NASA Technical Memorandum 101384
ICOMP-88-19

On the Accuracy of Solving Triangular
Systems in Parallel

(MAS2-TE-101384) CN TEF ACCUERACY CF SOLVING N89-12337
TEIANGULAE SYSTENMS IN FARAILEI] {MASA) 27 p
CSCL 12A
Unclas

G364 01745756

Nai-kuan Tsao
Wayne State University
Detroit, Michigan

and Institute for Computational Mechanics in Propulsion

Lewis Research Center
Cleveland, Ohio

November 1988

CASE WESTERN
RESERVE UNIVERSITY
-

On the Accuracy of Solving Triangular Systems in Parallel

Nai-kvan Tsao*
Wayne State University
Detroit, Michigan 48202
and
Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio 44135

Summary

An error complexity analysis of two algorithms for solving a unit-diagonal triangular system is
given. The results show that the usual sequential algorithm is optimal in terms of having the
minimal maximum and cumulative error complexity measures. The parallel algorithm described
by Sameh and Brent is shown to be essentially equivalent to the optimal sequential one. Some

numerical experiments are also included.

*This work was supported in part by an NASA-ASEE 1988 Summer Faculty Fellowship and in part
by the Space Act Agreement C99066G while the author was visiting ICOMP, NASA Lewis Research

Center.

1. Introduction

.

68

equations 4x = b may be solved in O(log?n) steps. They have also shown that if x is the computed

In [1] Sameh & Brent have shown that, given + O(n?) processors, a triangular system of n
solution then it satisfies the equation (4 +0d4,)x=5b, where é4, is bounded by ,
|164, 11 < a(n)ex®(4) || 4|[. Here, ||.]] stands for the co-norm, a(n) = O(r? log n), ¢ is the unit
roundoff, k() is the condition number of A. On the otherhand, if X is the solution computed by

the standard sequential algorithm, then it satisfies[2] the equation (A + d4)x=b, where

|| 64,11 < ns]|o]). Thus the bound on | |04, || can be very large compared to that on || 64, | |.

In this paper we present an alternative approach to the error analysis of these two algorithms
and show that the parallel algorithm described by Sameh and Brent is essentially equivalent to the
usual sequential one in terms of our error complexity measures. Some numerical experiments

confirming the theoretical prediction are also presented.

2. Some Preliminary Results

Given a normalized tloating-point system with a ¢-digit base § mantissa, the additive and mul-
tiplicative operations can be modelled by the following equations [2}:
Slx x y)y =xpd

.1)
HAxtp=(x+pA=xA+yA

where

1

=B '~ for rounded operation

ol Al < 1+u, us< ©
g~ for chopped operation

and x and y are given machine floating-point numbers and fI(.) is used to denote the computed

floating-point result of the given argument. We shall call A(or §) the unit A(or é)-factor.

In general, one can apply (2.1) repeatedly to a sequence of division-free computational steps,

and the computed result z can be expressed as:

X2) Az2)
2.2) z=1| D'z | =) 7%
= =

where each z; is an exact product of error-free data, and A* (or 6%) stands for the product of k&

7
possibly different A (or d)-factors. Following [3], we shall henceforth call such an exact product
of error-free data a basic term. A(2) is then the total number of basic terms whose sum constitutes

Z.

Note that in (2.2), the computed z is expressed as the exact sum of i(z) perturbed z’s. Thus
the size of o, (or o)) is an indication of the possible number of round-off occurrences during the

computational process. We define the following two measures:

maximum error complexity:

23 = ma .+ o
(2.3) o(?) S max [o;+9)]

cumulative error complexity:

A2)

(2.4) s2)=) [o;+73]]

j=1

Different aigorithms used to compute the same quantity

Az2)

z=fl sz

J=1
can then be compared using the above error complexity measures.

