SYSTEMS AUTONOMY

Henry Lum, Jr.
Chief, Information Sciences Division
NASA Ames Research Center

TECHNOLOGY FOR FUTURE NASA MISSIONS

AN AIAA/OAST CONFERENCE
ON CSTI AND PATHFINDER

12-13 SEPTEMBER, 1988

WASHINGTON D.C.
SYSTEMS AUTONOMY PROGRAM

MARSH EXPLORATION

ENABLING TECHNOLOGIES FOR THE NATIONAL SPACE CHALLENGES

THE EVOLUTION OF MACHINES THAT THINK

- LOWERS MISSION OPERATIONS COSTS
- INCREASES PRODUCTIVITY
- RENDERS HIGHER QUALITY DECISIONS
- MAINTAINS TECHNOLOGICAL LEADERSHIP

LUNAR OUTPOST

TRANSPORTATION

PERMANENT PRESENCE IN SPACE
END-TO-END SYSTEMS INTEGRATION OF HUMANS, INTELLIGENT SYSTEMS, AND FACILITIES
SYSTEMS AUTONOMY PROGRAM
WHY INTELLIGENT AUTONOMOUS SYSTEMS

REDUCE MISSION OPERATIONS COSTS

- AUTOMATE LABOR INTENSIVE OPERATIONS

INCREASE MISSION PRODUCTIVITY

- AUTOMATE ROUTINE ONBOARD HOUSEKEEPING FUNCTIONS

INCREASE MISSION SUCCESS PROBABILITY

- AUTOMATE REAL-TIME CONTINGENCY REPLANNING
DESCRIPTION OF INTELLIGENT AUTONOMOUS SYSTEMS

CHARACTERISTICS

KNOWLEDGE-BASED SYSTEMS
• DYNAMIC WORLD KNOWLEDGE ACQUISITION, UNDERSTANDING, AND EXECUTION OF COMMAND FUNCTIONS
• RELIABLE DECISIONS IN UNCERTAIN ENVIRONMENTS
• LEARNING ABILITY
• ALLOWS "GRACEFUL" RETURN TO HUMAN CONTROL

CAPABILITIES

GOAL-DRIVEN BEHAVIOR
• COMMUNICATE AT HIGH LEVELS WITH HUMANS AND OTHER MACHINES

"COLLABORATIVE" HUMAN-MACHINE INTERACTIONS
• RECOGNIZE AND RESOLVE COMMAND ERRORS

SELF-MAINTENANCE
• OPERATE AUTONOMOUSLY FOR EXTENDED PERIODS OF TIME
SYSTEMS AUTONOMY PROGRAM
HOW DO WE GET THERE - PROGRAM ELEMENTS

ONGOING CORE TECHNOLOGY
- PLANNING AND REASONING
- OPERATOR INTERFACE
- SYSTEMS ARCHITECTURE

PERIODIC DEMONSTRATIONS
- LONG TERM EVOLVING TESTBED
- SHORT TERM SPECIFIC DOMAIN DEMOS
SYSTEMS AUTONOMY PROGRAM

TECHNICAL CHALLENGES

• REAL-TIME KNOWLEDGE-BASED SYSTEMS

• DYNAMIC KNOWLEDGE ACQUISITION AND UNDERSTANDING

• ROBUST PLANNING AND REASONING

• COOPERATING KNOWLEDGE-BASED SYSTEMS

• VALIDATION METHODOLOGIES
REAL-TIME KNOWLEDGE-BASED SYSTEMS
 • NO PARALLEL SYMBOLIC-NUMERIC PROCESSORS
 • SLOW SPECIAL-PURPOSE HARDWARE (1 GBYTE MEM, 5 MIPS)
 • PROTOTYPING S/W SHELLS (ART, KEE, KNOWLEDGECRAFT)
 • DIAGNOSIS AND PLANNING DECISIONS IN 1-10 MINUTES

DYNAMIC KNOWLEDGE-ACQUISITION & UNDERSTANDING
 • NO AUTOMATED EXPANSION OF K-B
 • SMALL STATIC PRE-PROGRAMMED K-B
 • DEC "XCON" LARGEST (5000 RULES, 2000 COMPONENTS)

