Office of Aeronautics and Space Technology

INFORMATION SCIENCES AND HUMAN FACTORS DIVISION

PROGRAM OVERVIEW

Presentation to

AIAA/OAST SPACE TECHNOLOGY CONFERENCE

Lee B. Holcomb
Director
September 13, 1988
GOALS

1. EVOLVING SPACE TELEROBOTICS CAPABILITY
2. EVOLVING AUTOMATED SPACE SYSTEMS CAPABILITY
3. NASA-UNIQUE SPACE SENSING CONCEPTS
4. EFFICIENT ACQUISITION, PROCESSING, DISTRIBUTION AND ANALYSIS OF SPACE-DERIVED DATA
5. EFFECTIVE UTILIZATION OF HUMANS-IN-SPACE
6. ADVANCED SPACE COMMUNICATIONS CAPABILITY
7. CONTROL OF COMPLEX/Flexible SPACE SYSTEMS
8. RELIABLE AND ADAPTIVE GUIDANCE, NAVIGATION AND CONTROL OF ADVANCED TRANSPORTATION VEHICLES
DISCIPLINARY CROSSWALK

O.A.S.T.

<table>
<thead>
<tr>
<th>R&T BASE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPACE DATA & COMM. R&T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOFTWARE ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADV. DATA CONCEPTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMUNICATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFORMATION SCIENCES R&T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPUTER SCIENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENSORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHOTONICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROLS & GUIDANCE R&T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL TECHNOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUIDANCE CONCEPTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPUTATIONAL CONTROLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUMAN FACTORS R&T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREWSTATION DESIGN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTRAVEHICULAR ACTIVITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CSTI

AUTOMATION & ROBOTICS								
ROBOTICS								
AUTONOMOUS SYSTEMS								
INFORMATION TECHNOLOGY								
SCIENCE SENSOR TECHNOLOGY								
DATA: HIGH RATE/CAPACITY								

PATHFINDER

EXPLORATION TECHNOLOGY								
PLANETARY ROVER								
OPTICAL COMMUNICATIONS								
OPERATIONS TECHNOLOGY								
AUTOMATED RENDEZ. & DOCKING								
HUMANS-IN-SPACE								
EXTRAVEHICULAR ACTIVITY/SUIT								
HUMAN PERFORMANCE								
TRANSFER VEHICLE TECHNOLOGY								
AUTONOMOUS LANDER								
FAULT-TOL. SYS. (PHOTONICS)								
LONG RANGE GOAL:
TO PROVIDE AND VALIDATE THE BASIC TECHNOLOGY TO ACHIEVE SUCCESSIVELY HIGHER LEVELS OF AUTONOMY IN SPACE OPERATIONS

THRUSTS:
- SYSTEMS AUTONOMY DEMONSTRATIONS
- ARTIFICIAL INTELLIGENCE
- SYSTEM ARCHITECTURE AND INTEGRATION

FY 88 ACCOMPLISHMENTS:
- SHUTTLE INTEGRATED COMMUNICATIONS OFFICER REAL-TIME EXPERT SYSTEM
- SPACE STATION THERMAL CONTROL EXPERT SYSTEM EVALUATED ON BRASSBOARD
- INITIAL PLANNING FOR COMBINED SPACE STATION THERMAL AND POWER SYSTEMS
- MACHINE LEARNING APPLIED TO ANALYSIS OF INFRARED ASTRONOMY DATA

FY 89 PROGRAM FOCUS
- SPACE STATION SYSTEM AUTONOMY DEMONSTRATIONS
- REAL-TIME EXPERT SYSTEM CONTROL OF SHUTTLE LAUNCH PROCESSING SYSTEMS
- HUBBLE SPACE TELESCOPE DESIGN/ENGINEERING KNOWLEDGE CAPTURE

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th>Year</th>
<th>Automated Control of Thermal Station</th>
<th>General LPS Controller Software</th>
<th>Automated Control of Thermal & Power Station</th>
<th>Hierarchical Control of Human Station Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>90</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>91</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>92</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>93</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
</tbody>
</table>

STS-26 INCO
VOYAGER ENCOUNTER
UPLINK/DOWNLINK DATA AUTOMATION
TELEROBOTICS

LONG RANGE GOAL:
TO PROVIDE AND VALIDATE THE BASIC TECHNOLOGY TO ACHIEVE SUCCESSFULLY HIGHER LEVELS OF SPACE ROBOTIC CAPABILITY

