Office of Aeronautics and Space Technology

INFORMATION SCIENCES AND HUMAN FACTORS DIVISION

PROGRAM OVERVIEW

Presentation to

AIAA/OAST SPACE TECHNOLOGY CONFERENCE

Lee B. Holcomb
Director
September 13, 1988
GOALS

1. EVOLVING SPACE TELEROBOTICS CAPABILITY
2. EVOLVING AUTOMATED SPACE SYSTEMS CAPABILITY
3. NASA-UNIQUE SPACE SENSING CONCEPTS
4. EFFICIENT ACQUISITION, PROCESSING, DISTRIBUTION AND ANALYSIS OF SPACE-DERIVED DATA
5. EFFECTIVE UTILIZATION OF HUMANS-IN-SPACE
6. ADVANCED SPACE COMMUNICATIONS CAPABILITY
7. CONTROL OF COMPLEX/FLEXIBLE SPACE SYSTEMS
8. RELIABLE AND ADAPTIVE GUIDANCE, NAVIGATION AND CONTROL OF ADVANCED TRANSPORTATION VEHICLES
DISCIPLINARY CROSSWALK

R&T BASE

<table>
<thead>
<tr>
<th>Space Data & Comm. R&T</th>
<th>GOAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Engineering</td>
<td></td>
</tr>
<tr>
<td>Adv. Data Concepts</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Information Sciences R&T</td>
<td></td>
</tr>
<tr>
<td>Computer Sciences</td>
<td></td>
</tr>
<tr>
<td>Sensors</td>
<td></td>
</tr>
<tr>
<td>Photonics</td>
<td></td>
</tr>
<tr>
<td>Controls & Guidance R&T</td>
<td></td>
</tr>
<tr>
<td>Control Technology</td>
<td></td>
</tr>
<tr>
<td>Guidance Concepts</td>
<td></td>
</tr>
<tr>
<td>Computational Controls</td>
<td></td>
</tr>
<tr>
<td>Human Factors R&T</td>
<td></td>
</tr>
<tr>
<td>Crewstation Design</td>
<td></td>
</tr>
<tr>
<td>Extravehicular Activity</td>
<td></td>
</tr>
</tbody>
</table>

CSTI

<table>
<thead>
<tr>
<th>Automation & Robotics</th>
<th>GOAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotics</td>
<td></td>
</tr>
<tr>
<td>Autonomous Systems</td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td></td>
</tr>
<tr>
<td>Science Sensor Technology</td>
<td></td>
</tr>
<tr>
<td>Data: High Rate/Capacity</td>
<td></td>
</tr>
</tbody>
</table>

PATHFINDER

<table>
<thead>
<tr>
<th>Exploration Technology</th>
<th>GOAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planetary Rover</td>
<td></td>
</tr>
<tr>
<td>Optical Communications</td>
<td></td>
</tr>
<tr>
<td>Operations Technology</td>
<td></td>
</tr>
<tr>
<td>Automated Rendez. & Docking</td>
<td></td>
</tr>
<tr>
<td>Humans-in-Space</td>
<td></td>
</tr>
<tr>
<td>Extravehicular Activity/Suit</td>
<td></td>
</tr>
<tr>
<td>Human Performance</td>
<td></td>
</tr>
<tr>
<td>Transfer Vehicle Technology</td>
<td></td>
</tr>
<tr>
<td>Autonomous Lander</td>
<td></td>
</tr>
<tr>
<td>Fault-Tol. Sys. (Photonics)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GOAL</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LONG RANGE GOAL:
TO PROVIDE AND VALIDATE THE BASIC TECHNOLOGY TO ACHIEVE SUCCESSIVELY HIGHER LEVELS OF AUTONOMY IN SPACE OPERATIONS

