re-
quired to be met. But the actual architecture
used in FIESTA has no notion of these require-
ments built into it. Instead, every unit of sit-
uation data is processed to completion before
new data is accepted. There are no deadline
mechanisms. We call this a “soft” real-time
system. Using new data before old data is
processed to completion or discarded would re-
quire significant redesign; we are not even sure
about what such an architecture would look
like or if we would be able to achieve diag-
nostic results of comparable quality in a hard
real-time FIESTA.

The soft real-time approach has achieved
acceptable performance for the heaviest load-
ings we have been able to find in the taped
HSMs available to us. The broadest mea-
sure of real-time performance is the maxi-
mum lag in processing of real-time data inputs
when they are fed to our expert system host
at wall clock rates. Maximum overall lag is
bounded by on-line testbed requirements at 3
minutes. Worst case lags observed in our lab-
oratory using realistic data collected from the
live network are on the order of several sec-
onds. True worst case input data sets have
not been constructed. These would involve 2
TDRSs with the maximum possible number
of services starting/stopping/ongoing and re-
alizing some combination of faults simultane-
ously. This is a much higher system loading
than is anticipated for the TDRSS network.
It is also a much higher loading than the on-
line testbed is required to handle: two simul-
taneous events, each event consisting of some
limited number of services. Typically Shuttle
events have three services, non-Shuttle events
have two.

After FIESTA initialization, the greatest
lags generally occur at two times: service
startup time and during fault detection and
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diagnosis. These may be characterized as
the times when situation data is changing the
most. Steady state performance has been
somewhat faster than real time for typical data
sets. Running in the “as fast as possible”
mode, the off-line testbed is usually limited by
the FFEP host, a venerable but low-powered
VAX 11/730. ART uses a modified Rete al-
gorithm. The Rete algorithm [forg80] is opti-
mized for data that changes infrequently.

ODMs (a type of status message) are sent
every 5 seconds, on average, for every ongo-
ing service. FIMS reports are also grouped by
TDRS and are on a similar 5 second cycle but
are limited to services monitored by frame an-
alyzers at NGT. Naturally, when faults occur,
situation data is changing. In the worst case
(from the Rete algorithm perspective), data
changes with every “data cycle” or with every
new message. Many HSM values are binary;
some can flip-flop in fault situations.

4 Speeding Up FIESTA

The initial FIESTA design philosophy was
that timing should be for the worst case: ev-
ery HSM fact3 changing in every data cycle?.
This is an attractive goal; it would effectively
make FIESTA more like a hard real-time sys-
tem with a 5 second bound for processing of
each HSM. Actually, messages arrive more fre-

3Some ART terminology: a relation is a pattern for
afundamental unit of information in an ART database,
including a symbol that defines the relation. A fact is
an instance of a relation—a filled pattern that is part
of the database. Facts also include context which is
unimportant in this discussion.

% A better bound could be generated from the arrival
statistics of HSM fragments given the limited speed at
which blocks of HSMs are transmitted and the max-
imum size of HSMs. HSMs consist of 1 to 15 blocks
of 4800 bits each. HSM blocks are in general inter-
leaved with other messages and assembled into whole
messages by receivers. The NASCOM data rate is 56
KBPS in and out of the NCC.

quently than every 5 seconds because of over-
laps in data cycles. Overlaps typically occur
three ways: 1) ODMs and FIMS reports for
a TDRS are not synchronized, 2) when multi-
ple TDRSs are active, their reports are not
synchronized and 3) miscellaneous messages
(OPMs and SHOs) are mixed into the HSM
stream at unpredictable times. This means
that the bounded time would have to be some-
what less than 5 seconds to process an entire
HSM before the next one arrives. Alterna-
tively, processing 5 seconds worth of messages
in 5 seconds would work as well.

Results with this architecture were disap-
pointing. We were not able to keep up with
even nominal loads in our laboratory setup.
This caused us to rethink our worst case tim-
ing strategy and embrace the idea that it re-
ally is acceptable to fall behind in process-
ing upon occasion. The corollary is that the
system must be able to 1) buffer messages to
avoid losing data and 2) process those buffered
messages faster than the wall clock time in
which they were generated, in order to catch
up to the current data stream. The danger of
our new philosophy is that the system is most
likely to lag real time when it is most needed,
during fault situations when it has to do its
most “thinking.” We believe that the perfor-
mance we have achieved is more than accept-
able. It is well within the required bounds and
seems to be comparable to the speed of the
human operators FIESTA is meant to assist.
Note that multiple simultaneous faults are rel-
atively rare; since less processing power is now
required to monitor healthy services, more
processing power can be focused on faults that
occur while other services are ongoing.

The “bog down and catch up later” design
provides additional benefits. More processing
power is available for housekeeping chores dur-
ing nominal operation, particularly garbage
collection. Response times for the operator
interface are also improved. The fact that we
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can process nominal data quickly also speeds
development/demonstrations (and training!)
because we can speed through the less inter-
esting portions of input data sets.

The rest of this section concentrates on what
we did to speed up FIESTA’s expert system.
Results are presented in Section 6.

Situation Relation Redesign

FIESTA is primarily rule-based. The relations
that represent HSM data are used in many of
the rules. We realized our greatest efficiency
gains by redesigning HSM relations. Several
possible redesigns were considered. The most
productive redesign idea was a combination of
two ideas: 1) redesigning HSM relations to use
shorter, more specific patterns and 2) filtering
redundant HSM elements. As we shall see,
filtering was made possible by redesign. The
motivation for smaller relations is that shorter,
more specific relations are generally matched
fewer places than larger relations; thus the cost
of changing them via retractions and reasser-
tions is lower. The motivation for filtering is
that ODMs and FIMS reports are typically
highly redundant. They often change only
a time stamp® from message to message for
a given service. The unnecessary processing
that redundant data causes is explained later.

