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Summary

A general gross and fine motion planning and control strategy is needed for

lightweight robotic manipulator applications such as painting_ welding, material

handllng_ surface fiuishing_ and space craft servicing.

The control problem of lightweight manipulators is to perform fast, accurate,

and robust motions despite the payload variations, structural flexibility, and other

environmental disturbances.

Performance of rigid manipulator model based computed torque and decou-

pled joint control methods are determined and simulated for the counterpart flexible

manipulators. A counterpart flexible manipulator is defined as a manipulator which

has structural flexibility, in addition to having the same inertial, geometric, and ac-

tuation properties of a given rigid manipulator. An adaptive model following control

(AMFC) algorithm is developed to improve the performance in speed, accuracy and

robustness. It is found that the AMFC improves the speed performance by a fac-

tor of two over the conventional non-adaptive control methods for given accuracy

requirements while proving to be more robust with respect to payload variations.

Yet there are clear limitations on the performance of AMFC alone as well, which

are imposed by the arm flexibility. In the search to further improve the speed

performance while providing a desired accuracy and robustness, a combined con-

trol strategy is developed. Futhermore, the problem of switching from one control

structure to another during the motion and implementation aspects of combined

control are discussed.



CHAPTER I

1.1. Objective of the Research

The amount of literature in dynamics and control aspects of rigid robotic

manipulators is large. Much less literature on research in lightweight manipulators

is available and it is only on the fine motion aspect. A typical robotic applica-

tion involves both gross and fine motion phases. Systematic motion planning and

control methods for realistic applications of lightweight manipulators are yet to be

developed. The objective of this work is to develop a general motion planning and

control method for lightweight robotic manipulator applications involving a gross

motion and a fine motion. Thus, a realistic base for the utilization of lightweight

manipulators in industrial and space applications will be established. In the search

for a control system which will keep the advantages of lightweight arms, the perfor-

mance of traditional control methods will be determined when they are applied to

lightweight manipulators.

1.2. Subject Area and General Introduction

Industrial robotic manipulators are mechanisms controlled by computers

(Fig.l.1). The control problem of a robotic manipulator may be divided into two

parts: 1. trajectory planning, which is usually done off-line, and 2. trajectory

tracking which requires on-line computations (Fig.l.2). At the trajectory planning

level the manipulator task is defined and, given the environmental and system
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Fig.l.1 Examples of industrialrobots

a) Cincinnati Milacron T3, b) Unimation PUMA 600.

Sensors

Fig.l.2 Block diagram of manipulator control system
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constraints, a motion is planned off-line based on some criteria. At the tracking

level, the desired trajectory command is issued the controller, and the control vector

is computed based on the control law in an attempt to follow the desired trajectory

planned previously.

Assuming that, at best, the controller is capable of perfectly following the

desired trajectory, the best performance of the manipulator will be the planned

trajectory. Thus the trajectory planning level is the one which essentially determines

the upper bound of the performance. All performance requirements and system

constraints must be imposed on the planned trajectory. A controller is then designed

with the intent to follow that trajectory as closely as possible.

Higher productivity requirements demand manipulators that move faster and

more precisely. The trajectory planning methods should utilize the system capabil-

ities as much as possible, rather than resting on very conservative, simple planning

methods. The more fundamental factors which limit the manipulator productiv-

ity are the maximum velocities and accelerations affordable by the system. These

are the physical constraints of the system independent of the planning and control

method. The velocity and acceleration constraints are functions of the mechanical

properties of the system , such as link inertial parameters, payload, friction and

the actuator capabilities. In order to increase the productivity of a robot, one may

consider changing these parameters so that higher velocities and accelerations can

be afforded. Payload and friction are the parameters determined by the nature of

the task and the actuator types.

One option is to increase the actuator capabilities. However, in a typical



4

industrial robot, the actuators are located at the llnk joints and must be carried by

the previous actuators. Therefore, increasing the actuator sizes in order to increase

the system capabilities is not an ultimate answer, has a limit, and can be self-

defeating. The major factor that limits the affordable speed of operations is the

inertia of the manipulator. Thus the fundamental question is the following: can the

inertial parameters be reduced by the use of lightweight links, leading to a lightweight

structure and making higher speed operation possible ? Reducing the link inertias is

one of the most effective way of improving the manipulator speeds, which results in

more productive systems.

Reducing the weight of a manipulator system makes it possible to obtain

faster motions. Increased mobility, large work space and reach capabilities and

lower energy consumption are additional advantages of lightweight manipulators.

Unfortunately, a disadvantage is the occurrence of structural vibrations due to the

lightweight nature of the manipulator. For accuracy, the structural vibrations must

be kept under control. A control system must deal with the control of structural

vibrations as well as joint trajectory tracking. Currently there is no convenient way

of directly measuring the flexible vibration modes. They must be estimated from

strain-gage or camera output signals based on some linear mathemetical model

approximations. This practical problem is a major implementation problem of

control algorithms for lightweight manipulators. Control algorithms which will not

require the feedback information of flexible modes should be explored in order to

avoid this implementation problem.

In many cases, a reasonable lightweight robotic manipulator motion, going

from one position to another, would involve a gross motion followed by a fine motion.
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The goss motion should be performed fast. Towards the end of the motion, a fine

motion is performed. Many applications require the robot end effector to contact an

object. The planning and execution of the docking motion, which involves coming

•into contact with an object, is an interesting and important problem to be solved.

A simple example would be a spacecraft service task (Figs. 3 and 4) where the

manipulator moves from its initial position to a distant object then contacts it in a

controlled way, and finally works on the object. Fine motion does not neccessarly

mean a slow motion (low bandwidth closed loop system). Consider a manipulator

in a space craft service job. The task is to insert a peg into a hole on the object

of manipulation, but the structure (on which the hole is located) vibrates with an

unknown frequency. In order for the manipulator to reliably perform this task,

the closed loop control system bandwidth should be considerably higher than the

expected range of vibrations of the task structure.

Current motion planning and control methods of robotic manipulators can-

not be directly applied to lightweight, high performance manipulators where struc-

tural flexibilities are significant. New motion planning and control methods, which

take the structural flexibilities into account, are needed for lightweight manipulators

and are discussed in the rest of this thesis.

1.3. The Problem Statement

A general task of a multi-link flexible robotic manipulator would consist of

three phases.

Phase 1: A gross motion, typically fast for productivity, from a known initial state

towards a final desired state close to an object.



__ ,_,-_,_j_'_ (_ ___: =1__.'__....

Fig.l.3.a Remote orbital servicing system

Fig.l.3.b Robot-aided structural assembly
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Phase2: Switching from grossmotion to fine motion near the object and execute the

fine motion.

Phase 3: Finally, contact or interact with the object.

This thesis will deal with phases 1 and 2. Phase 3 of the problem requires the

monitoring of the contact forces. Position plus force feedback control has to be

employed for the remaining part of the task.

The motion required by the task can be characterized in more detail as

follows. At phase one, the arm is away from the object, the motion is large and has

to be accomplished quickly so that the task can be performed productively. The

flexible deflections and vibrations at this stage are not that important, but rather

one would be satisfied with following a desired trajectory in joint space, With no

explicit control action for vibration stabilization. However, the desired trajectory

may be designed in such a way that if there were a perfect tracking controller,

resultant vibrations would be acceptable. In phase 2, the end of the arm is close

to the object and should not collide in an undesirable way. Thus, the control of

flexible vibrations is important as well as accurate positioning of the joint variables.

The motion may be rather slow, if necessary near the desired contact point with

the object.

For a task described by phase 1 and phase 2, one needs to plan trajectories

for each phase in either joint or task space as a function of time, then design

controllers appropriate for each phase. Notice that every phase has a planning

and control level, although in some cases the planning and control problem may be

solved simultaneously. In the rigid arm case the control problem is to drive the joint
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variables to follow the planned trajectories, where the number of control signals is

equM to the number of controlled generalized coordinates. When the structural

flexibility is significant, two control problems exist: 1. joint space control, and 2.

suppression of flexible vibrations. It is the phase 2 of the motion where control

problem 2 is important.

Among the goals of this work are the following:

1. Determine the best performance possible from rigid model based control

methods and the limitations of these methods when applied to flexible ma-

nipulators.

2. Develop new high-speed, high-precision, robust control algorithms for light

weight manipulators. Along that llne, AMFC techniques, as well as a com-

bination of different control methods, vdll be studied.

1.4. Previous Work

Dynamics of industrial robots are governed by second order, coupled, highly

nonlinear differential equations [A9]. When the structural fiexibilities are consid-

ered, the complexity of the dynamics increases. Nonetheless, after some modal

truncations, the flexible system dynamics is still governed by similiar types of equa-

tions [All]. However an important difference is that when the structural flexibility

is included in the dynamic analysis, the number of inputs becomes less than the

number of generalized coordinates controlled. The motion planning and control

problem is a difficult task due to: 1. nonlinearity, 2. strict constraints imposed on

the system, i.e. actuator saturation, and collision avoidance problems and 3. high



system order.

Because of these difficulties, earlier work took a very conservative approach

toward solving the problem. For example, a desired trajectory, either in joint or

task space, is planned as a collection of constant velocity profiles. The transition

from one constant velocity segment to another is determined by continuity require-

ments. Maximum allowable acceleration bounds were imposed based on the worst

possible cases [B1, B2, C8, Fig.l.4.a]. The comer points of the constant velocity

segments are never exactly reached unless an overshoot is allowed (Fig. 1.4.b).

Apparently such a planning scheme rarely and only instantaneously uses the full

manipulator capabilities, and does not consider the manipulator dynamics, result-

ing in low performance and productivity. Taylor (1979) developed a method to

execute straight line paths in task space [C10]. The method determines the number

of intermediate points necessary so that the deviations from the path due to linear

interpolations are bounded by a pre-assigned value (Fig.l.4.c). Another method

was developed by Lin et al (1983) to find minimum time trajectories in joint space

by means of cubic splines [C7]. A desired task is defined as a sequence of N points

in the cartesian coordinates. The corresponding joint variables are found via the

solution of the inverse kinematic problem. These N points in joint space are then

connected to each other with cubic splines that minimize the total travel time with

no constraint violations. These trajectory planning methods are developed for rigid

robotic manipulators and do not consider structural flexibilities.

Bobrow et al, ( also Shin and McKay ) have incorporated the full nonlinear

dynamics of the manipulator to the minimum time trajectory planning level, where

the cartesian coordinate path and actuator constraints are given (C1, C2,
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Fig.l.4.c Straight line motion in the task space
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C3, C4, Fig 1.4.d. and 1.4.e). The method essentially reduces a set of

n coupled second order nonlinear differential equations to a single second order

nonlinear differential equation in path coordinate system, and uses direct numerical

integration to a find minimum time trajectory in the task space. Notice that if a

manipulator motion is constrained to follow a predefined path, then effective degree

of freedom of the manipulator is only one. That is how the n-set second order

equations in joint space can be reduced to a single second order equation in path

space.

The second step in the manipulator control system design is to find an ap-

propriate control law which wiU realize the planned motion. This is the lowest level

in the control system hierarchy [E8]. Today the majority of industrial robots are

used as positioning devices. If the robot end effector is to move from one position

to another and the path followed is not important, each joint, can be moved sequen-

tial.ly while the others are all locked. In this case each joint can be controlled by a

simple position serv% since every joint control problem is a second order linear sys-

tem, with a gravity load offset. Although such a motion makes the control problem

easy, it is very inefficient. When all joints are allowed to move simultaneously, the

performance of the simple position controllers drastically deteriorates due to the

inertial coupling, gravitational torque variations, friction, centrifugal and coriolis

torque effects.

Conventional controllers cancel some of these coupling effects via feedfor-

ward compensation. The inertial coupling and gravitational torques are the major

disturbances and can be canceled based on the dynamic model of the manipulator.

The friction effect is a nondeterndnistic phenomenon and compensation is made
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based on some experimental average values.
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The centrifugal and coriolis effectsbecomeimportant at high speed and _e

approximately compensated at each joint based on the dynamic model of the ma-

nipulator. Notice that the whole purpose of the feedback compensation of nonlinear

centrifugal and coriolis, and gravity effects is to reduce the system back to a simple

second order linear form so that linear feedback controllers can be used. However,

almost all of the feedforward compensation is based on the manipulator dynamic

model or its simplified forms. This so called inverse problem or computed torque

method relies heavily on an accurate prior knowledge of the dynamic model, sys-

tem parameters and their variation, and all other external disturbances. The more

accurate the prior knowledge of the system dynamics and paramters is, the more

successful the computed torque method will be.

In robotic applications parameters can be in the range of 50-200 % of average

values. External disturbances and the nature of the friction are never accurately

known in advance. The payload may drastically vary from one task to another

without advance knowledge. Moreover, the dynamic characteristics of the system

may change in time. Clearly, computed torque[El,E2] methods are not so suitable

for applications where external disturbances, large unknown payload variations and

uncertainties exist. It is important to note that the resolved rate and resolved accel-

eration methods are also computed torque based methods[B4,B5]. The difference

is that they generate reference trajectories in joint variables which are resolved from

a desired task space trajectory.

It is very desirable to have a control system which has the following properties:

1. good tracking accuracy (transient and steady state )



2. fast adaptation, if necessary, due to

14

a) the variations in the system parameters (insensitive to parameter vari-

ations)

b) disturbances ( disturbance rejection)

3. does not require precise knowledge of the model parameters,

4. is stable in the large (Global Asymptotic Stability).

The design method for the control algorithm should not require a precise knowledge

of manipulator dynamics and parameters and should guarantee a stable resultant

control system. Furthermore, finding the appropriate parameters of design which

• will yield good tracking and robustness should be relatively easy.

These requirements call for adaptive control methods. Adaptive control

methods may be divided into three major categories:

1. gain scheduling, 2. self tuning regulators, and 3. model reference adaptive con-

trollers (gradient methods, Lyapunov and Hyperstable design). Gain scheduling

and self tuning regulators are direct generalizations of linear control laws, and will

not be discussed here due to their serious drawbacks. For example, gain scheduling

methods require storage of the control law parameters and use the appropriate pa-

rameters as the operating range changes. There are two major drawbacks. First is

the problem of switching from one gain to another (how does it affect the system

performance and stability?). Second and more importantly, if the system dimension

and possible range of operating conditions are large, the storage requirements may

become prohibitive. Self-tuning regulators are considered to be inappropriate due
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to the persistent ezcitation requirements, which is a severe requirement in robotics.

The MR,AS (Model Reference Adaptive Systems) are attractive since they do not

have the above drawbacks and globally asymptotically stable designs are possible.

The difference between the methods in this category originates in the way the adap-

tation mechanism is designed (Fig.l.5). In recent years a tremendous amount of

research has been conducted and results published on the model following adaptive

control methods. An early work by Dubowsky (1979) showed the promise offered

by MRAS in robotics [DS]. However this work suffered from the lack of a global

stability proof. Balastrino et al (1983) developed a globally stable adaptive model

following control method based on the hyperstability approach [D3]. Horowitz and

Tomizuka [D19] proposed a control algorithm which has two parts. One part com-

pansates for the inertial and nonlinear centrifugual and coriolis terms adaptively,

the other part is a linear position and velocity feedback control. The adaptation

algorithm for the adjustment of inertial and nonlinear terms is based on the hyper-

stability. Craig et.al, developed a similiar method based on the Lyapunov approach

[D12]. Unfortunately, none of these techniques can explicitly specify the transient

response in the design process. Lira and Eslami introduced an auxilary input signal

to speed the convergence of the adaptation algorithm [D20].

When a comparison is made between Lyapunov and Hyperstability based

adaptation law design methods, it is seen that theoretically they offer the same

solutions for systems having bounded, piecewise continuous input signals [D15].

However, finding alternative Lyapunov functions is known to be very difficult and

is usually done by trial and error, whereas Hyperstability and Positivity based

methods offer a wider class of admissable control laws which



16

U

DIs±urbances

_i Re?erenceModel

Slgno,l,Syn't:hesls

Ad_p'l;a'l;zon

Dlsturb_nces

X
M

+

X
P

raMe±er

Gp_atlon

t Adaptation

_echanls_

e

Fig.l.5 Basic structure of an adaptive model folowing control
(AMFC) system



17

guarantee the global asymptotic stability of the system [D1]. Besides that,

the reference model andthe commanded reference input serve very efficiently as

the on-line trajectory planning method with no complications, and result in very

little computational burden for trajectory planning. Furthermore, powerful on-line

control computers are not required, which reduces the cost of the control system.

It is important to note that all of the previous trajectory planning and con-

troller design methods are for rigid manipulators. An important contribution of this

thesis will be to devise a methodology which allows the application of these methods

to flexible robotic manipulators and to determine their performance limitations.

1.5. Contributions of This Work

I. A new symbolic modeling method for lightweight robotic manipulators

is developed based on Lagrangian-assumed modes method and implemented with

a commercially available symbolic manipulation program (SMP [A19]) on a VAX-

11/750 mini computer.

2. Limitations of joint variable feedback control algorithms on flexible ma-

nipulators axe determined and the results agree very well with the previous linear

analysis results in the literature.

3. The relative performance of a group of popular control methods in robot

motion control and newly developed adaptive control methods are tested and com-

pared in terms of maximum speed, accuracy and robustness with respect to payload

variations. It is shown that the only way joint variable feedback based non-adaptive

algorithms can provide robustness is to use them in high-gain feedback form. That
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is to say,the commandedmotionsmust be substantially slowerthan the closedloop

system bandwidth.

4. AMFC, algorithms using only joint variable feedback, improve the ma:d-

mum speeds while providing accuracy and robustness comparable with non-adaptive

schemes. Due to the self-adaptation capability of feedback gains as a function of

tracking error, controller design can be less conservative in the face of expected pa-

rameter variations. Tracking errors are taken care of on-line through the adaptation

of controller parameters by an adaptation algorithm. It is shown that the speed

performance for comparable accuracy and robustness criteria can be improved by

a factor of two. However, as high speed performance requirements are further in-

creased, joint variable feedback AMFC results in very lightly damped structural

vibrations, which defines the upper limit of performance for AMFC using joint

variable feedback.

5. In order to overcome the problems of lightly damped structural vibration

modes, while retaining the advantages of AMFC, a combined control approach is

proposed. Large motion part is controlled by the AMFC. Before the vibrations start

to dominate while the arm is trying to stop, the control algorithm is switched to one

that uses flexible mode information explicit 3, in the feedback. The combined control

approach not only improves the performance, but also has attractive implementation

advantages.

6. The AMFC, which uses joint variable feedback only, is developed in a

new way such that one of the two major assumptions of AMFC design methods

is replaced by a much less restrictive condition. Previous design methods require
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that the manipulator motion be slow enough so that the closed loop dynamics

under conatant linear feedback control (nominal control) stays constant during the

adaptation. The AMFC design procedure presented here requires the manipulator

motion be slow enough so that the closed loop dynamics under variable nonlinear

feedback control (nominal control) stays constant during the adaptation.

1.5. Organization of the Thesis

Symbolic modeling of flexible manipulators is discussed in Chapter 2. Chap-

ter 3 discusses the linear analysis results of closed loop dynamics of flexible manip-

ulators under joint variable feedback control. Limitations of joint variable feedback

controllers, and root locus sensitivity of closed loop dynamics as function of feedback

gains are studied and results are discussed (Chapter 3).

Chapter 5 is the natural complement of Chapter 4. In Chapter 4, perfor-

mance of computed torque, decoupled joint control on rigid and flexible manipula-

tors are simulated and results are discussed refering to the results of linear anaysis

in chapter 3. Furthermore, an AMFC algorithm is developed for flexible manipu-

lators. Advantages and shortcomings of this method are deterrnJned. The need for

combined control arose naturally at this point of analysis. Chapter 5 presents a

combined control approach made up of AMFC for gross motion and LQR for fine

motion, control which involves explicit control of flexible vibrations as well as joint

variable position control.

Chapter 6 presents the conclusions of this work and recommendations for

future work.
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Appendix A lists the lightweight manipulator parameters used in the simu-

lations. Appendices B, and C, contain the details of the mathematical analysis of

Chapter 4 for the interested readers. Appendix D provides the tabulated quantita-

tive results for reference.