ROBUST PLANNING AND REASONING
 • HEURISTIC RULES ONLY, NO CAUSAL MODELS
 • PRE-MISSION PLANNING (NO REAL-TIME REPLANNING)
 • DIAGNOSIS OF ONLY ANTICIPATED SINGLE FAULTS
 • "FRAGILE" NARROW DOMAINS (RAPID BREAKDOWN AT K-B LIMITS)

COOPERATING KNOWLEDGE-BASED SYSTEMS
 • SINGLE STANDALONE DOMAIN SPECIFIC SYSTEMS
 • HUMAN INTERACTION ONLY, NO INTELLIGENT SYSTEMS INTERACTION

VALIDATION METHODOLOGIES
 • CONVENTIONAL TECHNIQUES FOR ALGORITHMIC SYSTEMS
KNOWLEDGE SYSTEMS
EXTENSIONS, TESTS,
VERIFICATION VALIDATIONS
EXPERTISE
DYNAMIC WORLD
"LEM PEIRCf.V
INTER-
ACTION
KNOWLEDGE ACQUISITION SUBSYSTEM
KNOWLEDGE BASE
EXPLANATION SUBSYSTEM
REASONING ENGINE
USER INTERFACE
WORKING MEMORY

TOOL BUILDER
KNOWLEDGE SYSTEMS BUILDING TOOL
KNOWLEDGE ENGINEERING
INTERVIEW EXPERT KNOWLEDGE
EXTENSIONS, TESTS, VERIFICATION VALIDATIONS
EXPERTISE
PROBLEM SOLUTION
INTER-ACTION
END USER
DYNAMIC WORLD
PROBLEM PERCEPTION
SYSTEMS AUTONOMY PROGRAM DEMONSTRATION
SYSTEMS AUTONOMY DEMONSTRATION PROJECT (SADP)

OBJECTIVES
DEMONSTRATE TECHNOLOGY FEASIBILITY OF INTELLIGENT AUTONOMOUS SYSTEMS FOR SPACE STATION THROUGH TESTBED DEMONSTRATIONS

- 1988: SINGLE SUBSYSTEM (THERMAL)
- 1990: TWO COOPERATING SUBSYSTEMS (THERMAL/POWER)
- 1993: HIERARCHICAL CONTROL OF SEVERAL SUBSYSTEMS
- 1996: DISTRIBUTED CONTROL OF MULTIPLE SUBSYSTEMS

PARTICIPANTS AND FACILITIES

PARTICIPANTS
- AMES RESEARCH CENTER
- JOHNSON SPACE CENTER
- LEWIS RESEARCH CENTER
- MARSHALL SPACE FLIGHT CENTER
- INDUSTRY

FACILITIES
- ARC INTELLIGENT SYSTEMS LABORATORY
- JSC INTELLIGENT SYSTEMS LABORATORY
- JSC THERMAL TEST BED
- LeRC POWER TEST BED

SCHEDULE

TCS
TCS/Power
Hierarchical
Multiple Sys.
Distributed
Multiple Sys.

87 88 89 90 91 92 93 94 95 96
1988 DEMONSTRATION SYSTEMS AUTONOMY DEMONSTRATION PROJECT
SPACE STATION THERMAL CONTROL SYSTEM (TEXSYS)

OBJECTIVES
IMPLEMENTATION OF AI TECHNOLOGY INTO THE REAL-TIME DYNAMIC ENVIRONMENT OF A COMPLEX ELECTRICAL-MECHANICAL SPACE STATION SYSTEM - THE THERMAL CONTROL SYSTEM.