From (2.3) and (2.4) we can further define the following:

2.5 6,(2) =max o¢; , 0,(2) =max g;
@3) al?) 1<) ! ml 1<) 7

A2) A(2)
2.6) D= a; (D)= 5
j=1 j=1

Thus 6,(2), 5,(2) or ¢,(2), s5,(z) are error complexities due to additive or multiplicative operations.
In other words, o,(2), sa(;:) or ¢,(z) ,5,(2) are o(2), 5(z) evaluated assuming exact multiplications or

additions, respectively. Also,

a(2) < 6,4(2) + 6,,(2),
5(2) = 54(2) + 5,(2)-

Applying (2.3) and (2.4) "o (2.1), it is straightforward to establish the following lemma [4]:

Lemma 2.1 Ifz=/flx+y), then

(o(2) =1+ max(e(x), o(y)),
3(2) = s(x) + s(») + 4(2),
A(2) = A(x) + A().

If z=fl(x xp), then

(i) o(2) =1+ o(x) + a(p),
5(2) = s(x)A() + s()A(x) + A(2),
A2) = A(x)A().

Often it is more convenient to express a computed result in terms of a sum of some intermediate

results. In such cases, we have the following lemma[5]:
Lemma 2.2 If the computed result z can be expressed as

n

ZA%6°%

=1

2=
J

where each z is a product of intermediate results, then

n

H2)=) iz), o()=m

X(o;+ a; + o(z;
‘ max (3 + g + o(z))
J=1
n n n n
5m(2) =) HE)T+ D 5ml@) 542 =) MG+) 5a(z)
j=1 j=1 j=1 j=1

In general a basic term is of the form

k
x=nx,~“", 21, a(x)=1
i=1

where each x, is a single distinct error-free data. We shall now define the multiplicative index of

X, or u(x), as follows:

k

u{x) = Zai - 1.

i=1

In other words, u(x) is simply the number of sequential multiplications needed to form x. We need

the following lemmal3]:

Lemma 2.3 Let

k
2= /1) =ﬂ<1_[x?‘>,

i=1

then

O (2) = 5(2) = ().

L.emma 2.3 simply statcs that the multiplicative error complexities arc invariant to the algorithms

used to form z, provided that only multiplications are used. We now establish the following lemma:

[.emma 2.4 Given basic terms a, b and it is desired to form

¢=flatb),

then

0 ,m(€) = max(u(a), (b)),
5m(c) = p(a) + u(b).

provided only associative laws are allowed to find ¢ and the computation of the type a + ab is not

evaluated by a(l + b).

Proof If there are no common factor between a and b, then a and b have to be evaluated sepa-

ratcly before the final addition. By Lemma 2.2 we have

fa) = ad* @, fUb) = b5*®.

[ence

¢ = flfa) + (b)) = as* A + bs*®s.

By dcfinition
o m(©) = max(u(a), u(b), su(c) = ula) + u(b).
Hence the lemma is truc.
If there 1s a common factor, say x, betwcgn a and b, then

~ -~

a=xd, b=xb, a,b # |,

and one might choose to compute ¢ as

ORIGINAL PAGE I5

s OF POOR QUALITY
¢ = filx(d + b))

once ﬂ(x),ﬂ(i),ﬂ(g) arec computed. Now by (2.1)

¢ = fIx)IAE) + fi(b))6
= x6*@@ + 554054

=.xa~Aéy(x)+,u(E)+l 5 xb~ Aé,u(xw(g 1

Hence by definition

(€)= max(u(x) + p(@) + 1, u(x) + u(b) + 1)
= max(u(a), u(b))

and

$m(9) = 1) + (@) + 1+ p() + p(b) + 1
= p(a) + pu(b). Q.E.D.

By repeated application of Lemma 2.4 to the evaluation of (2.2) we can easily establish the

following theorem:

Theorem 2.1 The computed z of (2.2) is such that

om(2) ﬁggaiz) n(zy),

A2

(@) = > u(z).

