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An implicit ADI numerical method for the calculation of two-dimensional

unsteady flows with strong convection effects is described. The method is
based upon the conventional Crank-Nicholson approach for parabolic equations

but an upwind-downwind differencing is used for the first order spatial
derivatives associated with convection. The differencing is carried out in

the current and previous time plane in such a way that the algorithm is second
order accurate in both space and time. lhe difference equations are factored

into sequential operators, one in each irdependent spatial variable; the
solution at each time step may then be ccmputed as a sequence of tridiagonal

matrix problems. The method may be used in a noniterative manner although
iteration at each time step is recommended in situations where the effects of

convection are strong.

INTRODUCTION

Unsteady flows with strong convectic>n effects occur in a variety of
circumstances. Many of these situations are associated with unsteady
boundary-layer separation phenomena and the strong unsteady viscous-inviscid
interactions that are observed to occur t:etween an outer effectively inviscid
flow and the viscous flow near a solid st, rface. Specific examples include (i)
small separation bubbles on the upper surface of turbine blades and airfoils
which in certain situations erupt into t_e inviscid flow region, (ii) the

eruption of boundary-layer flows which i_i induced by the motion of vortices
near solid walls (refs. l and 2) and (ii _) bursting in turbulent boundary

layers (refs. 3 and 4). One feature of the aforementioned flow situations is

that, as the interaction initiates, very strong updrafts begin to develop in

the boundary layers near the wall and the flow field locally is dominated by

strong convection effects.

When finite difference schemes are used to compute the evolution of a

time-dependent flow, methods based on some version of either the Crank-

Nicholson algorithm (ref. l) or a factored-operator ADI (Alternating-

Direction-Implicit) technique are used. In Crank-Nicholson methods, the

difference equations in the current time plane are usually solved by
iteratively sweeping point-by-point through the two-dimensional spatial mesh
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until convergence is attained at each point. In the factored alternatlng-
direction methods (ref. 5), the difference operators are factored and the

difference equations are solved as an ordered sequence of tridiagonal matrix

problems in each of the coordinate directions. In general, the ADI methods

are more efficient than the Iterative Crank-Nicolson method. However, in a

recent study of the evolution of unsteady flow in a two-dimensional boundary
layer (ref. 6), the explicit Beam and Warming (ref. 5) type of algorithm was
found to fail in situations where strong time-dependent convective effects

were present. The algorithm described in this study is also a factored ADI
method; however, upwind-downwind differencing is used for first order

convective derivatives and the method is also implicit. The present method
produced good results (ref. 6) in a situation where both standard Crank-
Nicolson method and conventional ADI methods failed.

Problem Statement

The two-dimensional unsteady boundary-layer equations in either Eulerian

or Lagrangian coordinates can be written in the following general form:

8u R a2u
-- +

at - a_2

82u 82u 8u au

S a--_+ T--+ P _nn + Q_-_an2 + Wu + F,
(1)

where u is the tangential velocity in the boundary layer, ({,n) are

independent spatial coordinates and t is time. In the Lagrangian
description of the boundary-layer motion, (_,n) are the Cartesian coordinates

of a partic]e at the initiation of the motion; if x({,n,t) denotes the

streamwise position of a fluid particle at time t, equation (1) is
supplemented with an equation

_X

= u, (2)

and the functional coefficients in equation (I) (namely R,S,T,P,Q,W) depend on

x and u as well as (_,n,t). Consequently the system described by

equations (I) and (2) is nonlinear and equation (2) is simply a convenient
representation of the momentum equation. Note that the coefflcients R and
T are such that

RzO, T zO- (3)

In the Eulerian descriptlon of unsteady two-dimensional boundary-layer flow
(see, for example, ref. 1),

R = S = O, T = 1, (4)

and equation (I) is supplemented with

u (5)
8rl = '

where _ is the two-dlmensional stream function; in this case, the functional

coefficients in equation (I) are functions of u and _ as well as ((,n,t).



It is worthwhile to note that each momentbm equation for the full
two-dimensional Navier-Stokes equations is also in the general form of

equation (I).