This discussion will focus on ODM relations
because they are more crucial to performance
than other HSM relations simply because of
their frequency; they are in the HSM stream
for every ongoing service, every 5 seconds.
This discussion is applicable to other relations,
particularly FIMS reports, which are also sent
frequently when used.

One ODM message reports upon all ongoing
services for a TDRS. The original FFEP trans-

5 Another stamp called a “message id” is present in
ODMs and FIMS reports. We bundle it with the time
stamp for this discussion.

lated an ODM into one ODM fact® with a sub-
set of ODM information in symbolic form for
each service being reported upon by the ODM.
The original representation of ODM data used
a monolithic relation for each service. One
ODM fact was kept in working memory for
every ongoing service, that is working mem-
ory contains the latest service snapshot via
the latest ODM fact. Situation data requir-
ing longer term memory for a service were and
still are kept in other relations and data struc-
tures. These auxiliary structures handle situa-
tion data such as “Is the signal strength rising,
falling or steady from ODM to ODM?”.

Because the ODM fact is time-tagged, the
ODM fact was guaranteed to change in ev-
ery data cycle even if the represented service
was In steady state. In each data cycle, the
ODM fact for each service was retracted and
reasserted. The ODM relation was matched
many places in the FIESTA code. There was
a great deal of wasted computation every data
cycle retracting, reasserting and rematching
this fact for services which had not changed
substantially.

Several modifications were made to the
ODM relation. Figure 4 is a before and after
picture of the ODM relation for a particular
type of Shuttle SSAR (Single Access, S-band,
Return) service. Defrelation is an ART tem-
plate for facts. It conmsists of variables (pre-
ceded by question marks) and literals. The
left side of Figure 4 defines an ODM good for
all service types and leaves room for service-
specific details in the $?remainder construct.
Below that, the commented part of the re-
lation corresponds to the remainder for the
Shuttle SSAR service. It was not part of the
ART code but was used as low level documen-
tation. The general form of pairing data tags
with values was necessary because ODM was a

SWe use fact loosely here. In actuality, the FFEP
turns out s-expressions that become facts upon asser-
tion into ART’s fact base.
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variable length relation. Variable length rela-
tions slow the pattern matching process since
locations of specific data are unknown in gen-
eralized patterns.

Redesigned relations were smaller and more
numerous than their predecessors but repre-
sented the same HSM data. Relations that
were broken up needed to be connected to each
other in some way. We used a “key” much like
that used for a relational database. Three ba-
sic breakups considered were organizing rela-
tions as:

1. (key tag item)
own relation

; every data item in its

2. (key old-relation-minus-time-stamp) and
(key time-stamp)

3. an intermediate form with groupings of
data based on match characteristics and
relative frequency of change

We had few analytical tools for choosing
among the alternatives. We did not wish to
allocate the manpower to implement all 3 de-
signs (or design families in the case of alterna-
tive 3) for experimentation.

The first alternative was attractive because
many items change rarely. Their changes
would not affect other relations at all. The
second was attractive because it removed the
time-stamp, which was guaranteed to change
frequently, from everything else. The third
alternative was attractive because we knew
enough about the data items and their rel-
ative frequency of change to group them by
items that were likely to change together or
be matched together or both. We ruled out
alternative 2 because it left us with variable
length relations which were known to be inef-
ficient. We ruled out alternative 1 because of a
simple experiment that suggested that it was
faster to assert and pattern match upon one
large fact rather than several small ones (all

items being matched). Informal experimenta-
tion and informed guesses were the basis of our
choice of alternative 3. The ODM relation on
the right side of Figure 4 is one of the results.

The redesigned relation of Figure 4 repre-
sents a number of changes:

e All HSM relations were made of fixed
length; the $%remainder constructs were
eliminated. This made fixed length pat-
terns possible and eliminated excess pat-
tern matching induced by pattern wild
cards that matched variable numbers of
tokens. Note that making HSM relations
of fixed length allows us to drop the data
tags in the relations. We have elected not
to do so” because 1) the code is somewhat
self-documenting with the tags in place; it
would be much harder to maintain other-
wise and 2) the tags are sometimes used in
explanation and justification mechanisms.

o The service IDs of the new HSM relations
are the keys that tie together the new rela-
tions. Service IDs® effectively condense 5
pieces of information on each service into
one symbol:

— TDRS

— support identification code or SUPI-
DEN — a designator for a partic-
ular user and category of service,
unique for each Shuttle mission and
for other spacecraft

— service type — forward (earth to
spacecraft) or return (spacecraft to
ground)

7Data tags were dropped for the simplest and most
frequent relations—the “ID” relations for timestamps
and antenna pointing angles.

8Service IDs are generated by the FFEP when it
sees service scheduling orders (SHOs); they are later
inserted in other HSM facts. Matching one short sym-
bol is obviously more efficient than matching a list of
several data items.
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— service subtype — includes three ad-
ditional pieces of information: radio
frequency band, single/multiple ac-
cess and TDRS antenna number

— scheduled time — needed to differ-
entiate different services that use the
same physical resources at different
times

e Representation of time was changed to
one integer that fits in 32 bits: the num-
ber of seconds since midnight Dec. 31,

1979 (GMT) instead of the previous 5 to-
kens required.

e Some of the data tags have been short-
ened. When tags were longer and data
was not filtered, approximately one quar-
ter of the Lisp machine’s processing power
was devoted to the process that read s-
expressions over the network. This was
reduced linearly with the number of char-
acters by reducing tag length at a slight
expense in code readability.

