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Chapter I

Introduction

Static power conversion systems have traditionally employed dc links for distribution of

power and to accomplish temporary energy storage required for decoupling. A key factor

behind the wide spread use of dc as the link quantity has been the ease and effectiveness by

which the energy storage function can be implemented. In particular, electrolytic capaci-

tors provide low-cost, high density energy storage in popular dc voltage link systems. DC

inductors perform a similar function, although somewhat less effectively, in the dc current

link systems frequently employed in high power ac drives. Another important considera-

tion is that relatively simple converter topologies have been available for power conversion

to and from dc enabling competition in a cost sensitive market.

With continued progress in the development of power devices and components, im-

provements in the performance capabilities of dc link systems are to be expected. However,

dramatic gains in such areas as improved system response, higher converter bandwidths,

increased output frequencies, greater power densities, reduction in audible and electrical

noise associated with power conversion process, increased safety, and others will require

advances in power conversion circuit configurations in addition to continued progress in the

area of power components. These advances become necessary because the dc link approach

to power conversion subjects the system to a number of basic constraints which ultimately

limit its overall performance.

The "hard" switching of the power devices is largely responsible for the simplicity of

dc link power converters but is also responsible for high levels of losses and device stresses

during the switching intervals. As a result, switching frequencies in traditional dc link con-

verters have failed to rise substantially even with the arrival of new large power BJTs and

GTOs. In turn, the output frequency, converter bandwidth, power density, and other such

capabilities related to switching frequency are severly limited. Also, high device stresses



havehadanadverseeffecton thereliability of suchpowerconverters.An indirectconse-
quenceof this limitationhasbeenthatdevicemanufaturershavespentconsiderableamount
of developmenteffort to makedevicescapableof withstandinghigh switchingstressesre-
suiting in undesirablecompromises in other areas of device performance.

Recently, resonant switching techniques have been applied to reduce or eliminate some

of the undesirable effects of "hard" switching [ 1- 5]. By permiting increased switching rates

with less than corresponding increases in losses or device stresses, resonant converters have

generally been able to improve converter performance. However, continued use of tradi-

tional de link approach (or variations thereof) for the energy storage function has generally

prevented its application to a broader range of power conversion systems.

A fundamentally different approach to static power conversion is the use of an ac link

in place of the conventional dc link. Power conversion systems that utilize an ac link for

power distribution can employ transformers within the link to meet possibly conflicting

voltage level requirements in the system. With adjustable link voltage, each converter in

the system can then be operated from a link voltage that is optimal for its needs. An ac

link provides increased flexibility in power distribution since entire sections of the link can

be operated at voltage levels higher or lower than that of the rest of the system. Electrical

isolation is readily achieved to allow safer grounding practices and a more effective noise

suppression in the system. Alternating link voltage also makes it easier to detect and quickly

isolate faulty converters in the system and thus, further increases the safety and reliability

of the entire system. The penalty of size, weight and efficiency that would normally be

associated with the use of transformers in the power conversion system can be minimized by

choosing a high value (20 kHz or above) for the link frequency. High frequency ac (mostly

nonsinusoidal) link systems have been used successfully in dc-to-dc power conversion for

quite some time. However, because of real or perceived difficulties in transforming the ac

link voltage to anything but dc, application of ac link approach has generally been confined

to the area of dc-to-dc power conversion.

1.1 Objective of the Research

The objective of this research is to demonstrate the feasibility of a high frequency sinusoidal

voltage link power conversion system which is not conversion-function specific. The pro-

posed system is envisioned as a utility type distribution system serving dc or ac, single or

three-phase, voltage or current type loads and sources. In particular, an ac voltage (rather

than an ac current) link is proposed to help realize a distributed power structure. The choice

of a sinusoidal voltage for the link is employed to facilitate passive energy storage in the

link and to minimize adverse effects due to the parasitic elements in the system. Reduced

order systems requiring only specific type of conversion function can be treated as special



casesof this generalizedconfiguration.However,conversionatmegawattpower levelsor
powerdistributionoververy largedistances(morethana few hundredmeters)is outside
thescopeof this research.

A link frequencyof 20kHz or moreisusedto permithighpowerdensitiesandsubstan-
tial reductionsin audiblenoiseassociatedwith link-sidetransformersandothermagnetic
componentsoperatingatlink frequencies.Interfaceconvertersareenvisionedwhichwould
performone-steppowerconversion to interface a wide variety of loads and sources to the

link. A special switching strategy called pulse density modulation or PDM is used to al-

low high speed switching in interface converters without incurring high switching losses, to

provide effective control over the generated voltage or currents, and to permit bi-directional

flow of power. As a result of high switching rates, higher converter bandwidths, faster sys-

tem response, and increased output frequencies are expected. Higher output frequencies,

in turn, will allow the use of high speed ac machines resulting in additional reductions in

size and weight of the overall system. Another promising characteristic of a high frequency

link system is that while it would process power at low frequencies (including dc), the noise

associated with power processing occurs at high frequency ranges where it is both easier to

suppress and less troublesome to instrumentation and other sensitive apparatus.

1.2 Applications of High Frequency Link Converters

1.2.1 Orbiting Space Station

Power system requirements for the orbiting space station are being projected at 75 kW for

the initial operation capability (IOC) with a steady growth over a period of a few years to the

300 kW level [6,7]. Because of the large power levels involved and the need to distribute

this power over distances of more than 100 meters, the ac link appears to have a number of

advantages. In particular, an ac link system offers a utility type system configuration with

ease of voltage level changes and electrical isolation by means of transformers on the link

side. With voltage shifting achieved at the link, most conversion needs are met with one

additional stage of power conversion. Also, switching and protection are made easier due

to the frequent reversal of the link voltage.

Figure 1.1 shows a possible configuration which may be used to implement a power

management and distribution (PMAD) space power system [7]. Three-phase fixed fre-

quency utility converters for actuator control and control of compressors for the environ-

mental control all require low-distortion three-phase outputs of controllable frequency and

amplitude. The PDM converter described in this report can generate such outputs and is

capable of bi-directional power flow required for such loads. Resonant converters need be

3



_ .= _

D

I

g

P

I

I

I

g

I-q
o

0

e-
O

cs_

¢)

°_iq

o

u.

_0

e-

c_
G_

°lii_
,iill

e_

.<
°°

_0
o_ii

4



used only for interfacing dc sources to the link, a function to which they are well suited.

For unidirectional dc power flow out of the link, transformer/rectifiers can be used. When

tighter regulation is needed, the rectifier can be replaced by a unidirectional PDM converter

with possible natural commutation of the devices.

In normal operation of such a system, link voltage build up and control would be per-

formed through a parallel output, series resonant (POSR) converter [7,8]. PDM converters

would interface the remaining loads/sources in the system and maintain average power bal-

ance at all times. The distinguishing features between traditional POSR converters and the

PDM converter will be described in subsequent chapters of this report. Because a large

number of converters in the system are of one basic type, the proposed implementation

produces a higher degree of uniformity in the system. This can be expected to result in in-

creased reliability of the system. Inherent bi-directional power flow capability of the PDM

converter means that the management of power in the overall system becomes somewhat

easier requiring no topological or control system changes. The proposed PMAD implemen-

tation is also well suited to the modular growth that is projected for the space station power

system.

1.2.2 Aircraft Secondary Power System.

Another potential application of a high frequency link power conversion system is in the

secondary power system of an aircraft. Secondary power in aircraft is needed for environ-

ment control, lighting, utility power, landing gear control, flight controls, de-icing, and a

host of other aircraft operation and environment related functions. In conventional aircraft,

these functions are handled by separate electric, hydraulic (primarily for flight control) and

pneumatic (anti-icing, environmental air supply, etc.) power systems that can add up to

equivalent power ratings of several hundred kilowatts.

Technical studies have shown that considerable advantages are to be obtained by using

electric power systems based on a high frequency sinusoidal voltage link for all secondary

power needs in the aircraft. For example, Hoffman and associates [9] have reported that if a

200 passenger modem transport aircraft such as Boeing 767 were to be redesigned with an

all electric secondary power system based on a 20 kHz, 440 V rms single-phase sinusoidal

voltage link, then aircraft weight savings of as much as 7700 Kg (17000 lb) would result.

The associated saving in fuel consumtions have been estimated at approximately 9 per cent.

Figure 1.2 suggests how the secondary power system of an aircraft may be implemented

using the 20 kHz link power system. The schematic shows one- half of the dual redudant

system in which all primary sources have access to either of the two links. Again, PDM

converters would be used as the primary interface converter in the system with a POSR

5
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converter used only to convert dc power into the link. Two 90 KVA induction generators

would operate from each of the two engines. The sizing of these machines, discussed in

detail in [9], is such that all essential loads can be supplied from just one machine so that the

system can operate with one engine and one generator out of service. In normal operation,

PDM converters would power the induction machines as motors to start the engines and then

operate them as generators for feeding the power into the link. A POSR converter running

from the battery supply can be used to build up and maintain the link voltage required

by the PDM converters. Galley and de-icing loads could be supplied directly from the

high frequency bus with minimal power processing. PDM converters would provide the

individual variable frequency supplies needed for controlling the actuators in flight control

systems. Fixed frequency utilities and environmental control system motors are supplied

with PDM converters.

The uniformity obtained in the system due to the versatility of the PDM converters

simplifies the implementation and increases reliablity of the overall system. Another major

advantage of the proposed implementation is that it is better able to manage the power flow

in the system due to the inherent capability (requiring no changes in circuit topology or

overall control strategy) of the PDM converter to reverse direction of power flow.

1.3 Brief Summary of This Report

A brief review of induction machine/high frequency link interface characteristics are out-

lined in Chapter 2 and the important properties required of these interface converter with

induction machine load/sources are summarized. Existing ac link topologies (most of which

are conversion function specific) are also discussed in Chapter 2. A parallel output series

resonant (POSR) type of high- frequency sinusoidal voltage link converter is examined in

Chapter 3.

Chapter 4 introduces the concept of zero voltage switching which is critical to the effi-

cient operation of interface converters and proposes a new pulse density modulated (PDM)

converter utilizing a parallel resonant LC tank to support the ac voltage link. The remainder

of Chapter 4 is devoted to a discussion of the technique of area-comparison pulse-density-

modulation (AC-PDM) which enables the realization of low frequency waveforms of con-

trollable frequency, amplitude and waveshape in spite of the zero voltage restriction on

converter operation.

Chapter 5 examines the overall operation of the experimental system. In particular, in-

teraction of the proposed POSR and PDM interface converters with the high frequency link

has been studied both with computer simulation and in hardware. Subsequently, steady state

and startup performance of the entire power conversion system has been examined. Oper-



ation with andwithout anexcitationinverterhasbeeninvestigatedanalytically.Chapter6
examinessystemoperationof thePDM converterwith avarietyof loadsandsources.Alter-
nativePDM configurationsarediscussed.Chapter7 summarizestheimportantaspectsand
conclusionsof thisresearchandidentifiesareassuitablefor furtherwork. Finally,Chapter
8 listssomeof thebibliographyrelevantto thisresearch.Computermodelshavebeenused
quiteextensivelyin this study.Developmentandexperimentalverificationof thesemodels
hasbeendescribedin AppendicesA to C at theendof this report.

To completethis introduction, a few remarks regarding the terminology appear rele-

vant. Many of the converters discussed in this report are capable of generating voltage or

currents waveforms at the low frequency end. In order to avoid repeated usage of current

or voltagewhen either is possible, the word signalhas been used as a generic electrical vari-

able. The term does not necessarily imply low power levels as the usage of this term some-

times does. Of course, the terms current and voltage are used individually wherever they

are specifically intended. When power converters with capability of bi-directional power

flow are involved, usage of input and output to refer to the converter ports (terminals) can

sometimes be confusing. Where misunderstandings appear possible, converter ports have

been referred to as high frequency end or low frequency end because of the wide frequency

separation that exists in the majority of converters discussed in this report.
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Chapter 2

Induction Machine - High Frequency
Link Interface Considerations

A key to the successful application of an ac or dc link power distribution system is the

ability of ac induction machines to operate from the distribution network. The squirrel

cage induction machine is an enormously versatile and extensive class of electrical machine

which can readily operate in both the motoring or the generating mode. The induction

machine inherently requires a three phase power source in order to maximize its iron and

copper utilization and to provide smooth electromagnetic torque. Since a high frequency

link constitutes, in effect, a single phase supply and it is clear that a power circuit interface

will be needed to supply three-phase voltages at the machine terminals from the single-phase

fixed frequency regulated voltage link. However, before discussing specific interface circuit

topologies for this purpose, it will be useful to first examine the basic terminal characteristics

of an induction machine during both motoring and generating operation.

2.1 Terminal Characteristics of Induction Machines

2.1.1 Reactive Power Requirements

It can be said that an induction machine is unique from all other electrical machines in that

it must obtain its excitation power from the same terminals through which the real power

flow also occurs, that is, through its stator terminals. When the machine is connected to

a source of reactive power such as the utility supply, the excitation component of power

is inherently supplied to the machine from the utility supply. However, if the network

10



receivingthe generatedpower is incapableof providing therequiredreactivepower (for

example, a passive load in a stand alone induction generator system) then a dedicated system

(exciter) must typically be provided for this purpose.

2.1.2 Operation with Sinusoidal Supply Having Fixed Frequency and

Amplitude.

Figure 2.1 shows the speed- torque characteristics of a three-phase squirrel cage induction

machine supplied from a fixed frequency, balanced, sinusoidal voltage source. When op-

erated from a fixed frequency supply, it can be noted that normal steady state operation

is limited to a narrow speed range around synchronous speed. This speed, synchronous

speedis equal to the supply frequency divided by the number of pole pairs. At synchronous

speed no currents can be induced in the rotor bars and as a result the machine develops

zero torque. For shaft speeds below synchronous speed, i.e. for positive values of slip,

the electromagnetic torque is positive and the machine operates as a motor. Operation at

speeds lower than the maximum positive torque (motoring breakdown torque) is normally

not feasible due to static instability of the resulting operating point. When shaft speeds are

higher than the synchronous speed, the power flow is reversed and the machine operates as

a generator converting mechanical energy into electrical energy which is then returned to

the supply. Operation at speeds above the maximum value of generating torque (generating

breakdown torque) is again not feasible as a normal operating condition.' Figure 2.2 shows

an equivalent circuit that is typically used to predict the steady state behavior of an induction

machine. Using this equivalent circuit, phasor diagrams for machine operating as a motor

(Fig. 2.3 (a)) and as a generator (Fig. 2.3 (b)) can be constructed. In this diagram the ref-

erence direction of current flow has been taken as positive when flowing into the machine

so that when the machine is generating the stator current has a negative real component.

The phasor diagrams demonstrate that the machine draws a lagging current from the supply

during both motoring and generation. This is a direct consequence of fact that the excitation

flux in a induction machine must be induced from the stator side regardless of the direction

of the real power flow.

2.1.3 Sinusoidal Supply Having Variable Frequency and Amplitude.

While some speed control is possible with fixed frequency operation, useful shaft speeds are

typically limited to speed variations less than ten percent on either side of the synchronous

speed due to the breakdown torque limitation. An effective method of extending the useful

speed range is to simply adjust the supply frequency such that the synchronous speed is in

the vicinity of the desired shaft speed. However, if the stator frequency is changed without

11
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alteringthemagnitudeof thestatorvoltage,theairgapflux increases(decreases)asthesta-
tor frequencyisdecreased(increased)dueto thefrequencydependentvoltagedropacross
thestatorimpedance.This changein operatingflux reducesthemachine'storquecapabil-
ity athigherfrequenciesandcausesmachinesaturationatlower frequencies.Ontheother
hand,if the statorvoltageis adjustedin proportionto thesupply frequency,(i.e. constant
Volts/Hertz)amachinewith nearlyconstantair gapflux results.Suchaconstraintbetween
voltageandfrequencypermitsthespeed-torquecharacteristicsto betranslatednearlyunal-
teredalongthespeedaxis (Fig. 2.4). As apracticalmatter,atvery low frequencies,stator
resistivedropbecomessignificantanda voltageboostbeyondtheconstantVolts/Hertzre-
lationshipis requiredin orderto preventadecreasein thedesiredvalueof theair gapflux
in themachine[ 1,2]. The proper algorithm for maintaining constant Volts/Hertz becomes

very complicated as the speed of the machine approaches zero.

2.1.4 Operation from a Converter Supply.

Power converters are commonly used to provide the controllable amplitude variable, fre-

quency supply that is needed to make the induction machine operate at variable shaft speeds.

Successful operation of the combined converter-machine system requires not only that the

converter be able to impress voltages (or currents) of controllable frequency and amplitude

on the machine, but at the same time be able to accomodate the resulting lagging currents

(or leading voltages in the case of a current source) of variable amplitude and phase. In ad-

dition, converter outputs are typically nonsinusoidal. Harmonics present in the impressed

voltages must be minimized in order to reduce undesirable effects such as heating and large

current peaks.

2.2 Desirable Characteristics of the Interface Converter

Induction motors can be considered as the workhorse of industry and would necessarily

form an important part of the load in any power distribution system. In addition, induc-

tion machines are increasingly being considered for use as generators, with operation in the

motoring mode occuring only occasionally for starting or for similar noncontinuous duty.

Induction machines are also widely used as actuators in which case frequent transitions be-

tween motoring and (re)generation may be needed. The characteristics of the interface con-

verter differs in the two cases in terms of the converter capability for inherent bi-directional

power flow. When interfacing a power converter with an induction generator, this motoring

capability is desirable but not essential provided that some adaptations are possible which

allow for the occasional motoring operation. On the other hand, actuator type applications

require frequent torque reversals and must use converters with bi-directional power flow

15
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capability. To avoid separate treatment of interface converters with otherwise similar re-

quirements, the bi-directional power flow capability will be taken as a desirable feature, but

converter topologies having only unidirectional power flow capability will not be automat-

ically excluded from consideration as a candidate interface converter.