THRUSTS:
- SYSTEMS AUTONOMY DEMONSTRATIONS
- ARTIFICIAL INTELLIGENCE
- SYSTEM ARCHITECTURE AND INTEGRATION

FY 88 ACCOMPLISHMENTS:
- SHUTTLE INTEGRATED COMMUNICATIONS OFFICER REAL-TIME EXPERT SYSTEM
- SPACE STATION THERMAL CONTROL EXPERT SYSTEM EVALUATED ON BRASSBOARD
- INITIAL PLANNING FOR COMBINED SPACE STATION THERMAL AND POWER SYSTEMS
- MACHINE LEARNING APPLIED TO ANALYSIS OF INFRARED ASTRONOMY DATA

FY 89 PROGRAM FOCUS
- SPACE STATION SYSTEM AUTONOMY DEMONSTRATIONS
- REAL-TIME EXPERT SYSTEM CONTROL OF SHUTTLE LAUNCH PROCESSING SYSTEMS
- HUBBLE SPACE TELESCOPE DESIGN/ENGINEERING KNOWLEDGE CAPTURE

LONG RANGE MILESTONES:
TELEROBOTICS

LONG RANGE GOAL:
TO PROVIDE AND VALIDATE THE BASIC TECHNOLOGY TO ACHIEVE SUCCESSFULLY HIGHER LEVELS OF SPACE ROBOTIC CAPABILITY

THRUSTS:
- TELEROBOTIC DEMONSTRATIONS
- SENSING AND PERCEPTION
- PLANNING AND REASONING
- CONTROL EXECUTION
- OPERATOR INTERFACE

FY 88 ACCOMPLISHMENTS:
- EASE STRUCTURE ASSEMBLY BY BAT
- FORCE CONTROL OF MULTI ARM MANIPULATOR
- TELEROBOTIC INTERACTIVE PLANNING SYSTEM
- AUTOMATED VISION-BASED SATELLITE GRAPPLING
- TELEROBOTIC INTELLIGENT INTERFACE FLIGHT EXPERIMENT

FY 89 PROGRAM FOCUS
- SHARED HUMAN/AUTOMATION CONTROL TELEROBOTIC DEMONSTRATION
- SUPPORT OF SATELLITE SERVICING CAPABILITY
- INITIATION OF NEW APPLICATIONS DEMOS: SHUTTLE RMS AND UMBILICAL
- INITIATION OF PLANETARY ROVER
- CONTINUED CORE TECHNOLOGY

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th></th>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRADED TELEROBOTIC CONTROL</td>
<td>▼</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMU WALKER</td>
<td>▼</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOBILE TELEROBOTIC SERVICING</td>
<td>▼</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPACE EVAL. OF FORCE REFLECTING CONTROLLER</td>
<td>▼</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLANETARY ROVER DEMONSTRATIONS</td>
<td>▼</td>
<td>▼</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPACE SENSORS

LONG RANGE GOAL:
TO PROVIDE SPACE QUALIFIABLE TECHNOLOGY FOR THE EFFECTIVE AND EFFICIENT DETECTION OF ELECTROMAGNETIC RADIATION FROM THE MILLIMETER TO THE GAMMA-RAY WAVELENGTH REGION

THRUSTS:
- DETECTOR SENSORS
- SUBMMW SENSORS
- LIDAR SENSORS
- COOLER SYSTEMS
- SOLID STATE TECHNOLOGY (INCLUDING PHOTONICS)

FY 88 ACCOMPLISHMENTS:
- EXCELLENT LOW-BACKGROUND IR ARRAY PERFORMANCE
- HELIUM-3 COOLER (0.25°K) FOR ROCKET-BORNE IR EXPERIMENTS
- DIODE-PUMPED Nd:YAG SPACE LASER FOR RANGING AND ALTIMETRY
- IMAGING X-RAY AND COSMIC RAY SPECTROMETERS
- SUBMILLIMETER OSCILLATORS DEMONSTRATED AT
- SOLID-STATE LASER DESIGN DATA BASE