Some other things should be noted about
the reorganized Shuttle SSAR ODM of Fig-
ure 4°. The relation has been broken into 6 re-
lations. The first three are generic to all ODM
relation sets. They are separated because of
the frequency with which they change. The
other three are more specific to single access
ODMs and to Shuttle SSAR, ODMs. The con-
siderations for grouping data items as we have
done is:

ODM contains information summarized in
the service ID for FIESTA purposes.
(Each SUPIDEN maps to a unique vehi-
cle identification code (VIC).) This infor-

9 A few minor differences in the before and after re-
lations are attributable to domain expansion. Between
these two sets of relations, diagnostics for non-Shuttle
spacecraft services were added to FIESTA’s knowledge
base. Some data tags were generalized in that process.

mation does not change over the life of a
service.

id-ODM contains a time stamp and a mes-
sage identifier (an integer), both of which
change every data cycle. These are natu-
ral to group together.

pointing-ODM contains the pointing angles
of the TDRS antenna single access dishes
or multiple access beams. These data typ-
ically change every few data cycles for low
orbiters as they pass under the TDRS.
The resolution is to one tenth of a de-
gree. These data are matched only a
few places in the antenna pointing di-
agnosis logic; the penalty for changing
them—retracting and reasserting—is not
too great.

SA-ODM specific to all single access ser-
vices; contains information which does
not change over the life of a service.

Sh-SSAR-config-ODM information
that changes infrequently over service
life. These data are control settings that
change as a result of operator actions.

Sh-SSAR-perf-ODM the performance data
of most interest to FIESTA at fault time.
Changes from nominal to non-nominal
operation and vice versa are reflected
in changes in the data of this relation.
One possible refinement is to put signal
strength in its own relation. It is the
only variable in this relation with more
than 2 possible values. Changes in the
other variables are always significant; sig-
nal strength can and does change some-
what in nominal operation without being
symptomatic of a fault.

Data Filtering

Data filtering is done in the FFEP. Once rela-
tions were broken down as documented above,
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filtering was straightforward. Any data that
changes from data cycle to cycle causes its en-
tire relation to be transmitted to the Lisp ma-
chine. When a new fact arrives to replace an
old one, the expert system first retracts the old
one and then asserts the new one. Filtering of
redundant data yielded the greatest speedup
by eliminating various productions from un-
necessarily moving in and out of the conflict
set upon fact retraction/reassertion. This was
possible because relations that change infre-
quently were separated from other relations in
relation redesign.

Other Modifications

[clay87] is a good overview of optimizing Rete
algorithm applications in general and ART ap-
plications in particular. It focuses on things
such as ordering of patterns and joins. We
used many of its guidelines in optimizing var-
ious pieces of FIESTA. Chief among its rec-
ommendations are elimination of wild cardsin
patterns. This we have by and large achieved.
Miscellaneous modifications made in the name
of efficiency include reducing the number and
use of global variables (to make garbage eas-
ler to recognize and collect) and a revamping
of transient displays’ graphics. Some graphics
were originally implemented using a number
of ART rules to call graphics primitives. We
rewrote them in Lisp using Symbolics’ object-
oriented system (Flavors). This tied us closer
to the Lisp machine but bought us some speed.
Every ART rule requires some overhead; rule-
driven graphics also cluttered our pattern/join
nets unnecessarily. Moving procedural oper-
ations to Lisp code on the Lisp machine is
almost guaranteed to be more efficient. Re-
vamping of graphics was also used as an oppor-
tunity to provide some abstraction and general
cleanup of the transient display system.

Also during the period in which the bench-
marks of Section 6 were conducted, several

efficiency-oriented modifications were made to
ART. Inference Corp. reduced the amount of
garbage ART creates, made the menu system
more efficient and provided a rule compiler.
(Pre-compiled rules eliminate the garbage of
rules compiled “on the fly,” giving us a smaller
image which translates to fewer paging and
garbage collection operations.) Pattern and
join net operations were also made more ef-
ficient (release 3.0 of ART). Symbolics up-
graded its microcode and system software
in the same period, making some operations
more efficient. Rigorous benchmarking would
eliminate the variable software environment;
we did not care as long as we knew that the
modifications we made were moving us in the
right direction.

Possible Improvements

One necessary modification to be made to go
on-line is provision of an HSM buffering mech-
anism for those times when FIESTA lags real
time. In the off-line testbed, we have the lux-
ury of temporarily halting the reading of input
data. Some buffering is provided in the cur-
rent system by the mechanisms that move data
from the FFEP to the expert system; these are
not adequate for the on-line system.

Possible improvements we could make in-
clude:

e further refinement and more rigid bench-
marking of relation designs

e experimenting with the Lisp machine pro-
cess scheduler to devote more time to the
tasks that need it

¢ coding more algorithms in Lisp instead of
ART rules. The operator login procedure
is a good example. It is basically procedu-
ral code implemented in ART rules that
add clutter and size to the pattern/join
net and to the fact database.
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e handling temporary windows as re-
sources; resources are objects that are
explicitly allocated/deallocated by the
application instead of being created in
general-purpose memory and collected by
the garbage collector.

e eliminating the ART studio altogether. It
is written to be portable; we can buy effi-
ciency by further committing ourselves to
a given window system.

e reexamining our software/hardware envi-
ronment in general

5 Implementation Plan

FIESTA was developed in a series of “builds.”
Successive builds were characterized by in-
creasing levels of complexity and attention to
the demands of the operational environment.
The first 3 builds concentrated on concept val-
idation (Build I), requirements definition (II)
and operational issues (IIT). Early builds re-
solved these issues. Build IV focused on real-
time performance issues. Cleanup and restruc-
turing was also made possible. This is not to
say that performance issues were ignored alto-
gether in early builds.

Modifications identified in Section 4 were
also phased (Figure 5). Phase contents are
outlined here to make the results of Section 6
understandable:

Baseline Build III system was ported to the
latest vendor software (including ART
3.0).