Considerations which influence the choice of the interface converter topology are:

High Efficiency of Power Conversion. Poor efficiency not only implies loss of valuable

power but also results in increased system bulk and/or poorer reliability due to the

need to dissipate the losses.

Bi-Directional Power Flow Capability. This feature permits smooth transitions between

motoring and generation as discussed above.

Low Distortion Output to at Least 1000 Hz. Required in order to permit direct operation

of high speed machines for additional gains in system mass, volume and efficiency.

Simple and Reliable Means of Output Control. Control strongly influences the converter

topology and its performance capability.

Minimization of Voltage or Frequency Disturbances to the Link. Disturbances to the ac

link increases the degree of coupling among the various sources/loads operating from
the link.

2.3 Interface Converter Topologies.

Figure 2.5 shows converter topologies which might be considered for interfacing of a three-

phase induction machine to a single-phase high frequency link. A brief description of each

topology is given below. Table 2.1 summarizes the primary strengths and limitations of

each configuration.

2.3.1 Intermediate DC Link Converter, Fig. 2.5(a)

The intermediate DC link converter of Fig. 2.5(a) utilizes two ac-to-dc converters to estab-

lish an intermediate dc voltage or current link. DC energy storage provides a good buffer

between the load and the link resulting in a system that is well decoupled in terms of har-

monies and local transients. Although dc-to-low frequency conversion portion can employ

established technology, conversion to dc from an existing high-frequency voltage with in-

herent bi- directional power flow needs to be demonstrated. An uncontrolled rectifier may
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Of: ;,'.:%: ;,:.:,,

Configuration Block Major Advantages Major limitations
Schematic

[ntermediate-

dc

R_2sorlarl t corv¢-

crter with exicter

Resonant conv-

erter without

exciter

Phase-controlled

cyclocon verter

Pulse-densib'-

modulated

converter

Fig. 2.5 (a)

Fig. 2.5 (b)

Fig. 2.5 (c)

Fig. 2.5 (d)

Known tecknology for uni-

directional power flow. Good

decoupling through dc energy

storatge.

Straight forward machine

excitation control.

Efficient, one-stage power

conversion.

One-stage power conversion.

Inherent bi-directional power

flow capability. Known Tech-

nology.

Two-step power handling.

Show feasibility of operating

from a high-freq, link with

bi-directional power flow.

Limited output freq.

Demonstrate feasibility of

resonant converter interface.

Combined power rating

greater than machine rating.

Seeks dual role for resonant

converter neither of which

has been demonstated as

individually feasible.

Very high switching losses.

Varying (and lagging) power

factor reflected m the high-

frequency link. Sharp

voltage transients.

Fig. 2.5 (e) Efficient, one-stage power Needs an ac filter•

conversion with inherent bi-

directional power flow. Usable

with most type of sources/loads.

Table 2.1: Comparison of Converter Topologies
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beusedratherthanthecontrolledbridgebut thebi-directionalpowerflow capabilitywould
clearlybesacrificed.

2.3.2 Resonant Converter with an Exciter, (Fig. 2.5(b).

The remnant converter topology is particularly suitable for interfacing an induction gener-

ator with the high frequency link. The configuration could use a dedicated exciter to meet

the excitation needs of the generator and to maintain regulated ac voltages on the machine

terminals. Resonant converters, possibly one single-phase unit for each phase, would then

convert the low frequency three-phase generator output into the single-phase high frequency

voltage of the link. The Parallel Output Series Resonant (POSR) converter is favored for

the choice of resonant circuit topology because of its ability to generate high-frequency

sinusoidal power with high efficiency. However, the total rating of the exciter and the res-

onant converter can be expected to be higher than the generator rating since they represent

the algebraic (rather than the vector) sum of the excitation and the load components of the

generator kVA.

2.3.3 Resonant Converter Without an Exciter, Fig. 2.5(c).

This topology is also suitable primarily for interfacing generators to a high frequency link.

It would seek to perform the dual role of providing machine excitation as well as the conver-

sion of low-frequency three-phase generator power into single-phase high-frequency link

power. The converter would also be suitable for interfacing a conventional alternator or

a permanent magnet generator to the link. Potential efficiencies are high due to resonant

mode of power conversion. The power circuit of the individual converter may be adaptable

for the occasional motoring operation that may be needed to start the generator by operating

as a conventional cycloconverter.

2.3.4 Phase Controlled Cycloconverter, Fig. 2.5(d).

The conventional phase-controlled cycloconverter is able to generate three- phase low fre-

quency voltages of controllable amplitude or frequency thereby allowing motor or genera-

tion operation without any circuit modifications. The approach, however, would require a

link side filter to provide the necessary reactive power the commutate the bridge.
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2.3.5 Pulse Density Modulated Converter, Fig. 2.5(e)

Another class of converters which can perform the task of providing an interface between

the low and high frequencies are converters which operate on the principle of switching

only at points of zero voltage on the high frequency side. A zero-voltage-switching power

converter could synthesize three-phase low frequency voltages for the machine with power

flow in either direction. The technique of pulse density modulation would permit control

of amplitude and frequency of the synthesized signals in the presence of the zero-voltage

switching constraint. The scheme requires a link side filter for harmonic decoupling.

2.4 Topologies Studied in This Report

While closest to conventional technology, the dc link topology of Fig. 2.5(a) is not desirable

since it involves two-stage power conversion. In addition, voltage stresses and switching

losses resulting from the "hard switching" used in such conventional dc link converters are

likely to severely limit the capabilities and efficiency of this interface converter topology.

In this investigation, such a dc link converter interface for induction machine has not been
studied further.

The configurations of Figs. 2.5(b) and 2.5(c) were identified at the beginning of this

investigation with a hope to extend the favorable characteristics of such POSR's operated

from dc voltages sources to power conversion from low frequency ac sources. The power

circuit rating of the configuration with a dedicated exciter is significantly higher than it is

for a one-step power conversion (although still better than for the case of the intermediate

dc link). This advantage exists because the excitation and the real power component of the

machine current are handled separately resulting in a total power rating which depends on

the algebraic rather than the vector sum of these components. The topology of Fig. 2.5(c)

is an attempt to remedy this limitation and make the resonant circuit Figs. 2.5(d) and 2.5(e).

Section 3 of this report examines the feasibilty of these resonant circuit based topologies

and identifies some of the problems associated with the implementations.

The converter circuits of Figs. 2.5(d) and 2.5(e) are very similar in their power circuit

configuration but utilize fundamentally different techniques of control. Chapter 4 of this

report identifies some of the limitations of conventional phase angle control when it is used

in a high frequency link system (Fig. 2.5(d)). The report then goes on to propose a particular

pulse density modulated converter topology (Fig. 2.5(e)) and discusses how it may be used

successfully for the interfacing with a three-phase induction machine for either generator

or actuator type applications.

22



Chapter 3

Resonant Circuit Based Interface

Converter

Resonant converters are, perhaps, the oldest family of power converters having been devel-

oped before the age of modem solid state power devices. The family of resonant converters

is probably also the largest class of power converters since numerous circuit variations exist

which produce series or parallel resonance. One of the most useful of all resonant convert-

ers is the series resonant configuration in which the load is corg)ected in parallel with the

capacitor of the resonant LC tank. This converter has been called the Mapham converter in

honor of its inventor [1]. Recent work [2,3] has demonstrated that the Mapham converter,

hereinafter termed the Parallel Output Series Resonant (POSR) converter, is a very effec-

tive topology for conversion of dc voltages into low distortion high frequency sinusoidal

voltages. There is, therefore, considerable interest in adapting the POSR circuit for use with

ac inputs and in particular, for developing a topology for interfacing of induction machines

to the high frequency link. The first phase of the work in this project was directed towards

this goal and is described in this chapter.

3.1 The Parallel Output Series Resonant (POSR) Circuit

Figure 3.1 shows the basic circuit of a Parallel Output Series Resonant circuit in which the

inductor L and capacitor C form a series resonant circuit. It is important to note that the

load, represented by resistor R, is in parallel with the capacitor and not in series with the

resonant circuit as used commonly in induction heating type applications [4]. Unlike the

series connection, where the load sees essentially a constant current source, the parallel load

sees a nearly constant voltage source which is well suited to link type applications and is
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muchlessproneto stabilityproblems.

A highfrequencysinusoidalvoltageof thedesiredfrequency,fo can be generated across

the capacitor by gating the switch pairs 81, 84 and 82, 83 alternately with frequency fo. The

frequency ratio fo/f,,where f, is the resonant frequency given by

1

f' = e vz, (3.1)

The per unit quantity Io/f, is an important parameter of the POSR converter. Converter

operation is possible for the values of the switching frequencies both above and below the

resonant frequency. Operation above the resonant frequency is characterized by the need for

forced commutated devices, negligible turn-on losses in the main switches, and the use of

purely capacitive snubbers [2]. Conversely during operation below the resonant frequency,

fo/f, < 1.0, the tank circuit current leads the voltage applied across the circuit and makes

natural commutation of the switches possible [1,2]. In addition, the switch turn on losses

become nearly negligible since the converter switches now operate at the current zero point.

Because of its desirable properties, the naturally commutated POSR circuit is the only class

of resonant converter configuration that has been considered further in this investigation.

Figure 3.2 shows a modified form of the POSR circuit in which the resonant inductor

has been split and placed symmetrically in series with each of the converter switches. In

this manner the resonant inductor is made to perform the additional role of the di/dt in-

ductors which would be otherwise needed. The smooth transfer of current resulting from

this modification lowers the turn on losses in the converter switches, increases the circuit

turn-off time somewhat and simplifies circuit protection due to the increased impedance of

the shoot through path.

3.1.1 Circuit Operation of POSR Converter.

Circuit operation of the POSR converter is best described for the case of continuous capaci-

tor current using naturally commutated devices. Over frequencies of interest, a fast thyristor

reverse diode combination functions satisfactorily as the switch with the bi-directional cur-

rent and unidirectional voltage blocking capability. The frequency ratio, foil, for these

conditions of operation is likely to be in the range of 0.6 to 0.8. This range of frequency

ratio occurs because the lower values tend to produce a discontinuous capacitor current re-

suiting in markedly increased distortion and poor regulation of the generated high frequency

voltage. For example, foil, = 0.5 guarantees discontinuous operation. Operation much

closer to the resonant frequency, on the other hand, reduces the circuit turn off times and

leads to larger than needed circulating currents.

25



Vd

iI _ L/2
it

i3 _ L/2

TI

C

Ro

_1_ Vo_

L/2

L/2

Figure 3.2: Modified POSR circuit with the resonant inductor split and placed symmetri-

caUy in series with converter switches.
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Over the frequency, range of interest, three modes of circuit operation can be identified

for each half cycle of the generated high frequency voltage. Figure 3.3 shows the waveforms

and circuit diagrams associated with each of the three modes. In mode I, Fig. 3.3 (b), a pair

of thyristors conduct. As a result, the capacitor voltage charges with a resonant current pulse

in the forward direction. When the charge on the capacitor reaches and then exceeds the

supply voltage, the current pulse begins to decrease in amplitude. Mode I ends at the instant

the current pulse returns to zero and the conducting thyristors begin to turn-off. Mode II,

Fig. 3.3 (c), is then initiated by the capacitor which has now charged to its peak value and

which forces the reverse connected diodes into conduction. Firing of the second pair of

thyristors initiates mode III, Fig. 3.3 (d), in which the current transfers from the reverse

connected diodes to the incoming thyristor pair. Note that mode III would be nonexistent

if the inductances were lumped together into a single resonating inductance L and placed

in series with capacitor C in the manner of Fig. 3.1 or if the capacitor current becomes
discontinuous.

In order to improve understanding of the POSR converter a computer model of the con-

verter of Fig. 3.2 has been developed and verified. The model is described in detail in

Appendix B. Figure 3.4 shows an example set of circuit waveforms obtained using this

simulation model. In this Figure the input dc voltage is 90 V. The frequency ratio is ap-

proximately 3/4.

3.1.2 Converter Losses.

Converter losses are a key limiting factor when weight, size and cost are of major concern.

An important property of a POSR converter is that it can operate at tens of kilohertz without

the switching losses becoming prohibitively large. At turn-off, the voltage across the device

is limited by the reverse conducting diode. This turn off property ensures that the thyristor

turn-off losses remain small. The turn-on losses are also small if split inductances (Fig 3.2)

are used because the series inductances prevent the device current from rising to high levels

during the period of turn-on when the voltage across the device is still falling.

Since the converter operates with a fixed amount of circulating current it, therefore,

has fixed conduction losses. As a result, the total losses in a POSR converter do not vary

substantially with the load. Thus, efficiencies are generally lower under light load condi-

tions. However, at designed loads, efficiencies in the neighborhood of 95 percent can be

expected when switching at 20 kHz. By comparison, conventional topologies are likely

to perform much less efficiently at such a high frequency. The comparison becomes even

more favorable if losses associated with filtering, EMI suppression etc., which are needed

with conventional circuits, are taken into account.
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Figure 3.3: POSR circuit operation. (a) Typical circuit waveforms. (b) Mode I, pair of

thyristors conduct. (c) Mode II, reverse diodes conduct. (d) Mode 111, current transfers

from diodes to the next pair of thyristors.
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3.1.3 Effect of Loading.

Figure 3.5 shows simulated circuit waveforms of a POSR converter with a steadily increas-

ing resistive load. The input voltage is kept constant but otherwise no attempt is made

to regulate the high frequency voltage. These waveforms demonstrate the inherent volt-

age regulation capability of a POSR converter (better than 10 percent). Circuit turn-off

time,seen from the conduction time of the reverse diode (see waveforms of il and i2 ) de-

crease as the load increases. If the load is increased beyond its design value, commutation

failure may result if the devices are naturally commutated. Figure 3.6 shows the effect on

converter waveforms as the frequency ratio is steadily increased. It can be noted that the

frequency ratio, f,/f,, strongly affects the load and regulation capability of the POSR

converter.

Although a POSR converter works best with a resistive load, the converter can supply

non-unity power factor loads. A non-unity power factor (PF) load presents an equivalent

inductance or capacitance in parallel with the resonant capacitor, thus altering its resonant

frequency. Hence, a lagging PF load is analogous to operating at a lower value of frequency

ratio, f,/f,, causing increased distortion and a poor load regulation in the generated HI=

voltage. The situation with a leading PF is just the opposite. Operation is closer to the

resonant frequency, i.e. a higher fo/f, ratio. Although the regulation and distortion are

improved, circuit turn-off time is reduced. It is easy to recognize that the original choice

of frequency ratio determines the ability of the converter to handle nonunity PF loads. In

addition to the effects noted, discontinuous capacitor current or even loss of commutation

may also result if the load PF is worse than the minimum anticipated value.

3.1.4 Control of High Frequency Voltage.

In a POSR converter either the output frequency or the output voltage, but not both, may be

controlled. For a high frequency (HF) link type application, the POSR converter is likely

to be operated with a constant frequency. As noted earlier, the circulating current nature of

POSR converter operation gives it a built-in voltage regulation capability. If the inherent

voltage regulation is inadequate, then alternate means of regulating the capacitor voltage

are required. One possibility is to regulate the input voltage by the same degree as the

regulation required in the output voltage. When input voltage regulation is not possible or

is undesirable, the output voltage can still be regulated by series connection of two phase

shifted POSR converters if they axe clocked at the identical frequency. The net voltage

as well as the current for an assumed resistive load, is leading with respect to the capacitor

voltage in one converter and lagging in the other. The converter that sees the leading current

operates with an effective frequency ratio which is higher than its no load value and as a

results develops higher voltage and carries the larger portion of the load. Similarly, the
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other converter sees a lagging power factor and develops a voltage that is less than its no

load value. Thus, voltage control using series connection of phase shifted converters may

require careful attention to load sharing when the phase angles become large.

3.2 Circuit Adaptation for AC Inputs

A single-phase ac signal cannot be expected to generate a constant amplitude HF signal

since the output cannot be sustained when the input is going through its zero crossings.

Nonetheless, circuit operation with a single-phase input is of interest since it provides in-

formation useful for the more practical case of conversion from a three-phase input.

Operation from ac input requires that the devices have full bi- directional capability.

Besides the ability to conduct current of either direction, the switches are now required to

block voltage of either polarity. A reverse connected inverter grade pair of thyristors has

been assumed but clearly other device combinations are possible.

Figure 3.7 shows the circuit of a POSR converter modified for operation with an ac input.

Assume first that the ac source impedance represented by R/ and Li and the decoupling

capacitor Ci is not present. During the positive half cycle of the input, operation is the

same as for dc input except that the reverse connected thyristors perform the feedback diode

duty. Clearly, the changing level of input voltage must modulate the high frequency (HI:)

output. When the input voltage changes to a negative polarity, it is possible to either retain

the firing sequence 1 - 4, 2 - 3, 1 - 4 used during the positive half cycle or to reverse

it to 2 - 3, 1 - 4, 2 - 3. The subtle difference arising from this change of sequence is

of consequence only when adding two or more such signals, for example when working

from a three-phase input. In either case, the HF output voltage is modulated by the LF

(low frequency) input signal. Diode duty in the negative half-cycle is performed by the

forward connected thyristors. Figure 3.8 shows the simulated circuit waveforms for an ac

input of 100 V peak and a frequency of 1 kHz. No sequence change was done for this set
of waveforms.