Throughout this paper, the performance of a control algorithm refers to the

maximum speed at which a motion can be executed, while providing good tracking

and flexible mode response for accuracy, for a wide range of payload variations, and

noise uncertainty. Joint variable feedback AMFC means an AMFC algorithm which

requires only joint position and velocity measurement information in real time for

implementation. The control algorithm development study for flexible arms starts

with characterizing what the well known joint variable based non-adaptive and

adaptive methods can do, and determines the shortcomings of these approaches.

Finally, a combined control approach is presented. All of the simulations are aimed

at determining the performance in terms of speed and accuracy for two different

implementation conditions: first, under perfect information conditions about the

system parameters, measurement and enviorenment, and second under non-perfect

information conditions (robustness performance). In general robustness is tested

with respect to large payload/robot mass ratio variations (0 - 25 % payload/robot

mass variations).

Words, such as method, algorithm , law and flezible , lightweight are used

interehangeably throughout the thesis, unless otherwise stated.
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CHAPTER II

Symbolic Modeling of Flexible Manipulators

2.1. Introduction

This chapter presents a new systematic algorithm to symbolically derive the

full nonlinear dynamic equations of motion of multi-link flexible manipulators. The

Lagrangian - assumed modes method is the basis of the new algorithm and it is

adapted in a way suitable for symbolic manipulation by digital computers. The

advantages of obtaining dynamic equations in symbolic form and of the presented

algorithm are discussed. Application of the algorithm to a two-link flexible arm

example via a commercially available symbolic manipulation program is presented.

Simulation results are given and discussed.

The dynamics of a typical industrial manipulator, with six degrees of free-

dom, is governed by coupled highly nonlinear ordinary differentiai equations. These

equations present a very complicated problem in control system design, mainly be-

cause the present state of knowledge in nonlinear control system theory is very

limited. Traditionally, independent servo controllers are designed based on the as-

sumption that nonlinear coupling terms are negligible. However, this assumption is

reasonable and the control system performance may be satisfactory only if the speed

of manipulator is "relatively slow". Increasing demand for higher industrial produc-

tivity requires manipulators that move faster and more accurately. As a result, the

speed of manipulators must increase and the independent linear servo controllers,



designedbasedon the slow motion dynamics, will perform unsatisfactorily.
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Background

Modeling and control of a single link flexible arm [Fig. 2.1] has been in-

vestigated by many authors [A1,A2,A3,A4]. The system is essentially modeled as

Bernoulli-Euler beam and vibration coordinates are approximated by a finite num-

ber of assumed mode shapes. This allows the application of finite dimensional linear

control theory to the problem.

Y

, .t)

Hub Angle

Joint X

Fig.2.1 One link flexible arm
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The multi-link flexible manipulator [Fig. 2.2, and 2.3] modeling and control

problem has not been researched to as great an extend as the single-link case. One

reason for this is that the modeling problem is not a trivial one. Due to coupling

between links, large configuration changes, and high speeds, the system can no

longer be accurately represented by simple beam equations. An accurate dynamic

model of a lightweight arm involves highly complicated algebraic manipulations and

can become impossible to deal with by hand. Moreover, the possiblity of making

errors along the way is very high. Making some changes in an existing model also

requires long algebraic manipulations. There are two basic methods used in the

modeling : 1. Lagrangian-Finite Element based methods, 2. Lagrangian- assumed

X|

Fig.2.3

I
h

z, Jh

X
!

(4x4) Homogeneous coordinate transformations



25

mode based methods. The end result of these methods are essentially the same.

Many of the finite element based works on the analysis of closed chain mechanisms

can be applied to the dynamic modehng of multi- link flexible arms [A1,A2].

In Sunada and Dubowsky [7,8] the nominal joint variable time histories are

asA4uA5ed to be known and the small vibration dynamic model of the manipu-

lators and mechanisms about nominal motions are developed. In Shabana [9] this

assumption is removed and full dynamic model is deriveAd. The main advantages

of the Lagrangian-finite element method are: a) it is very systematic, b) it can be

applied to complex shaped systems, applicable to a very wide class of problems.

The disadvatages are a) it requires a substantial amount of software organization,

b) it results in a constrained model, c) it does not give much insight to the dynamic

structure of the system. Static deflection modes are included in the modes to im-

prove the accuracy of models with a limited number of mode shapes [A2] . Usoro

et.al, investigated the performance of LQR with a prescribed degree of stability on

a two-link planar arm by digital simulations [A14].

The Lagrangian - assumed modes method is used in the modeling of a two-

link robotic manipulator in [A20]. Distributed frequency domain analysis of non-

planar manipulators using transfer-matriceg has been developed in [A12]. A recur-

sire method using homogeneous transformation matrices to generate full coupled

nonlinear dynamics of multi-link flexible manipulators is presented in [All].

It was the author's experience that the application of this technique to multi-

link manipulators works well, but with an importa[A11] wback, namely the algebraic

complexity of intermediate steps. When carried out by hand, the length of expres-



26

sionsbecomesvery large and time consuming. In addition, the possibility of making

algebraicerrors is quite high. On the other hand, the modeling method is easy to

understand, is recursive,doesnot require any dedicatedspecialsoftwareand derives

the full nonlinear dynamicmodel.

Symbolic manipulation programs eliminate the major drawback of the

method. Symbolic modeling allows one to model systemswith large order in a

very short time, check the elementsof the dynamic equations in expficit form and

manipulate them very conveniently. Leu and co-workers developed programs to

obtain dynamic equations for serial rigid robotic manipulators symbolically using

commercially available symbolic manipulation programs [A21, A22]. Neuman et.

al. generated explicit symbolic equations for the dynamics of a six degree of freedom

Puma arm using the ARM symbolic program [A26]. The method presented here is

more general in the sense that it can handle structural flexibilities and it contains

the rigid manipulator modeling problem as a special case.

The remaining part of this chapter is organized as follows: Section 2.2 sum-

marizes the Lagrangian - assumed Modes method. Section 2.3 presents a new

algorithm which adapts this method to a form suitable for symbolic manipulation

by digital computer. In section 2.4, the algorithm is applied to a two-link flexible

arm example. Application details and simulation results are then discussed.

2.2. Lagrangian- Assumed Modes Method

Kinematics: The first step in the dynamic modeling of any mechanical

system is to establish the kinematical relationships and to define fundamental vector

quantities: position, velocity and acceleration. Consider the kinematic structure
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shownin [Fig. 2.2] representinga manipulator with serial links and joints. Let the

coordinate systems used for kinematics of the system be;

OoXYZ - Fixed to base ( Global Coordinate Frame) ,

Oizvz - Fixed to the base of the link i ,

O'izV z - Fixed to the end of link i ,

If the arms are rigid then the O[zyz coordinates are not needed. The position vector

of any point on link i with respect to Oizyz coordinates, ih(zi), can be expressed

ih(zl) = [zi,0,0,1] T + [w.(zi, t),wv(zi,t),w:(zi,t),O] T (2.1)

where; w_(zi, t), wy(zi, t), W_.(Xi, t) are the displacements of the flexible arm due to

flexibility in z, y, z directions, respectively. The dependence of the w's on the spa-

tial coordinates makes the system infinite dimensional, leading to coupled ordinary

and partial differential equations of motion. In general these are approximated by

finite series consisting of spatial variable dependent functions multiplied by time-

dependent generalized coordinates. Once the number of generalized coordinates to

be used to represent the distributed flexibility of each link has been decided on, the

w's can be approximated as;

rti

wt3(zi, t)=E¢Zj(zi).6j(t) ; 13:z,y,z (2.2)
j=l

where ni is the number of assumed mode shapes used for llnk i for the w_, Czj(zi) are

assumed mode shape functions from an admissable class, gj(t) are the generalized

coordinates of approximation, ih(zi) is uniquely defined. Next we need to be able to

transfer this position vector with respect to a global coordinate frame to obtain the

absolute position vector. Let OWi be the homogeneous matrix transformation from
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moving coordinate frame Oizyz to fixed inertial frame OoXYZ. Then the absolute

position vector is given by (2.3), (Fig.2.3). It is clear that the transformation °Wi

consists of two parts: joint variables and flexible deflections. More dearly, iFig. 2.2]

°h(zi) = °Wi. 'h(zi) (2.3)

°Wi = °Wi-1 • Ei-i • Ai (2.4)

where;

Ai = the transformation between Oizyz and O__lzyz- joint transformation

Ei-a- the transformation from the link (i-1) end coordinates to link (i-1)

base coordinates.

°Wi_a-the total transformation to the base cordinates from the link (i-l)

base coordinates. The form of these transformation matrices are ;

0 0

zj component of Oi
yj componen_ of Oi

zj component of Oi
1

(2.5)

JRi is (3x3) matrix of direction cosines, 0 T (lx3);

Ei =
1 0 "'

o 1 +
0 0 j=l

0 -O-it Ovij zij ]

O,ij 0 -O,.ij Yij [
Oyij Ozij 0 ""o o o o'J

where;

(2.6)

O[3ij -- rotation components of link i due to mode j, assuming small rotations

due to flexible deflections,

li = the length of the link i.
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Oncethe kinematic description of the system is set up, the process of obtaining the

equations of motion is as follows:

1. Pick generalized coordinates (natural choices are joint variables and a finite

number of assumed modes series approximation for every flexible element).

2. Form the kinetic, potential energy, and virtual work for the system.

3. Take the necessary derivatives of the Lagrangian Equations and assemble the

equations.

If the system has Nj number of joints with a single degree of freedom and Nt

number of flexible links with ni modal coordinates for each element, the dynamic

model of the system will be governed by a set of

Nz

Nj + _ n, (2.7)
i=1

coupled second order ordinary differential equations.



2.3. Symbolic

Method
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Implementation of the Lagrangian - Assumed Modes

Although the Lagrangian - assumed modes method is theoretically very well

understood and documented [13], it is not in a form suitable for symbolic imple-

mentation on a digital computer, i.e. insufficient memory problems are likely to

occur. Let us first specify some desired features of a modeling algorithm.

First, the mode shapes and the mode shape dependent parameters should be

easily varied by the analyst. The selection of "appropriate" or "best" mode shapes

for a given flexible system is not a clearly answered problem [12]. One should be

able to easily simulate the effect of different mode shapes on the system behavior.

For the case of a simple beam under bending vibrations the mode shapes effectively

determine the natural frequencies of the system. Effective mass and spring matrix

elements are functions of mode shapes as; with simple boundary conditions )

pA( z )¢i( z )¢j( z )dz (2.8)

EI(z)cp'i'(z)¢_(z)dz (2.9)

If the mode shapes are orthonormalized such that mij ---- 1 for i = j and 0 , for

2 for i = j 0 for i y_ j. The most accurate approach would beicj, then kij =w i

to update the mode shapes as the boundary conditions of the Links vary as function

of controller impedance.

Second, a recursive algorithm is very desirable. For instance, when the num-

ber of modal coordinates is increased or additional links included, the dynamic

modeling process should not b.ace to be repeated again. Third, method should elim-
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inate any unnecessary algebraic operations so that it would be efficient and require

less memory.

The equations governing the dynamics of the system are given by;

d i) KEj 0 KEj + c9
dt 04_ Oqi _ PEj = Qi (2.10)

j=l j=l j j=l

where N is the total number of discrete elements in the system (joints, links, pay-

load ).
N N

E RE, = E(PE), a,',.,,i_,,,on,_, + (PE)i e,=,t,¢ (2.11)
i=1 i=l

The qi's are the generalized coordinates which are joint variables and flexible mode

shape coordinates of flexible elements. Kinetic energies for rotary joints, if consid-

ered as a mass with rotary inertia about the axis of rotation, are

(KE)joi,-, i = (1/2)miV}i ÷ (1/2)Ha,. ffi (2.12)

where

mi = the mass of joint i,

Ygi =

mass,

the speed of joint i mass center,

the angular momentum vector of joint with respect to its center of

wi = the total angular velocity vector of the joint.

The kinetic energy of the flexible links is

(KE)i = 1/2 jr0 z'
. °

pi(z)Fi . Fi . dz (2.13)
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If all the modal coordinatesand associatedmode shapeswere given, then the inte-

gration over the spatial variable couldbeevaluated. Howeversincethemode shapes

and dependentparametersare to be enteredlater by the userfor analysispurposes,

we identify all possibleelementsthat are functions of the spatial variables of llnk

i and assign them parametric names. KEi is spatially dependent only because of

the link i flexibility. The effect of previous element flexibilities on KEi are reflected

in W terms which depend only on resulting end point motions, and thus have no

spatial variable dependence. From (2.3)

°h,(=)=° Wi

•_ =° AT(=) • °h,(=)

ihi(z) +° H_ /hi(z) (2.14)

where;

+ 'hr,(_) o_. ow, 'h,(_)+ 'AT(_) ow,r o_ 'h,(_)
(2.15)

I Eti rt, rt i 1
'hy(_) = _ + _ _,j(_)6_,j(t), _ ¢,,,j(_),5,,,_(t),F_,Cz;j(_)_.-,_(_),l (2.16)

j=l j=l j=l

I _ ni ni
'A,r(_) _+ ¢_,_(_)$_,_(t),Y_¢_,,(_)_,j(_),_-_¢_,j(_)L._j(_), o

j=l j=l j=a

(2.17)

Elements of the transformations °W i and °l_ are functions of the generalized coor-

dinates and parameters of the links k < i, such as {Oi,OiOk,¢Zkj(lk),5zm(t),Ok(t),

wherek=l, ..... ,i-1; _=z,y,z}, Ikisthelengthofthelinkk.

In general for serial link robotic manipulators, the kinetic energy of link i

will have the following form ; (*) is used to indicate the possible e:nistence of terms
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(KE)i = (*)fp(z)dz+(*)fp(z)zdz+(,)fp(z)z2dz

+X + +(-)',,,',,,]
0,_ J

f3 j

J
(2.18)

where; _3mad _ : _.,y,z, j = 1, ...ni. At the At this point, from a symbolic modeling

point of view it is not important what these (*) terms are. But what is important

is to extract all the possible combination of spatial-variable dependent terms and

replace them with symbolic names so that the first objective of the modeling is

accomplished. At the calculation of the absolute velocity of a differential element of

a flexible member, the parameters which are functions of the spatial variable can be

extracted and be given symbolic names by the symbolic manipulation program very

easily. These parameters represent the elements in the dynamic model which are

functions of mode shapes, link length, and mass distribution of the flexible element.

In the absolute velocity square expression (2.15), all parameters that are

functions of the mode shapes can be replaced with symbolic names (2.19) at the

modeling level. Then, defining the same symbolic names as in (2.20) automatically

gives the kinetic energy expression for element i from (2.15). Thus the kinetic energy

expression (2.18) is not evaluated explicitly, but symbolically obtained directly from

(2.15).
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Replace in (2.15) the following symbolic names (2.19):

, m  ijk

(2.19)
Joi _ x 2

mi" li/2 *-"-- r

rni_---1

and in the simulation level evaluate these terms by multiplying with p(z) and inte-

grating over the ].ink length.

nm_ijk = fo l'

nwi3ij = f['

nq_ij = fot'

Joi = f[i

mi • Ill2 = foti

m i = fo Ii

p(z)CZij(z ) • :r,dzdz

p(z) . z . dz

(2.20)

p(z).

These axe the six basic parameters related to the inertia properties of the

flexible element and with their use there is no longer spatialvariable dependence in

the kinetic energy expressions. With this approach one can see more explicitly the

effect of mode shapes and system parameters on the dynamic model, leading to a

better understanding of the dynamics, which is not offered by numerical or other

2
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modeling methods. Notice that if the mode shapes associated with a coordinate (

i.e. y ) are chosen to be orthonormal with respect to distributed mass and flexibility

many of the above terms will be zero, such asnrn_ijk=l ifj=k, 0 ifj#k.

Similiarly for the elastic potential energy of the link i (gravitational potential

energy is omited here to save space)

(PE),=(1/2) ZI.
j,k=l

+ Ei:(¢:ii(z)¢:i_(z)_5,ii(tl,5:,k(t) ) (2.21)

Similiarly

j,k = l...ni; _ = y,z

(PZ)i = (1/2) _ _ _ [kZijkSzij(f),5O,k(t ) + kzijkS_ij(tl,5zik(t)]
_:y,z 3=1 k=l

(2.22)

The next important topic is the development of a recursive method that will

not run into memory problems as the system dimension gets large and that will

eliminate unnecessary algebraic operations. Moreover once a model is developed,

some variations of the model should be possible without repeating the whole mod-

eling process. As the system dimension gets larger, carrying out the derivations



using total energy expressions can easily run into memory problems. Thus,

d 0 K_. a _ a
dt O(ti Oqi KEj + _ PEj = QiJ j

36

(2.23)

[dO KE

3

Due to the serial nature of the manipulator arm;

O"-_-(KEj) = O-_i(h'Ej) = _--_i(PEj) = O ;0(li

The equations of motion of the system are found to be;

_qi(PEj) = Qi (2.24)

for i > j (2.25)

 rao o o l
2_, [_-A-_ (KEj)-'ff2:_ (KEj)+-A-Z_ (PE,), =Q;; for i= l,...,j
j=l

(2.26)

The following algorithm, in combination with equation (2.26), can be effec-

tively programmed in any commercially available general purpose symbolic manip-

ulation program to obtain dynamic model equations of multi-link flexible robotic

manipulators symbolically.

Algorithm:

for j:=l toN,

for i := 1 toj,

Find and store KEj, PEj ;(2.18) and (2.22)

a (KEj) a _q,o(t--_ , _qi(KEj), (PEj),



Next

Next j,
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Given the results of the algorithm, substitute these to equation (2.26) and

assemble the equations in a convenient form for simulation and analysis purposes.

After the equations are assembled, it is very easy to program them in one of the

standard scientific programming languages using the capabilities of the commercial

symbolic manipulation packages [14].

Let us assume that after modeling a manipulator, it is desired to add another

link to the model with mi degrees of freedom. Based on the above algorithm one

must evaluate ;

For i := 1

Next i ,

to N + mi ,

_-_i(KEN+I)' O--_'(KEN+x)' _I(PEN+a)" Oqi " ; (227)

Let us assume that the previous model was assembled in the form:

[M]_]+f=Q (2.28)

where the inertia matrix dimension is (NxN), q, f, Q, vector dimensions are (Nxl);

N is the total number of generalized coordinates up to that point.

The additional link contribution is of the form:

,,,,,+1 m,_+1,,,+1 k_-+l,n+l + t:-+1,-+1 O_+l,n+_

where the inertia matrix is of dimension (N+ni) x (N+ni) and the vector quantities

are of (N+ni) x 1 dimension. The partition of the equation (2.29) is made so as
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to clearly reflect the increase in the dimension of the system compared to (2.28).

The complete equations of motion are obtained by the addition of (2.29) to (2.28),

where (2.28) is extended to (2.29) dimensions with additional zeros corresponding

to the new generalized coordinates q,t+l introduced by the new element.

The implementation adapted here has the following advantages:

a) the mode shapes and dependent parameters can be easily varied,

b) all unnecessary differentiation is avoided,

c) the technique is recursive, and

d) memory problems are not likely to occur.

2.4. Applications and Discussion of Simulation Results

Here the described modeling method is applied to a two-link planar flexible

arm, with rotary joints and payload. Two mode shapes for each link are considered

to represent the structural flexibilities. As noted earlier, mode shapes can be input

into the simulation program and the effect of different mode shapes on the dynamic

response and the accuracy of modes can be checked. Joints and the payload are

considered as masses with rotary inertia. These inertial parameters can be set to

zero as well [Fig. 2.4]. The system input parameters for the simulation are as

follows:

Joint 1 mass and rotary inertia about its center of mass ; rnjl,jjj.

Sirniliarly for joint 2 ; rnjj,jjz, and for payload ; rnp,jp

For link 1 and 2 ; mass per unit length, link lengths, flexural rigidity con-

stants,



pAl, pA2, l], 12, EI1, EI2

Assumed mode shapes and

_b22(z); g=, gv, g= , and

The initialization procedure.

gravity vector, _1_(_),
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m2° I:

Y2 Q2

X2

mJ2 ' JJ2

m 1 , I1 • I[11

mJ1 • 111 X

Fig.2.4 Two link flexible arm example
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Time independent parametersare calculated at the initialization of the pro-
gram only once per session. If mode shapes are updated as functions of changing

boundary conditions, then these parameters need to be reevaluated. These param-

eters are:

nmll, nml2, nrn21, nm22, nwll, nwl2, nw21, nw22

nqll,nql2, nq21, nq22, kwll, kwl2, kw21, kw22

(11), (zl),

The objectives of digital simulations are as follows. I. Verify that the model

generated by the above algorithm is correct. 2. Demonstrate the ease of changing

mode shapes and the resulting change in the dynamic response due to the different

mode shapes used in the model.

