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SUMMARY

The task carried out under this research grant covers research on accuracy and
efficiency of CFD strategies, error estimates for ccnvective terms, and antidiffusion. These
basic studies (see Appendices A through C) are considered important in evaluating

available CFD codes which will be the main activities for the next year.

APPENDIX A
CONVERGENCE STUDIES FOFE. CONVECTIVE TERMS

Given: Burgers equation, geometry as shown in Fig. A.1.
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Required:
With SUPG, Newton—Raphson iterations, and bilinear isoparametric elements, the

coarse, intermediate and fine mesh shown in Fig. Al. Use v = 1 and v = 106; At = 107,

104,102, 1,10, 7 =0, 1/2, L.

Solution:

The RMS errors vs At in log scales shown n Figs. A.1 and A.2 have trends similar
to the linear problem (without convection terms) The error increases monotonically with
an increase of At for » = 1/2, whereas the error is almost independent of At for = 1. The
results for 7 = 0 are not presented as they are ou!side of the scale shown. If ¥ = 1, the
error increases as At becomes small due to round-off errors. The error decreases rapidly as

the mesh is refined.

Remarks
The Newton—Raphson scheme converges after 4 or 5 iterations. It should be noted
that the combination of the SUPG and Newton—Raphson procedures are responsible for a

stable and accurate solution.
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Note: N represents Neumann boundary conditions. For example, at

. u _ su _ 2 v _ 2
node 12 for Coarse Grids i 2 xy, 3y X", 3% v,

%% = 2 xy are prescribed. Dirichlet boundary conditions are

prescribed for all other boundary nodes from the exact solution.

Use u=v=0 as the initial guess for all interior nodes.

Fig. A.l1 Geometries for Example 6.4.1.
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Fig. A.2 RMS error for Example 6.4.1, v = 106,
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Fig. A.3 RMS error for Example 6.4.2, v = 1.




APPENDIX B
ERROR ESTIMATES FOR CONVECTIVE TERMS

The standard Galerkin finite element method is known to have computational
instabilities in the convection dominated flow field. To overcome difficulties involved in
the convective nature of hyperbolic equations, the SUPG scheme may be used. The error
estimates will be discussed for the cases with and without diffusion terms.

Consider the convection equation of the form

Lu=f inQ (B.1a)

u=g onT (B.1b)
with

L = ai(x) 72

The inner product of (B.1a) and the test function including the sum of the trial functions
and the numerical diffusion test functions leads tc the problem: Find & € Sy such that
(((a+ V)d,v) + h(a - V)v] — (1 + h)(d,v)
=(f,v+h(a-V)v)—(1+h)(gv) VYveSh (B.2)
Then there exists constant c if @ satisfies (B.2) such that
I =l gy € chet/ 2l (B3)
To prove this, let ih € Sy be an interpolant of u satisfying the steady—state case. Denoting
eh = u — Gih and éh = @ — dh, we obtain [Johnson, 1988]
||e||E2(Q) = B(e,e) = B(e,eh) — B(e,éh) = E(e,eh)
= ((a - V)e,eh) + h((a - V)e,éb) + (e2,eb)
+ h(e,(a - V)ek) — (1 + h)(e,eh)
<Blia - Vel + botlenz + 3 2 el
+ hii(a - V)eh|2 + i llell? + fle]2
+ Lellz + b2ll(a - Wyebljz + 1L Jej2 4 (1 + m)jen]2 (B.4)

We consider the inequality
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Fig. B.1 Typical interior nodes of (a) quadrilateral mesh and
(b) triangular mesh for stability analysis.



2ab < €a? + ¢°th? (B.5)
which may be used in (B.4) so that

“8”32(9) < Ch?k*l”““ﬁkq(ﬂ) (B.6)
or

lell g < chit/ 2y i+ 1(Q) (B.7)

If the standard Galerkin method is used, then we have

el ) = (- V)ehah) + (e&h) — (eh)

<li(a - V)ehll2 + fleb2 + 3 Jl&b]) + [len]|2 + F |en2 (B.8)

or

”e”L2(Q) < Chk”U”Hkq(Q) (B.9)

Comparing (B.7) and (B.9), it is seen that the SUPG approximation provides O(h%)
larger than the standard Galerkin approximation Experience has shown that, in the
standard Galerkin methods, oscillations propagats in the crosswind and in the upwind
directions with little damping, whereas such oscillations decay rapidly in both directions.

The error estimates for the steady state ccnvection—diffusion equation are evaluated
in a manner similar to the convection equation. Consider the governing equation in the
form

Lu—Vu=f inQ (B.10a)

u=g onT (B.10b)
In view of the steady—state results and from the analysis carried out for the convection

equation, we obtain

lellez(@) < chiees/2pull g (B.11)

which is identical to (B.7).

