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ABSTRACT

¢ PRE

This - study presents the development and methodology\ for
development of full-authority implicit model-following and
explicit model-following optimal controllers for use on
helicopters operating in the Nap-of-the Earth (NOE) environment.
The controllers were designed based on NOE handling qualities
requirements -and the 1longitudinal dynamics of the conventional

AH-1G.-.and the AH-1G fitted with a simplified longitudinal

-auxiltiary propulsion system. Pole placement, input-output

frequency response, and step input response were used to evaluate
handling qualities performance. The pilot was equipped with
velocity-command inputs.

A mathematical/computational "trajectory optimization" method
was employed to evaluate the ability of each controller to fly NOE
maneuvers, The method determines the optimal swashplate and
thruster input histories from the helicopter’s dynamics and the
prescribed geometry and desired flying qualities of the maneuver.
Minimization of a cost function which incorporates these dynamic,
geometric, and flying qualities constraints resulted in the

optimal- -control histories. From the 'control 1law for each

controller, these optimal helicopter control histories were used

to-"back out" "the pilot input histories. The helicopter 'state

histories and pilot input histories were used to evaluate the

controllers in terms of their abilities to meet the flying

* qualities criteria and to minimize pilot workload; pilot workload
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was measured by the integral cost of stick input rates. The
method avoids the time and cost constraints, and biases,
associated with piloted simulation studies.

Three maneuvers were investigated for both the implicit and
explicit controllers with and without auxiliary propulsion
installed: pop-up/dash/descent, bob-up at 40 knots, and
glideslope. -The pop-up and bob-up clearly showed the advantages .
that the use of auxiliary propulsion has in reducing the time to
complete a task and in ©providing increased longitudinal
acceleration/deceleration while not requiring excessive pitch
attitudes.

The explicit controller proved to be superior to the implicit
controller in performance and ease of design. The design sythesis-

showed that, in most cases, it was necessary only to weight the

diagonal elements of the state and control weighting matrices;
guidelines for selecting these elements is included in the study.
Pilot inputs using the explicit controller were smooth, decoupled,

.and in proportion to the desired horizontal and vertical

~ velocities of the helicopter.
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Chapter I

INTRODUCTION

1.1 Background and Motivation for this Study
Today's battlefield helicopters need to be highly maneuverable.
In particular, the maneuvers that must be performed for successful
Nap-of-the-Earth (NOE) tasks require a high level of helicopter
agility, good handling qualities, and reasonable levels of pilot
workload. These agility and handling qualities criteria often
dictate both the required response characterisitics of the control
system, and the required acceleration potential of the helicopter.
Such specifications can often only begin to be realized through a
full-authority controller, one that can utilize the full control
power of the helicopter. Additional requirements to rapidly
transition from one point to the next suggests the need for higher
acceleration/deceleration levels, which may make the inclusion of
auxiliary propulsion mandatory.
Motivated by these considerations, the aim of this study was to:
1. define the "operational effectiveness" criteria for NOE
operations;
2. investigate suitable controller structures for
full-authority control of the helicopter which meet the
established criteria and which are sufficiently easy to
design;

3. investigate the advantages incurred by |using



auxiliary longitudinal propulsion in NOE operations;

4, introduce a mathematical/computational method for
evaluating the performance of a controller and auxiliary
propulsion system for NOE applications which does not employ
human pilots or pilot models. This method 1is called the

trajectory optimization method.

1.2 Definitions Of Handling Qualities and Agility

At the onset, it is necessary to define and distinquish several
terms which are used throughout this work.

Handling qualities are "those qualities or characteristics of
an aircraft that govern the ease and precision with which a pilot
is able to perform the tasks in support of the aircraft role.”
[14] Agility is "a measure of the ease with which a helicopter
can change its state." [10]

There is an important distinction between handling qualities
and agility. Handling qualities are allied with the dynamic
response of the helicopter, and as such, handling qualities
criteria define the helicopter’s response to a given control
input; quantitatively, they define how the controller should
perform in terms of damping ratio, bandwidth, control
sensitivities, pole/zero locations, control force gradients, et
cetera. Agility is more closely allied with translational motion.
Quantitatively, agility can be measured in terms of particular
aspects of the helicopter’'s state time histories, most notably its
accelerations. Handling qualities criteria, agility, and pilot
workload are the three measures used to evaluate the performance

of the helicopter and controller over a prescribed mission. These



three measures collectively constitute what may be called the

mission’s "operational effectiveness."

1.3 Overview of this Sﬁudy

This study addresses the application of full-authority optimal
controllers and auxiliary propulsion to helicopter NOE operations.
Chapter II describes the NOE environment and gives both a
qualitative and quantitative account of the desired flying
qualities and handling qualities within this environment. In view
of these criteria, the advantages of using auxiliary propulsion
are discussed, as is the preferred controller command structure.

Chapter III presents the formal development of the explicit
model-following and implicit model-following controller
structures. They are developed using the linearized equations of
motion of the helicopter. Chapter IV explains how the controller
and auxiliary propulsion system are evaluated for a given
maneuver. A trajectory optimization method is used to compute the
optimal helicopter input control histories. The pilot input
histories are found from these control histories and the control
law; pilot workload is measured from the pilot input histories.
Chapter V presents a detailed description of the mathematics and
computational solution for the trajectory optimization method.

The implicit and explicit model-following controllers are
applied to the AH-1G helicopter. The selection of the controller
gains for both of these controller structures, at the hover trim
condition, is presented in Chapter VI. The examples in this
chapter are given for both the conventional helicopter and for the

helicopter equipped with auxiliary propulsion.



Three NOE maneuvers are investigated in  this study:
bob-up/dash/descent, pop-up at 40 knots, and glideslope. The
optimal control input histories, computed using the trajectory
optimization program, are shown in Chapter VII along with the
histories of the state variables. Finally, in Chapter VIII, the
pilot input histories are shown for each of the three NOE
maneuvers, using both of the controller structures, and for the
helicopter with and without auxiliary  propulsion. The
"operational effectiveness" of all of these helicopter/controller

configurations is evaluated in this chapter.



Chapter I1I

THE NOE ENVIRONMENT

2.1 General Attributes of NOE Missions/Maneuvers
The roles of the pilot and helicopter vary in the battlefield

environment. But in general, NOE maneuvers are employed chiefly
to avoid detection by the use of cover. [10,14]) The helicopter
moves discretely from one point to the next. Maneuvers may be
elusive, as during air-to-air combat; they may be operational, as
in transporting troops and/or cargo; or they may be of the
scout/attack type, for example air-to-air combat and anti-tank
missions. The latter wusually employ target search and weapons
delivery; many employ navigation. A generalized list of necessary
attributes for flying NOE maneuvers is: [10,12,13]

* high dash speed

* good longitudinal/vertical acceleration/deceleration

* small turn radius

* good handling qualities and controllability

* low pilot workload

2.2 Typical NOE Maneuvers
The literature commonly defines a list of 15-20 high and 1low

speed maneuvers descriptive of NOE flight: (10,12,13,15,19,28]



Low speed High speed

* precision hover * box pattern (four turns)
* taxi * longitudinal accel/decel
* lateral jink * pull-up/push-over

* rearward flight * turning approach

* bob-up * straight approach

* dash * lateral accel/decel

* slalom

* quick-stop
* liftoff and landing (including ship deck liftoff/landing)
* pop-up (zero forward velocity)

* hover about a point/masked hover

This work is concerned with the longitudinal degrees of freedom of
the helicopter. We therefore investigate tasks that include the
bob-up and . pop-up, dash, quick-stop, longitudinal
acceleration/deceleration, and straight approach maneuvers.
Actually, our purpose in selecting this group of maneuvers is
twofold. This group reflects representative longitudinal

maneuvers, and it also reflects those maneuvers for which
auxiliary longitudinal propulsion is perceived to be most useful.
Sample trajectories are computed and shown in Chapter VII.

The bob-up is usually associated with a quick ascent from
behind tree cover or other terrain cover; pob-ups are like bob-ups
but begin from hover. The dash is a sprint maneuver typically
from fifty feet to a half mile. The dash is most commonly
employed to rapidly transition from one point to another; as such,

it is often accompanied by a quick-stop and descent to hover.



Other longitudinal maneuvers require high speed flight over longer
distances. A typical bob-up maneuver at high speed is obstacle
avoidance, for example in "hurdling" a bridge while flying low

over a river.

2.3 Desired NOE Flying Qualities
Two flying qualities issues stand out as being very important
in NOE flight. These are the pitch attitude constraint and

acceleration/deceleration potential.

2.3.1 Pitch Attitude Constraint
It is important in NOE maneuvers to maintain a desirable pitch
attitude. Most often this attitude is close to zero. These small
pitch attitudes are very important for carrying out secondary
operations, armament and navigation in particular: [10,13]
O For weapons delivery, maintaining near-constant pitch
attitude is crucial for radar "locked on" tolerances.
O Large nose-up and nose-down pitch attitudes are undesirable
for navigation and target search.
O Large pitch forward attitudes raise the the tail rotor
above tree-line, making it easier to be seen and heard.
O Pitching must be small for the pilot to maintain visual
cues.
O There are dangers of tail rotor groun& strike and autorota-
tion with excessive nose-up attitudes.
Though there is not universal agreement on e#actly what are the
permissible attitudes for NOE maneuvers, the literature suggests

that pilots prefer nose-down attitudes in the 0° to 15° range and



nose-up attitudes from 0° to 10°. [10,12,19]

2.3.2 Acceleration/Deceleration Requirements

Time is the most important agility parameter. Most tasks are
performed in minimum time, or, at the highest possible
accelerations and decelerations. But because conventional
helicopters require large attitude changes for acceleration and
deceleration, the acceleration/deceleration levels are restrained
because of the pitch attitude constraints outlined above. In a
survey of Army, Navy, and Air Force pilots [10,19], the ability to
accelerate and decelerate -- at higher rates and with less pitch
attitude -- was sighted as the issue in which they would like to
see the biggest improvement.

Figure 2-1 plots acceleration versus airspeed for a typical
helicopter. The plot shows that accelerstion potential decreases
with airspeed. Particularly for battlefi~ld operations, pilots
prefer to have higher acceleration potential across the airspeed
spectrum. The current ABC [25,29] and Tilt-Rotor ([28] aircraft
increase the acceleration potential at higher airspeeds. These
programs, and the studies conducted in References 10, 16, 24, 25,
and 29 define the desired potential acceleration level, across all

airspeeds, at 0.3 to 0.5g.
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Figure 2-1 Available acceleration vs airspeed
(Figure adapted from References 24 and 25)

2.4 Potential Benefits of Auxiliary Propulsion

In light of these flying qualities criteria, we can predict the
improvement in agility that would result using an auxiliary
longitudinal thruster on a helicopter operating in this
environment. The addition of an additional X-force via a
longitudinal thruster would increase available acceleration
levels, so that the acceleration potential of the helicopter looks
like the upper line in Figure 2-1. And, because this X-force is
thruster-generated rather than rotor-generated, large pitch
attitudes are not required to achieve greater
acceleration/deceleration levels, so that pitch attitude
constraints should be met. These predictions are substantiated in

Chapters VII and VIII.

2.5 Handling Qualities and Controller Selection
As one might expect, there is a direct connection between the
type of maneuver the pilot is expected to perform and the type of

command input which the pilot prefers to have. For the



longitudinal degrees of freedom, the flight (i.e. state) variables
are the helicopter horizontal and vertical velocities, and pitch
attitude and pitch rate. Numerous studies have investigated
longitudinal controllers with various command inputs. The two
basic configurations are velocity command configurations and
attitude/attitude-rate command configurations. From the
literature available, it is determined that for the types of NOE
maneuvers investigated in this study, pilots prefer velocity
command controllers. The following paragraphs summarize some of
the work found in the literature and explain the rational for
choosing the <velocity command controller configuration over
alternative configurations.

The pilot’s control over the full 1longitudinal and
lateral-directional motions of the helicopter typically consists
of four command inputs; pitch, roll, yaw, and vertical command
inputs. For longitudinal motion, these inputs reduce to the pitch
and vertical command inputs. Although more (or fewer) pilot
inputs may be defined, two inputs 1is the most efficient for
control within this horizontal-vertical plane. Ideally, one input
should control vertical motion, and one input should control
horizontal motion. {6,11,12,13,15,28}

Most NOE tasks require the ©pilot to govern the speed and
position of the helicopter; other tasks, notably air-to-air
combat, require attitude control. It is, of course, logical to
equip the pilot with command inputs that will best enable him to
perform the tasks at hand. For the mane.vers of interest in this
study, which are velocity/position based, we find that pilots

prefer a rate (velocity) command controller, with possible

10



modifications. The results from a literature review of controller
structures for NOE tasks, outlined below, show that velocity
command systems are best for maneuvering, and attitude command
systems are best for precision hover tasks.

References 17, 28, and 31 conclude that pilots prefer velocity
command over attitude command (AC) for tracking tasks. Typically,
both velocity command and attitude command systems have a vertical
velocity command as one input; for the other input, the velocity
command system uses a horizontal velocity command and the attitude
command uses a pitch attitude command. This preference also holds
for low speed precision pointing tasks; reference 19 found that an
AC controller degraded the helicopter’s handling qualities during
precision pointing tasks. The study conducted in that reference
also found that the addition of attitude hold (AH) to the velocity
command controller results in a high level of agility, as measured
by achievable rates and accelerations.

For chase and aquisition, reference 31 finds that pilots prefer
the velocity controller. For these types of tasks, the large
stick inputs necessary with the AC controller are found to be
objectionable; the AC controller is preferred for tasks where
precision maneuvering is critical. This reference, and references
11, 13, and 15 note that the best handling qualities are achieved
when the two velocity commands in the the velocity system are
decoupled; decoupled contols is highly desirable for good handling
qualities. Hence, the study conducted in this thesis uses an
velocity controller.

With the control structure thus defined, it was then possible

to set some quantitative response criteria for the velocity
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controller that would result in good handling qualities. Many of
the defining handling qualities criteria used in this work were
taken from the Army's Advanced Digital ‘Optical Control System
(ADOCS) program. [11,15] This control system is being designed to
provide satisfactory handling qualities for attack helicopters.
The ADOCS report itself includes an extensive literature search to
define applicable handling qualities criteria for attack
helicopters.

At the onset, the two velocity command inputs should be
decoupled, and should produce responses that closely approximate
the outputs of two first-order systems. Specifications for the
two first order time-constants vary strongly according to pilot
and task, but the literature generally agrees that the accepted
range for the vertical response time constant is from 1 to 4
seconds, while the horizontal response time-constant ranges from 2
to 5 seconds. [11,13) When a first-order response cannot be
achieved, a second-order response should have a damping ratio
equal to or greater than 0.7; the minimum acceptable damping ratio
is 0.5.

The input frequency band of concern does not vary greatly among
the references [11,13,15,18,20]}, and thus the band was taken to be
from 0 to 1 Hz (6.26 radians/second). In addition, the transfer
function phase response should follow that of a first-order
system, with a suitable time-constant as Qpecified above. Too
much phase shift can result in pilot induced oscillations (PIO).
(20]

For the velocity-command controller, the vertical velocity

command input sensitivity should range from 13 to 16 ft/sec per
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inch of stick, for the wvertical response time-constants listed

above. [11,13); the horizontal velocity input sensitivity ranges
from 12 to 16 ft/sec per inch, for the related time-constants.
This range is again due to the variation in tasks from which these
data were taken. These inputs should not produce pitch
accelerations in the helicopter which exceed 0.69 rad/sz.

The handling qualities criteria are summarized in Table 2-1

below:

horizontal vertical
velocity velocity
command command
first-order
. 2-5 sec 1-5 sec
time-constant
damping ratio = 0.7 = 0.7
minimum 0.5 0.5

damping ratio

bandwidth

0-6 rad/s

0-6 rad/s

control

sensitivity

12-16 ft/s/inch

13-16 ft/s/inch

maximum
pitch rate
sensitivity

.69 rad/s/inch

.69 rad/s/inch

Handling qualities

Table 2-1
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Chapter III

CONTROLLER DEVELOPMENT

3.1 Linearized Equations of Motion

Aircraft performance analyses and controller development are
commonly accomplished using the linearized equations of motion of
the vehicle about a trim point. These linearized equations can
very closely approximate the total nonlinear equations of motion,
and are much easier to use in application. In addition,
linearized numerical data for many aircraft is readily available.
The controller development methods and trajectory optimization
procedure of this study wutilized the helicopter’s linearized
equations of motion. All numerical data was derived for the AH-1G
telicopter, which typifies helicopters that are used for the roles
discussed in this study.