=1

In other words, Theorem 2.1 states that the multiplicative error complexities are invarant to the
algorithms used to evaluate z. Henceforth we shall only look at the additive error complixities in
the evaluation of different algorithms for the computation of the type of (2.2). This is equivalent

to having exact multiplication opefations possible for the computation of (2.2). We need the fol-

lowing theorem:

Theorem 2.2 Ifin (2.2) A(2) = 2* and 2* — | additions are used to evaluate z, then

o (2) >k, s,(2) > k2~

Proof The computation of z in (2.2) is equivalent to the construction of a binary tree with 2*
leaves at the top and 2% — 1 interior nodes of additions with z the output of the bottom root node.
In such case then o,(2) is the height of the tree and s,(z) is the sum of the lengths of all the paths

from the leaf nodes to the root node. Q.E.D.

An important type of computation of (2.2) is the evaluation of the inner product given as

k
2.7) z= ﬂ(Zx‘-y[)

i=1
we need to specify the order in which the additions are executed. We discuss several strategies.

If the products are added recursively in parallel by divide-and- conquer, then the strategy is called

left-heavy if

z=flz; + z,)
where
F&i21 x .
z =M1 Z xpi | =11 Z i
=1 i= Tkj2] +1

Similarly the strategy is called right-heavy if

Lk/2] k
z=flz+ z), z=/1 Z xPi z=fl Z Xy

i=1 i= Lk2} +1

If the inner product is summed up in scquential order, then we have the common strategies of

left-to-right or right-to-left.
We now establish the following theorem:

Theorem 2.3 Assumung exact multiplications are possible i evaluating the x,, y, and xy, of

(2.7) and

o,(x)) > qa(xz) > > a,(x_) = oa(x) =0,

(2.8) o, (y1)=0,01n) = ... =0,0,_1) =0,00) 20,

then the computed z of (2.7) is such that

6,(2) = o,(x)) + o () +w

where
[Nog k] if the strategy is left-heavy,
[log k] if the strategy is right-heavy,

k — 1 1if the strategy is left-to-right,
1 1if the strategy ts right-to-left.

Proof We first consider the last two cases. If the strategy is left-to-right , then we can easily

obtain

z= xlylAk_l + AT 4t AT

Hence we have

oq(2) = max(oa(xl) + o (1) + k—1, Ua(x?.) + Ga(yZ) +hk=~1, .., oalxy) + aa(yk) +1)
=o{x))+ o)+ k-1

and the theorem is true.

If the strategy is right-to-left, then we have

z=x1y1A1 + .. +xk_1yk_1Ak—l +xkykAk_l

By (2.8) we have

oax)) 2o (x)+ 1= .. Z0x)+ hk—2=0,(x) + k-2

Hence

aa(x)) +o,(0) 1 2 0,(x) + 0,00) +2= ... 2 o4(x,_) + o) +hk— 1= i Xp_) + o)+ k-1

And indeed

64(2) = a4(x)) + o) +1

For the parallel strategies, we prove by induction. For k = 1 the theorem is trivial. Assume it

is true for k — 1 expressed as

k= 1=fif;_.-BrBo, ;=1

in binary form. For k then if the strategy is left-heavy, we have

[k/2} k '
z=fl Z xp; + Z Xy,
i=1 i= k21 +1

By assumption

o,(2) =1+ max(a;, op)
= 0,(x)) + o,(n) + 1 + [og [k/217,

where

a1 = 0,(x)) + o,() + [log [k/2]1

OR= “a(xrk/ﬂ +1) + "a(}’]’k/z‘[+1) + I'IOg(k - l'k/21 ﬂ

11

ORIGINAL PAGE IS
OF POOR QUALITY

Since

k—1= ﬂjﬂj—l---ﬂlﬁo

Hence

k= ﬁj...ﬁlﬁo +1
And we have
Y < k<M
P < k2 <

j=1<Tlog Tk/211 <j

Therefore

1+ [log [k/211 =j+ 1= [log k1

So the theorem is true. Similar reasoning can be used to show the truth of the theorem for the

nght-heavy strategy. Q.E.D.