The mathematical justification for the gradient discontinuity test function has not



been studied in detail. This question remaint largely empirical until further investigations
are carried out.
The error estimates for the unsteady strearnline diffusion method require the

analysis of the step in (B.7). Thus,
nAt

et € ek 2ul ey g + cob [ Tl gyt (B.12)
0

It should be noted that for each time step n, the analysis indicated in (B.12) is linear, but
the solution ur will, in general, have jumps across the discrete time levels ty.

We have discussed the error estimates as t.1e convergence to the exact solution is
being pursued. It has been shown that these error estimates are defined in various norms.
Accuracy may be sought as high as desired by refining the computational mesh. However,
the transient solutions are affected greatly by certain combinations of mesh sizes and
temporal increments. It is well known that computational instability arises or amplitudes
grow without bound if stability conditions are not met. Toward this end, we shall examine
the so—called von Neumann stability analysis.

Consider the convection equation

du _ a du
gt~ “ox
The corresponding Taylor—Galerkin scheme can be written as

B 9 vl 0%
a2at2 Ro 0% B dun . a2At [ P gun
U,,[’u"ff—a—ax—vx—]d"]'zr*aj,,‘a&‘d”‘v‘kara—dﬂ

a2t dvn+t a2t dun
+‘6_Up°°7fx—dr] +—2—Ur¢>uax—dr] (B.13)
where vo*l = yn+l —yn,
For a linear element with a uniform grid, t:e global finite element equation at the

node j takes the form

1 (1 2 1 a2At (viq — 2vy + vi.
H[ij“J“E"i""G"iﬂ]— 5 [v“ e ”]

= Ui — U] | aZAt [ujq — 2uj + Uig
24x 2 Ax?



which may be simplified as

n+l 1, ntl n+l n+l1 1 2, ntl n+l n+1
vi +g(vi1—2vj +Vjo1)—g[§—‘;—t] (vj-1—=2vj  + Vi)

n n
— [%] !u-l +1 ui-[! + % [%E] 2(“?-1 _ 21]? + u?’l)
n+l

i+ (—c)8v; = chou] + 5 c26u] [1 +g(1- c2)52}(uj —u})

= cAoug1 + % c?é?u;l (B.15)

or

where Aguj = (1/2)(ujs1 — uj-1), 62uj = uj. — 2uj + uj-y, and ¢ = aAt/Ax (Courant
number). The combined spatial and temporal response of the amplitude may be written as

uj = eibxeat = eibjheank = ifjhgn (B.16)
where g = eok (amplification factor), h = Ax, k = At, a = constant, f = constant
determined by initial condition, and

Vit =u}" —uf = eibin(g — 1)gn (B.17)
Substituting (B.16) and (B.17) into (B.15) yields

eiBih(g — 1)gn + é (1 - c2)(g — 1)gneiBti-l h(1 — 2eiBh 4 e2iBh)

or
(g — 1)[1 +ia-c(edn-2+ eiﬁh)}
= %c(eiﬁh —e7ibh) 4 % c2(e"iBh — 2 -+ eifh) (B.18)
Denoting 7 = fh and using the trigonometric relations, it follows from (B.18) that

-1
g=1+ [l —% (1 —c?)sin? % n] [ic sinp — 2¢2sin? % r;] (B.19)
Notice that as 5 -~ 0, Eq. (B.19) reduces to

g=1+icp— %— cn? — %)r ic3n3 + O(n4) (B.20)

10



It is clear that the stability condition requ res ¢ < 1, which provides |g| < 1 for ¢ =
1. This implies that signals are propagated without distortion when the characteristics
pass through the nodes.

Using a similar approach, it can be shown that, for two—dimensional quadrilateral

elements, the amplification factor at an interior node becomes (Fig. B.1a)

g = 1 — 2c¥sin? %A’—( cos? —%—Xk Ay _ 2c2sin? 1—(4,91 cos? TkxAx

— CxCySinkyAx sinkyAy — i [cxsinkxAx cos? %AX

+ cysinkyAy cos? k"%]