1. Model verification will be done by comparing the response of the flexible

arm model with that of a rigid arm, which has the same corresponding parameters.

a) Clearly as the flexural rigidity, EI(z), of the links increases, the joint angle

response of the flexible model should converge to that of the rigid model response.

Figures (2.5) and (2.6a-b) show that the jgint angle responses do indeed converge

to those of the rigid arm case, as the flexural rigidity, EI, of the hnks is increased.

b) The same test simulation was done with clamped- damped mode shapes

for the first llnk. For this case, when EI is set to 100Ntm2, the joint angle responses

were a/most the same as the rigid case (See Fig. 2.5 and 2.Ta-b). The reason for the

faster convergence of the clamped-clamped case than the damped-free case is that
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clamped-clamped mode shapes result in a stiffer system. However, the clamped-free

case provides a more accurate prediction of the system response than the clamped-

clamped case, as discussed below.

c) As EI(z) increases, the frequencies associated with structural fiexibllty

should increase, for the simple beam case natural frequencies are fuctions of EI as

wi - (_i/l) 2 Ex/-E_pA (2.30)

where; _'i is the characteristic value of the simple beam eigenvalue problem. Even

though in the two link arm case we are considering here (2.30) does not hold exactly,

it is still valid in principle and gives a quantitative idea about what to expect.

Rayleigh's energy principle also supports this expectation. Figures (8a and 8b)

confirm these expectations.

2. modeling method cleary reveals that mode shapes are important parame-

ters of the system dynamics (e.g. Eqn (2.19)). What assumed mode shapes should

be used? Would different shapes make an important difference in the system dy-

namic characteristics? Theoretically, the only constraint on the assumed mode

shapes is that they must satisfy the geometric boundary conditions, but not necces-

sarily the natural boundary conditions nor'the governing differential equations. The

governing differential equations and natural boundary conditions are results of the

functional variation of the Harniltonian and are approximately satisfied in any case.

The controlled end of each link, driven by a high gain feedback controller, behaves

more like a clamped end [A15]. The other end condition of the intermediate links

should be approximated by a mass with rotary inertia due to other links of the serial

structure and payload. However, for different structures and even for different pay-
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loadsthe resultant simple beamanalysiswill give different mode shapes.Given the

fact that theseare natural boundary conditions and will be approximately satisfied

evenif assumedmode shapesdo not satisfy them, a clamped-freesimplebeammode

shape would be an appropriate choicefor the assumedmodes usedin the model.

The clamped-clampedcaseresults in a stiffer system. As a result, the joint variable

responseconvergesto the rigid arm responsemuch faster than the clamped-free

caseas a function of flexural rigidity (SeeFig. 2.5, 2.6, 2.7). The frequency of

flexible vibrations are significantly higher than those of the clamped-freecasefor

the sameparameters and conditions (SeeFig. 2.8). This analysis further reveals

the importance of mode shapesin the dynamic behavior of the system,hence the

importance of keeping the mode shapesas parameters in general at the stage of

model equation generation.

2.5. Conclusion

From the modeling technique point of view, it has been shown that La-

grangian - assumed modes method can be effectively used for multi-link flexible

arms. The availability of general purpose symbolic manipulation programs over-

comes the algebraic complexity of the derivation steps, and allows the researcher

to obtain more complete models in very short time, in spite of their complexity. A

new systematic algorithm based on Lagrangian-assumed mode method is presented

suitable for symbolic manipulation by digital computers. The algorithm results in

scalar dynamic equations of motion of the system in explict form. There is one

scalar diferential equation for each generalized force. This is very useful in the par-

allel computation of control torques based on inverse dynamics (computed-torque)

since the computation task of each of the scalar equations can be assigned to a
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single processor which are independent of each other. The algorithm is applied to a

two link flexible arm. Simulation results are discussed and shown that the method

worked very well for this example case.
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CHAPTER III

Open and Closed Loop Dynamics: Linear Analysis

3.1. Introduction

In this chapter open and closed loop linear dynamics of flexible manipulators

are examined. The eigenstructure of the manipulator model is studied as a function

of arm configuration, payload, flexibility, and joint variable feedback gains. Results

are presented by means of root locus diagrams in the s-plane.

In the open loop case, joints are free of any control input. Robot manip-

ulators go through many different configurations and deal with a wide range of

payloads. Therefore it is of interest to determine how the open loop eigenvalues

of the manipulator vary as a function of manipulator configurations, payload, and

other manipulator parameters. The control algorithm must be robust for these

variations depending on their significance.

Open and closed loop dynamics are "studied for extereme values of manipula-

tor parameters and feedback gains. Each extereme case studied has a corresponding

limit system, i.e. as the joint position feedback gains are increased, two link man@-

ulator dynamics should converge to that of a clamped single beam. The accuracy of

finite dimensional assumed modes model in representing the limiting case behaviors

is discussed.
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Performance limitations of joint variable feedback controllers due to arm

flexibility are investigated and the results are compared with the previous results

reported in the literature.

In sum.mary, it is found that open loop eigenvalues vary significantly due

to configuration and payload variations. In the limiting cases, a finite dimensional

assumed modes model's lower mode eigenvalues converge to the limit eigenvalues

quite accurately. However, the eigenvalues associated with higher modes do not

converge as accurately as the lower modes. Performance ]_imitations due to flexi-

bility which are predicted by an assumed modes model, agree very well with the

].imitations predicted by frequency domain models. The unresolved questions are

identified and discussed.

3.2. Open Loop Eigenstructure Analysis

3.2.1. Linearization of the Nonlinear Model

Consider the general nonlinear dynamic model of a flexible robotic manipulator,

where M,.(8, 6), M,.f(8, 6), Mr( 8, _) are generalized inertia matrix elements, f,.(_, _, 0, _;),|

f/(0, 6, 0, _) are nonlinear centrifugal and coriolis terms, g,.(0, _),gf(8,6) are gravita-

tional terms, and [K] is the structural stiffness matrix associated with arm flexibility

and mode shape functions. 0 represents the joint variables (vector), and _ rep-

resents the generalized coordinates associated with the flexible modes shapes. Q
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is the pure input torque vector applied to links at the joints, and has the same

dimension as the 8. The zero vector, under the Q of eqn. (3.1), is a result of using

clamped mode shapes at the actuated ends of the links.

Let us express (3.1) in a more compact form as follows:

(3.2)

For generality, let _Zo(t) and U_o(t) be the nominal states and the nominal input as

function of time, and let Az__(t) and Au_(t) be the small variations from the nominal

values. The total state and input vectors are

__(t)= ao(t) + ma(t)

_(t) _o(t)+ A_(t)

(3.3.a)

(3.3.b)

Expanding (3.2)into Taylor series about the nominal state and input functions

yields

_o(_)+ A_(t)= (t(_o(t))+ A_(_)_)I__o,_o + (___(_)_/2/_1__o,_o + ......)
OB(z_.)

+ (B(_o(t)) + A_(t). O---_+ .....)l(_o,_:)(_o(t)+ A_(t)) ;
(3.4)

Neglecting terms involving second and higher order values of small variations, the

linearized dynamic model is obtained about a given nominal trajectory as;

A__ = A(t)Az_ + B(t)Au__ (3.5)

where;

A(t) = Of(z) OB(z) ]0---7-+ o------_"_°(_) I_o_,_,_o

.B(t) = B(_(t))l_o(,)

(tl (3.6.a)

(3.6.b)
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If Z_o(t) = _zo and u_o(t ) = uo, where :co, u,, represent constant equilibrium states,

then

A(t) = A and B(t)= B (3.7)

are constant matrices.

The form (3.4) is used for linearization about a nominal trajectory for pertur-

bation control and (3.7) is used for local linear dynamics and control law analysis.

Linearization for robotic manipulators is performed for a nominal configuration,

__o=[O_,s_,__,__lo,

_0= _O.o=,.oz; _0= 0 (3.8.a)

_=0. ; _=0 (3.s.b)

and u_,, is such that,

0 = L(_o) + B(__o)__o (3.9)

Thus, for a given nominal equilibrium state, z o, eqn. (3.9) gives the necessary

nominal input, u o, for the state to be an equilibrium state, and evaluating eqn (3.6)

about these values gives the linear dynamics of the manipulator.

3.2.2 Open Loop Eigenvalues Root Locus

The locus of open loop eigenvalues is studied as a function of second joint and

payload point mass properties, for the manipulator parameters given in Appendix

A. Figures (3.2.a and 3.2.b) show the variation of eigenvalues as the second joint

and payload point masses of values {0., 1., 2., 4., 8., 16. kg.} (only point mass

values, no mass moment of inertia) are introduced to the manipulator dynamic
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(a)

MJI

Mp

(b) (c)

(d) (e)

Cll

_Kll

C22

(f)

Fi8.3.1 Eigenvalue analysis cases - root locus parameters axe indicated
on the figures
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model. The eigenvalues merge to each other in pairs and converge to some limit

values as second joint and payload masses increase. In the limit, system should

behave like two independent pinned-pinned beams. Since beams have identical

parameters, eigenvalues go to the same limits in pairs. When compared with the

eigenvalues of the equivalent pinned-pinned beam, it is seen that the first pair of

eigenvalues converges to the correct values accurately ( our model which includes

joint variables and four mode shapes (two modes for each link) converges to a value

in the range of 41.15 - 43.27 rad/sec., and the equivalent ideal pinned-pinned beam

first eigenvalue is 40.27 rad/sec.) However, the second pair does not converge to

the correct value (our model converged to a value in the range of 266.09 - 269.71,

and the corresponding pinned-pinned beam eigenvalue is 161.09 rad/sec). This is

due to the fact that a finite dimensional assumed modes model can not predict the

dynamic behavior for all range of parameters. At the extereme cases, the model

loses accuracy in higher modes due to the truncated model order and the assumed

mode shapes which may no longer be accurate under these new conditions. Due to

the free rotation capabilities of the joints, the rigid body mode is still preserved, and

pinned-pinned modes are imposed on that. Therefore, zero eigenvalues associated

with the rigid body mode of each joint motion is retained (Fig. 3.2.b).

The limiting case of high joint position feedback gains at both joints should

make the two link arm behave like a single clamped beam with a discontinuous

stiffness in the middle (joint 2 stiffness, Fig.3.1.c). Open loop eigenvalues are plot-

ted for joint 1 and 2 position feedback values of {10n; n = 0., 1., 2., 3., 4., 5., 6.} .

Fig.3.3 shows that the first 4 modes converge to the corresponding limit values very

accurately (Table 3.1).
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Values Converged (rad/s ec)

3.688

25.17
63.77

149.82

Ideal Values(rad/sec)

3.588
22.48

62.97
123.40

6O

Table 3.1 Asymptotic behavior of eigenvalues of assumed modes model under high

position feedback gain

The fifth and sixth modes did not show convergence to any values. As

joint stiffness increased, they kept increasing too. The eigenvalues were 1834.0 and

3528.4rad./sec for kll = k22 = 10 S, and 5747.5 and lll04.rad/sec, for 106 ,cieariy

showing no convergence. However, that is not wrong nor a surprise. Recall that

the model has two degrees of freedom for joint variables (the rigid body modes)

and four four degrees of freedom for flexible motions. Therefore, it is expected that

the two mode eigenvalues, associated primarily with the joint motions, will increase

indefinitely (to infinity) as the position feedback gains increase. In other words, at

limit the six modes of the finite dimensional assumed modes model will not converge

to the first six modes of the corresponding lirnit system, as discussed above.

Fig (3.4.a) shows the variation of the eigenvalues as a function of fiexural

rigidity of the links. Figures (3.4.b,c) give closer look at the root locus as a function

of configuration for EI1 = EI2 = 533.33Nt.m 2 case. The noteworthy results here

are as follows.

1. All eigenvalues have the closest locations to each other in pairs for 82 = 90 °

degrees. This makes sense, for at this configuration the dynamic coupling

between ]_inks is minimum, and dynamic behavior is converging towards the
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dynamic behavior of a single link (Fig.3.4.b).

2. The largest variation in the location of eigenvalues occurs again for 02 = 90 °

(Fig 3.4.e).

3. In particular, the second and fourth flexible modes are most sensitive to

configuration changes. The order of 25 % variations of the nominal values

was observed (Fig.3.4.c).

3.3. Closed Loop Dynamics Under Joint Variable Feedback: Limita-

tions and Sensitivity

3.3.1. Previous work and results based on frequency domain ap-

proach

Joint variable feedback (position and velocity) is very common in robot mo-

tion control. Before attempting to develop control algorithms which use flexible

state feedback as well as joint variables, one should start by determining the level

of performance which can be achieved by the well known joint variable feedback

control algorithms when applied to flexible manipulators. Specifically, the follow-

ing questions will be studied: 1. What is the upper limit of performance that a

linear joint variable feedback control law can achieve when applied to flexible ma-

nipulators? This limit is imposed by the arm flexibility on the dosed loop system

performance. 2. How do the closed loop eigenvalues vary as a function of joint

variable feedback gains (sensitivity)?

Book [A20, A27] studied these questions using a frequency domain model of

a two-link, two-joint manipulator. Transfer matrices are used to model the linear
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dynamics of the distributed-lumped parameter system. The approach is limited to

linear dynamic analysis. Results based on such model would be free of any model

order truncation errors and may be used as a reference for other approaches. It is of

interest to determine how the assumed modes method answers the same questions

and to compare the results of the two different approaches. Of course, errors due

to model order truncation are inherent in the results of the assumed modes model.

Such a comparision will also serve the purpose of determining how many assumed

modes are accurate enough.

The basic results can be explained by the Fig 3.5. If the beam were rind,

natural frequency of the system under position feedback regulation would be,

w. = v /.ro rad/ ec. (3.10)

where; 3"o = (1�3)pAl 3 mass moment of inertia about the joint, and as k ---,

_, "I.On ---+ OO.

However when the arm is flexible, this is no longer true and the dominant

eigenvalue is upper bounded by

w,, = (1.S75) z v/EI/(pA14) rad/sec. (3.11)

This is the simplest explanation of the limitations imposed by the arm flexibility

on joint variable feedback controller performance. Book has further studied the

two-beam,two-joint cases. The variation of the dominant eigenvalues (root locus)

as a function of joint velocity feedback is found to be of the form shown in fig 3.6.

Notice that for low servo stiffness, two complex conjugate eigenvalues break-in to

the real axis,and go in the opposite directions. Further increaseing c22 results in
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a reduced damping ratio. At some point, one more eigenvalue appears, coming

from -_ , and meets the dominant eigenvalue and then breaks-away from the

real axis, eventually approaching point D on the imaginary axis (fig 3.6). As servo

stiffness increases ((b) and (c) locii), increasing joint damping is no longer able to

achieve desired damping ratios. This can be explained physically as follows: as servo

position feedback increases, the arm joint gets stiffer and stiffer, making the energy

dissipation more difficult. If a joint variable feedback controller is to be used for

a flexible manipulator, Book suggested that the closed loop dominant eigenvalues

larger than 1/2 of the lowest frequency of the arm should not be attempted. The

lowest frequency of the arm is defined as the first natural frequency of the arm when

all joints are clamped and links are extended.

The eigenvalue problem of the transfer matrix model has an infinite number

of solutions since the model is infinite dimensional. In the root locus analysis, only

the eigenvalues within a finite region of the s-plane are numerically calculated. The

source of the additional eigenvalue, which enters the into the studied region at some

value of feedback gains (point C in figure 3.6), is not determined. However, this

phenomenon is explained [A20] by an analogy with a lumped parameter model as

shown in Fig. 3.7. Fig. 3.7 shows the root locus of the eigenvalues as a function of

the damping coefficient cs.
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3.3.2. Results of assumed modes based model

7O

The assumed modes model predictions about the limitations of joint variable

feedback control will have inherent errors introduced by the model order truncation.

There is always a finite number of eigenvalue solutions. An eigenvalue appearing

from the -oo direction of real axis cannot happen, or the original location of such

an eigenvalue must be one of the finite number of eigenvalues already exist. The

transfer matrix based analysis in the frequency domain left the question of where

the additional eigenvalue came from unanswered. In fact, it did not need an answer,

for the system was infinite dimensional and only those eigenvalues within some finite

region of s-plane were numerically solved in the frequency domain. Nonetheless, for

an assumed modes model to be acceptable, it should be able to predict the important

characteristics of the system well, such as the joint feedback control limitations.

Root locus analysis will be used on the linearized model of the assumed modes

method. The system model is twelfth order: one joint angle, and two flexible modes

for each link. The objective is to determine a) how well this model predicts the joint

variable feedback control limitations, and b) the root locus sensitivity as a t_unction

of feedback, gains.

An analysis is done on cases (a) and (b) of figure 3.8. Here the results of

case (a) will be discussed for its clarity and simplicity over case (b).

Figures 3.9.e, 3.10.f, and 3.11.g show the root locus of the dominant closed

loop eigenvalues as a function of joint velocity feedback gain for low, medium and

high servo stiffnesses. Cleary, it is seen that our truncated model (one rigid body,

two flexible modes for each link) predicts the limitations of joint variable feedback
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control laws due to flexibilty very well. Since the assumed modes model has only

a finite number of eigenvalues, the eigenvalue which meets with one of dominant

eigenvalues on the real axis (in fig.3.10.f, and 3.11.g, this eigenvalue stays on the

real axis) must be associated with one of the modes. When the root locus of all

the eigenvalues is checked, it is seen that the needed eigenvalue, to exhibit the phe-

nomenon of fig 3.5, is provided by one of the flexible modes (Fig. 3.9.a,b, 3.10.a,b,

3.11.a,b,c). Physically this means joint velocity feedback alone can introduce very

large damping rations to some of the flexible modes.

(a)

CII

ill

I/////_¢/I,'/11/

®

(b)

Fig.3.8 Closed-loop eigenvalue root locus as function of servo gains -
Assumed mode model results.



3.4. Summary of Results and Conclusion
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The truncated assumed modes model predicts the limitations of joint variable

feedback control very well, but it may be doing so at the expense of losing accuracy

in predicting the higher mode behavior. In other words, the break-in of some higher

mode eigenvalues to the real axis is questionable. Also, given the results of open

loop eigenvalue analysis, where accuracy is lost at higher modes for some limiting

cases, it seems that the break-in of some eigenvalues to real axis may indeed be a

mathematical parasitic solution, which does not exist in a real system. Reported

results of the transfer matrix approach did not determine the source of the eigenvalue

in question. The remaining questions to be answered are as follows: 1. How would

the root locus behavior be if the assumed modes model included 2,4,6,8,10, .... modes?

2. If this is a mathematical parasitic solution, that resulted from the truncation of

model order, and is not a property of the dynamics of the real system, what is

the error introduced to the behavior of other eigenvalues? How many modes are

accurate enough to guarantee a desired accuracy for a given number of modes under

partial state feedback?

Use of both frequency domain transfer matrix and assumed modes model in

the analysis of this problem may prove to be effective in resolving the outstanding

questions.
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CHAPTER IV

Gross Motion Control

4.1. Introduction

A robot task is characterized as having two major parts, 1. large motion,

where speed, and 2. fine motions, where precision (accuracy) is of prime importance.

A control strategy is needed for lightweight manipulators , which will accomplish

good tracking in joint space while keeping flexible deflections as small as possible

(O(t) _ 0d(t), 6(t) _ 0) for a wide range of speeds and operating conditions. This

is the control problem of lightweight manipulators in general.

Before attempting to solve the lightweight manipulator control problem with

a specific control approach, let us investigate if it is possible to achieve both perfect

joint tracking and vibration stabilization, (O(t) _ _d(t), _(t) --* 0), in general. If

ideal actuators and measurement devices were available, does there exist a control

law of the form (4.1)

u = u(_,b,g,_, _,_) (4.1)

such that (4.2.a) and (4.2.b) are achieved for the manipulator described by (4.3).

8(t) =- Od(t) (4.2.a)

6(t) -_ 0 (4.2.b)

for all t > to, where to is the initial time.
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An investigation of manipulator dynamic model (4.3) reveals that one cannot

find a u which will drive _(t) ---, 0 while achieving perfect tracking of any given

desired trajectory in joint space. For any given (8(t),6(t))*, i.e. (4.2.a) and (4.2.5),

the first set of (4.3) gives a control vector history u(t)=. But in general there is no

guarantee that the (8(t),6(t))= will satisfy the second part of the equation (4.3).

