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INTRODUCT ION

Many viscoplastic constitutive models for high-temperature structural

alloys are based exclusively on uniaxial test data. Generalization to multi-

axial states of stress is made by assuming the stress dependence to be on the

second principal invariant (J2) of the deviatoric stress, frequently called

the "effective" stress. Testing other than uniaxial, e.g., shear, biaxial,

etc., is generally done in the spirit of verification testing, not as part of

the data base of the model.

If such a J2 theory, based on uniaxial testing, is called upon to predict

behavior under conditions other than uniaxial, say pure shear, and it does so

poorly, nothing is left to adjust in the theory. The exclusive dependence on

J2 must be questioned.

For a fully isotropic material whose inelastic deformation behavior is

relatively independent of hydrostatic stress, the most general stress depen-

dence is on the two (non-zero) principal invariants of the deviatoric stress,

J2 and J3" These invariants constitute what is known as an integrity basis

for the material.

* This research was performed under NASA Grant NAG-3-379.
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Here, we present a time-dependent constitutive theory with stress depen-

dence on J2 and J3 that reduces to a known J2 theory as a special case. The

characterization of viscoplasticity can be made largely on uniaxial testing

but the "strength" of the J3 dependence must be determined by testing other

than uniaxial, e.g., pure shear.

Earlier studies (refs. I-3) have considered the inclusion of the invari-

ant 33 in the context of time-independent plasticity theory. The present time-

dependent formulation is guided by the form of the yield function introduced

in reference I.

STATEMENT OF THE THEORY

As in references (4-6) the starting point is the assumed existence of a

dissipation potential function

R(_ij, _ij)* (i)

with the generalized normality structure

_ij : _ (2)
ij

-_i j/h = BC_ " (3)
Ij

Here, oij and _ij denote the components of the applied and internal stress,

respectively, cij denotes the components of inelastic strain rate and h is

a scalar function of the internal stress•

* The present treatment concerns only isothermal deformation, extension to

nonisothermal conditions follows as in ref. 5.

284



We further assume, as in references (4-6), that the stress dependence

enters through two scalar functions F and G, i.e.,

_(F,G) (4)

in whi ch

F(Zij ) (5)

and

G(aij) (6)

_.ij in equation (5) denotes the stress difference

Zij = Sij " aij , (7)

where Sij and aij represent the deviatoric applied and internal stress, re-

spectively.

As indicated earlier, for a fully isotropic material, F and G can depend

only on the respective principal invariants of Zij and aij, i.e.,

F(J2,J3)

and
^ ^

G(J2,J3)

where

I
J2 : _ _ij_ji

and

i

J3 : T ZijZjkZki

^ i

J2 : _ aijaji

^ i

J3 : _ aijajkaki

(8)

(9)

(10)

(Ii)

285



Guided by reference (1), we choose particular forms for F and G as

(J_ +CJ_) I/3

F(J 2,J3) - K2 1
(12)

^ (J + CJ

g(j2,d3) - K2 (13)

Here, C indicates the "strength" of the J3 contribution. Note that for C:O

the functions F and G reduce to the J2 forms given in references (4 and 5).

Figure I shows plots of F=constant in a nondimensional normal/shear stress

space for several values of C. Included are the special cases C=0(v.Mises-J2) ,

C:-4(Tresca) and C:-l.75(Drucker), the latter being the value taken in refer-

ence I for a yield function in time-independent plasticity. The experimental

data points shown in figure i were obtained in preliminary experiments for de-

termining the flow surfaces F=constant for a stainless steel (ref. 7). These

few data suggest that the time-dependent behavior of this alloy may be some-

what stronger in shear than a J2 material• A value of C:IO appears to fit the

data reasonably well.

Using equations (4), (12), and (13) in equations (2) and (3) gives the

flow law,

cij = f(F)rij (14)

in which

2 2C (15)rij = J2 Zij + T'J3 tij

and

2
tij : ZikZkj - _ J2aij (16)
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The evolutionary law becomes

aij = h(G)_ij " r(G) _ij

in which

_ij = aij + J3 gij

and

(17)

(18)

2 ^ (19)
gij = aikakj " "3 J2 _ij

from uniaxial testing.

test.

The functions f(F), h(G) and r(G) can be determined, as in references (4-6),

The value of C must be determined from a non-uniaxial

CALCULATED RESULTS AND DISCUSSION

Several calculations have been made using forms of the functions, f, h and

r and associated material parameters that are typical of ferritic chrome-based

and austenitic stainless-steel alloys. Qualitatively similar results can be

expected for nickel-based alloys. Figure 2 shows predicted hysteresis loops

over a constant strain range (ae=O.6%) and strain rate (_=.O01/m). The curve

in figure 2 labeled "uniaxial" can be thought of as having been carefully fit

on the basis of uniaxial data. Predictions of pure shear response are also

shown, corresponding to different values of C. That based on a J2 theory is

the curve labeled C=O. Even after tedious fitting of uniaxial cyclic data,

if the shear prediction does not correlate well with shear data, nothing can

be done in a J2 theory short of compromising the uniaxial correlations. The

present J2, J3 theory allows some flexibility in accurately predicting response

other than uniaxial through the parameter C. Note that the hysteresis loop
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labeled C=I0, suggested by the data in figure 1, indicates a cyclic response

that is about 20% stronger than the J2 response (C=O).

Figure 3 shows predictions of creep response, i.e., behavior under con-

stant stress. Here, the strain-time curve labeled "uniaxial and shear C=O" re-

presents both the uniaxial response (using the strain scale on the left) and

the shear response for a J2 material (using the strain scale on the right).

Each shear response corresponding to a particular value of C is to be measured

using the right-hand shear strain scale. In creep, the effect of the J3 depen-

dence appears to be more pronounced than for strain cycling. Here, for C=I0

the creep strain after 100 hours differs by a factor of 2 from that for the J2

response (C=O).
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Figure I Plots of F=constant in normalized normal/shear
stress plane for several values of C.
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Figure 2 Saturated hysteresis loops for A¢:0.6% and ¢=.001/m.
Shown is uniaxial response and shear responses for
several values of C.

290



.08

.04

0

0

c=-4/// Drucker

/ c=-1.75 /

/

I I I I

20 40 60 80

12

.06

0
I00

time (hr)

Figure 3 Creep response in uniaxial tension and shear for
several values of C.
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