3.2.1 Adverse Affects of Source Impedance.

The impedance of the AC source appears in series with the resonant components L and

C. Generally, the resistive component is small and its effect on the converter operation is

secondary. However, the reactive component, which can be of the same order of magnitude

as the resonant inductance L, adds with the resonant inductance reducing the effective value

of the resonant frequency. If the operating frequency is unchanged, as would be the case
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Figure 3.8: Circuit waveforms when operated from an ideal ac source of 100 V peak and a

frequency of 1000 Hz.
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normally,thefrequencyratio, .to/f, is effectivelyincreased.Thisresultsin reducedcircuit
tum-off timesandthepossiblelossof theability to naturallycommutatethedevices.If the
sourceimpedanceis known andrelativelyconstant,it mightbepossibleto incorporateit in
thedesignaspart of theresonantinductor. This might be feasiblein somespecialcases.
However,amoregeneralapproachwouldbeto avoidtheinteractioncompletelyby tuning
out the sourcereactancefrom theresonantcircuit by meansof asmallshuntcapacitor.

3.2.2 Decoupling Effect of an Input Capacitor.

Connecting a suitably sized capacitor in parallel with the input (Ci of Fig. 3.7) isolates

the source reactance from the resonant circuit. Simulation studies conducted in during this

investigation have shown that it is adequate to select C_ so that the product L_C_ is at least

three times the value of LC of the resonant circuit. Figure 3.9 shows the decoupling effect of

different sized input capacitors when the source impedance is Ri/Z = 0.25 and LdL = 1.0.

Fig. 3.9 (a) shows operation with a low value of LiCi/LC of only 1.3. Waveforms improve

significantly when the value of £,iCi/LC, of 3.3 is used (Fig. 3.9 (b)). Figure 3.9 (c)

shows that subsequent increase to 5 yields relatively smaller gains. Effectiveness of this

decoupling under load conditions is demonstrated by the waveforms of Fig. 3.10.

3.3 Circuit Topology and Operation for Three-Phase Input

Figure 3.11 shows a circuit topology in a generalized form that appears to be promising

for direct operation from a three-phase ac input. Although one POSR converter for each

phase is shown, the following discussion should apply to the case where two converters are

used in each phase and operated with phase difference for amplitude control (as discussed

earlier in Sec. 3.1). Depending upon the turns ratios and the polarities assigned to each of

the three transformers, several combinations of the three outputs can be realized. Operating

frequencies and the phase shifts assigned to each converter are the other degrees of freedom

in this generalized configuration.

Frequencies of the individual converters are likely to be same, since unequal frequencies

create an unbalance for the low-frequency source supplying the converters. Choices for the

phase shifts are more numerous. Two of these options have been investigated in detail.

36



":........ _IL_,=_!_, . :,_,_ ._,j_t_ _ ..

?.;tpu t .... ,-_ ...........................................

__o. ,.__._5,-_!::!: [.i.iiiF.L::!:= ::!:i-52t-;:'_:j=_=:A-:

(a)

(b)

(c)

Figure 3.9: Decoupling of the source reactance by using an input capacitor.

Source impedance is: Ri/_/C = 0.25 and LI/L =

LiCi/LC = 3.3. (c) LiOi/LC = 5.0.
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Figure 3.10: Decoupling under load conditions.
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Jl

Figure 3.11: Three-converter configuration of POSR converter for operation from a three-

phase low-frequency ac.
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3.3.1 120 ° Phase Shifted Gating.

In this case converters are operated so that the gating of the converter in phase b is phase

delayed with respect to the converter in phase a by 120 ° of the high frequency cycle, that

of phase e with respect to phase b and so on. Individual outputs, each one a high frequency

signal modulated by the low frequency input signal, are then combined in a+ b+ c fashion.

The combined signal is an unmodulated HF signal. However, its frequency is not the same

as the gating frequency of converters. It is, instead, a beat frequency, being the difference

of the gating and the input signal frequency. The simulated waveforms of Fig. 3.12 show

the individual and the combined signals. These results can be confirmed by the following

simple analysis.

Let the low frequency input voltage having an angular frequency wi be expressed as

via(t) = V_ sin ( toit ) (3.2)

2_

vi_(t) = V,n sin (wit - _ ) (3.3)

2_

vi,(t) = V_ sin (wit + _ ) (3.4)

Then each of the modulated outputs are given by

vo,(t) = Vm sin(wit) sin ( toot ) (3.5)

vob(t) = V_ sin(toit 2a') sin(toot - 2a"
3 if') (3.6)

2a" 2_"

vo,(t) = Vm sin(to_t + -_--)sin (toot + -_-) (3.7)

The combined signal is,

Vo(t) = vo,(t) + vob(t) + vow(t) (3.8)

which, after substitution and simplification, is given by the expression
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3

Vo(t) = 5Vm cos(too - toi)t (3.9)

This result confirms that the combined voltage is an unmodulated I-IF voltage which has

an amplitude of (3/2) times the amplitude of the low-frequency input. Its frequency is the

difference between the switching frequency and the low-frequency source frequency.

Other combinations of the individual outputs can be tried by combining (3.5) to (3.7)

with different gains and polarities. For example, a - b/2 - e/2 combination commonly

used in machine theory, gives

3

v,(t) = - _ V,,, cos( Wo + toi ) t (3.10)

which is also an unmodulated HF signal of beat frequency but has the magnitude of one-half

the value realized in (3.9). An a + b - e combination generates

Vo(t) = V_2 v,_ sin( o0° + wi )t - (V,,, sin Wot). sin _oit (3.11)

which is the combination of an unmodulated and a modulated term. The corresponding

simulated waveforms are shown in Fig. 3.13.

The beat frequency seen in the combined signal of (3.11) poses a two fold problem. De-

pendence on the uncontrolled input frequency makes it difficult to keep the link frequency

under strict control which is likely to be a system requirement. Worse still, even a resis-

tive loading of the combined signal is reflected back to individual converters as a load of

varying power factor because the frequency of the reflected current, being the same as the

frequency of the combined signal, is different from the frequency of the individual output

voltages.

3.3.2 Synchronized Gating.

When individual converters are operated in synchronism but with no other alteration in

their operation, the combined voltage can be shown to be either zero or a modulated signal

for all linear combinations of individual outputs. To appreciate this, (3.5) to (3.7) can be

modifiedto produce zero phase shift in the HF term and an expression for the combined

output can be derived in the manner of (3.9).
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bined as a + b - e.
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3.4 Feasibility ofPOSR Converter as an Interface Converter

As observed previously, a key performance characteristic is the performance of a converter

as an interface between the single phase HF link and a three phase ac generator. In the study

of the feasibility of such a configuration, it was decided that it was adequate to represent the

machine output as a three-phase voltage source. However, if an induction generator is to

supply power to the POSR converters then a mechanism of building up and regulating the

generator output must be found. One method might be the use of a special power converter

separate from the resonant converters just for this purpose. Such a dedicated exciter would

allow separation of the voltage generation and power conversion functions but would add

substantially to the overall power rating of the system. An alternative approach might be

to combine the two functions and use the resonant converters for the dual role of genera-

tor voltage control and power conversion into the high frequency link. It can be recalled

from the discussion of Sec. 2.1, however, that the excitation control of an induction ma-

chine requires that the machine be supplied with a lagging current of controllable magnitude

and phase. Thus, a dual role for the resonant circuit topology operating from an induction

generator would require the capability of controlling the magnitude and phase of the input

current of the converter while they simulaneously perform the power conversion function

with varying load conditions.

The work reported in the preceeding section has demonstrated that the three-phase low-

frequency to single-phase high frequency conversion function, although appearing possible,

has unresolved problems associated either with maintaining a constant link frequency or an

unmodulated voltage amplitude. As for the control of the phase angle of the input current

of the POSR converter, no mechanism is known at present. In addition, input capacitors

proposed for decoupling of the machine reactance from the resonant circuit of the converter

represent an additional component which cannot be eliminated. This feature is likely to also

further complicate any control mechanism that may be found which may enable regulation

of the phase angle of the input link current.

These unresolved problems concerning the resonant circuit topology for the interface

converter (for now, at least) have lead to the search for alternative topologies which are

capable of the high potential efficiencies of the resonant converter approach but which pose

fewer difficulties in their realization. One such topologly is discussed in the next chapter.
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Chapter 4

Pulse Density Modulated Interface
Converter

During the course of this investigation, a zero voltage switching ac- to-ac converter con-

figuration was identified which appears well suited to the role of interfacing three-phase

induction machines to the high frequency link. The converter has the advantage of a one-

stage power conversion but unlike the resonant circuit topology discussed in the previous

section, it is easier to implement and more versatile. This section describes the concept

and advantages of zero voltage switching, a control technique that is especially designed

for synthesizing signals with zero voltage switching and a power converter that uses this

control technique to interface induction machines to a high frequency link.

4.1 Modulation Considerations

4.1.1 Limitations of Phase Angle Control Cycloconverters.

One-stage power conversion from a three phase ac source has been conventionally imple-

mented using phase-angle controlled cycloconverters. Phase angle control permits contin-

uous control over the frequency and amplitude of the synthesized signal and hence could

be employed with a single phase ac link [1]. However, the technique becomes increasingly

unsuitable as the frequency of the link increases. This result occurs because the phase an-

gle control normally employed with these converters causes the current reflected back to the

link to have a variable (and lagging if naturally commutated) phase angle and also causes

the synthesized voltages to have high values of dv/dt. Even more serious is the fact that
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thelossperswitchingcyclein phaseanglecontrolis inherentlyhighdueto boththevoltage
andcurrentbeingnonzeroduring the switchinginterval. At high frequenciesthis feature
would leadto excessiveswitchinglossesin theconverter.

4.1.2 Advantages of Zero Voltage Switching

It appears that the limitations outlined above for the conventional cycloconverters can be

eliminated by restricting the device switching to the zero crossings of the high frequency

voltage. In this case, the switching losses are dramatically reduced since the voltage across

the switch is at or near zero value and therefore, the product of the switch voltage and

current during the switching interval is inherently low. Low voltages during switching

interval reduce voltage stresses on the device and allow the use of purely capacitive, lossless

snubbers. In addition, zero voltage switching causes the current reflected to the link to

be always in phase ( or 180 degrees out of phase) with the link voltage which makes it

much easier to control the frequency and distortion of the link voltage. Also, the voltages

synthesized with zero voltage switching become free of abrupt transients.

4.1.3 Technique of Pulse Density Modulation (PDM)

With the switchings restricted to the zero crossing point of the link voltage, a half cycle of

the link voltage become the basic unit of synthesis of lower frequency signals. Figure 4.1

illustrates how a lower frequency voltage having a nearsinusoidalfundamental component

may be "patched" from the half cycles of the high frequency voltage at the link.

Waveforms such as the synthesized voltage of Fig. 4.1 may either be directly pro-

grammed (analogous to programmed PWM for dc link systems) or, they may be generated

by using a regulation scheme (analogous to the Sine-Triangle PWM). Figure 4.2(a) shows

the block schematic of new proposed technique based on the concept of area comparison.

In this scheme, the area under the reference signal is compared with the area of the synthe-

sized signal. If the comparison indicates that the area of the synthesized signal is more (less)

than desired, the controller causes the next half cycle pulse to be applied so that this area is

decreased (increased). In this manner, voltages or currents having fundamental component

of dc, sinusoidal ac or any other smooth waveformmay be synthesized using one integra-

tor, comparator and a few logic gates. This simple implementation results in the density

of the half cycle pulses in the synthesized voltage to be modulated in accordance with the

amplitude of the reference signal. The term Area Comparison - Pulse Density Modula-

tion (AC-PDM) is suggested to differentiate it from the possible programmed method of

generating PDM waveforms.
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Figure 4.1: Pulse-density-modulated synthesis of a low frequency voltage.
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Figure 4.2: Area comparison - pulse density modulation (AC-PDM) scheme. (a) Block

diagram schematic. (b) Associated waveforms when the reference signal is adc voltage.
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4.1.4 Fundamental Relationships in Pulse Density Modulation.

• Figure 4.2(b) shows the waveforms associated with the controller of Fig. 4.2(a) when the

reference signal is a de voltage. Although Fig. 4.2(a) shows voltage feedback directly from

the synthesized signal, it is more practical to sense the fixed frequency ac link voltage and

then realize from it a scaled value of vzF by applying the same logic that drives the power

circuit. When synthesizing currents, of course, a direct feedback of current can be used.

The fundamental relationship of pulse density modulation for voltage synthesis can be

written as

e(t) f

= ! [ v'zF(t) - vzF(t) ] dt (4.1)
K ,/

where K is the total gain associated with the difference integrator and v*zF(t) and vLF(t) are

the desired and the actual values respectively of the low frequency signal. The term on the

right is'the volt-time area difference between the synthesized and the reference signal. The

feedback action of the controller has the effect of reducing this difference to the minimum

attainable in a given system. Clearly, if the commanded value of the voltage remains beyond
a maximum value then the controller will saturate. This maximum reference signal level is

given by

where VLF,,,,, is the maximum level of the dc signal or the peak value of an ac signal that

can be synthesized from a high frequency link voltage of peak value VHF. If the reference

signal is increased beyond this value, the controller enters into a saturated operating mode

where the behavior depends on the nature of the reference signal. For a dc reference signal,

onset of saturation is well defined and results in the synthesized signal having the waveform

of the rectified high frequency signal. In the case of a sinusoidal voltage reference, the sat-

uration begins at the peak region and gradually extends to full saturation as the reference

signal is steadily increased in magnitude• When fully saturated, the synthesized voltage

becomes a square wave composed of rectified half-cycles of the link voltage. Thus, if the

increased harmonic distortion is not a problem, the fundamental component of the sinewave

synthesized voltage voltage may be increased beyond the value given in Eq. 4.2 by a fac-

tor of 4/_'. It should be noted that the transition into saturation is automatic and gradual

unlike pulse width modulated inverters (PWM) in which sudden jumps in output voltage

fundamental occur when the inverter approaches maximum output.

In establishing the voltage relationships above, it has been assumed that the volt-time

area error is negligible. It can be shown [2] that the upper bound for this error is given by
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(1 + m)VsF

ea ,n,, <_ 21r/sy (4.3)

where m = VLF/VLF,_, is defined as the modulation index and VSF is the peak of the

link voltage. This inequality shows that for a given value of the link voltage,determined by

requirements of the signal amplitudes to be synthesized, the maximum error decreases with

an increase in the link frequency. This result states that the higher the link frequency the

better is the fidelity of the synthesis (i.e. reduced lower frequency harmonics and inreased

frequency at which the distortion occurs). Note that Eq.4.3 establishes a bound on the error,

the actual error is much smaller than this maximum value for the majority of half cycles.

When synthesizing low frequency voltages, ea ,,,,, may be compared to the area under one

half-cycle of the reference signal, A*LF. For sinusoidal reference signals this ratio is given
as

e.,t,n,,I < _r(1 + rn) fly (4.4)
Ab-I - 2 rn fsm

• Equation (4.4) shows that the lower order harmonic distortion in the synthesized voltage

decreases as the modulation index and the frequency ratio are increased. In an ac link

system, the modulation indices can be expected to be high when fixed amplitude voltages are

synthesized because the link voltage can be adjusted to suit the individual converter needs.

Variable voltage synthesis frequently used in motor control fortunately requires constant

Volts/Hertz characteristics. In such converters, the low values of the modulation indices

are compensated by correspondingly higher frequency differentials so that low-distortion

synthesis can be realized over a wide range of amplitude change.

It should be noted that Pulse Density Modulation is inherently a discrete process. Thus,

subharmonics and certain quantization noise are always present as part of the total distortion

in the synthesized signal. However, amplitude of the subharmonic falls off rapidly (as in

unsynchronized PWM [3]) as the frequency differential is increased. In the system under

consideration frequency differentials are likely to be large for most types of synthesized

signals. For these loads the subharmonics are not expected to be a serious concern.
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4.2 PDM Synthesis of Three-Phase AC

4.2.1 Converter Power Circuit.

Figure 4.3 shows two basic circuit topologies for a three-phase PDM converter operating

from a single- phase high frequency link. The major difference between the two circuits is

that while the three-converter circuit (Fig. 4.3(a)) requires a transformer, the bridge circuit

(Fig. 4.3(b)) can be operated without one. Three-converter circuit can be configured using

half- or full brigde configuration. Besides the difference in the number of devices and the

transformer rating, there is another more subtle difference between the use of half- and full

bridge individual converters. This difference arises from the fundamental inability of a half-

bridge configuration to apply a zero voltage at its output. A bridge circuit has the needed

path for circulating the load current that is needed to ensure zero output voltage.

- In order to establish feasibility and to determine some of the basic characteristics of a

PDM type interface converter, the ac bridge configuration of Fig. 4.3(b) was selected for

the initial investigation. Besides the advantage mentioned earlier of not always requiring a

transformer, the configuration is easier to understand and apply due to its circuit equivalence

to the popular de link bridge converter. Fig. 4.4 illustrates this analogy by comparing the

two bridge circuits. The DC link bridge converter (Fig. 4.4(a)) is a minimal power structure

that transforms a single-phase voltage of a fixed frequency (in this case zero, i.e. dc) to

three-phase voltages or current of controllable frequency and amplitude. A shunt filter (a

large electrolytic capacitor) provides a low impedance path to t e harmonics in the current

reflected back to the link by the switching action of the power circuit and thus, reduces the

distortion (resulting ripple) of the link voltage. Once charged, the filter offers a very high

impedance to the current of the link frequency (i.e. dc). The converter of Fig. 4.4(b) is,

like the de bridge, a minimal topology using six hybrid switches (but not necessarily the

same number of devices due to the need for blocking voltages in both direction), which

operates from a link of fixed frequency and regulated voltage and has a link side filter for

circulating harmonic currents. One possible link filter configuration is a shunt connected LC

tank circuit resonant at the frequency of the link. Once "charged", the tank circuit too offers

a high impedance to the current of the link frequency and a lower impedance to currents

of all other frequencies. The size of this tank circuit determines the amount of fluctuations

("ripple") in the link voltage much as it does for the dc link system.