That means if u(t)" is applied to the manipulator, (8(t), 6(t))* will not be actfieved.

However, if only 8(t) is specified (but not 6(t)),then _(t) is determined from the

second part of the (4.3), and then both 8(t), and 6(t) determines u(t) from the

first part of (4.3). This u(t), when applied to manipulator under ideal conditions,

would result in the original 8(t), and 6(t). Notice that, in this method, one has the

freedom of specifying only 8(t), but not 6(t). Therefore, a control strategy which

tries to track a desired trajectory, ed(t), in that will result in an acceptable response

in _(t) is more realistic than a control strategy which tries to accomplish (4.2.a) and

(4.2.5).

Such a control strategy alone can not achieve high speed, high precision

manipulation. The precision of control must be emphasized at the fine motion

level. At this level, positioning of the joint to a desired configuration is needed

rather than tracking a desired trajectory. Thus, the fine motion control should

achieve 8(t) _ 8finat, 6(t) _ 0 asymptotically, where 8fm,n is the joint angle

vector corresponding to the final desired configuration. The analysis presented

in Chapter 3, based on the linear models of lightweight manipulators, has -_hown
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that the system is locally controllable and the above fine motion objectives can be

accomplished through linear state feedback control.

Based on this discussion, the following control strategy will be adapted:

First, the gross motion control phase will attempt to control the joint variables

in tracking a given trajectory and accept the outcome of this control in flexible

vibrations. Then, before the end of motion is reached, the control will be switched

to another algorithm that will achieve position and vibration control of the arm.

We will call this the combined control strategy.

In this chapter, only the gross motion problem will be studied. The need for

combined control will arise naturally and one specific form of combined control will

be studied in Chapter 5.

The first logical step in gross motion control is to study how well the classical

rigid manipulator based control schemes would perform on flexible arms, and use

this as a base for further study. First the performance of Computed Torque Method

(CTM) and Decoupled :Ioint Control (D:JC) method will be studied on the rigid and

the corresponding flexible arms. The comparison between the two results will help

to determine the effects and the limitations due to flexibility on the performance of

these algorithms. Then, an adaptive model following control (AMFC) algorithm is

developed, based on hyperstability. Generalized inertia matrix plays a central role

in the design of the AMFC algorithm, and has a number of significant advantages

over the other design procedures currently available. Finally, results are compared

and shortcomings of these joint variable feedback control schemes are determined.

Some terminology used throughout the chapter is defined as follows. A high
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gain feedback control system is one where the ratio of the closed loop system band-

width, w,_i, to the desired motion bandwidth, w,_i, (or equivalently the natural

frequency of the reference model which generates the desired motion with a step

input), is larger than 1, Wni/W,,,i >> 1. A high gain feedback system implies that

system capabilities are under utilized. System actuators are capable of providing

faster motions, but used for operations involving much lower speeds. By perfect

condition we mean that the information available to control algorithm about ma-

nipulator parameters are exact, and neither external disturbance nor noise exists.

Relatively slow motion with respect to arm flezibility refers to motions with band-

width Wrni/Weel << 1,. and relatively fast motion refers to Wrni/Wecl >_ 1 , where

w¢cl is the lowest frequency of the manipulator with all joints clamped. Relatively

slow and fast motion with respect to controller (more precisely,with respect to closed

loop system dynamics), refer to the cases of Wmi/Wni << 1 and wmi/wni > 1 ,

respectively.

4.2. Non-Adaptive Control Algorithms

4.2.1. Computed Torque Method

The computed torque method is probably the most popular control algorithm

in robot motion control. The control vector has two parts: 1. compensation of

nonlinearities and gravity, 2. linear joint variable feedback (Fig.4.1.a).

u--/(O,O)+_(O)+r_n(8){Od+[C](Od--O)+[K](Od--O)} (4.4)

When applied to a rigid manipulator (model) ;

rn(O)O + f(O,O) + g(O) = u (4.s)
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m(e)8+ f(8,8) +g(e) =/(e,8) +9(8)+ rh(8){Sd + [C](_4-8) + [K](Sd,8)} (4.6)

where, m(O), f(e, 8), g(8) are actual inertia matrix, nonlinearities, and gravity terms,

respectively, of the real world System, which cannot be exactly determined by mod-

eling or identification, rh(8), ](8), g(O) are the values known at the control Mgorithm

level which are always different than the actual real world values to some degree.

When the CTM is applied to flexible manipulators,

m_(e, 6)//+ f_(e, 6,8,5) + g, + ,,_,s(8, 5) = / + 9

(4.7.a)

and the flexible body dynamics during the motion is governed by,

T [K]5 0m_(0,_)$+ r_,s(0,_)_+ Is + + g_ = (4.7.b)

Let e(t) be the error state, the difference between desired and actual joint

variable states at time t,

e=Sd-8

The error dynamics are governed by,

+ [C]_ + [KJe = [rh-lrn,. - I] 8 + rh-' [(/,. -/) + (g,. - 9)] + rh-lrn,-I _ (4.8)

If rh = rn,., ] = f,, 9 = g,', and 5 = 5 = 0, under ideal conditions, then the

error dynamics are governed by,

+ [c]a + [x]_ = 0 ; (4.9)
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(a)

(b)

Fig.4.1

(c)

Computed torque control: a) standard form,

b) model following form, c) model following form



For decoupled joint control; [C] = diag[cii] ; [K] = diag[kii],
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ei + cii_i + kiiei = 0 ; (4.10)

Finding the appropriate controller feedback gain parameters to achieve a desired set

of closed loop eigenvalues is trivial with the computed torque method. In order to

assign a damping ratio of _i (i.e. 1.0) and a natural frequency w_,i (i.e. 5.rad/sec)

for the closed loop dynamics of a joint variable, decoupled from other joint dynamic

effects, one simply chooses;

cii = 2_iwni (4.11.a)

2 (4.11.b)kii = wni

The steady state error for a constant disturbance, i.e rnp deoig,., _ mp ,_c,.u,,t acts as

a constant disturbance on the control system, is as follows:

Wo/s wo
llm e,, = lira s -- (4.12)

t_ s 40 ]eii ]eii

Clearly, steady state error is reduced by use of high servo bandwidth. In

practice, integral control is also included to zero out the error. In robotics, a

typical source of constant disturbance in steady state is the payload variations from

one task to another. Notice that as kii increases, steady state error decreases, thus

high bandwidth closed loop system results in smaller steady state errors. Moreover,

high closed loop bandwidth relative to the desired motion bandwidth (high gain

feedback) results in better transient tracking response. Due to flexible dynamic

coupling, reaching steady state value for joint variables depends on how fast the

flexible vibrations are damped-out (eqn.(4.7.a)).
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In order to clarify the notion of desired motion bandwidth, consider the figure

4.2. Let the states of the reference model be the desired trajectory, and input to

the model is a unit step. The response of the model (4.13) is given by (4.14).

2 2
Omi+ 2_iWmiOmi + WmiOmi = WrntUrni (4.13)

Oral(t)= [1--e-'i'_"t(cos V/_I - _ wmit+ ({i/v_l -_) sin V/_ - {_ wmit)]

(4.14)

Thus, the bandwidth of a desired motion can be characterized by the highest fre-

quency content of the motion, which is W,.r,i in this case.

w_As_

Fig.4.2 Desired motion generation



4.2.2. Decoupled Joint Control (DJC)
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The decoupled joint control (DJC) is another very popular method in robot

motion control. It is very similar to the computed torque method, except that

it does not explicitly cancel nonlinearities (Fig.4.3.a). Therefore, implementation

requires much less computational power than the computed torque method would.

However, as operation speeds increase, the nonlinear forces become dominant, and

the only way DJC can be successfully used in these cases is in a high gain feedback

form. The decoupled joint control algorithm is given by,

=_(0)+ _(0){ [c,,](0_- 0t + [k,,](0_- 0)} (4.15)

When applied to rigid manipulators, this yields:

m(e)_+ f(O,O)+g(O)=_(O)+rh(O)[[cii](_a-O)+[kii](Od-8)] (4.16)

Add and subtract rh(O)(Od -- O) from equation (4.16) in order to obtain the error

dynamics,

+ [c]_ + [K]e = [,_-_(0)m(e) - I]/_ + _d + m-1 [(1) + (g _ ))] (4.17)

When applied to flexible manipulators, the error dynamics is governed by

_+[C]_+[K]e = [rh-!rnr - I] 0-+-_d++rh -a [(f,) + (g,. - _)]+Cn-lm,.f'_ (4.18.a)

and the flexible body dynamics during the motion is given by

r 7,-]_+gs =ms(0, _)_ + mrS(0, _)//+ f_ + 0 (4.18.b)
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.(

(a)

Fig.4.3

"(
Robol;Ic IMenlputa'tor"

(b)

Decoupled joint control: a) standard form
b) mode following form.

L



4.2.3. Model Following Form of the CTM and DJC
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For comparisons between the performance of the CTM, DJC, and AMFC

algorithms a common basis must be established. A reference model, which basically

serves as a desired trajectory generator, is an integral part of AMFC. Thus, the CTM

and DJC must be implemented such that they follow the same desired motion as

does the AMFC, with the same closed loop system objectives. Here, a reference

model following view point of these methods will be studied in order to establish a

common basis for comparison.

In order to implement CTM, (4.4), in the model following form, one must

express the 8a, Sa, Sa in terms of the reference model states elements. Let the

reference model be, a linear dynamic system of the form,

[ o , o
• _ AS.where; Ao = diag{wL, } A, = diag{¢,w,,_,} and u,,, = w,n ,

The relationship between desired trajectory and reference model states is given by

8d = 8m + 8o

= e.,

(Fig.4.5),

4.22)

_,_ + AlO,-,, + AoS= = u,_ 4.23)
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U

I

Reference

Model

Adjustable

Plant
i

X
m

+¥

I Adaptation Imechanism

e

Fig.4.4 Basic elements of an adaptive model following control system

I

O_ = 0,_ + Oo

_ = #_

Fig.4.5 Reference model used as trajectory generator.
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(4.24)

Given the relationships (4.22), and (4.23), the desired trajectory part can be ex-

pressed in terms of reference model input, states and dynamics. After some algebraic

manipulation, one can show that the equivalent control law of (4.24) is given by

(4.25),

_1 = _m + {[c,,]- [A1]}#m+ ([k,i]- [&]}0m+ [k.]e0 (4.25)

Thus the computed torque control law in model following implementation form;

(Fig.4.1.b-c)

U -- 'rzn,r(0, (_) [Urn] "_ lZl2r(O,_)[{[Cii]- [A1]}0rrt + {[]gii]- [Ao]}0m]

+ rh,.(8, 5) [[kii]8o] (4.26)

+ _.(o,6){[c,,]b + [k.]o}

+]+_

Notice that if [Ci_] = Aa, [K,] = A0 _ w,,_/w_, = 1 with u,n being step input,

corresponding to a relatively .faat motion with respect to controller. Similarly, the

model following implementation of DJC (Fig. 4.2.b) is given by,

u = u_ + _(0)

ua = rh,.(O, 6) [[c,]_m + [kii]O_] + _,.(O,6)[kii]Oo (2.27)



4.3. Adaptive Model Following Control (AMFC)
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The AMFC studied here is based on the Erzberger's linear perfect model

following control (LPMFC) problem. First the LPMFC problem, then the AMFC

problem will be studied.

4.3.1. Preliminaries: LPMFC

Consider the linear time invariant plant,

izp = Avxp + Bpup (4.28)

where (Ap, Bp) controllable, xv E R n, Up E R TM • Let the reference model be,

_,_ = Amzm + bmum (4.29)

and a control law of the form,

up = -Kpzp + K,,u,_ + Kmxm (4.30)

The Problem: Given the reference model (4.29) and plant (4.28) [Fig.4.6.ai,

does there exist Kp, Ku, and Km such that for initial conditions e(0) = 0 and for

all um that belong to a piecewise continuous, bounded class of functions,

e=zm--Zp__O_ xm(.t)=_zm(t) V t >_to (4.31)

The Solution: Let e be the error between reference model and actual states,

e _ Xra -- _p

= Amzp + Bmum - Avzv - Bv(-Kvxv + K_,um + Kmxm)

± (Amx v ÷ BvKmxv)

(4.32)

(4.33)

(4.34)



where last term is added to eliminate z,,, from the error dynamics.

error dynamics are governed by,
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Finally, the

= [AT,, - BpKm]e + [(A,,, - Ap) + Bp(Kp - K,,,)]zp + [B,-,, - BpK,,]um (4.35)

First of all, part of open loop error dynamics, Am, will normally be chosen with

desired properties by the designer, thus K,_ can be set to zero without loss of

generality. If later a case of K,n # 0 is desired, a modification of the design for that

purpose is trivial. In order to accomplish the (4.31) for all um and zp, as described

in the problem, coefficients of Urn and Zp in (4.35) must be zero at all times.

Ap (4.36.a)

(4.36.b)

If there exist Kp, K,,,K,.,, to exactly satisfy (4.36), then there exists a control of

the form (4.30) which accomplishes (4.31), which is called linear perfect model fol-

lowing control (LPMFC) [D18]. If (Ap - Am) e Span{Bp}, and B,,_ e Span{Bp},

then the existence of/_,/x'u, K,,, is guaranteed (Appendix A/. So for a given plant

with a model (Ap, Bp) of the form (4.28), there exist a class of reference models

{(AM, B,-,)}, satisfying (4.36), such that any element from that class can be exactly

tracked by the plant using a control law of the form (4.30).

Notice that for square systems with B v full rank, any reference model

(Am,B_) can be perfectly followed. For a set of second order systems which can

be expressed in the form of (4.37),

0 I 0
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if B2 is full rank, any set of second order reference models of similar structure can

be perfectly followed.

4.3.2. AMFC - Hyperstability based design

Consider the plant dynamics of the previous section as (Av(zv, t), Bv(xv, t))

time varying system (so called quasi-linear form), instead of being linear time in-

variant (LTI). The basic idea of AMFC relies on the LPMFC of Erzberger. AMFC

attempts to realize the same objective of LPMFC for a time varying system asymp-

totically as t _ e¢ (Fig. 4.6.a, and b).

Let the reference model be,

icm = A,-,,z,_, + B,_u,.,, (4.38)

and the plant dynamics be,

= Ap( xp, t )zp + Bv( zp, t )up (4.39)

with a control law of the form,

up = -Kpzp + Kuu,n + Kmzm (4.40)

Clearly, as the system dynamics varies, the feedback gains must also vary in order

to keep following the reference model.

There are two basic assumptions associated with the current AMFC designs.

1. 3 Kp, K,,,Km for every Ap(z,t)Bp(z,t)

2. Variations of Av(X,t),Bp(x,t ) is slower than the speed of adaptation.
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(a)

K

e

Fig.4.6

(b)

Model following control: a) Linear perfect model foUowing
control (LPMFC), b) Adaptive model following control,
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Assumption 1 is an expected ezi_tence condition, originating from the Erzberger's

LPMFC conditions. AMF__C_attempts to converge to these values through adapta-

tion as system dynamics vary. Existence of such limit values are the first requirement

for the convergence, let aside whether the algorithm will be able to converge or not.

Assumption 2 is ordinarily made in the current AMFC design. This assump-

tion will be replaced with a less restrictive one by a new design method described in

the next section of the paper. Basically, this assumption says that during an adap-

tation interval, a time invariant approximation of the time varying plant should be

accurate enough. In robotics, this depends on the speed of motion, thus AMFC

requires the robot motions to be slow enough for the adaptation algorithm to work

well.

In the remaining part of this section, the standard AMFC design based on

hyperstability will be discussed. The next section will extend these ideas and remove

assumption 2.

From (4.38), (4.39), (4.40), the error dynamics can be shown to be (following the

same steps of the section 4.3.1),

= [AT,, -- Bp(zp, t)K,-,,]e+

(4.41)
JAm - Ap(zp, t) + Bp(xp, t)(Kp - Kr,)]zp + IBm - Bp(zp,t)Ku]um

Let'ting Km = 0 without loss of generality,

= Ame + [A,., - Ap(xp, t) + Bp(xp, t)h_]xp

+ IS.. -
(4.41)

For e(t) --_ 0 as t --_ oo , for all zp, and um that belong to a piecewise continuous,

bounded class of functions, the coefficients of zp , and um in (4.41) must be zero.
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Since Ap, and Bp are not constant, the problem is to devise an adaptation algorithm

for Kp, and Ku such that as Ap, and Bp vary, Kp, and K, are also varied to keep

the coefficients of Zp , and u,= zero.

Ap(zp, t)- Am = Bp(zp, t)Kp
(4.42)

B., = Bp(xp,  )Ku

Let the feedback gains be

Kp = Kpn - AKp(e, t)

Ku = K_n + AKu(e,t)
(4.43)

where, Kp,, and K_n are nominal gains, and are not affected by the adaptation algo-

rithm. It is assumed that for every instantaneous value of (Ap(zp, t), Bp(zp, t)) and

the chosen (Am, B,-,), there exist Kp, Ku such that (4.42) is satisfied ( Assumption

#i).

The adaptation algorithm deals with the question of how to vary the

£xKp, AKu so that equality (4.42) is preserved as closely as possible.

There are three basic methods of designing the adaptation algorithm, namely

gradient [D19], Lyapunov [D1], and hyperstability [D1, D3] based methods. Hyper-

stability based design is proven to be the most powerful method [D1] and will be

used here.

Recall the control law,

Up

O.

= -Kpzp + K, um+ Kmzm

-- -Kp.zp + l_;unUr.+

Nominal control

5Kp(e, t)zp + 6K,,(e,t)u,.,,

Adaptation algorithm control action

(4.44)



Ordinarily, Kpn and K,n axe chosen to be constant.

choice is the source of assumption 2.
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It will be shown that this

Substituting the control gains (4.43) into the error dynamics (4.41);

= A,.ne + [(Am - Ap) + Bp(/x'p. - AKp(e, t))]zp

+ [S,-,, - Sp(Kun + AK,)]um
(4.45)

Given the error dynamics (4.45), it is desired to find a way to adapt A/x'p, AN, so

that the coefficients of Zp and Up go to zero asymptotically as time goes to infinity.

The hyperstability based adaptation algorithm design involves the following four

standard steps: [Fig. 4.7]

1. Transfer the problem to the form of the standard hyperstability problem.

2. Determine the class of adaptation laws such that feedback block belongs to

Popov class (Fig. 4.7) and choose a specific adaptation law from that class.

3. Find an output filter, D, using Kalman-Yakubovich-Popov lemma (Appendix

C), such that the linear time invariant feedforward block is strictly positive

real.

4. Transfer back to the original problem.

Note that the existence condition (Assumption # 1) implies that for every instant

_ PW

value of Ap(xp,t), Bp(zp,t) , there exists /xp , and /x, such that LPMFC (4.36.a

and 4.36.b) are satisfied. The values of K_, K_ may not be known, but their



existenceis!
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Ap(zp,t)- AT,, = Bp(xv,t)K_
(4.46)

Bm = Bp(zp,t)K:

So, as Ap(zp, t),Bp(zp, t) vary, the ideal values of K_,K_ vary according to (4.46).

The task of adaptation algorithm is to vary AKp, AK_, such that the actual imple-

mented Kp, Ku converges to K_, K_, asymptotically, thus satisfying (4.42). Substi-

tuting the ideal values into the error dynamics;

_= A,_e+ Bp(zp, t) [-h_ + Kp,_-Ah_(e,t)Jzp +[F-_,-( un-SKu( t))]um

(4.47)

One can now apply the hyperstability based design procedure;

Stepl:

= Ame + Bp(zp, t)wl

v=De

w = -wl = [K; - Kp. + AKp]_p+ [K_n+ AKu(e,t) -/C,]_m

(4.48.a)

(4.48.b)

Step _:

Any choice of AKp, AKu from the follo_ing class guarantees that the resultant

feedback block belongs to Popov class (see Appendix C).

