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SUMMARY

An implicit ADI numerical method for the calculation of two-dimensicnal
unsteady flows with strong convection effects is described. The method is
based upon the conventional Crank-Nicholson approach for parabolic equations
but an upwind-downwind differencing is used for the first order spatial
derivatives associated with convection. The differencing is carried out in
the current and previous time plane in such a way that the algorithm is second
order accurate in both space and time. The difference equations are factored
into sequential operators, one in each irdependent spatial variable; the
solution at each time step may then be ccmputed as a sequence of tridiagonal
matrix problems. The method may be used in a noniterative manner although
iteration at each time step is recommended in situations where the effects of
convection are strong.

INTRODUZTION

Unsteady flows with strong convecticn effects occur in a variety of
circumstances. Many of these situations are associated with unsteady
boundary-layer separation phenomena and the strong unsteady viscous-inviscid
interactions that are observed to occur tetween an outer effectively inviscid
flow and the viscous flow near a solid surface. Specific examples include (i)
small separation bubbles on the upper surface of turbine blades and airfoils
which in certain situations erupt into the inviscid flow region, (ii) the
eruption of boundary-layer flows which i< induced by the motion of vortices
near solid walls (refs. 1 and 2) and (ii%) bursting in turbulent boundary
layers (refs. 3 and 4). One feature of the aforementioned flow situations is
that, as the interaction initiates, very strong updrafts begin to develop in
the boundary layers near the wall and the flow field locally is dominated by
strong convection effects.

When finite difference schemes are used to compute the evolution of a
time-dependent flow, methods based on some version of either the Crank-
Nicholson algorithm (ref. 1) or a factored-operator ADI (Alternating-
Direction-Implicit) technique are used. In Crank-Nicholson methods, the
difference equations in the current time plane are usually solved by
iteratively sweeping point-by-point through the two-dimensional spatial mesh
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until convergence is attained at each point. In the factored alternating-
direction methods (ref. 5), the difference operators are factored and the
difference equations are solved as an ordered sequence of tridiagonal matrix
problems in each of the coordinate directions. In general, the ADI methods
are more efficient than the iterative Crank-Nicolson method. However, in a
recent study of the evolution of unsteady flow in a two-dimensional boundary
layer (ref. 6), the explicit Beam and Warming (ref. 5) type of algorithm was
found to fail in situations where strong time-dependent convective effects
were present. The algorithm described in this study is also a factored ADI
method; however, upwind-downwind differencing is used for first order
convective derivatives and the method is also implicit. The present method
produced good results (ref. 6) in a situation where both standard Crank-
Nicolson method and conventional ADI methods failed.

Problem Statement

The two-dimensional unsteady boundary-layer equations in either Eulerijan
or Lagrangian coordinates can be written in the following general form:
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where u s the tangential velocity in the boundary layer, (£,n) are
independent spatial coordinates and t 1is time. In the Lagrangian
description of the boundary-layer motion, (§,n) are the Cartesian coordinates
of a particle at the initiation of the motion; if x(&,n,t) denotes the
streamwise position of a fluid particle at time t, equation (1) is
supplemented with an equation

3x
8t = U, (2)

and the functional coefficients in equation (1) (namely R,S,T,P,Q,W) depend on
x and u as well as (&,n,t). Consequently the system described by
equations (1) and (2) is nonlinear and equation (2) is simply a convenient
representation of the momentum equation. Note that the coefficients R and

T are such that

R>0, T>0. (3)

In the Eulerian description of unsteady two-dimensional boundary-layer flow
(see, for example, ref. 1),

R=S5S=0,T-=1, (4)
and equation (1) is supplemented with

%‘L u, (5)
n

where ¢ s the two-dimensional stream function; in this case, the functional
coefficients in equation (1) are functions of u and ¢ as well as (£,n,t).



It is worthwhile to note that each momentum equation for the full
two-dimensional Navier-Stokes equations is also in the general form of
equation (1).

In order to compute the evolution of the flow field, it is necessary to
develop algorithms which advance the solution of equation (1) one time step at
a time. Consider a spatial mesh in the &n plane and adopt a convention
where subscripts 1ij denote a quantity evaluated at a typical point in the
mesh, with i and j representing typical locations in the & and n
directions respectively. It is assumed that the solution is known at time
t* (the previous time plane) and the objective is to compute the solution at
t = t* + At (the current time plane), where At is the time step. All
quantities evaluated in the previous time plane are assumed known and will
indicated by an asterisk; values of u ir the current time plane are unknown
and to be found.