3. Error Complexity Analysis

Given a unit-diagonal lower triangular system

(3.1 Ax=b
where
a21 1 b2 Xz
A = : N " X y b = . , X = . ,
a, B — 1 b, X,

then the exact solution x; can be expressed as

b 1

, byay 1
(3.2) x=(=)""det] - -

biay . . .ay 1

Thus the evaluation of x; is equivalent to the evaluation of the determinant of an i by i lower
Hessenberg matrix with unity super-diagonal elements. We assume the given 4 and b are error free
original data with A(a)) = 4(b) = 1 and p(a;) = u(b) = 0 . Denoting by ¢ the generic computation

of such a matnx, then it is easily shown (by expanding the first row of the above determinant) that

(3.3) =Sty +wh_;), Aw) =1, u(w)=0

where w is error-free. It is obvious that

Me) =24(ty), At) =1L,

hence

(3.4) A =271
Furthermore we have the following lemma-
Lemma 3.1 The computation of ¢ requires at most 2--! — | additive operations.

Proof Denoting g, as the number of additive operations needed to compute ¢ ; it is obvious from

(3.3) that

4=2a_,+1, a =0

The solution is given as

12

13

CRORL RPAGE 8
This proves the lemma. Q.E.D. OF POOR QUALITY

Lemma 3.1 together with (3.4) and Theorem 2.2 gives us the following theorem:

Theorem 3.1 The computation of x, requires at most a total of 2! — 1 additive operations

with

o)= i—1,

s(x) > (i= 2L

The solution of (3.1) can also be expressed as the following:

(35) X = .‘/In__l.‘/ln_zl"lzllfllb
where
1‘/[" =[- a[eiT,
T
a;=[0(1:0), iy ;s e s apil

and e, is the i-th column of the identity matrix /. Note in the above expression we use a(b:c) to

denote a sub-vector of identical component a placed in the b-th to c-th positions of a larger vector.

The usual sequential algorithm can then be expressed as

O =
fori=lton—1do
x(‘) = fiM [_x(f—l))

x=x"D

or more specifically,

forj=1to ndo

7 =

fori=1to ndo

X = xi(z—l)

(3.6) forj=1toido

@ _ =)
WA

forj=i+1tondo

xjgi) _ ﬂ(xj(i—l) _ ajixi(i—-]))

We have the following lemma:
Lemma 3.2 The computation of x is equivalent to the computation of
= {6ttt i+ Lin)]T

Proof We only need to notice that the inner loop computation of (3.6) is essentially of the type

St + 4t) which s ¢,

by definition. Q.E.D.

Applying Lemma 2.1 (i) to the inner loop of (3.6) and assuming exact multiplications, we have

forj>1i
o4(x™) = 1 + max(o (xf 1), o4(x)

s = s T g + 2D A =1, s50x) = 0y(x) =0

Rl = 2 + Az

The solutions to the above equations are given in the following theorem:

Theorem 3.2 The sequential algorithm of (3.6) produces results such that for j > i
oMy =i, (") =12, Axy =2,

o) =i—1, s0)=(i— 127", dx) =27\,

14

Comparing the results in the above theorem to those in Theorem 3.1, we conclude that the
sequential algorithm is optimal in terms of having the minimal maximum and cumulative error

complexities.

We now turn our attention to the parallel algorithm as proposed by Sameh and Brent[1]. The

algorithm for n = 2" is given as follows:

fori=1t02"'—1do
."/["(0)=4Wi

b9 =p
forj=0tov—1do

for k=2"7"1— 1 downto 1 do
MIY = auf), | x M)
j+1
b0*Y = Py
x =5

3.7)

First the A matrix of M can easily be obtained as:

AMD) =1+ Aap)el

where

J(ay) = [0(1:k), 1(k + L:m)]".

Then we have the following theorem:

Theorem 3.3
[P
i = a0 i = | Ay,
AR 1,
j 3 j+1 .
Y = AP = (12! 2. 2P T T
where

15

p=k2i+]_ 1’ q=2v_p_j+l

| . .
2;+l_ +l_
. 2 1 o [aegy] | 2 l 2{ 2
i(L(/-Fl)) = C , /(Rl({/+)) = Ai+1) = q Tows
A AV S)
22 0 2 T2

and A(LY*Y) and A(VY*D) are the first 277! and the last ¢ — 2*! rows of A(RY*Y) , respectively.
Proof See Appendix I.