¢x(v,t, _-)d_-+ Cz(v,t) + _/_'v(0)

¢_(v, t, _-)d_-+ ¢2(v, t) + __K_(0)

(4.49.a)

(4/49/b)



112

where;

4l(v,t,r) = Fpl(t - _')v(_')[Gp,zp(_')]T

¢:(v,t) = Fp_(t)v(t)[ap=(t)=.(t)]r

¢1(v, t,_') = F.l(t- v)v(_')[G.lu,.(r)] r

¢2(v,t) = F,,2(t)v(r)[G_,z(t)um(r)]r

(4.50.a)

(4.5o.b)

(4.5O.c)

(4.50.d)

FFB

FBB

I NLT V ["• F

V

{v}= { ,,r=dt>_-,p.,v t,>_to}

Fig.4.7 The Hy.perstability problem

where; Fpl(t- "r),F_a(t- "r) are positive definite matrix kernels whose Laplace

transform is a positive real transfer matrix with a pole at s = 0, Gpl,G,,1 > 0

positive definite matrices, and Fp_(t),F,_(_,), Gv2(t), Gu2(t) >__0 are positive semi-

definite matrices.

With an adaptation algorithm from that class, the feedback block (4.48.b) becomes,



113

where ;

0 t

+[ + +

AN_ = K_ - Kp,, + AKp(0)

AK ° = -K,_ + K,,,_ 4- AK_,(0)

(4.51)

AKp(0) and AK,,(0) can be chosen to be zero without loss of generality, for any

desired values can be included in the Kp,,, and K,,,, nominal values respectively.

The assumption #2 originates at this point. The feedback block, with choices

of adaptation gains from the above class, satisfies the Popov inegral inequality,

(f:vT.w > --'y_ V t > 0 ), for constant At( °,

constant implies that (K_, - Kp,) and (K_, - K,,n)

(4.52.5)).

AK ° [D3, D18]. AK °, AK °

are constant (eqn.(4.52.a) and

If Kp,_, Ku,_ are chosen to be constant, as done currently in the AMFC de-

sign literature, K_, K_ must be constant for the hyperstability based design to be

successful (eqn. (4.52.a)). Therefore (4.46) implies that (Ap(zp, t), Bp(zp, t)) must

be constant during the adaptation, or equivalently, Ap(xp, t) and Bp(zp,t) should

vary slower than the speed of adaptation (Assumption 2).

4
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4.3.3. AMFC Revisited: Generalized Inertia Matrix Based AMFC

Hyperstability based design requires 0 -0AK_, AK, be constant for the resultant

feedback block of hyperstable design to be in Popov class. Therefore, Eqn.(4.52)

implies that (K_ - Kpn) and (g_ - K,n) must be constant, but not necessarily

Kpn,K,n. If nominal control is not constant but somewhat better in keeping the

plant to track the reference model, then assumption 2 would not have to be so

restrictive. So the better Kpn tracks Kp and K,n tracks K_, the less restrictive

the assumption 2 will become. Choosing vaxiableKpn,K,n nominal gains in the

control law ( as done in the decoupled joint control algorithm), assumption _2 will

be replaced by the following.

!

Fig.4.6.c) Generalized Inertia Matrix Based AMFC.
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The previous assumption # 2 was:

The difference between the reference model and the closed loop plant dy-

namics under constant linear nominal control should vary slower than the

speed of adaptation.

The new assumption # 2 is:

The difference between the reference model and the closed loop plant dy-

namics under variable nonlinear nominal control should vary slower than the

speed of adaptation.

In other words, use of variable nominal feedback gains instead of constant nonfinal

feedback gains make the adaptation algorithm job easier, thus extending its range

of applications in robotics and other motion control systems.

Kpn -
(a)

Kpn-

Fig.4.8 Feedback gain differences that must be taken care of by
adaptation algorithm.
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Furthermore, hyperstability based design results in a large class of possible

adaptation laws (4.50). This may be an advantage from from an analysis point of

view or exploring the possibilities. However, from the design point of view, too much

freedom of choice may turn out to be a disadvantage if there is no clear reason or

guidelines for choosing one adaptation law over another. It is generally agreed that

more research is needed in direct methods of choosing adaptation algorithms from

the admissible class. For example, currently integral and proportional adaptation

are popular. The adaptation law contains a large number of parameters which can

be chosen from a large class, and the choices are made in a trial and error or an

ad-hoc basis.

Another contribution of this paper is to remove the uncertainty in the choice

of adaptation parameters by utilizing the generalized inertia matrix, as discussed

next.

4.3.4. Generalized Inertia Matrix Based AMFC t: Application to Flexible

Manipulators

Consider the flexible manipulator model,

m,.(O,,5)_ =u - [rn,.l'5 + f,. + g,.] (4.73)

The generalized inertia matrix based AMFC algorithm, developed and presented in this thesis for

the first time, is not limited to flexible arm applications, and can be readily applied to rigid manipulators

without any modification.
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= _r + _p (4.74)

mr(e, 6)_ = _p + ['_rf$ + fr + (gr -- _r)] (4.75)

During the gross motion, nonlinear terms and coupling from the flexible modes to

the joint variable dynamics are treated as a disturbance and to be taken care of

by the closed loop system robustness. The method does not require real time mea-

surement or estimation information about the flexible states. This is an important

advantage in terms of implementation simplicity.

Under the influence of a gravitational field, a flexible arm will deflect. De-

signing a control system which uses the static deflections as the nominal value for

flexible states as opposed to zero would be more accurate.

Let the desired reference model be,

and the control law,

Up

0

= -Kpxp + K,,um + Kmxm

= -Kpnxp + Kunum +

Nominal control

AKp(e, t)zp + AK,,(e, t)um

Adaptation algorithm control action

(4.77)

Nominal control without the adaptation control can be chosen in the form (as used
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by the computed torque method),

_,p,*= ,_.(e,6.,)[_,,+ [c,,](o,,- o)+ I_,,](e,,- e)]

= _,.(e,_.,)[_,,+ [_,,]_,,+ [k,,]o,,]+

- _,(e,_.,)[I_,,]o+[k,,]o]

(4.78)

using (4.25)

_,,,,,= _,.(e,6,,)u,,,+,_,.(e,,_.,)[[c,,- A_]e,,*+ [k,,- Ao]e,.,+ [k,,]eo]

- _. (e,6.,)[[_,,]_+[k,,]e]
(4.79)

The nominal gains for the adaptive model following control algorithm based on the

generalized inertia matrix is given by,

K,.. = rh,.(0, 6°,)

Kp. = rh_(8,6.,)[[kii] , [cii]]

Z=.=rh.(8,6,,)[[k.] - A0, [c.]-

(4.80)

If error dynamics eigenvalue s are equal to those of the reference model, then kii =

ho,cii = A1 _ Kin,* = O.

The rh,.(O, 6st) term in the control 0Jgorithm is the key for decoupled control

of joints. The adaptation algorithm should be designed such that when added to

the nominal control vector Up,,, the decoupled nature of the control is preserved.

The adaptive part of the control is:

_0 t_Kp= Fplv[e,1_p]rdT + F,V[ap_X,]r (4.Sl.a)
_'- • Proportional Adaptation; A Kpp

Integral adaptation;-_Kp_
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,_o tAK,, = F,,lv[G,,lu,,_lTdr + F,,2v[Gu2u_] T (4.81.b)

• _-- _ Proportional Adaptation;_K_p
Integral adaptation; A K_l

Any positive definite matrix of appropriate dimension for Fpl, Fp2, Gpl, Gp2, Ful,

Fu2, Gul, Gu_ would suffice (but is not necessary) to guarantee the global asymp-

totic stability of the control system with an appropriate output filter. For art n-

degree of freedom system with m- number of inputs; Fpl, Fp2, Ful, Fu2, Gul, Gu2,

E R ('_xm), and Gpl, Gp_ E R ('*xn). There are too many design parameters which

can be chosen arbitrarily from a large admissible class. Neither the hyperstability

based design nor Lyapunov methods give any guidelines for the selection of the

elements of these matrices. As the system dimension increases, finding appropriate

adaptation algorithm parameters becomes a more serious design problem.

The final contribution of our AMFC design approach solves that problem.

Since decoupled control calls for the use of the generalized inertia matrix, one should

utilize this fact in the adaptation algorithm to direct the adaptation algorithm in

the right direction. The following adaptation algorithm, which uses the generalized

inertia matrix, will guarantee the global asymptotic stability of the closed loop

system.

AKp = AKpi + AKpp

t
T

T dr + ppp_,.(Oo, _ot) v zp= pp, rhr(t_o,6.t) v zp (4.82.a)

AK,, = AK,_i + AKup

i' T7' dr + p_,prhr(Oo, 6,t) vum: PuirZCtr(Oo, _st) V Urn (4.82.a)
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The generalized inertia matrix based AMFC algorithm described by (4.77), (4.80),

and (4.82) has the following advantages over previous algorithms:

1. The use of the GIM immediately solves the magnitude selection problem of

the adaptation algorithm, for it is naturally compatible with the problem.

2. The number of design parameters for integral adaptation is only 2, for inte-

gral plus proportional adaptation 4, no matter how many degrees of freedom

the system has. Thus the design problem of finding the good adaptation

parameters becomes much simpler.

3. Utilizing the GIM as an integral part of adaptation improves the decoupled

response of joint variables (Fig. 4.19.a-d, 4.23.a-b).

4. The use of variable nominal gains results in less restrictive conditions on the

applications of AMFC to nonlinear systems.
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In the following discussion, the performance of a control algorithm refers to

the speed and accuracy, and robustness with respect to payload variations thatthe

control algorithm can provide for a given manipulator. The performance evaluation

of one algorithm relative to another is based on the maximum bandwidth that the

controller cart provide with predetermined or comparable accuracy over a range of

payload variations, i.e. 25% (payload to robot mass ratio).

Robustness of an algorithm is tested by calculating the real time control

vector based on a payload value zero, and applying it to a model with a payload of

weight equal to 25

4.4.1. Simulations with a Rigid Manipulator Model

The objective of the simulations of the CTM and DJC on the rigid model

are as follows:

1. Quantify how important the nonlinearities (coriolis and centrifugal forces)

become relative to gravity forces as the speed of motion increases,

2. Determine the performance of the CTM and DJC on a rigid manipulator

so that the results can be used as a basis for comparison of the flexible

manipulator. Furthermore, show the effect of high gain feedback on the

tracking and robustness performance as discussed in the development of the

methods (Section 4.2).

Three different motions are simulated. The desired motion trajectories axe
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generated by a referencemodel with a step input command signal. In all cases,

the referencemodel is a decoupledset of secondorder hnear model with a damping

ratio of _i = 0.707andnatural frequencyfor cases(a) 2.75 rad/sec, (b) 5.5 rad/sec,

(c) 11.0 rad/sec . Desired motions and resultant torque histories are shown in

Fig.4.9.a,b,c,d.

As shown in Fig.4.9.e,f, the nonlinear forces becomemuch more important

compared to gravitational forces as the speedof motion increases. For relatively

slowmotions, nonlinear terms aresmall, and neglectingthesein the controller design

may result in a satisfactory closedloop performance. However, if operation speed

increasesthe nonlinear forcesbecomedominant and cannot be neglected.

To answer question 2, the CTM and DJC are simulated tracking a desired

motion generated by a referencemodel. The reference model has a damping ratio

_i = 1.0, and a natural frequency wmi = 2.75rad/sec, with step command input

signal. The rigid arm under the CTM and DJC control algorithms is simulated for

three different closed loop eigenvalues as shown in table 4.1.

w.i( ad/sec) wmi( ad/sec)
2.75 2.75
5.5 2.75

11.0 2.75

Table 4.1 Closed loop system and desired motion bandwidth.

Under perfect parameter information and no disturbance conditions, the

CTM tracks the reference motion perfectly, as expected. The DJC does not com-

pensate for the nonlinear terms, thus even under perfect conditions there will be
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tracking errors. From figures 4.10 a-d, it is clear that tracking errors get smaller as

closed loop control system bandwidth versus desired motion bandwidth ratio gets

larger, (w,,i/w,_i >> 1). This is the effect of high gain feedback control on the sys-

tem performance. High gain feedback reduces the tracking errors and increases the

robustness of the system, but the controller bandwidth must much larger than the

bandwidth of the model being tracked.

The same reference model and controllers are simulated to test the robustness

performance. The control algorithm makes calculations based on a payload value of

zero, rnp = 0.0kg. , while the actual manipulator (model) has rnp = 2.0 kg payload

(payload/robot mass = 25 %). Joint variable responses are shown in Fig.4.11.a-d

and 4.12.a-d. Clearly, the cases of w,,i/w,,,i = 1.0 (relatively fast motion with

respect to controller) are unacceptably bad for both control methods. However, as

the w,,i/w,_i ratio increases (high gain feedback), the system is able to compensate

for the payload uncertainty. Yet, in the steady state, when the speed gets very

low, the effect of nonlinearities becomes negligible and gravity acts as a constant

disturbance due to the payload misinformation, resulting in a finite steady state

error. The steady state error is reduced by higher feedback gains as predicted in

section 4.2. Also, notice that in steady state the CTM and the DJC are equivalent

and have same steady-state error, for accelerations and nonlinearities are negligible.

Finally, the rigid model is simulated with w,_i/wmi = 1.0 with reference

model having 5.Srad/sec natural frequency, in order to see the effect of higher

speeds on robustness performance. The response is not good at all as seen from

figures 4.13.a-d, indicating the need for high gain feedback if conditions are not

perfect. Figures 4.14.a-d show the torque histories corresponding to figures 4.11
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and 4.12.

In model following sense, if a non-adaptive control algorithm is designed to

follow a reference model with a step input command signal, Km _ 0 must be for

robustness. The case of Wni/Wmi = 1 is equivalent to Km= 0 case (see fig. 4.6.a,

sections 4.2.3. and 4.3.1).
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4.4.2. Comparative Control Algorithm Simulations on Rigid and Flexible

Manipulator Model

The CTM and DJC have been simulated on a flexible and a corresponding

rigid manipulator with the following objectives:

1. Compare the performance of the two control algorithms and determine the

effect of arm flexibility on the performance.

2. Quantitatively determine when the rigid model based non-adaptive control

algorithms can be successfully applied to flexible arms without arm flexibility

being a significant factor.

3. Quantitatively determine when arm flexibility becomes important and what

limitations are imposed on the closed loop performance, using nonlinear

model simulations. Furthermore, compare the results with the results of

hnear analysis and see if they agree.

Figures 4.15.a-d show the CTM simulations. As the desired motion speed

increases and the bandwidth of the motion gets closer to the clamped-clamped fre-

quency of the arm, the tracking performanc.e deteriorates [Fig. 4.16 a-c]. Results of

linear analysis for fine motion have predicted (Chapter 3) that a computed torque

type control which uses only joint feedback could achieve closed loop system band-

width up to 1/2 of the lowest frequency of the arm. However, this conclusion is

valid only within the limitations of linear analysis (small, fine motions). When such

controllers are applied to fast, large motions, nonlinear effects further restrict the

performance limits. The motions simulated here are fast with respect to both arm
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flexibility and the nonlinearities. As seen in figures g.9.e-f, at these speeds nonlinear

forces become dominant, thus motions are fast with respect to the nonlinearities.

Since the desired motion bandwidths (a)2.75, b)5.5, c)ll.rad/sec) axe dose to the

arm lowest frequency (11.3grad/sec.) the motions (b,c) are fast with respect to arm

flexibility too. As shown in Fig. 4.15.c-e, when the arm is forced to follow a motion

with bandwidth equal to wool, the performance is unacceptable due to large de-

flections of the arm. When the arm reaches the final position, oscillations continue

(Fig. 3.11) and energy is not being absorbed quickly from the lightly damped flex-

ible modes due to high stiffness of joints. The nonlinear simulations seem to agree

with the rule of thumb given by Book [A20], which says that joint variable feedback

control algorithm should not attempt a closed loop bandwidth of more than 1/4

.-. 1/2 wool, lowest natural frequency of the arm when all joints clamped and links

extended.

If one is also concerned with the deflections along the motions, further re-

strictions must be imposed on the speed to avoid excessive deflections. Damping

ratio of the modes does not indicate reduced deflections, but does indicate relative

stability and rapid damping of residual vibrations. The magnitude of deflections

during gross motion is related to the acceleration profiles and maximum speed of

motion (Fig. 4.11.a-c).

FinaLly, the following question will be discussed: when can the rigid model

based joint variable controllers be used on flexible arms and flexibility would not be a

problem? The answer may depend on the arm kinematic structure and the operating

conditions. Nonetheless, for serial kinematic chain structured manipulators, a closed

loop arm bandwidth of approximately 1/4 of wc_l can be achieved for large motions

. "?
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4.4.3. Gross Motion Control Simulations of Flexible Manipulator Model

The remaining simulations concentrate on the flexible manipulators and com-

pare the performances of the CTM, DJC, and AMFC. First, speed and accuracy

is tested under perfect conditions (perfect information about arm parameters, no

disturbance). The CTM performance is already discussed above in comparison with

rigid model results.

The DJC algorithm is simulated for two cases: (a) desired motion bandwidth

w,,,i = 2.75rad/sec, and closed loop control system bandwidth w,,, = 5.5rad/sec,

and (b) w,,_i = w,_i -:- 5.Srad/sec. Comparing the DJC results of cases (a) and (b),

Fig. 4.17 a-d, it is seen that the high gain feedback character of case(a) results

in better tracking performance compared to case(b). Flexible mode responses axe

shown in figures 4.18.a-b. Notice the scale difference between the figures. While

the general shape of flexible mode magnitudes stays the same, the magnitude of

deflections increases with the speed of motion. Shown in figures 4.19.a-d are the

AMFC simulation results for case (a) and (b), where AMFC is designed to perfectly

match the reference model (Kin = 0 ). This comparison is a little to the advantage

of the CTM, and D3C. For case (a), the bandwidths of the CTM and DJC are

twice the bandwidth of the corresponding reference model, while the bandwidth of

the AMFC is always equal to it. Yet the AMFC performs much better than the

CTM and DJC. Notice the decoupled nature of joint responses under the generalized

inertia matrix based AMFC. The decoupled response was one of the main objectives

of the control algorithm design and was clearly achieved. The use of the generalized

inertia matrix in the adaptation algorithm is the key in accomplishing this success.

Fig.4.19.-a,b show results for two different values of adaptation parameters (slow and
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fast adaptation), as indicated on the figures. Finding the appropriate adaptation

parameters was a simple task for there are only two arbitrary design parameters in

the integral adaptation used here.

When the desired motion speed is increased, the DJC performance deterio-

rates [Fig.4.17.c-d], since it does not cancel nonlinear coriolis and centrifugal forces

explicitly. At high speeds these forces become important (Fig. 4.9.e-f). For the

same motion conditions, the AMFC does not cancel the nonlinear forces explicitly

either, but it adapts its feedback gains as functions of tracking error in order to

accommodate for these nonlinearities as needed. The DJC results in about 20 °

oveshoot in joint 2, whereas the AMFC overshoot is less than 2 ° and the joint

responses are decoupled (compare fig. 4.17.c-d and fig 4.19.c-d).

There is a noticeable difference in the magnitude of flexible mode shape

responses. For relatively slow motionst, flexible assumed mode shape magnitude

responses are similar for all control schemes (Fig. 4.18.a, 4.20.a). However, as the

speed increases, the AMFC results in persistent vibrations at the end of the motion

(Fig. 4.20.a-b). This is explained as follows: when the speed is high, the nonlinear

terms become important. The AMFC automatically increases the feedback gains

based on the adaptation algorithm to compensate for these terms, and eventually

generates high joint feedback gains. This results in very stiff joints and does not

allow the absorption (dampout) of the energy from the flexible beam (Fig. 3.11.g).

In a sense there is a trade off. The AMFC enables higher operation speeds. But if

the motion gets relatively fast with respect to the arm flexibility, the AMFC fails to

deal with end point vibrations due to lightly damped flexible modes. It is important

In this content, relatively slow motion refers with respect to arm flexibility.
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to note that the AMFC can take care of nonlinear effects during fast motions, but

not the end point vibrations. If a desired motion is relatively fast with respect

to nonlinearities, but not fast with respect to the arm flexibility, the AMFC will

perform very well and end point vibration problem will not arise.