In order to compute the evolution of the flow field, it is necessary to
develop algorithms which advance the solution of equation (I) one time step at
a time. Consider a spatial mesh in the _n plane and adopt a convention
where subscripts ij denote a quantity evaluated at a typical point in the
mesh, with i and j representing typical locations in the _ and q
directions respectively. It is assumed that the solution is known at time
t* (the previous time plane) and the objective is to compute the solution at
t = t* + at (the current time plane), where At is the time step. All

quantities evaluated in the previous time plane are assumed known and will
indicated by an asterisk; values of u ir the current time plane are unknown
and to be found.

The Conventional CranK-Nicolson Method

The grid structure near a typical spatial mesh point is indicated
schematically in figure I. In the standaTd Crank-Nicolson method (ref. I),
equation (I) is approximated at a point m_dway between the current and
previous time planes along a line connecting the typical point in mesh
labelled ij. The coefficients in equation (I) are evaluated through a simple
averaging procedure involving quantities in the current and previous time
planes; using an overbar to denote quantities evaluated at the midpoint, a
typical coefficient in equation (I) is evaluated according to

1 ) (6)
Pij : 2 (Pij ' P*ij '

for example. For derivatives in equation (I), an average is also carried out

between the current and previous time planes and central difference

approximations are subsequently used in both time planes. Let 6. and 6q
be central difference operators in the _ and q directlons respectively

with and p being averaging operators in the corresponding directions

(ref. _ (which _re defined in the Appendix). Then central difference

approximations for the derivatives in equation (1) in the current time plane

at the point ij may be written

82u _ 1 _ 2 ui,j+l - 2uij + ui,j-] (7a)
8n 2 h2 6 uij + O(&n ) = - h2 ,

q q

82u 21 6_ + O(A{)2 u - 2u + uiuiJ = __+l,j ij -l,j (7b)- 2 '

8_ 2 h( h(



8u 1
8n - h #q6nUij + O(an)2 =

q

ui,j+ 1 - ui,j_ 1
2h

q

au 1 + o(a_)2 U1+l, j - Ui_l, j

2h_

(7c)

82u 1 p_6_Pn6nUij + O(a_ an)
8_8n - h_h n

, (7d)

ui+1,j+l - ui-1 j+l - ui+1,j-1 + ui-1 j-1
= ' ' (7e)

4h_hq

where hE and h are the mesh spacings in the _ and n directionsn
respectigely. Corresponding formulae apply in the previous time plane except
that the values of uij appearing on the right sides of equations (7) are
evaluated at t* and _ould therefore be written with asterisks.

The conventional Crank-Nicolson finite-difference approximation to

equation (1) at a typical point in the mesh may be written according to

uij - uij
at

1

I i - 2 , 31hE - + T h-Z 2jh_26_ j lhqlp_6_pn6q Jj q q

+ Pijh + Qij * ui * uij j,

where the asterisk denotes known values in the previous tlme plane and the
overbar Indicates a simple average between the current and the previous time
plane (as, for example, in equation (6)). It is worthwhile to note that these
difference approximations are second order accurate in both spatia] directions

and in tlme. Since the coefficients in equation (8) (Rij, _il, Tij;.-.)
depend in general on the dependent variable u, the diff_renc_ equations are
non]inear and must be so]ved iteratively; for given estimates of the

functlona] coefficients in equation (8), the system of equatlons is generally
so]ved by systematically sweeping the spatial mesh using a Gauss-Seidel or an
over-relaxation method. In the case when S - 0 in equation (1), the system
of equation (1) may be written in the form

1 lfij- bi ui- c u1- diju - eiju Iuij - aij t j +l,j ij -1,j i,j+l i,j-1 '
(9)

at a typical point in the mesh; for equations contalnlng a second order cross

derivative (and hence having a nonzero S), the right side of equation (9) wil]

also involve terms wlth ui+],j+l, Ui+l , U!TI,J+ l and U1_l,__ I. In a
point-by-polnt iterative sweep through {ie I mesh, current estimates ofspatlal
the values on the right side of equation (9) are used to define the new

iterate for uiJ at each mesh point. Sweeping of the mesh is continued at

each time step Ontil convergence is obtained and this typically may requlre on

the order of lO to 50 iterations (ref. l). Generally, convergence occurs

4



rapidly if the system of difference equations is diagonally dominant; thls
implies that the coefficient of the pivot._l element must be greater or equal
in magnitude than the sum of absolute valJes of the coefficients of the other
elements in the difference equation. For the system defined by equation (9),

diagonal dominance occurs if

laljl _> Ibij[+ [cijl + Idijl + leij[, (10)

for each point in the mesh.