Appendix A reviews the procedure and assumptions used in the
linearization of the helicopter’s nonlinear equations of motion.
It is shown below that the helicopter’s total state variables are
the sums of the trim states and the linearized (perturbation)
states. Appendix B contains the numerical (linearized) stability
and control derivatives for the AH-1G ai twenty-two trim points
from reference 1. A realistic representation of the helicopter
states at all points and times in space requires that these
derivatives be scheduled between trim points. Appendix B
discusses how these data are scheduled according to flight

condition.
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The speed, position, acceleration, and orientation of the
helicopter are described in terms of its nominal (trim) and
perturbation state wvariables. Figure 3-1 shows the total and
perturbation states of the helicopter. Because of the small angle
assumption used in the linearization of the equations of motion,
the total state variables U, W, Q, and 6 are the sums of their
trim values (Uo, Wo, Qo, 00) and perturbation values (u, w, q, ).
Since perturbation positions (x and y) are measured along the
trimmed body axis, their contribution to the total inertial
referenced positions must take into account the trim attitude 00.
Therefore,

X =X + xcosf and Y =Y + ysind .
(<] =] =] ]

T helicopter =

—— |

©

Figure 3-1 Longitudinal Body Axis System

3.2 Design Objectives

The objective of this study was to design a controller for
helicopters that perform NOE tasks, or other demanding tasks,
utilizing the full available control power of the helicopter.

Such a controller is a "full-authority" controller, one which is

15



capable of exploiting the full control potential of the
helicopter, rather than one which limits the controls to less than
their full range of travel (as is often done in
stability-augmentation systems). There are numerous controller
structures which can potentially fit this bill. For controller
design using the helicopter’s linearized equations of motion,
several popular and promising controller structures are those
referred to as linear-quadratic optimal controllers,

A suitable controller structure is one that satisfies the
prescribed input/output response criteria (handling qualities
criteria). But it is also of concern that the controller be
sufficiently easy to design , and that it is adaptable to changing
flight conditions (i.e., easy to schedule within the flight
envelope). Linear-quadratic implicit and explicit model-following
optimal controllers prove to meet these requirements.

Pilots have shown favoratle responses in studies conducted on
aircraft using model-following controller structures. Reference
18 shows that pilots rated model-following better than response
feedback mode control, producing respective Cooper-Harper ratings
of 3 wversus 3.5. The pilots described a sense that the
model-follower controller was "locking on" when it was engaged.
Reference 17 also notes pilots’ preferences for model-following
over response feedback control because of the ability of the
model-following system to provide inter-axis’ control to compensate
for wundesirable cross-coupling affects in the vertical and
horizontal axes.

The ADOCS program [11,13] used a model-following concept to

achieve the desired command responses. In that study, classical
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control methods were used to design feedback paths that met the
stability requirements. However, based on the desired
command/response characteristics, a command reponse model was used
to provide the desired response. It achieved good pilot ratings,
falling within Level 1 of the Cooper-Harper ratings scale. This
feedforward command augmentation and shaping performs the same
function as the feedforward gains of the model-following
controllers presented below. The feedforward structure provides
control mixing (to achieve decoupled modes) and prefiltering, but
does not affect the 1level of feedback stabilization. The
model-follower structure also facilitates easy flight condition

scheduling.

3.3 Linear-Quadratic Optimal Controllers

The method employed in the design of optimal controllers is to
minimize a predetermined cost function, subject to the system's
dynamic constraint, for the purpose of generating an optimal
control law, i.e., an optimal relationship between the states and
controls, that gives the resulting closed-loop system the desired
control/response characteristics. The general method 1is to
define, from the cost function and system dynamics, the equations
that establish necessary and sufficient conditions for minimum
cost. [2,4] The necessary conditions are derived by equating the
cost function’'s linear sensitivity to zero through a procedure
known as the Calculus of Variations. The cost function is
typically comprised of a final state penalty and an integral
penalty function of the state and control. Parameters of the

integrand, or Lagrangian (£), define the nature of the optimizing

17



solution. The cost function is written as:

t
3 = glx(e),e) + [ Elx(e),ue), e)de (3-1)

t
The system dynamics: X = fx(t),u(t),t] (3-2)
and initial condition: x(to) - X (3-3)

must be satisfied while J is being minimized. To assure adherence
to this "dynamic constraint,” these dynamics are adjoined to the

cost function via an adjoint (or influence) vector 1(t).
Y
3= glxye] + {f[x(t),u(t),t]
[«]

+ lT(t)(f[X(t),U(t),t]-i(t)}}dt (3-4)

flx(t),u(t),t]-x(t) 1is adjoined to the integrand because it must
be satisfied over the entire interval <to,t£>. And because it
equals zero when satisfied, the numerical wvalue of J 1is not
changed. 1(t), then, acts as an influencc function, and expresses
the cost function’s sensitivity to dynamic effects.

The Hamiltonian, ¥, of the integrand is defined as:

R[x(t),u(t),t] = L[x(t),u(t),t] + 1T ()E[x(t),u(t),t] (3-5)

and J can be rewritten as

t

f{R[x(t),u(t),t] -~1T(t)i}dt (3-6)

t
L]

3= blxce).e,] +
(Explicit reference to time is dropped here; variables at the
final time t, are denoted by the subscript f).

Using the Calculus of Variations, three necessary conditions are

derived from the cost function. These are:
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E

1. 0 = (55 (3-7a)
. oK. 1 .

2. 1 = (- % (3-7b)
T d¢ T

3. lf - (E (3-7C)

These equations are also known as the Euler-Lagrange equations.
When satisfied, the Hamiltonian is stable for infinitesimal
control variations. These conditions are therefore local, rather
than global criteria. The sufficient condition is that Huu>0.
For linear-quadratic cost functions (defined below), Ruu>0 is
guaranteed to be satisfied. Therefore, the formal mathematics for
this sufficient condition are not pursued here.

Inspection of Equations 3-2 and 3-3 and Equations 3-7b and 3-7c
shows that this optimization problem is two-point boundary value
problem; the state integration constants are specified at t and
the adjoint integration constants are specified at t..

For linear-quadratic controllers, the dynamics are linear and
the Lagrangian consists of weighted quadratic norms. A
quadratic, time-invariant, final state penalty takes the form
¢[x£] = xinxf, and the third Euler-lLagrange equation becomes 1f -
Pfxf. However, the integration interval is taken from 0 to tf, as
tf approaches infinity. This means that the final state penalty
is presumably insignificant. [4] With this in mind, and recalling
that 1 and x are adjoint and therefore Hhold over the entire
interval <0,o>, we drop the final time subscript for the third
Euler-Lagrange equation, and now have a more suitable, yet wholely
correct, condition that 1 = Px.

The sufficient condition, Ruu>0, is guaranteed to be satisfied
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for quadratic cost functions as long as the weighting matrices are
positive-definite. The elements of the weighting matrices are
parameters that are chosen to meet the closed-loop response
criteria; a unigue optimal controller results for each oet of
weighting matrices chosen for the giver system dynamics. The
relationship of weighting matrices parameters and control
objectives is not direct nor is parameter selection intuitive. .
However, 1linear-quadratic model-following optimal controllers
prove to be easy to develop because one usually needs only to
adjust the diagonal elements of the weighting matrices, and

perhaps an off-diagonal element for obviously coupled variables.
3.4 Implicit Model-Following Controller

The system (in our case, the helicopter) is described by the
dynamics: X = Ax + Bu (3-8)
where for our application

and u = [/ (3-9)

>0 f C©
H
n

and A and B are the stability and control derivative matrices,

respectively. Note that we include an auxilary 1longitudinal

thrust control, T (inclusion of T does not alter the derivation).
The model, whose state response (xm) to control inputs (d) we

want the system (helicopter) to emulate, is expressed as

x = Fx + Gd (3-10)

m
where x is the plant state vector as given above and d is the
vector of (pilot) inputs. For the velocity-command controller, d

contains horizontal and vertical commands:
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d=1|u (3-11)

com

com

This is an implicit model-follower structure because the error
-- in this case, the rate error -- between the system and the
model is penalyzed inoide the cost function, rather than as part

of the control system in the closed-loop system dynamics. [9,21]

The cost function is:

1 00
J = ;J {(;‘:-;im)TQ(;’:-i:m) + u'Ru + 1T(Ax+Bu) - 1Ti}dt (3-12)
0

where x and ¥* arenx 1, Q isnxn, u ism X 1, and R is m X m.
m
Substituting for x and x from Equations 3-7 and 3-8,
m

1 ©
J = ;Io (Ax+Bu—Fx-Gd)TQ(Ax+Bu-Fx-Gd) + uTRu}dt

1 o
- ;J‘ {(xT[A-F]T+uTBT-dTGT)Q([A-F]x+Bu-Gd) + uTRu}dt
0

1
- ;f {xT(A-F)TQ(A-F)x + u (B"QB+R)u + d'GTQGd
0
+ 2x7(A-F)'QBu - 2x (A-F)'QGd - 2dTGTQBu}dt (3-13)

Using the following definitions,

V- (A-F)Q(A-F) I (A-F)"QB A G'QB

T (3-14)
W = (A-F) QG W = BQB+R W = GQG
xd uu dad
the cost function becomes
1
J=—I{xTw Xx+uW u+dW d+2xW u-2xW d
2 XX uu dd xu xd
T T T-
- 2d WdJ1-+ 1" (Ax+Bu) - 1 x}dt (3-15)
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and the Hamiltonian is

1
R-—{xTW x+uTW u+dTW d+2xTWu-2xTWd
2 XX uu dd xu xd
; 2dde11-+ 1T(Ax+Bu)} (3-16)
U

~

Employing the three optimality conditions, we have

1. o.n(‘;_”)T.=w w+Wx-Wd+Bl (3-17)
u uu Xu du

2. i= (Léﬂ Te Wx-Wu+Wad-AaAl (3-18)
ax XX xu xd

At this point we observe that the integrand contains the
variables 1, u, x, and d. Therefore, we revise the algebraic
expression for 1 to include effects of the model input d. This is
done by adding a linear inhomogeneous term to the (linear)

homogeneous expression for 1 from the previous section [22]:
3. 1l = Px - Sd (3-19)

Pisnxnand S is n x r. Solving Equation 3-15 for u yields

ue=-W'W x - W d+B1) (3-20)
uu xu du

Using Equation 3-19 we substitute for 1 in Equation 3-20 to obtain

the optimal control law in terms of the desired variables x and d:
u=-Wwiw x-wu' d+8'px - B'sQ)
uu  xu du
- -w i’ +BTR)x + W (W' + B's)d (3-21)
uu xu uu du
= -Clx + Czd (3-22)

The expressions for P and S are found from the dynamic equation

for 1. Sustituting u from Equation 3-21 and 1 from Equation 3-19
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into Equation 3-18, we have !
i=-Ww x-w [-Wiw! +3"p)x+w 1(w" +B7s)d] + W d -AT(Px-Sd)
XX xu uu xu uu du xd

- [-W W WW 4w w'BTP)x <
xXxX X Xu uu

u uu XxXu

+[-W wWiw

Xu uau

T w wisTs+w +aTs)d (3-23)
d Xu uu xd

u

Taking the derivative of Equation 3-19 with respect to time, and ‘

noting that the best estimate of d is zero (since it is

unpredictable [22]), we have
1="Px+ Px - 5d (3-24)
Substituting for x from Equation 3-8 and then for u from Equation
3-21, and collecting like terms, Equation 3-24 becomes
i = [P+PA-PBW ‘W’ -PBW 'B'P]x
uu XxXu uu
+ [PBW ‘W' +PBW ‘B's-§)d (3-25)
uu du uu
Equating the right hand sides of Equations 3-23 and 3-25, and
recognizing that, for minimum cost, the resulting equation will
hold true irrespective of the values of x and 4, we generate two

separate equations by equating the coefficients of x and the

coefficients of d in these equations:
T

P~ -P[A-BW W ] - [A-BW W TP
uu xXxu uu Xu

+ [-W +W W W' ]+ P[BW 'BT)P (3-26)
xX Xu uu Xu uu

§ = -(a-Bw W' 1Ts + P[BW 'B']S
uu xu uu

+ P[BW W ] - w_,-v v (3-27)

uu du Xu uu du

Equation 3-26 takes the form P = -PM -M'P + PNP + K and is
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recognized to be a matrix Riccati equation in P. The steady-state
P matrix is solved according to the diagonalization method [26]
outlined in Appendix C. Once P is determined, the steady-state
solution for S (S = 0) is determined from Equation 3-27 using
simple matrix algebra.

Equation 3-22 is the <control law for the implicit
model-follower. Substituting this expression for wu into the

open-loop dynamics, the closed-loop dynamics are
X = Ax + Bu = Ax + B(-C x+C_d) = (A-BC )x + BC_d (3-28)

Figure 3-2 shows a block diagram of the open-loop helicopter, and
the closed-loop helicopter with feedback gains C2 on the measured

states x, and feedforward gains from the pilot inputs d.

closed-loop helicopter

.........................................................

..................................

..................................

.........................................................

Figure 3-2 1Implicit Model Controller

3.5 Explicit Model-following Controller
The open-loop dynamics of course do not depend on the
controller structure, and are again given by Equation 3-8. The

idealized model dynamics are
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X = Fx_+ Gd (3-29)

m

where x is the model state vector and d is the pilot control
input vector.

The linear-quadratic cost function for the explicit
model-follower penalizes control excursions and the error between

the actual state and the model state. [2,21]

J = %J {(x-xm)TQ(x-xm) + uRu + 17 (Ax+Bu) - 1Ti}dc (3-30)
0

- %j {[xTQx . 2xTme + x;me] + 17 (Ax+Bu) - 1Ti}dt (3-31)
0

Because there are two distinct states, we could define an

augmented state which includes both x and x . The cost function
m

using the augmented state is

ad
J - %I {qu'x + u'Ru + 17 (Ax+Bu) - 1Ti}dt (3-32)
0
where X=1zx and Q'— Q -Q
" -Q Q

Minimization of the cost functions given by Equations 3-31 and
3-32 yield dimensionally different optimality equations. The
resulting control law in each case, however, yields identical gain
coefficients for the state and command vectors x and d.
Derivation of the control law using Equation 3-32 is exactly
analagous to the derivation for linear quadratic regulators (LQR);
this method is not presented here. Instead, the derivation using
the "unaugmented " cost function, Equation 3-31, is used as
perhaps it best shows how the control law depends on x as well as

x and d.
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The Hamiltonian is

H = %{erx - 2xTQx + xTQx + u'Ru + IT(Ax+Bu)} (3-33)
m m m

The first two optimality conditions are

O T
1. 0= (3 —Ru+bB1 (3-34)
2. 1= (- 8fyr _ -Qx + Qx -A"1 (3-35)
ox m

As we did in the implicit model-follower development, we assume a
linear relationship among 1 and the variables of the integrand

(other than u):

3. l=Px+Px - Sd (3-36)
1 2 m
From Equations 3-34 and 3-36, the control law is

u=-R'8"1 = R'BT(Px+Px - Sd)
1 2 m

- -R-lBTPlx - R-lBTsz + R 'B'sd (3-37)
m
= -Cx-Cx +Cd (3-38)
1 2 m 3
To find expressions for P1’ Pz’ and S, solve for i.

Substituting Equation 3-36 into Equation 3-35:
i= -Qx + Qx - AT(P x +Px - S8d)
m 1 2 m
T T T
= [-Q - A Pl]x + [Q - A Pz]xm + [A°S]d (3-39)

Taking the derivative of Equation 3-36 with respect to time (and

recognizing that the best estimate of d is zero), we have

1=Px+Px+Px +Px -8d (3-40)
1 1 2 m 2 m R
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Substituting Equation 3-8 for x and Equation 3-29 for x , and then
m

substituting Equation 3-37 for u and collecting terms, we have
: . -1,T -1,T :
1 = [P A+P +P BR 'B'P ]x + [P _BR "B P +P _F+P_]x
1 171 1 1 2 "2 2 "m
+ [PlBR-lBTS+P2G-$]d (3-41)

Equating the coefficients of x, x , and d from the right hand
m

sides of Equations 3-39 and 3-41 yields the expressions for Pf

P , and S:
2

. T -1_T

P =-PA-AP 4+ PBR BP -Q (3-42)
1 1 1 1 1

. T -1.T

P =-PF-AP 4+ PBR BP -Q (3-43)
2 2 2 1 2

: T -1.7T

S = ch - A'S + PIBR B°S (3-44)

Equation 3-42 is a matrix Riccati equation; the steady-state
leatrix is solved according to the diagonalization method [26]
described in Appendix C. Once P1 is determined, steady-state P2
is solved from Equation 3-43 via a Kronecker product method [30],

since P2 premultiplies and postmultiplies other (constant)

matrices. With P1 and P2 known, steady-state S 1is solved
algebraically:
s = (A" - PIBR’IBT]'IPZG (3-45)

The block diagram for a helicopter equipped with an explicit
model-following control law (Figure 3-3) shows that the ideal
model acts as a prefilter of pilot inputs d to the open-loop

helicopter.
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closed-loop helicopter

........................................................
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Figure 3-3 Explicit Model Controller

3.6 n~ther Controller Structures

Other linear-quadratic optimal controller structures were
investigated. In particular, the proportional-filter and
proportional-integral structures were considered. [2] However,

choosing suitable weighting matrices parameters for these two

structures proved to be a very laborious assignment. Because of
this, and Dbecause the response characteristics of these
controllers showed no improvement over the model-following
controllers, they were eliminated as . possible controller

structures.