4.2.2 Converter Power Switches.

Direct operation from an ac link requires that the power switches have bi-directional volt-

age blocking capability. Figure 4.5 shows some of the possible device arrangements that
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Figure 4.3: Power circuit for three-phase PDM converter. (a) Three-converter realization

using a transformer. (b) Three-phase bridge.
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maybe usedto realizesucha hybrid switch. Thefirst group,representedby Fig. 4.5(a),
usesdeviceswith a built-in voltageblockingcapability. Promisingamongthis groupof
devicesarethestaticinductionthyristors[4] andfast ( 5 #s or less)GTO's [5]. In thesec-
ondgroup,representedby Fig. 4.5(b)and4.5(c),arethedeviceswith no reverseblocking
capability.Prominentin this groupof devicesarepowerdarlingtons,powerFET's, static
inductiontransistors.MOS- IGT's or similarconductivitymodulatedswitchesbeingcur-
rentlymarketedbelongto thisgroupalthoughdeviceswith reverseblockingcapabilityhave
beenreported[6].

At first, it may appearthat anacbridgeoperatingfrom a high frequencylink would
requirea largenumberof veryspecialdevicesmakingthepowercircuit complexandunre-
liable.This howeverneednotbethecase.In fact,thedevicecapabilitiesneededfor aPDM
bridgeoperatingfrom alink frequencyin the neighborhoodof 20 kHz arenot markedly
different from thoseneededin thepresentdayPWM invertersoperatingat switchingfre-
quenciesnearlyoneorder of magnitudelower. This is becausetheswitchingfrequencies
of thePWM convertersarelimited essentiallyby thehigh lossesandthevoltagestresses
generatedasaresultof "hard"switchingfrom adc link. Thezerovoltageswitchingusedin
PDM convertersdrasticallyreducesthesestressesandallows thesamedevicesto beused
at higherfrequency.Even thevoltagerating of thedevices,which in theory favorsPWM
by a factor of 1.5, shouldin actualpracticebe muchcloser because the safety factor for

PDM devices can be made smaller as a result of the zero voltage switching and snubber ac-

tion that does not involve overshoots. The number of devices required is not necessarily a

problem because the same considerations (minimization of stray leakage, ease of manufac-

turing, reliability etc.) that have lead to the evolution of the present day hybrid switches for

the PWM inverters (transistor- reverse diode or GTO- reverse diode, etc.) can be expected

to eventually produce similar hybrid realizations suitable for operation from an ac link.

Although forced commutated devices have been discussed so far, it is entirely possible to

use naturally commutated devices such as inverter grade thyristors to realize power switches

for PDM converters. Automatic reversal of the ac link voltage offers the possibility of nat-

ural commutation of the devices. The difficulty arises with the need to establish circulating

current of appropriate polarity to achieve turn-off of the conducting device because it makes

the operation of the converter dependent on the power factor at the low-frequency end. The

major difference in operation with naturally commutated devices occurs during intervals

when the power flow is in the direction of the high-frequency link. For the duration of this

interval, the circulating current of the correct polarity is established only if the incoming

switch is fired in advance of the voltage reversal. The angle of advance is determined by the

commutation overlap (likely to be small due to the presence of the resonant tank capacitor)

and the turn-off time of the naturally commutated device. This advance firing increases

distortion in the synthesized voltage, makes it more difficult to control distortion and fre-

quency of the link voltage, and increases the switching losses in the converter. However,

the performance in all these aspects is still likely to be far superior to that of a conventional
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Figure 4.5: Realizations of the bi-directional switches (a) Using two reverse blocking de-
vices such as GTOs and static induction thyristors etc. (b) and (c) Using two unidirectional

voltage devices such as power darlingtons, IGTs, Power MOSFETs etc. (d) Using a single

unidirectional voltage device.
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phaseanglecontrolledcycloconverter.Whennearunity powerfactorloadsneedto besup-
plied from thehigh-frequencylink, useof naturallycommutatedPDM convertershouldbe
considered.

4.2.3 PDM Synthesis of a Balanced Set of Three-Phase Voltages.

Using the ac bridge power circuit shown in Fig. 4.3(b) and three independent AC-PDM

controllers (one for each pole) a balanced set of pole voltages can be realized. For ex-

ample, Fig. 4.6 shows a balanced set of sinusoidal voltages synthesized in this manner.

A computer model of the converter andthe AC-PDM controller has been used to simulate

these waveforrns. Appendix C describes the development and verification of the computer

model. Three phase-displaced reference signals having a frequency of 400 Hz and a peak

amplitude corresponding to 163 V (i.e. 115 V rms per phase) were used. The simulated

link frequency was selected as 20 kHz and the peak value of the link voltage was 500 V.

Figure 4.7 shows the PDM bridge output waveforms when supplying a wye connected R-L

load. The frequency of the synthesized signal in this case is 200 Hz. The modulation in-

dex is 76 percent. Near sinusoidal line current waveform indicates absence of any lower

order harmonics in the synthesized voltage (this will be later confirmed in Chapter 5 when

results from the laboratory breadboard are discussed). It can be observed that the link volt-

age, which had a nominal value of 450 V peak, now has a "ripple" due to circulation of the

reflected current harmonics through the tank filter.

The maximum line voltage that can be synthesized from a given link voltage using the

ac bridge circuit can be calculated using (4.2) and is given by

_/3VHF rm.
Vt-t ,n,,- - (4.5)

where V__: ,,_ is the rms value of the fundamental line voltage and Vuy ,m, is the rms

value of the link voltage. Thus, the ratio of the two rms quantities is

= "---- (4.6)
VH F rma "ff

This ratio is approximately 0.55. To provide some basis for comparison, a similar ratio for

de link PWM inverters would have a value of V/'3/2V_ -- 0.61. The ratios change when

the effect of dead times are included becoming still closer because dead times have smaller

effect in the case of a sinusoidal link voltages.
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4.3 Interfacing of Induction Machines Using PDM Bridge
Converter

It has been shown that the PDM bridge converter can be used to synthesize a balanced set

of three-phase voltages from the high frequency link. Also, varying the frequency and the

amplitude of the reference signal to the PDM converter has the effect of generating a nearly

sinusoidal voltage supply of controllable frequency and amplitude independent of the power

factor on the low frequency side. Earlier in Chap. 2.1 it was noted that a supply with such

characteristics is adequate for operating an induction machine with either direction of power

flow. The results of this Chapter clearly demonstrates this fact using computer models of

the machine and the PDM Bridge converter.

The induction machine model which has been chosen to study machine behavior when

operated from a converter supply is described in Appendix A. Since no specific machine

is under consideration, a 400 Hz, 210 V three-phase machine having parameters typical of

a machine in its class has been assumed for the purpose of this preliminary investigation.

The parameters of the machine are given in Table 4.1. The machine model was first tried

for simulating free-acceleration of the machine from a I I0 V, 200 Hz (i.e. Volts/Hertz = 50

percent) sinusoidalsupply. Figure 4.8 shows a typical set of simulated waveforms. The line

currents, speed and torque predicted by the model for this free acceleration test are typical

of a machine of this class.

The same machine was then fed from the PDM bridge circuit. Appendix C describes the

development of the model used for the PDM bridge. The converter output frequency was

controlled so that the slip, the difference between the converter frequency and the actual

rotor speed, corresponded to the amount and the direction of the desired power flow into

the machine. Fig. 4.9 shows the block diagram of this slip controller. Figure 4.10 shows

system waveforms as the slip frequency was controlled from zero to its rated value and then

reduced steadily to its rated negative value. In the process, the power flow from the PDM

converter went through a range of zero to full positive and then reversed to full negative

at which point the machine was operating as a generator feeding power back to the high

frequency link. These simulation results confirmed that:

.

.

There is no fundamental difficulty in having the proposed PDM converter feed an

induction machine from a high frequency link with the machine operating either in

motoring or generation.

Slip control strategy is adequate to cause the machine to change from motoring to

generation or vice versa.

3. The synthesized voltages have no troublesome lower order harmonics since the re-
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Ratedpower

Ratevoltage
Ratedfrequency

Ratedspeed
Statorandrotor resistance

Statorandrotorreactance

Unsaturatedmagnetizing
reactance

Normalizedinertia

7.5HP

210V

400 Hz

11200rpm

0.15pu

0.1pu

3 pu

0.2 s

Table4.1: Parametersof 400Hz., 210V.ThreePhaseInductionMachine.
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Figure 4.8: Simulated free acceleration of a 400 Hz induction machine. Machine parameters

are given in Table 4.1.
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.

4.4

°

sulting line currents are nearly sinusoidal. Thus, no filters are needed between the

PDM converter and the machine.

Frequency, amplitude or distortion of the link are not seriously affected even though

the power factor at the low frequency end is undergoing a wide ranging change.

Actuators requiring quick and frequent torque reversals can be supplied through PDM

converters.

Characteristics of PDM Converter as an Interface Con-

verter

The work carried out in this investigation suggests the following favorable characteristics

of the proposed PDM converter when used for interfacing of induction machines to a 20

kHz link.

• One-stage power processing.

• Low switching losses.

• Inherent bi-directional power flow capability.

• Low distortion synthesis to 1000 Hz.

• Flexible. Adaptable to voltage or current control and single- or three-phase machines.

• Capable of fast response needed for actuator control.

• Power circuit equivalence with the dc link bridge topology makes it easier to under-

stand and apply.

• Control through simple to implement pulse-density-modulation scheme.
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Chapter 5

Experimental System

As part of this investigation a laboratory breadboard was proposed and built. The principal

motivation for buiding a laboratory system was to experimentally verify the computer mod-

els used in this study and to demonstrate hardware feasibility of the proposed PDM interface

converter. A secondary objective has been to provide a basis for a possible industrial type
breadboard in the future.

5.1 Description of the Laboratory System

Figure 5.1 shows the block schematic of the laboratory breadboard as originally proposed.

The breadboard consists of single-phase and a three- phase PDM converters connected

through a single-phase 20 kHz sinusoidal voltage link. An exciter is connected to the high

frequency link for the purpose of starting and maintaining the link voltage. In a system

employing two (or more) PDM converters, the exciter is not required to participate in the

primary power transfer regardless of the direction of the power flow. In fact, operation with

the exciter entirely removed has been shown to be feasible as will be discussed under sys-

tem considerations in Chapter 6. Due to the limitations of time and resources, it was agreed

that initially, the portion of the system drawn with solid lines will be implemented in hard-

ware. It was felt that hardware demonstration of motoring using single PDM experimental

system along with the computer simulations of a two PDM system showing both motoring

and generation operation would be adequate for establishing the feasibility of the proposed
converter-machine interface.
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5.1.1 Excitation Inverter.

In the laboratory system ultimately implemented, the excitation inverter provides the high-

frequency power from which a PDM converter can operate to supply a three- phase load or

an induction machine. The system was designed for 3- phase 200 V, 22 A output from the

PDM converter with a maximum power capability of 5 kW. A parallel output series resonant

(POSR) converter (Chapter 3) was selected for the excitation inverter because of its high

efficiency and low distortion conversion of dc into a high frequency voltage. Figure 5.2

shows the power circuit used. Table 5.1 gives the component values used on the breadboard.

The resonant frequency, as determined by inductor L and the resonant capacitor C, is 28.8

kHz. However, The effective resonant frequency for the split inductor configuration tends

to be somewhat higher than the value determined by L and C because of the overlapping

of SCR and diode conduction (mode III, Sec. 3.1). The nominal output frequency was

selected to be 20 kHz. A frequency adjustment has been provided which allows the link

frequency to be set within a range of 18 to 22 kHz. The subresonant operation was selected

since it permits the use of naturally commutated devices. Asymmetrical SCRs with their

short turn-off times have been used. Currents in the two legs of the bridge circuit were

sensed using wide bandwith isolated current sensors. Converter control circuit uses these

current signals to sense impeding commutation failures and prevents them by blocking the

firing of the next pair of SCRs.

High frequency output of the POSR converter is connected through a series impedance

to the LC tank filter at the input of the PDM converter. The purpose of the series impedance

(currently an inductor, £,o ) is to force the tank filter to handle most of the harmonic current

reflected back by the PDM converter and thus require the POSR converter to deal mainly

with the average power flow. A series resistor .R0 is also brought in temporarily during

the period that the link voltage is being first being built up. The resistor is shorted out by a

relay after a delay selected to exceed the charge up time of link voltage.

The dc supply to the POSR converter was realized by rectifying the three-phase 60 Hz

supply. If the adjustments in the dc voltage input to the POSR and hence, the high frequency

link voltage are desired, a three phase variac (not shown) may be inserted between the

supply and the rectifier input. Figure 5.3 shows the power circuit of the rectifier supply.

The rectifier output has an active current limit with a foldback feature which safely shuts

down the dc bus if excessive currents are sensed. For example, if the POSR converter

were to suffer a shoot through (either because of commutation failure or due to a device or

component related problem), the limiter would sense the abnormal current and turn-off the

SCR's experiencing shoot-through by taking the bus current to zero. The fuses have been to

provide a backup protection. Table 5.2 gives the values of the important components used

in the breadboard dc supply.
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Figure 5.2: Power circuit of the breadboard POSR converter used to generate the High

frequency link voltage. Component values are shown in Table 5.1
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Component Circuit Symbol Key Specifications Comments

Asymetrical SCRs

Diodes

Resonant inductors

Resonant capacitor

Series inductor

Charging resistor

Relay

Current sensores

Snubber

T1 -T4

D1 - D4

L1-L 2

L3-L 4

C

Ls

Rs

a0A, 800 V, t q <alas

63 A, 800 V, t rr = 0.2 )_s

331.1/-I, a6 A pk,

27 la.I-I, 46 A pk

0.5 )a.F, 38 A, 2000 V pk

82 la.I-I,30 A

68 ohms, 50 W

30 A, 230 V, SPDT

100 A, 1000:1, DC-100kHz

100 ohms, 25 W

0.01 txF, 1600 VDC

Marconi ACR25U08L

IR 40HFL80S02

Litz wu'e, femte core

Litz wire, ferrite core

Two GE97F8522FC
in series.

Magnacraft W 199X-2

LEM LT 100-S

Sprague 715P series

Table 5.1: Component values of the breadboard converter.
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Component Circuit Symbol Key Specifications Comments

Diode bridge DB 1, DB2 35 A, 600 V Motorola MDA3506

Fuses F1,F2,F3 20 A, 600 V KAC 20

Choke L d 5 mH, 22.5 A

Capacitor C d 2400 IxF, 450 V Two GE86F925TA

Current limiter Q CL 50 A, Vceo(sus) = 450 V GE D66DV6

Fuse F4 20 A, 600 V KAC 20

Sense resistor R CL 0.05 ohms, 50 W Two RH-50

Capacitor C d2 200 Ix.F,300 V

Table 5.2: Component values of the rectifier supply of Fig. 5.3.
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5.1.2 Three-Phase PDM Converter.

Figure 5.4 shows the power circuit of the breadboard PDM converter. It converts the single-

phase high frequency output of the POSR converter into low frequency three-phase volt-

ages of controllable frequency and amplitude. Of the bi-directional switch realizations

discussed in Sec. 4.4, the two-transistor inverse series connected configuration (Fig. 4.5

(c)) was selected because of the ready availability of the suitable power darlingtons. In

addition, the majority of power darlingtons have internal reverse connected diodes which

reduce the number of required power connections and thus, help minimize stray inductance

in the circuit. Also, the common emmitter connection that results in this configuration is

convenient when driving the darlingtons. (This realization is, however, somewhat sensitive

to the the reverse recovery characteristics of the internal diodes. If the internal diodes are

slow then large recovery currents occur at switching instances). Each bi-directional switch

in the PDM power circuit has a capacitor and a MOS-varistor for snubbing and protection.

The absence of series resistance in the snubber, made possible by the zero voltage turn-on

of the switches, ensures losses snubbing action. Note that the snubber capacitors appear in

parallel with the filter tank capacitor. Table 5.3 gives component values used in realization

of the circuit of Fig. 5.4.

Like the electrolytic capacitor of adc link system, the LC tank filter at link side of the

PDM converter is designed to store a predetermined amount of energy. In order to minimize

the losses associated with this energy storage it is necessary to design the tank circuit with

as high a Q value as is practical. Thus, the tank capacitor should have a low dissipation

factor while handling large currents at the tank resonant frequency. General Electric 97F85

series polypropylene film capacitors were used. Their performance with respect to both the

current handling capability and the losses has been very satisfactory. Unlike the capacitor,

the inductor has to be specially designed so that the various loss components (e.g. core

losses, conduction losses and the eddy current losses in the conductors and fixtures) are

optimized to produce a minimal total loss. Initially, an air-cored inductor wound with a

litz wire was used to get started. Subsequently, an inductor with a ferrite core was used.
Performance of these inductors is noted in Sec. 5.2.

5.1.3 PDM Converter Control.

The Area Comparison - Pulse Density Modulation (AC-PDM) scheme, described in Sec.

4.3, was used to control the low frequency output of the PDM converter. Three identical

circuit channels were used to control each of the three poles of the bridge. Figure 5.5 shows

block schematic of one of these channels. Reference signals for the three channels were

identical in frequency and amplitude but were phase shifted with respect to each other by

120 °. The feedback signals required for implementing AC-PDM control were obtained by
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Figure 5.4: Breadboard realization of the three-phase PDM bridge. Component values are

shown in Table 5.3.
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Component Circuit Symbol Key Specifications Comments

Power - T 11 - T 62 50 A, Vceo(sus) = 500, MJE 10016

darlingtons Vcev = 700 V, t s = 5 ItS

Snubber capacitor C 1 - C 6 0.047 g.F, 1200 VDC Sprague 715P series

Fiher capacitor C T 3.0 It.F, 1000 Vpk, 114 A Three GE97F8522FC

Filter inductor L T 22.5 t.d"I, 120 A Litz wire, Femte core

Current sensors 100 A, 1000:1, DC-100k_Hz LEM LT 100-S

Table 5.3: Component values of three-phase PDM bridge.
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sensing the link voltage with a signal transformer and applying to this isolated and scaled

signal the same logic that fired the power circuit of the bridge. In this way, the difficult

task of feeding back pole voltages of variable frequency and amplitude was avoided. Low

frequency line currents were sensed in the usual manner. They were used for device selec-

tion, for sensing zero crossing of line currents at shut down of the converter, and to provide

warning of the overcurrent condition in the lines.