Upwind-Downwind Differencing

It is well known that the central difference approximations (7c) and (7d)

for the first derivative terms in equation (I) can lead to difference

equations of the form (9) which are not diagonally dominant. In situatlons

where Pij and Qij are large (corresponding to strong local convection
effects), the difference equations associated with equations (8) may fail to

be diagonally dominant over a significant region of the flow field and the

iterative sweeping of the mesh will fail to converge (refs. l and 2). In the

problem studied by Doligalski and Walker (ref. l) this phenomenon occurs as a
viscous boundary-layer flow near a wall procedes into a strong interaction

with an outer effectively inviscid flow; in such cases, local strong updrafts

occur in the boundary layer near the wall. Doligalski and Walker (ref. l)

have described an upwind-downwind differencing procedure which is second order

accurate in both space and time and which always leads to a diagonally

dominant set of difference equations (see also refs. 8 and 9). The procedure

only affects the treatment of the terms P_ulan and QBnI8_ in equation (I) and
will be described briefly here to set the stage for the algorithm that will be

described in the next section.

Consider first the term Pau/aq. In the conventional Crank-Nicolson

method, each term in equation (1) is approximated at a point midway between

the current and previous time planes; a simple average for all terms is then

carried out along the averaging path labelled (a) in figure 2(a). However, it

is easily demonstrated that an average along any path through the central point

yields a second order accurate result. In particular consider the situation

where Pij > 0 at the typical mesh point and the averaging path labelled (b)
in figure-2(a); this path intersects the current time plane at a point midway
between the points (i,j+l) and (i,j), and the previous time plane midway

between the points (i,j) and (i,j-l). Ccnsequently central differences may be

used for aU/Sq in both the current and previous time planes. For Pij < O,

the averaging takes place along the line )abelled (c) in figure 2(a). The

difference approximations for PBu/Bn then may be written according to

au

IPij u - u i + u i
2hq i ,j+l ,j ,j

.)- ui,j-I ' Pij -> O,

U - U + ui
2h i j i j-I ,j+l

rl ' ,

<0.

(11)



It is easily confirmed that these approximations always act to enhance the

diagonal dominance of the dlfference equations; in additlon, the

approximations are second order accurate in both hn and At. A simllar
approach may be adopted for Q 8u/B{ and the averagfng paths in this case are

indicated schematically in figure 2(b); here the average for aula_ takes

place along either path (d) or path (e) depending on the sign of Oij. The
difference approximatlons are

2hF, Ui+l,j - Ul,j + Ul,j - Ui-l,j ' Qij > O,

2hE_ ui,j - Ui-l,j + ui+1,j - ui,j' QIj < O,

which are second order accurate in h{ and At.

It Is convenlent to wrlte these dlfference approxlmatlons In a more

compact form by first Introducing the enlargement operators (ref. 7) in the
and n dlrectlons deflned by

E u(_,n) : u({ + /2,n), E u({,n) = u({,n + h /2)
q

respectively.
÷

Now define operators Xn and xn accordlng to

+ = 6 Esgn(_lj/2)
q qq

-sgn(Pljl2)
xn = 6 Eq q

where

1 Pij > O,
sgn(Pij) :

-I PIJ _ O,

It follows that equation ill) may be written

-'I2h XnUij +n xnulj

In a slmllar manner, deflne operators x_ and x_ accordlng to

(12)

(13)

(14a)

(14b)

(15)

(16)



+ sgn(Q|jl2)
x{ = 6E]E_

(17a)

-sgn(Q|jl2)
x{: 6_E_

and It follows that equation (12) may be written in the form

(17b)

a{ - 2h_ x_uij + x{ulj "

The present algorithm will now be considered.