28



3.7 Gain Scheduling

The controller gains are derived for the linearized dynamics of
the helicopter about a trim point. As such, they are only
applicable for flight within a region close to this trim
condition. For the controller to be effective throughout the
entire flight envelope, it became necessary to derive gains for
trimmed flight conditions throughout the helicopter’s entire
flight envelope, and to schedule the gains between these discrete
trim points. Scheduling is typically done by expressing the gains
as a function of flight condition, e.g., airspeed, advance ratio,
and dynamic pressure. [8] Reference 7 suggests a means to select
the flight variables and the gains which require scheduling by the
use of correlation analysis. Any scheduling method should be
chosen to provide accurate gain values throughout the entire
envelope, while not being overburdening in terms of computation
time and data, or cost.

The data available for this study limits the number of trim
data points to twenty-two. This means that twenty-two sets of
gains have been derived for each controller structure investigated
(see Appendix D). But this limited data set makes it feasible
only to schedule the gains in terms of the most obviously
influential wvariables, the helicopter's forward and vertical
speeds, U and W. And it is impossible to heuristically argue what
functional dependence the gains have with.U and W between trim
points (unlike what can be done for the stability and control
matrices -- see Appendix B). Therefore, the gains are linearly
interpolated and extrapolated using the trim data set.

Figure B-1 shows the spread of the data (trim) points in the
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U-W plane. In this study, a data set contains the value of every
gain element at each of these twenty-two points for each
controller. For each [U,W] pair sampled throughout a trajectory,
the gain elements are scheduled by first interpolating with
respect to U, and then with respect to W. For flight conditions
that put [U,W] outside of these data points, the data is simply

extrapolated out to the [U,W] point.
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Chapter IV

CONTROLLER AND AUXILIARY PROPULSOR EVALUATION

4.1 Method of Evaluation

In Chapter I, we expressed the operational effectiveness of the
helicopter/control system as a measure of its ability to perform
its prescribed mission. In the context of this study, we are
specifically concerned about the abilities of the controller and
auxiliary propulsor to meet this goal. System performance, or
operational effectiveness, 1is described by three primary groups
of criteria: handling qualities and flying qualities, both of
which are outlined in Chapter II for NOE operations, and pilot
workload. The handling qualities «criteria are evaluated
coincident with the developm~nt of the controllers (Chapter VI),
with one exception, controller sensitivity, discussed below.
Flying qualities and pilot workload must, of course, be evaluated
over a specific maneuver. This study wused a "trajectory
optimization" method for evaluating these two categories of
criteria. Use of this method avoids the tfaditionally subjective
rating method for evaluating pilot workload and contoller

sufficiency.

4.1.1 Trajectory Optimization Method
The trajectory optimization method computes, for a maneuver of
specified time, geometry, and flying qualities, the optimal

helicopter control histories, i.e., the motion of the helicopter's
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physical controls (swashplate and thruster input) throughout the
trajectory. The process is purely mathematical, and is performed
computationally. Flying qualities and the geometry of the
maneuver are incorporated by specifying the helicopter’s state
vector at various times throughout the trajectory. Excursions
from these ‘'constraints" are penalyzed according to their
importance, and, using the dynamic equations of motion of the
helicopter, the best (optimal) <control input history is
determined. A pilot implicitly performs exactly the same process
in attempting to fly a specified maneuver. [10,12,17,19,33]
Chapter V describes the trajectory optimization process and

algorithm in detail.

4.1.2 Flying Qualities and Pilot Workload

Using the optimal control histories derived from the
optimization, the flying qualities and pilot workload evaluations
were then performed as follows:

1.) If an optimal control history could be found that forced
the helicopter to fly the prescibed trajectory with the prescibed

flying qualities, then we concluded that the helicopter was

capable of achieving these qualities. An inability to meet the
criteria (e.g., minimum transition time) suggested a deficiency in
the helicopter (e.g., lack of sufficient acceleration potential).
2.) From the control law for each contréller, we "backed out"
the pilot input time histories. These histories enabled us to
evaluate the controller for satisfactory control sensitivity'
(criteria tabulated in Section 2.5) and decoupled response, and

enabled us to compare the pilot's "workload" over that trajectory.
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The "workload" was a quantitative measure derived from the pilot
input-rate histories; the process used here is explained fully in

Section 4.3.

The premise for using this method is straightforward, and the
method’s advantages are readily seen:

1.) This method does not employ human pilots or a simulator.
It is purely computational, but much simpler compared to a
simulator, though equally effective for preliminary analyses of
controllers and the effects of auxiliary propulsion. In addition,
the method certainly does not require the cost and time
commitments of simulation studies, nor does it depend on the
availability of pilots with comparable training.

2.) Taking the pilot out of the loop permits separate and
unbiased evaluation of the helicopter attributes (motably agility
via available control power) and the control system attributes.
The inhenent ability to satisfy the geometric and flying qualities
criteria throughout a trajectory, with acceptable pilot workload,
is essentially a function of the features of the helicopter, and
not of the pilot. But, because human pilots are very adaptable
[14], an ill-equipped helicopter may be made to fly as desired at
the expense of the pilot’s workload. Consequently, the pilot
rating system makes it impossible to separate out pilot workload
associated with "inadequacies" of the helibopter, from workload
associated purely with the functioning of the control system.

In the trajectory optimization method, the trajectory’s
geometry and flying qualities are easily quantified, and are

exactly the same criteria which the pilot attempts to meet when
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performing the maneuver. But by specifying the physical control
input histories, and not pilot input histories, we make the
helicopter fly as close to these constraints as possible, and we
can therefore evaluate the helicopter’s attributes independently
of the pilot and the éontrol system.

3.) Pilot workload is effectively described using a simple
quantitative measure. We duantify pilot workload by observing
that workload is directly related to the amount which the pilot
must exercise his controls. That is, workload is directly related
to the "area under the curve" of the pilot input-rate histories
(we use the integral of the norm of the input rates -- see Section
4.3).

Reference [10] suggests that a quantifiable measure of pilot
workload can be related to the amount of time that the
helicopter’s pitch attitude exceeds specified upper and lower
bounds. This may be a good measure, but in the method of this
study, we force the helicopter to remain within these bounds.
Therefore, this type of workload, which is really associated with
the control power of the helicopter, can be disregarded, so that

our valuation of pilot workload seems to give a better appraisal

of the controller itself.

4.) The control histories extracted from the trajectory
optimization program are for the open-loop helicopter.
Determination of these optimal control histories is therefore
independent of the controller. The inputs must come from the
control system, but are completely independent of the control
system Jatwctune. To evaluate the performance of any control

system structure, we take the optimal input histories, and the
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control law for that controller, and back out what the pilot
input histories to the controller must be to generate the
controller output histories, which are the optimal input histories
to the helicopter. This means that, for each maneuver, the
optimal histories need to be computed only once, and then any

number of controller structures can be evaluated.
4.2 Pilot Input Histories

4.2.1 Implicit Model Controller

Extracting the pilot input history, d(t), for this controller
involves nothing more than simple matrix algebra. From Chapter
11, the control law is u(t) = -Clx(t) + Czd(t). For a given
trajectory, u(t) is the (optimal) history of swashplate inputs and
thruster inputs (if a thruster 1is included), =x(t) 1is the state
history, i.e., the trajectory that was prescribed and which
results from the input history, u(t), and C1 and C2 are the gain

matrices. The control law equation is solved for d(t):

d(t) = C:[u(t) + Cx(t)] (4-1)

d(t) is the history of pilot control input commands. This study

assigns the pilot two controls, vertical and horizontal velocity

command: d = w . Therefore, when the thruster is employed,
com
u
com
there are three helicopter controls, and C2 is not square. The

solution for d(t) is overdetermined, and we must use the left
pseudo-inverse of C_: CL - (CTC)-IC . C and C_ are scheduled
2 2 22 2 1 2

according to the total flight velocities, U and W.
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It is also necessary to scale the command vector, d, so that

the pilot inputs are within an acceptable range. The obvious

choice is to scale W to the range of the collective stick, and
com

U to the longitudinal cyclic stick range. These scale factors

com

in no way affect the stability or response characteristics of the

control system. The factors form a 2 x 2 diagonal matrix,

6 W 0
c,range’ com,range

D = , which simply scales d by
0

1s,range’ com,max
premultiplying the feedforward matrix C2 (the left pseudo-inverse
is now a weighted left pseudo-inverse); see Figure 3-2.

For the thrust augmented helicopter, the helicopter has three
control degrees of freedom while the pilot has only two. Using
the pseudo-inverse to solve for the pilot histories effectively
was a "minimum norm" fit of d(t). Therefore, it was necessary to
check that the state history that resulted from pilot inputs to
the closed-loop system (k = [A-BCl]x + BCZd) matched the state
history determined in the trajectory optimization process. For
the trajectories and controllers investigated in this study, the
state variables of ©both histories (i.e., the integrated
closed-loop history and optimized history) matched within one
percent of each other over the trajectory interval. This was
expected because of the good low frequency input-output responses
of the controllers. Had these two histories not been consistent,
a suitable weight for a weighted left pseudo-inverse
transformation that resulted in matching state histories would

have been chosen.
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4,2.2 Explicit Model Controller

The prefilter in this controller makes the solution for d(t)
slightly more complicated than the solution for the implicit model
controller. It is necessary to simultaneously integrate the model

dynamics while calculating the pilot input history.

The control law is wu(t) = -Clx(t) - szét) + Cad(t). Solving

for d(t): d(t) = C-[u(t) + Cx(t) + Cx (t)]
3 1 2 m (4_2)

However, in this equation x (t) is unknown. It must be calculated
m

from its dynamic equation,

x(t) = Ax(t) + Gd(t) (4-3)
But since d(t) is present in this dynamic equation, Equation 4-2
must be solved while Equation 4-3 is being integrated. The
procedure is as follows:
The state and model initial conditions are known: x(to) - xéto) =
x . u(t) and x(t) are known for all t. Therefore, we can find
d(to) from Equation 4-2. Then xm at the next step, i.e. xéto+1),
is found by integrating Equation 4-3. Then solve Equation 4-2 for
d(t°+1), and so on up to and including time tf. In general, the
procedure is
1. Solve Equation 4-2 for d(to) using the initial conditions.
2. For n discrefe time entries in the time history, do the
following for k = 1 to n-1:
integrate Equation 4-3 to get xétku)
solve Equation 4-2 to get d(tku)

Because a fourth-order Runge-Kutta method is wused for

integration, step 2 of the above iterative procedure is actually
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done four times for each integration time step. And, because the
gains are dependent on flight condition, they are calculated
whenever step 2 is performed.

When d4 is overdetermined , i.e. when 03 has more nonzero rows
than columns because there are more physical controls u than pilot
commands d, the left pseudo-inverse of 03 is used in Equation 4-2.
And, the pilot command vector, d, is scaled to the conventional
collective and cyclic stick ranges.

The same discussion of the left pseudo-inverse and state
history matching of Section 4.2.1 applies to the explicit

controller.

4.3 Assessment of Pilot Workload

As stated in Section 4-1, pilot workload is assessed in terms
of control sensitivity, decoupled response to commands, and the
pilot command inp." rates. The first two are easily understood,
and used without explanation in Chapter VIII.

Intuitively, the more the pilot has to move the sticks, and the
higher the rates of movement, the more work he is doing to fly the
aircraft. The amount of stick movement, then, is a good
quantitative measure of pilot workload. The amount of work
performed in moving the sticks is the integral of the stick input
rate -- actually, to avoid assigning a negative work value for
negative rates, we used the norm of each (scalar) rate history.
Thus, this measure of workload is the "cost" of the rate input,
using unit weighting:

t
Pilot workload = It£1|&(t)||dt (4-4)
(o}
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This measure of workload depends on the time and nature of the
maneuver. Therefore, it best serves as a means of comparing
controllers for the came maneuver.

This measure was also applied to the helicopter control rate
histories (collective, cyclie, and thruster rate histories).
These work "costs" are used as normalizing measures for the
controller inputs, and also to compare U vs B15 workloads and

com

W vs § workloads.
com c
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Chapter V

THE TRAJECTORY OPTIMIZATION METHOD

This chapter is comprised of three sections. The first
presents a general description of the formulation and minimization
of the cost function used in the trajectory optimization process.
In the second part, this general trajectory optimization method is
applied to the helicopter problem to determine the optimal control
histories for helicopter trajectories; individual terms of the
cost function are physically interpreted in the context of the
helicopter trajectory optimization problem. These two sections
are mathematically formal; optimized sample trajectories are given
in Chapter VII. The third part of this chapter describes the

algorithm used for the optimization.

5.1 Formal Mathematics
We begin with the dynamics of the plant and initial conditions

of the state:
x = £{x(t),u(t),t] (5-1)
x(t) = x_ (5-2)

where x and u (for our purposes) are the helicopter state and
control vectors, respectively (see Chapter III).

Initially, we define a cost function in the manner used in
designing optimal controllers. [4] The cost function J penalizes

state, state-control, and control excursions throughout the
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interval. The integrand of "penalties" is the Lagrangian, £.

t
J =‘[£$[x(t),u(t),t]dt (5-3)
t

Since we seek the control history u(t) which yields a stationary
minimium of this cost function, subject to Equations 5-1 and 5-2,
we adjoin the dynaﬁic equation to the cost function, thus
including it in the minimization. Note that when the dynamic
equation is satisfied, this additional term in the cost function

equals zero, thus the cost function is numerically unchanged.

t
J =.[f{f[x(t),u(t),t] + 1T (F[x(t),u(t),t] - i(t))}dt (5-4)
t

In many applications, one often desires to specify state
conditions at the end of the interval and at times along the
interval. Mathematically, this is accomplished by including
interior point penalty functions, §, and a final point function,
¢. Incorporating these penalties (also termed constraints), the

redefined cost function becomes

I
J = ¢lx ()€ ) + B [x,(£),¢]

t
+ th{f[x(t),u(t),t] + 1T{f[x(t),u(t),t] - :’:(t)}}dt (5-5)

where 1 is the number of interior point constraints.
Finally, it is useful (and realistically imperative) to have
saturation constraints on the controls. These control constraints

are expressed by the function

Clu(t),t] <0 (5-6)
As with the dynamic constraint, the control constraint is included

in the minimization of the cost function by adjoining it to the
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integrand of the cost function; the adjoint vector for control

constraint is m(t). The redefined cost function becomes

I t

I = #lx(0),t] + B [x (0),t] + J.f{f[x(t),u(t),t]

t
(]

+ 1T(Ex(t) ,u(t),t] - x{t)) + m fc)C[u(t),c]}dt (5-7)

m(t) is an influence vector, and each element of m takes its value
according to whether or not its corresponding control is

saturated:
>0 cC =0
m (t) { ’ (5-8)

This means that the product of each control/adjoint element pair
is zero, or mC = 0, so that the cost function is numerically
unchanged. The cost function now incorporates all the desired
penalties and constraints.

A Calculus of Variations procedure is used to derive the
conditions for optimality. [4] The objective is to find those
conditions which will cause the cost function to be at a
stationary minimum. Therefore, we begin by taking the first
variation (the differential) of J and equating it to zero.
Explicit reference of the variables to time is dropped here. And,
for simplicity in notation, only one interioer point constraint is
used; the results are easily generalized to include multiple
interior point constraints.