The remaining simulations compare the robustness of CTM, DJC, AMFC

with respect to payload variations of 25% (payload/robot mass) ratio. As seen

before_ the only way the non-adaptive CTM, and DJC algorithms could provide

robustness with respect to payload variations was to use high gain feedback. In

order to have some reasonable results, the CTM, and DJC are simulated with

w,_i = 2.75rad/sec, wni = 5.5rad/sec and compared to the AMFC results with

perfect model following objective (Kin = 0.). Shown in figures 4.21 - 4.22. are the

CTM_ and DJC simulation results. Steady state errors vary from 5 ° to 15 ° and large

overshoot in the second joint response are very unsatisfactory. Figures 4.23.a-b show

the AMFC simulation results_ where the decoupled nature of the joint response is

still good. The transient tracking performance is better and overshoot is not as

bad as it is in the CTM, and DJC case. Nonetheless, the performance of AMFC

under 25% payload/robot mass variation is not satisfactory. The main problem

is again the oscillations at the end of motion, which get more severe as the speed

increases. Figures 4.21.c-d, 4.22.c-d, 4.23.c-d show the flexible mode responses for

the associated motions.
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In summary, the non-adaptive, rigid model based CTM and DJC type control

algorithms will give reasonable tracking accuracy for payload variations of 25% if

closed loop control system bandwidth is about 4 time faster than the desired motion

bandwidth (reference model bandwidth with step command signal). The upper limit

for the closed loop bandwidth is set by the arm flexibility to approximately 1/2 of

the first frequency of the arm. Nonlinear effects further restricts that to 1/4 --_ 1/2

of the first frequency of the arm, for motions relatively fast both with respect to

arm flexibility and nonlinearity effects. Therefore, these control algorithms can be

used for desired motions with bandwidth less than 1/8 of the wee1 on flexible arms

having payload variations up to 25% of the manipulator mass.

The AMFC does not have to take such a conservative approach in order to

deal with payload variations, for it can adapt its gains as needed. But the adaptation

of gains during fast motions may result in fine motion oscillations due to high servo

stiffness. Furthermore, due to the central role of the generalized inertia matrix in

the AMFC design used here, joints always have good decoupled responses. Speeds

up to 1/2 of wccl can be attained by the AMFC with comparable accuracy, if there

were a way of dealing with fine motion oscillations. If one wants to take advantage

of the capabilities offered by the AMFC presented here, and yet be able to damp-out

vibrations at the end of motion quickly, a combination of control methods must be

considered: the AMFC algorithm for gross motion, another algorithm to explicitly

deal with the vibrations at the end of the motion. This, Combined Control, is

discussed in the next chapter.
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CHAPTER V

Combined Motion Control

5.1. Introduction

As shown in Chapter IV, the AMFC based on joint variable feedback has im-

proved the tracking performance of flexible manipulators compared to other control

methods over a wide range of payload variations. However, as the desired motion

speed is increased to the point of being relatively fast with respect to arm flexi-

bility, the flexible vibrations persisted at the end of the motion due to high joint

stiffness. In short, The AMFC provided better joint space tracking and robustness

compared to the CTM and DJC, but at the expense, of flexible vibrations at the end

of the motion. A combined control approach, discussed in this chapter, is intended

to overcome the flexible vibrations problem while retaining the advantages of the

AMFC. During gross motion, the AMFC is used to control the manipulator. Before

the manipulator reaches the final state, the control algorithm is switched to fine

motion control, which is designed to deal with joint positio n and flexible vibration

control. The main objective of the fine motion controler is to damp out the residual

flexible vibrations as quickly as possible while positioning the joints at a desired

configuration.

Since the fine motion is about a final desired state (fig. 5.1.), and is slowing

down, a controller using the linear model of manipulator about the final desired
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Fig.5.1 Desired motion in task space

state may be designed. However, the success of such a controller can be expected

within the validity range of the linear model. For instance, if the control is switched

to the fine motion control too early or if speeds at the switching time are too fast,

the linear model used in the design of controller may no longer be an accurate

representation of the manipulator model for the current state. In that case, the fine

motion controller is unlikely to achieve the desired performance.

The question of when to switch from gross motion control to fine motion

control depends on the nature of the task, environment, and the type of the gross

and fine motion control algorithms used. Thus, the decision about the switching

time will be very much case dependent and must be decided by a higher level of the
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In this work, a linear control law is obtained using optimal LQR methods,

and usedfor fine motion control. The main reason for choosingthe optimal LQR

type control is its convenience for design. Direct pole placement or eigenstructure

assignment methods are not used due to the nonuniqueness problem of the solution

for feedback gains [E3,E4,E5,E6,E7]. Other control methods may be used for the

fine motion control as part of combined control strategy. The gross motion control

is studied in chapter IV. Here, fine motion control algorithms will be developed,

and combined control simulations will be studied.

5.2. Fine Motion Control: Optimal Linear Quadratic Regulators

5.2.1. Preliminaries: General Variation of a Functional

Let J[a:l, a:2,..., a:,,] be an integral functional of n-set of independent func-

tions {xl(t),z2(t),...,zn(t)},

/,?J[zl,x2,...,zn] = F(t;zl,z2,...,zn,Jel,_2,...,:_n)dt (5.1)

beginning with a simple case of (5.1),

f?J[zl] = F(t;zl,_l)dt (5.2)

The problem: Find xl(t) from a class of piecewise continuous, bounded functions

such that d[xl] is minimized.

Developed next are the necessary conditions that must be satisfied by zl(t)

for it to be the minimizing solution. These results will be directly used in the design

of the LQR controllers in the following sections.
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Let xl(t) and x;(t.) be two neighboring functions, and h(t)= x_(t) - xl(t) ;

where x_(t) is some small variation of z_(t) and may have different end points

(Fig.5.2). The 6J[xa], the first order functional variation of Y[xl] due to variation

of z,(_), is obtained by expanding J[zT(t)]- J[z_(t)] to Taylor series about the

xa(t) and neglecting the terms containing second and higher orders of h(x) t.

x

i ]l
i j

-¢--

Fig.5.2 General variationof a function

_" Subscript 1 will be dropped for brevity.
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AJ- J[z'(t)]- J[x(t)]

/ /,i,_+6,_ F(t; x + h, _ + h)dt F(t; x, _)dt
d _o-_-6t o

= F(t;x + h, 5:+ h)- F(t;_:, _) dt

f,,+_,, f,o+_,o+ F(t; z, + h, _. + ]_)dt - F(t; x + h, _. + ]_)dt
d Lt .I Lo

(5.3)

Expanding F(t; x 4- h, _ + ]_) to Taylor series about x(t), and neglecting the appro-

priate terms,

AJ __ &J = F.(t;x,Sz)h(t) 4- F_(t;z,_)h(t dt

4- F It_,Stl - F ItoStO

(5.4)

Using integration by parts; ]_(t)dt = dh ;

F_,hdt = F_.dh

= F,h J:: - f_"
Jto

h (d/dt)F_dt

(5.5)

Substituting (5.5) into (5.4);

fta .1
6J = [F.(t; z, _) (d/dt)F_,] h(t)dt

+ F_h[_:+ F6tl:_o
(5.6)

Referring to figure 5.2, the relationship between h(t) and _(t) at the boundaries can

be shown to be as follows,

(5.7)
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and substituting (5.7) into (5.6),

/?6J = [F_ - (d/dt)F_] h(t)dt
(5.s)

Generalizing this development to the variation of a functional with n-

independent variables of the form (5.1);

f,i6J[_,...,_,] - _ [F_, - (e/et)F_,] h,(t)et
i_l

(5.9)

Further generalizing the functional to the case where it includes some terms

outside the integral (i.e. penalizing the boundary values),

fro _tJ= F(t;zl,...,z,_,$l,...,_.,,)dt +61(t;zl,...,z,_)-¢o(t;zl,...,zn)

and the first order variation of this functional results in,

6J[:_1,..., :_,,]= [F_, - (d/d_)F_,] h,(t)dt
i=1

[F$i "_- o_)i,o/OXi] _i[tt: "Jr" F - ( _:iF_i) + 0¢1,o/0t

i=1 • .=

(5.10)

(5.11)

The necessary conditions for the {zl(t),z2(t),...,zn(t)} to be an optimal

solution of the problem, is that the first order variation of the functional about the

optimal (extremum) solution must vanish, gJ = O. Thus, the necessary conditions

for the optimal solution are as follows:

F_, d--F. ..
- dt "' =0 ; for i=l, .,n and tE [_0,tx] (5.12)
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n-set of second order differential equations that must be satisfied by {zl,..., z,,}

simultaneously, and the associated boundary conditions come from the terms out

side the integral in (5.11). For example if the final time is specified, then 5tl = 0,

if not the term in brackets before 5t must be zero. Either way, the problem is

well defined and there are enough boundary conditions to uniquely determine the

optimum solution. Notice that the boundary related terms in the performance

index do not affect the necessary differential equations, but the resultant natural

boundary conditions only.

Optimal control problems are always posed in the following general form,

Find the control vector u(t) minimizing

f?J= L(x,u,t)dt +¢l(tl,z(tl))-¢o(to, x(to)) (5.13)

subject to system dynamics (and possibly boundary conditions);

= f(t; u)

z(to) may be specified if ¢o does not exist in (5.13), and z(ta) may be specified if

¢1 does not exist in (5.13). Using the Lagrange multipliers method, the problem

can be reduced to the form of (5.1). The equivalent F is;

F = + Ar(f - (5.14)

and independent functions are the vector functions z, u, A.

The necessary conditions for the optimal solution are as follows:

c3L )TFz-(d/dt)F_ = 0 _ A =-( )T A -- (_z

O_ O-- OL Of= +A T
Ou Ou

= O..-_ ic = f(t;z,u)

(5.15)
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5.2.2. LQR with Prescribed Degree of Stability

The popularity of LQR's as opposed to any other optimal control formulation

is due to the fact that the resultant solution is a constant linear feedback control law,

which is very desirable for implementation simplicity. In general the solution of a

nonlinear optimal control problem results in a nonlinear time varying control history,

which must be obtained by solving a nonlinear two point boundary value problem.

For a given linear model of manipulator about a region, and a quadratic optimality

criteria, there is a unique constant feedback gain under some some conditions as

discussed below. It is possible to use the results of LQR in gain scheduling form.

One can obtain optimal feedback gain matrices for regions of workspace of the

manipulator, and store them off-line. In real-time control, simply recall these gains

depending on which region of workspace the manipulator is.

Let the linearized dynamics of a flexible manipulator about a given nominal

state, i.e. a final desired configuration, be,

= Az + Bu (5.16)

where z is the small variations of the state from the nominal state about which

linearization is made, and u is the small variation of input from the nominal input.

Find u such that it minimizes the following quadratic performance index,

ffu]= 1/2 + ,,rRu] e2' tdt (5.1Z)

subject to (5.16). A unique solution is guarantied if the following conditions are

satisfied:
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2. ( Q1/2, A ) observable,

3. R = R T > 0, positive definite

4. Q = QT > O, positive semi-definite.

The resultant control law guaranties that all closed loop eigenvalues have real parts

further to the left of -a on the real axis of s-plane.

Following Anderson and Moore[El], let

"_ __ carT, and -i = e°tu (5.18)

The problem (5.16) and (5.17) becomes,

= 1/2 [_'O_ + -i_'R-i]_t

z = (.4 + _I)Z + B_

X

Using the Lagrange multipliers method, the equivalent problem is

J'[5,-i,-A] = 1/2 [sTQ£ + -iTR-i + XT(A_ + B-i- z)] dt

Applying the necessary conditions of optimality,

$-_- (a/dt)F_ = 0 = _ = -fix - O_

$X -(d/dt)F-_ = 0 = -_ = -_ + B_

F-_- (d/at)F_ = 0 = R_ + BrX = 0

(5._9)

(5.20).

(5.21.a)

(5.2_._)

(5.21.c)

Solving (5.21.c) for _ and substituting into (5.21.b) results in the following linear,

two point boundary value problem.

[_] = [_-AQ -BR-_ TBT] [_] (5.22)
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= (5.23)

in (5.22) results in the well known Matrix l_ccati Equation,

+ S-A +-ATs - SBR-1BTs + Q = O. (5.24)

The steady state solution of the Riccati equation is needed for regulator

problems, for tl _ oo then S(t) = 0. Thus from (5.21.c.) and (5.23) and solution

of (5.24) results in the control law,

= -KS

(5.25)
K = R-1BTS

In order to obtain the control law for the original problem, substitute (5.18) into

(5.25),the resultant control law is same as (5.25)

u = -Kz (5.26)

The weighing matrices Q, and R are selected using Bryson's rule as a starting point

[B13], and varied until the good closed loop eigenvalues are obtained. Bryson's

rule suggests to pick Q and R as diagonal matrices, with the following approximate

values:

qii--rnax(1/(x_)); rii--rnax(1/(u_)) (5.27)

where zi,ui maximum acceptable values which may result from the optimally con-

trolled system.

5.2.3. Model Following LQR with prescribed degree of stability
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The standard LQR results in a control law of the form

u = -Kz (5.28)

which tries to drive the current states to the final desired values. The error or

the driving term which multiplies the feedback gains is the difference between the

current state and the final desired state about which the regulation is made. When

the motion control is switched from the gross motion to the fine motion control

algorithm, immediately taking the difference between the current state and the final

desired state may lead to undesirable consequences, such as actuator saturation,

and further excitation of flexible vibrations. To avoid these problems, a control law

following a smooth desired trajectory in both joint and flexible variables may be a

better approach than the regulation approach. This may be accomplished by,

(5.29)

where zm is generated by a reference model chosen by the designer,

km = Amzm (5.30)

where z,n = [8, 5, _, 5]ae,_,-ea. The reference model is driven by the initial condition

which is the difference between the final desired state and the actual state of the

manipulator at the switching time. In a way, the fine motion reference model looks

at the state at the time of switching and the state where the manipulator is supposed

to go, then generates a smooth reference trajectory to go between them.

The implementation (5.29) is no longer an optimal control for the optimality

criteria defined by (5.17). It would be interesting to determine the performance
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difference between the control (5.29), and the optimal model following control of the

form,

u = -K,z - K2_:,n (5.31)

The formulation of the model following LQR with prescribed degree of stability

follows.

Find u, minimizing J,

J = (1/2) f0 °°

Subject tot,

(5.32)

_, = Az + Bu (5.33)

_,_ = A,,_zm (5.34)

Notice that z,n is not one of the independent functions of the problem, and

is completely determined by the initial conditions. So there is no _z,n, and the

variation of J is not a function of _z,n.

Following the same development of the previous section, let 5 = z e _'t, _ =

u e at, 5,,_ = zm e_'t, and using Lagrange multiplier to adjoin (5.33) into the func-

tional, and applying the necess'ary conditions of optimality for z, u, and _,(but not

The problem cannot be solved by augmenting (5.33) and (5.34) for the new dynamics would be

uncontrollable,
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5=), results in the two point boundary value problem as follows:

= -A_ - B R-I BT-_

(5.35)
= _Q5_ _T_ + Qsm

where the coupling to these equations from _mis governed by (5.34). Thus, we have

a two point boundary value problem composed of (5.35) and (5.34).

The solution can be obtained by letting

A = $1_ + $25,,_

and substituting into the (5.35). After some algebraic manipulation, the following

equations axe obtained as optimality conditions by requiring the coefficients of 5

and ¥,n to go to zero.

_'1 + SIA "Jr--'AT s1 - S1BR-1BT S1 + Q) z = O.

(S=+&-A,,,+ATs2-S1BR-'BrS2 Q) zm =0

(5.36.a)

For the steady-state solution, let -_1 and $2 ---* 0 and the resultant equations are

algebraic Riccati equation and Lyapunov equation.

SIA -_---AT s1 - S1BR-1BT S1 + Q = 0

S2"Am "b (---_T _ S1BR_IBT)s2 _ Q = O.
(5.36.b)

Notice that the $1 of this problem is the same as the S of the standard LQR problem.

Thus the standard LQR is a special case of the model following LQR.



Finally, the control law is as follows:

u - -R-1BT._

"- -R-1BT(Slx ÷ S2z,.n)

= -Klx - K2x,._

where,
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(5.37)
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5.3. Combined Control Simulations

The gross motion phase of the combined control is performed by the AMFC,

discussed in Chapter IV. In the following simulations, the AMFC for gross motion

and the LQR's for fine motion are studied in the frame work of combined control

strategy.

The fine motion controller (LQR) is simulated for four different cases:

1. Regulator implementation: u = -Kz ; z = [0 - Of, 6 - 6f, _, 5]

a) 6f = 0.0 (5.3s.a)

b) 61 = 6,ratio (5.3S.b)

2. Model following implementation: 51 = 5,t,,tic

_) _ = -x(_ - _) (5.3s.c)

b) u = -Klz - K2z,_ (5.38.d)

The difference between the Case 1.a and 1.b may be important in large

scale manipulators with large payloads, such as the one at Georgia Tech's Flexible

Automation Laboratory. For a manipulator of that type, trying to stabilize the

vibrations about the static equilibrium point is a more sound approach than trying

to straighten art already deflected arm. For robustness simulations, the LQR prob-

lem is solved for two different payload cases: mp= O.Okg. and mp = 2.0kg., and

applied to the manipulator model with different payloads. The ((Q, R, a), (A, B)
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elements of LQR formulation and the corresponding optimal feedback gains, with

the resultant closed loop eigenvalues, are tabulated in Appendix D.

Discussed first are the simulations of the combined control under perfect

conditions. Figures 5.3.a-b show the results of combined control tracking a desired

motion (Fig.5.7.a-b), of bandwidth w,_i = 5.Srad/sec. The gross motion phase is

controlled by the same AMFC used in Chapter IV (Fig.4.19.c-d). The fine motion

phase is controUed by the LQR (5.38.c) implementation, for three different values

of the prescrilsed degree of stability, a = 0.0, 2.0, and 5.0 . Fig.5.3.a-b, and

Fig.5.5.a-c, show that the combined control has very good performance. The joint

vaxiable tracking and flexible vibration stabilization are very well accomplished. No

residual vibrations at the end of motion exists, while keeping the advantages of

adaptive control in gross motion (Compare these figures with Fig.4.17.c-d, 4.19.c-d,

and Fig.4.18.b, Fig.4.20.b).

Shown in Fig.5.4 are the results of combined control where LQR is imple-

mented in four different forms, (5.38.a,b,c,d), with the same gains of the previous

simulation (Fig.5.3), for a = 5.0 ease. The objective is to determine the perfor-

mance difference between the implementations of LQR. First of all, the (5.38.d)
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case was in almost all cases indistinguishable from the (5.38.b) case. If the feedback

gains axe examined (Appendix D), it is found that the gain K2 is very small com-

pared to Ka. Therefore, it is not surprising that standard regulator and optimal

model following regulator implementations have almost identical results. After all,

optimality with respect to some scalar criteria does not necessarily imply good time

domain performance. Furthermore, there is not a significant difference between the

(5.38.a) and (5.38.b) implementations of the fine motion controller. However, this

largely depends on the manipulator parameters and payloads involved in the task,

and would not be true in general. Finally, regulator implementation gives a faster

response in the joint variables (Fig. 5.4.), but results in larger flexible mode deflec-

tions during the initial period of switching to fine motion, compared to the model

following implementation (compare figures 5.6.a-b, and 5.5.¢).

The rest of the simulations test the robustness of the combined control with

respect to payload variations. The fine motion control is simulated for the (5.38.b)

and (5.38.c) cases only. For the same desired motion, the manipulator model has

a 2.0 kg payload. The AMFC makes calculations based on mv = O.Okg., and

LQR gains are calculated for rnv = 2.0kg. Figures 5.8.a-b show that the resultant

performance is not satisfactory. It was thought that if the switch to the fine motion

controller were made earlier so that it would have more time to position the arm and

stabilize the vibrations, the resultant performance might get better. Unfortunately,

figures 5.9.a-b show that switching earlier does not help improve the performance

at all. Why is the fine motion control performance is poor despite the good closed

loop eigenvalue locations? The answer may be found in the assumptions made

during the development of this particular fine motion controller. For the linear
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controller to be successful, the assumptions associated with it must be accurate

enough. For example, the controller should be used in the vicinity of nominal

state about which it is designed for, and the speeds should be low enough for the

linear analysis to be accurate. Therefore, if the speeds before switching to linear fine

motion controller are too high, then the performance will be poor as seen here. This

explanation is further supported by the following simulations. The same controller

is simulated for foUowing a desired motion of bandwidth w,,1 = 2.75rad/sec. The

only difference is the desired motion speed, and of course AMFC is matching with

the corresponding slower reference model. Fig.5.10 shows the results. Now it is

clear that when the speed before the switching time is slow enough, the fine motion

controller wiU succeed_ and the combined control will result in good performance.