(B.21)
where kx and ky are the wave numbers of the Fourier components, cx and cy are the Coant
numbers in the coordinate directions, and Ax and Ay are the mesh spacings.
The amplification factor for an interior node of a typical triangular element assumes
the form (Fig. B.1b)
g =1—2cisin? %‘}5 — 2¢Zsin? %’3‘5 + CxCy [cOskxAX
+ coskyAy — cos(kxAx — kyAy)] — 1{% [sinkyAx
+ sin(kxdx — kyAy)] + ¥ [sinkxAx + 2sink,Ay
_ sin(kydx — kyAy)]} (B.22)
Now, consider a mesh with Ax = Ay and waves ky = ky, Courant numbers cx = cy.
The stability limits for quadrilateral and triangular meshes arec < 1 and ¢ < 1/2,
respectively.
Let us now examine the advection—diffusion

U, = —aux + VVxx (B.23)

1 (1 2 1 a (Vi — Vi Vi — 2vi + Vi,
A—t[gvj-1+3-vj+gvj+1]+§[—‘—7r“—l X IJ—[“ Ax% “]

11



ial — - - — 2 . + u.*
= —a[l_l.l_lﬂx_ul_l} + V[uj 1 A%2L i l]
Denoting d = vAt/h?, Eq. (B.24) becomes

vj + é’ (Vj-l —2vj + Vj+1) + %g% [V'*l — X.L'l]

= %% [—J—Q——l—u'*l - u"‘] + gf—(% (uj-1 — 2uj + uja)

1 vA
—g i/BE; (Vj-[ ot 2VJ + qu)

or
Vi + & 62; L caov — L d62v; = —cAou; - d2y; L 5
itg Vj + 5 Chovy — 5 do%vj = 0U;j u,1+6 —

n+l n

—% (—chAo + d62)] (uj —uj) = (Ao + dé?-)ug1 (B.25)

The necessary and sufficient condition for stability according to Lax—Richtmyer {1968]

it o, lg] <1 (B.26)
it Mg lg] <1+ O(k) (B.27
7t >0 gl < 27)

Proceeding in a manner similar to the case of the convection equation, Eq. (B.25) reduces

to
eibih(g — 1)gn + El§ (g — 1)gneiBti-D h(] — 20iBh + ¢2iBh)
+ éc(g — 1)gneiB(j-1) h(e2ifh — 1) - %d(g — 1)greiB(j-D h(] — 2eiBh 4 e2iBh)
- % cgneiB(i-1) h(e2iBh — 1) + dgneiB(i-D h(] — 2eiBh 4 e2ih) (B.28)
or

gn(g — 1)eifh + & (g — 1)gn(1 — 2eifh + e2 h)
1 : . .
+ olg— gn(eniph — 1) — § (g — 1)gn(1 — 2eibh + eaidh)
=— % cgn{e?iBh — 1) + dgn(1 — 2eifb 4+ 2iBh) (B.29)
Further simplifications of (B.29) result in
-1
g=1+ [1 + [zl; — d] (cosph —1) + %ic sinﬂh} [-ic sinfh + 2d(cosph — 1)] (B.30)

or

12
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[—ic sinme — 4dsin2 ]
g—-1= — (B.31)

[1 - 2[%—d]sin2 g +% ic sim;]
Finally, as - 0, we arrive at

g=1—icr/—{d+%02]n2+ic[d+ic2—-%]n3+... (B.32)

In comparison with (B.20), the stability criterion as given by (B.32) represents

greater stability apparently due to the presence of physical viscosity.
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APPENDIX C
ANTIDIFFUSION

With all the schemes devised in the previous discussions, difficulties involved in
steep gradients and widely disparate time and length scales may still persist. The FCT
method originally proposed by Boris and Book [1973] and subsequently extended to the
multidimensional case by Zalesak [1979] has been applied to the high—speed compressible
flow problems in the context of finite elements [Erlebacher, 1984; Parrot and Christie,
1986: Lohner, et al, 1986).

The FCT method is to combine the high—order scheme which may cause over—
shooting with the lower—order scheme to stabilize through appropriate limiting processes.
The high—order scheme may be generated from G(GFE, whereas the low order scheme is
equivalent to the SD—GGFE method which is specifically designed to stabilize the
convective terms. Thus, the combination of FCT and SD—GGFE should enhance the
desirability of both methods.

The high—order scheme may follow the Standard Taylor—Galerkin process, or more
preferably GGFE without SUPG in the present ccntext. We write

AUH q

Ao == [BS(Fi3™D — FY) — Ko (GB' - Gly)| + B+ N, (C.1)

which corresponds to step 1 given by (5.3.1) , with step 2 (5.3.2) vanishing. For this

(1)
problem, therefore, we must modify the approach as follows: Let AUBl / Atin (C.1) be

defined between the time steps n and n+j and write for each element,

o At
2:U? = A UL + = ByFy + Hy (C.2)

where a, is the area of each local element,

= qo, Azj B dQ EtS=J 3o do C3
Be le N Qe N N le N’j ( )

where N represents the local node. The right—hand side of (C.2) can be evaluated locally



and summed through the local nodes for each element. No boundary conditions need be
impbsed at this stage. The initial guess for all variables is required to solve (C.2).