The Conventional Crank-Nicolson Method

The grid structure near a typical spatial mesh point is indicated
schematically in figure 1. In the standard Crank-Nicolson method (ref. 1),
equation (1) is approximated at a point midway between the current and
previous time planes along a line connecting the typical point in mesh
labelled ij. The coefficients in equation (1) are evaluated through a simple
averaging procedure involving quantities in the current and previous time
planes; using an overbar to denote quantities evaluated at the midpoint, a
typical coefficient in equation (1) is evaluated according to

-4 *
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for example. For derivatives in equation (1), an average is also carried out
between the current and previous time planes and central difference
approximations are subsequently used in both time planes. Let &, and §

be central difference operators in the & and n directions respectively
with u, and u_ being averaging operators in the corresponding directions
(ref. 73 (which are defined in the Append‘x). Then central difference
approximations for the derivatives in equation (1) in the current time plane
at the point ij may be written
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where hg and h, are the mesh spacings in the £ and n directions
respectively. Corresponding formulae apply in the previous time plane except
that the values of wuj3; appearing on the right sides of equations (7) are
evaluated at t* and would therefore be written with asterisks.

The conventional Crank-Nicolson finite-difference approximation to
equation (1) at a typical point in the mesh may be written according to

Ugs = U, .
IR E R I8 - O B S A = =22
at 2 Rijhi g v SiJ 3 hn MeSghnSy + Tijhn 2
Pooh s «0.hi s i su LT (8)
ij’n "nn 1378 g€ 1340713 N i3’

where the asterisk denotes known values in the previous time plane and the
overbar indicates a simple average between the current and the previous time
plane (as, for example, in equation (6)). It is worthwhile to note that these
difference approximations are second order accurate in both spatial directions
and in time. Since the coefficients in equation (8) (Rjs, Sijo Ti3,..0)
depend in general on the dependent variable wu, the différence equations are
nonlinear and must be solved iteratively; for given estimates of the
functional coefficients in equation (8), the system of equations is generally
solved by systematically sweeping the spatial mesh using a Gauss-Seidel or an
over-relaxation method. In the case when S = 0 in equation (1), the system
of equation (1) may be written in the form

I P
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at a typical point in the mesh; for equations containing a second order cross
derivative (and hence having a nonzero S), the right side of equation (9) will
also involve terms with Uisls3+1s Uisl, §-1» Ui-1 j+1 and Uj_1,5-1. In a
point-by-point iterative sweep” through f%e spatial mesh, current estimates of
the values on the right side of equation (9) are used to define the new
iterate for ujj at each mesh point. Sweeping of the mesh is continued at
each time step uUntil convergence is obtained and this typically may require on
the order of 10 to 50 iterations (ref. 1). Generally, convergence occurs
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rapidly if the system of difference equations is diagonally dominant; this
implies that the coefficient of the pivotal element must be greater or equal
in magnitude than the sum of absolute values of the coefficients of the other
elements in the difference equation. For the system defined by equation (9),
diagonal dominance occurs if

laiyl > [bigl+ leigl + 1digl + leijl, (10

for each point in the mesh.

Upwind-Downwind Differencing

It is well known that the central difference approximations (7c¢) and (7d)
for the first derivative terms in equation (1) can lead to difference
equations of the form (9) which are not diagonally dominant. In situations
where Pjs and Qjy are large (corresponding to strong local convection
effects), the difference equations associated with equations (8) may fail to
be diagonally dominant over a significant region of the flow field and the
iterative sweeping of the mesh will fail to converge (refs. 1 and 2). In the
problem studied by Doligalski and Walker (ref. 1) this phenomenon occurs as a
viscous boundary-layer flow near a wall procedes into a strong interaction
with an outer effectively inviscid flow; in such cases, local strong updrafts
occur in the boundary layer near the wall. Doligalski and Walker (ref. 1)
have described an upwind-downwind differencing procedure which is second order
accurate in both space and time and which always leads to a diagonally
dominant set of difference equations (see also refs. 8 and 9). The procedure
only affects the treatment of the terms P3u/dn and Qdn/3§ in equation (1) and
will be described briefly here to set the stage for the algorithm that will be
described in the next section.