It is convenient at this point to define the Hamiltonian, ¥, of

the cost function:
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R[x,t] = £[x,u,t] + 1"6[x,u,t] + m'C(u,t) (5-9)

The Hamiltonian has the same form as the one used for optimal

controllers, with the addition of the control constraint term.

t
Then J = g[x_t ] + f[x,t] + J'tf(zf - 1'% + n'C)dt (5-10)
[+]
3y , 94 805, 80
0 aJ (atdtf + 6xdx)t=t£ + gt-tjtf + (atdti + axdx)t=ti
t
£f 3% 19f 13C
+ Zt-tfti + It {(5§ + 1 = +m 5;)6x
° (5-11)
¥ 19f 13C T,
+ (EG + 1 T +m 5;)5u -1 6x}dt
A few remarks: This equation contains no terms for the

differential changes in £ and x because differential changes in f
exactly cancel with differential changes in x due to their

equality, Equation 5-1. The differential recognizes variations in

the state, the control, and the derivative of the state -- there
are no control derivative terms -- at a fixed time, t.
t
. . . T
We now simplify the integral term Itfl sxdt. For any
o]

variables y and v, fydv - yv - fvdy. Applying this to
flTdet over the interval <t,tg>, and taking into
o

account discontinuities in x at the interior point, this gives

il e 1 by s
I 17 sxdt + L 176xdt = 176x| ° - L‘ 16xdt
<]
T ti tf :T
+ 1] F, - [ 1Texae O (5-12)
t + t +
1 1

But since x is continuous in the interval, the right hand side of

Equation 5-12 becomes
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t - t t
T i T £ £f ;T T T
Vx|, + 176x| f - Jt.+1 sxdt = 17(e )ox(e -) - 17 (e )bx(x )
1 1

t
+ 17 )8x(e) - 1T (e Do ) - ItfiT6xdt (5-13)

We eliminate éx terms by solving for &x from the following

equations for the differential, dx:

dx(tf) = 6x(t£) + x(tf)dt£ (5-14a)
§x(t -)+x(t -)dt (5-14b)
dx(t. ) - { i ' i i
! 6x (e 1)+x(x +)At (5-14c)
or, 6x(e) = dx(z) - i(tf)dtf , (5-15a)
x(e -) = dx(x ) - i(ti-)dti (5-15b)
x(e +) = dx(s) - :':(ti+)dci (5-15¢)

Using Equations 5-15, and noting that the variation in the initial

conditions is zero, the right hand side of Equation 5-13 becomes

[17¢,-)-17 (e 0 dx(e ) - 17(e Ix(e =) + 1T (e 9% (e )

t
+ lr(tf)dx(tf) - 1T(tf)£c(nf)c1cf - ItfiTéxdt (5-16)

Finally, substituting for x using the dynamic relationships

x(t -) = £ , X(t +) = £ , and x(+ ) = £ |, the workable form
i ti- i L. f t .

t
for j;flTSidt becomes
]

t
£,T T T T
Itol 6xdt = [17(z -)-17 (¢, 9)]dx(e) - 1 (ti-)fti_dti

T T T
+ 1 (ti+)fti+dti + 1 (tf)dx(tf) -1 (tf)ftfdtf

t
) ItfiTaxdt (5-17)
[«
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’,

Substituting this result into the cost function differential,

collecting like terms, and writing all suffixes as subscripts,

3¢ : 86 1
aJ {(at + 2t + ltft )dtf + (ax tf)dx}tﬂ}

£ £
a6 T T 46 .1t T
+ 1(5—5 + £t1+lti-fti_-1ti+fti+)dti + (ﬁ-lti'ﬂti*)dx}t"i
t
£ 8% _10f 18C T 8¢ _18f r18C
+ ,[t. {('a';("'l a—x+m a—x+l )68 + (EG'F]. a—u+m a—u)6U}dt (5-18)

=]

To achieve J = 0 (minimization of the cost function), we choose
1 such that the coefficients of variations in the state, control,
and time -- dx, 6x, 6u, and dt -- equal =zero over the entire
interval <tdt£>. Doing this yields the following conditions for

optimality:
1. T o8¢ (5-19)

. T )4 T8f 13C _ oK 13C

2. 1 --&-la—x'max &-max (5-20)
a¥ 18f 18C ox T3C
3. O‘E'Flﬁ'f'ma—u-é'l—l"‘ma—u (5'21)
a¢ T
4. 0 = 7o + fb + 1tft (5-22)
t=t £ £ £
£
a9
5a. lt._ = lt-+ + % (5-23)
1 1
a8 T T .
5b. 0= 3t + Zt + 1t _ft - 1: +ft+ (5-24)
t=t £
1
The sufficient condition -- that the second variation of J to
changes in x, u, and t must be positive -- is not treated here.

It is noted below that this condition holds for the helicopter

application problem.
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Equation 5-19, together with Equations 5-20 and 5-21 without
the m term, are the classic Euler-Lagrange equations for fixed
end-time optimal control problems. Equations 5-23 and 5-24 are
the optimizing conditions when the end time and interior point
times are allewed to vary; i.e., these are the optimizing
conditions for open end- and interior-time problems. Equation
5-23 defines the discontinuity in the adjoint history 1(t) at the
interior point time t. Equation 5-19 specifies a final time
adjoint condition, and because x is specified at to, this is a two
point boundary value problem and necessitates an iterative

solution (Section 5.3).

5.2 Interpretation for Helicopter Trajectories

The cost function wused for the helicopter trajectory
optimization is linear-quadratic -- the helicopter dynamics are
linear and the cost function penalties are quadratic norms of the
state and control weighted by conformable positive-definite
weighting matrices. Positive-definitiveness of the weighting
matrices assures that the stationary point (found via cost
function minimization) is a minimum stationary point.
Mathematically, positive-definitiveness assures that the second
variation of the cost function is positive at the stationary
point. The method of using quadratic weighting matrices with
linear dynamics is analagous to the method ‘used in developing a
linear-quadratic regulator.

This section discusses each term of the cost function in the

context of the helicopter problem.
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5.2.1 Dynamic Constraint

The dynamics of the helicopter can be viewed as a dynamic
constraint which restricts the state accelerations to a given
function of the state and control. The dynamic equation is x = Ax
+ Bu. For the purpose of trajectory optimization, these dynamics
are augmented in three ways: (1.) to include perturbation
positions; (2.) to include the addition of auxilary propulsion to
the helicopter; and (3.) to account for control rate 1limits.
These three items are discussed separately.
5.2.1.1 Augmenting the dynamics to include change in position

Just as the perturbation rates and attitude, [u,w,q,f], must be
added to their respective trim values, [U° Wo Qo 00], so0 too must
the perturbation positions, [x y], be calculated and added to
their trim values, [Xo Yo]. Perturbation variables u, w, q, 6 are
defined in a body axis system (Figure 3-1), so that perturbation
positions from trim must be resolved to the trim axis: x = ucosf
and y = wcosf. The dynamics are augmented to include these

perturbation states:

cosfd O 0 O
0 cosf O O

“. % @ A K. O
[}
1
t

“ X = 0 £ o
t
)
1

(5-25)

¢ in the cosf terms makes these augmented dynamics "slightly"
nonlinear.
5.2.1.2 Inclusion of Auxilary Propulsion

In the current longitudinal framework, the two physical
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controls of the helicopter are the swashplate controls:
collective and 1longitudinal cyclic. Addition of an auxilary
propulsive device would institute another control, which is

included in the dynamics as follows:

- . . T - -
: O
v A |0 v B %] [P
q l q |0
b | " | o | :o
X cosf§ O 0 0| X |0
y 0 cosf# 0O O : 0 y 0 |O

(5-26)

It is assumed that the auxiliary propulsion system provides purely
longitudinal thrust. Thus, as Equation 5-26 shows, the only
nonzero control derivative in the third column of the augmented B
matrix is the derivative which directly affects horizontal
acceleration, u. This is obviously a very simplified approach. A
much better understanding of the auxiliary propulsion unit and its
aerodynamic and inertial effects on the helicopter is mneeded
before its effects on any of the stability and control derivatives
can be quantified. As for XT, there is little data available on
stability derivatives for longitudinal thrusters on helicopters or
VTOL aircraft. A value for XT is best determined by sizing it
according to the desired acceleration level. This is discussed in
Sections 2.3.1 and 6.1.
5.2.1.3 Control Rate Limits

As noted in Section 5.1, the cost function constrains the
controls to fall within their saturation limits. This is, of
course, a realistic necessity since a helicopter (or any other

system) has physical limits on its control power. But it is also
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necessary to constrain the control nates, since the hydraulic
actuators impose a delay on the command input. These limits are
included in the optimization as follows.

Consider the scalar control u, and assume it behaves as a

first-order system:

T 7 com

For a unit step input, the response is

u=(1-¢e"" (5-28)

. 1 -t/7 .
and u = —e SO u =
T max

(5-29)

|

This means that the control is rate-limited by i%. Employing this
method of rate-limiting has two particular advantages. Firstly,
this first-order lag realistically models the actuator dynamics of
the swashplate (Figure 5-1). The actuator lag time-constant is r
in the equations above. Secondly, rate-limiting the controls in
the dynamics means that a rate-limit constraint does not have to
be explicitly included in the cost function. Including such a
constraint would add more complexity to the cost function and
increase the optimization computation time. If the constraint was
explicitly included, it would be appended to the cost function
with an influence vector in a fashion similar to that done for the
control constraint. [4] This would, however, necessitate

back-differencing the control history to compute the control rate.

49



physical

pilot swashplate control

inputs d commands U swashplate inputs U
c

_— controller and thrusterpb————>

actuator lags

v

HO PO OO ol

Iother controller
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Figure 5-1 Actuator lags

Each of the three controls is rate-limited by a first-order
system with an appropriate time-constant. These control dynamics
are appended to the dynamics of Equation 5-26. The physical
controls, ec, Bn’ and T now become part of the state vector and

the commanded controls now serve as the control vector.

o

[ | u
w ' ' w
) A | B | ©
q I | q
o | = L 6
. o] . | c
B 0 Lo-rto 0 B
1s ] B -1 1is
T oo i 9 N 9 :TT* .. T
M cos§¢ 0 0 o0 | | x
) o I 0
|y ] | 0 cos¢# 0 0O | | J Ly |
c
0 1s
+1‘;10 0 (5-30)
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0
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We now let x = Ax + Bu represent this augmented system. This is
precisely the dynamic constraint, x = f[x,u], used in the cost

function.

5.2.2 Flying Qualities Constraints

The Hamiltonian penalyzes state and control excursions from
zero throughout the flight. We can loosely say that the
Hamiltonian quantitatively characterizes the desired "flying

qualities" of the flight. Consider the quadratic Hamiltonian

H(x,u] = ixTK x + xTK u + 24k u (5-31)
2 x 2 u

Xu

The first term penalizes excursions of the state. Term three
penalyzes control excursions and term two penalyzes state-control
excursions. Excursions of a particular variable are penalyzed by
assigning a positive weight to the corresponding element(s) of the
appropriate weighting matrix. Because the Hamiltonian is
integrated, and because the optimization procedure works to
minimize the Hamiltonian, those state and control elements which
are weighted must necessarily be driven toward zero. That is,
their excursions (from zero) are minimized. Motions of state and
control elements with zero weight are unrestricted -- though of
course the dynamic constraint and other applicable constraints
still apply.

For example, it is often desired to restrict the pitch rate and
pitch attitude of the helicopter throughout the trajectory. In
this case, the [3,3] and [«4] elements of the R; matrix are
assigned positive weights. Intuition and experience dictate that

it is usually only necessary to assign values to the diagonal
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elements. In all cases, however, it must be remembered that the
weighting matrix of the Hamiltonian -- the one formed by
augmenting x and u -- has to be symmetric positive-definite.
Determining the value of a weighting element is a matter of
"engineering judgement." One develops a "feel" for sizing these
weights according to their observed influence in the resulting
optimal trajectory.

One final point about the weighting matrices. .- This analysis
uses constant, time-invariant matrices. Matrices that are a
function of time are probably not realistically necessary.
Matrices that are a function of the state and/or control --
perturbation or nominal -- may be effective. However, if a
weighting matrix is a function of a perturbation variable, the
optimality conditions that result from the partial derivative of
the Hamiltonian with respect to this variable will be slightly
changed.

At this point, with dynamic constraints and flying qualities
constraints, the cost function is

t
J = J‘f{ixTK X + xTK u + uTK u + lT(Ax+Bu) - 1Tk}dt
t |2 x Xu u
o (5-32)

5.2.3 Interior and Final Point Constraints

Most NOE maneuvers are associated with achieving a specified
velocity or position at a specified time, or within minimum time.
Therefore, it is necessary to be able to specify the state vector
at a point in the trajectory. This ability equates mathematically
to constraining the state to equal a specified value at this

specified time.
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Again, quadratic constraints are used for the interior and
final point constraints. Denoting x_, as the desired state vector
at the final time tf, the error between the actual state and the
desired state at t, is X X Using the weighting matrix Kf, we

can construct a quadratic penalty of the final state error:

lx(r),t,) = 2(x -x, 'K (x -x ) (5-33)

Similarly, for (multiple) interior points,

I I

26(x(t),t ] = %z(xi-xid)TKi(xi-xid) (5-34)
i i

Including these constraints, the cost function is now

I

1 T 1 T
J = ?(xf'xrd) Kf(xf-xfd) + E?(xi-xid) Ki(xi-xid)

t
+ J‘tf{%xTK x +xK u+ uKu-+ 1 (Ax+Bu) - 1T:':}dc
o X Xu u (5_35)

5.2.4 Control Constraints

The swashplate controls and the thruster control have minimum
and maximum saturation limits. These limits cannot be exceeded,
and a hard constraint must therefore be imposed on the controls.
Adjoining the control constraint to the cost function assures that
the constraint will not be violated.

The control limits are simply

min max
or, 0 <f§ < ¢
c . c c
min max
B <B =<8B (5-36)
1s 1s 1s
min max
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Clu(t),e) = | . "™t =<o0 (5-37)

This constraint is adjoined to the cost function with m(t) exactly
as the dynamic constraint was adjoined with 1(t). Note that the
dimension of m is twice the dimension of the control, u.
With the addition of the control constraint, the cost function
takes its completed form:
I

1 T 1 T
Jo=gxex ) K (xex ) Ef(xi-xid) Ry (xo-x )

t
+ I f{le1< x + x'K u+ uTK u + lT(Ax+Bu) - lrk + m?c}dt
to 2 x xu u

(5-38)

5.2.5 Optimality Conditions
Applying the optimality conditions derived in Section 5-1 to
this linear-quadratic cost function yields the following

optimality conditions for the helicopter optimal trajectory

problem:
34,1 . .
1. 1tf G2 = K_(x_-x_) (5-39)
2 i =8B L kx-K u-&"2 (5-40)
) ax ax x xu
3. 0= = 0T T x4+ Ku+B"1l+n'c (5-41)
u du du xu u u

where for three controls, C = diagfi1 11 -1 -1 -1}
u
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a¢ T
4 0 7t + set + 1‘ft
tet 4 b4
L
T T T T
= (xXKx+xK u+ukKu + 1 (Ax+Bu) (5-42)
x xu u t t t
£ £ £
sa. 1 =1 _+2 .1 xR (x-x ) (5-43)
: b, - :1+ ax t + 171 T1d
a4 T T
>b 0=-3% + 2: +10 5 - LK.
t=t i

- (xTK x + xTK u + uTK u) + IT (Ax+Bu) - 1T $Ax+Bu)
x xu u ¢t t - t - t t +
i i i i i
(5-44)

5.3 Optimal Trajectory Computation Algorithm

The numerical solution method used to solve the trajectory
optimization problem is the second-order gradient, or steepest
descent, method. [4,32] This is an iterative method that improves
the control history, wu(t), on each ite;ation. Improvement
connotes minimizing the cost, thereby coming closer to satisfying
the optimality conditions.

The following flow diagram shows the logistics of the steepest
descent algorithm used for the trajectory optimization. A
discussion of component functions of the algorithm follows the

flow diagram.
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Calculate gradient Hu(t)
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Is the gradient zero?
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Requires state integration.

