N89-10073

The Load Shedding Advisor: An Example of a
Crisis-Response Expert System

Terry B. Bollinger

2(\
Software Productivity Consortium sz aé

1880 Campus Commons Drive, North
Reston, Virginia 22091

Eric Lightner / John Laverty ép\{ ‘7\

Bendix Field Engineering Corporation
10210 Greenbelt Road, Suite 200 (f‘
Greenbelt, Maryland 20706 -
Edward Ambrose q
Goddard Space Flight Center, Code 534.1 f\) C
Greenbelt, Maryland 20770 7

Keywords: Expert systems, Prolog, load shedding,
entity-relationship model, relational databases,
human factors, hybrid methods.

Abstract: The paper describes a Prolog-based
prototype expert system that was implemented by
the Network Operations Branch of the NASA Goddard
Space Flight Center. The purpose of the prototype
was to test whether a small, inexpensive computer
system could be used to host a load shedding
"advisor,” a system which would monitor major
physical environment parameters in a computer
facility, then recommend appropriate operator
responses whenever a serious condition was
detected. The resulting prototype performed
significantly better than was originally anticipated,
due primarily to efficiency gains achieved by
replacing a purely rule-based design methodology
with a hybrid approach that combined procedural,
entity-relationship, and rule-based methods.

1. Introduction

Successfully operating a large computer facility is a task that encompasses far
more than simply knowing how to run computers. A computer facility is
complex, integrated combination of physical, environmental, and
computational systems that must work in unison to achieve the overall
purpose of the facnllty, for example, the failure of a small valve that supplies
chilled water to an air conditioning unit can cause a computer system to grind
to a halt just as surely as the loss of a critical system file. ~When the
interlinked support systems of a facility work smoothly, it is quite easy to
forget about the safety net that they provide; however, when one of those

¢
Ly

support systems suddenly fails or is seriously damaged, a good understanding
of its relationship to data processing and communications equipment can
suddenly become critical.

After a support system failure has been recognized, the decisions made during
the (often short) span of time available for responding to the problem can
make the difference in whether critical processing must be abandoned, and in
certain cases may determine whether facility equipment is physically
damaged. The problem of how to respond to a support system failures is
aggravated when a facility is part of a larger real-time communications
network, since a loss of key functions in such a facility can have a direct
impact on sites throughout the network.

At the NASA Goddard Space Flight Center, the problem of how to minimize the
impact of support system outages is a very real operational issue. Goddard is
the home of the Network Control Center, or NCC, which is the central control
facility for the Tracking and Data Relay Satellite System (TDRSS) Network. The
TDRSS Network combines a ground based communications network with a
geosyncronous relay satellite, and it is used to provide communications
support to a variety of satellites and spacecraft, including the Space Shuttle.
Due to the central role of the NCC in the TDRSS Network, the failure of one of
its support systems can have an impact that goes far beyond the NCC, affecting
communication nodes and TDRSS customers at various remote sites. Such
outages can in certain instances result in the loss of irreplaceable scientific
data; in the case of the Space Shuttle, such an outage could make it necessary to
fall back to the Ground Network, an older ground-based communications
network with less coverage.

2. The Load Shedding Study

In August 1985, the Network Operations Branch (Code 534.1) of the Goddard
Space Flight Center began a study to determine whether expert system methods
could be used to assist NCC operators in responding to failures in NCC support
systems. The specific area sclected for investigation was load shedding, which
is defined for the NCC facility as the selective reconfiguration and shutdown of
equipment during power, temperature, or humidity crises. Specific goals of
the investigation were:

a) To determine the applicability of expert system methods to the load
shedding problem. Due primarily to the need for real-time responses,
expert system methods were not automatically assumed to be the best
approach to the load shedding problem. Although a few examples of

real-time expert systems (such as Navex!) were known when the study
began, most examples of expert systems were for stand-alone use only.

b) To provide a mechanism for formally capturing load shedding expertise.
Even if the load shedding application did not prove to be a good
candidate for expert system methods, it was felt that the formal capture
of operator expertise would be a valuable result in itself, since it could
be used to formulate better manual procedures for load shedding.

c) To determine processing and storage needs of an operational expert
system. By developing a prototype of the expert system, it was hoped
that firmer estimates could be made of the processing and storage
resources needed for an operational load shedding expert system.