Consider first the term P3u/3n. In the conventional Crank-Nicolson
method, each term in equation (1) is approximated at a point midway between
the current and previous time planes; a simple average for all terms is then
carried out along the averaging path labelled (a) in figure 2(a). However, it
is easily demonstrated that an average along any path through the central point
yields a second order accurate result. In particular consider the situation
where Pij > 0 at the typical mesh point and the averaging path labelled (b)
in figure“2¢a); this path intersects the current time plane at a point midway
between the points (i,j+1) and (i,j), and the previous time plane midway
between the points (i,j) and (i,j-1). Ccnsequently central differences may be
used for dU/8n in both the current and previous time planes. for Pjy <O,
the averaging takes place along the line labelled (c) in figure 2(a). The
difference approximations for P3u/dn then may be written according to

— 8___2_
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It is easily confirmed that these approximations always act to enhance the
diagonal dominance of the difference equations; in addition, the
approximations are second order accurate in both hy and At. A similar
approach may be adopted for Q 3u/3t and the averaging paths in this case are
indicated schematically in figure 2(b); here the average for Q3u/3t takes
place along either path (d) or path (e) depending on the sigh of Oij~ The
difference approximations are
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which are second order accurate in hg and At.

It 1s convenient to write these difference approximations in a more
compact form by first introducing the enlargement operators (ref. 7) in the
€ and n directions defined by

%

B

ulg,n) = u(g + hg/Z,n), E?u(g,n) = u(g,n + hn /2y, 13)

respectively. Now define operators x; and xﬁ according to
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where
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-1 P1j <0,
It follows that equation (11) may be written
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In a similar manner, define operators xg and XE according to
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and it follows that equation (12) may be written in the form
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The present algorithm will now be considered.

An Upwind-Downwind ADI Method

Suppose now that the conventional Crank-Nicolson approach is used for all
terms in equation (1), except Pu/dn and Qdu/3f, where the averaging of the
spatial partial derivatives takes place along the line labelled (a) in figure
2(a); the first derivative terms are approximated using equations
(16) and (18). The resulting finite difference approximation to equation (1)
may be written
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This equation defines a difference equation at the typical mesh point, which
can be utilized to carry out a point-by-psint sweep through the mesh at each
time step. Experience with this algorithm (refs. 1 and 2), for the unsteady
boundary-layer equations in Eulerian coordinates, indicates that the method
produces results which are essentially the same as those produced with the
conventional Crank-Nicolson method for well behaved unsteady boundary-layer
flows. However, in situations where strong convective effects occur, the
standard Crank-Nicolson method fails to converge (refs. 1 and 2) as the
difference equations begin to lose the diagonal dominance property; in such
cases the upwind-downwind differencing scheme continued to produce converged
results at each time step and the method could be used well beyond the point
in time where the conventional Crank-Nicolson method failed (refs. 1 and 2).



One disadvantage of the point-by-point iterative methods is that a
significant number of iterations may be required to obtain convergence at each
time step. An attractive alernative is an ADI algorithm of the type described
by Beam and Warming (ref. 5). 1In this approach, the operators on the left
side of equation (19) are factored into operators in the £ and n
directions. In the case of a second order cross derivative, the factorization
is not easily accomplished and consequently the difference expressions
resulting from this term are taken to the right side of the equation. A
factored form of equation (19) may be obtained according to

a At [ = 2 - + a At [ = 2 = %
_— .. h P,. ] - === . h Q.. .. = D..
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Note that equations (19) and (20) are not completely equivalent and differ by
terms 0((a At)2): however, the temporal truncation error associated with the

original Crank-Nicolson method is also 0¢(At)>2) and thus equation (20) may be
regarded as a second order accurate difference approximation for equation (1).

The set of difference equations given by equation (20) may be solved as a
sequence of diagonally dominant tridiagonal matrix problems in the following
manner. Let U1j be an intermediate dependent variable defined by

~ a At )z 2 A o+~
uij - —;g— {Rijsi + thiij} uij = Dij’ (23

it then follows that equation (20) becomes

a At )z 2 5+ o~
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n



To initiate a solution for wuj; in the current time plane, equation (23) is
first solved along all lines o; constant n wusing a direct method of solution
for triadiagonal matrix problems (for example, the Thomas algorithm); this
sweep through the mesh defines current estimates of the intermediate variable
Uj3 at all internal spatial mesh points. Note that boundary conditions for
qu along the maximum and minimum values of n for this sweep may be obtained
using equation (24). In the second phase of the procedure, the computed
values of G1j are used on the right side of equation (23) which now defines
a sequence of tridiagonal matrix problems for ujj along lines of constant £.
Again this sequence of problems is solved by a direct method for each value

of & in the mesh. The net result of this procedure is an estimate for each
Uij at each internal mesh point. Note that another version of the algorithm
is“obtained by interchanging the operators in equations (23) and (24) and for
which a set of tridiagonal problems is first solved along lines of constant

£; this would be followed by solving a sat of tridiagonal problems along lines
of constant n.