New x(t) and u(t)
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Total state and control
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add x(t) and u(t) to trim

values

l

End

Figure 5-2 Flow Diagram of Trajectory Optimization Algorithm

5.3.1 Inputs

Each interior and final point is specified by the time at which
it occurs, and by the values of each state element at that time.
Obviously, t is the time for the final point. Initially, the
interior point times must be guessed. Equations 5-42 and 5-44 are

the optimality conditions which dictate how these initial guesses
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should be changed for minimum-time problems. That 1is, these
conditions are used as a gradient to adjust the interior and final
point times until the new times result in trajectory histories
which satisfy the equalities of Equations 5-42 and 5-44. In
practice, finding the times for minimum-time problems is
difficult. Rather than employ these optimality conditions in an
outer-loop iteration around the optimization problem, once an
optimal (but not minimum time) trajectory has beerr computed, the
"tweaking" of these times is left to the user. The rationale is
that the outer-loop iteration would have to choose a fraction of
the interior point time gradient with which to perturb the
interior point time. Choosing the correct fraction 1is very
difficult, and a bad choice could mean considerable time to
convergence, if convergence occurs at all. The user performs
essentially the same outer-loop process by observing the completed
trajectory and control histories, and deciding how much, if any,
he wants to try to improve the trajectory by changing the interior
point times. Mechanically, this means respecifying the interior
point times and rerunning the optimization. The time to rerun the

optimization is short, since presumably the new interior point

times are not radically different form the existing times, so that
the new optimal control history does not differ greatly from the
existing history. The most efficient method is for the user to
change the interior point times.

There is virtually no limit to the number of interior points
that can be specified -- the limit is the number of time steps
taken in the interval, minus the ones for to and tf, or

(t -tf)/(integration increment) - 1. In practice, it would never
[~]
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be necessary to specify this many interior points. State elements
which are nat to be constrained at interior or final points are
assigned an arbitrary value, but their corresponding weighting

matrix elements muat be zero.

The integrand weighting matrices (K, K , K) must be

X xu u
conformable with the state and control vectors. They must also be
selected such that they form a Hamiltonian whose second

derivative with respect to the control (¥ ) is positive. In
uu

other words,

K K must be symmetric positive semi-definite.

In many applications, Kxand Kxuare null matrices, so that Ku
cannot be null. Elements of Ku are usually small; the identity
matrix is a good choice for Ku.

Trim conditions are [U° (ft/sec), Wo (ft/sec), Q° (deg/sec), 00
(deg)]. Perturbation initial conditions should always be zero.

The time interval <to,tf> is from t°=0 to tf. For minimum-time
problems, determination of minimum tf is best left to the user via
the method discussed above for interior point times, for the
reasons given.

The integrations in this study are performed digitally and are
therefore discrete. Integrations are perfor&ed at 40 Hz, or every
.025 seconds. The lower limit should be small enough to properly
calculate the fastest dynamics. In this study, the fastest
dynamics are the actuator dynamics, which have time constants of

.08 seconds.
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The better the initial estimate of the control history, the
less time the optimization will take. The example of Section 7.4
shows how the trajectory converges to the optimal history from the
initial history. The initial history can be quite dissimilar from
the optimal history and still converge, as long as the pitch
attitude is not driven to excessive amplitudes (near 90° and
larger). And, it of course makes sense to specify control values
for the initial estimated control history which are within the
saturation limits. This initial control history muot have time
entries consistent with the specified time interval and
integration increment.

The perturbation control limits are determined from the trimmed
stick positions and the absolute authority limits of each control.
The perturbation control, in terms of stick movement, 1is the
inches of stick available from the trimmed position to these
minimum and maximum limits. Perturbation stick movements are
determined by finding the trimmed stick position (in inches) using
the trimmed swashplate angle (in degrees) and the total stick and
swashplate travels. For the longitudinal cyclic, this gives:

B - B B - B
1st . s | lst ) ls i
rim min rim min
B B B B (5-45)
ls - 1s ls - ls
max min 7 deg max min inches

or, solving for B :
s
trim, inches

s
B - trim min x (IB - B
1s

1s 1s
trim,inch 1ls - 1s max min in min,in
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The perturbation stick travel is then

B = (csls - B ) (5-47a)
max, inches max trim inches

B -6, -8, ) (5-47b)
min, inches min trim inches

Similarly, for the collective perturbation stick travel:

] -6 -0 ) (5-48a)
[ c
max, inches max trim inches
B, =, -9 ] (5-48b)
min, inches min trim inches

Note that the total permissible perturbation stick travel is equal
to the total stick displacement; the trim position acts merely to
define the perturbation "zero reference" position. Because the
trim conditions wused in this study are for conventional
helicopters, the trimmed horizontal thruster position must be
taken to equal =zero. Minimum and maximum thrust perturbation
movements are therefore the same as the total minimum and maximum

movements.

Finally, the user selects the auxiliary propulsion option by
setting a flag either on or off. An off flag zeros the control

derivative column in the B matrix (XT = Q).

5.3.2 State Integration

The state equation, x = Ax + Bu, 1is integrated forward in time
from x using a fourth-order Runge-Kutta procedure. The
integration increment is constant and specified by the user. The
stability and control derivative matrices are scheduled according

to flight condition and thus are computed each time the integrator
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) : : .
moves to compute X. There are two entries in the state time
history at interior point times. The second entry is necessary to
account for discontinuities in x and 1 that occur at interior

points (see Equation 5-43).

5.3.3 Cost Calculation

The integral of the cost function is computed by rectangular
integration. The interior and final point costs are calculated
using simple matrix mathematics.

The cost of control alone is computed and retained. It is used
within the optimization algorithm as a measure for evaluating
whether the cost function has been sufficiently minimized.
Sufficiency is established when the total cost has been reduced to
a level where the cost of control makes up most (90%) of the total
cost, Recall that we want to determine the control input
histories necessary to fly the trajectorv, and we are therefore
not interested in restricting control excursions (Ku is small).
This means that when the trajectory is optimal, undesirable state
excursions will be zero, and the (minimum) total cost will be
comprised only of the cost of control, and thus the reason for

using control cost as a minimization sufficiency measure.

5.3.4 Adjoint Integration

The adjoint equation (Equation 5-40) is integrated backward in
time from 1f (Equation 5-39) wusing a fourth-order, constant
increment, Runge-Kutta procedure. - Equation 5-40 contains the A
matrix, which is a function of flight condition and therefore

computed each time the integrator moves to compute i. The
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integration routine places two entries at interior point times to
account for discontinuities in 1 at ti's (see Equation 5-43).
1(t) necessarily has the same number of time entries as x(t) and

u(t).

5.3.5 Control Saturation Adjoint Vector

Each element of the adjoint, or influence, vector, m(t), can
take on positive or zero values throughout the interval. Elements
of m equal zero for an unsaturated control. An element becomes
positive when its corresponding control is saturated. When the
control is saturated, its element in m(t) is solved using Equation

*

5-41. Because a fraction of this equation, i.e. the gradient Ru,
*

is used to perturb the control, and because ?fu = 0 when the

control is saturated, any improvement in the cost by perturbing

the control would violate the constraint. When (and if) the

element of m begina to turn negative, this signifies that the cost

can be improved (reduced) by uncatunating the control, i.e., by

perturbing the control by a fraction of the now nonzero gradient.

5.3.6 Control Gradient Calculation

Equation 5-41 is used to calculate the gradient, Hu', for each
scalar control. (When the control element is unsaturated, miCi -
0, and the gradients Ru and Ru' are the same). The control
gradient can take on positive, negative, and zero values at each
(discrete) point in its time history, depending on which direction
(positive or negative) and how far the control is from its optimal

value. See the discussion in Section 5.3.7 below for its

application.
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5.3.7 Control Perturbation

When the cost function is minimized, the gradient for each
control equals zero over the entire interval, satisfying equation
5-41. However,  to minimize the cost function requires numerical
techniques bécause x(t) and 1(t) are integrated in opposite
directions in time, posing a two point bondary value problem. The
steepest-descent method for solving this problem perturbs the most
recent control history estimate by a fraction of the gradient
history. The gradient gives the direction (positive or negative)
and the nelatise magnitudes across time of the amount by which
each control element should be perturbed. However, because this
is a two point boundary value problem, which means the gradient
expression is not "correct" until it exactly equals zero (which
occurs when the cost is minimized and x(t), u(t), and 1(t) are
optimal), the gradient indeed provides only relative magnitudes,
requiring that it be scaled by an "appropriate" fraction across
the interval. As well, it cannot be expected that the same
fraction is T"appropriate" for each control element. Each
element’s fraction does, of course, apply over the entire
interval.

The "appropriate" fractions for the control gradient elements
are the ones which generate a new (perturbed) control history,

u (t) - u (t) - KH (t), which minimizes the cost within
u

n previous

the precent iteration of the trajectory optimization algorithm.

[2,32] The search for the best fraction vector is an iterative
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procedure which takes place within each major iteration of the
trajectory optimization algorithm. Its logistics for the three
controls case are shown in the flow diagram below. The iteration
takes place within the Perturb Control block of Figure 5-2.

Component functions are explained following the diagram.

Inputs from Main Program

subroutine

Record starting cost

!

Select fraction vector k

!

Perturb control: u = 1 - kH
new prev u

integrate states; record new cost

Search along vector in r-z plane
from current point to find
cost-minimizing point.

For each point tested:

Perturb control; integrate

states; record new cost

¥
Search along orthogonal vector

in r-z plane
from current point to find
cost-minimizing point.

For each point tested:

Perturb control; integrate

states; record new cost

§




|

Search along orthogonal vector

in x-y plane
from current point to find
cost-minimizing point.

For each point tested:

Perturb control; integrate

states; record new cost

!

Is Cost less than Starting Cost?

lyes

Out

Figure 5-3 Flow Diagram for Fraction Vector Search

5.3.7.1 Selecting fraction vector k

To minimize the cost, we want to move the controls in the
direction opposite the slope of their gradients [4], by a fraction
of their gradients; i.e., we want to subtract kHu(t). And since
the sign of the gradient tells us its direction, elements of k
will always be positive (or zero).

Two options are available for selecting the fraction vector
with which to begin this algorithm. One option is simply to use
the vector which resulted from the previous search. A second
method is employed when either: (1.) the c¢urrent search is the
first search within the first major iteration step (so that a
fraction vector does not currently exist) or, (2.) the fraction
vector from the previous search generates a control which yields a
cost that is much greater than the current recorded cost. This

second method takes, as the fraction for each control, 0.9% of the
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quotient of the average absolute value of the control over the
entire interval, and the maximum of the absolute value of its
gradient éver the entire interval.

5.3.7.2 Perturb Control

Once the control is perturbed -- uhaxt) = (t)- kH (t)
u

previous
-- the state integration and cost calculation are performed using
exactly the same functions called by the main program.

5.3.7.3 Search Routine

For m controls, the search routine searches the positive
m-space by seaching along a starting search vector within this
positive seach space, and then systematically searching along m-1
orthogonal vectors. The search moves to an orthogonal vector once
the cost-minimizing point along the current vector has been found.
This procedure is common, and treated in many texts [2,32]. A
simple example best illustrates how the routine works.

Figure 5-4 plots cost contours versus fraction elements for a
two control case. The fraction elements, k: and k;, which
minimize the cost, are to be found. Starting at point A, vector 1
is searched for the [k1’k2] pair which minimizes the cost along
vector 1; this is achieved at point B. Then vector 2, which is
orthogonal to vector 1, is searched, and the minimizing fraction
pair is found at C. Then vector 3 is searched, et cetera, and the
process continues until point [kj,k:] is‘*eached.

To determine which direction to search aléng a given axis (from
its nominal point), the costs of points on each side of the
nominal point, but very close to it, are computed. The direction

of lesser cost is then searched. The routine defines two search

lengths along every search vector, one on each side of the
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starting point (see Figure 5-4), that extend from the starting
point to the axes which the vector ultimately intersects, or to
infinity. Costs are computed for four equally spaced points along
this length. Of course, the search along the current vector stops
when the cost increases, and if three points were investigated
along that vector, a quadratic (least-squares) fit is performed to
determine the point of minimum cost. An orthogonal search then

proceeds from that point.

vector 1
contours of
vector 2
constant cost
|
k ! A
2 ‘A
\
B =
e /’[kl,k ] vector 3
-
search
lengths
pd AN
k
1

Figure 5-4  Two-dimensional Gradient Search Vector Example

Both the cost contours and the gradient change after each major
iteration step, because x(t) and u(t) have changed. Therefore,
the same point (set of fraction elements) may not reduce the cost
on the next major iteration. Nevertheless, this point becomes the
starting point for the orthogonal search.

As one might expect, the greatest reduction in cost usually
occurs after m vector searches, where m is the number of controls.

Take, for example, Figure 5-4 again. In this two control case,
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searches along the first two search vectors (vectors 1 and 2)
reduce the cost more than all the subsequent searches. Because
the integration and cost calculations take considerable time, and
because they are performed for each point that is checked along a
vector, the search routine checks to see if the cost after m
vector searches is less than the starting cost (from the previous
major step). If it is, the search ends. Though the cost may be'
further reduced by more searches, this cost reduction (usually
small) is not worth the computation time, and it is therefore
advantageous to recalculate the gradient (next major step) which
should yield more substantial reductions in the cost. 0f course,
if the cost has not been reduced after m tries, another m vector
searches are performed before going to the next major step.

For this application, m = 3, and a vector search is carried out
in the positive x-y-z space (or we could call it the kl-kz-k3
space). The progression that this algorithm takes is to first
search the r-z plane, which is the plane made by the z axis and
the resultant vector r in the x-y plane. The second search vector
is the vector orthogonal to the first vector in the r-z plane.
There is an infinity of choices for the third vector, which is a
vector orthogonal to the first two. The choice in this study is
to use the vector in the plane parallel to the x-y axis at the
point of intersection of the previous two vectors; ie., at z =
constant.

Determining the’®orientation of the intitial search vector is
also a matter of choice. Eight distinct search vector
orientations are possible in each plane, as shown in Figure 5-5.

Unless a gradient element is zero over the entire interval, or a
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control is not operating (e.g., when the auxiliary thruster is
off), the vector from the origin (vector 1 in Figure 5-5) is taken
as the initial search vector in each plane. In the special cases
noted above, or in cases where the search along a vector
terminates at an axis, the search vectors will be those vectors
on, or parallel to, the representative axis.

The algorithm codes the eight different vector types by their
search lengths and angle of orientation at a given search point.
The code changes systematically according to the orthogonalization
of the vector. For problems with more than three controls, it may
then become advantageous to replace this technique with a more
general technique, such as a Graham-Schmidt orthogonalization
method [2].

This procedure changes from one to three of the fractions each
time the search routine moves to a new point. This tends to make
the orthogonalization process and vector length computations
somewhat complex. A parallel search system -- one that varies
each fraction element independently, i.e., one that searches
parallel to each fraction axis -- would be trivial, and greatly
reduce complexity (and therefore some computation time). This
method was tried, but found to be inadequate. It is not as time
efficient as the current algorithm. And, because it varies one
element at a time, it tends to spend a lot of time in the "ridges"

of the cost function contours.
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Figure 5-5 Possible Search Vector Orientations in a Plane
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Chapter VI

CONTROLLERS FOR THE AH-1G TRIMMED AT HOVER

This chapter provides practical numerical examples of the
development of the feedforward and feedback gains for an implicit
and explicit model-following controller for longitudinal control
of the AH-1G in the hover flight regime. The ideal response model
reflects the desired handling qualities <criteria for a
longitudinal velocity-command controller operating near hover in
an NOE environment; numerical criteria data are taken from the
references cited in Section 2.5.

The development procedure includes the following analyses:
input-output frequency response magnitude and phase analyses;
eigenvalue placement and associated damping; and step input time
history analyses. These analyses were used in designing each
controller at each of the twenty-two trim points. Since it is
rare that a controller can be developed which exactly meets the
prescribed numerical handling qualities criteria, acceptable
deviations, or "conditions of acceptability" were defined around
these criteria. The controller was judged to be satisfactorily
developed once the results of the frequency, eigenvector, and time
history analyses met these conditions. These conditions also
establish a common ground for comparing different controller
structures. The conditions are defined in Section 6.4. Section
6.5 discusses the methodology for selecting weighting matrices’

elements and the sensitivity of the closed-loop dynamics to these
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elements. The examples below are for the hover trim condition,
which was found to be the most difficult condition (of the
twenty-two trim conditions investigated) for satisfying the

handling qualities criteria.

6.1 Dynamics of the AH-1G and the Handling Qualities Model

The longitudinal model dynamics, x = Ax + Bu, are

[ G ] .33 0 0 0] [u] [ 0 .33 ] [ w
. com
w 0-.4 0 0 w A
. - + com
q 0 0 0 O q 0
6 0O 0 1 0 6 0

L J L J L i L J

It is obvious, in this simple model, that the u and w responses

are completely wuncoupled and have first-order responses with

time-constants of f%; and 7%3 seconds, respectively. qg and 6
equal zero over all time since the perturbation initial condition
vector, X is a null vector and since q and # are unforced; this
means Q and 6 remain at their trim values, Q° and 00.