THRUSTS:
- TELEROBOTIC DEMONSTRATIONS
- SENSING AND PERCEPTION
- PLANNING AND REASONING
- CONTROL EXECUTION
- OPERATOR INTERFACE

FY 88 ACCOMPLISHMENTS:
- EASE STRUCTURE ASSEMBLY BY BAT
- FORCE CONTROL OF MULTI ARM MANIPULATOR
- TELEROBOTIC INTERACTIVE PLANNING SYSTEM
- AUTOMATED VISION-BASED SATELLITE GRAPPLING
- TELEROBOTIC INTELLIGENT INTERFACE FLIGHT EXPERIMENT

FY 89 PROGRAM FOCUS
- SHARED HUMAN/AUTOMATION CONTROL TELEROBOTIC DEMONSTRATION
- SUPPORT OF SATELLITE SERVICING CAPABILITY
- INITIATION OF NEW APPLICATIONS DEMOS: SHUTTLE RMS AND UMBILICAL
- INITIATION OF PLANETARY ROVER
- CONTINUED CORE TECHNOLOGY

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th>TRADED TELEROBOTIC CONTROL</th>
<th>CMU WALKER</th>
<th>MOBILE TELEROBOTIC SERVICING</th>
<th>SPACE EVAL. OF FORCE REFLECTING CONTROLLER</th>
<th>PLANETARY ROVER DEMONSTRATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
</tr>
</tbody>
</table>
LONG RANGE GOAL:
TO PROVIDE SPACE QUALIFIABLE TECHNOLOGY FOR THE EFFECTIVE AND EFFICIENT
DETECTION OF ELECTROMAGNETIC RADIATION FROM THE MILLIMETER TO THE
GAMMA-RAY WAVELENGTH REGION

THRUSTS:
- DETECTOR SENSORS
- SUBMMW SENSORS
- LIDAR SENSORS
- COOLER SYSTEMS
- SOLID STATE TECHNOLOGY (INCLUDING PHOTONICS)

FY 88 ACCOMPLISHMENTS:
- EXCELLENT LOW-BACKGROUND IR ARRAY PERFORMANCE
- HELIUM-3 COOLER (0.25°K) FOR ROCKET-BORNE IR EXPERIMENTS
- DIODE-PUMPED Nd:YAG SPACE LASER FOR RANGING AND ALTIMETRY
- IMAGING X-RAY AND COSMIC RAY SPECTROMETERS
- SUBMILLIMETER OSCILLATORS DEMONSTRATED AT
- SOLID-STATE LASER DESIGN DATA BASE

FY89 PROGRAM FOCUS:
- SOLID-STATE LASER TECHNOLOGY
- LONG-LIFE, STABLE 10-JOULE-PER-PULSE (CO2) SPACE LASER FOR LASER
 ATMOSPHERIC WIND SOUNDER
- HUBBLE SPACE TELESCOPE DESIGN/ENG'G KNOWLEDGE CAPTURE
- COMPONENTS FOR 600-3000 GHZ SUB-mm SENSORS
- INCOHERENT DETECTORS FOR IR, UV, X-RAY & COSMIC RAY SENSORS

LONG RANGE MILESTONES:
LONG RANGE GOAL:
TO PROVIDE GUIDELINES, METHODS AND TECHNOLOGY TO ASSURE THE SAFE AND EFFECTIVE UTILIZATION OF HUMANS IN SPACE

THRUSTS:
- HUMAN PERFORMANCE
- HUMAN/INTELLIGENT SYSTEM INTERFACE
- SENSORY AND INFORMATION FUSION
- EVA SYSTEMS

FY 88 ACCOMPLISHMENTS:
- ADVANCED HARD SPACE SUIT STRENGTH/MOTION TESTING IN WETF
- VIRTUAL WORKSTATION
- EVA HELMET MOUNTED DISPLAY PROTOTYPE
- HUMAN INTERFACE TO THERMAL EXPERT SYSTEM
- PYRAMID IMAGE CODES DEVELOPED FOR HUMAN DISPLAY INTERFACES AND FOR ROBUST COMPUTER VISION