Fig.ll shows the case where the manipulator has no payload, but LQR designed for

mp = 2.0kg. payload. The results are still good. Fle:dble mode responses along the

associated motions are given in figures 5.12 - 5.14. When the figures 5.12.a and b,

and Fig.5.13.a and b, are compared, we see that regulator implementation results

in much larger deflections than the model following implementation_ confirming the

discussion of Section 5.2.3.
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There are a number of issues that must be addressed before final conclusions

made. First, the stability of the closed loop system under partial state feedback

during fine motion phase must be studied. Second, the joint velocity response shows

very sharp changes at the switching time (Fig.5.3.c-d). The practical implications

of this result and if it would still happen under more realistic conditions must be

determined.

Every flexible manipulator is an infinite dimensional dynamic system. Any

finite dimensional state feedback is in fact a partial state feedback controller. A

finite dimensional controller is designed based on an approximate finite dimensional

model, and applied to an actual system which has more states that the controller

design model has ignored. The actual measurements in the real world implementa-

tions will be have components from the dynamics truncated by the design model.

This is so called observation spill-over. Moreover, the controller which is designed

to control a finite number of states will affect the uncontrolled modes as well. This

is called control spill-over effect [A18]. It is found that the closed loop system is

always stable if only the joint variable feedback is used. However, if some of the

flexible modes are also used in the feedback in addition to the joint variables, the

closed loop system is conditionally stable. These results are obtained through the

closed loop eigenvalue analysis of the system under partial state-feedback laws ob-

tained from 1QR formulation. For the manipulator model used in the simulations,

a linear controller that uses joint variables and first flexible modes of each link (no

feedback from second flexible mode shape coordinates of link 1 and 2) is simulated

in the fine motion phase. Fig.5.15 show the response of the system. The partial
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state feedback gain and the resultant closed loop eigenvalues are given on the figure.

Despite the conditional stability of the partial state feedback control, it is possible

to achive good closed loop response.

Regarding the second problem, it is suggested that the joint velocity dis-

continuity occurs because of not having any rotary inertia at the joints. When a

step change in the input torque occurs at the switching time due to control law

change, the base of the arm immidiately reacts to that and cause the jump in the

velocity reponse. If this explanation is true, the veclocity response (Fig. 5.3.c-d)

should become smoother when realistic joint inertias are added to the joints. Joint

inertia properties are determined from the commercially available moving-coil, per-

manent magnet, D.C. motors. Motor selection is made based on the maximum

torque needed for the range of motions simulated for the manipulator model. A

gear ratio of 100:1 is assumed for each joint. Using the results of Sangveraphunsiri,

[E9 (Appendix C)], appropriate D.C. motors can be selcted from the Electrocraft

E-series. Based on the manifacturer's data, the selected motors has the following

effective inertial proporties at the joints (effective mass moment of inertia = mass

moment of inertia of the motor x (gear ratio squared)):

rnjl - 15.kg, jjl = 2.0kg.rn

rnj2 - 4.0kg., jj_ = 0.2kg.rn

The nonlinear model is again linearized about the final desired state for the new

parameters, the optimal control feedback gains are obtained using the LQR for-

mulation. Fig.5.16 shows the response of the system with the new more reaiistic

parameters. As seen from fig. 5.16.c-d, the velocity response no longer has step

change. It can be shown that the torque step change magnitude shown in Fig. 5.16

is indeed large enough to cause such a response in the joint velocity response.
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5.4. Summary of Results

The combined control has shown enough evidence of being a good strategy

for high speed, high precision, robust motion control of flexible manipulators. The

speed of motion just before switching to fine motion control is critical in the success

of linear fine motion controllers. The model following regulator gives better results

than the standard regulator.

The combined control strategy improves the performance of flexible arms

over that other methods studied. It should be noted that fine motion control is not

limited to linear controllers, and other methods should be studied to increase the ro-

bustness with respect to payload uncertainty as well as the state of the manipulator

before the switching time.
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CHAPTER VI

Conclusions and Recommendations for Future Work

6.1. Conclusions

Understanding the fundamental characteristic of the dynamics of a given

system is essential in developing a control system which will make the _ystem do

what we want it to do. Therefore, it is important to develop methods which will

provide dynamic models with desired accuracy and convenience. Along this line,

a general symbolic modeling algorithm is developed for flexible manipulators. The

algorithm is based on the Lagrange-assumed modes method. It can handle any de-

gree of freedom manipulator with serial kinematic structure. Using a commercially

available symbolic manipulation software package (SMP), the algorithm is success-

fully applied to a number of case studies, including the models used in this work.

The contribution of this modeling algorithm can be summarized as follows:

1. It is convenient, fast, accurate and free of possible human error during long

• and tedious algebraic manipulations.

2. It handles a manipulator with any number of degrees of freedom.

3. It results in scalar explicit symbolic equations of motion. Thus, further

insight of the dynamics of the system can be gained. The equations are very

suitable for real-time parallel computation of the control.
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4. Mode shapes of the flexible structures can be kept as parameters at the

modeling level and varied at the analysis or control level.

The closed loop dynamics of flexible manipulators under joint variable feed-

back is examined using linear analysis tools. The results from a finite dimensional

assumed modes model are compared with the results from infinite dimensional trans-

fer matrix models. Both models agree in predicting the limitations of joint variable

feedback control due to arm flexibility. However, the comparative analysis also

raised new questions besides improving the current understanding. The results

indicate that finite dimensional models lose accuracy in predicting the dynamic be-

havior of higher modes under even moderate feedback gain conditions. It is believed

that any finite dimensional model results have a smaller range of accuracy than the

model order anticipates. The question of how large the system order should be in

order to guarantee a prescribed accuracy for a given range has not been answered.

Furthermore, under feedback control, some closed loop eigenvalues of finite dimen-

sional model go toward -o_ very quickly, resulting in a numerically stiff system

of differential equations. Efficient numerical methods to study "these stiff systems

should be developed. In fact, there are already existing numerical methods specifi-

cally developed for stiff systems, but they are not efficient enough for the problems

faced in this work. Furthermore, the emphasis of these methods is to accurately

solve the problem for all frequencies, such as in plasma dynamics. But in flexi-

ble structures, it is more desirable to be able to eliminate the very high frequency

modes. These modes are very high frequency, well damped, and of little practical

interest. A nonlinear model reduction approach is more desirable in robotics and

large flexible structure studies.
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The motion control problem of flexible manipulators consistsof the tracking

control in joint space and vibration control of the structural elements. In the study

of control algorithm development for flexible manipulators which will provide robost,

high speed, and high precision motions_ the following path is taken:

1. The performance and the limitations of rigid model based motion control

algorithms are determined when applied to flexible arms.

2. In an attempt to improve the performance, an AMFC design procedure is

developed. Performance improvements and the limitations are determined.

3. Finally, a combined control strategy is presented as a natural way of obtain-

ing flexible manipulator control. The combination of AMFC gross motion

and LQR fine motion control is studied.

In summary, non-adaptive schemes must be used in slow motions relative to

the closed loop system bandwidth if large payload variations are anticipated. The

only way these schemes can provide robustness with respect to parameter variations

is to have high (w,_i/w_i) ratio. The upper limit for w,_i is determined by the

arm flexibility,(w,_i _< wool). The robustness requirements further forces the non-

adaptive algorithms to take conservative measures, resulting in low performance,

low speed lightweight arms. The main objective of the lightweight arms in this work

was to achieve higher speeds of operation. Thus, more advanced control schemes

must be developed.

An AMFC based on hyperstability is developed where the generalized inertia

matrix plays a central role in the design. It relaxes some of the restrictive assump-
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tions made by previous AMFC design procedures, such that the use of AMFC

techniquesin high speedmanipulation becomespossible. It simplifies the general

designand parameter selectionproblem very significantly. The number of arbitrary

designparameters that must be determined by the designeris only two no matter

what the degreeof freedomof the manipulator is. Previous methods had to deal

with finding the appropriatevaluesfor two (mxm) matrices for anequivalentdesign.

Due to the central role of the generalized inertia matrix in the method, decoupled

joint response is preserved for almost all cases studied. The method can be readily

applied to rigid manipulators as well as flexible manipulators. As far as the per-

formance of this control on flexible manipulators is concerned, the performance is

dramatically improved over the CTM, and DJC methods. Yet, the AMFC also has

performance limitations due to arm flexibility. The AMFC does not have to take

a conservative measure to provide robustness with respect to parameter variations

in advance for it can modify its feedback gains as needed. However, if the speed of

motion gets high with respect to arm flexibility, the AMFC results in very stiff joint

control, and this causes persistent flexible vibrations at the end of the motion.

If one desires to keep the advantages of the AMFC and yet be able to deal

with end point vibrations, a combined gross and fine motion strategy may be con-

sidered. In the combined control strategy, the same AMFC is used for gross motion

control, and before the motion ends where AMFC can not cope with flexible vibra-

tions, control algorithm is switched to one which deals with joint positioning and

vibration control (fine motion control).

Studies conducted on a combined control, composed of AMFC for gross mo-

tion, and LQR for fine motion, indicate that limited success in improving the perfor-
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mance can be achieved. The performance of fine motion controller (LQR) strongly

depends on the state of the manipulator at the switching time. If the manipula-

tor speed is low enough at switching time, the results are very good. However, if

the speed at switching time is high for any reason, then the LQR performs poorly.

Changing the switching time does not help to improve the performance. Further

studies should be conducted on fine motion control algorithms which are robust

with respect to manipulator state uncertainty at the switching time.

6.2. Recommendations for Future Work

1. The symbolic modeling algorithm developed in this work should be ex-

tended to handle more complicated multi-body dynamic systems, including dosed

loop kinematic structures as well as serial structures. The flexible body dynamics

should be extended to include longitudinal vibrations in addition to the bending

and torsional vibrations considered currently. The currently available finite element

packages or the DSAP [A30] package may be utilized as a tool which will provide ac-

curate mode shapes for the resultant symbolic equations of motion obtained. Such

work would provide a general purpose tool which is effective and accurate in "dy-

namic modeling and analysis of flexible multi-body systems. User interface to such

a tool should be through state of the art computer graphics.

2. Closed loop dynamics of infinite dimensional systems, such as flexible

manipulators, and large space structures, under partial state feedback need to be

further studied. It is clear from the discussion of Chapter III, that there are unan-

swered questions about the closed loop dynamics. The key question in this area,

in the author's opinion, is the following: how many modes should be included in
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the model (what should be the order of the system) in order to guaranteea certain

degreeof accuracyfor a given rangeof frequencies?It is believedthat useof infi-

nite dimensional linear models, like DSAP, and finite dimensional assumed modes

models together will be an effective approach to answer this question.

3. On the robust, high speed, high precision motion control aspects, the

following directions should be taken: .

a) Fine motion control algorithms that are robust with respect to manipu-

lator state uncertainty at the switching time, as well as with respect to parameter

variations, should be further studied. Experiments should be conducted with exam-

pie cases to provide feedback to the design and analysis of the of the control system

design from the real world experience, and demonstrate pilot cases of working im-

plementations. Improving the fine motion controller performance has more priority

than further improving the AMFC performance in gross motion.

b) Dynamic parameter identification of flexible manipulators in real-time

would give a new dimension to the design of adaptive control algorithms. This

study would involve the following steps: i) development of analytical algorithms for

parameter identification that can be implemented in real-time, ii) modifying the ex-

isting adaptive control algorithms to utilize the available information, coming from

the identification scheme, iii) selecting the appropriate combination of sensors to

provide the necessary information for steps. (i) and (ii), (iv) putting all of the deci-

sion and calculation algorithms, sensors, computers, and the manipulator together

to work.
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APPENDIX A

Flexible Manipulator Arm Parameters:

Material dependent properties (Alimunum)

pi = 2768.kg/m 3

Ei = 7.OzlOl°Nt/m z

Geometric properties:

li = 2.0m

rl = 18.052mm

r2 = 9.792mm

/" = 7.6190z10-Sm 4

A = 7.224z10-4m 2

pAi = 2.0kg/m

mi = 4.0kg.

Lowest frequency when both both joints are clamped and link 2 is at extended

position:

Chapter 3 analysis parameters:

EI = 533.333Nt.m 2

wcca = 3.59rad./sec
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Chapter 4 and 5 simulation parameters:

EI = 5333.33Nt.m:

wccl = ll.34rad/sec

mp, jp

• m2 A_

\,_

.m._j=_rnl

ml _

Ill

Fig.A.1 The flexible arm paramters and geometric dimensions
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APPENDIX B

On the Solution of Az = b

The solution of linear algebraic equations has many applications in control

theory, such as controllability, observability, and model matching. Erzberger's linear

perfect model following conditions are in fact the statements of the existence of a

unique solution for an equation of the form

A_i_ _ b °

Let A E Rm'",z E R", and b E R" .

1. If Rank(A) = Rank(A, b) ==_ b E Range(A), then there exists at least one exact

solution.

i. rn = n =_ there is one unique exact solution , z = A-lb.

ii. m < n which means Range(A, b)<Dim(z), thus null space of A, Null(A) _-

0 _ there exist infinitely many solutions, all of which satisfies the equation exactly,

so they are all exact solutions. Among th'em the solution with minimum norm is

obtained by ;

Az-b, Let z =ATz_ z = AT(A AT)-lb

Note that if A is of full rank (row rank in this case) (AAT) -1 exists. If A is

not full row rank, yet Rank(A) = Rank(A, b), the above statement is still true, but
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2. Rank(A) < Rank(A, b) =_ there is no exact solution. But approximate solutions

can be found. The z ,for which

{_ :11e I1=11A_ - b II i_ minimi=edL

is given by

z = (ATA)-IATb

Again if A is not full column rank direct inversion in this equation will not

be possible, yet an equivalent inversion using singular value decomposition (SVD)

can be obtained, which will result in an approximate solution with minimum norm.

If a generalized inverse of A is defined as

A_f = AT(AAT) -1 = (ATA)-IAT ;

which either exists or found through SVD,

z = Atb

is the solution with minimum norm error. If b E Range(A) solution reduces to the

exact solution with minimum norm.
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APPENDIX C

Stability

The stability of a control system is alwaysthe fundamental requirement. In what

follows, the concept of stability is clarified as its usedin this work. First, stability

in the senseof Lyapunov, then Hyperstability is discussed.

C.1. Lyapunov Stability

Consider a free, unforced dynamic system,

= f(z, t) z _ R",-oo < t < oo (c-1)

Let x = ¢(t;xo,to) be such that,

Xo = ¢(to;xo, to) (C - 2)

_b(t;zo, to) = f[¢(t;zo,to),t] (C- 3)

Also let z_ be such that f(x_,t) = 0 for.all time, t. Then x, is said to be an

equilibrium state, Zo initial state, to initial time. Different types of stability of a

dynamic system about such an equilibrium point are defined as follows.

Definitions: An equilibrium state z_ of (C - 1) is said to be:

1. Stable if V e > 0 ; S 3(e, to) > 0 such that

II=o- =. II< 6(,,t) _ II¢(t; _o, to)- _)II <-, v t _>to



2. Asymptotically stable if
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II¢(t; =o,to) - _:. II_ 0. a_ t --

for xo being sufficiently close to z,.

3. Globally asymptotically stable, if the sufficiently close condition from (2.) is

removed. That is, Vxo in the space of (C-l),

II¢(t; =o,to)- =. I1_ o a, t _ o_, Wo z R"

4. Stable in large, If Zo E R1 where R1 is a region of R n and

II ¢(t;Zo, to) - ze H _ 0 (a restricted form of global asymptotic stability).

5. Uniformly stable if the the conditions stated above are independent of to.

6(,,to) I 4
_(t°)_ _ _ > o

///]llllll it({

V i111111 #llll

\\lxl\ \l \\

Fig.C.1 The different definitions of stability.

time 4oo
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In general, a control system should be globally ( or at least at large) asymp-

totically stable. The question which follows this statemet is the following: under

what conditions an equilibrium state of a dynamic system is globally asymptoti-

cally stable (GAS). Lyapunov's second method gives sufficient conditions (but not

neccessary) that must be satisfied by the dynamic system and its equilibrium point.

Lyapunov Theorem:

Consider _ = f(z,t) and f(O,t) = 0 ==v z_ = 0 is equilibrium state. If 3V(z,t)

with continuous partial derivatives with respect to z and t, and has the following

properties:

1. V(0,t)=0 ;for-oo<t<oo

2. V(z,t) > O Vz # O. ; z E R" , -oo < t < oo

3. v(_,t) _ oo _ tl• II----*_ , -oo < t < oo

4.?(x,t) dV(z,t)/dt <0, Vx # O , x E R"= , --OO < t < OO

then ze = 0 is globally asymptotically stable (GAS) !

Remarks:

1. If V(x, t) = V(x), not function of t, then z¢ is uniformly GAS.

2. For linear time invariant (LTI) dynamic systems,

= Az (ze = O)

V(x) = xTpx

where, P is such that

ArP + PA. = -Q



for Q = QT > (>) O, and P = pT

(asymptotically) globally stable.

> O, then xe
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= 0 is uniformly

3. From adaptive control point of view, an adaptation algorithm is choosen

based on Lyapunov so that a trail V(x,t) is a Lyapunov function t for the

dynamic system and the equilibrium state. The problem in design is that the

correlation between the choice of Lyapunov function and the resultant control

system performance (transient, steady state etc.) is not well understood yet.

C.2. Hyperstability and Positivity Concepts

Hyperstability is a different way of looking at the stability of a dynamic system.

Lyapunov stability is concerned with the stability of a given dynamic sytem about

an equilibrium state, or with the design of a specific feedback control so that the

system is stable about the equilibrium state. Whereas, hyperstability is concerned

with finding a condition (or design) so that system is stable for a class of controls,

not a specific control.

Consider the figure (C.2), where FFB is linear time invariant (LTI) block, and

feedback block (FBB) can be nonlinear, time varying. The question of absolute

stability: what conditions the FFB must satisfy such that for all FBB e (A}, the

closed loop system is globally asymptotically stable, where

{A}={vTw>_0 ; i=l,...,m}.

Popov further generalizes this question as follows: Hyperstability: what conditions

should FFB must satisfy that for all FBB E {P} the closed loop system is GAS,

t Any function satisfying Lyapunov theorem conditions is said to be a Lyapunov function.
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where :t

ft_ 1
{p } = { > , vt_ >to}

Definition: The asymptotic hyperstability of a closed loop system means that the

system is globally asymptotically stable about an equilibrium state for any choice

of FBB form {P} class.

The answer to the hyperstabihty questions is as follows:

Theorem: For the CLS to be (asymptotically) hyperstable, the neccessary and suf-

ficient condition is LTI FFB has a transfer function H(s) which is (strictly) positve

real.

Lemma (Kalman - Yakubovich - Popov): Consider the linear time invariant FFB

description,

{H(s)=C(sI-A)-_B}.

If H(s)is (strictly) positive real, then 3P = pT > 0 and Q = QT > (>)0 such that

ATp + PA = -Q

BTp = C

Thus, for a given :_ = Az + Bu , the design problem is to pick an output filter C

according to KYP lemma, so that the resultant transfer function is (strictly) positive

real. After that step, any controller design which results in the FBB E {P}, will

guarantee the global (asymptotic) stability of the closed loop system.

:_ This inequality is called Popov Integral Inequality (PII).
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The last question remains in the design of hyperstable closed loop systems is what

form FBB in general can be so that they belong to Popov class, {P}. Consider the

standard problem of hyperstabillty, Flg.C.2, where v and w are of same dimension.

Popov class is defined as the class of blocks stisfying the following:

jftf 1
PII : vTwdt >_ --7 2 ,

where w(t) is of the following general form,

Vtl __to

w(t) = ¢_(v,t, _-)dt + ¢_(v,t) + Ao _:(t)

w(t),v(t),z(t) are.of appropriate dimensions and piecewise continuous, bounded

functions.

What is the most general form of ¢l(v,t,r),¢2(v,t) so that PII is satisfied ( Ao is

constant).

£emma:(Sufficient, but not necessary)

The following choices satisfy the PII.

¢l(v,t,_) = F_(t -¢)v(_)[Vl_(_-)] r

¢2(v,t) = F2(t)v(t) [G2(t)z(t)] T

where, Fl(v, t, "r) is a positive definite square matrix kernel whose Laplace transform

is any positive real transfer matrix with a pole at s = O. G1 is any positive definite,

and F2(t), G2(t) are positive semi-definite matrices. The design of an adaptation

algorithm based on hyperstabihty results in a class of possible choices, all of which

guarentees closed loop stability.
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At this point, it is appropriate to clarify the concept of positive realness. In the

time domain positive realnessof a block meansthat for zeroinitial conditions, the

integral inner product of input and output of the block is always greater than or

equal to zero for every non-negativetime interval.