- REAL-TIME CONTROL
- FAULT DIAGNOSIS AND CORRECTION
- TREND ANALYSIS FOR INCipient FAILURE PREVENTION
- INTELLIGENT HUMAN INTERFACE
- CAUSAL MODELLING
- VALIDATION TECHNIQUES

PARTICIPANTS AND FACILITIES

PARTICIPANTS

- AMES RESEARCH CENTER
- JOHNSON SPACE CENTER
- INDUSTRY: LEMSCO, ROCKWELL INTERNATIONAL, GEOCONTROL SYSTEMS, STERLING SOFTWARE

FACILITIES

- ARC INTELLIGENT SYSTEMS LABORATORY
- JSC INTELLIGENT SYSTEMS LABORATORY
- JSC THERMAL TEST BED

SCHEDULE

<table>
<thead>
<tr>
<th>Development</th>
<th>Requirements Definition</th>
<th>Design Definition</th>
<th>Integration V & V</th>
<th>TCS Demonstration</th>
<th>Power System Interfaces</th>
<th>TCS/Power Demonstration</th>
<th>Analysis, Reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SYSTEM AUTONOMY DEMONSTRATION PROJECT

TCS FUNCTIONAL CAPABILITIES

PROTOTYPE OBJECTIVES

<table>
<thead>
<tr>
<th>Objective</th>
<th>Demo 1/87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causal Models/Simulation</td>
<td>✔</td>
</tr>
<tr>
<td>Limited Fault Diagnosis</td>
<td>✔</td>
</tr>
</tbody>
</table>

DEMONSTRATION OBJECTIVES

<table>
<thead>
<tr>
<th>Objective</th>
<th>1/6/87</th>
<th>2/9/87</th>
<th>3/12/87</th>
<th>4/2/88</th>
<th>5/5/88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Real-Time Control</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Fault Diagnosis and Correction</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Trend Analysis</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Intelligent Interface</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Design Assistance</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Training Assistance</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

© HL/AIAA 9-88 (LAH)
SYSTEMS AUTONOMY PROGRAM - TECHNOLOGICAL CHALLENGES

B. WHERE WE NEED TO GO

REAL-TIME KNOWLEDGE-BASED SYSTEMS
- PARALLEL SYMBOLIC-NUMERIC PROCESSORS (100 GBYTES, 500 MIPS)
- NEURAL NETWORKS (BRAIN CELL EMULATION)
- LAYERED TRANSPARENT SW
- DIAGNOSIS AND PLANNING IN MILLISECONDS

DYNAMIC KNOWLEDGE ACQUISITION & UNDERSTANDING
- AUTOMATED K-B EXPANSION IN REAL-TIME (LEARNING)
- LARGE DYNAMIC DISTRIBUTED K-B

ROBUST PLANNING AND REASONING
- COMBINED HEURISTIC RULES AND CAUSAL MODELS
- REAL-TIME CONTINGENCY REPLANNING
- DIAGNOSIS OF UNANTICIPATED FAULTS
- SPECIFIC DOMAINS ON BROAD GENERIC K-B (GRACEFUL DEGRADATION)

COOPERATING KNOWLEDGE-BASED SYSTEMS
- HIERARCHICAL AND DISTRIBUTED SYSTEMS
- HUMAN AND INTELLIGENT SYSTEMS INTERACTION

VALIDATION METHODOLOGIES
- METHODOLOGY FOR EVALUATING DECISION QUALITY
- FORMAL THEORETICAL FOUNDATION
SYSTEMS AUTONOMY
DEMONSTRATION PROJECT

Technology Demonstration - Evolutionary Sequence

1988
Automated Control Of Single Subsystem
("Intelligent Aide")
Thermal Control System
- Monitor/real-time control of a single subsystem
- Goal and causal explanation displays
- Rule-based simulation
- Fault recognition/warning/limited diagnosis
- Resource management
- Reasoning assuming standard procedures

1990
Automated Control of Multiple Subsystems
("Intelligent Apprentice")
Thermal Control System and Power System
- Coordinated control of multiple subsystems
- Operator aids for unanticipated failures
- Model-based simulation
- Fault diagnosis for anticipated failures
- Real-time planning/replanning
- Reasoning about nonstandard procedures

1993
Hierarchical Control of Multiple Subsystems
("Intelligent Assistant")
- Multiple subsystem control: ground and space
- Task-oriented dialogue & human error tolerance
- Fault recovery from unanticipated failures
- Planning under uncertainty
- Reasoning about emergency procedures