Build IV A Data tags were shortened, de-
creased LAN traffic and memory require-
ments.

Build IV B HSM relations were redesigned.
Build IV BBIN Rule files were compiled.

Build IV C Redundant HSM data was fil-
tered by the FFEP.

Build IV D The menu system was rebuilt;
data tags were removed from the “ID” re-
lations.

Some more general cleanup, e.g., reordering
of patterns and joins, has occurred throughout
FIESTA development, especially Build IV.

Gradual modification made changes more
manageable and allowed measurement of the
effects of individual modifications. The order-
ing of changes reflected dependencies and con-
venience, not expected benefits. For instance,
shortening of parameter names occurred be-
fore HSM relation redesign to limit the number
of patterns changed. Whenever possible, de-
velopments were made in parallel. For exam-
ple, redundant HSM filtering was built in con-
junction with FFEP HSM relation redesign.

6 Testing and Results

Three basic tests were run over most of the
builds. These tests sent HSM data from the
FFEP as fast as the expert system could han-
dle them. Test 1 was designed to determine
a baseline for nominal processing, or, in other
words, to see how long the absolute minimum
processing would take. It therefore monitors a
stream of HSMs known to show nominal oper-
ation. No monitoring displays and no operator
interaction of any type were used.

Test 2 and 3 looked at relevant time periods
within an event to see how long specific activ-
ities would take. Both tests cover the same
data, however Test 3 brought up a monitor-
ing display and had the operator interact with
the system, whereas Test 2 did not. There-
fore Test 2 gave a baseline for selected activi-
ties, and Test 3 gave an indication of the cost
of optional processing. The results presented
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(Table 1) should be compared to the “simula-
tion time” in the first column—the wall clock
time of the original HSMs.

Longer term tests were run at the conclu-
sion of Build IV D. Test 4 ran through a Shut-
tle event lasting 1:00:59 from start to finish.
The system was run as it would be in the op-
erational environment. HSMs were sent to the
expert system in real time (as opposed to the
other tests which sent them as fast as possi-
ble). Six monitoring displays were up through-
out the event. The event contained 7 diagnos-
tic episodes and two service handovers. All
notifications were acknowledged by the oper-
ator. FIESTA was able to process the event
in 1:01:10. The extra 11 seconds were used af-
ter the last message was transmitted in order
to clean out the database when the event was
over. The system fell behind its HSM input
stream by no more than 30 seconds whenever
fault diagnosis was initiated, but the system
always caught up with its inputs once a fault
cause and location were found.

A fifth test was designed to run through
seven consecutive hour long events in an
“operational” mode (real-time HSM stream,
monitoring displays up, notifications acknowl-
edged). Unfortunately the FFEP crashed dur-
ing the sixth event. After approximately five
hours (5:38) of continual processing, FIESTA
was still keeping up with the incoming data,
except during fault diagnosis, but would still
“catch up” with the data flow afterwards. All
tests were run with ephemeral garbage collec-
tion (GC) on and dynamic GC off'?. Details
of these results are available in [sti87b].

10Ephemeral GC collects short lived objects; dy-
namic GC collects longer lived objects. Dynamic GC
will probably be used in the on-line system

7 Conclusions

Despite the fact that it is not a hard real-time
system, the current FIESTA more than meets
its performance requirements as best we can
test it in the off-line environment. We do not
see the justification for radical modifications
in the name of efficiency now. Faster and less
expensive hardware is being made available in
the marketplace; other FIESTA cleanup is be-
ing done in preparation for the on-line system.
We are more concerned with getting FIESTA
on-line and verifying/validating it in an on-line
testbed.

We have concluded that manually optimized
systems are in general fragile. The optimiza-
tion process we used was entirely too labor-
intensive. Better technology must be available
for optimizing knowledge-based systems and
guaranteeing their performance.

Acronyms

ART Automated Reasoning Tool!!
FFEP FIESTA Front End Processor

FIESTA Fault Isolation Expert System for
TDRSS Applications

FIMS Fault Isolation Monitoring System
GC garbage collection

HSM High Speed Message

KBS Knowledge-Based System

NASCOM NASA Communications Network
NCC Network Control Center

NGT NASA Ground Terminal

ODM Operations Data Message

OPM Operations Message

11 ART is a trademark of Inference Corp.
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SHO Scheduling Order

SN Space Network

SSAR S band, Single Access, Return
SUPIDEN Support Identification Code
TDRS Tracking and Data Relay Satellite
TDRSS TDRS System

VIC Vehicle Identification Code

WSGT White Sands Ground Terminal
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ABSTRACT

The Galileo Mission Telemetry System (MTS) has a cluster of computer subsystems configured as a star
network. The MTS handles the real-time processing of spacecraft telemetry and ground monitor data.
Large volumes of status and fault messages are generated as a result of changes in the system
environment. These messages are triggered by the conditions that exist on any one particular subsystem
or device. The order of message generation is in time sequence and does not always correlate to the
function sequence of active processes. A significant number of messages provide context with varying
degrees of uncertainty. As such, highly skilled telemetry controllers are required to regularly go through
large volumes of messages generated by the MTS to identify, diagnose, and isolate faults.

A knowledge-based system prototype is being developed to monitor the Galileo Mission Telemetry
System performance. The system design approach features temporal reasoning, uncertainty
management, and intelligent graphic user interfaces.
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INTRODUCTION

A study conducted in 1986-87 of NASA/JPL Mission Operations to identify tasks that would benefit
from the application of artificial intelligence as an emerging technology concluded that:

a. The present approach to conducting mission operations successfully requires a large staff of
engineers, controllers, operators, and technicians for each mission.

b. The present schedule calls for launch and operation of several missions within a relatively
short period of time.

c. The projected requirements for mission operations in the next several years, if performed as
currently planned, will result in the need to double the mission operations staff.

d. The economic constraints of these scheduled missions have created the need for new
approaches and new tools to enhance the reliability and productivity of JPL mission
operations.

e. Certain tasks within mission operations would benefit significantly from the application of
knowledge-based systems technology. The Galileo Mission Telemetry System Monitor, the
subject of this paper, was one of them.