The linearized longitudinal dynamics, x = Ax + Bu, of the AH-1G

near hover (U°-=1.69 ft/sec, Wo--.02 fe/sec, Q= 0 degssec, 00--.73
[<]

deg) are
u -.0276 -.0164 1.319 -32.17| [u -.2835 1.206 2] [6
W -.12  -.3836 .31 .4009| [w -12.66 0 of [B
q .0005 -.0035 -.23 0 q * | o037 -.1624 o |T
; 0 0 1 0 6 0 o o
(6-1)

The B matrix of the dynamics of the conventional helicopter has
been augmented with a third column which incorporates the effects
of the auxiliary propulsion system. The "2" in this third column

is the control derivative for the auxilary propulsor’s
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contribution to the X-force (see Section 6.1.1 below). If the
third column of B is null, meaning that no auxilary propulsion is
employed, elements of the feedforward and feedback gain matrices
corresponding to the thrust control will equal zero. This 1is

shown by example for each controller.

6.1.1 Inclusion of the Auxiliary Thruster in the Dynamics

As discussed in Section 2.4, the advantages incurred wusing
auxiliary propulsion come in the ability to achieve higher rates
of acceleration and deceleration. We therefore derive the values
for the thruster elements in the dynamic equation from the
desired acceleration level, 0.3g to .35g.

In this simplified representation of the auxiliary thruster,
the thruster contributes only to horizontal longitudinal body-axis
acceleration/deceleration, i.e., to u (see Equation 6-1). It was
assumed that there are no changes in any of the stability
derivatives or any of the control derivatives for the conventional
helicopter; and, the first element in the third column of the
augmented B matrix is the only non-zero element in that column,
representing the control derivative XT.

The general expression for the dynamics of the thruster is then

u = XT (6-2)

or, X =T ‘ (6-3)

We express the travel of the thruster control in dinches, and
assign its range to be commensurate with the ranges of the
collective and cyclic: T can travel *5 inches. For full control

deflection at *.3g, this yields
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3g(32.174 frrsec’/g)

5 inches

-1.93 = 2 2t

The AH-1G's actuator lag time-constants for both the cyclic and

collective inputs are 0.08 seconds; 0.08 seconds is also used for

the auxiliary thruster’s actuator lag time-constant.

6.2 Implicit Model-Following Controller Design

6.2.1 Designs Including Auxiliary Propulsion

The controller gains for the AH-1G with auxiliary propulsion

installed are derived first.

The Q and R matrices that result in a contoller which exhibits

the desired handling qualities are

Q={30 o 3030 ]

The resulting weighting

0 150 0 ©
30 0 30000
30 0 0 3000

=16.332 L7422

w
xXx
7422 442
6.601 -3.164
|-367.3 15.88
W =[224.¢  12.88
xu

101.8 -.6824
-596.9 35.9
L'527.4 -1084

and R=

6.601
-3.164
48.38
-1032

22.37
-1.182
65.31
-1830

100
021
011

matrices are

-367.3
15.88
-1032
31080

du

xd

W ={24030 -8.818 -15.58
-8.818 39.76 68.02
-15.59 69.02 121

(_626.4 0 0
-3.118 13.6 24
(5. 04 4.475
-2.652 -.2384
15.35 13.06

20.29 -386.1

The steady-state Riccati matrix, P, and influence matrix S are
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P = |.02348 .00015 -.8413 =-2.404 S = }.02315 .9285

.00015 .00072 -.1268 ~-.0545 -.0004 =~.0156
-.9413 -.,1268 43.14 102.4 .04818 .3082
-2.404 -.0545 102.4 249.8 .00968 =-.0322

The resulting feedback and feedforward

gains are

C = |.oo09u8 .00423 ~.0244 -.0324 C = |.02607 -.000001
.1979 .01949  -3.4 -1.8 -.0605 -.0028
.07365 -.02042 2.41 -15.01 .01263 -.1946

The resulting closed-loop dynamics are X = (A-BCl)x + (BCz)d:

~.3993 .0002¢ .804 .1716

-.000028 -.33 .00176 .00267

.0326 -.0003 -.7821 -.2928
0 0 1 0

.00185 .3927 u
com
.33 . 000098 w
com
-.00002 - .00045
0 0

>0 £
@0 § C

The open-loop eigenvalues (A matrix) and closed-loop

eigenvalues (A-BC1 matrix) are

open-1loop .1205 *.2645i closed-loop  -.3s02 * .37281
-.6431 }.19271 -.4019
-.33
Two of the open-loop eigenvalues are unstable. All four
closed-loop eigenvalues are stable. 0f the closed-loop

eigenvalues, two have been properly placed at -.4« and -.33 on the
real axis; they have been driven to the roots of the model. The
two other eigenvalues have complex parts ({ = 0.52); the frequency
plots (Figures 6-1 and 6-3) and step input time histories (figurés
6-2 and 6-4) show that they do not comprise.the dominant modes of
the closed-loop dynamic response, though they are nevertheless
sufficiently damped. Inspection of the Bode plots and step input
histories in Figures 6-3 and 6-4 show that the vertical response

to a vertical command input exactly tracks the response of the
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first-order model to the same command; the responses of the other
states are insignificant.

The u to u_ response of the controller (Figures 6-1 and 6-2)
also emulates the model response very well; the horizontal
velocity respomse, u, to a step input in u o tracks the model
response almost exactly, and no pitching motion results from this
command. The ability of the helicopter to translate forward
without a nose-down attitude is attributed to ,the auxiliary
thruster; for the conventional helicopter, discussed below, the u
to u  response is accompanied by a nose-down attitude.

6.2.2 Designs Without Auxiliary Propulsion

For the conventional helicopter, the gains are computed in
exactly the same manner as jllustrated above, with the following
two changes in the inputs: the open-loop B matrix is not
augmented with the auxiliary propulsion dynamics, and the

weighting matrices which ultimately provide the desired handling

qualities are:

Q = 900 0 100 100 R = {200 o
0 150 0 O 0 10
1000 0 O
1000 0 ©

The resulting controller gains are

C = |.00855 .00417 =-.0302 -.0477 C = |.02595 ~.0036
.2923 -.0122 .3504 =-25.35 .003917 -.257
0 0 0 0 )} 0

(The third row of gains contains zeros because the auxiliary

propulsion is "off").
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The closed-loop eigenvalues are -.088 * 2.016. Again, two of
-.4002
-.3305

the poles have been properly placed at the poles of the model.
The frequency and step input response plots are shown in Figures
6-5 to 6-8. Figure 6-5 shows a large amplitude response of q (and
) at a frequency of 2 rad/sec to a u input, and Figure 6-6 shows
the presence of the lightly damped mode in the pitch response to
u inputs; the pitch rate feedback gain to u is only 0.35
compared with -21 in the augmented helicopter'’s feedback matrix.

This lightly damped mode does not meet the criterion set forth
in Table 2-1. However, as noted above, it is not always possible
to satisfy each criterion. In this example, increasing the
damping of this mode (by increasing the values of the Q[1,3],
Q[1,4], Q[3,1], and Q[4,1] weights) lengthened the time-constant
of the horizontal velocity response to a horizontal velocity step
input command, as shown in Figure 6-6a. Because this study used a
velocity-command controller, the velocity response criterion was
judged to be a more important than the damping criterion. Section
6-3 lists the order and importance of satisfying the handling
qualities criteria that was followed in this study during the
controller design.

Comparison of the responses in Figures 6-1 through 6-8 for the
conventional and thruster-auémented hglicopters with implicit
model-following controllers shows that both controllers exhibit
good vertical velocity command responses. For horizontal velocity
command inputs, the conventionally equipped helicopter has
underdamped pitching motion as it accelerates horizontally away

from hover. The controller for the augmented helicopter met all
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the response criteria, and therefore provided decoupled horizontal
and vertical velocity command responses and insignificant pitch

response.

6.3 Explicit Model-Following Controller

6.3.1 Designs Without Auxiliary Propulsion

Because the previous section showed the Ricatti matrix and
closed loop matrices only for the controller design which included
auxiliary propulsion, for the sake of completeness in showing the
design synthesis the order of the previous section is reversed,
and the controller gains for the AH-1G without auxiliary
propulsion installed are derived first.

The Q and R matrices that result in a contoller which exhibits

the desired handling qualities are

Q= {20 0 o© and R = ji00 0
0 20 0 0O 0o 1
0 0 0
c 0 0 ©

The steady-state Riccati matrix, P1’ and influence matrices P

and S are

P = 5.9488 -.1244 20.127 -28.65
1 -.1244 3.3042 - .3286 .75468
20.127 -.3286 196.53  35.77

-28.65 .75468 35.77  943.87

P = |-5.520 .07940 0 O S = |-.0172 .43669

2 .05084 -3.333 0 O .18412 -.00404
-18.651 .16556 0 0 -.0719 .4337
18.07 .39948 0 0 .07277 -11.224
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The resulting gains are

C- (00808 -.41785 -.0042
4.4408 -.10787 -5.831
0 0 0

C =[.00742 .42157 0 o©
-3.875 .07601 0 0

-

3} 0 00

-.0187
=42.84

C ={-.0245 -.00062

-.0106 .48551

0

1}

The closed-loop dynamics are X = (A-BCl)x - (BCz)xm + (BCs)d:

@0 f o

'-5.7828 .01328 8.875

-.1088 -5.6717 .2564

.7217 -.0185 -1.177
0 0 1

-

r5.153A 1.101 .00884

.76506 56.261 -.0006

-.64577 -.0075 -.001
0 0 1

L

23.48 |
17334
-6.974

-.2564
-.0033
.00002

0

.0 f C

L}
L

o
w
q

he-

m

The augmented dynamic equation is,

X

X

m

A-BC_ -BC | |x
1 2

0 F

X

BC_|d
3
G

and the closed-loop eigenvalues are

augmented state  matrix

-.00727 64241 JU

com
.31036 -.0078| |W
com
.00163 - .08147
0 0

the eigenvalues of the

eigenvalues (A matrix) and closed-loop eigenvalues are

open-loop .1205 *.2645i
+.19273

-.4411

A-BC1 -BC2 . The open-loop
0 F
closed-loop  -.2011 % 1.892i
-6.3726
-5.6767
-.40
-.33
"o
0

The last four closed-loop roots are those of the prefilter (i.e.,

the model),

helicopter,

80

and the first four are those of the closed-loop

all of which are stable. Bode plots are shown in



Figures 6-9 and 6-11. The oscillatory modes ({ = 0.15) can be
seen in the time histories, Figures 6-10 and 6-12. Like the
implicit controller for the conventional helicopter, this
controller does not meet the damping criterion but was chosen over
a controller which traded off greater damping for a longer
horizontal velocity response time-constant (the time-constant was
judged to be the more important of these two criteria for.
velocity-command controllers). Figures 6-11 and 6-12 show that

the w to w response tracks the model response exactly.
com

6.3.2 Designs Including Auxiliary Propulsion
XT now has a non-zero value; the thruster is "on." The Q

and R matrices are

Q=l10000 0 0 O R = |2000 0 0
0 5000 0 0 2000 1800
0 c 0 0 0 1800 2000
0 0 0 ©

The resulting controller gains are

C - [-.1160 -.4697 .1809 .4863
-.8200 -.0016 -22.59 -36.47
|2.928  -.0273 15.45  14.28
c, - (11004 47337 0 0 C_ = |-.0245 -.00597
1.1376 .01843 0 O -.0082 .350
|-3.024 .0097 O © 0034 -.108
The closed-loop eigenvalues are -2.03 * 1.27;. The dominant
-4.607
-6.4
-.40
-.33

0
0

mode is complex and satisfies the damping criteria (¢ = 0.85).

The other two roots have been driven far to the left along the
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real axis. This controller satisfies the handling qualities
criteria very well. The Bode plots and step input time histories
for this controller are shown in Figures 6-13 through 6-16. The
ability of the auxiliary thruster to reduce the forward pitch and
oscillation of the helicopter out of hover is evident in the

pitch rate/attitude time history of Figure 6-14.

The explicit controller for the helicopter equipped with
auxiliary propulsion provided u and w responses which track the
model responses very well. However, though the controller met all
the handling qualities criteria, it was not possible to design an
explicit controller which equaled the ability of the implicit
controller (for the augmented helicopter) to meet these criteria
and also to provide unnoticeable pitching motion response to a

horizontal velocity step input command.

6.3 Conditions of Acceptability for Controller Analysis
For the model dynamics of Section 6.1, the controllers of
Sections 6.2 and 6.3 were judged to be acceptable and comparable

in their abilities to satisfy the handling qualities criteria when
they met the following conditions; these conditions were evaluated

in the order given below:

O The u/u and w/wc frequency magnitude responses remained within
c

#0.1 decibels of the model response from 0 to 1 rad/sec.

O There were no peaks in these magnitude responses, and any

valleys were confined to a 1 rad/sec span.
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O The u/uc and w/wc frequency phase responses remained within 4
degrees of the model response from 0 to 1 rad/sec.

O Any deviation in phase from the model was confined to -45° to
-100° on the phase plot.

O All input-output frequency magnitude responses other than u/uc
and w/wc remained below -20 decibels for at least 5 rad/sec of the
0-6 rad/sec bandwidth and below -10 decibels over the entire band.
O The time response of u to a step input in u and“y to a step in
v remained within #10% of the time responses of the model to
these same two inputs over the 5 second history.

O The coupled responses, u to W and w to u, were confined within
+0.05 ft/sec from zero over the 5 second time history.

O Closed-loop eigenvalues were confined to the 0-6 rad/sec
bandwidth.

O The damping criterion (¢ = 0.5) was satisfied as long as it did
not result in a system which violated any of conditions above.
For both the implicit and explicit controllers without auxiliary
propulsion, this criterion could not be met. This suggests that
satisfactory damping using these controller structures is only
possible when auxiliary propulsion is employed.

O Pitch rate and pitch attitude time history responses were

minimized while adhering to the conditions above.

6.5 Selecting Controller Weighting Matrices,

The elements of the Q and R matrices are parameters which must
be chosen to yield a controller which provides the desired
closed-loop properties. The following rules of thumb for

selecting appropriate weighting matrices resulted from the

83



development of the controllers outlined in this study. Many of
the rules discussed below are clearly se«n in Figure 6-17, which
plots root loci for the explicit controller (auxiliary propulsion

installed) of Section 6-3 for various weighting matrices.

O In general, the diagonal elements dictate the dominate response
characteristics of the system. A few off-diagonal terms may
occasionally be used to refine some aspects of the response, as
discussed below.
O The [1,1) and [2,2] elements of Q weight the u and w responses.
They were varied independently to achieve the desired frequency
magnitude and phase responses and time history responses. The
magnitude of these elements varied from one controller to the next
(from 20 to 10,000 in the examples in Sections 6.2 amd 6.3) and
from one trim point to the next, but their influence in the
frequency and time responses was easily discernible, so that the
correct order of magnitude was quickly determined. These two
weights affected only the response of their corresponding state
variables, and once the correct order of magnitude was determined,
changes within this order had virtually zero effect on the
eigenvalue locations. These two parameters alone provided the
desired decoupled velocity-command responses.
O The [3,3] and [4,4] elements of Q showed little influence in the
responses, except for the augmented helicopter’s implicit
controller. Occasionally, a unity weight was assigned to these
elements to reduce pitching motions. For the implicit controller,
at many trim conditions it was imperitive to weight the [1,3],

[1,4], [3,1], and [4,1] elements of Q to reduce excessive
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responses in q and 6 to ucw!inputs. Once the [1,1] element was
determined, these elements were found to be less than or equal to
the [1,1] element.
O The control weighting matrix, R, effectively controls the pole
locations of the less dominant poles. In general, R did not
strongly affect the dominant roots, and therefore it did not
strongly influence the frequency and time responses of the system.
In those cases where this influence was observed, the implicit
controller was more susceptible to changes in the state responses
from increasing R than was the explicit controller.
O The unity matrix was a good choice for R. When (a) pole(s) were
out of bounds of the 6 rad/sec frequency band, one or more of the
diagonal elements of R was increased to pull the pole(s) back in
bounds. A few tries showed which elements influenced which poles,
and the magnitude of the proper element was adjusted to properly
place the pole; often the poles were effectively placed by simply
assigning the same scaling factor to all elements.
O For the auxiliary thrusted helicopter, assigning a positive
weight to the cross-coupled elements of R for the longitudinal
cyclic and auxiliary thruster (elements [2,3] and [3,2]) provided
an easy means of increasing the damping ratio of the dominant
complex roots. The value of this weight was equal to or slightly
less than, but of the same order of magnitude as,the smaller value

of the [2,2] and [3,3] elements.
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refer to the pairs of Q and R matrices.