1996
Distributed Control Of Multiple Subsystems
("Intelligent Associate")
- Autonomous cooperative controllers
- Goal-driven natural language interface
- Fault prediction and trend analysis
- Automated real-time planning/replanning
- Reasoning/learning, supervision of on-board systems
AUTONOMOUS SYSTEMS FOR ADVANCED LAUNCH SYSTEMS (ALS)
UNMANNED LAUNCH VEHICLES
AI Research Issues

- MACHINE LEARNING
- COOPERATING KNOWLEDGE-BASED SYSTEMS
- REAL-TIME ADVANCED PLANNING AND SCHEDULING METHODOLOGIES
- MANAGEMENT OF UNCERTAINTY
- AUTOMATED DESIGN KNOWLEDGE CAPTURE
- VALIDATION OF KNOWLEDGE-BASED SYSTEMS
MACHINE LEARNING

PREDICTIONS:

BAD

BETTER

GOOD

REMEMBER SEARCH MISTAKES

MODEL REFINEMENT

BEFORE

AFTER

SCHEDULING HEURISTICS

Technicians are in great demand

Histogram Pane
COOPERATIVE INTELLIGENT SYSTEMS
DESIGN KNOWLEDGE LOST WHEN DESIGNER LEAVES:

BUT WHY
IS THIS APERTURE
2.7 mm?

CONSERVATION OF DESIGN KNOWLEDGE

WHY DID THEY CHOOSE SILVER INSTEAD OF STEEL?

ELECTRONIC NOTEBOOK

PROCESS CONTROL
DIAGNOSIS
REPAIR
DESIGN

"(DRIVEN-BY
$OBJECT
MOTOR-3977)"

HUMAN USE:

AUTOMATED USE:

DESIGN
KNOWLEDGE
FROM
LIFECYCLE

DOMAIN
KNOWLEDGE

PHYSICAL
LAWS
Knowledge Intensive
- Strong prior theory
- One (or few) examples
- Verification by proof
- Learned concept must be useful

Knowledge Weak
- Weak prior model
- Many examples required
- Cannot prove theory
- Learned concept reflects intrinsic structure

Machine Learning

EBG

Discovery Learning

Model Discovery

Markov Models

Classification Models

Series Prediction

Supervised

Unsupervised
The spectra show two closely related IRAS classes with peaks at 9.7 and 10.0 microns. This discrimination was achieved by considering all channels of each spectrum. AutoClass currently has no model of spectral continuity. The same results would be found if the channels were randomly reordered.
The galactic location data, not used in the classification, tends to confirm that the classification represents real differences in the sources.
Evolution of Advanced Architectures for Real-time, On-board Teraflop Systems

- **Function**: RT Image Processing, Knowledge Understanding & Control, Deep Reasoning
- **Technology Status**: Applied R&D, Development, Basic Research
- **Technology Forecast**: Late 1990s, Current, Early 2000s
- **Examples**: KBS-controlled Photonic Processor, SVMS (6-Processor System), Neural Networks, Fuzzy Logic Computers and Controllers
Computer Architecture Research Issues
(Numeric/Symbolic Multiprocessor Systems)

- OPERATING SYSTEMS FOR REAL-TIME MULTIPROCESSING SYSTEMS IN A HETEROGENEOUS ENVIRONMENT
- VALIDATED COMPILERS AND TRANSLATORS FOR AN ADA-BASED MULTIPROCESSING ENVIRONMENT
- DATABASE MANAGEMENT FOR LARGE DISTRIBUTED DATABASES GREATER THAN 10GB
- AUTOMATED LOAD SCHEDULING FOR MULTIPROCESSORS
- REAL-TIME FAULT TOLERANCE AND RECONFIGURATION
- RADIATION HARDNESS WITH MINIMUM PERFORMANCE COMPROMISES
 - PROCESS TECHNOLOGY
 - VLSI/VHSIC TRADEOFFS
 - EFFICIENT COMPILERS AND INSTRUCTION SET ARCHITECTURES
PROCESS
VHSIC TECHNOLOGY
0.5μ TARGET
1.25μ BACKUP
RAD-HARD CMOS
10^5 RADS RADIATION RESISTANCE
NO SINGLE EVENT UPSETS