A key component of the Code 534.1 strategy was to build an actual small-scale
prototype of a Load Shedding Advisor, using an off-the-shelf expert system
shell on a PC-class computer system. Although it was recognized that a PC-
class system was unlikely to be powerful enough to host a fully functional
real-time load shedding system, the PC approach had the important advantage
of providing a convenient and readily available host system for developing
the major features of the knowledge base.

3. Results of Prototype Development

The load shedding study was completed in October 1986, and the results were
encouraging. In particular, the final version of the prototype performed
significantly better than anticipated, leaving open the possiblity that a PC-
class computer could be used to host an operational load shedding expert
system. Gains in both efficiency and maintainability were achieved through
the use of a "hybrid" design approach that was developed as the prototyping
effort progressed. This hybrid methodology, which is described in more detail
later in this paper, replaced a purely rule-based design with a combination of
procedural, entity-relationship, and rule-based methods.

Three distinct prototypes were constructed for the load shedding study. Each
of these prototypes used a different shell or shell version, and each one
concentrated on a different aspect of the load shedding problem. All of the
prototypes were implemented on an IBM PC XT with 640K bytes of memory, a
30 megabyte hard disk, two half-height floppy disk drives, an EGA graphics
board, a mouse, and an MS-DOS operating system. The number of people
working on the project varied from one to three, with one person always
assigned full time. The prototyping activity lasted fourteen months.

The first two prototypes were aimed at determining the actual rule sets for an
NCC load shedding system, and were directly based on expertise gained by
interviews with NCC facilities and operations personnel. The third prototype
was used to investigate structural and human factors issues, and was designed
for use as a demonstration system. To avoid having sensitive data in the
demonstration prototype, its knowledge base was constructed around a
hypothetical facility that demonstrated features found in most large computer
facilities, rather than being based on the NCC. Descriptions of the three Load
Shedding Advisor (LSA) prototypes are given below.

4, LSA-1: Interactive Diagnosis of Load Shedding Problems

Design of the LSA-1 Prototype. The first prototype, LSA-1, was a classic

Mycin-style expert system that used Newell/Simon production rules? to
represent load shedding expertise. The rules were implemented with Version
1.3 of Teknowledge's "M.1" expert system shell, a rule based, backwards-

chaining shell that is similar in syntax to the AI language Prolog3. Like most

Mycin-style expert systems, the operator interface for LSA-1 was
"conversational;" the expert system acquired facts by engaging in a selective
question-and-answer session with an operator.

The LSA-1 Knowledge Base. A substantial body of rules was collected and
formalized for the LSA-1 effort, but for reasons described below, only a small
subset (about 30) of these rules were actually coded into the knowledge base.
The implemented subset covered diagnosis and response to power distribution
problems for a hypothetical facility that included several load centers (power
conversion transformers), two commercial power feeders, and two backup
power feeders.

Evaluation of Results. Within the limits of the data available to it, the LSA-1
system performed reasonably well. Response times were acceptable, ranging
from a few tenths of a second to one or two seconds, depending on how much
text was displayed and how much inferencing was required. Certain aspects of
the M.1 Version 1.3 user interface, such as the requirement that all entries be
terminated with a period, were cumbersome, but the system converged rapidly
to conclusions and needed relatively few entries from the operator.

Although the production rule model of LSA-1 provided a good mechanism for
collecting and formalizing load shedding expertise, it did not adequately satisfy
the primary goal of determining whether a real-time, on-line load shedding
advisor was possible. Factors which made LSA-1 inadequate for accurately
assessing the load shedding expert system problem were:

a) Incomplete coverage of the problem domain. Since the LSA-1 system
was built on the assumption that all decision data would be obtained
from an human operator, its covecrage was neccssarily limited to faults
whose effects were visible to the operators. Such an approach suffers
from the dual problems of poor fault coverage (since only a small subset
of the potential range of fault indicators would be used) and poor
resolution (since there was not always enough data to distinguish
between distinct faults).

b) Reliance on operators for time critical status data. Another problem
with LSA-1 dependence on the operator interface for data was the time
critical nature of many load shedding problems. In a load shedding
emergency, the operator may need to respond in less than a minute; in
such a case, it is very unlikely that he will want to spend that time
getting the expert system "up to date” on what has happened.