(18)

An Upwlnd-Downwind ADI Method

Suppose now that the conventional Crank-Nicolson approach is used for all

terms in equation (1), except PBu/Bn and QBu/8_, where the averaging of the

spatial partial derivatives takes place along the llne labelled (a) in figure

2(a); the first derivative terms are approximated using equations

(16) and (18). The resulting finite difference approximation to equation (1)

may be written

At IRljh_26_ + SI h_- - +uij - _-- - j lhnlp{&_Nn6 n Tij h-262nn

+ +.+ h-IQ + + WI I uhnlPijXn _ iJX_ j lj

* At I_ i -2 2 +- - -= Uij + _-_ jh_ 6_ S|jh_lhnl_6_n6 n

-- -- -- 1 *+ hnIpijXn + hiIQijx_ + Wij ulj + atFij"

(19)

This equation defines a difference equation at the typical mesh polnt, which
can be utilized to carry out a polnt-by-point sweep through the mesh at each
time step. Experience with this algorithm (refs. 1 and 2), for the unsteady
boundary-layer equations in Eulerian coordinates, indicates that the method
produces results which are essentially the same as those produced with the
conventional Crank-Nlcolson method for well behaved unsteady boundary-layer
flows. However, in situations where strong convective effects occur, the
standard Crank-Nicolson method fails to c_nverge (refs. 1 and 2) as the
difference equations begin to lose the diagonal dominance property; in such
cases the upwind-downwind differencing scqeme continued to produce converged
results at each time step and the method could be used well beyond the point
in time where the conventional Crank-Nico}son method failed (refs. I and 2).
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Onedisadvantage of the point-by-point iterative methods is that a
significant numberof iterations maybe required to obtain convergence at each
time step. An attractive alernative Is an ADI algorithm of the type described
by Beamand Narming (ref. 5). In this approach, the operators on the ]eft
side of equation (19) are factored into operators in the { and n
directions. In the case of a second order cross derivative, the factorization
is not easi]y accomp]ished and consequently the difference expressions
resulting from this term are taken to the right side of the equation. A
factored Formof equation (19) maybe obtained according to

1 _ At #ij n n lj 2h2 +hP.x I
n h_

where

I 2h,oi-It- _ Rij&_ + jx_ uij = Dij, (20)

2 - AtNij (21)

/

* k{ h-2j jh 1 -2 2"" = + Pi Xn + Rijh_ 6_D1j 2auij + _ At TIj n n

jh_l 1 *

+ Uij + 2= j. (22)

Note that equations (19) and (20) are not completely equivalent and dlffer by
terms 0((= At)2); however, the temporal truncation error associated with the

original Crank-Nlcolson method is also O((At) 2) and thus equation (20) may be

regarded as a second order accurate difference approximation for equation (1).

The set of difference equations given by equation (20) may be solved as a

sequence of diagonally dominant tridiagona] matrix problems in the following

manner. Let Ulj be an intermediate dependent variable defined by

I 2 h_Qi + 1At _ij6 _ + ui (23)Oij 2 j : olj,
h_

it then follows that equation (20) becomes

t "62 hnPi +Iat TiJ n jXn uij julj h2 + = ui " (24)
n



To initiate a solution for u'' tn the current tlme plane, equation (23) is
first solved along all lines o_ constant n using a direct method of solution
for triadiagona] matrix problems (for example, the Thomas algorithm); thls
sweep through the mesh defines current estimates of the intermediate variable

_ij at all internal spatial mesh points Note that boundary conditions for

ui_ along the maximum and minimum values of n for this sweep may be obtainedus ng equation (24). In the second phase of the procedure, the computed

values of Ulj are used on the right slde of equation (23) whtch now defines
a sequence of tridiagonal matrix problems for uij along lines of constant _.
Again this sequence of problems is solved by a direct method for each value
of _ in the mesh. The net result of this procedure is an estimate for each

ui_ at each internal mesh point. Note _:hat another version of the algorithm
is-obtained by interchanging the operato,'s in equations (23) and (24) and for
which a set of tridiagonal problems is first solved along llnes of constant
_; this would be followed by solving a set of tridiagonal problems along lines
of constant n.

It should be noted that it is possii)le to apply this algorlthm In a

noniteratlve manner by selecting the tlme step to be small enough so that

iteration is not necessary. However, in flow problems in which rapid changes

begin to develop in the flow field, it i_ prudent to use a limited amount of

iteration at each timestep. Iteration i'_ indicated since the coefficients

Rij, Qij _lj, and Pi_ in equations (23) and (24) are averages between thecurrent in previous ime planes and con_equently are Impliclt functions of

the dependent variable u. Futhermore, the right side of equation (23), which

is defined in equation (22), contains values of uij explicitly, in terms
associated with the second order cross derivative; consequently the value of

Dij at each mesh point should be recomputed and at least one more iteration
carried out.