FY89 PROGRAM FOCUS:
- SOLID-STATE LASER TECHNOLOGY
- LONG-LIFE, STABLE 10-JOULE-PER-PULSE (CO2) SPACE LASER FOR LASER ATMOSPHERIC WIND SOUNDER
- HUBBLE SPACE TELESCOPE DESIGN/ENG’G KNOWLEDGE CAPTURE
- COMPONENTS FOR 600-3000 GHZ SUB-mm SENSORS
- INCOHERENT DETECTORS FOR IR, UV, X-RAY & COSMIC RAY SENSORS

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl Sapphir Laser Amplifier</td>
<td>Submillimeter Laser Oscillator</td>
<td>600 Ghz Heterodyne Sensor</td>
<td>Eye Safe Laser Amplifier</td>
<td>Large Array Long-Wave IR Detectors</td>
</tr>
</tbody>
</table>

- 1-Joule/Pulse Lidar
- Sub Kelvin Cooler
- Eye Safe Lidar
HUMANS IN SPACE

LONG RANGE GOAL:
TO PROVIDE GUIDELINES, METHODS AND TECHNOLOGY TO ASSURE THE SAFE AND EFFECTIVE UTILIZATION OF HUMANS IN SPACE

THRUSTS:
- HUMAN PERFORMANCE
- HUMAN/INTELLIGENT SYSTEM INTERFACE
- SENSORY AND INFORMATION FUSION
- EVA SYSTEMS

FY 88 ACCOMPLISHMENTS:
- ADVANCED HARD SPACE SUIT STRENGTH/MOTION TESTING IN WETF
- VIRTUAL WORKSTATION
- EVA HELMET MOUNTED DISPLAY PROTOTYPE
- HUMAN INTERFACE TO THERMAL EXPERT SYSTEM
- PYRAMID IMAGE CODES DEVELOPED FOR HUMAN DISPLAY INTERFACES AND FOR ROBUST COMPUTER VISION

FY89 PROGRAM FOCUS:
- STUDY OF HUMAN FACTORS IMPLICATION IN NASA'S OPERATIONAL EXPERIENCE
- EVALUATION OF HARD SUIT AND GLOVES FOR EVA
- EVALUATION OF VIRTUAL WORKSTATION FOR TELEROBOTIC CONTROL AND "EXPLORATION" OF PLANETARY SURFACES
- INITIATION OF SURFACE SUIT AND HUMAN PERFORMANCE ELEMENTS OF PATHFINDER

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th>Year</th>
<th>Complete Revision</th>
<th>High Pressure</th>
<th>Phys. & Cogn.</th>
<th>Surface Suit</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>STD-3000</td>
<td>EVA GLOVE</td>
<td>Human Perf.</td>
<td>Components</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- COMPLETE AX-5 WETF EVALUATION
- SURFACE SUIT REQUIREMENTS
- ERROR-TOLERANT HUMAN OPERATION INTERFACES
SPACE COMMUNICATIONS

LONG RANGE GOAL:
DEVELOP DEVICES, COMPONENTS & ANALYTICAL METHODS TO SUPPORT THE COMM. RQMTS. OF NASA'S FUTURE NEAR-EARTH, DEEP-SPACE & SPACE STATION MISSIONS

THRUSTS:
- HIGH EFFICIENCY TUBES
- SOLID STATE DEVICES
- LARGE ANTENNAS
- OPTICAL COMMUNICATIONS

FY 88 ACCOMPLISHMENTS:
- Ka-BAND MMIC POWER AMPLIFIER FOR DEEP SPACE MISSIONS
- SPACE ANTENNA DISTORTION COMPENSATION BY ADAPTIVE ELECTRONIC FEED
- HIGH-EFFICIENCY DEEP SPACE OPTICAL COMMUNICATIONS LASER
- PHASED-ARRAY SEMICONDUCTOR LASER
- NEAR-EARTH LASER TRANSMITTER AND RECEIVER
- HIGH-EFFICIENCY X-BAND TWT FOR MARS OBSERVER