5.2 Test Results and Discussions

The exciter and the tank filter portions of the system were first tested individually. The entire

breadboard was then tested with a three-phase wye connected RL load at the output of the

PDM converter. Finally, the system was operated with a three-phase induction machine.

5.2.1 Excitation Inverter.

The excitation inverter was disconnected from the rest of the system and was run first at no

load and then with a resistive load. Table 5.4 shows the no load losses of the converter at

different input voltage levels. The losses are proportional to a 3/2 power of the voltage.

Table 5.5 gives the measurement results under resistive load conditions. Note that the con-

verter losses do not change proprtionately with load. In fact, variations with load are quite

small. This result is typical of POSR converters which operate with a large circulating cur-

rent and thus, have poor efficiencies at light loads. As load is increased, the losses increase

somewhat in the SCRs but decrease in diodes and the resonant inductors resulting in a net

loss that is not significantly different from its corresponding no load value. The converter

efficiency of 90% at partial load can be expected to increase to 95 to 96% at the full load

value of 6 kW. Instrumentation limitations and the fact that the efficiency of the exciter has

only a secondary role in the proposed power conversion system were the reasons for not

verifying the converter full load efficiency. Figures 5.6 (no load) and 5.7 (with load) show

typical circuit waveforms observed on the breadboard.
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Vd icl Pd VHF VHF/Vd (VHF) _5/Vcl

(V) (A) (W) (V rms)

Comments

48.8 0.35 17.1 78.4 1.61 40.8 switching freq.

100.4 0.5 50.3 163.4 1.63 41.8 fixed at 19.3 kHz.

162.8 0.68 110.7 269.0 1.65 39.9

200.0 0.75 150.0 325.0 1.63 39.1 with 230 V ac

Table 5.4: No load losses of excitation converter at different input voltage levels.
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Vd id Pd VHF iHF PHF Efficiency

(v) (A) (kW) (V rms) (A rms) (kW) (%)

I(_) 162.3 4.65 0.76 257.3 2.77 0.67

2 (1) 161.8 7.35 1.19 240 4.76 1.07

3 (2) 161.5 7.5 1.21 249 4.47 1.11

89.3

89.6

91.8

Notes 1. High frequency power measurements with Nicolet 4096.

2. High frequency power measurements with Yew 2533.

Table 5.5: Measured results under resistive load.
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(a)

(b)

Figure 5.6: Typical waveforms observed on the breadboard POSR converter at no load. (a)

Upper trace: Capacitor voltage, vc; 250 V/div. Lower trace: Capacitor current, i,; 12.5

A/div. (b) Upper trace: Switch voltage, vr4; 125 V/div. Lower trace: Switch current, i4;

12.5 A/div. Time scale: 12.35/_ s/div.
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(a)

(b)

Figure 5.7: POSR converter waveforms with resistive load of 1.27 kW. (a) Upper trace:

Capacitor voltage, vc; 250 V/div. Lower trace: Capacitor current, ic; 12.5 A/div. (b) Upper

trace: Capacitor voltage, v,; 250 V/div. Lower trace: Switch current, i4; 12.5 A/div. Time

scale: 12.35/_ s/div.
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5.2.2 Tank Filter.

The POSR converter was next operated with the PDM converter. Converter itself was not

fired initially so that only the tank filter loaded the POSR output. At start, tank filter has

no stored energy. POSR circuit capabilities would be exceeded if the uncharged tank is

suddenly switched to the POSR output or if the POSR converter is started with the filter

present on its output. The problem is avoided by inserting a resistor, R0 in series with

the POSR output and charging the tank circuit in a controlled manner as discussed earlier.

Figure 5.8(a) shows this controlled charging of the fihcr tank circuit. A charging resistor

of 68f_ was used for a duration of about 300ms. Note that the actual charging time for

this particular test was less than 2 ms. In this system, adjustment of the exciter switching

frequency allows for fine tuning of the link frequency and the tank resonant frequency.

However, experimental work has shown that circuit operation is not affected if the tank

circuit is not perfectly tuned. Nonetheless, a significant detuning would cause reactive

currents to flow from and to the filter even when the PDM converter is off. Figure 5.8(b)

shows detailed waveforms of the link voltage and current after the link voltage build up has

been completed. Note that the tank resonant frequency matches the link frequency in this

case. As a result the current is nearly in phase and flows only to supply the losses in the
tank circuit.

It is unfortunate that, wide bandwidth wattmeters needed for accurate and direct mea-

surement of 20 Id-Iz power were not available during this study. Instead, the losses in the

tank circuit were measured using two independent methods. One method involved the use

of Nicolet 4094 oscilloscope equiped with isolated, high-bandwidth voltage and current

probes from which power measurements can be obtained using built in multiplying and av-

eraging functions. The second method involved indirect measurement of these losses by

measuring the POSR converter losses with and without the tank circuit on its output. This

appears to be an adequate procedure considering that the losses in the POSR converter itself

do not change significantly under load. Table 5.6 shows the measurement results when the

air-cored inductor (measured Q of 81 at 133 V rms) was replaced with the inductor wound

on the ferrite core. Although, losses in the inductor and the capacitor were not measured

individually, very low dissipation factors specified for the capacitor and the lack of any

noticable temperature rise in capacitor casings suggested that the majority of the losses oc-

curred in the inductor which had a substantial temperature rise. The tank filter Q of 180 is

very encouraging considering that little or no special efforts or materials have been used in

realizing the LC tank circuit. These measurements show that there is no serious problem

in realizing tank circuit Q's in the vicinity of 200. Since little or no special effors were

required in achieving the measured tank circuit Q's of 180, it is reasonable to assume that

with special efforts and materials Q's greater than 200 to 250 can be realized. Although it

had a high Q, the design of this particular ferrite inductor was thermally compromised due

to suitable cores not being available in time. Limits on the power dissipation have, in turn,

limited the maximum voltage at which the hnk can be operated continuously to about 280
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(a)

(b)

Figure 5.8: Controlled build up of the high frequency link voltage. (a) Link voltage and

current during build up. Upper trace: Link voltage, VHF ; 250 V/div. Lower trace: Link

current, iBv ; 5 A/div. Time scale: 198.35/_ s/div. (b) After build up has been completed.

Upper trace: Link voltage, vHF ; 250 V/div. Lower trace: Line current, it/F ; 5 A/div.

Time scale: 24.75/_ s/div.
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POSR Nicolet
measurements measurements

Vd VHF fHF Loss,PL Q Loss, PL Q

(V) (V rms) (kHz) (W) (W)

194.8 318.9 19.32 229.7 162.1 234 159.1

164.5 257.9 19.29 131.7 185.2 136 179.3

119.9 188.4 19.28 67.3 193.5 72.4 179.9

89.7 143.5 19.29 36.8 205.5 40.0 188.8

51.8 84.3 19.31 13.2 197.2 13.6 191.4

Table 5.6: Measurement results on tank filter Q using ferrite cored inductor.
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V rmscomparedto its designvalueof 370V rms.

5.3 PDM Converter

5.3.1 Pulse Density Modulation.

The performance of the AC-PDM scheme was tested by varying the frequency and am-

plitude over a wide range. For example, Fig. 5.9 shows line voltage waveform when the

reference signal had a frequency of 400 Hz and the modulation index was near unity. The

high frequency link voltage was 292 V rms at a frequency of 19.3 kHz. Corresponding

harmonic spectrum is shown shown in Fig. 5.10(a). It is clear that the discrete nature of
AC-PDM controller causes slow variations in the waveforms. As a result the harmonic

spectrum changes from one sample to another. To obtain information more representative

of a given operating point, a 10M- sample unsynchronized rms averaging was used. Note

that well defined harmonics occur only as side bands of the switching frequency (38.6 kHz)

which is twice the link frequency. The amplitude of these peaks is about one-third of the

fundamental for this case. Such higher order harmonics pose no serious difficulty even if

no filters are used since most loads, particularly machine loads, are unable to respond to

such high frequencies.

Figure 5.10(b) demonstrates that distortion in the lower frequency range, a potential

problem with electrical machine loads/supplies, is practically absent in the AC-PDM syn-

thesis. The harmonic content over the medium frequencies depends on the relative ampli-

tude of the output voltage to the link and the frequency of the reference signal. Note that

there are no dominant peaks in the distortion which appears to be dispersed almost evenly

over a braod range. As a result, the audible noise (such as the noise from a motor fed

from PDm converter) is less bothersome than the tonal noise associated with PWM type

waveforms. The dispersement of the distortion appears to be a result of free running of

the synthesized frequency with respect to the link frequency and the feedback nature of the

AC-PDM implementation.

Clearly, the controller capability to suppress the low-frequency distortion degrades the

harmonic spectmha once the AC-PDM modulator begins to saturate. This result is illustrated

by the line voltage spectrum when the controller is fully saturated and the line voltage

is a quasi-square wave composed of rectified half-cycles of the link voltage, Fig. 5.11.

An increase of 4/x in the fundamentalcomponent and the characteristic fifth, seventh, etc.

harmonic components are observed as expected. Finally, Fig. 5.12(a) shows line voltage

spectrum for the case of a low value of the modulation index. The frequency is 60 Hz and

the modulation index has been reduced proportionately so that the frequency to amplitude
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Figure 5.9: Line voltage waveform observed on breadboard PDM converter. Fundamental

frequency is 400 Hz and the modulation index is unity. Voltage scale: 250 V/div. Time

scale: 198.35/_ s/div.
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Figure 5.10: Harmonic spectra associated with the line voltage waveform of Fig. 5.9. Am-
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Figure 5.12: Spectra of the line voltage at 60 Hz. (a) Proportionately reduced modulation

index. The volts/Hertz is the same as in Fig. 5.9. Amplitude scale: 3 V/div. Frequency

scale: 500 Hz/div. (b) Modulation index of unity. Amplitude scale 20 V/div. Frequency

scale: 500 Hz/div.
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ratio is the same as in the synthesis of the 400 Hz signal. Figure 5.12(b) shows the spectrum

when the modulation index is again increased to its full value of unity. It is apparent from

this test data that the AC-PDM converters can synthesize low-frequency voltages having

a wide range of frequencies and amplitudes with little or no lower order distortion being

present.

5.3.2 Passive R-L load.

The system operation was then tested with the PDM converter supplying a wye connected

R-L load in which the inductor was fixed but the resistance could be varied. Figure 5.13

shows a typical set of line voltage and current waveforms observed on the breadboard.

Corresponding line voltage spectrum of Fig. 5.14 confirms that the AC-PDM controller

continues to suppress lower order harmonics under load conditions. Figures 5.15 and to

5.16 show other key waveforms of the PDM converter.

For example, the waveform (Fig. 5.15(a)) of the current reflected by the bridge converter

to the link is of considerable interest. Its harmonic spectrum (Fig. 5.15(b)) shows that the

reflected current, which must depend on the PDM switching action, is rich in harmonics.

Link voltage and current waveforms (Fig. 5.16(a)) show that the tank filter is able to handle

the reflected current harmonics with acceptable levels of distortion in the link voltage.

The spectrum of the link side current (Fig. 5.16(b)) shows that as a result of the capa-

bility of the tank to circulate the harmonic currents, the link current spectrum is essentially

of link frequency. It is clear therefore that the link has to deal primarily with the average

power flow.

Figure 5.17 shows typical voltage and current waveforms observed across one converter

switch. The waveforms demonstrate the zero voltage switching of the PDM converters.

Small deviations from the ideal of zero voltage switching, however, still occur due to the

variations in the storage times of the power switches. Capacitors connected directly across

the switch (lossless snubbers) help minimize the effect of these deviations on the overall

performance of the PDM converters. The currents flowing in the snubber capacitor cause

the "ripple" superimposed on the device normal current. The sharp peaks are due to the

relatively slow recovery of the internal diodes in the low cost Motorola power darlingtons

used in the converter. Diodes with faster recovery or alternate bi-directional realizations in

the manner of Fig. 4.5(a) or 4.5(b) should significantly reduce or eliminate these spikes.
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Figure 5.13: Typical set of line voltage and current waveforms observed on the breadboard

with a wye connected R-L load. Upper trace: Line voltage, v,,_ ; 250 V/div. Lower trace:

Line current, i= ; 12.5 AJdiv. Time scale: 3.9675 ms/div.
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Figure 5.14: Frequency spectrum of line voltage waveform of Fig. 5.13. Amplitude scale:

30 V/div. Frequency scale: 500 Hz/div.
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mVrmo

SLOP, 50 000 Hz
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Figure 5.15: Chn'rent returned to the link by the PDM bridge convener. (a) Link voltage

and returned current waveforms. Upper trace: Link voltage, vnrF ; 250 V/div. Lower trace:

Returned current, ii ; 12.5 A/div. Time scale: 198.35/_ s/div. (b) Spectrum of the returned

link current, it. Amplitude: 10 A full scale. Frequency scale: 5 kHz/div.
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Figure 5.16: Filter action. (a) Link voltage and current waveforms under R-L load. Upper

trace: Link voltage, vHF ; 250 V/div. Lower trace: Line current, i_,F; 12.5 A/div. Time

scale: 298.35 # s/div. (b) Spectrum of the link current, iHF. Amplitude: 10 A full scale.

Frequency scale: 5 kHz/div.
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Figure 5.17: Typical voltage and current waveforms observed across one switch of the

PDM converter. Upper trace: Switch voltage; 250 V/div. Lower trace: Switch current;

12.5 A/div. Time scale: 24.75/_ s/div.
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5.3.3 Induction Machine Load.

Although the PDM converter is capable of full bi-directional power flow, the breadboard

system as currently configured can only supply average power until the proposed second

PDM converter can be added. In a two PDM converter breadboard, the machine can be

operated either as a motor or a generator as was demonstrated in computer simulations of

Sec. 4.5. If sustained or frequent generation is not needed, then the addition of a dynamic

braking capability in the form of resistive dissipation of the energy received at the link might

be an option. Since neither of these options has been implemeted on the breadboard yet,

the machine was run simply as a motor to demonstrate basic feasibility.

In the lab the induction machine was fed from the PDM synthesizer which applied volt-

ages having a fundamental component of controllable frequency and amplitude. As dis-

cussed in Chapter 2, such voltage fed operation of induction machine requires that voltage-

to-frequency ratio of the impressed voltages be kept essentially constant so that the ma-

chine main flux remains unchanged as the machine speed is varied. This requirement was

realized by making the frequency command to the PDM converter an independent vari-

able determined by the desired machine speed and then deriving the voltage command is

from a Volts/Hertz function generator which is designed to produce a constant main flux

in the machine. Figure 5.18 shows how the Volts/Hertz function was implemented using

two linear approximations. The lower segment represents a simple approximation of the

boost needed to compensate for the stator resistive drop at low frequencies. Machine rat-

ings (rated voltage, VR and rated frequency, fR ) and the controller gains for voltage

(Vt-t,,,,/V_* = 30.6 ) and frequency ( f/V] = 42.35 (Hz/V)) outputs determine

the implementation for a given converter. For example, a 220 V, 60 Hz machine and a 200

V, 400 Hz machine would have slopes of 5 and 0.689 respectively in the PDM controller
described in this Section.

In addition to these changes, a soft start feature and a current limit were added to the

PDM controller for operation with the machine. The soft start is achieved by regulating the

rate of increase of the frequency reference, V/" to a predetermined value. This has the effect

of regulating the machine acceleration rate (within the capabilities of the machine and the

power converter). Figure 5.19 shows line voltage and current waveforms during soft start

of a 60 Hz, 220 V induction machine from a PDM bridge converter. Current limit provides

a useful protection under overload conditions. It was implemented on the breadboard by

comparing the magnitude of the line currents against a preset value. The controller allows

adjustment of this preset value over a wide range.

Figure 5.20 shows a typical set of machine voltage and current waveforms when run

from the PDM converter. Fig. 5.21 shows the associated spectra. As seen with passive

loads, there are no lower order harmonics in the voltage waveform (Fig. 5.21 (a)). The

current spectrum (Fig. 5.21(b)) shows that a cage rotor induction machine does an excellent
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Figure 5.18: Approximation of the voltage-frequency function for constant machine flux.
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Figure 5.19: Line voltage and current waveforms during soft start of a 60 Hz, 220 V induc-

tion machine fed from a PDM converter. Upper trace: Line voltage, v=b; 250 V/div. Lower
trace: Line current, i=; 5 A/div. Time scale: 158.7 ms/div.
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Figure5.20:Typical setof machinevoltageandcurrentwaveformsobservedon thebread-
board.Uppertrace:Line voltage, v=b ; 250 V/div. Lower trace: Line current, i,, ; 5 A/div.

Time scale: 3.9675 ms/div.
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Figure 5.21: Spectra of the machine voltage and current. (a) Spectrum of the line voltage,

v°b. Amplitude scale: 20 V/div. Frequency scale: 500 Hz,/div. (b) Spectrum of the line

current, i° Amplitude: 4 A full scale. Frequency scale: 100 Hz/div.
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job of filteringthehigherfrequencyharmonicssothatthesehaveaminimal influenceupon
torqueproductionandthepowerflow in themachine.

If regenerationor dynamic braking capabilities are not present, shut down of the PDM

converter poses a problem when load includes inductors or a machine with its back emf.