DISCUSSION

In thls study, an upwind-downwind AOI method has been developed. In ADI

methods, the two-dlmensional spatial difference operators are factored into

two sequential sets of tridlagonal matt1< problems, one in each of the
coordinate directions. These types of methods have proved to be very
efficient due to the fact that (1) direct solvers for tridiagonal matrix

problems are relatively fast and accurate, and (2) the process of solving for
a line of information at once appears to be more effective at communicating

boundary information to internal mesh points as opposed to systematic

point-by-point sweeping of the mesh.

Conventional ADI methods of the type given by Beam and Warming (ref. 5)
may also be applied to equations like equation (I). Such methods employ
standard central differences for the spatial derivatives and are generally
used in a noniterative mode. The present method, as well as the explicit Beam
and Warming (ref. 5) algorithm, has recently been used to compute the unsteady
boundary-layer development due to a vortex convected above a wall (ref. 6); at
a certain stage in this flow, the boundary layer begins to thicken very
rapidly and strong convective effects develop locally. Indeed this is the
type of boundary-layer flow which rapidly evolves into an viscous-inviscid
interaction with the outer inviscid flow in the form of a boundary-layer



eruption. In the early stages of the motion, both methods were able to
compute the flow evolution very efficiently. However, once strong convection
effects began to develop locally, the Beam and Warming (ref. 7) algorithm was
unable to successfully track the flow evolution; this failure is believed due
to a lack of diagonal dominance which eventually leads to failure of the
method.

The present method was also compared to the solution process of
systematic point-by-point iterative sweeping of the mesh. Here again the
comparison dramatically favored the present method for the example problem
(ref. 6). Time steps ten times larger could be taken using the present scheme
and at the same time only about one tenth the iterations were required at each
time step. Finally, as the convective effects strengthened it proved
impossible to get converged solution at all, using the point-by-point
iteration.

Lastly, it is worthwhile to note that although the present method may be
used in a noniterative manner, use of iteration at each time step is
considered pruder;t and is recommended. In the unsteady boundary-layer problem
studied in reference 6, a maxlmum number of iterations per time step was
assigned a priori; if the maximum was exceeded for any given time step, the
calculation was restarted from the previous time plane with a smaller time
step. In this manner, the number of iterations per time step gives an
indication of the need to reduce (or _ncrease) the time step. Ideally the
time step should be such that on the order of two or three iterations only are
required each time step. If very little change occurs in the solution over
each iteration, a larger time step can be used.

I0



APPENDIX

In this Appendix, the central difference operator notation used in thls

study is explicitly defined for completeness. Here (_,n) are independent

spatial coordinates and the uniform mesh spacing in each direction is noted by
h. and h respectively. The enlargement operators in the { and n

d_rectionsnare defined by

E_u(_,n) = u(_-- phi,n), (A.I)

Equ(_,n) = u(_,n + qhn), (A.2)q

where p and q are constants; these operators simply shift the appropriate

argument of the function. The centra] difference operators 6{ and 6n are

defined by

6{ F% - E 6n E_ - E-_= "{ ES' = n n '
(A.3)

and consequently

6 u_({,n) = u(_ + n{12,n) - u({ -{h 12,n),
(A.4)

6 u(_,n) = u(_,n + h /2) - u({,n - h /2), (A.5)
q q q

corresponding to a central difference wltn one spatial variable held fixed.

Finally the averaging operators p_ and Pn are defined by

l F% -_
_ = _ __ + E_ , (A.6)

1 Ey, + E-_!, ,
_n = 2 n n

(A.7)

and therefore

1 I hE_/2 h{/2 1l_i_u(E;,n): _ u(E; + ,n) + u(I_ - ,n) ,

11 12) + u(E],n- h 12) 11_nU(E_,n) : _ u(E_,n + h n n '

(A.8)

(A.9)

corresponding to an average with one spatial variable held fixed.
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time. The difference equations are factored into sequentia] operators, one in

each independent spatia] variable; the solution at each tlme step may then be com-
puted as a sequence of tridiagonal matrix problems. The method may be used in a

noniterative manner although iteration at each time step is recommended in

situations where the effects of convection are strong.
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