If we define o(4) as a matrix whose (ij)-th component is o(a;) then we have the following

theorem:

Theorem 3.4 o(M{Y) is of the same structure as that of A(M{*Y). . Furthermore let

o,, = the (g,4)-th element of o(M¢-") , then we have

>0ifg—-h=2
eh) = 0 otherwise

}p+lsh5p+1“,p+15gs?—p
og,p+1 > ag,p+2 > L. > d’g’p+2j+l
Op+1.h < Cp+2 h < .. < ap+2,',1'h = e T 0 _ph
=0,(x) <o

Cptip p+2p = CalX2) < .. < Oppd Tl p= o T Oy _pp = o a(Xy+1)

Proof See Appendix II.

With the general property established in Theorem 3.4, we have the following theorem for

o(x):

Theorem 3.5 If in (3.7) the inner products are evaluated using either the left-heavy or the

right-heavy strategy, then the computed x is such that

16

17

o (x) < 1.5(= 1)

Proof At the (j+ 1)-th step lct us denote by m, the (g,h)th component of M{>. Now by con-

struction

To calculate

p*Y = P

we have

Y i1
" ‘ _
bﬁgt“f) =/ Z My +i,kb1(c/) +byy | 1=i<?
k=72
For i = % we have
2j+l -1 -
Xoitl = bg/i-‘l) =fl ”5]+lrkb1((/—) + b2('_,/:)+l
k=7

where the summation (inner product) is evaluated by either the left-heavy or the right-heavy parallel

strategy. Now by assumption

Ua(bf?) = o4(xy), Yil<k<dt

Also
oot) > agmym), 2+ 1<k< 2t =2
Ga(rnzf“,zj +1) = Ga(xzf)

< |S
ORIGINAL PACE
OF POOR QUALITY

Hence by Theorem 2.3 we have

aa(bgfﬂ)) = o-a(xzjq) = o’a(”sz+l,2j +l) + o (X)) +Jj= 2o'a(x2,') +j, o4x;)=0.

The solution to the above equation is given as

ooy =32 —j=2, 0<j+1<v

For general i we also have by Theorem 2.3 that

0a(Xy 1) = 04(X) + o 4(y) + | log(i + 1)
where |.! is used to denote either [.] or |.].

Now if
i=pBB,_1- By

B,=1, Bre {01}, 0<f<r—1

then o,(x) can further be expressed as

oalx;) = .Broa(xz') + o ,(x;_ prz') + .Brl log(i+ 1 — rzr)l
= ﬁ,a’a(xzr) -+ ﬁr_lda(xzr—l) + aa(x[_ przr__ p’_lzr—l)
+ B, log(i + 1= B,2)| + B, | log(i + 1 = §,2"— 8, 27|

= .. = Zﬁjaa(xzf) + Ga(xﬂuzu)
f=1

+8,1log 2| + 8,1 10g2 " | + ... +B,llog2'|
r r
<DBOE Y -n=) s+ =<3 (-1) QED.
J=1 f=1

If the inner products are evaluated in a sequential manner, then similar reasoning can be used

to establish the following theorem:

Theorem 3.6 If in (3.7) the inner products are evaluated in sequence, then the computed x is

such that

18

19

() if the strategy is left-to-right, then
salx) < [og @M
(iD) if the strategy is right-to-left, then
o) =i—1

_{g—h~lifg—h22} p+l<h<p+?,

Top = .
8%~ 10 otherwise p+l<g<2'—p

where o,, is used to denote the (g,h)-th element of ¢ (W¢) and p = k2! —1.

We can now summarize the results as follows:

= i— | If the strategy is right-to-left or the algorithm of (3.6) is used,

(3.8) o (x)d S 1.5(i — 1) if the strategy is left-heavy or right-heavy,
) a\vri

< [log il (2“0g d 1Y if the strategy is left-to-right.