101

*“x" denotes the helicopter’'s open-loop roots.
and R matrices:
1 0 00 2000 O 0 2 |soo 000 2000 O 0
0 500 0 © 0 2000 O 0 S00 0 O 0 2000 O
0 0 00 0 0 200°C 0 0o 00 0 0 2000
L © 0 00O 0 0 00
—1500 00 OH 2000 © 0 3000 0 0 O 2000 0 0
0 500 0 © 0 2000 O 0 500 0 O 0 2000 O
0 0 00 c 0 2000 0 0 0O 4 0 2000
L0 0 0 J 0 0 00
~10000 00 OW 2000 0 0 10000 0 0 O 00
0 500 0 OC 0 2000 O 0 500 0 O 50
0 0 0 0 0 2000 0 0 00 05
LO 0 © 0 0 00O
~10000 00 OH 5 0 0 7a |10000 0 0 © 50 0 0
g 500 0 O 0 50 ¢C 0 500 0 O 50 49
0 0 OO 0 0 50 0 o0 00O 49 50
0 0 00 0 0 00
ORICRNAL BEar
OF POOR Ciaiim



8 |100000 0 O 2000 O 9 110000 0
0 S00 0 O 0 2000 0 500
0 0 00 0D 0 200 )
6 0 00 0 ©
10 10000 0 0 © 200C 0 0
0 500 0 0 0 2000 1800
0 0 0 0 0 1800 2000
0o 0 0 0
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Chapter VII

SELECTED NOE TRAJECTORIES

Three representative longitudinal NOE maneuvers are defined
in this chapter. The optimal control input histories for each
maneuver are determined wusing the trajectory optimization
algorithm. These trajectories, or maneuvers, are used in Chapter
VIII to evaluate the controllers developed in Chapter VI, and to
evaluate the use of longitudinal auxiliary propulsion.

The collective and longitudinal cyclic ranges of stick travel
for the AH-1G are [1]:

Ec: 0 to 10.7 inches Bls: -7.5 to 5.7 inches
7.1 Pop-up/Dash/Descent

This maneuver, shown in Figure 7-1 is employed primarily when
moving from one hiding point to the mnext. For example, the
helicopter, hidden by tree cover, ascends above tree height,
dashes across the tree-tops, and descends back to hover in a new

clearing. The maneuver is done in minimal time.
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A

Obstacle

hover hover

60 ft - l

e

Figure 7-1

With auxiliary propulsion installed, the minimum time in which
the maneuver can be effectively completed is 4.6 seconds. Table
7-1 shows the specified values of the states at the interior and
final point times, the trim states, the available control power at
this trim condition, and the cost function weighting matrices.
The specified control values (of the controls in the augmented
state vector) at interior and final points are arbitrary since the
corresponding weighting elements are zero; the weights must be

zero since we do not want to penalyze control excursions.

RIGMNAL PAGE
I
OF POOR QUAme
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interior and final points

*k

time u w q [/ fc Bl T AX AY

sec ft/s ft/s deg/s deg/s in in in ft ft
aux prop

off,on

~

1.25,1.25 0 0 0 1] 0 0 0 0 30
4.80,3.60 0 0 0 0 0 0 0 60 30
5.90,4.60 0 0 0 0 0 0 0 60 0

trim conditions

* - *
U W Q 8 ; B T X Y
[} [} (.} o c 1s [} [ °
) [
ft/s ft/s deg/s deg in in in ft fr
1.6 -0.02 0 -0.73 53 -.38 1 0 10

cost function weighting matrices
state: diag [0 0 400 400 0 0 0 O 0]
control: diag [1 1 1]

state-control: null matrix

interior point weighting matrices

diag [150 0 400 400 0 © 0 150 150]

final point weighting matrix

diag [150 150 400 400 0 0 0 150 150])

control power (inches)

6§ : -5.3, +5.4 B : -7.1, 46.1 T: -5, +5

*
0 and Bl refer to stick trim; corresponding swashplate trim
c s
o ° angles are 14.83 and -.76 degrees.

* %
AY is defined positive upward

Table 7-1
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Figures 7-3, 7-4, and 7-5 show the spatial position and
position histories, velocities, and control inputs for a
conventional helicopter performing the pop-up maneuver. Figures
7-6, 7-7, and 7-8 show the same plots for the auxiliary propulsion
equipped helicopter.

Auxiliary propulsion is a major advantage in this type of
maneuver. The conventionally equipped helicopter has large
nose-down attitudes; after one second of wvertical climb, the
helicopter pitches nose down to accelerate; the attitude returns
to trim during deceleration (Figure 7-4). The path that the
helicopter takes during the second half of its trajectory is not
as square as it is for the augmented helicopter. "Cutting the
corner" off this path is necessary to avoid excessively high pitch
attitudes. If a more square path is desired, the forward speed of
the helicopter must be further reduced before descending; this
will, of course, increase the total time to complete the maneuver.

This maneuver is a high agility task. As one expects, we find
that the stick motions span their entire ranges (Figures 7-5 and
7-8). Comparing these two figures shows the impact of the
auxiliary thruster. For the conventional helicopter, the
longitudinal cyclic saturates at its maximum during the dash, and
then is pulled back strongly for the deceleration. For the
auxiliary thrusted helicopter, the thruster saturates for
acceleration and deceleration, and the amount of cyclic is
reduced. The collective saturates for the thrusted helicopter
because the maneuver is performed more quickly.

The pitch attitude for the conventional helicopter is more

extreme than for the augmented helicopter. The pitch rates for
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both cases are understandably high, but fall within the acceptable
limit of 0.69 rad/secz: 0.56 for the conventional helicopter, and

0.49 for the augmented helicopter.

7.2 Bob-up at 40 knots
The bob-up entails "hurdling" an object while flying at

a moderate to high speed, as shown in Figure 7-2.

o S=s

40 knots 40 knots

Figure 7-2

Table 7-2 specifies the geometry and flying qualities for this
maneuver. Both the conventional and auxiliary-equipped missions

are accomplished in 2.5 seconds.
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interior and final points

Wk

time u w q [/ fc Bls T AX AY
sec ft/s ft/s deg/s deg/s in in in ft ft
aux prop
off,on
1.0 ,1.0 0 0 0 0 0 0 0 0 20
1.5 ,1.5 0 0 0 0 0 0 0 0 20
2.5 ,2.5 0 0 0 0 0 0 0 0 0

trim conditions

* w *
U W Q 6 [ B T X Y
[} o o o c 1s ] o [}
o o
ft/s ft/s deg/s deg in in in ft fr
67.48 -2.13 0 -1.81 3.75 -.04 0 0 10

cost function weighting matrices
state: diag [150 © 400 400 0 0 0 150 0]
control: diag [1 1 1]

state-control: null matrix

interior point weighting matrices

diag [150 0 400 400 0 0 0 150 150]

final point weighting matrix

dieg [150 150 400 400 0 0 0 150 150

control power (inches)

6 : -3.7, +10.0 B : -7.5, +5.7 T: -5, +5
c ls

*
6 and Bl refer to stick trim; corresponding swashplate trim
c s
° [ angles are 12.77 and -.10 degrees.

L 23
AY is defined positive upward

Table 7-2

Figures 7-9, 7-10, and 7-11 show the spatial position and
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position histories, velocities, and control inputs for a
conventional helicopter performing the bob-up maneuver. Figures
7-12, 7-13, and 7-14 show the same plots for the auxiliary
propulsion-equipped helicopter.

Both the conventional and augmented helicopter were constrained
to remain very near their trimmed horizontal velocity; this was
effectively accomplished. The use of auxiliary propulsion;
decreases the amount of cyclic required; therefore, the pitch
attitude for the augmented helicopter at the end of the maneuver
is slightly less than the attitude for the conventional helicopter
(the attitudes are well within the acceptable range). 1In either
case, the pilot would have to reduce the pitch attitude at the end
of the maneuver (alternatively, we could have weighted the
constraint on the final pitch attitude more heavily). There is no
time advantage in using auxiliary propulsion here. There is a
slight advantage in reducing the pitching motion during the
maneuver.

In both cases, the vertical velocity, W, is almost perfectly
symmetric about its trim level over the interval, that is, it
increases smoothly then decreases smoothly back to trim. The
collective is increased, then decreased below its trim wvalue to
retard the vertical ascent, then increased above trim for the
final half second to slow the descent speed to zero.

The maximum pitch rate never exceeds the 0.69 rad/sec2 limit;
the maximum rates (absolute value) are 0.27 and 0.4 rad/sec2 for

the conventional and augmented helicopter, respectively.
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7.3 Glideslope

The glideslope is typically associated with descending from a
moderate to high-speed cruise at an altitude of several hundred
feet to a near-earth hover. The glideslope to ship deck landing
is a common trajectory employing the glideslope. This study uses
a very simplified glideslope. No particular glideslope path or
angle is specified; the maneuver simply requires transition from
flight at 40 knots and 250 feet altitude to a near-earth hover 250
feet along the horizontal earth axis.

Table 7-3 specifies the geometry and flying qualities for this
maneuver. Figures 7-15, 7-16, and 7-17 show the spacial position
and position histories, velocities, and control inputs for a
conventional helicopter performing the glideslope maneuver.
Figures 7-18, 7-19, and 7-20 show the same plots for the auxiliary
propulsion equipped helicopter.

The advantage of using auxiliary propulsion is evident in
trying to fly the glideslope in minimum time while not exceeding
the pitch attitude limits. The maneuver takes one second longer
for the conventional helicopter than for the augmented helicopter
(7 versus 6 seconds), and the pitch attitude is worse. In fact,
as can be seen in Figure 7-16, the nose-up pitch attitude for the
conventional helicopter at the end of the glideslope is not
favorable; it exceeds the 10° limit. The spacial histories are
nearly identical, as are the translational velocities histories,
so the thruster provides the ability to rapidly decelerate while
maintaining satisfactory attitude.

The maximum absolute pitch rates over the trajectory are well

within the allowable range, as should be expected. These values
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are 0.22 and 0.17 rad/sec2 for the conventional and augmented

helicopter, respectively.

interior and final points

time u w q [/ fec Bls T AX AY
sec . fu/s ft/s deg/s deg/s in in in ft ft
aux prop
off,on
7.0 ,6.0 -67.5 2.13 0 0 0 0 0 0 -250
trim conditions -
» * W
U W Q 6 6 B T X Y
[} ° o o c is [} [} °
[ o
ft/s ft/s deg/s deg in in in ft ft
67 .48 -2.13 0 -1.81 3.75 =-.04 0 0 250

cost function weighting matrices
state: diag [0 0 400 400 ¢ 0 0 0 0]
control: aiag [1 1 1]

state-control: null matrix

interior point weighting matrices

not applicable

final point weighting matrix

diag [150 150 400 400 0 0 0 150 150)

control power (inches)

6 : -3.7, +10.0 B : -7.5, +5.7 T: -5, +5
c 1ls

w
f and Bl refer to stick trim; corresponding swashplate trim
c s
o o angles are 12.77 and -.10 degrees.

*h
AY is defined positive upward

Table 7-3
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7.4 Example of Path Evolution using the Trajectory Optimization
Figure 7-21 shows three "paths" during different stages of the
trajectory optimization for the pop-up/dash/descent maneuver (with
auxiliary propulsion). The initial control history yields a path
that is very far from the desired trajectory. As the cost is
minimized, the geometric specifications are met, as are the flying
qualities criteria. The optimization of the other trajectories of

this section converge similarly to their optimal path.
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Chapter VIII

EVALUATION OF IMPLICIT AND EXPLICIT CONTROLLERS

The three maneuvers used for evaluation in this chapter are
those maneuvers which were defined in Chapter VII. The optimal
control input histories and state histories for these maneuvers
(Chapter VII) are referred to often in the following discussion of

the pilot command input histories.

8.1 Pop-up Maneuver

The pilot input histories for the implicit and explicit
controllers are shown in Figures 8-1 and 8-2, respectively, for
the conventional helicopter, and in Figures 8-3 and 8-4 for the
helicopter equipped with auxiliary propulsion. A summary of the

pilot workloads for this task is contained in Table 8-1.

8.1.1 Without Auxiliary Propulsion

For the implicit controller, the command inputs are choppy, and
definitely coupled. Both stick motions reverse direction several
times throughout the trajectory, and the rates of change are
appreciable. Therefore, the pilot workload is very high. The
explicit controller’s command inputs are smooth. The vertical
velocity command rises and then falls back to trim, in accordance
with the desired shape of the pop-up and descent. The horizontal
velocity command increases for the dash portion of the task,
though it seems to remain wunusually high at the end of the

trajectory.
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8.1.2 With Auxiliary Propulsion

The implicit controller, as for the case above, should be
judged wunacceptable. The explicit controller again accepts
smooth, low pilot workload inputs. The horizontal velocity
command this time, however, seems unusually low over the entire
trajectory (Figure 8-4), especially considering the amount of -
positive cyclic and thruster input used throughout the maneuver

(Figure 7-8).

8.2 Bob-up Maneuver

The pilot input histories for the implicit and explicit
controllers are shown in Figures 8-5 and 8-6, respectively, for
the conventional helicopter, and in Figures 8-7 and 8-8 for the
helicopter equipped with auxiliary propulsion. A summary of the

pilot workloads for this task is contained in Table 8-1.

8.2.1 Without Auxiliary Propulsion

The implicit model-following controller requires pilot inputs
(Figure 8-5) that are not distinctively different from the
swashplate inputs (Figure 7-11); there is a lot of movement in
each stick, as witnessed in the command inputs and the rate of
command inputs. Consequently, the pilot workload is relatively
high. Furthermore, we notice that this controller has not
decoupled the translational velocities very well.

The explicit model-following controller, on the other hand,
shows excellent controller characteristics. Figure 8-6 plots the

pilot inputs using this controller. The vertical velocity input
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is a very smooth bell-shaped curve. This command input reflects
the curvature of the trajectory and the vertical velocity history
(Figures 7-9 and 7-10); that is, the vertical response to the
vertical command input is direct and predominately uncoupled. At
the completion of the maneuver, when the helicopter is at its trim
altitude and cruise speed, the WCMIStick has been returned to its
trimmed location. Only minor horizontal velocity compensatory
command is necessary, and this input is also very smooth.

These smooth pilot inputs result in very low pilot workloads
(see Table 8-1). The ability of the explicit controller to accept
smooth inputs, mix them, and output the necessary "choppy"

swashplate and thruster histories is quite pleasing.

8.2.2 With Auxiliary Propulsion

There is very little change in the pilot input histories for
the thruster-equipped helicopter (because very little thruster
power is needed to meet the specifications of this maneuver). The

same results concluded above apply to this controller.

8.3 Glideslope Maneuver

The pilot input histories for the implicit and explicit
controllers are shown in Figures 8-9 and 8-10, respectively, for
the conventional helicopter, and in Figures 8-11 and 8-12 for the
helicopter equipped with auxiliary propulsion. A summary of the

pilot workloads for this task is contained in Table 8-1.

8.3.1 Without Auxiliary Propulsion
The swashplate inputs for this maneuver are somewhat choppy

(Figure 7-11). The pilot inputs for the implicit controller are
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also choppy, whereas the explicit controller accepts smooth
inputs. The smoothness of these 1inputs for the explicit
controller, and the relative simple nature of this task results in
very low pilot workload.
8.3.2 With Auxiliary Propulsion

Again, the implicit controller does not provide good controller
characterisitics. The explicit controller is very good; the pilot
histories differ from those above only in that the wvertical
velocity command at the end of the trajectory becomes positive to
curtail the high descent rate which was made possible wvia the

auxiliary thruster.

In all of the cases presented above, the pilot workload for the
explicit controller is considerably less than the workload for the
implicit controlle. The difference in workloads between
maneuvers is attributed to the relative degree of agility inherent
in the maneuver.

Both controllers exhibited good frequency responses. It
appears, therefore, that the explicit controller was able to
accept smoother pilot inputs because of its use of a prefilter.
The explicit controller attempted to match the actual and model
state histories, whereas the implicit controller attempted to
match the state rate histories; state rate matching required that
the pilot input histories were similar to swashplate inputs so
that the integrated state rates resulted in the correct state
histories. Since the explicit controller matched state histories,

the pilot inputs were required to satisfy the integrated model
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dynamics, and resulted in commands that were smooth and

proportional to the desired velocities.