THE TARGET SYSTEM

The JPL Galileo Mission Telemetry System (MTS) is comprised of five computer subsystems in a star
network configuration (see Figure 1). Each subsystem has a set of peripheral hardware for data entry,
storage, manipulation, and display. Each computer handles specific processing functions relating to
spacecraft downlink telemetry data such as input, frame synchronization, data extraction, engineering
and science decommutation, display of science status channels, and science experiment processing. One
of the processors, the SIO (see Figure 1), acquires streams of literal status and fault conditions on each of
the computer subsystems, the Star Switch Controller, the network configuration, and the software
processes currently executed. The order of message generation at the SIO is in time sequence and does
not necessarily correlate to function sequence performed, or relate to interaction among anomalies. Error
conditions are triggered within each of the network subsystems by the conditions that exist on any one
particular subsystem or device.  Although existing expert knowledge is available, the association of
multiple faults as a failure vector and fault trend analysis are not performed under the present conditions.
The volume of information generated that requires interpretation for diagnostic purposes is relatively
large for effective real-time monitoring. A short time interval is sufficient to drive controllers’ tracking

capabilities to overload conditions. One of the objectives of the knowledge-based system (KBS) is to
overcome this difficulty.
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FIGURE 1. GALILEO MISSION TELEMETRY SYSTEM REPRESENTATION

THE HOST ENVIRONMENT

The knowledge-based system prototype is being developed on a Sun3/160 workstation utilizing ART 3.1
shell and Common Lisp. The plan is to port the prototype on a Sun4/260C workstation for demonstration
purposes. The choice of the hardware platform was in concert with the present approach of utilizing
network workstations for JPL’s future Space Flight Operations Center (SFOC).

USER INTERFACE

The knowledge-based system prototype utilizes graphics extensively to provide controllers with a
continuous visual representation of the Mission Telemetry System performance status. Graphic icons are
represented either as frames or as images. Frames are utilized when icons are involved in reasoning while
images are for static representation. This approach is guided by efficiency considerations. Changes of
graphic icons and windows are triggered by MTS input messages to the knowledge-based system via the
SIO, mouse clicking, or keyboard entry. For the initial phase of the prototype development, actual MTS
messages built into the data base will be utilized. The MTS system is represented by two types of
hierarchical graphic display configurations: data flow and network links. The data flow representation
emphasizes the telemetry data stream and the active software processes. The network links represent the
physical hardware such as computers, peripherals, and communication lines. The target system graphic
representations, as user interfaces, are at the system, sub-system, and peripheral levels. Distinctive
graphic icons pointing to the probable location of faults provide simple and efficient cues to the telemetry
controllers. All explanations are provided through textual window(s).

One of the system user interface features is a user-system dialogue initiated either by the user or the
system. On the one hand, the user may start a dialogue, such as calling for an explanation of a decision
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made by the system. On the other hand, the system may initiate a request to the user, such as the
confirmation of a device status, to clean irrelevant data from the data base. The dialogue between the
user and the system is on a non-interference basis. The KBS will not halt its operations pending user
responses but will continue processing of input messages and periodically attend to user dialogue as a
lower priority service.

KNOWLEDGE REPRESENTATION

Knowledge in the prototype relating to the MTS fault diagnosis is represented in three categories:
1. Knowledge about the MTS network configuration.
2. Knowledge about MTS message taxonomy.
3. Knowledge about MTS software telemetry processes.

The structure of the MTS network is represented into a schema language that views the system as a
hierarchy of subsystems, interfaces, and peripherals that share, through inheritance, common attributes
and are suitable for reasoning. The set of message classifications and subsequent search for status, faulty
components, or software process errors can be identified consistently in a streamlined knowledge—base.
The knowledge-based system tracks the MTS network configurations that map into specific active
telemetry software processes. For the initial phase of prototype development, actual MTS messages built
into the data base will be utilized. The input method is through timed file read function or keyboard
entry. The timing is required to simulate the actual MTS real-time environment.

TEMPORAL REASONING

The existing Mission Telemetry System messages are asynchronous events providing significant
representation of the system’s state(s) over varying time intervals. In addition, heuristic knowledge asserts
that message context may change according to temporal generation. To a large degree this is a
manifestation of the change in the underlying system state or any of its objects. The principle of
persistence is utilized to reference the continuation of the state of any object unless changed by transition
rules. Transition rules control the change of message context and object states. For the purpose of this
KBS, reasoning over time is treated according to the following approach:

(A) Messages that recur over short time intervals (~ << 10 s) and originate from the Starswitch
Controller (Figure 1), one of the MTS computer subsystems, or multiple computer
subsystems. This type has two probable outcomes: software error or hardware fault. This
message type points to significant probability of failure (including data queueing) if originated
from a specific computer subsystem. The KBS tracks the temporal state and the association
among fault messages that maps into the current configuration of the network subsystems.
For messages that originate from the intercomputer network task, the KBS looks for
confirmation from one or more linked subsystem on the network. Lack of confirmation
would trigger the application of uncertainty rules.
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(B) Messages that recur over long time intervals (- 11-300 s) and originate from the same source
as type (A). The KBS creates time—tagged message files in the data base. These files are
utilized for trend analysis to predict probable hardware failure or software anomalies.