With dc voltage link converters, reverse diodes and the link capacitor provide a sink for the

uncoupled reactive energy of the load and therefore shut down involves simply turning off

the main devices. Such a procedure in PDM conveners may cause damage to the convener

devices since no path remains available for the reactive energy in the load. The problem

can be eliminated by providing an alternate path (e.g. a load side crowbar) in parallel to

the PDM converter output. A more elegant and equally effective method for a three-phase

PDM bridge is to detect low current condition in lines and then turn-off the associated poles

of the bridge individually. The waveforms of Fig. 5.22 illustrate this safe shut down of the

PDM bridge.
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Figure 5.22: Line current waveforms showing safe shut down of the three-phase bridge

converter. Upper trace: Line current, ib ; 5 A/div. Lower trace: Line current, i,, ; 5 A/div.
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Chapter 6

System Operation

This chapter discusses means by which a wide variety of loads and sources, in addition

to induction machines, can be interfaced to the system high frequency link using PDM

converter proposed in Chapter 4. This discussion suggests that a system configuration,

based largely on the use of PDM converters is well suited to a diswibuted power conversion

system. The remainder of this section discusses the operation of such PDM converters

based system.

6.1 PDM Synthesis of Single Phase AC and DC

The PDM converter is inherently a versatile power converter configuration. Its power struc-

ture is made up of bi-directional switches thereby allowing maximum flexibility in power

conversion. The control technique of area comparison - pulse density modulation (AC-

PDM) proposed in Sec. 4.1 is also very general. It restricts only the frequency and am-

plitude of the synthesized signal relative to that of the link. Thus, PDM converters should

be able interface single-phase sinusoidal ac or dc voltage or currents to the high frequency

link.

6.1.1 PDM Synthesis of DC or Single-Phase AC Voltages.

A full bridge (Fig. 6.1), a transformer/half bridge (Fig. 6.2(a)) and a center tapped induc-

tor/half bridge configuration (Fig. 6.2(b)) are basic power circuit topologies possible for the

synthesis of dc or single-phase ac voltages. Besides well known differences in the num-
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Figure 6.1: Full-bridge power circuit of a single-phase PDM converter.
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Figure 6.2: Alternate power circuits. (a) Center tapped transformer. (b) Center tapped

inductor.
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ber and voltage ratings of the required devices and the volt-amp ratings of the transformer

secondary when a transformer is used, there is another important difference among these

circuits when they are used for PDM type synthesis. This difference is best described by

refering to the waveforms of Fig. 6.3. This figure illustrates several of the different ways in

which a dc voltage may be synthesized using PDM type synthesis. The waveform of Fig.

6.3(a) is composed of combinations of all three of the voltage levels (i.e. zero, positive pulse

and negative pulse) that are possible in the circuit. Such a waveform results when a full-

bridge circuit is used with its two poles being controlled independently using two equal but

out of phase reference signals. Note that this consititutes a direct adaptation of the three-

phase PDM converter of Sec. 4.4. Figure 6.3(b) shows a PDM waveform composed of

positive and negative pulses only. The pole voltage of the full-bridge or the output voltage

of a half-bridge or center-tapped circuit always has this type of waveform. Figure 6.3(c)

shows a third type ofPDM waveform which is composed of zero levels together with levels

that correspond to the instantaneous polarity of the reference signal. This type of waveform

is sometimes called a commutated waveform and can be realized by direct synthesis of the

line voltage in a single-phase bridge circuit using a single reference voltage corresponding

to line voltage. Note that a bridge circuit can be made to generate any of these three types

of waveforms. The other two topologies, on the other hand, can produce only the waveform

of Fig. 6.3(b) because circuit paths needed to force a zero voltage interval on the output are
not available in these circuits.

The waveforms of Fig. 6.3 differ not only in their harmonic content but also in the

current they cause the converter to reflect back to the link. For a given load current, the

commutated waveform (Fig. 6.3(c)) causes fewer reversals in the instantaneous power at

the link. Further investigations of this aspect was not undertaken due to the limitations of

time. It is desirable to do so in the future, however, since it may be helpful in reducing the
size of the link side tank filter.

The waveforms of Fig. 6.4 are an example of the PDM synthesis of a single-phase ac

voltage. In this figure a 120 V rms, 60 Hz voltage has been synthesized from a 300 V peak,

20 kHz link voltage using a full bridge power circuit. A single reference signal correspond-

ing to the line voltage output was used. The commutated was obtained by constraining

the synthesis to two levels (zero and the level corresponding to the instantaneous reference

signal polarity). A dc voltage of either polarity can be synthesized by simply changing the

reference signal to a dc voltage. The input-output voltage relationship of a full bridge PDM

converter is

2VHF
VZE ._, - (6.I)

where Vr.y ,,_, is the maximum level of the dc signal or the peak value of the ac signal.

Thus, the ratio of the output to link rms voltage for the case of full-bridge ac synthesis is
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(a)Three-level(i.e. zero,positiveandnegativepulses).

(b) Twolevel - without zero. (i.e. using positive and negative pulses).

(c) Two level - with zero (i.e. using positive and zero pulses when the reference signal is

positive and negative and zero pulses when it is negative).

Figure 6.3: Waveforms types for PDM synthesis of a voltage.
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Figure 6.4: PDM synthesis of a 120 V rms, 60 Hz voltage using a full-bridge. Note that the

waveform is the commutated type.
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VLF rm, 2
- (6.2)

VHF rm8

which is approximately 63.7 percent. Corresponding expressions for half-bridge circuit

have been derived in See. 4.1.

6.1.2 PDM Synthesis of Single-Phase Currents.

If synthesis of de or single-phase ac currents are desired rather than dc or ac voltages the

same PDM converters can be used. However, the low-frequency current, instead of the

voltage, must then be fed back to the AC-PDM controller. If low-frequency current is not

smooth then it may be necessary to add a suitably sized inductor to limit the amount of

ripple current. Figure 6.5 shows an example of dc current synthesized using a single-phase

PDM bridge. In Fig. 6.5 the current reference signal was set to zero so that a zero current

was synthesized feeding into a 115 V dc source. A 2 rnH inductor was used to limit the

current ripple. During synthesis, the polarity of the dc source was reversed to show the

controller capability to automatically adjust to changing conditions at the low-frequency

end. Note that the response to the step change in circuit voltage occured in one- half cycle

of the high frequency link voltage. Figure 6.6 shows the circuit operation when this same

converter was commanded to draw a current of 10 A from the 115 V dc source.

6.2 Proposed System Configuration

The demonstrated versatility of PDM control suggests a power conversion system config-

uration that uses only PDM converters to interface the majority of sources and the loads

in the system to the high frequency link. PDM based system holds the promise of high

efficiency, modularity, and a high degree of uniformity with significant improvements in

controllability and reliability of the overall system.

6.2.1 Description of the System Configuration

As discussed in Chapter 1, a power conversion system based on a high frequency link is be-

ing considered for the forthcoming orbiting space station. Initial power requirements for the

space station have been estimated at 75 kW level with modular growth to a level of 300 kw.

Although the sources and loads may vary in type and number, this same basic configuration
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Figure 6.5: PDM synthesis of dc current into a dc source. Current command, i_y was set

to zero. e,_ = 115 V, L_ = 2 mH and Vsy = 300 V.
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appliesto otherapplicationssuchasthesecondarypower systemof the newergeneration
of transportaircraft,spacecraft2000,recentlyproposedtransatmosphericvehicleandother
suchsystemsrequiringdistributedpowerat multi-kilowatt levels. Figure6.7againshows
a proposedimplementationof suchdistributedpowerconversionsystemsusingthePDM
convertersastheprimaryinterfaceconverterin thesystem.

Theproposedconfigurationutilizesasingle-phase20kHz sinusoidalvoltagelink. The
single-phaselink allows local circulation of reactivepower associatedwith three-phase
loadsor sourcesthroughpowerconverterswitchingaction.This capabilityof powercon-
vertersto circulatesomeof thereactivepowerassociatedwith.balancedthree-phaseloads
meansthatthetraditionalassumptionof betterefficiencythroughthree-phasedistribution
shouldnot beappliedautomaticallyto power conversiondistribution systemsinvolving
powerconverters.Useof a single-phaselink alsoreducesthenumberof powerdevices,
sensorsandprotectionelementsin thesystem.Redundancyis maintainedby dividing the
entiresystempowerrequirementamongtwo or moreidentical systems.Powerbalanceis
maintainedin the systemat all timesby matchingthe powerreceivedfrom the source(s)
andthepowerdeliveredto theloads. It is possibleto useadedicatedpowerconverterto
regulatehigh frequencylink voltagefrom which thePDM converterscanoperate.How-
ever,this studyhasshownthatif resonanttanksareusedasacfilters thenthe link voltage

can be built up and maintained without requiring a dedicated converter in the system for

just this purpose.

This and other aspects of the system operation have been studied using the computer

models that are described in Appendices A to C. In order to limit the size of system model

and yet provide a good idea of the system operation a reduced system, shown in Fig. 6.8, has

been simulated. The inductance/.,t represents the combined estimated value of the induc-

tance of the ac link together with the leakage inductance of one high frequency transformer.

6.2.2 System Operation and Control.

Since the operation of PDM converters depends on the availability of a high-frequency

voltage at the link, a means of developing and regulating this link voltage is needed for

satisfactory operation of the entire system. One method of achieving this task is to have a

dedicated exciter in the system charge up the resonant tanks. The converters are operated

with PDM control once the desired link voltage has been established. The exciter then

regulates the link voltage but plays no role in the average power transfer in the system.

Because of its role in regulating the link voltage, the exciter must share temporary energy

storage with the resonant tank circuits. The sharing determines the nature of the link voltage

regulation function of the exciter converter. For example, low values of energy circulation

permit regulation of only the "average" value of the link voltage magnitude. A more active
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regulation(ona cycle-by-cyclebasis)requiresatemporaryenergystoragecapacityin the
exciterthat is comparableto or largerthan thatof the tankfilters. The energystoragein
theexciter canbeprovidedby a largeelectrolyticcapacitorif a dc input exciter is used.
Electrolyticcapacitorsarewell suitedto energystoragefunctiondueto their high energy
storagedensities,low lossesandlow cost.Exciterpowercircuit lossescanbeminimizedby
usingresonantcircuit topologies[1]. TheParallelOutputSeriesResonant(POSR)circuit
of Chapter3 is oneexampleof suchtopologies.

The systemdescribedin Fig. 6.8 wasfirst operatedwith a dedicatedexciter. For this
reducedsystem,averagepowerflow balanceis straightforward.Theaveragepoweron the
link sideof converter#1 was monitored and used as an input to a closed loop controller

#2. With this implementation the exciter supplied the tank losses and maintained the link

voltage amplitude (averaged over several cycles) to near its nominal value. The generation

of current reference of converter #2 was then modified to include the link voltage amplitude

control. Figure 6.10 shows the performance of the voltage peak detector that is used to

realize the added voltage regulation function. Figure 6.11 shows the modified controller

where a voltage control loop has been added. Figure 6.12 shows the system waveforms

with the exciter removed and the link voltage regulated by the modified controller of Fig.

6.11. These waveforms show that with minor modification of the controller, the system can

be operated without an exciter.

6.2.3 Effects of PDM Converter Operation on the Link.

It is useful to again consider the waveforms of Figure 6.6. In particular, note the waveform

of the current reflected back to the link. This waveform is typical of the reflected current

waveforms observed in zero voltage switching PDM converters and illustrates several key

high-frequency-end characteristics of such converters. First, the polarity changes in the

reflected current always coincide with the zero crossings of the link voltage. Thus, the

variable phase angle associated with a phase-angle-controlled cycloconverter is not present.

However, the magnitude and the polarity (with respect to the link voltage) of the current

vary as a function of the PDM switching and the instantaneous value of the low frequency

end current. It is clear that a mechanism for temporary energy storage is required at the

link side of the converter so that the instantaneous power swings can be accommodated and

so that the currertt drawn from the link can be made to correspond to average power flow

conditions. DC voltage link converters have similar requirements and is, in fact, the role of

the dc link capacitor in such systems.
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Figure 6.9: Controller for maintaining average power balance in the modeled system.
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Figure 6.12: Waveforms showing system operation with the link controller of Fig. 6.11.
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6.2.4 Link Filter.

A parallel connected LC tank circuit resonant at the frequency of the link plays the same

role in an ac link system as the electrolytic capacitor in a dc link system. Once "charged",

it offers high impedance to the currents of the link frequency and lower impedance to the

currents of all other frequencies. By locating the capacitor of the tank circuit to close to

the converter power circuit bus, the impedance seen by the high frequency components of

the reflected currents is minimized so that they do not cause any significant distortion in

the link voltage near its zero crossing points. The waveforms shown earlier in Fig. 6.6

were recorded with the presence of such a tank filter at the link side of the converter and

demonstrate that a PDM converter is capable of handling the fast changing currents and

the instantaneous power swings if a tank type filter is present on the ac side. It can be

noted that the link voltage waveform and amplitude are still affected because of the desire

to keep the the filter capacity small and minimize losses associated with the filter. How

much filter capacity is adequate depends on such factors as the amount of "ripple" that can

be tolerated on the link, the power circuit topology, the implementation of PDM technique

(i.e.three- or two-level synthesis etc.), the number of PDM converters operating from the

link, and the frequency characteristics of the link impedance, etc. It appears that a capacity

of 3 to 5 times the peak low frequency current may be required if none of these factors are

favorable. Investigation into alternate topologies and optimization of capacities of these

filters is recommended as among the areas of further study.

6.3 Effect of the Link Voltage "Ripple".

While the resonant LC tank removes the large majority of the ripple in the ac link a small

amount of ripple remains. In particular, note the link voltage "ripple" in the waveforms of

Fig. 4.10 and again in Fig. 6.12. Note also, however, that the link voltage ripple has no

noticable effect on the fundamental component of the low-frequency synthesized current

as seen from the resulting current waveforms. Similar results were observed on the labo-

ratory breadboard. This reduced sensitivity to the link voltage variations is a direct result

of the feedback mechanism of the AC-PDM controller which automatically compensates

for changes in link voltage amplitude. Of course, if the link voltage variations are allowed

to become excessive the PDM controller may saturate and then the synthesis of the fun-

damental component will clearly be affected. Excessive link voltage variations may also

increase distortion in the synthesized voltage, cause device voltage overratings and result in

excessive currents to flow from and to the filter. If excessive voltage variations are present,

then some auxiliary means of limiting the voltage swings (such as active voltage clamps)

may be needed.
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6.4 System Start Up.

It has been demonstrated that the system can be operated without an exciter once the link

voltage is available to run individual converters as the PDM converters. However, the

question remains as to how the link voltage is established in the first place. This situation

is not unlike a dc link system having PWM type bi-directional converters on each end.

In that system, some means of charging up the link capacitor is needed before the PWM

converters can operate. By analogy, controlled "charging" of the tank filters is needed in

the ac link system before the PDM converters can be brought into their normal operation.

This controlled charging can be achieved through the bi-directional power circuit of the

converter connected to a source. If a converter in the system is already programmed for dc

current operation (as converter #2 in Fig. 6.8) from a de emf then the start up is straight

forward. The waveforms of Fig. 6.13 demonstrate the link voltage build-up using converter

#2. In particular, a current is built up in the low-frequency side inductor by shorting the

low frequency end of the converter. As this current approaches a predetermined value the

switches are made to operate normally thus causing energy to transfer from the inductor to

the link resonant tanks. The transition to PDM converter operation with synthesis of just

enough current needed to sustain this voltage is automatic for this type of current controlled

converter.

If none of the converters in the system are connected to, or can be switched to a dc emf,

it may still be possible to start up the tanks from a low-frequency ac emf since at least, one

source in the system is assumed. Hence, the slow changing emf amplitudes together with

the bi-directional devices in the system can be viewed as simply an approximation of a dc

emf supply. This aspect of system start up, however, needs to be studied further.

6.5 Characteristics of the Proposed System.

A power conversion system based on a high frequency (20 kHz) sinusoidal voltage link

can be expected to have the following favorable characteristics. The features that can be

attributed directly to the proposed PDM based configuration have been highlighted by the

use of italics.

1. Flexibility of adjusting link voltage to meet diverse needs.

2. Well suited to a modular system design.

3. I-h'gh system efficiency due to one-step zero-voltage-s_tching power conversion.
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Figure 6.13: Waveforms showing link voltage build-up in the modeled system using con-
verter #2.
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4. High degree of system uniformity that increases system reliabili(y.

5. Easy isolation of grounds for safety and for the reduction of electrical noise and

crosstalk.

6. Easy and fast isolation of a faulty converter module.

7. Reduced system size and weight.

8. Added safety because of the energy limited characteristics and better human sensi-

tivity at higher frequencies.

9. Faster system response.

10. Elimination of audible noise associated with the link frequency. Reduction in audible

noise associated with low frequencies synthesized with PDM.

11. Accepts and delivers energy at low-frequencies but shifts the interference to higher

frequencies.

6.6 References

1, R. L. Steigerwald, I-h'gh-frequency resonant transistor de-de converters, IEEE Trans.

Ind. Elect., vol. IE-31, pp. 181-191, May 1984.
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Chapter 7

Conclusions and Suggestions for
Further Work

7.1 Conclusions

In this report a static power conversion system based on a high-frequency voltage link has

been proposed. The system uses a single-phase 20 kHz sinusoidal voltage link for power

conversion and temporary energy storage. Choice of a high frequency ac link permits the

use of link side trasformers for voltage matching, to operate section(s) of the system at

higher (or lower) voltage levels, and to obtain electrical isolation for safety or noise sup-

pression purposes without compromising system size and weight. Zero voltage switching

pulse-density-modulated (PDM) converters have been proposed for one-step interfacing of

system sources and load to the link. Zero voltage switching prevents high switching losses,

excessive device stresses during switching, or high values of dv/dt's in the generated wave-

forms but allows benefits of high speed switching such as high converter bandwidths, high

maximum frequencies in generated waveforms, reduction of low frequency distortion, fast

and easy isolation of faulty converters, and others. Thus, the combination of ac link power

distribution and high speed switching gives the proposed system a unique set of system

characteristics which are summarized below.

• A modular, utility type system capable of handling a wide variety of loads/sources

having wide ranging voltage level requirements.