FY89 PROGRAM FOCUS:
- STUDY OF HUMAN FACTORS IMPLICATION IN NASA'S OPERATIONAL EXPERIENCE
- EVALUATION OF HARD SUIT AND GLOVES FOR EVA
- EVALUATION OF VIRTUAL WORKSTATION FOR TELEROBOTIC CONTROL AND "EXPLORATION" OF PLANETARY SURFACES
- INITIATION OF SURFACE SUIT AND HUMAN PERFORMANCE ELEMENTS OF PATHFINDER

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPLETE REVISION OF STD-3000</td>
<td>HIGH PRESSURE EVA GLOVE</td>
<td>PHYS. & COGN. HUMAN PERF. DATA BASE</td>
<td>SURFACE SUIT COMPONENTS</td>
<td></td>
</tr>
<tr>
<td>COMPLETE AX-5 WETF EVALUATION</td>
<td>SURFACE SUIT REQUIREMENTS</td>
<td>ERROR-TOLERANT HUMAN OPERATION INTERFACES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPACE COMMUNICATIONS

LONG RANGE GOAL:
DEVELOP DEVICES, COMPONENTS & ANALYTICAL METHODS TO SUPPORT THE COMM. RQMTS. OF NASA'S FUTURE NEAR-EARTH, DEEP-SPACE & SPACE STATION MISSIONS

THRUSTS:
- HIGH EFFICIENCY TUBES
- SOLID STATE DEVICES
- LARGE ANTENNAS
- OPTICAL COMMUNICATIONS

FY 88 ACCOMPLISHMENTS:
- Ka-BAND MMIC POWER AMPLIFIER FOR DEEP SPACE MISSIONS
- SPACE ANTENNA DISTORTION COMPENSATION BY ADAPTIVE ELECTRONIC FEED
- HIGH-EFFICIENCY DEEP SPACE OPTICAL COMMUNICATIONS LASER
- PHASED-ARRAY SEMICONDUCTOR LASER
- NEAR-EARTH LASER TRANSMITTER AND RECEIVER
- HIGH-EFFICIENCY X-BAND TWT FOR MARS OBSERVER

FY89 PROGRAM FOCUS:
- HIGH-FREQUENCY, HIGH-EFFICIENCY TWTS
- COMPENSATION FOR FLEXIBLE SPACE ANTENNAS
- HIGH-DATA-RATE EARTH ORBIT AND PLANETARY
- SPACE LASER COMMUNICATIONS
- HIGH-EFFICIENCY MMIC TECHNOLOGY FOR PLANETARY COMMUNICATIONS

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASED ARRAY COMPENSATION ANTENNA DEMONSTRATION</td>
<td>0.5-W KA BANDPOWER AMPLIFIER FOR PLANETARY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFIND SPACE LASER COMM FOR FLIGHT EXPERIMENT</td>
<td>2-W ND:YAG LASER TRANSMITTER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 GHZ, 5-W SOLID STATE LASER TRANSMITTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPACE DATA SYSTEMS

LONG RANGE GOAL:
TO PROVIDE AGENCY FOUNDATION IN FUNDAMENTAL AEROSPACE COMPUTER SCIENCE TO ENABLE EFFICIENT AND EFFECTIVE ACQUISITION, PROCESSING, DISTRIBUTION AND ANALYSIS OF SPACE-DERIVED INFORMATION

THRUSTS:
- CONCURRENT PROCESSING
- INFORMATION MANAGEMENT
- ADVANCED ATA CONCEPTS
- ON-BOARD PROCESSING TECHNIQUES
- HIGH PERFORMANCE STORAGE TECHNOLOGY

FY 88 ACCOMPLISHMENTS:
- ESTABLISHMENT OF CENTER OF EXCELLENCE IN SPACE DATA AND INFORMATION SCIENCES AT THE UNIVERSITY OF MARYLAND AND GSFC
- DEMONSTRATED REVERSIBLE, VAR. STRENGTH ELECTRONIC "NEURAL NETWORK" DEVICE
- DEVELOPED HARDWARE SIMULATOR OF SPARSE DISTRIBUTED NETWORK
- COMPLETED DESIGN FOR REAL-TIME FOCAL PLANE PROCESSOR FOR HIGH RESOLUTION IMAGING SPECTROMETER
- DEMONSTRATED FEASIBILITY OF OPTICAL NEED, LASER DIODES AND MEDIA FOR TERABIT ERASIBLE OPTICAL DISK RECORDER

FY 89 PROGRAM FOCUS:
- NEURAL NETWORK RESEARCH
- ON-BOARD PROCESSING SYSTEMS
- MODULAR TERABIT OPTICAL DISK BRASSBOARD
- PLAN HIGH PERFORMANCE COMPUTING INITIATIVE (HPCI)