The Domain Status Acquisition Problem. The most significant problem with
the LSA-1 prototype was its reliance on a question-and-answer dialog to obtain
the data it needed to make load shedding recommendations. While this type of
dialogue is adequate for situations where the problem is stable over the time of
the dialogue (most patients don't dic while Mycin is asking questions), it can
be highly inappropriate in a crisis situation where a fraction of a minute may
make the difference between success and failure. The problem is aggravated
by the fact that good load shedding recommedations require more than a
simple identification of the problem; unless the advice can be "customized" to
the current status of a facility, the system can only give generic advice on
how to deal with a problem.

In a crisis situation, generic advice is a poor second to a list of specific
instructions. The difference between the two may be seen in the example of
telling an operator to "shut down non-critical disk drives," as opposed to
giving him a list of exactly which drives should be shut down. Such
customization is dependent primarily on the availability of good status data,
rather than on the inferencing power of an expert system. Without such
customization, a load shedding expert system would in effect become an on-
line documentation system, where operators would "look wup" standard
procedures by entering a short list of index conditions. While such a system
could be valuable as an automated replacement to paper-based operating
manuals, it would fall substantially short of the full potential of a load
shedding expert system. -

In the sections below, the set of data that describes the current status of an
expert systems's problem domain (in this case a computer facility) is referred
as domain status data. The problem of how to acquire such data effectively is
referred to as the domain status acquisition problem.

5. LSA-2: Simulated Domain Status Monitoring

Purpose of the LSA-2 Prototype. Since LSA-1 did not adequately address some
of the broader issues of how to implement a load shedding expert system, the
LSA-1 system was abandoned in favor of a new approach in which the domain
status acquisition problem would be explicitly addressed. To test the
effectiveness of integrating domain status data into the expert system, a new
prototype, the LSA-2 system, was implemented.

Design of the LSA-2 Prototype. LSA-2 was implemented in M.1 Version 2.0,
which provided a number of significant enhancements over Version 1.3.
Version 2.0 was written in C rather than Prolog, and as a result it was about
five times faster. Screen display commands, which were one of the weakest
points of Version 1.3, were also significantly improved, although they still fell
short of the capabilities provided by many conventional PC-based
programming languages.

The major thrust of the LSA-2 effort was to simulate entry of domain status data
through the the use of simple menu-style operator query screens. The
operator could selectively modify the recorded status, which would then be
recorded as facts in the knowledge base. Upon completion of such entries, the
system would evaluate the status values for potential problems, and would
automatically prompt the operator if any were found; thus, unlike LSA-1, the
new system was able to initiate its own diagnostic sequences without waiting
for an explicit operator query.

Like LSA-1, the LSA-2 system was implemented using only production rules.
Features such as the menu displays could also have been accomplished by
writing a C program that interfaced with the expert system, but it was decided
to instead try using the enhanced I/O features of M.1 Version 2.0 to create a
more-or-less conventional menu interface.

The LSA-2 Knowledge Base. The decision to implement conventional menu-
style interfaces with production rules instead of external code turned out to be
rather a disaster, particularly from the perspectives of clarity and

maintainability. Since M.1 Version 2.0 permitted a maximum of 16 variables in
any one rule, displays that showed more than 16 variables at once (of which
there were several) had to be "coded" by using remarkably opaque trees of
display rules. The ability to iteratively modify a parameter, a must for those of
us who don't always get it right the first time, could only be implemented by
using M.1 metacommands to selectively reset (clear) facts from the knowledge
base, an approach which again led to opaque "code."

By adding the requirement that the knowledge base handle more complex data
about the status of the facility, it also became necessary for LSA-2 to perform
calculations on moderately large sets of data; for example, the total electical
load of a facility could only be obtained by adding the individual loads of all
active equipment items. Although M.l was capable of performing arithmetic
calculations fairly quickly, the design used in LSA-2 used inferencing as its
data access mechanism, an approach which led to very slow evaluations. For
example, one simple summation of a few dozen real values took over 60 seconds
to perform, a figure that clearly leaves room for optimization.

