FLIGHT PROJECTS OVERVIEW

BY

JACK LEVINE
DIRECTOR,
OAST FLIGHT PROJECTS DIVISION
SPACE R&T STRATEGY

REVITALIZE TECHNOLOGY FOR LOW EARTH ORBIT APPLICATIONS

DEVELOP TECHNOLOGY FOR EXPLORATION OF THE SOLAR SYSTEM

MAINTAIN FUNDAMENTAL R&T BASE

BROADEN PARTICIPATION OF UNIVERSITIES

EXTEND TECHNOLOGY DEVELOPMENT TO IN-SPACE EXPERIMENTATION

FACILITATE TECHNOLOGY TRANSFER TO USERS
FLIGHT PROJECTS DIVISION

FUNCTIONS

• COLLABORATE WITH OAST DISCIPLINE DIVISIONS IN ANALYSES, FEASIBILITY STUDIES, EVALUATIONS, & SELECTION OF POTENTIAL FLIGHT RESEARCH & TECHNOLOGY PROJECTS

• IMPLEMENT & DIRECT CONCEPT DEFINITION STUDIES

• DIRECT APPROVED FLIGHT PROJECTS
 – EXPERIMENT DESIGN & DEVELOPMENT
 – INTEGRATION OF EXPERIMENTS WITH FLIGHT TEST VEHICLE SYSTEMS
 – FLIGHT OPERATIONS
 – DATA RETRIEVAL, ANALYSIS, DISSEMINATION
CURRENT SPACE FLIGHT EXPERIMENTS

<table>
<thead>
<tr>
<th>FLIGHT EXPERIMENTS</th>
<th>HQ</th>
<th>LEAD CENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONG DURATION EXPOSURE FACILITY</td>
<td>JOHN LORIA</td>
<td>— LANGLEY</td>
</tr>
<tr>
<td>ORBITER EXPERIMENTS</td>
<td>RICHARD GUALDONI</td>
<td>— JOHNSON</td>
</tr>
<tr>
<td>LIDAR IN-SPACE TECHNOLOGY EXPERIMENT</td>
<td>RICHARD GUALDONI</td>
<td>— LANGLEY</td>
</tr>
<tr>
<td>ION AUXILIARY PROPULSION SYSTEM</td>
<td>JOHN LORIA</td>
<td>— LEWIS</td>
</tr>
<tr>
<td>ARCJET FLIGHT EXPERIMENT</td>
<td>JOHN LORIA</td>
<td>— LEWIS</td>
</tr>
<tr>
<td>TELEROBOT INTELLIGENT INTERFACE FLIGHT EXPERIMENT</td>
<td>CLOTAIRE WOOD</td>
<td>— JPL</td>
</tr>
<tr>
<td>CRYOGENIC FLUID MANAGEMENT FLIGHT EXPERIMENT</td>
<td>JOHN LORIA</td>
<td>— LEWIS</td>
</tr>
<tr>
<td>OUT-REACH (INDUSTRY/UNIVERSITY TECHNOLOGY EXPERIMENTS)</td>
<td>JON PYLE</td>
<td>— MARSHALL</td>
</tr>
<tr>
<td>IN-REACH (NASA TECHNOLOGY EXPERIMENTS)</td>
<td>JON PYLE</td>
<td>— MARSHALL</td>
</tr>
<tr>
<td>AEROASSIST FLIGHT EXPERIMENT</td>
<td>JOHN SMITH</td>
<td>— MARSHALL</td>
</tr>
</tbody>
</table>
OBJECTIVES:

- DETERMINE LONG-TERM SPACE EXPOSURE EFFECTS ON MATERIALS, COATINGS, & OPTICS
- MEASURE SPACE ENVIRONMENTAL PHENOMENA OVER EXTENDED TIME

STATUS:

- 34 EXPERIMENTS ADVERSELY AFFECTED BY LDEF RECOVERY DELAY
- 23 EXPERIMENTS EITHER IMPROVED OR NOT AFFECTED
 - COMPOSITE MATERIALS
 - PHASED ARRAY ANTENNA MATERIALS
 - HOLOGRAPHIC DATA STORAGE CRYSTALS
 - SOLAR ARRAY MATERIALS
 - GLASS MATERIALS
- LDEF STRUCTURE AVAILABLE FOR STUDY OF ENVIRONMENTAL EROSION & DEBRIS IMPACT
- SCHEDULED FOR RETRIEVAL - NOVEMBER 1989

LEAD CENTER CONTACT:

- ROBERT L. JAMES, JR.
 LANGLEY RESEARCH CENTER
 PHONE NO. (804) 865-4987
OEX
OBITER EXPERIMENT PROGRAM

OBJECTIVES:

- Obtain basic aerothermodynamic & entry environment data from R&D instrumentation installed in space shuttle orbiter
- Flight-validate ground test results to improve basis for design of advanced spacecraft