(C) Messages that are characterized by a single occurrence over a specific time interval (- >300 s)
and originate from either a status or possible fault condition in the MTS. Status messages
point to the network configuration and the current software processes that are executed on
any one of the MTS subsystems. Based on heuristic expert knowledge, fault messages that do
not recur within certain time intervals are considered an anomaly of the existing system. As
such, all information in the data base relating to this message is declared irrelevant to the
immediate system objectives and hence retracted from the data base or stored in archival
files. -

UNCERTAINTY

The MTS has a number of fault message types whose context has inherent levels of uncertainty. This is
particularly true for fault messages that are construed to have multiple sources of failure. In a
considerable number of cases, faults and, subsequently, fault messages are induced by one or more
conditions on the system network. As such, the use of conditional probability construct is not
appropriate where MTS events are considered dependent. The KBS prototype uncertainty management
approach is to limit the assignment of certainty factors to various possible outcomes of relevant messages.
This is consistent with the heuristic knowledge available. However, the uncertainty rules are not invoked
until temporal reasoning is performed.

FUTURE WORK

Two additional efforts are planned for this knowledge-based system: 1) evaluate, modify, and build the
prototype for real-time operations, 2) include the modified system as an agent of a distributed
knowledge-based system research effort.

CONCLUSIONS

The prototype effort is a test ground of the use of knowledge based systems in support of JPL mission
operations. While the target system provides rich environment for the application of knowledge-based
systems, the use of existing system messages as a diagnostic source of information limits the system
capability to the extent of their scope and representations. However, the chief purpose of this and
similar efforts is to demonstrate an emerging technology potential for the next generation of mission
operations systems.
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Abstract

This document describes the sensory processing system for the NASA/NBS Standard Refer-
ence Model (NASREM) for telerobotic control. This control system architecture has been
adopted by NASA for the Flight Telerobotic Servicer. The control system is hierarchically
designed and consists of three parallel systems: Task Decomposition, World Modeling and
Sensory Processing. The paper will concentrate on the Sensory Processing System, and in
particular will describe the image processing hardware and software used to extract features
at low levels of sensory processing for tasks representative of those envisioned for the
Space Station such as assembly and maintainence.

1. Introduction

The NASA/NBS Standard Reference Model (NASREM) architecture for the control sys-
tem of the Flight Telerobotic Servicer defines an architecture for telerobotics based on con-
cepts developed in other research programs. It incorporates artificial intelligence theories
such as goal decomposition, hierarchical planning, model driven image analysis, blackboard
systems and expert systems [1]. The multiple processes of the system are hierarchically
structured. Each process is considered to be arranged vertically in a hierarchy which decom-
poses complex tasks into progressively simpler objectives. In addition to the vertical struc-
ture, the system is also partitioned horizontally into three sections: Task Decomposition,
World Modeling, and Sensory Processing (Figure 1).

The Task Decomposition System is responsible for monitoring tasks, planning, and con-
trol servoing of the robot’s manipulators, grippers, and sensors. The complexity of each func-
tion is determined by its position in the hierarchy [4, 11]. The World Model is responsible
for maintaining the best estimate of the current state of the system and of the world at any
given point in time. It is responsible for maintaining models of objects and structures, maps
of areas and volumes, lists of objects describing features and attributes, and tables of state
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variables describing the system and the environment. The Sensory Processing System is
responsible for gathering sensory information from multiple instances of various sensors [8],
enhancing that information [9], recognizing features, objects, and relationships between
objects, and determining the correlation between observations and expectations.

Section 2 of this paper details the lower layers of the Sensory Processing System hierar-
chy. In Section 3, a parallel hardware system that is particularly well-suited for performing
low level processing tasks is described. Section 4 explains a number of techniques employing
local operations that are used to enhance data and extract features and that have been imple-
mented on parallel hardware.

2. Sensory Processing in the NASREM Architecture

The Sensory Processing System (SPS) in the NASREM architecture [1] is designed so
that data flows bidirectionally between the levels of the Sensory System and bidirectionally
between the Sensory System and the World Model (Figure 1). The SPS is designed to oper-
ate in both a bottom-up (data driven) and a top-down (model driven) mode. The World
Model contains both a priori information and updated information required to perform sensory
processing tasks. At each level of the Sensory Processing hierarchy, information will be sent
to the World Model. This information will be made available to the Task Decomposition
module at the level in which it is needed.

The system is divided into four levels: Data Acquisition, Low Level Processing, Interme-
diate Level Processing and High Level Processing.  This organization parallels that
described in [2]. The Data Acquisition Level serves as an interface between the environ-
ment and the Sensory Processing System. It gathers raw information (readings) from each
of the sensors. Depending on the complexity of the data, this information may be stored
directly into the Servo Level of the World Model or used for further processing at the next
level [8]. The Low Level Processor performs point-by-point operations to enhance the raw
data and to perform local feature extraction. Its output is passed to the World Model at the
Prim Level and/or to the Intermediate Level Processor. The Intermediate Level Processor is
responsible for providing symbolic descriptions of regions, lines and surfaces that have been
extracted from Low Level Processing. This data is passed both to the World Model and to
the next SPS level. Lastly, the High Level Processor is responsible for interpreting and
labeling the "intermediate symbolic representation” [2] and for updating the contents of the
World Model with the most current knowledge about the position and orientation of objects.