LONG RANGE MILESTONES:
TRANSPORTATION VEHICLE
GUIDANCE AND CONTROL

LONG RANGE GOAL:
TO PROVIDE COST EFFECTIVE, RELIABLE AVIONICS FOR ADVANCED EARTH-TO-ORBIT
TRANSFER AND PLANETARY VEHICLES

THRUSTS:
- FAULT TOLERANT PROCESSING
- SOFTWARE ENGINEERING
- ADAPTIVE G, N. AND C CONCEPTS
- SENSORS AND ACTUATORS

FY 88 ACCOMPLISHMENTS:
- ADVANCED 8-COMPONENT FIBER OPTIC GYRO BREADBOARD
- INCREASED "QUIET TIME" FOR AFE
- LANDING ANALYSIS FOR MARS SAMPLE RETURN MISSION
- IMPACT OF ADA ON FLIGHT CONTROL
- EVALUATION OF AIPS FAULT-TOLERANT PROCESSOR
- EMPirical COMPARISON OF FAULT TOLERANCE AND FAULT ELIMINATION

FY89 PROGRAM FOCUS:
- VALIDATION OF AIPS OPERATING SOFTWARE
- AUTOMATED RENDEZVOUS AND DOCKING, PATHFINDER
- ADAPTIVE LANDING, PATHFINDER
- SOFTWARE ENGINEERING FOR COMPLEX RELIABLE SYSTEMS

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th>COMPLETE EVALUATION</th>
<th>VALIDATE AIPS ARCHITECTURE/</th>
<th>COMPLETE PLANETARY HAZARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>OF AFE GUIDANCE</td>
<td>OPERATING SYSTEM</td>
<td>DETECTION & AVOIDANCE</td>
</tr>
<tr>
<td>ALGORITHMS</td>
<td></td>
<td>TECHNOLOGIES</td>
</tr>
<tr>
<td>89</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>▼</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
</tbody>
</table>

- EVALUATE CURRENT NASA SOFTWARE DEVELOPMENT ENVIRONMENTS
- AUTONOMOUS PLANETARY RENDEZVOUS AND DOCKING REQUIREMENTS
- PROTOTYPE SOFTWARE DEVELOPMENT TOOLS FOR COMPLEX RELIABLE SYSTEMS
SPACECRAFT CONTROL

LONG RANGE GOAL:
TO PROVIDE THE CONTROL ALGORITHMS, COMPUTATIONAL METHODS, AND SYSTEMS MODELS TO ENABLE THE CONTROL OF COMPLEX/FLEXIBLE SPACE SYSTEMS

THRUSTS:
- COMPUTATIONAL CONTROL
- ADVANCED CONTROL
- CONTROL OF FLEXIBLE STRUCTURES
- CONTROL OF LARGE APERATURE SEGMENTED OPTICS/INTERFEROMETERS

FY 89 ACCOMPLISHMENTS
- CONTROL TECHNIQUES EVALUATED ON ADVANCED CONTROL EVALUATION FOR STRUCTURES (ACES)-1 TEST ARTICLE
- NON-LINEAR, MULTI-BODY COMPUTER ANALYSIS TOOL ENHANCEMENTS
- COMPUTATIONALLY EFFICIENT CONTROL TECHNIQUES EVALUATED ON SPACECRAFT
- CONTROL LABORATORY EXPERIMENT (SCOLE)
- LQG CONTROL FOR THE MINI-MAST EXPERIMENT
- COMPLETED DESIGN FOR 3-D SHAPES BREADBOARD AND DETAILED PERFORMANCE CHARACTERIZATION

FY 89 PROGRAM FOCUS
- CONTROL OF FLEXIBLE STRUCTURES; LARGE ANTENNAS AND PLATFORMS
- CONTROL OF PRECISION OPTICAL SYSTEMS
- COMPUTATIONAL METHODS FOR MULTI-BODY CONTROL

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th>YEAR</th>
<th>SHAPES 3-D DEMO</th>
<th>UPGRADE 4TH GENERATION CONTROL TOOLS</th>
<th>ADAPTIVE CONTROL FOR FLEXIBLE STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INFORMATION SCIENCES AND HUMAN FACTORS DIVISION
MAJOR PROGRAM DIRECTIONS IN SPACE