Evaluation of Results. Unlike the LSA-1 system, which performed reasonably
well withing its defined limits, the LSA-2 experiment was obviously no where
near its optimal level of performance or structure. Its main value was

conceptual; by providing a first-draft attempt to organize and use explicit
domain status data in a knowledge base, LSA-2 suggested new ways for
organizing such data in a more coherent fashion. After completion of a slow
(but functional) LSA-2 system, the prototyping effort shifted its focus to a new
tool and a new representation of domain status data.

6. LSA-3: Entity-Relationship Problem Modeling

Switching Over to Turbo Prolog. As described above, the LSA-2 prototype had
run into difficulities in its use of rule-based methods for menu displays and
numeric calculations. The best solution to this problem appeared to be convert
I/O and numeric functions to C, and to use the M.l shell only for inferential
problem solving. Another possibility was translation of the M.l knowledge
base into Prolog, a language which shares many features with M.1, but which
contains a fuller range of low-level I/O and numeric functions. Unforunately,
most of the PC-based Prolog systems that were available at that time were slow
and rather limited, and they often lacked the standard features found in large-
machine versions of Prolog.

The situation changed when Borland released Turbo Prolog Version 1.0. Turbo
Prolog is actually a subset of full Prolog, since it omits an important feature
known as metaprogramming, but the product has a powerful set of high-level
and low-level I/O routines, and it is very fast. After a short period of testing, a
decision was made to translate the major features of the LSA-2 prototype into
Turbo Prolog.

Penalties involved in switching from M.1 to Turbo Prolog included the loss of
a rich set of M.1 commands and mectacommands, a switch to a less English-like
syntax, and loss of the built-in conversational interpreter. These losses were
offset by that fact that the LSA-3 design would be built almost entirely around
mcnu-based interfaces, and would rarely need a conversational interface.

Design of the LSA-3 Prototype. As a result of evaluations of the LSA-2
prototype, it was decided that the LSA-3 prototype should explicitly partition
the load shedding problem into three components, each of which would use a
different conceptual model. The components of this hybrid approach were:

a)

Procedural Programming. The experiences gained in the LSA-2 model
indicated that for many of the current expert system shells,
conventional coding may be the best way to implement support
functions such as I/O and mathematical calculations. The general rule
for deciding whether to use procedural code is that if a function
attempts to use inferencing to perform simple, non-heuristic accesses to
data, I/O devices, or other rules,, then it probably should be
implemented with some form of procedural programming. Inferencing
is a powerful look-up mechanism, but it is also very expensive in its use

~ of computer time; careless use of inferencing in an expert system can

b)

c)

very quickly lead to serious performance problems.

In Turbo Prolog, "conventional" programming was simulated by
selectively using the cut operator to constrain predicates into non-
backtracking behavior. Predicates in this form could be used as close
analogs of conventional subroutines and functions, and various Turbo
Prolog compiler optimizations provided excellent speed and memory
performance for constrained predicates.

Entity-Relationship Modeling. Entity-relationship (E-R) modeling4:3 is
an idea that has become popular in recent years in the database
management community. The E-R model of a problem is actually a form

of the well-known relational database modelS, differing only in that
"relationships” between tables of information ("entities") are explicitly
named and defined, rather than being implicit as they are in the
relational model.

The importance of E-R models to expert systems is that they can be used
to separate problem modeling from problem expertise. In the case of
the load shedding problem, E-R models can be used to represent sets of
equipment and their properties, while rules for handling support
system faults can be be generalized to address entire classes of
equipment, rather than individual items. Since most expert system
shells are built around relational databases, simple forms of the E-R
model can be directly implemented in products such as M.1. Prolog,
with its inherently relational structure, is a particularly good language
for implementing E-R problem models.