_i _ >__ , tl >_ to
uTvdt 0

In the frequency domain, a positive real transfer matrix function implies that,

1. no poles in the open fight hand plane of the s-plane,

2. if any poles exists on the imaginary axis, they are all distinct and

the associated residue matrix is semi-definite and hermitian (H(s) =

HT(s *) ),

3. H(jw) + HT(--jw) >_ 0 (hermitian) for all w on the imaginary axis t.

FFB

V
Y

W

FBB

Fig.C.2 The standard Hyperstability problem.

t Until that point in this appendix the W corresponds to the output of the nonlinear feedback

block of the hyperstability problem (Fig. C.1), at this point it is used to represent the frequency.
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APPENDIX D

Linear Analysis Results

D.1. Linear Dynamic Model of the Flexible Manipulator

Case 1: (A,B)I, mp= 0.0kg,

Nominal states about which nonlinear model is llnearized:

t 00 +00 00 +00 .05235988
0.0E+00 0.0E+00 0.0E+00 0.0E+00

0.0E+00 0.0E+00

0.OE+00 0.OE+O0 ]

Nominal input torque associated with the nominal state: [unl, Un2]nomi,al "=

[-2o.312114 lO.156o6]

Open loop (A, B) matrices of _ = Az + Bu ,

A Matrix:

A21 :

0.0000000E+00 17473.75 98975.87

0.0000000E+00 -404257.8 -2310347.

0.0000000E+00 -58825.56 -381927.3

0.0000000E+00 -1708.117 -6447.686

0.0000000E+00 34090.71 128674.4

0.0000000E+00 10975.57 41438.56



0.0000000E+00 -5451.436 -53251.81

0.0000000E+00 34090.71 431060.4

0.0000000E+00 3276.280 41438.53

0.0000000E+00

0.0000000E+00

0.0000000E+00

25873.62

-530607.8

-78429.96
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45363.5

-30803

-550128.1

A22 :

-0.1042042 7.6982E--02 6.9475F_,-02 -3.9321E-02 0.5261E-03 -4.5332E-03

2.079921 -1.781017 -1.622109 0.7848701 0.1502073 9.0468E-02

0.6693771 -0.2591318 -0.2678026 0.2525833 4.83595E-02 2.91345E-02

0.5104299 -2.3983E-02 -3.6998E-02 0.1550875 0.1140019 0.1022017

-7.632691 0.1496994 0.2969413 -2.144678 -2.337914 -2.165688

-0.7339036 1.4386795E-02 2.8545320E-02 -0.2062152 -0.3455708 -0.3867823

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

-11.87735

264.5824

65.80717

66.89980

-1255.762

-179.6363

B Matrix:

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E÷00

0.0000000E+00

36.77985

-848.0787

-122.3117

-11.87735

82.90250

7.967876
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Case 2: (A,B)2, mp = O.Okg,

Nominal states about which nonlinear model is linearized:

el, dl, 811,812, d2,821,822] =611, 82, 622,

[ 1.832596 -5.6964F-.-02 9.769448F._-03 °0.5235968

0.00E+00 0.00E÷00 0.00E÷00 0.00E+00

-6.8726F_,-02 -9.6981E-04

0.00E+00 0.00E+00 ]

Nominal input torque associated with the nominal state: [unl, Un_]no,ninal =

[-19.64318 10.49558 ]

Open loop (A, B) matrices of _ = Az + Bu ,

A21 :

0.000000E+00 17741.11 101449.1 0.0000000E+00 -2254.782 -8296.033

0.0000000E+00 -409920.3 -2365059. 0.0000000E÷00 47178.12 173912.4

0.0000000E+00 -60218.50 -392476.9 0.0000000E÷00 12311.10 44965.71

0.0000000E_00 -6341.523 -57325.80 0.00D0000E+00 25239.96 141912.7

0.0000000E+00 47177.84 483511.0 0.0000000E+00 -518024.0 -3017565.

0.0000000E+00 4428.112 44965.74 0.0000000E+00 -76832.90 -542554.8

A22 :

-7.3911F__02 0.101931 5.11517E-02 -3.4491E-02 -1.3046E-02 -6.1107E-03

1.382051 -2.355229 -1.194921 0.6726303 0.2729599 0.1281001

0.567287 -0.346012 -0.202339 0.236764 7.1229E-02 3.3121E-02

0.5118743 -3.6428E-02 .3.0617E-02 0.15955 0.146032 0.i0453



-7.82996 0.27087

-0.7698207 2.5424E-02

0.25966 -2.267262 -2.997148 -2.222672

2.4131E-02 -0.2254684 -0.444534 -0.39960

B Matrix:

O.O000000E+O0 O.O000000E+O0

O.O000000E+O0 O.O000000E+O0

0.0000000E+00 0.0000000E+00

0.0000000E+00 0.0000000E+00

0.0000000E+00 0.0000000E+00

0.0000000E+00 0.0000000E+00

37.38747 -13.70555

-861.0564 307.7827

-125.3681 70.84167

-13.70555 65.53455

109.4341 -1225.002

10.25202 -175.3719
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Case 3: (A,B)3, mp = 2.0kg,

Nominal states about which nonlinear model is linearized:

[81,611,_12,82,_21,622,81,_n,_12,82,_n,_n]

[ 1.832596 -0.1548394 1.9869E-02 -0.52359 -0.156499 1.2656E-03

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ]

Nominal input torque associated with the nominal state: [u.1 , U,',2],_omi.at =



[-20.31215 20.31211 ]

Open loop (A,B) matrices of _=Ax+Bu,

A21 :

0.0000000E+00 17830.72 102753.6

0.0000000E+00 -411487.6 -2396300.

0.0000000E+00 -61013.98 -395644.7

0.0000000E+00 -7212.480 -56072.48

0.0000000E+00 60447.67 452571.8

0.0000000E+00 5093.288 35855.86

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

-2727.851

60447.67

11523.27

20009.76

-424433.7

-58319.66

-8940.832

200036.9

35855.89

102456.1

-2290482.

-362312.8

A22 :

-4.4828E-02 -1.4591E-03 -1.7601E-02 -3.5321E-02 0.00E+00 -6.5856E-03

0.632382 3.3570E-02 0.4049409 0.63152 0.00E+00 0.1473439

0.54864 4.9257E-03 5.9416E-02 0.2991546 0.00E+00 2.6411E-02

0.6145965 5.9152E-04 7.1353E-03 0.2482 0.00E+00 7.5467E-02

-9.618283 -5.1357E-03 -6.19502E-02 -3.726573 0.00E+00 -1.687119

-0.906185 -4.28596E-04 -5,169976E-03 -0.3638627 0.00E+00 -0.2668718

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00
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B Matrix:

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00

0.0000000E+00



37.61354 -15.24901

-865.4055 350.0543

-126.9802 69.29288

-15.24901 51.37159

132.3949 -971.1640

11.04884 -126.6125
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D.2. LQR Feedback Gains and the Resultant Closed Loop Eigenvalues

(Q,R,a_) , ((A,B)i,Am)

Given optimality criteria Linear Model

(K,,K2) {A_}

Feedback gains Closed loop eigenvalues

The following optimal linear feedback control gains are used in the fine motion

control phase ofsimulations corresponding to figures 5.3 through 5.7.

R = I in all cases.

Q = Diag(lO 2, 10 ° , 10 2 , 10 2 , 10 ° , 102), (102 , 10 °, 102 , 10 2 , 10 ° , 10 2

(A,B)_(A, Bh

a_=0, 2, 5

u = -Klx - K2xm
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K1 and K2 are both 2x12 feedback gain matrices. In what follows, the first

two rows correspond to the first row , and the last two rows correspond to the

second row of the K1 and K2 as indicated.

gl •

0.99844E+01. -0.11203E+02 -0.58244E+03 0.55913E+00 .0.95506E÷02 -0.12884E÷03

0.29889E+02 -0.14505E+00 -0.32870E+01 0.64080E+01 0.21608E+00 -0.96800E÷00

-0.55913E+00 0.19023E÷02 -0.64017E+03 0.99844E+01 -0.11596E÷03 -0.14800E+04

0.41799E-{-01 -0.50843F_,-01 0.20078E+01 0.12915E+02 -0.10957E+01 -0.13219E+01

K2:

0.15532E_01

-0.42822E÷00 0.24442E-01 -0.76887E-01 0.72653E÷00

-0.17405E÷01 0.28552E-01 -0.64086E÷00 0.59376E÷01

0.$6535E+00

0.74038E-01 -0.20939E+00 -0.12258E÷01 0.59041E-02 0.25306E-01

0.25634E-02 0.78150E-02

0.48162E-01 -0.30685E-01

0.89737E-02 -0.18333E+00 -0.30625E÷01 0.13646E-01 -0.83492E-02

)_c-"

-0.35413E+00 j0.31667E+00

-0.35413E÷00 -j0.31667E÷00



-0.10116E+01

-0.67083E+01

-0.32848E+02

-0.32848E+02

-0.66526E+02

-0.66526E÷02

-0.50691E+03

-0.68696E-t--03

-0:68696E÷03

-0.19880E+04

j0.00000E-4-00

-j0.21767E-_6

j0.14659E+03

-j0.14659E+03

j0.20038E+03

-j0.20038E+03

j0.22811E-14

j0.57072E+03

-j0.57072E+03

j0.00OOOE÷OO
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K1 •

0.67043E+03 0.74818E+01 -0.68444E+03 0.19657E+03 -0.96831E+02 -0.I1809E÷03

0.33681E+03 0.16604E÷02 -0.33736E+02 0.I0084E+03 0.40991E+01 0.29192E+00

0.14647E+03 0.26422E+02 -0.66724E+03 0.I0402E+03 -0.13272E÷03 -0.15131E÷04

0.78308E+02 0.42082E+01 -0.74657E+01 0.45008E÷02 0.23537E_-00 -0.85650E+00

K2"

-0.26736E+01 0,15073E-01 -0.50139E-01 0.46618E÷01 0.17756E-02 0.46477E-02

-0.68231E+00 0.29634E-02 -0.98827E-02 0.I1543E+01 0.35114E-03 0.91165E-03

0.59339E+01 0.55430E-02 -0.11103E-_00 -0.19895E+02 0.82313E-02 -0.50201E-02

0.14810E+01 0.I0900E-02 -0.21735E-01 -0.49749E+01 0.16105E-02 -0.97983E-03

_c:

-0.40078E+01 j0.58756E-01



-0.40078E+01

-0.42413E÷01

-0.90133E+01

-0.34920E+02

.0.34920E÷02

-0.68554E+02

-0.68554E÷02

-0.50891E+03

-0.68896E-I-03

-0.68896E÷03

-0.19900E+04

-j0.58756E-01

j0.00000E+00

-j0.96798F_,-18

j0.14658E+03

-j0.14658E÷03

j0.20039E+03

-j0.20039E+03

j0.21246F_,-13

j0.57072E÷03

-j0.57072E+03

j0.00000E+00
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O_ "-- 5.

g I:

0.42446E+04 0.17245E+03 -0.I0887E+04 0.12871E÷04 -0.66526E+02 -0.89261E+02

0.86872E+03 0.45648E+02 -0.86641E_02 0.26492E+03 0.10853E+02 0.24424E-_01

0.93372E+03 0.69391E+02 -0.77322E+03 0.50370E÷03 -0.15211E+03 -0.15551E+04

0.20230E+03 0.I1395E+02 -0.23912E+02 0.I0123E÷03 0.25878E+01 -0.13918E+00

K2 ;

-0.12754E+02 0.21291E-I-00 -0.72657Eq-00 0.17249E+02 0,26729E-01 0.64561E-01

-0.15449E+01 0.31225E-01 -0.10722E+00 0.19440E+01 0.39764E-02 0.94163E-02

0.26557E-+-02 0.73712E-01 -0.16154E+01 -0.91314E+02 0.12104E-+-00 -0.76983E-01

0.30669E+01 0,10781E-01 -0,23410E+00 -0.10653E+02 0.17525E-01 -0.11097E-01

_c :



-0. I0004E+02

-0.I0004E+02

-0.10101E+02

-0.13435E+02

-0.38299E+02

-0.38299E+02

-0.71705E+02

-0.71705E+02

-0.51196E+03

-0.69198E+03

-0.69198E+03

-0.19930E+04

j0.28840E-01

-j0.28840E-01

j0.00000E+00

-j0.12620E-17

oj0.14657E+03

j0.14657E+03

j0.20042E+03

-j0.20042E+03

j0.18565E-14

-j0.57073E+03

j0.57073E+03

j0.00000E+00
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(A, B) ---, (A, B)2 , mp = O.Okg.

___= 0.0

g 1 :

0.99853E+01 -0.11267E+02 -0.58202E+03 0.54177E+00 -0.94808E+02 -0.12837E+03

0.29930E+02 -0.14328E+00 -0.32549E+01 0.64109E+01 0.23002E+00 -0.89693E+00

-0.54177E+00 0.18342E+02 -0.65766E+03 0.99853E+01 -0.11832E+03 -0.15026E+04

0.42534E+01 -0.50947E-01 0.20612E+01 0.12930E+02 -0.10855E+01 -0.13056E+01

g 2:

0.15515E+01 0.73957E-01 -0.20890E+00 -0.12376E+01 0.58376E-02 0.25411E-01

-0.43085E+00 0.24423E-01 -0.76819E-01 0.73500E+00 0.25486E-02 0.78415E-02
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-0.17388E+01 0.28973E-01 -0.64196E+00 0.59217E_01 0.48234E-01 -0.31028E-01

0.86811E+00 0.91001E-02 -0.18367E-r00 -0.30695E+01 0.13667E-01 -0.84410E-02

_c."

-0.35334E+00

-0.35334E+00

-0.I0115E+01

-0.67353E+01

-0.32499E÷02

-0.32499E+02

-0.68756E-{-02

-0.68756E+02

-0.50965E+03

-0.69911E+03

-0.69911E+03

-0.19766E+04

j0.31611E+00

-j0.31611E+00

j0.00000E+00

-j0.19075E-16

-j0.14704E+03

j0.14704E+03

j0.20140E+03

-j0.20140E÷03

-j0.44274E-14

-j0.S5610E+03

j0.S5610E+03

j0.14211E-13

a__ = 2.0

K] :

0.67043E+03 0.74818E+01 -0.68444E+03 0.19657E÷03 -0.96831E+02 -0.11809E+03

0.33681E÷03 0.16604Et02 -0.33853E+02 0.I0132E+03 0.41306E+01 0.36491E+00

0.14860E+03 0.25790E+02 -0.68467E+03 0.I0467E+03 -0.13501E+03 -0.15351E+04

0.79394E+02 0.42683E+01 -0.75171E+01 0.45339E+02 0.26016E+00 -0.84068E+00

K 2."

-0.26877E+01 0.15060E-01 -0.50103E-01 0.47158E+01 0.17672E-02 0.46633E-02
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-0.68568E-+-00 0.29609E-02 -0.98759F_,-02 0.I1677E÷01 0.34953E-03 0.91469F_,-03

0.59490E-+-01 0.56194E-02 -0.11121E+00 -0.19920E-+-02 0.82412E-02 -0.50725E-02

0.14845E_01 0.11049F_,-02 -0.21770E-01 -0.49805E+01 0.16124E-02 -0.99011E-03

-0.40078E+01

-0.40078E÷01

-0.42412E+01

-0.90392E+01

-0.34572E+02

-0.34572E+02

-0.70783E+02

-0.70783E+02

-0.51166E÷03

-0.70111E÷03

-0.70111E+03

-0.19786E+04

a= 5.0

g 1 :

oj0.58538E-01

j0.58538E-01

j0.00000E+00

-j0.54009E-18

j0.14704E+03

-j0.14704E÷03

j0.20141E+03

-j0.20141E÷03

-j0.29231E-13

j0.55610E÷03

-j0.55610E-+-03

j0.00000E÷00

0.42591E+04 0.17328E+03 -0.10883E÷04 0.12932E-+-04 -0.64980E÷02 -0.86588E÷02

0.87170E+03 0.45836E+01 -0.87007E+02 0.26620E+03 0.10913E+02 0.25190E+01

0.94751E-+-03 0.69329E÷02 -0.79118E+03 0.50793E÷03 -0.15413E+03 -0.15762E+04

0.20520E÷03 0.11563E+02 -0.24151E÷02 0.10212E÷03 0.26384E-+-01 -0.12398E+00

/_'2 :
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-0.12805E+02 0.21275E+00 -0.72596E+00 0.17474E+02 0.26601E-01 0.64764E-01

-0.15505E+01 0.31202E-01 -0.I0714E+00 0.19694E+01 0.39584E-02 0.94450E-02

0.26597E+02 0.74855E-01 -0.16176E+01 -0.91358E-P02 0.12115E+00 -0.77733E-01

0.30705E+01 0.10947E-01 -0.23441E+00 -0.I0655E+02 0.17542E,-01 -0.11205E-01

_c "

-0.I0004E+02

-0.I0004E+02

-0.I0101E+02

-0.13458E+02

-0.37954E+02

-0.37954E+02

-0.73930E-P02

-0.73930E+02

-0.51470E÷03

-0.70413E+03

-0.70413E+03

-0.19816E-F04

j0.28755E-01

-j0.28755E-01

j0.00000E+00

j0.12591E-17

j0.147O2E+03

-j0.14702E+03

j0.20144E-F03

-j0.20144E+03

j0.46668E-14

-j0.556UE+03

j0.55611E+03

j0.28422E-13

The following optimal linear feedback gains are used in fine motion phase of simu-

lations corresponding to figures 5.8 through 5.11.

R=I

Q = Diag{(lO 2,10°,I02,102 ,I0°,I02),(104,I0°,102 ,104,10°,102)}



(A,B)--+(A,B)3 , ,mp = 2.0kg
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__=5

KI :

0.78158E+04 0.27172E+03

0.16552E+04 0.87491E+02

0.29814E+04 0.15708E+03

0.67244E+03 0.39473E+02

-0.10001E+02

-0.10001E+02

-0.I0357E+02

-0.35364E+02

-0.35364E+02

-0.11771E+03

-0.30442E+02

-0.30442E+02

-0.I0201E+03

-0A0201E+03

-0.27917E+04

-0.63314E+04

-0.17787E+04

-0.18308E+03

-0.52124E+03

-0.93164E+02

j0.57962E-06

-j0.57962E-06

j0.83468E-21

j0.32729E+02

-j0.32729E+02

-j0.11391E-13

-j0.15537E+03

j0.15537E+03

-j0.34038E+03

j0.34038E+03

-j0.88306E-14

oj0.53803E-14

0.26444E+04

0.60471E+03

0.23448E+04

0.41593E+03

0.87105E+01

0.28022E+02

-0.93971E+02

O.143O9E+O2

-0.28412E+03

-0.14880E+02

-0.12331E+04

-0.72004E+01

Same formulation, except the weighting matrix Q is as follows:



Q=Diag{(102,10°,102,102,10°,102),(104,101,103,104,10_,103)}
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K1 •

0.80388E+04 0.15699E-_-03 -0.54263E-t-04 0.27468E+04 -0.36324E+03 -0.11956E+04

0.17349E-t-04 0.89812E+02 -0.19396E÷03 0.63669E÷03 0.29608E÷02 -0.19627E÷02

0.28961E-t-04 0.17644E÷03 -0.18421E-t-04 0.23416E÷04 -0.46986E+03 -0.60577E÷04

0.66524E+03 0.39293E_-02 -0.93051E-F02 0.42134EH-03 0.12619E+02 -0.87445E+01

-0.10001E+02

-0.10001E+02

-0.10357E+02

-0.34115E+02

-0.34115E+02

-0.90743E÷02

-0.43792E+02

-0.43792E+02

-0.14756EH-03

-0.14756E+03

-0.43867E+04

-0.88560E÷04

j0.56407F_,-06

-j0.56407E-06

j0.72527E-21

-j0.30279EH-02

j0.30279E÷02

-j0._035E-_4

-j0.14460EH-03

j0.14460E_-03

-j0.27070E-F03

j0.27070E÷03

j0.22985E-13

-j0.16685E-14
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