STATUS:

- Data collection on-going since 1985 - will continue into 1990's
- Some experiments still to be designed & developed

LEAD CENTER CONTACT:

- Robert Spann
 Johnson Space Center
 Phone # (713) 483-3022
OEX
OBITER EXPERIMENT PROGRAM

SEADS (SHUTTLE ENTRY AIR DATA SYSTEM)
PRECISE MEASUREMENT OF VEHICLE ATTITUDE, STATE

SUMS (SHUTTLE UPPER ATMOSPHERE
MASS SPECTROMETER)
FREE-STREAM ATMOSPHERIC DENSITY

SILTS (SHUTTLE INFRARED LEESIDE TEMP. SENSING)
UPPER SURFACE AERO HEATING

ACTPS (ADVANCED CERAMIC
THERMAL PROTECTION SYSTEM)
EVALUATE ADV. THERMAL
PROTECTION MATERIALS

TGHE (TILE GAP HEATING EFFECTS)
DATA FOR TILE GAP OPTIMIZATION

CSE (CATALYTIC SURFACE EFFECTS)
VERIFY THERMAL PROTECTION
SYSTEM DESIGN

ACIP (AERODYNAMIC
COEFFICIENT IDENTIFICATION PKG)
HIRAP (HIGH RESOLUTION
ACCELEROMETER PKG)
AERODYNAMIC DATA

OARE (ORBITAL ACCELERATION
RESEARCH EXPERIMENT)
ORBITAL DECELERATION FOR AERO-
DYNAMICS IN FREE-MOLECULE FLOW

AIP (AEROTHERMAL INSTRUMENTATION PKG.)
ENTRY TEMPERATURE, PRESSURES

AIAA/OAST-L21c 8/22/88
LITE
LIDAR IN-SPACE TECHNOLOGY EXP.

OBJECTIVE:
- EVALUATE CRITICAL ATMOSPHERIC PARAMETERS & VALIDATE OPERATION OF A SOLID-STATE LIDAR SYSTEM FROM A SPACEBORNE PLATFORM, MEASURING:
 - CLOUD DECK ALTITUDES
 - PLANETARY BOUNDARY-LAYER HEIGHTS
 - STRATOSPHERIC & TROPOSPHERIC AEROSOLS
 - ATMOSPHERIC TEMPERATURE & DENSITY (10KM TO 40KM)

STATUS:
- LASER TRANSMITTER MODULE, CASSEGRAIN TELESCOPE, & ENVIRONMENTAL MONITORING SYSTEM IN DEVELOPMENT
- FLIGHT MANIFESTED FOR 1993

LEAD CENTER CONTACT:
- RICHARD R. NELMS
 LANGLEY RESEARCH CENTER
 PHONE NO. (804) 865-4947
OBJECTIVES:

- Evaluate & validate ion auxiliary propulsion system on a functional spacecraft
 - Mercury propellant
 - 0.2 kW, 1mLB thrust, Isp 2700
- Demonstrate long-life control of a spacecraft

STATUS:

- On manifest for STS flight #37 (1990) on Teal Ruby spacecraft
- Spacecraft integration & testing completed

LEAD CENTER CONTACT:

- Lou Ignaczkak
 Lewis Research Center
 Phone no. (216) 433-2848
IAPS
ION AUXILIARY PROPULSION SYSTEM

SPACECRAFT VELOCITY VECTOR (1/2 OF TIME)

THRUSTER-GIMBAL-BEAM SHIELD UNIT

IAPS -Z MODULE

IAPS -X MODULE

SOLAR ARRAY

THRUSTER-GIMBAL-BEAM SHIELD UNIT

EARTH FACING

IAPS ON TEAL RUBY SATELLITE

AIAA/OAST-LM16 7/25/88
OBJECTIVES:
- Assess ARCJET Auxiliary Propulsion System operation in space environment
 - Hydrazine propellant
 - 1.4 kW, 50 mLb thrust, lsp 450
- Evaluate plume effects & thruster/thermal interactions on a commercial communications satellite

STATUS:
- Preliminary design & ARCJET component development completed
- Flight hardware design, development & testing scheduled to start in 1989
- Flight test tentatively planned for 1991

LEAD CENTER CONTACT:
- JERRI S. LING
 Lewis Research Center
 PHONE NO. (216) 433-2841
TRIIFEX
TELEROBOTIC INTELLIGENT INTERFACE
FLIGHT EXPERIMENT

OBJECTIVES:

- EVALUATE & VALIDATE TELEOPERATION OF A ROBOTIC MANIPULATOR UNDER CONDITIONS OF MICRO-G & COMMUNICATION TIME DELAYS
- VALIDATE ADVANCED SPACE TELEROBOT CONTROLS INCLUDING HIGH-FIDELITY HYBRID POSITION & FORCE CONTROL TECHNIQUES