FY89 PROGRAM FOCUS:
- HIGH-FREQUENCY, HIGH-EFFICIENCY TWTS
- COMPENSATION FOR FLEXIBLE SPACE ANTENNAS
- HIGH-DATA-RATE EARTH ORBIT AND PLANETARY
- SPACE LASER COMMUNICATIONS
- HIGH-EFFICIENCY MMIC TECHNOLOGY FOR PLANETARY COMMUNICATIONS

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASED ARRAY COMPENSATION</td>
<td>0.5-W, KA BANDPOWER AMPLIFIER</td>
<td>HIGH EFFICIENCY KA-BAND TWT FOR PLANETARY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFINING SPACE LASER COMM FOR FLIGHT EXPT.</td>
<td>2-W ND:YAG LASER TRANSMITTER</td>
<td>4 GHZ, 5-W SOLID STATE LASER TRANSMITTER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LONG RANGE GOAL:
TO PROVIDE AGENCY FOUNDATION IN FUNDAMENTAL AEROSPACE COMPUTER SCIENCE TO ENABLE EFFICIENT
AND EFFECTIVE ACQUISITION, PROCESSING, DISTRIBUTION AND ANALYSIS OF SPACE-DERIVED INFORMATION

THRUSTS:
- CONCURRENT PROCESSING
- INFORMATION MANAGEMENT
- ADVANCED ATA CONCEPTS
- ON-BOARD PROCESSING TECHNIQUES
- HIGH PERFORMANCE STORAGE TECHNOLOGY

FY 88 ACCOMPLISHMENTS:
- ESTABLISHMENT OF CENTER OF EXCELLENCE IN SPACE DATA AND INFORMATION SCIENCES AT THE UNIVERSITY
 OF MARYLAND AND GSFC
- DEMONSTRATED REVERSIBLE, VAR. STRENGTH ELECTRONIC "NEURAL NETWORK" DEVICE
- DEVELOPED HARDWARE SIMULATOR OF SPARSE DISTRIBUTED NETWORK
- COMPLETED DESIGN FOR REAL-TIME FOCAL PLANE PROCESSOR FOR HIGH RESOLUTION IMAGING
 SPECTROMETER
- DEMONSTRATED FEASIBILITY OF OPTICAL NEED, LASER DIODES AND MEDIA FOR TERABIT ERASIBLE OPTICAL
 DISK RECORDER

FY 89 PROGRAM FOCUS:
- NEURAL NETWORK RESEARCH
- ON-BOARD PROCESSING SYSTEMS
- MODULAR TERABIT OPTICAL DISK BRASSBOARD
- PLAN HIGH PERFORMANCE COMPUTING INITIATIVE (HPCI)

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th>DEMONSTRATE 1 MIPS MULTIPROGRAM - 16/32 BIT</th>
<th>INITIAL HPCI TESTBEDS</th>
<th>HIRES COMPRESSION</th>
<th>SAR PROCESSOR BREADBOARD</th>
<th>SELECT TERAFLOP ARCHITECTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>HPCI PROGRAM PLAN</td>
<td>OPTICAL DISK RECORDER BRASSBOARD</td>
<td>DEMO. 6 MIPS MULTI-PROGRAM - 32 BIT</td>
<td>DEMO. NEURAL NET CONCEPTS FOR ROBOTICS, VISION AND SPEECH</td>
<td></td>
</tr>
</tbody>
</table>
TRANSPORTATION VEHICLE GUIDANCE AND CONTROL

LONG RANGE GOAL:
TO PROVIDE COST EFFECTIVE, RELIABLE AVIONICS FOR ADVANCED EARTH-TO-ORBIT TRANSFER AND PLANETARY VEHICLES

THRUSTS:
- FAULT TOLERANT PROCESSING
- SOFTWARE ENGINEERING
- ADAPTIVE G, N. AND C CONCEPTS
- SENSORS AND ACTUATORS

FY 88 ACCOMPLISHMENTS:
- ADVANCED 8-COMPONENT FIBER OPTIC GYRO BREADBOARD
- INCREASED "QUIET TIME" FOR AFE
- LANDING ANALYSIS FOR MARS SAMPLE RETURN MISSION
- IMPACT OF ADA ON FLIGHT CONTROL
- EVALUATION OF AIPS FAULT-TOLERANT PROCESSOR
- EMPIRICAL COMPARISON OF FAULT TOLERANCE AND FAULT ELIMINATION