Rule-Based Knowledge. In the hybrid approach, production rules are
reserved for their classical application of modeling human expertise
about specific, well-defined problem domains. However, unlike most
rule-based expert systems, the rules of a hybrid expert system should
make their assertions primarily in terms of an wunderlying entity-
relationship model of the problem domain, rather than in terms of the
external world of the expert system user. Changes to status data in an E-
R database can be hidden from the expertise rule set, so that these rules
can view the E-R database as if it were a direct mapping from the real-
world problem domain. The major advantage of having rules address

the E-R model instead of the external world is generality; rules stated in
terms of formally defined E-R facts will tend to be more powerful than
rules that refer directly to less formalized structure of the real world.

The LSA-3 Knowledge Base. Using the hybrid design paradigm described
above, the LSA-3 knowledge base was divided into two parts: an E-R component
that describes the hypothetical facility with relational tables, and a set of
production rules for describing expertise in solving load shedding problems.
Conventional procedures, which were implemented by using constrained
Prolog predicates, were used to transparently update the E-R database to the
current (simulated) status of the facility. .

The LSA-3 User Interface. The LSA-3 user interface strongly emphasized
human factors related to the load shedding problem. In particular, the
number of operator keystrokes needed to respond to alarms was kept to a
minimum, data entry mechanisms were arranged to make invalid entries
difficult or impossible, color coding was used to help operators identify out-of-
tolerance values at a glance, selective keyboard lockouts were used to prevent
invalid data entries, and all screen displays included information on “"what to
do next." For normal conditions the system the system is passive, requiring no
interactions from operators. For serious emergencies, the system goes into an
"imperative” mode in which visual and audible alarms are activated. The
alarms will remain on until an operator either follows the recommendations of
the system, or explicitly overrides the alarms with an explanation of their
cause.

Using "instantiation" of general conclusions against the E-R model of active
equipment, the prototype is able to convert a general conclusion into a
specific list of specific, item-by-item recommendations that are then
‘presented to the operator as a series of imperative menus. These menus are
presented in priority order, with the most important sets of equipment given
first. Equipment lists are grouped by system to help the menus correspond
more closcly to the physical components of the facility. If multiple problems
are detected, the system responses to those problems are queued in a
prioritized order. In such a case, the system will continue to prompt the
operator with new alarms until all known problems have been resolved.

Although the primary mode of interaction between the LSA-3 system and an
operator is through menus, a special rule interpreter was written in Turbo
Prolog for use in cases where reliable domain status data is unavailable. In
this situation, it is planned that the load shedding system will fall back to a
mode that is similar to to the LSA-1 prototype, in which observable symptoms
of faults are used by an operator to access general advice as to what actions to
take. The interpreter provides a conversational interface, and is designed to
be embedded in a Prolog program, rather than to act as a stand-alone shell. It
is backward-chaining, and implements a slightly modified form of Bayesian

certainty factors’ to handle reasoning with uncertain facts.

Finally, the LSA-3 prototype includes a set of routines for creating colored bar
gauges, which are used to display temperature and humidity data. The routines
are dcsigned for general-purpose use, and can be embedded in any Turbo
Prolog program.

LSA-3 Performance. The performance of the LSA-3 prototype was
exceptionally good, especially when compared to earlier LSA-2 design that
attempted to provide similar features. Evaluations of the E-R status database
were completed at a rate of four times a second, and an 80386-based version of
the system is expected to run roughly 20 evaluations each second. Both of
these speeds are far in excess of anticipated needs. User interfaces were all
very prompt in responding, and "smart" display features used in the menus
allowed users to see the implications of data entries almost instantly. The only
PC resource that was appreciably stessed by the application was memory; in
some instances, approximately half of the available 640K bytes of memory was
used by the application.

Overall, the performance of the LSA-3 prototype was sufficiently good that the
idea of using an 80386-based PC computer to host an on-line Load Shedding
Advisor became a real possibility, one which will be investigated in future load
shedding work. '

7. Advantages of Using Entity-Relationship Models in Expert
Systems

The explicit use of an E-R model in the LSA-3 prototype led improvements in
both the clarity and performance of the knowledge base, and is a concept that
would appear to have considerable generality. Advantages of using E-R models
in the construction of knowledge bases include:

a) Increased Structural Clarity of the Knowledge Base. In many expert
systems, modeling of the problem domain (such as a computer facility or
an automobile engine) is intimately mixed with heuristic expertise
about the domain (such as which symptoms indicate which classes of
faults). The E-R model allows a clear separation of such knowledge, and
a corresponding increase in clarity.

b) Increased Maintainability of the Knowledge Base. The E-R model of a
problem domain will record information that is much more readily
accessible than problem solving expertise, and it will record it in the
form of easy-to-maintain tables. For example, in a well-structured E-R
model, the removal of an equipment item from a computer facility would
be shown by simply removing the item from its entity table; the load
shedding expertise of the rule base would not need to be changed at all.