3. The Parallel Image Processing Engine

The information processed by the Low Level Processor is in the form of arrays of data
received from cameras, ranging sensors, or tactile array processors [9]. A typical image can
consist of between 16K (128 x 128) bytes and 1M (1024 x 1024) bytes of information.
Because of the large amount of data to be processed and the need to process that data as
quickly as possible, most serial computers cannot meet the requirements of low level pro-
cessing. Parallel computers have been developed in recent years to specifically fulfill the
need of real-time processing of image data [6, 7], and although the machines differ in archi-
tectural design and implementation, they share the capability of being able to process an
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entire image or region of an image in real-time. Parallel processing is especially applicable
to low level image processing. The data structure used at this level is the image itself, a
spatially indexed image of points which correspond to gray scale intensity values. All parts
of the image are treated in the same way, and in general, no effort is made to distinguish
between different parts of it. Local operations depend only on corresponding elements
between images or on combinations of adjacent elements of an image (Figure 2). Computa-
tions tend to be simple arithmetic, algebraic, or logical operations, and typically a low number
of computations per pixel is required [5]. Parallel processors are also suited to multi-resolu-
tion representations and processing techniques.

b|c
X1 > X2 d|x 1] € - Xy
g| h
Point by Point Operation Neighborhood Operation
X2 = f(xl) x2 = f(a,b,C,d,e,f,g,h,x 1)

Figure 2. Local Operations

Many local data enhancement techniques can be implemented on the Pipelined Image
Processing Engine (PIPE) developed at the National Bureau of Standards and manufactured
by Aspex, Inc. Some features of PIPE are discussed here, but the reader is referred to [6, 7]
for a more detailed description of the system. PIPE acquires its images in real-time from
analog sources such as cameras, video tapes, and ranging devices, as well as digital data
sources. Its output can be directed to video monitors, symbolic mapping devices, and higher
level processing systems. All inputs and outputs are synchronous with the video rate of six-
ty fields per second.

The PIPE system is composed of up to eight identical modular processing stages, each of
which contains two image buffers, look-up tables, three arithmetic logic units, and two neigh-
borhood operators (Figure 3).
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Figure 3. PIPE Modular Processing Stage

A forward path from one stage to the next allows pipelined and sequential processing. A
recursive path from a stage output back to its input allows feedback and relaxation process-
ing. A backward path from one stage to the previous stage allows for temporal operations
(Figure 4) . The images in the three paths can be combined in arbitarary ways on each cycle
of a PIPE program, and the chosen configuration can change on different cycles.

Stage n Stage n+1
—] > —»- Forward Path
|—— -J L —l Recursive Path

Backward Path

C

Figure 4. Data Flow Path Between PIPE Stages

In addition, six video buses allow images to be sent from any stage to any one or more
stages.

Images can be processed in any combination of four ways on PIPE: point processing, spa-
tial neighborhood processing, sequence processing or Boolean processing (Figure 5). Differ-
ent processing can occur at individual pixels in the image by using a region-of-interest opera-
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tor. All methods can be considered local operations.

A) B) 1))

( I X —_—

OO

Figure §. Processing on PIPE: (A) Point (B) Spatial (C) Boolean (D) Sequential

Point processing can be a function of either one or two input images and includes simple
arithmetic and logical operations such as scaling, thresholding, converting number systems,
etc. Look-up tables resident on each PIPE stage allow the user to perform more complex
arithmetic operations, trigonometric operations, comparisons, rotations, etc.

PIPE can perform up to two 3 x 3 neighborhood convolutions on each stage in parallel.
Both neighborhood operators operate on the same image input, but can perform different
neighborhood operations. Larger neighborhood convolutions can be achieved by decompos-
ing an odd-sized neighborhood mask into a sequence of 3 x 3 convolutions. The neighbor-
hood operators can be either arithmetic or Boolean and are performed identically on all loca-
tions in the image unless a region-of-interest is specified. Special features are provided to
prevent inaccurate computations on the image borders.

Multi-resolution pyramids can be constructed by selecting the "squeeze" or "expand"
options as an image is stored or written from a buffer. In the former case, each 2 x 2 neigh-
borhood of the input image is sampled and written to the output image resulting in an image
half the resolution of the original. This process can be repeated to generate successively
smaller resolution images. Expanding an image involves the opposite operation by pixel
replication and generates successively larger resolution images.

Sequential processing works on a set of multiple images, e.g. sequences of images over
time, a stereo pair of right and left images, or multi-resolution images. By taking advantage
of the inter-stage paths, images can be combined, compared, sampled or differenced to
extract the desired application dependent information.

When performing Boolean processing, each pixel of information is considered to be com-
posed of eight independent bit planes which are operated upon simultaneously. The neigh-
borhood operators can be applied in a Boolean mode, where the output is the combination of
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the 3 x 3 neighborhood using local operations on each of the eight bit planes.

PIPE programs are written on a host computer using a software package which is an icon-
ic representation of the hardware to generate microcode. The microcode instructions are
downloaded to PIPE, where they are resident during program execution. A software devel-
opment tool, ASPIPE, allows the user to code the spatial and temporal flow of the data
through the hardware and to allocate the look-up tables and PIPE resources to be used. Pro-
grams can be edited, saved, compiled, executed, and debugged in this environment. In addi-
tion, ASPIPE generates a sequencer file that specifies which micro-operation is executing at
each time-cycle. This sequencer also controls branching and looping among microcode
instructions during execution.

A hardware interface between PIPE and a high level processor (HLP) has been devel-
oped and software has been written to support this interface. In this manner, the results of
low level vision tasks are transferred to a serial computer which can perform high level vision
tasks of image analysis, recognition, and general decision making which require global infor-
mation. Since the interface is bidirectional, the HLP can download images or look-up tables
directly to any buffer or table on any selected piece of PIPE hardware. In addition, the HLP
can select PIPE algorithms by manipulating the PIPE sequencer.

4. Low Level Image Processing Algorithms

Figure 6 is a picture of a truss node suggested for use in assembly of the NASA Space
Station. The sockets are attached to the node in various configurations, but the world model
has knowledge of the geometry of each instance of any assembly. The appearance of the
truss node presents a difficult problem for computer vision: the part is machined of a smooth,
highly reflective metal, and the curvature of the node increases the difficulty of obtaining sat-
isfactory information with standard image processing techniques.