FY89 PROGRAM FOCUS:
- VALIDATION OF AIPS OPERATING SOFTWARE
- AUTOMATED RENDEZVOUS AND DOCKING, PATHFINDER
- ADAPTIVE LANDING, PATHFINDER
- SOFTWARE ENGINEERING FOR COMPLEX RELIABLE SYSTEMS

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th>COMPLETE EVALUATION OF AFE GUIDANCE ALGORITHMS</th>
<th>VALIDATE AIPS ARCHITECTURE/OPERATING SYSTEM</th>
<th>COMPLETE PLANETARY HAZARD DETECTION & AVOIDANCE TECHNOLOGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>92</td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>

\[\Delta\]
- EVALUATE CURRENT NASA SOFTWARE DEVELOPMENT ENVIRONMENTS
- AUTONOMOUS PLANETARY RENDEZVOUS AND DOCKING REQUIREMENTS
- PROTOTYPE SOFTWARE DEVELOPMENT TOOLS FOR COMPLEX RELIABLE SYSTEMS
SPACECRAFT CONTROL

LONG RANGE GOAL:
 TO PROVIDE THE CONTROL ALGORITHMS, COMPUTATIONAL METHODS, AND SYSTEMS MODELS
 TO ENABLE THE CONTROL OF COMPLEX/FLEXIBLE SPACE SYSTEMS

THRUSTS:
 - COMPUTATIONAL CONTROL
 - ADVANCED CONTROL
 - CONTROL OF FLEXIBLE STRUCTURES
 - CONTROL OF LARGE APERATURE SEGMENTED OPTICS/INTERFEROMETERS

FY 89 ACCOMPLISHMENTS
 - CONTROL TECHNIQUES EVALUATED ON ADVANCED CONTROL EVALUATION FOR STRUCTURES
 (ACES)-1 TEST ARTICLE
 - NON-LINEAR, MULTI-BODY COMPUTER ANALYSIS TOOL ENHANCEMENTS
 - COMPUTATIONALLY EFFICIENT CONTROL TECHNIQUES EVALUATED ON SPACECRAFT
 - CONTROL LABORATORY EXPERIMENT (SCOLE)
 - LQG CONTROL FOR THE MINI-MAST EXPERIMENT
 - COMPLETED DESIGN FOR 3-D SHAPES BREADBOARD AND DETAILED PERFORMANCE
 CHARACTERIZATION

FY 89 PROGRAM FOCUS
 - CONTROL OF FLEXIBLE STRUCTURES; LARGE ANTENNAS AND PLATFORMS
 - CONTROL OF PRECISION OPTICAL SYSTEMS
 - COMPUTATIONAL METHODS FOR MULTI-BODY CONTROL

LONG RANGE MILESTONES:

<table>
<thead>
<tr>
<th>SHAPE 3-D DEMO.</th>
<th>UPGRADE 4TH GENERATION CONTROL TOOLS</th>
<th>ADAPTIVE CONTROL FOR FLEXIBLE STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>90</td>
<td>91</td>
</tr>
</tbody>
</table>

\[\text{CONTROL TOOLS FOR RAPID DESIGN OF COMPLEX SYSTEMS}\]
INFORMATION SCIENCES AND HUMAN FACTORS DIVISION
MAJOR PROGRAM DIRECTIONS IN SPACE

GENERAL
- INCREASE UNIVERSITY RESEARCH BLOCK GRANTS
- INCREASE PROGRAM OFFICE AND INDUSTRY INVOLVEMENT IN CSTI AND PATHFINDER ELEMENTS
- EXPLOIT OPPORTUNITIES OF PHOTONICS AND HIGH-TEMPERATURE SUPERCONDUCTIVITY
- INCREASE EMPHASIS ON SPACE FLIGHT EXPERIMENTS