SYSTEM CHARACTERISTICS
- PARALLEL ARCHITECTURE
 - 40-BIT SYMBOLIC PROCESSORS
 - 32-BIT NUMERIC PROCESSORS
- FAULT-TOLERANCE/AUTOMATED RECONFIGURATION
- OPTICAL INTERCONNECTS
- 25 MIPS SUSTAINED UNIPROCESSOR PERFORMANCE (40 MIPS TARGET)
 - MINIMUM OF 100 MIPS OVERALL SYSTEM PERFORMANCE
- DBMS FOR 10G BYTE MEMORY MANAGEMENT
PHOTONIC PROCESSOR FOR REAL-TIME IMAGE UNDERSTANDING

OBJECTIVES

- REAL-TIME PHOTONIC PROCESSORS & TECHNIQUES
 for Terrain Analysis Tasks

- SYSTEM CONTROL & INTEGRATION OF EMBEDDED PHOTONIC PROCESSORS
 with Integrated Numeric/Symbolic Multiprocessor Systems

- TECHNOLOGY FEASIBILITY DEMONSTRATIONS
 Focused on Planetary Rovers & Space Vehicles

BENEFITS

- Real-time, High Performance Parallel Processing
 for Image Processing & Understanding

- Fault Tolerance

- Low Power, Weight, and Size

POTENTIAL APPLICATIONS

- Autonomous Landing

- Sample Acquisition and Analysis

- Sample Return

NASA AMES RESEARCH CENTER
OAST-SPONSORED RESEARCH
Knowledge-Based Systems

The tasks involved with an image-understanding system can be divided into three layers as shown. The problem is to find a synergistic balance between all layers so that as knowledge of the image accrues, the reliability of the interpretation, recognition, and enhancement increases, while the amount of required computation decreases. Methodologies of organizing a knowledge-base of object and using a rule-based system to effectively search the knowledge-base and directing the computations of photonic processors are being developed. The majority of the domain specific knowledge for a task will reside in the interpretative level making the photonic processor a general purpose computing tool.
Backward-Error Propagation

Hopfield

J.J. Hopfield demonstrated the formal analogy between a net of neuron-like elements with symmetric connections, called a “Hopfield Net”, and a material called a spin-glass, which consists of a random mixture of both ferromagnetically and anti-ferromagnetically interacting spins, exhibiting no net magnetism. Each element of a Hopfield net must both excite and inhibit its neighbors.

Adaptive Resonance Theory

Rumelhart

There are many models in the real world that cannot be represented in a two-layer system such as the Hopfield model. For example, there exist no values that can be assigned to connection strengths to yield to appropriate output for the exclusive-or (XOR) function. The solution is to introduce a third layer, called the hidden layer, between the input and output layers. This hidden layer creates the ability to incorporate an internal representation that facilitates difficult mappings between the two external layers.

Self-Organizing Maps

Kohonen

One important organizing principle of sensory pathways in the brain is that the placement of neurons is orderly and often reflects some physical characteristics of the external stimulus being sensed. For example, at each level of the auditory pathway, nerve cells and fibers are arranged anatomically in relation to the frequency which elicits the greatest response in each neuron. Kohonen presents one such algorithm which produces what he calls self-organizing feature maps similar to those that occur in the brain.

Neocogniton

Hecht-Nielsen

The counterpropagation network (CPN) will self-organize a non-optional lookup table approximation to the mapping used to generate its data. The method works equally well for binary and continuous vector mappings. It is shown that for a sufficiently large network the mapping approximation can be made essentially as accurate as desired. The counterpropagation network architecture is a combination of a portion of the self-organizing map of Kohonen and the outer structure of Grossberg.

Counter Propagation

Fukushima

The model is a hierarchical multiple-layered network consisting of a cascade of many layers of simplified neural cells. It has feedback as well as forward connections between cells in adjoining layers. The forward signal maps the function of parts onto identification, while the backward signal maps the function of identification and associative recall. The forward and backward signals interact with each other at every stage of the hierarchical process.
America's Future in Space