¢) Avoidance of Redundant Rule Instantiations. A common problem in
rule-based expert systems is the inadvertant specification of rules
which simply repeat a general principle for two or more similar
objects. An E-R model helps substantially in eliminating such
redundancies by providing a single, coherent terminology for
describing classes of similar problem domain objects.

d) Easier Identification of Generic Rules. By providing a formal
terminology for describing the problem domain, the E-R model can also
help an expert notice broader relationships when defining rules.

e) Increased Clarity and Conciseness of Rule Definitions. The availability
of a formal E-R description of the problem domain also helps make

9

individual rules more precise and less prone to inadvertant use of
synonyms,

f) Faster KB Evaluations Through Specification of E-R Access Mechanisms.
By defining special forms of relationships which order or otherwise
modify the appearance of entitiecs at the rule level, explicit search
mechanisms can be imposed on rules, without affecting the way in
which rules are stated.

g) Simplification of Interfaces to Conventional Software. As described for
the LSA-3 model, the E-R database can be updated independently by
conventional software, allowing the rule base have rapid access to
external data without having to acquire it via inferencing.

h) Support of Constrained Learning Via E-R Modification. An valuable
property of a well-structured E-R database is that it is very easy to
update, provided that the changes to it do not violate the particular E-R
model used. This feature could readily be used to create knowledge bases
that actively learn about changes in the problem domain, a feature that
could be very useful for an application such as the Load Shedding
Advisor, where the problem domain (a computer facility) may have
frequent changes to items such as equipment lists. A limited learning
feature would greatly extend the usability of the expert system in such
an environment,

J) Enhanced Support of "Deep” Reasoning. Finally, the formal problem
domain descriptions of E-R models could be used as "axiom sets" for some
forms of self-referential reasoning. The analogy is that the expert
system can reason more deeply because it can "see" a formal model of
the problem <domain, rather than having to relay on implicit problem
domain knowledge that is scattered all through the knowledge base.

8. Future Directions

Work on the Load Shedding Advisor has continued into a new phase in which
mechanisms for linking a load shedding advisor into NCC status systems are
being investigated. With the successful of the LSA-3 prototype in
demonstrating that a load shedding system is feasible on even a small
computer system, the emphasis has now shifted to the significant problem how
to acquire timely, up-to-date data for refreshing the E-R status database.

An equally interesting result of the load shedding effort has been the
development of the hyprid approach to developing new expert systems. In
particular, the idea of explicitly partitioning knowledge bases into an E-R
problem domain model and independent expertise about that model seems to
hold considerable promise as a way to extend expert systems into a wider range
of real-time applications.

1 Maletz, M.C. 1984. NAVEX System Architecture and User’'s Manual. Los
Angeles: Inference Corp.

10

2 Barr, A., and Feigenbaum, E. A. 1981. The Handbook of Artificial
Intelligence, Volume I. Los Altos, CA: William Kaufmann, Inc.

3 Clocksin, W.F., and Mellish, C.S. 1984. Programming in Prolog. New York:
Springer-Verlag.

4 Foard, RM. 1985. A Data Manager Using Entity-Relationships. IBM Tech
Journal 3,10 (Oct 1985).

5 Chen, P.P. 1976. The Entity-Relationship Model -- Toward a Unified View of
Data. TODS 1, 1 (March 1976), 9-36.

6 Codd, EF. 1970. A Relational Model of Data For Large Shared Data Banks.
CACM 13, 6 (June 1970), 377-387.

7 Barr, A., and Feigenbaum, E. A. 1981. The Handbook of Artificial
Intelligence, Volume 11. Los Altos, CA: William Kaufmann, Inc.

11