The next step is to rewrite (C.1) in the form:
1 n+% N+l . n+% n+l
AogUB" = AqgUg * + 8t(BygFp;” + Kogtigi® + Hy 7+ Ny (C4)
n+l n+
where B3 is the convection matrix with only the standard test function and Fg;2, Gg;2,

and H::% are still the same as in the time step n but will be updated as the next time step
is incremented. The process characterized by (C.1) is seen to be equivalent to the classical
Lax—Wendroff method. The solution of (C.4) may require several iterative cycles within
each time increment by introducing the lumped mass matrix

albaugt = B - AlOaug (C.5)
where EJ; represents the terms on the right—hand side of (C.4) except for the first term.
The solution of (C.5) is referred to as the high—order scheme.

The low—order scheme is devised in order 1o obtain monotonic results. This can be
achieved by adding artificial viscosity such as tha. of Lapidus and Pinder [1982]. However,
the SDM—GGFE scheme can be employed. This ‘will require the numerical diffusion
matrix C,q and the gradient discontinuity matrix Dog which will be added to B4

associated with Fg; in (C.4).
o v g Gty g
or
+1 +
AohUR = Wit + EDE (C.6)
with
n*% n*%
Eo;* = (Cap + Dog) F; (C.7)
+1 +1
where Egjf = (Cop + DQB)F;J-T. The low—order scheme is then implemented through a

lumped mass matrix A((llé) which would enhance the diffusive effect.

ALAUL = Wy, + B, (C.8)

15



with ¢ denoting the low—order scheme.

Since the higher—order scheme is considered as underdiffused whereas the low—order
scheme is overdiffused, it is necessary that we seek an optimum. To this end, subtracting
(C.8) from (C.5) yields

AU —aU%) = (AL — A(9) auly - E, (C.9)
with h denoting the high—order scheme (C.5). Here, it is seen that an appropriate limiting

¢

or antidiffuse process for (AUEl — AUg) would be crucial To prevent undershoots or

overshoots. The combined high and low—order schiemes may be written as

U+t = um + UL+ (aut - aub)
or
AUt = Ut + T, (C.10)
where 7 is the limiting parameter with the ranges
—-l1<g<1 (C.11)
vt =+t (C.12)
AT, = AUt — aut (C.13)

Here, the limiting process must be carried out at the element level in order to ensure local
conservation requirements by means of the limiting parameter 7. The magnitude and sign
of the limiting parameter 5 can be determined as follows:

(1) To determine the nodal values in the form of

E
ULt = U+ 3 (74AT,) (C.14)
(2) First determine 7,
e = Min R if AU > 0 (C.15)
R if 9 AU, < 0
where

» [min(1,Q"/p7) if p*>0,p <0 (C.16)
0 if p=

16
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+
where p~ is the sum of all positive (negative) antid:ffuse element contributions to node e,

+ E
t max
p =3 { ;) 0, (C.17)
and Qt is the maximum (minimum) increment (decrement) node a allowed to achieve
in (C.4),
: 21t _ gt
Qs =Ua™ - Uq (C.18)

where UE& can be determined as follows:
(1) Maximum (minimum) nodal values Ug
max £
(2) Maximum (minimum) nodal values of element
max
U, = { max } (U, Uy, U,... Uy) (C.20)
where 1,2,3...N represent the nodes of element e

(3) Maximum (minimum) U, of all elements surrounding node a

yRin = { max } (U, Uy, U, ... U) (C.21)
where 1,2,3, ... M represent the elements surround ng node a.

With (C.21) substituted into (C.18) and sussequently to (C.16), (C.15), (C.14), and
finally to (C.10), we complete the limiting process.

In summary, the limiting process should generate no new maxima and minima in
the solution, nor should it accentuate already existing extrema. Such a prescription
obviously maintains positivity. To this end, we must correct the antidiffuse mass fluxes.
Note that the antidiffuse fluxes are limited term by term so that antidiffuse flux transfer
can push the flux value at any node beyond the flux value at neighboring nodes. This is
the origin of the name Flux Corrected Transport [3oris and Book, 1971].

The limiting process described above may te applied to a single variable. Density

is the most logical choice in compressible flows. Although, this will reduce the amount of

computing time, adequacy of involving other variables also should be verified in each



problem under study. Furthermore, the most acceptable limiting procedure for antidif—

fussion remains an open question, subject to extensive future research.
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