The cumulative error complexities can then be bounded using (3.8) as follows:

=(i— 1)2‘.—1 If the strategy is right-to-left or the algorithm of (3.6) is used,
3.9 su(x)< < L5(i— 1)2[—1 if the strategy is left-heavy or right-heavy,

<2 log 127921 =) if the strategy is left-to-right.

We conclude that the parallel algorithm (3.7) is as accurate as the sequential algorithm (3.6) if
the parallel inner products are evaluated using the strategy of right-to-left. For other strategies we

can easily obtain from (3.8) and (3.9) that

o4(x;) resulting from (3.7) {1.5 if the strategy is left-heavy or.right-heavy,

,4(x;) resulting from (3.6) — | [log {] if the strategy is left-to-right.

[log i1 if the strategy is left-to-right.

54(x;) resulting from (3.7) 1.5 if the strategy is left-heavy or right-heavy,
s4{x;) resulting from (3.6) ~

Hence in all cases the parallel algorithm is essentially ‘equivalent” to the usual sequential algorithm

in terms of our error complexity measures.

4. Numerical Experiments and Conclusion

In the first experiment a 64 by 64 lower triangular system satisfying

X =4—x_,+1, x;=1, Xy =135

is solved in Pascal shortreal using an IBM 370 machine. The unit round-off is 16-5. If we denote
by e, (x) and e,,(x,) , respectively, the absolute error of x; produced by the sequential and parallel

seq

algorithm, then a selected sample of errors i1s shown below:

k €seq (x4k) epar(x-'lk)

1 0 0

2 0 0

3 0 0

4 3.68FE02 8.80FE02

5 2.26E05 2.91F05

6 8.52E07 5.16E£07

7 2.15E10 6.99F09

8 4.50F12 1.48£12

9 1.02E15 3.02F£14
10 2.40E17 597E16
11 5.10£19 1.07E19
12 1.08£22 2.58F21
13 2.29E24 4.78F23
14 4.75E26 1.07E26
15 1.04£29 2.47F£28
16 2.38E31 4.80£30

For the second experiment a set of 100 random lower triangular matrices 4 with unit diagonal

elements and 100 vectors b are generated such that

The systems are solved using an IBM PC with an 8087 coprocessor. The unit round-off is 2-3.
The cumulative absolute error of all x; produced by the sequential and parallel algorithm are re-

presented by ce,, (x,) and ce,,(x), respectively. A selected set of errors is given below:

20

ORICINZL TAGE IS
OF POGR QUALITY

K Ce:eq(x-lk) Cepar(x-lk)

1 5.16E—-6 388 -6
2 3.52E-5 316E -5
3 1.83£—4 191 -4
4 9.85E~4 1.O2E -3
5 5.76F£ -3 5378 -3
6 329 -2 275 -2
7 L75E -1 1.748 — 1
8 845F -1 TAE -1
9

4.29£00 3.47F00
10 1.79E01 1.85£01
11 9.43F01 9.10£01
12 5.69£02 5.12£02
13 3.12£03 2.36£03
14 1.57E£04 1.67E£04
IS 8.90£04 6.61£04
16 4.61£05 4.67£05

We see from the above tables that the numenical results produced by the parallel algorithm are
as accurate as those produced by the usual scquential algorithm. In the first experiment the parallel

results can even be classified as slightly ‘better’ than the sequential ones.

References

[1] A.H. Sameh and R.P. Brent, Solving triangular systems on a parallel computer, SIAM J.

Numer. Anal., 14(1977), pp.1101-1113.

[2] J.H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, NJ,

1963.

[3] V.B. Aggarwal and J.W. Burgmeier, A round-off error model with applications to arithmetic

expressions, SIAM J. Computing, 8(1979), pp.60-72.

[4] N.K. Tsao, Error complexity analysis of algorithms for matrix multiplication and matrix chain

product, IEEE Trans. Computers, C-30(1981), pp.758-771.

[5] N.K. Tsao, A simple approach to the error analysis of division-free numerical algorithms,

IEEE Trans. Computers, C-32(1983), pp.343-351.