EVOLVING SPACE ROBOTIC CAPABILITY:
- MAINTAIN LONG-TERM TECHNOLOGY BASE
- TRANSFER INITIAL DEMONSTRATION RESULTS/CAPABILITY TO FTS AND SATELLITE SERVICING CONCEPTS
- INCREASED EMPHASIS ON APPLICATIONS DEMONSTRATIONS AND TECHNOLOGY FLIGHT EXPERIMENTS
- INITIATE PLANETARY ROVER PROGRAM

INTELLIGENT SYSTEMS RESEARCH:
- MAINTAIN NATIONAL REPUTATION IN ARTIFICIAL INTELLIGENCE RESEARCH
- PERFORM EFFECTIVE GROUND-BASED DEMONSTRATIONS FOR SPACE STATION, SHUTTLE AND SCIENCE MISSIONS
- INITIATE RESEARCH TO MERGE INTELLIGENT SYSTEMS WITH EXPLORATION VEHICLES
NASA-UNIQUE SPACE SENSING CONCEPTS:

○ ADDRESS NASA-UNIQUE DETECTOR REQUIREMENTS IN CSTI SCIENCE SENSORS PROGRAM
 - LOW-BACKGROUND INFRARED DETECTORS
 - SUBMILLIMETER SENSORS
 - ACTIVE LASER SENSING

○ INITIATE NEW THRUST IN SCIENCE SENSORS AND OPTICS FOR GLOBAL CHANGE

ADVANCED SPACE COMMUNICATIONS CAPABILITY:

○ CONTINUE TWT, SOLID STATE MMIC DEVICE AND ANTENNA RESEARCH

○ INCREASE SUPPORT TO NEAR-EARTH AND PLANETARY OPTICAL COMMUNICATIONS

EFFICIENT ACQUISITION, PROCESSING, DISTRIBUTION AND ANALYSIS OF SPACE DERIVED DATA:

○ MAINTAIN STRONG COMPUTER SCIENCE PROGRAM IN COST-EFFECTIVE SOFTWARE, CONCURRENT PROCESSING AND INFORMATION MANAGEMENT

○ IMPLEMENT CSTI HIGH-RATE/CAPACITY DATA PROGRAM

○ INITIATE NEW INITIATIVE IN HIGH PERFORMANCE COMPUTING
INFORMATION SCIENCES AND HUMAN FACTORS DIVISION
MAJOR PROGRAM DIRECTIONS IN SPACE

EFFECTIVE UTILIZATION OF HUMANS IN SPACE:
• FOCUS ON HUMAN-INTELLIGENT SYSTEM INTERFACE, SENSOR AND INFORMATION FUSION, AND EVA SYSTEMS

• INITIATE PATHFINDER EXTRAVEHICULAR ACTIVITY/SUIT AND HUMAN PERFORMANCE PROGRAM ELEMENTS

CONTROL OF COMPLEX/FLEXIBLE SPACE SYSTEMS:
• SUPPORT CONTROL STRUCTURES INTERACTION RESEARCH

• INITIATE RESEARCH FOR CONTROL OF PRECISION OPTICS

• INITIATE COMPUTATIONAL CONTROLS RESEARCH PROGRAM

GUIDANCE, NAVIGATION AND CONTROL TECHNOLOGY FOR TRANSPORTATION VEHICLES:
• SUPPORT REAL-TIME FAULT TOLERANT CONTROL ARCHITECTURE RESEARCH

• ADVOCATE FAULT TOLERANT FLIGHT SYSTEMS INITIATIVE

• IMPLEMENT NEW THRUST IN SOFTWARE ENGINEERING FOR COMPLEX RELIABLE SYSTEMS

• INITIATE PATHFINDER AUTONOMOUS LANDER AND AUTONOMOUS RENDEZVOUS AND DOCKING PROGRAM ELEMENTS