• Easy isolation of grounds for safety and/or noise reduction and isolation.

• High system efficiency due to one-step zero-voltage-switching power conversion.
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A highdegreeof uniformity andsomewhatincreasedreliabili_ in thesystemdueto
theuseof onebasictypeof interfaceconverter.

Easyandfast isolationof a faultyconvertermodule.

A verycompactandlight weightsystem.

Addedsafetybecauseof theenergylimited characteristicsandreducedhumansen-
sitivity to the20 kHz link frequency.

• Fastersystemresponse.

• Eliminationof audiblenoiseassociatedwith thelink frequency.Reductionin audible
noiseassociatedwith low frequenciessynthesizedwith PDM.

Capability to acceptanddeliverpowerat low-frequenciesbutrelagateinterference
to higherfrequencies.

Thisresearchhasshownthatzero-voltageswitchingpermitspowerconvertersto operatedi-
rectly off a highfrequencylink withoutincurringhighswitchinglossesor excessivedevice
stresses.Theoreticalandexperimentalwork havebothdemonstratedthat pulse-density-
modulation is a very effective techniquefor providing zero-voltageswitchingconverters
with a control over frequency,amplitudeandthe waveshapeof thefundamentalcompo-
nent. As a result,a whole classof powerconvertersarepossiblethat can interfacedc or
ac, single-or three-phase,voltageor currenttype loads/sourcesto the link with one-step
powerconversionandwith inherentcapabilityof bi-directionalpowerflow. Operationof a
three-phasebridgePDM converterwith athree-phaseinductionmachinehasdemonstrated
that:

A PDM converteroperatingdirectly from a high frequencylink is able to control
inductionmachinein bothmotoringor generationmode.

Machinevoltageor currentsdo nothavetroublesomelower order harmonics.Ade-
quatefiltering of thehigh frequencyripple causedby thePDM converteris doneby
the machineitself. Thus, no filters areneededbetweenthePDM converteroutput
andthemachine.

With adequatefilters on theaclink side,frequency,amplitudeor the waveshapeof
the link voltageis not adverselyaffectedwith machineoperation.

Quickandfrequenttorquereversalsneededfor actuatorcontrol appearto beachiev-
ablewithout anydifficulty.
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Computerstudiesandthedatafrom thebreadboardhavehelpedidentify thefollowing
salientcharacteristicsof theproposedPDM converters.

• One-stagepowerprocessing.

• Low switchinglosses.

• Inherentbi-directionalpowerflow capability.

• Low distortionsynthesisto 1000Hz (from a20kHz or higherfrequencylink).

• Adaptableto voltageor currentcontrol andsingle-or three-phaseloads/sources.

• Capabilityof fastresponseneededfor actuatorcontrol.

• Powercircuit equivalencewith thedclink bridgetopologyresultingin asystemwhich
is easierto understandandapply.

• Control throughsimpleto implementpulse-density-modulationscheme.

7.2 Suggestions for Further Work

Flexibility and scope of the proposed high frequency link configuration is such that consid-

erable opportunities exist for further work in this area. Some of the promising areas have

been identified below.

7.2.1 Active Energy Storage in the Link.

It has been shown that POSR converter can be used for temporary energy storage in the sys-

tem. Further work is needed to evaluate the effectiveness (in terms of cost, losses, voltage

swings on the link, etc) of this and other circuit topolgies for active energy storage with or

without additional passive energy storage (such as LC tanks) in the system.

7.2.2 Alternate PDM Circuit Topologies.

Alternate power circuits for PDM converter should be studied and compared with the strate-

gies identified and studied in this research. For example, a three-converter topology (Fig.
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5.1(a))wasidentifiedfor threephasePDM converters.It remainsnecessaryto determineif
this topologywouldproducesmallervariationsof theinstantaneouspoweron thelink side
of theconverteror hasotherfeatureswhicharesuperiorto thebridgePDM circuit that has
beenstudiedthusfar.

7.2.3 Study of Switching Strategies.

The study of the switching strategies for zero voltage converters initiated in this research

should be continued. In particular, the pulse-density-modulation technique needs to be ex-

amined further in order to fully understand the characteristics of this type of controller. In

addition, alternate implementations of PDM (as illustrated in Fig. 5.11) need to be char-

acterized for their effect on the variations of instantaneous power at the link side of the

converter. The objective should ultimately be to minimize the overall requirements of tem-

porary energy storage in the system.

7.2.4 Alternate Filter Configurations.

A parallel tank circuit tuned to the link frequency has been shown to be an effective filter

topology for PDM converters. However, further work is needed to investigate if alternate

topologies (for example, with an additional series branch on the link side) are capable of

better performance (measured in terms of reduced circulating current, increased decoupling,

etc.)

7.2.5 Application to Dedicated Power Conversion Systems.

Applications identified in Chapter I should be studied in greater detail. In particular, appli-

cation of the proposed high frequency link approach to specific power conversion functions

should studied further with industrial applications in mind. Such reduced order systems are

easier to implement and afford optimizations specific to the system to be incorporated. Of

particular promise are areas of uniterruptable power supplies and alternate energy power

generation.
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7.2.6 Further Experimental Work.

As planned, the laboratory system should be expanded to include a second PDM converter.

This capability would allow full bi-directional power flow capability in the system. This

capability that has already been shown to be feasible in the computer simulations carried

out as a part of the work reported herein. The expanded breadboard can then be used for

experimental verification of induction machine operation with fast, bi-directional control of

torque as needed for actuator type applications. Sustained reverse power operation as re-

quired for interfacing induction generators to the link should also be experimentally demon-

strated. Experimental system can be used for development of suitable control strategies in

each case. Characterization of power devices and other power components required in high

frequency link systems is another area suitable for experimental work.
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Appendix A

An Induction Machine Model with

Saturable Main Flux

When induction machines axe operated from power converters, it is often necessary to study

behavior of the machine under transient and variable speed conditions so that converter-

machine interactions can be studied adequately. Differential equations which describe the

machine behavior under these dynamic conditions involve time-varying coefficients due to

the relative motion of the rotor with respect to the stator. Fortunately, this problem can be

resolved by transforming both the stator and rotor variables to a common reference frame.

These transformed equations, called Stanely's equations, form the basis of induction ma-

chine modelling.

Machine models based on Stanely's equations have been developed and used for many

years. However, saturation of the main flux in the machine is often neglected in the devel-

opment of these models. This is a good compromise when the main flux saturation is known

to be small or a minimal model is desired even at the cost of some accuracy. If the induc-

tion machine is to be operated as a generator then incorporating the main flux saturation

is generally desirable. This is because for a given terminal voltage, the machine operates

with higher levels of main flux when operating as a generator. In addition, if the generator

operation is of self-excited type then the conventional model with unsaturable main flux

cannnot be used at all.

This appendix describes the development and verification of a model for an induction

machine which incorporates the saturation of the main flux. A simple modification allows

this general model to be reduced to the special case of the conventional model with unsat-

urable main flux.
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A.I Development of the Model

The starting point for deriving a machine model are the machine equations transformed

to an orthogonal d q n reference frame, rotating at an unspecified angular speed w,

the so called arbitrary reference frame. The transformation of the machine equations from

their phase variable form (with rotor position dependent inductances) to this generalized

reference frame has been adequately described in the literature, e.g. [1]. The transformation

used is summarized by the following matrix representation.

fq_ = [ T(8 ) ] .f,_ (A. 1)

where

cos(0) cos(0 - 2_'/3) cos(0 + 2a'/3)

sin(8) sin(0 - 2a'/3) sin(0 + 21r/3)

1/x/_ 1/x/_ 1/V/2

(A.2)

and 0 = f to dt + Oo . The vector f represents voltage, current or flux quantities.

The transformed equations are of the form

vq, = r,iqo + pAqo + WAd° (A.3)

you = r°id° + pA_. - toAqo (A.4)

vn° = roi.° + p_,,° (A.5)

' '" w,))_, (A.6)vq, = r,,,, + p;_, + (to -

r,s_ + p),_ ( co tor))_ (A.7)

I ! "/ I
v,, = r,3_,,, + p)t,,, (A.8)

where p = d/dt, to, is the rotor speed, to is the angular speed of the rotating d - q axes and

the primes denote rotor quantities referred to stator. The flux linkages above are related to

currents in the following manner
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A_. = Lt°iq° + A,nq (A.9)

A,_ = Ltoid, + A,_ (A.IO)

A,, = Lt, i,, (A. 1I)

Lb% , + A.. (A.12)

= Lt,$_,+ A,,_ (A.13)

,_/p I •l= Lt,$,, (A.14)

• ., )A._ = L,.(,q. + ,_ (A.15)

A,,_ = L,,( i,_ + i'd,) (A.16)

where Ld., is the magnetizing inductance which in general is flux dependent. Equations

(A.8) to (A.12) can be rewritten to express currents in terms of the flux linkages. For ex-

ample

( Aq, - A,,_ ) (A.17)
lqj =

Lt,

Using (A. 16) and similar expressions for the other current terms, currents can be eliminated

from (A.2) to (A.7). The resulting equations are written in terms of reactances and modified

flux linkages, e.g. Xto = tobLt° and _bq° = to, Aq, where to, is the base angular speed of the

system• Note that the modified flux linkages have units of voltage.

T# OJ

v,, = Xt, (42,° - 42.,) + to,P--42q.+ to,--4.,_ (a.18)
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re p

_.. = xt_¢.__ + --¢..Wb
(A,20)

.J

, _, , p (W -- _r)
¢_, (A.21)

rob

_L = e'CCL - ¢._) + LCL -
X_, wb

(03 -- Wr) I

tab ¢_ (A.22)

I

, _", ¢,,,, + -P ¢,, (A.23)

When (A.17) to (A.22) axe specialized to a stationary reference frame, i.e. w = 0, and

rewritten in integral form suitable for analog simulation, they take the form

f _gbreCq, = [ wbvq, Xt, ( _/'q' - ¢'_)] dt (A.24)

f Wbl. $¢_ = [ _bV_ -- X_-----_( ¢_ -- Cmd) ] at (A.25)

f WbT,j¢_, = [ w_v,, Xt, ¢'` ] dt (A.26)

f I

I _bf'r I
(A.27)xL

xL

f _ !

Wbl'r t

¢'_, = [w,v', _ ¢,, ] dt (A.29)

The per unit shaft speed w,/wb may be treated as an independent variable in case

of generator operation. Motor operation, however, requires the solution of the following
equations
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w,_ 1 fw_ Jw, (Te - Tt ) dt (A.30)

Te = (_) ( ¢_iq, - Cq, i,t, ) (A.31)

The quantities Te and Tt are the electromegnetic and load torque respectively. J is the
inertia associted with the shaft.

The voltages in (A.23) to (A.28) may either be specified a priori as in the case of motor

operation or generator operation with impressed voltages, e.g. line excited or converter

excited generator or it may come from an generator exciter model. This leaves the air-gap

flux components, _b,_ and _b,_ to be determined in order to solve (A.23) to (A.28). Lipo

and Consoli [A.2] have shown a method for calculating the instantaneous values of these

flux components using the air-gap saturation characteristics of the machine. The method

utilizes a flux dependent saturation function defined as

= - (A.32)

where _b_ and _,,_ are the total air-gap flux linkages in the machine with and without satu-

ration.

Figure A. 1 illustrates the method used by Lipo and Consoli for obtaining the saturation

function .K_ from experimentally determined machine terminal characteristics at no load.

First, the air-gap characteristics are derived from the terminal characteristics by accounting

for the stator leakage drop. The linear portion of this curve determines the unsaturated value

of the magnetizing reactance, fir,,,. Then for each value of the unsaturated flux linkage,

_,n = .,_'mi the saturation function is computed using (A.2) and plotted against _,,_ as

shown. The deviation from the linear characteristics, indicated by a nonzero value of K,_, is

seen both at the high and very low flux levels. The saturation function can be modelled using

curve fitting techniques. When only analog components are available, a limited number of

linear segments may be used to approximate K_. Also, if the excitation build up mechanism

is not under study, then further simplification is achieved by ignoring the low flux values of

K,n. Figure A.2 shows an implementation using analog components that approximates the

saturation function in the high flux region using two linear segments.

To use the saturation function in the calculation of the actual values of flux components

assume, first, that their unsaturated values are known. Then the total unsaturated value of

the air-gap flux is given as
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Figure A.I: Derivation of the saturation function K,,,(_,,) from the no load terminal char-

acteristics of the machine.
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_, = ¢_2,_ + _,_ (A.33)

Since K,, is known as a function of ¢,n then

(A.34)

then

O_, = ,_._ - ,,O,., (A.35)

This form of (A.33) and (A.34) is particularly convenient for hybrid computer simulation.

Similarly for the d- axis

(A.36)

¢,,_ = ¢,,_ - t_¢_ (A.37)

Expressions for the unsaturated values of the flux components, assumed above as known,

can now be derived as follows. By definition

°l

¢,,_ = fir, n( iq, + _¢, ) (A.38)

But from (A.16) and (A.34)

• Cq, - ( ¢_ - zX¢_ ) (A.39)
lq$ -- Xl$

and similarly

•, ¢;, - (_, - a¢., )
ICr = X_ r

(A.40)

substituting for currents in (A.37) and rearranging
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X" fff , 1 1

,_._= x_ _,. + _,, + .t(_ + x_--_)_m__ta
(A.41)

Similarly for the d-axis

_b,_ = Xt--_, _bdo + _ xb'_ + fff (--_'At° + __X'tm)Axbmd (A.42)

where
1 1 1 1

=(2=. +g£ + x_, )

Figure A.3 shows the resulting simulation diagram for the induction generator. A squir-

rel cage rotor has been assumed. Therefore, the rotor voltages v¢.', v_r and v_, and the rotor

neutral current i_, are all zero.

For comparison, Fig. A.4 shows the conventional machine model with unsaturable main

flux. Note that the general model of Fig. A.3 operates as a conventional model by the simple

modification of forcing the saturation function K_ to zero.

A.2 Verification of the model.

Because the operation as a self-excited generator relies on the nonlinear characteristics of

the air-gap flux to establish an operating point, it provides an excellent means of verifying

the model. Fig. A.5(a) shows the machine with a fixed capacitor excitation. Parallel resis-

tors represent core losses as well as any external load. Figure A.5(b) shows the additional

equations in simulation form required to obtain the stator voltages from stator current. Fig-

ure A.6 compares the simulated and experimental results. Self-excitation process is started

by placing an initial charge on the capacitors. The model has been successfully used in the

study of a new technique of excitation control in stand alone induction generators [A.3].

A.3 References

1. E C. Krause and C. H. Thomas, Simulation of symn_trical induction machinery,

IEEE Trans. on Power App. and Sys., vol. PAS-84, pp. 1038-1053, Nov., 1965.
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Figure A.5: Operation as a capacitor excited generator for verification of the model. (a)

Circuit, (b) Model.
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Figure A.6: Waveforms as a capacitor-excited generator. (a) Simulated Waveforms. (b)

Waveforms from a laboratory model. Upper trace: Line voltage; 500 V/div. Lower trace:

Line current; 5 A/div.

147



2. T. A. Lipo and A. Consoli, Modeling and simulation of induction motors with sat-

urable leakagereactances, IEEE Trans. Ind. Appl., vol. IA-20, pp. 180-189, Jan./Feb.

1984.

o P. K. Sood, Habib Rehaoulia, D.W. Novotny and T. A. Lipo, A pulse-width controlled

three-switch exciter for induction generators, in Conf. Rec. 20th Annul. Meet. of

the IEEE Ind. Appl. Soc., pp. 653-661, Oct. 1985.

148



Appendix B

Modelling the Parallel Output Series

Resonant (POSR) Converter

This appendix describes the development and verification of a hybrid computer model of

the single-phase bridge configuration of a parallel output-series-resonant (POSR) converter.

The circuit topologies and the basic operation of the POSR converter were discussed in

Chapter 3.

B.1 Development of the Model

The developed model has been specialized to subresonant operation (i.e. f,/f, < 1.0 )

for which the circuit permits natural commutation of its switches. Super resonant operation

(i.e. f,/,¢, > 1.0 ) or operation with discontinuous capacitor current have not been

considered al though it is possible to generalize the model to include these conditions. The

power switches have been modeled so that the circuit can be operated with both a dc and a

low frequency ac input voltage.

B.I.1 Power Circuit.

Figure B. 1 shows the detailed power circuit of the bridge POR converter prepared for simu-

lation. Switches 81 to 84 are naturally commutated bi-directional switches that can carry

current in both direction and block voltages of either polarity. This is a representation of

a reverse connected pair of thyristor that would be normally required if operation from a
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Figure B. 1: Power circuit of the POSR converter prepared for simulation.
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low-frequencyacvoltageis desired.If theinputvoltageis dc,thenathyristor-reversediode
combinationis adequatesincetheswitchhasto blockvoltagein only onedirection.

A sourceimpedanceRi, Li and an input decoupling capacitor Ci have been included

to represent the general case of nonnegligible source impedance and its decoupling through

a parallel input capacitor. When the operation is from a dc source, these component are not

important to the circuit operation and can be deleted from the model through an easy mod-

ification. Inductance L, represents the magnetizing inductance of the output transformer

that may be needed for voltage matching or input/output isolation. L, should normally be

an order of maginitude larger than the value of the resonant inductance L. When L, is not

present in the circuit, it can be also be removed from the model by forcing the gain of the

corresponding amplifier to zero. The load and circuit losses are represented together by the

parallel resistor, P_. Finally, the resistors shown in dotted lines and labelled R' are used

to help solve the node equations. They axe of such high value as not to significantly alter

the operation of the circuit. If this assumption becomes difficult to justify, then the resistors

should be returned to a fictitious center point in the supply instead of point "o" in Fig. B. 1

in order to minimize assymetry in the predicted results.

B.1.2 Modeling of the bi-directional switch.