GENERAL
- INCREASE UNIVERSITY RESEARCH BLOCK GRANTS
- INCREASE PROGRAM OFFICE AND INDUSTRY INVOLVEMENT IN CSTI AND PATHFINDER ELEMENTS
- EXPLOIT OPPORTUNITIES OF PHOTONICS AND HIGH-TEMPERATURE SUPERCONDUCTIVITY
- INCREASE EMPHASIS ON SPACE FLIGHT EXPERIMENTS

EVOLVING SPACE ROBOTIC CAPABILITY:
- MAINTAIN LONG-TERM TECHNOLOGY BASE
- TRANSFER INITIAL DEMONSTRATION RESULTS/CAPABILITY TO FTS AND SATELLITE SERVICING CONCEPTS
- INCREASED EMPHASIS ON APPLICATIONS DEMONSTRATIONS AND TECHNOLOGY FLIGHT EXPERIMENTS
- INITIATE PLANETARY ROVER PROGRAM

INTELLIGENT SYSTEMS RESEARCH:
- MAINTAIN NATIONAL REPUTATION IN ARTIFICIAL INTELLIGENCE RESEARCH
- PERFORM EFFECTIVE GROUND-BASED DEMONSTRATIONS FOR SPACE STATION, SHUTTLE AND SCIENCE MISSIONS
- INITIATE RESEARCH TO MERGE INTELLIGENT SYSTEMS WITH EXPLORATION VEHICLES
INFORMATION SCIENCES AND HUMAN FACTORS DIVISION
MAJOR PROGRAM DIRECTIONS IN SPACE

NASA-UNIQUE SPACE SENSING CONCEPTS:
- ADDRESS NASA-UNIQUE DETECTOR REQUIREMENTS IN CSTI SCIENCE SENSORS PROGRAM
 - LOW-BACKGROUND INFRARED DETECTORS
 - SUBMILLIMETER SENSORS
 - ACTIVE LASER SENSING
- INITIATE NEW THRUST IN SCIENCE SENSORS AND OPTICS FOR GLOBAL CHANGE

ADVANCED SPACE COMMUNICATIONS CAPABILITY:
- CONTINUE TWT, SOLID STATE MMIC DEVICE AND ANTENNA RESEARCH
- INCREASE SUPPORT TO NEAR-EARTH AND PLANETARY OPTICAL COMMUNICATIONS

EFFICIENT ACQUISITION, PROCESSING, DISTRIBUTION AND ANALYSIS OF SPACE DERIVED DATA:
- MAINTAIN STRONG COMPUTER SCIENCE PROGRAM IN COST-EFFECTIVE SOFTWARE, CONCURRENT PROCESSING AND INFORMATION MANAGEMENT
- IMPLEMENT CSTI HIGH-RATE/CAPACITY DATA PROGRAM
- INITIATE NEW INITIATIVE IN HIGH PERFORMANCE COMPUTING
INFORMATION SCIENCES AND HUMAN FACTORS DIVISION

MAJOR PROGRAM DIRECTIONS IN SPACE

EFFECTIVE UTILIZATION OF HUMANS IN SPACE:
- FOCUS ON HUMAN-INTELLIGENT SYSTEM INTERFACE, SENSOR AND INFORMATION FUSION, AND EVA SYSTEMS
- INITIATE PATHFINDER EXTRAVEHICULAR ACTIVITY/SUIT AND HUMAN PERFORMANCE PROGRAM ELEMENTS

CONTROL OF COMPLEX/FLEXIBLE SPACE SYSTEMS:
- SUPPORT CONTROL STRUCTURES INTERACTION RESEARCH
- INITIATE RESEARCH FOR CONTROL OF PRECISION OPTICS
- INITIATE COMPUTATIONAL CONTROLS RESEARCH PROGRAM

GUIDANCE, NAVIGATION AND CONTROL TECHNOLOGY FOR TRANSPORTATION VEHICLES:
- SUPPORT REAL-TIME FAULT TOLERANT CONTROL ARCHITECTURE RESEARCH
- ADVOCATE FAULT TOLERANT FLIGHT SYSTEMS INITIATIVE
- IMPLEMENT NEW THRUST IN SOFTWARE ENGINEERING FOR COMPLEX RELIABLE SYSTEMS
- INITIATE PATHFINDER AUTONOMOUS LANDER AND AUTONOMOUS RENDEZVOUS AND DOCKING PROGRAM ELEMENTS