22

23

ORIGINAL PAGE IS

Appendix I. Proof of Theorem 3.3 OF POOR Qu ALITY

To show the validity of

(A.1) AT = 2uf), i),

we first show that for general matrix multiplication

C=flAxB), Ae R™", Be R™ CeR™,
we have

A(O) = AA)A(B).

By definition

n
=S <z az’kbkj> :
k=1

then we have, by repeated application of Lemma 2.1,

n

Mep) = D Aag)by).

k=1

So we have

AC) = A(A)A(B).

The valdity of (A.1) can then be shown by direct substitution of the results for

A(MY.) and (M) and AWMU+ into (A.1). Q.E.D.

Appendix II. Proof of Theorem 3.4

First of all , the nontrivial part of o, (M{§*") is of the same structure as that of A(My*D). Fur-
thermore, the diagonals and subdiagonals of A(M§*D) consist of only one basic term each. Hence

no additive operations are involved. And we have

=0 otherwise.

>0ifg—h=2, ;)
agh{ Ve }p+l£hSp+2/+l, ptl<g<2 —p

Let us assume that the rest of the theorem is true for M{),, and M{} . Now

MY = @), M)
!

P {0+
L(/+1) R(j+1)_ k
RU*D I, k

where

0]
L(j+ 1) — l/zk
AL U L

Rl(ch) = [ﬂ(RgZH L’éjlz + Vg?() Rg?a—l]'

The submatrices L§), LY., in L§ and RY,, in RY*Y will retain the same properties as stated in the

theorem. Let

AT { .
X=aLD v, v=maRrA,)+ v,

and

L=L§2+1v R=Rg1)<+1’ U=LF§’), V= Vz”Z

Cituhtee PadzE 15

OF POOR QUALITY 2

25

Then ORIGINAL PAGE IS
OF POOR QUALITY

m
Xmn =ﬂ<zlmkukn>y l<mn< 2/
k=1

with
abm)) > 0allna) > .. > a4(lyn),
oq(Uin) = 04(thgn) = o = Og(Upp) S0 >0, 4.

Hence by Theorem 2.3 we have

6 (Xmn) = 64(ln1) + 0, + W(m)

< Ga(lm+1,1) +o,+wim+1)= C"a(xm+1,n)

where
[log m] if the strategy is left-heavy,
wm) = Llog m] if the strategy is right-heavy,
k — 1 if the strategy is left-to-right,
1 if the strategy is right-to-left.
Also

0 4(Xmp) > 0q(ln1) + 0pyy + Wim) = o'a(xm,n+l)

by assumption. Hence the ordered property for the ¢’s in L{*? is preserved. A similar argument

can also be used to show the same property is true for the matrix R¢*). Q.E.D.

NASA Report Documentation Page

National Aeronautics and
Space Administration

1. Report No. NASA TM-101384 2. Government Accession No. 3. Recipient’s Catalog No.
ICOMP-88-19
4. Title and Subtitle 5. Report Date
On the Accuracy of Solving Triangular Systems in Parallel November 1988

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
Nai-kuan Tsao E-4439
10. Work Unit No.
505-62-21

9. Performing Organization Name and Address
11. Contract or Grant No.

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546-0001

15. Supplementary Notes

Nai-kuan Tsao, Wayne State University, Detroit, Michigan 48202. This work was supported in part by a NASA-
ASEE 1988 Summer Faculty Fellowship and in part by the Institute for Computational Mechanics in Propulsion,
NASA Lewis Research Center (work funded under Space Act Agreement C99066G).

16. Abstract

An error complexity analysis of two algorithms for solving a unit-diagonal triangular system is given. The results
show that the usual sequential algorithm is optimal in terms of having the minimal maximum and cumulative
error complexity measures. The parallel algorithm described by Sameh and Brent is shown to be essentially
equivalent to the optimal sequential one. Some numerical experiments are also included.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Triangular system; Parallel algorithm; Error Unclassified — Unlimited
complexity; Sequential algorithm; Round-off error; Subject Category 64

Floating-point computation

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price*
Unclassified Unclassified 26 A03

NASA FORM 1626 OCT 86 *For sale by the National Technical Information Service, Springfield, Virginia 22161