In this split inductor configuration of the POSR converter, an inductor is physically present

in series with each switch. Figure B.2 shows how this switch inductor combination can

be modeled on a hybrid computer. The voltage across the combination is integrated for as

long as the switch remains closed to yield the current through the branch. The switch is

commanded closed with signal G representing the gating pulse to the SCR. The integrator

is disabled (i.e. switch opened) when the integrated current goes through its second zero

crossing which is characterisitc of the assumed subresonant operation. This modification in

the normal implementation of the naturally commutated devices reduces the total number of

components required for simulating one bridge circuit. This permits simultaneously simu-

lation of three such bridge converters needed for studying the operation from a three-phase

low frequency source. When operating from an ac input, the initial conduction through the

switch may be in either direction. Therefore, detection of the second zero crossing must be

independent of the direction of the initial conduction. Figure B.2 (b) shows a logic scheme

that reliably detects the second zero crossing of the current for both the forward initial con-

duction (B.2 (c)) and the reverse initial conduction (B.2 (d)).

151



_i(o)

,l'(11_)J'vat+i(o) oP/_,i
_i Op/f l-e, i(t)=Li(o) Op/_-O

(a)

v'-l_ _ OPI[_.

t ""L__/

I G (gote pulse)OPI_ • 0 (v>O)-(i>I).FIC+(v>O),(i>-()'FIC

G

FIC

OP/

i G
I

e i

._ _ v

i i
' iI

1,

_P"I

i
_-t OPI['C J : t

FIC

(c) (d)

Figure B.2: Modeling of the POSR converter bi-directional switch. (a) A controlled in-

tegrator representation of the switch-inductance combination. (b) Integrator control logic.

(c) Forward initial conduction. ((t) Reverse initial condition.
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B.2 Circuit Equations.

The circuit equations to be solved are
Switch Currents.

/1 --
2fv, qdt S10N
0 S 1 OFF

03.1)

SION

$1 OFF

03.2)

i3-1 _ f va° dt S I ON

[ 0 SIOFF

03.3)

i4 = { _fvvodto

SION

S 1 OFF

(B.4)

Low Frequency End

Input Port

xfi_ = z,_ [(v_ - v.,) - id_]dt (B.5)

-- i2 ) dt

ff Ri, 1-4 and 6"i removed

03.6)

Output Port

If ,.i0 = L-S _°et e_ 03.7)

153



ie = (i4 + v_ _ i2 - io) 03.8)
R

1/Vo = v_ = -_ i_ dt 03.9)

Voltage Relations

Vqo = R(i_ - h - it - io) 03.10)

Vo_ = Voo - vo, 03.11)

03.12)

v o, = v_, - vt,, 03.13)

Voltage across the switches are obtained from the voltages of the switch- inductance com-

binations derived above. For example, the voltage across $1 is given by

v,¢ $1 OFFvst = 0 $1 ON
03.14)

Figure B.3 shows the resulting circuit model in analog simulation form.

B.2.1 Gating Signals.

A possible scheme for generating the gating signals for the POSR converter model is shown

in Fig. B.4(a). Fixate B.4(b) shows the associated waveforms. Six signals, phase displaced

by sixty degrees of the output cycle, are generated. Any two that are phase shifted by

180 deg can be used to gate one bridge convener. Thus, up to three single-phase converters

can be gated using the scheme which permits modeling of the three-converter three-phase

configuration of Fig. 3.11.
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B.3 Verification of the Model

Results predicted by model compare favorably with the experimental data obtained from our

own breadboard and the data made available by General Dynamics - Convair division from

their similar POSR breadboard. For example, Figure B.5 and B.6 show a set of circuit wave-

forms from the GDC breadboard run from a stiff90 V dc source and switched at a frequency

of 20 kHz. Figures B.7 (no load) and B.8 (1.6 kW load) show the corresponding wave-

" forms predicted by the model. For this simulation run, input impedance and the decoupling

capacitor were omitted and circuit parameters of C = 1.5 #F, L = 24 #H, L� L, = 20

were used to match the circuit components used on the GDC breadboard.
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(a)

(b)

Figure B.5: Experimental waveforms observed at no load. (a) Upper trace: Capacitor volt-

age, vc; 250 V/div. Lower trace: Capacitor current, ic ; 12.5 A/div. (b) Upper trace: Switch

voltage, vr4; 125 V/div. Lower trace: Switch current,/4; 12.5 A/div.
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(a)

(b)

Figure B.6: Experimental waveforms observed with resistive load of just over 1.2 kW. (a)

Upper trace: Capacitor voltage, vc; 250 V/div. Lower trace: Capacitor current, i, ; 12.5

A/div. (b) Upper trace: Capacitor voltage, vc; 250 V/div. Lower trace: Switch current, i4;

12.5 A/div.
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Figure B.8: Corresponding waveforms predicted by the POSR model for a 1.6 kW Load.
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Appendix C

Modelling of Pulse Density Modulated
(PDM) Converters

This appendix describes the development and verification of a hybrid computer model of

the three-phase bridge PDM converter discussed in See. 4.4. Modeling of single-phase

PDM converters for synthesizing ac and dc voltages or currents is also discussed.

C.1 Development of the Three-Phase Bridge Model

Development of a hybrid computer model for a power converter requires writing down the

circuit equations for the converter and then transforming them into an integral form so that

they can be solved using the analog integrators. Logic for switch selection and the timing

waveforms required for the implementation of this logic are developed on the digital portion

(PDP 11/23) of the hybrid computer.

C.1.1 Power Circuit.

Figure C. 1 shows the detailed power circuit of the 3-phase bridge PDM converter prepared

for simulation. Although a resonant LC tank filter has been assumed at the link side of

the converter, other filter topologies can be considered by modifying this portion of the

model. On the low-frequency side, a passive R-L load and a three-phase induction machine

have been considered but clearly other loads are possible and can be modeled using the

suggested procedure. Ideal switches ,$1 to 86 have been used to model the actual bi-
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directional switches required in PDM converters. Inductance, l in series with each switch

allows modeling the switch-inductor combination by a single integrator (Fig. C.2). Clearly,

the circuit behavior related to nonideal characteristics of the devices (e.g finite switching

times and losses, nonzero voltage drops, effects of snubbers when present, etc.) cannot be

predicted from a such a simplified model and for these one must use breadboard systems.

However, very useful information is obtained even from the simplified model. When the

physical inductance in series with the devices is small in the actual circuit, (as it should be

in a PDM power circuit so that current transfers among the switches can be completed with

a minimum of voltage overshoots), it is then important to use the smallest possible value

for I in the model. For the model described a value of 0.625/_/a r was used for the series

inductor, l. Note that this value is not far from the stray inductance that can be present in

an actual converter circuit of this type.

When ever switch of Fig. C.2 is ON, the integrator modeling the switch-inductor com-

bination is enabled (i.e. OP[I-C = 1) and the voltage across the combination is integrated.

The integrator is disabled when the switch tunas OFF (i.e. OP/"i--C = 0) either as a result

of a gating signal (forced commutated devices) or due to the natural extinction of the current

in the switch (natural commutated devices). Clearly, the commutation charateristics of the

devices used in realization of the bi-directional switch have to be taken in account when

generating the enable/disable signal for the integrator. Figure C.3 illustrates the generation

of this integrator control signal for switch 81 when forced commutated devices are used.

Logic signal G1 is produced by the PDM based switch selection logic and indicates that

switch S1 has been selected for conduction. Switch 81 is therefore closed by setting the

integrator control signal, OPS1 (operate 81 ) to high. OPS1 is forced low as soon as G1

goes low in order to simulate the gate controlled turn-off of the devices. OPS4, being the

control signal for the complementary switch in the same pole of the converter, is logical

complement of OPS 1 When naturally commutated devices such as inverter grade SCRs are

used in the realization of the bi-directional switch, the integrator control signal cannot be

forced zero merely when the gating signal has gone low but must await the circuit forced

extinction of the current through the switch.

In the model described here, only forced commutated devices have been assumed since

they are the most likely choice in the physical circuit realization as discussed in Sec. 4.4.

Modeling of a naturally commutated PDM circuit would differ in switch selection logic to

ensure that circuit commutation currents are set up under all conditions of operation, and in

the generation of_the integrator control signal as discussed above. Resistors shown in dotted

lines Fig. C.1 and labelled R' are present for assisting in the solution of circuit equations.

They are of such high value as not to influence with the operation of the circuit directly.

164



T
v (t)

I

i(O)

v(t) _ fit)

1/L

OP/IC

(_o'fi(t) = ( /L v(t) dt + frO) OP/IC= 1

OP/IC = 0

(a)

G1 )) t Set

Clear

OP1
Q

Q _ OP4

(b)

Figure C.2: Modelling of a PDM converter switch. (a) Single-integrator representation. (b)

Generation of control signal (shown for switch 81).
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C.I.2 Circuit Equations

• The circuit equations to be solved are Switch Currents.

il =

1
f v_,dt SION

0 $1 OFF

(c._)

S20N

S2 0FF
(C.2)

S30N

s3 oFF
(C.3)

S4 0N

S4 OFF
(C.4)

SsON

Ss OFF
(C.5)

1

f v_. dt

$6 =

0

S60N

S6 0FF
(C.6)

I-h'gh-Frequenc y Port

iI = il + i2 + i3 (C.7)

ior = iur - iLr - ii

Tank Filter

(C.8)
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ifiLT = --_T v_ dt
(C.9)

¼fVd e = iCT dt (C.10)

Voltage Relations Pole voltages:

v,, t = R'(i_ - i.- i4) (C.11)

Vb! = R' ( i2 - ib -- i5) (C.12)

= R're/ (i3 - ic - i6) (C.13)

Switch-inductor voltages:

l)da = l)dt -- _)al; l)d_ = 1)all -- Vbl; Vdc = Vdl -- Vc! (C.14)

"Oae = "Ore + "Oa]; "Obe = "OIe + Vb]; "Oee = Vle + re/ (C.15)

Line voltages:

10ab = 1)a/ -- Vb/; Vbe = Vb/ -- re/; Yea = re/ -- Va/ (C.16)

If the R"s are sufficiently large, then

v,_ (C.17)
Vdl = Vie = --_

Voltage across a switch can be derived from the corresponding voltage across the switch-

inductance combination. For example, the voltage across switch 81 is given by

I vd_ 81 ON
VS1

0 $1 OFF

(C.18)
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Low-Frequency Port with a balanced wye connected passive ( RLF, LLF ) load:

2 1 1 2 1

yon = _ v,! - _ vb! - _ vc! = _ v,b + _ v_e (C.19)

1 2 1 1 1

 vct (C.20)

1 /.
ia = [ ( v_ -- iLFRLF ) dt

LLF J
(C.21)

ib = 1 fLL-"-F ( V_n -- iLFRLF )dt (C.22)

ic = - (ia + i,) (C.23)

Three-phase three-wire induction machine load:

2 1

Vq, = van = ( _ vab + _ v_) (C.24)

1
v,_ = i=_ v_ (C.25)

V_

v,.,, = 0 (C.26)

Corresponding machine currents iqo and i_, are obtained from the induction machine

model described in Appendix A. These d- q current components can then be transformed

to yield line curr_nts i,, ib and ic.

The converter model that results from these equations is shown in Fig. C.4..
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Induction
machine

model

(Appendix A)

(a)

tqS i a

i b
D

i c

vlx:_-__ I _

(b)

i a

))

i b

. ic

g=2/3;h=1/3;k=l/9_; I=I/LLF 1

m=RLF/LLF; n=1/2; 0 =9/'_ ]

Figure C.4: Modelling of the low frequency end circuit. (a) Induction machine (See Ap-

pendix A). (b) Passive R-L load.
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C.1.3 PDM Logic.

Implementation of PDM scheme requires integration of the difference between the reference

and the synthesized signal. For the case when pole voltages of the three-phase PDM bridge

are synthesized individually the equations that apply axe

(C.28)

ec(t) = K_ f (v:- vo,)a, (C.29)

Where K_ is the gain of the PDM difference integrator. Error signals e,, e_ and ec with the

polarities of the link and the reference signals determine the switch selection in the PDM

converter. Zero voltage switching requires that the device selection for the next half-cycle

of the link voltage be made somewhat in advance of the zero crossing so that the actual

switching can take place at or near the zero crossings. This advance sensing is reflected in

the switch selection logic in the form of the reversed polarity of the link voltage as seen

below. To help write the logic expressions for switch selection, define the following logic
variables

G1 = 1 if switch ,.ql is to be selected for the nexthalf-cycle of the link voltage.

VA = 1 if the reference signal v](t) has positive polarity in the present half-cycle of the
link voltage.

VHF = 1 if the link voltage, VHF is positive during the present half cycle of the link

voltage.

TGA = 1 if the pole "a" needs to be toggled.

A value of 1 (0) denotes a logic value of TRUE (FALSE) in the expressions above. With

these definitions, the logic needed to operate pole "a" is given by

TGA = ( e, > e ) .AND. ( e, < - e ) .AND VA (C.30)
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$I = _ = (VA .XOR. VHF) .XOR. TGA (C.31)

Where .AND. and .XOR. indicate "and" and "exclusive or" logic operations. Similar equa-

tions apply for switch pairs 82, 85 and $3, $6 for poles "b" and "c" respectively.

Implementation of the PDM logic requires detection of the zero crossing of the link

voltage and preselection of the switches as discussed above. Flow chart of Fig. C.5 shows

how the logic of C.31 and C.32 was implemented on the PDP 11/23 portion of the hybrid

computer using built in analog-to-digital and digital-to-analog conversion capability when

needed.

C.2 Verification of the Model

A qualitative verification of the model was carried out by comparing the predicted and

observed waveforms of a PDM bridge converter for the case of a passive R-L load. For

example, Fig. C.6 shows key waveforms observed on the laboratory converter supplying a

wye connected R-L load measured to have an inductance of 30 rnH per phase. Effective

resistance was determined using power and current measurement to have a value of 3.5

ohms per phase. Link voltage was 252 V rms at a frequency of 19.3 kHz. Reference signal

corresponding to a low-frequency line voltage of 104 V rms at a frequency of 28 Hz. With

these parameters as the input, the corresponding waveforms predicted by the PDM model

are shown in Fig. C.7. The differences that are present can be attributed to one or more of

the features (e.g. capacitive snubbers, device turn-on and turn-off times, recovery currents,

losses associated with devices and passive L and C components etc.) of a real system that

had to be neglected so that the model does not become so large as to be of no practical

use. Note, however, that even a simple one-integrator model of the bi-directional switch

provides a wealth of information on the fundamental behavior of the PDM converter.

C.3 Modeling Single-Phase PDM Converters

FuN- or half-bridge power circuit configurations of the PDM converter can be modeled

using exactly the same procedure discussed for the three-phase configuration. A single-

phase power circuit can be used to synthesize ac or dc, voltage or current signals with only

minor modification in the controller. No changes are needed in the modeling of the basic

power circuit.

172



I I

I I: J 1 if beginningh_f-cyclehas positive polarity

LO if beginning hail-cyclehas negativepolmty

Sample polarity.of refefmce voltages
V = J I for positive polarity

A, B, C _ for neg_ive polarity

I Comp_e aqulred PDM error signals to dTeshold value,e

+

I Determine toggle signal for each pole voltage using _TGA, B, C= (e(t)a, b, C>¢ ). AND. (VA, B, C ). OR. (e(t)a,b,c<- ¢). AND. VA, B, C

Determine logic pulses for next half cycle I

!

O1,2,3 = G4,5,6= (VA, B,C . XOR. VHF). XOR. TGA, B, ¢

O

Figure C.5: Flow chart showing hybrid computer implementation of the PDM logic for a

three-phase bridge converter.
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LI_K

VqLTA_

VllP!;)

REFERENCE

_OLTACE

v_(v}

*200

POLE

VCLTACE

+4OO

LINE

VOLTAC£

Vao(_')

LINE

CURRENT

i(A)

Figure C.6: Simulated waveforms for PDM converter supplying a wye connected R-L load.

R = 6 ohms, L = 40 mH,/se = 36 Hz, Vt, r = 145 V rms line-to-line, VUF = 400 V peak,

and fSY = 19.3 Hz.
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Figure C.7: Corresponding waveforms observed on the breadboard converter. Upper trace:

Line voltage, v,_; 250 V/div. Lower trace: Line current, ia; 12.5 A/div.
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C.4 Voltage Synthesis.

Using the single-phase power circuit model (for example, the full-bridge power circuit

model), either an ac voltage or adc voltage of positive or negative polarity may be syn-

thesized by simply using the appropriate reference signal. If a half-bridge is used then the

synthesis is exactly like the control of one pole of a three-phase bridge PDM converter dis-

cussed earlier. When full-bridge circuit is used, options discussed in Sec. 6.1 are available

and can all be implemented with only minor changes in the basic PDM logic of Eqns. C.30

and C.31. For example, instead of synthesizing individual pole voltages using two phase

displaced reference signals, the line voltage (difference of the two pole voltages) can be

synthesized directly using a single reference signal with an added restriction of commu-

tared waveform (not permitting pulses with polarity opposite to the instantaneous polarity

of the reference signal). Synthesis of 120 V rms 60 Hz ac voltage of Fig. 6.4 was an example

of this type of synthesis.

C.5 Current Synthesis.

The power circuit modification for basic current synthesis that may be needed is the addition

of a current ripple limiting inductor in case such an inductor in not already a feature (as in

machine, or R-L load) of the load/source present of the low-frequency side. The major

change in the controller is that the feedback to the AC-PDM controller must now be from

the resulting low-frequency current. It has been observed that that the gain of the difference

integrator has to be increased roughly by the factor of 1/Lt, F over the corresponding value

used for voltage synthesis and appears to be a consequence of the indirect control of current

through application of voltage pulses. Figs. 6.5 and 6.6 shown in Chapter 6 are examples

of the current synthesis implemented in the described manner using the full bridge model.
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