It should be noted that it is possinle to apply this algorithm in a
noniterative manner by selecting the time step to be small enough so that
iteration is not necessary. However, in flow problems in which rapid changes
begin to develop in the flow field, it is prudent to use a 1imited amount of
iteration at each timestep. Iteration is indicated since the coefficients
ﬁij. Qij, Tij, and Pj; in equations (23) and (24) are averages between the
current and previous iime planes and consequently are implicit functions of
the dependent variable u. Futhermore, the right side of equation (23), which
is defined in equation (22), contains values of Uiy explicitly, in terms
associated with the second order cross derivative; consequently the value of
D;y at each mesh point should be recomputed and at least one more iteration
carried out.

DISCUSSION

In this study, an upwind-downwind ADI method has been developed. In ADI
methods, the two-dimensional spatial difference operators are factored into
two sequential sets of tridiagonal matrix problems, one in each of the
coordinate directions. These types of methods have proved to be very
efficient due to the fact that (1) direct solvers for tridiagonal matrix
problems are relatively fast and accurata, and (2) the process of solving for
a line of information at once appears to be more effective at communicating
boundary information to internal mesh points as opposed to systematic
point-by-point sweeping of the mesh.

Conventional ADI methods of the typ2 given by Beam and Warming (ref. 5)
may also be applied to equations like equation (1). Such methods employ
standard central differences for the spatial derivatives and are generally
used in a noniterative mode. The present method, as well as the explicit Beam
and Warming (ref. 5) algorithm, has recently been used to compute the unsteady
boundary-layer development due to a vortex convected above a wall (ref. 6); at
a certain stage in this flow, the boundary layer begins to thicken very
rapidly and strong convective effects develop Tocally. Indeed this is the
type of boundary-layer flow which rapidly evolves into an viscous-inviscid
interaction with the outer inviscid flow in the form of a boundary-layer



eruption. In the early stages of the motion, both methods were able to
compute the flow evolution very efficiently. However, once strong convection
effects began to develop locally, the Beam and Warming (ref. 7) algorithm was
unable to successfully track the flow evolution; this failure is believed due
to a lack of diagonal dominance which eventually leads to failure of the
method.

The present method was also compared to the solution process of
systematic point-by-point iterative sweeping of the mesh. Here again the
comparison dramatically favored the present method for the example problem
(ref. 6). Time steps ten times larger could be taken using the present scheme
and at the same time only about one tenth the iterations were required at each
time step. Finally, as the convective effects strengthened it proved
impossible to get converged solution at all, using the point-by-point
iteration.

Lastly, it is worthwhile to note that although the present method may be
used in a noniterative manner, use of iteration at each time step is
considered prudert and is recommended. In the unsteady boundary-layer problem
studied in reference 6, a maximum number of iterations per time step was
assigned a priori; if the maximum was exceeded for any given time step, the
calculation was restarted from the previous time plane with a smaller time
step. In this manner, the number of iterations per time step gives an
indication of the need to reduce (or increase) the time step. Ideally the
time step should be such that on the order of two or three iterations only are
required each time step. If very little change occurs in the solution over
each iteration, a larger time step can be used.



APPENDIX

In this Appendix, the central difference operator notation used in this
study is explicitly defined for completeness. Here (g,n) are independent
spatial coordinates and the uniform mesh spacing in each direction is noted by

and h_ respectively. The enlargement operators in the § and n

h
d%rectionsnare defined by

Egu(i,n) = (g - phe.n), (A.1)
Eﬂu(g,n) = u(E,n + ah), (A.2)

where p and q are constants; these operators simply shift the appropriate
argument of the function. The central difference operators 8E and sn are

defined by

% -4 % -
Sg = Eg - EE , sn = En - En , (A.3)
and consequently
§ Ug<£’") = U(g + ng/Z,n) - u(g -Eh /12,n), (A.4)
= 12y - -
Snu(E,n) u(E,n + hn 2) - u(g,n hn/Z), (A.5)

corresponding to a central difference with one spatial variable held fixed.
Finally the averaging operators Mg and p, are defined by

wo=x E2 4 e (A.6)
E 2 7
1 % -4
pn =3 En + En , (A.7T)
and therefore
1 ‘
pgu(E,n) = Z%U(E + hg/l,n) + u(§ - hE/Z,n)§. (A.8)
]
pnu(g,n) = Zgu(g,n + hﬂ/Z) + u(E,n - hn/Z)}, (A.D

corresponding to an average with one spatial variable held fixed.
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