STATUS:

- CONCEPTUAL DESIGN IN PROGRESS AT JPL
- DEVELOPMENT & INTEGRATION SCHEDULED TO START IN LATE 1988
- FLIGHT TEST PLANNED IN COMBINATION WITH GERMAN ROTEX EXPERIMENT ON SPACELAB D-2 MISSION (1991)

LEAD CENTER CONTACT:

- DANIEL KERRISK
 JET PROPULSION LABORATORY
 PHONE NO. (818) 354-2566
TRIIFEX
TELEROBOTIC INTELLIGENT INTERFACE
FLIGHT EXPERIMENT

MOCK-UP OF TRIIFEX HARDWARE ON SPACELAB D-2 MISSION
CFMFE
CRYOGENIC FLUID MGMT FLIGHT EXP.

OBJECTIVES:

• DEVELOP TECHNOLOGY REQUIRED FOR EFFICIENT STORAGE, SUPPLY & TRANSFER OF SUBCRITICAL CRYOGENIC LIQUIDS IN LOW-GRAVITY SPACE ENVIRONMENT
• FLIGHT VALIDATE NUMERICAL MODELS OF THE PHYSICS INVOLVED

STATUS:

• CONTRACTOR FEASIBILITY STUDIES CURRENTLY UNDER WAY
• 1992 NEW START PROPOSED

LEAD CENTER CONTACT:

• E. PAT SYMONS
 LEWIS RESEARCH CENTER
 PHONE NO. (216) 433-2853
CFMFE
CRYOGENIC FLUID MGMT FLIGHT EXP.

COLD-SAT SPACECRAFT
INDUSTRY/UNIVERSITY IN-SPACE TECHNOLOGY EXPERIMENTS

OUT-REACH PROGRAM

OBJECTIVES:

- PROVIDE FOR IN-SPACE FLIGHT RESEARCH EVALUATION & VALIDATION OF ADVANCED SPACE TECHNOLOGIES FOR THE INDUSTRY & UNIVERSITY COMMUNITY

STATUS:

- 7 MAJOR THEME AREAS
- 41 FLIGHT EXPERIMENT PROPOSALS SELECTED

PROGRAM CONTACT:

JON PYLE
NASA HEADQUARTERS
PHONE NO. (202) 453-2831
NASA IN-SPACE TECHNOLOGY EXPERIMENTS

IN-REACH PROGRAM

OBJECTIVES:

- EXPAND THE NASA IN-SPACE R&T PROGRAM BY THE PROMOTION OF SPACE FLIGHT EXPERIMENTS WITHIN THE NASA CENTERS
- FORMALIZE THE PROCESS FOR SELECTION OF CANDIDATE EXPERIMENTS IN THE SPACE STATION ERA

STATUS:

- 58 EXPERIMENT PROPOSALS SUBMITTED
- 7 FLIGHT EXPERIMENTS SELECTED FOR DEFINITION & DEVELOPMENT

PROGRAM CONTACT:

JON PYLE
NASA HEADQUARTERS
PHONE NO. (202) 453-2831
AFE
AEROASSIST FLIGHT EXPERIMENT

OBJECTIVE:

- INVESTIGATE CRITICAL VEHICLE DESIGN & ENVIRONMENTAL TECHNOLOGIES APPLICABLE TO THE DESIGN OF AEROASSISTED SPACE TRANSFER VEHICLES

STATUS:

- PHASE B DEFINITION COMPLETE
- EXPERIMENT/INSTRUMENT COMPLEMENT ESTABLISHED
- PRELIMINARY DESIGN INITIATED

LEAD CENTER CONTACT:

- LEON B. ALLEN
 MARSHALL SPACE FLIGHT CENTER
 PHONE NO. (205) 544-1917
SCIENCE & TECHNOLOGY OBJECTIVES:

- Understand radiative heating where the shock layer in chemical non-equilibrium
- Determine catalytic efficiency where nitrogen is mostly disassociated & some ionization is present in the shock layer
- Evaluate advanced thermal protection system materials
- Verify predictive techniques for the base flow & wake region
- Assess control issues related to atmospheric variables which an ASTV might encounter
- Verify computational codes for prediction of ASTV heating environment & aerodynamic performance
SUMMARY

- LONG & SUCCESSFUL HISTORY IN THE CONDUCT OF SPACE FLIGHT TECHNOLOGY EXPERIMENTS

- PROGRAM IS BEING EXPANDED TO EMPHASIZE THE DEVELOPMENT OF ADVANCED SPACE FLIGHT TECHNOLOGIES

- OAST PLANS TO PROVIDE ACCESS TO SPACE FOR THE AEROSPACE TECHNOLOGY COMMUNITY (NASA, DOD, INDUSTRY & UNIVERSITIES)