Figure 6. Truss Node Assembly
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Binary thresholding of the image fails because of the specularity of the node. Connected com-
ponent algorithms which segment an image into distinct objects and compute statistical infor-
mation relative to each object fail because the node is improperly segmented due to highlight
and shadow effects. Edge extraction routines provide extraneous information because high-
lights are falsely interpreted as edges. Figure 7 illustrates the "edges" found in the truss
node assembly using a non-maxima suppression algorithm. .

Figure 7. Truss Node Edge Image

To overcome these obstacles, an algorithm was developed on PIPE which makes use of
standard edge extraction techniques, image smoothing, and multi-resolution processing. The
goal of this algorithm is to provide a connected edge image of the truss node assembly which
can be used as input to a connected component algorithm.

The first operation applied in this algorithm involves extracting edges in the full resolution
image. A Sobel operator [10] is applied to the image using PIPE’s neighborhood operator to
extract the x and y gradients at each pixel in the image (Figure 8).

X Gradient Operator Y Gradient Operator
-1 0 1 1 2 1

2 0 2 0 0 0

-1 0 1 -1 -2 -1

Figure 8. Sobel Operator
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The magnitude and direction of each edge point are then computed using two-valued function
look-up tables. By thresholding the direction image with the magnitude image to remove
weak edges, a three pixel wide, binary edge is obtained . In order to thin the edge image, a
non-maxima suppression algorithm is applied. This operation involves quantizing the direc-
tions of all edge points into one of eight values (Figure 9). The output of this quantization

Value Direction Range

0 0->45

1 45 ->90

2 90 -> 135
3 135 -> 180
4 180 -> 225
5 225->270
6 270 -> 315
7 315->360

Figure 9. Quantization of Direction Image

is stored in a buffer which is used to determine in which direction to thin the corresponding
pixel in the edge image. In this manner, different 3 x 3 masks can be applied to the image
depending on the direction of the edge, and all edge points that are not maximum in the gradi-
ent direction are eliminated (Figure 7).

In order to remove the extraneous information in the thinned edge image, multi-resolution
processing is used. The image is first smoothed using a Gaussian operator [10], and then it
is sampled such that each 2 x 2 neighborhood of the original image is averaged to produce
one pixel at the next higher level of resolution (Figure 10). The reverse operation is then
applied to the smoothed sampled image; it is expanded back to a 256 x 256 image using pixel
replication.

Level n+1

Level n

Figure 10. Forming Levels of a Multi-Resolution Pyramid
The result of these operations is shown in Figure 11. The false edges caused by the specu-
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larity have been removed and all portions of the truss assembly are connected. Reapplying
the Sobel operator to Figure 11 results in a connected edge image (Figure 12), and applying
a shrinking algorithm results in a connected, thinned edge image (Figure 13).

Figure 11. Result of Multi-Resolution Processing

Figure 12. Sobel Edge Image
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Figure 13. Thinned Edge Image

Using the hardware interface between PIPE and the HLP, the thinned edge image is
transferred to the HLP for additional processing to obtain global information. In particular,
the area of the node, its centroid, and its orientation are computed using the (p+q)th order
moments defined in [12]:

mpq = [[xP yq f(x,y) dx dy

where f(x,y) = 1 for all edge points and f(x,y) = O for all non-edge points. The centroid of an
object is defined as :

Xe =myo/ Mgy, Yo =mg; /mg

where my is the area of the object, and the orientation is defined as :

6.=.5 tan ™! [2 (mggmyy - mygmg;)/ (mgg Mag - myq®) - (mgg mo - mgy )]

The locations of corners of an object provide useful information in that they support the
calculation of the orientation of an object. Given the model of an object, the viewing position
can be determined by knowing which corners are visible.

Corners can be defined as locations where adjacent edge segments have high rates of
curvature. These rates of curvature can be measured over small distances, yielding local cor-
ners. As the distance becomes larger, more global comers are found. To detect global cor-
ners, it is useful to use a lower resolution image, since a large area in the high resolution
image maps to a relatively smaller area in the low resolution image (see Figure 10). A cor-
ner detection algorithm was implemented on the PIPE using these concepts.
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Initially, an image of the truss node (see Figure 6) was used to generate successively lower
resolution versions of the same image. The image was sampled so that only every other pix-
el on every other row was used to produce an image at the next resolution. From a 256 x
256 image, images were created of sizes 128 x 128, 64 x 64, 32 x 32, and 16 x 16. Using the
low resolution image, a Sobel edge operator was applied to compute edge magnitude. Figure
14 is a picture of the edge image at this low resolution thresholded to indicate where edges
resulted from high changes in contrast. Next, four Boolean neighborhood operations were
computed on this binary edge image to test for the presence of eight types of corners (see
Figure 15). The responses from the corner masks were combined and then expanded back to
full resolution using pixel replication. The results are shown superimposed on the grey scale
image of the truss node, where the corners were detected on the 16 x 16 level (see Figure
16) and on the 32 x 32 level (see Figure 17). As is expected, there are more responses
obtained at the 32 x 32 level of resolution than at the 16 x 16 level. This is caused by the fact
that the local operators are applied over a smaller distance, thereby detecting more local cor-
ners.

The quality and accuracy of the corners detected depend largely on the level of resolution
at which they were extracted. = The margin of error of the corner position is produced as a
result of the way in which images are reduced and expanded on the PIPE. As an image
buffer is reduced in resolution, pixels are sampled in every other row and in every other col-
umn. The result is always placed in the same corner of a 2 x 2 neighborhood. Expansion of
an image involves the replication of pixels in a 2 x 2 neighborhood. Thus a corner point in the
16 x 16 image represents 16 pixels in the 256 x 256 image, any one of which can be a true
corner point.

Figure 14. Low Resolution Image of Truss Node
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