136

Pilot Open-loop Normalized
Workload Control Cost
Maneuver/ Cost Cost .
Aux Prop, . . . . i W U
Controller | W U 6 B T =2 =27
com com c ls :
f B
c 1ls
Pop-up/Off
Implicit 23 550 357 526 NA .07 1.05
Explicit 8 85 357 526 NA .02 .20
Pop-up/On
Implicit 22 126 331 232 336 NA NA
Explicit 7 52 331 232 336 NA NA
Bob-up/0Off
Implicit 21 140 238 190 NA .09 .74
Explicit 12 44 238 190 NA .05 .23
Bob-up/On
Implicit 18 66 171 74 65 NA NA
Explicit 10 32 171 74 65 NA NA
Glideslope/Off
Implicit 10 19 176 135 NA .06 .14
Explicit 2 31 176 135 NA .01 .23
Glideslope/On
Implicit 4 60 162 108 133 NA NA
Explicit 4 21 162 108 133 NA NA
Table 8-1
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Chapter IX

CONCLUSIONS AND RECOMMENDATIONS

Implicit and explicit model-following controllers have been
investigated for use with the longitudinal degrees of freedom of
an attack-type helicopter operating in a NOE environment. A
computational trajectory optimization method was employed to
evaluate these controllers, and to access the advantages incurred
using auxiliary propulsion on helicopters operating in this
environment. The auxiliary control power was sized according to
desired acceleration potential. The contollers and longitudinal
propulsion advantages were judged in terms of their resulting
handling qualities, flying qualities, and pilot workload.

A velocity-command controller, with decoupled command inputs,
is preferred for these types of NOE tasks, which typically require
high levels of helicopter agility. The explicit model-following
controller uses a prefilter of model dynamics in the feedforward
loop of the controller. This controller was superior to the
implicit model-following controller in all cases tested, and was
much easier to design because the same Q and R matrices were
applicable for all trim conditions. Both could be designed to
satisfactorily meet the prescribed handling qualities criteria
using primarily diagonal weighting matrices. The explicit
controller, however, required far less pilot workload. The
explicit controller's command inputs reflected the direction,

duration, and relative magnitude of the desired horizontal and
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vertical velocity responses. This was true for the conventionally
equipped helicopter, and for the thruster augmented helicopter,
where the two command inputs were effectively mixed to provide
inputs to the three helicopter controls (collective, cyclic, and
thruster).

The auxiliary propulsor is very effective for NOE operations
because (1) it increases the acceleration/deceleration potential
of the helicopter, thereby decreasing the time to complete the
task, and (2) the thruster-generated acceleration does not require
excessive pitch motion, which is detrimental for mnavigation,
target acquisition, and hiding.

The trajectory optimization method provides a straightforward
and efficient way to determine the optimal control input
histories, which can be employed to then evaluate attributes of
various controllers, propulsion systems, and perhaps other
components of the helicopter. This study uses a soft constraint
on the helicopter’s pitch attitude and pitch rate. In retrospect,
it may be more effective to use a hard constraint so as to
absolutely limit the rate and attitude. In the current method,
early stages of the optimization may yield rates and attitudes
which are definitely unacceptable, and extreme attitudes may lead
to divergence of the optimization.

The controller gains are scheduled throughout the flight
envelope. This is necessary to account for changes in the flight
condition throughtout the trajectory. However, some gains change
very little with flight condition, and some have negligible
influence. This, in fact, was verified during early stages of

this study, when the gains at the trimmed condition were used

150



throughout the entire trajectory. Therefore, further work in this
area should be directed to correlating the most influencial gains
with flight condition, and scheduling accordingly. For
implementation in the aircraft, this will be necessary to reduce

computational storage and real-time processing, and expense.
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Appendix A

Helicopter Equations of Motion

The most basic starting point in developing the dynamic
equations of motion for the helicopter (or for any body) is to
apply Newton’s Second Law to the forces and moments acting on the
helicopter, as described in reference 23. The helicopter is
assumed to be a perfectly rigid body. Using a body-axis reference
frame (Figure A-1), this yields the six degree of freedom
expressions for helicopter motion. These equations relate the
translational and angular accelerations to the aerodynamic,
inertial, and gravitational terms. This study is concerned with
the longitudinal equations of motion, and therefore the
lateral-directional motion equations are not presented.

Other assumptions employed in this derivation are that

1. the helicopter has constant mass and mass distribution.

2. the helicopter is flying at speeds low enough and
distances short enough that the Earth can be considered
flat; the body-axis frame then need not be related to
rotation about the Earth's geocenter, and the inertial
reference frame is therefore the flat Earth axis.

3. quasisteady flow applies.

The dynamics of the helicopter are presented in a body-axis
frame. This is an axis system affixed to the body (Figure A-1).
The XB axis is forward through the nose of the helicopter; YB

points out the right side; and ZB points dawn through the body of
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the helicopter. P, Q, and R designate rotational rates about the
XB, YB, and ZE axes, respectively. The origin of this axis system
is the helicopter’'s center of gravity. The XZ plane is assumed to
be a plane of symmetry. Figure A-1 also shows the
Earth-referenced frame: XI points right; YI points out of the
page; and ZI points in the gravity (g) direction. Typically, it
is necessary to consider the inertial to body transformation
matrix which relates these two reference frames. . However, since
we are dealing only with the 1linearized longitudinal motion
equations, it is more succinct to state the simple result of the
transformation linearization than to develop the transformation
which 1is, for the most part, unused. (The result, q-é, is
included and explained below with the linearized 1longitudinal

equations of motion).

The nonlinear longitudinal dynamic equations of motion are

X = mU + QW - RV + gsin@) = max (A-1a)

Z = m(W + PV - QU - gcosBsin®) = ma_ (A-1b)

M=Ql +PR(I-I)-R1 + P (A-1c)
Yy x z xz X2

m is the mass of the helicopter. Subscripted I and a are the
moment of inertia and acceleration, respectively, along the axis
(or in the plane) of the subscript wvariable. The equations
represent the balance between the inertial and gravitational
terms, and all aerodynamic and propulsive terms represented by the
generalized symbols X, Z, and M.

Since only the longitudinal degrees of freedom are of interest,
these equations are rewritten without their 1lateral-directional

terms (the lateral-directional terms are set to zero):
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X = m(U + QW + gsin®) (A-2a)

Z = m(W - QU - gcos®) (A-2b)

M= QI (A-2¢)
y

These nonlinear equations are linearized by accounting for
dynamic motion as small perturbations about an operating, or trim,
point. The subscript ( )o denotes trim. We write the total
motion of each state as the sum of its trim value plus its

perturbation value, i.e., we take the first two terms in a Taylor

Series expansion.

U=U +dU=0U +u X=X +d =X +X
o] [o] (<] [+]
W=W +di =V +w Z-2 +d2=2 +2
[} o [<] [+
(A-3)
Q=Q +dQ=0Q +q M=M +dil=M +M
[+ o o] [}

@
L
r
«
+
C

§ + df
o

In trim, nominal translational and rotationel accelerations are
zero: U= Wo = Q = 0. Therefore,
o []

U = Uo + u=u W=W +w=uw Q=aQ t q=9q (A-4)
(=]

and the trim equations are

X = m(QW + gsind ) (A-5a)
[« [T o] [+]

Z = m(QU - gcosf ) (A-5b)
(<] (=2« ] [+]

M =0 (A-5¢)

o
Rewriting Equations A-2 using Equations A-3 and the derivative of
Equations A-4,

X +X= m{u + (Q+q) (W +w) + gsin(f +0)]

= mfu + QOW° + Qow + qu + qw + g51n8°cosﬂ + gcoseosinﬂ]
(A-6a)
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Z + 2= m[& - (Q°+q)(U°+u) - gcos(00+€)]

©

= m[w - QOUo - Qou - qu - qu - gcos&ocose + gsinﬁosinﬁ]

(A-6b)

M +M=ql (A-6c)
° y

This linearization technique assumes small perturbations, so
that a small angle approximation is used: cosf = 1 and sinf = §.
We also assume the products of perturbation wvariables are

negligible. Using these two approximations, Equations A-6 are

X +X=mu+QW +Qw+Wgq+ gsind + gcosf 6] (A-7a)
-] [« 2N ] [+ <] [] ]
2° + Z = m{w - QOU° - Qou - qu - gcos€° + gsln€°0] (A-7b)
M +M=ql (A-7c)
[} Yy .
Subtracting the trim expressions, Equations A-5, from Equations

A-7 yields the linearized (perturbation) equations:

X = m[ﬁ + Qow + qu + gcosﬁoﬂ] (A-8a)
Z m[& -Qu -Ugq+ gsinf 6] (A-8b)
[+] [+ (<]

M= éIy (A-8c)
or X+ Qw+Waqg+ 6 6 (A-9.)
, - =u . ,a + geosf a
Zow-Qu-Ugq-+ gsing 6 (A-9b)

m [} [} 9 & ] .
% - q (A-9c)

y

Recall that X, Z, amd M represent the perturbation aerodynamic and
propulsive forces and moment.

The linearization of the inertial/body transformation yields
the simple expression q=é. This means that pitch attitude, §, is
the direct integral of pitch rate, q. Thus, the independent

perturbation variables in the longitudinal degrees of freedom are
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E L A AN T RAANY T/ oA, TS
o ° ©

=m{w - QOU° - Qou - qu - qu - gcosﬁocosﬁ + g51n0051n€]

(A-6b)

M +M=qI (A-6c)
° y

This linearization technique assumes small perturbations, so

o~

1l and sing & 6.

IR

that a small angle approximation is used: cos#
We also assume the products of perturbation variables are

negligible. Using these two approximations, Equations A-6 are

X° + X = m[u + Qow° + Qow + qu + gsinﬂ° + gcoiz;ﬁ)/’~ (A-7a)

ZO + Z = m{w - QOUO - Qou - qu - gcosﬁ° + gsi 000] (A-7b)
M +M= élly (A-7¢)
Subtractinpthe trim expressions, Equatiops A-5, from Equations
A-7 yields the 1 arized (perturbatio equations:
X = m[ﬁ + Qow + W gq (A-8a)
[+]
Z = m[w - Qou - qu + gsinf (A-8b)
M= éIy (A-8c¢)
X - '
or, —=u+Qw+ W (A-9a)
m [}

g1

-w - Qou - qu + gsin9°0

X

Recall that X,/Z, amd M represent the perturbation aerodynamic &
propulsive foices and moment.

The linearization of the inertial/body transformation yields
the simple expression q=f. This means that pitch attitude, 6, is
the direct integral of pitch rate, q. Thus, the independent

perturbation variables in the longitudinal degrees of freedom are
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u, w, and q.

With this in mind, we express X, Z, and M

in terms

of their sensitivities to changes in these independent state
variables, and to changes in the longitudinal perturbation
controls Gc and B1S (collective and cyclic, respectively):
8X aX 8Xx 8X aX
X = EGU + -a-;W + 'éEq + —aocec + aBlsBls (A-lOa)
aZ 8z 8z Y4 8z
Z = R + Tl + 5Hq + 5?—0c + EEIZBIS (A-10b)
c
oM oM oM oM aM
M= -a—u\.l + a—ww + '6—qq + _—60 0c + ——aBlsBls (A'lOC)
[
Dividing the force equations (X and Z) by m, and the moment
equation (M) by Iy, the the resulting coefficients of the state
variables are what are commonly referred to as the stability
derivatives, and the control coefficents are the control
derivatives.
X 1 8X 1 X 1 6X 1 3X 1 86X
mma tma tmoagd Tmas et maB i
[
= qu + kww + qu + che + BlsBls (A-1la)
Z 1 32 1 82 1 82 1 82 1 82
mTme Tmaw Tmag Tmas e maB i
= Zuu + Z w + qu + 20c0 ZBISBls (A-llb)
M 1 oM 1 8M aM 1 M 1 M
T T T TT139 " T a6 et I 3E Tus
y y y y y ¢ y 1s
- Muu + Mww + qu + Mhoc + MB”B1s (A-11c)
Equating Equations A-9 and A-11, collecting 1like terms and

rearranging,

u = X“u + (Xw-Qo)w + (Xq-Wo)q - gcos&oﬂ + xacoc + XB

yields
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W o= (Z°+U°)u + wa + (2q+U°)q - g51n6°0 + Zocﬂc + ZBlsBls
(A-12b)
q= Muu + Mww + qu + Mgcﬂc + MB“B1s (A-12¢)

Writing Equations A-12 in matrix form, and including the dynamics
for 6, we have a general expression for the linear longitudinal

dynamics of the helicopter:

r " r _ A _ - r -
? Xu Xu Qo Xq ko gcosﬁo u
: s
? ) Zu+Qo Zw Zq+L0 g51n60
q M M M 0 q
. u w q
6 0 0 1 0 6
L 5 J L
xoc XBls 0c
26 251 B1
+ | ¥ ‘ M : : (A-13)
fc Bls
0 0
This matrix equation takes the form
X = Ax + Bu : (A-14)

where A is the stability derivative matrix, B is the control
derivative matrix, x is the state vector, and u is the control

vector.

@« 0 f C
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W = (47U )Uu 7+ L W T (4 U - gsinv v T &£, U 4 L
ko o) w (q o)q & o fc ¢ Bls 1s

(A-12b)

q= Muu + Mww + qu + Mgcac + MBISB1s (A-12¢)

Writing Equations A-12 in matrix form, and including the dynamics
for 6, we have a general expression for the linear longitudinal

dynamics of the helicopter:

.. - -
Xu Xu-Qo xq-wo -gcos&°

Zu+Qo Zw Zq+Uo -g51n6°

u

w

c';”in M M 0
. u w q

6 1 0

0 0

© a0 9§ ¢C

(A-13)

(A-14)
is the control

is the tontrol
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Figure A-1:

Body Axis System
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Appendix B

AH-1G Stability/Control Derivatives and Scheduling
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Scheduling

The stability and control derivatives were scheduled according
to the flight velocities U and W. Modal analyses [3,27] showed
that the derivatives Xu, Xw, Xq, Zq, XBls , and MBls, and
variations in these derivatives, did not significantly affect the
open-loop dynamic characteristics of the AH-1G. Thesefore, the
average value of each derivative over the twenty-two trim
conditions listed in Reference 1 was used throughout the entire
flight envelope (see data above).

The remaining stability and control derivatives were scheduled
in a two-dimensional format by first curve-fitting the derivatives
with respect to U, and then with respect to W. That is, they were
scheduled as functions of U and W. Curve-fitting was either
linear or quadratic, and the function for one derivative may have
been composed of several distinct curves; all functions were
continuous for all U and W.

These non-constant derivatives were easily scheduled as
functions of U by fitting curves to the data points. This method
was also employed for scheduling with respect to W, except for the
Mu, Mw, Mq, and Zw derivatives. Because these derivatives wvaried
considerably for different values of W, and because of the limited
data set, curve-fitting was not directly possible. To facilitate
scheduling, the effect of flight condition on these derivatives
was rationalized by examining the equations that describe them in
terms of their contributing aerodynamic forces and moments. By

rationalizing the effects of flight velocities on rotor inflow,

rotor angle of attack, thrust coefficient, and rotor flap, and
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then looking at their effects on the derivatives, the derivatives

were written as functions of U and V.
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Appendix C

Solution of the Steady-state Riccati Equation

Reference [26] provides a detailed description of the following
diagonalization procedure for solving the steady-state Riccati

equation.

The equation has the form P=-PM -MP + PNP + K and a
solution is sought for P at steady-state, i.e., when P=0. M, N,
K, and P have dimension n X n.

Define the 2n X 2n matrix
7 - M -NT
K -M
It is assumed that Z has 2n distinct eigenvalues. For each
eigenvalue X\, there is an eigenvalu. -); none of the eigenvalues
have zero real parts. The eigenvalues of Z which are negative
(stable), are the eigenvalues of the steady-state closed-loop
optimal controller. The diagonal modal matrix A contains the

eigenvalues of Z with positive real parts. Z can be diagonalized

as

7 =W A 0 w-l
0 -A

AP . . w W
Partitioning W into n X n submatrices, W = [ 11 12},

21 22

the steady-state solution of the Riccati equation is

P=W W.
22 12
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Explicit Controller -- conventional helicopter (no auxiliary prop)
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2,3

Explicit Controller -- auxiliary propulsion installed
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