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MONITORING SOLAR-TYPE STARS FOR LUMINOSITY VARIATIONS

G. W. Lockwood and B. A. Skiff

Lowell Observatory, Flagstaff, Arizona

Abstract

Since 1984, we have made more than 1500 differential photometric b (471 nm)

and y (551 nm) measurements of three dozen solar-like lower main-sequence stars

whose chromospheric activity was previously studied by O. C. Wilson. We describe

our methodology and the statistical tests used to distinguish intrinsic stellar vari-

ability from observational and instrumental errors; we summarize the incidence of

detected variability among the program and comparison stars. Many are variable on

timescales of days to years. Among the 100+ pairs of stars measured differentially,

we find only a dozen that are unusually constant, with peak-to-peak amplitudes of

seasonal mean brightness smaller than 0.3°_ (0.003 mag) over a two-to-three-year
interval.

Introduction

The recent detection of a slow downward drift in total solar output, S, (the

"solar constant") recorded by the .4 CRIM experiment on board the Solar Maximum

Mission (SMM) satellite, presents a formidable challenge to stellar observational

photometry: can such small luminosity fluctuations be detected in solar-type stars

generally? Since 1980, the decrease in S has amounted to about 0.1°_ [Willson eta/.,

1986]. Dips as large as 0.25°_, corresponding to the rotation of sunspot groups across

the Sun's visible disk, were observed soon after the launch of SMM in 1980; and the

power spectrum of S contains a persistent significant peak corresponding to solar

rotation [FrShlich, 1987]. The conventional wisdom of stellar photoelectric photom-

etry, basically unchanged since the introduction of photon-counting electronics 20

years ago, asserts that precision better than about 1% is difficult to achieve, while

solar variations are an order of magnitude smaller.

At the Lowell Observatory, strict adherence to a fairly elementary observational

and instrumentaI protocol has yielded much higher precision in several programs;

for example, measuring small luminosity variations of young, active, solar-type stars

in tlle Hyades open cluster [Lockwood et aL, 1984; Radick eta/., 1987]. These stars

exhibit exaggerated elements of solar-like activity: their light curves are rotationally

modulated by a few percent by the disk passage of what seem to be spotted regions,

and secular changes in mean brightness generally much less than 1% occur from year

to year.

In 1984, we undertook to measure the long-term variation of a sample of solar-

like stars and have found that changes in the seasonal mean brightness smaller
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than 0.1% can be reliably measured. This paper presents a statistically oriented

discussion of the results, with special attention to the question of data validation,

systematic and random error, and possible instrumental effects.

Observations

Since 1984, Skiff has made more than 1500 differential photoelectric observa-

tions of three dozen sun-like stars including some of solar age and activity levels,

i.e., the most boring stars imaginable. Their chromospheric activity was previously

monitored by O. C. Wilson [1978], whose decade-long series of measurements of the

strengths of the H and K lines of ionized calcium provides the first evidence of sun-

like activity cycles in stars. Subsequent observations have provided data at higher

time resolution, leading to the discovery that the line strengths are rotationally

modulated, as on the Sun [cf. Baliunas and Vaughan, 1985 and references therein].

Our observational sample comprises "Wilson stars" (their current familial nick-

name) with well-defined activity cycles, constant stars, and a few young, active stars

showing strong rotational modulation of H+K line strengths. Historically, all have

been photometrically uninteresting; some are, in fact, photometric standard stars.

Several were observed for a decade by Jerzykiewicz and Serkowski [1966], who found

no evidence for variability at levels below 1_0. However, almos_ immediately we dis-

covered two Wilson stars, each UB V and uvby standards, that showed rotationally

modulated brightness variations with amplitudes of 1% and 3%, respectively, and

1% changes of mean brightness from one year to the next [Skiff and Lockwood,

1986].

The stars are organized into trios (or quartets), containing one (or two) Wilson

stars and two presumed constant comparison stars of similar brightness and spectral

type (F0 to mid-K) located nearby on the sky. Early detections of variability among

the comparison stars, many of which were giants or stars of unknown luminosity

class, forced us to promote many of the trios into quartets containing an additional

comparison star.

An observation consists of four cycles of measurement, recording each star in

turn along with a background measurement of sky brightness through either the b or

the y filter (471 nm or 551 nm, respectively) of the Str6mgren photometric system.

The order of the cycles is fixed in the sequence y,b,b,y for convenience during

observation, and later simplicity in data analysis; hence, for statistical purposes, we

do not have the much-desired "randomized block design." Details of the observing

scheme have been given elsewhere [Lockwood, 1984; Lockwood et al., 1984; Radick

et al., 1987].

Spatially, the stars in a given trio or quartet are separated at most by a few

degrees; temporally they are separated by a few minutes, since the observation of
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Figure 1. The venerable 0.5-m telescope with photometer attached, and LSI-11

data system. The telescope itself is essentially unimproved since the 1950s, when

it was used by Harold Johnson for early UBV work; but the position encoding

system, photometer, and data-recording system have been periodically upgraded,

most recently in 1984. Photograph by B. A. Skiff.

a fullcycle requires only 7 minutes for a trio and 10 minutes for a quartet. Four

cyclesrequire,therefore,halfto three quarters of an hour, and a dozen or so groups

can be measured in a single night. Observations on roughly 100 nights per year

yield 15-30 nightly data points for each group every season.

The 0.5-m, manually slewed telescope, photometer, and photon-counting data

system are of the most commonplace variety (Figure 1). Data collection is controlled

by a DEC LSI-11/03 microcomputer equipped with commercial interface cards that

perform pulse counting, timing, switch sensing, etc. Utilization of the telescope is

unusual, however, being dedicated (and restricted) to two long-term programs of

precision photometry which are scheduled for practically every clear night. The

photometer is removed from the telescope only for maintenance, and the electronics

are always energized.
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An Sr 9° Cerenkov source inside the photometer provides a highly reassuring

standard light source whose frequent measurement tells us that the photometer

and its electronics are operating satisfactorily. We know from measurements of this

source that the overall gain of the photomultiplier+amplifier combination changes

seasonally, as well as slowly through the night, presumable due to changing tem-

perature. This effect appears to have no consequences as far as data quality is
concerned.

Results

The nightly reduced data output of the program at itsmost elemental level

consistsof setsof 3 differentialmagnitudes (per cycle)for triosand 6 for quartets:

viz star 1-star 2, star 1-star 3, star 2-star 3, ...... (Nonastronomers please

note: a magnitude differenceof 0.01 mag corresponds very nearly to 1.0°_,0.001

mag = 0.1_0, etc.) Normally, there are four cycles per night, two in b and two

in y, in the order y,b,b,v. For much of the analysis,the indepeudent but highly

correlated individual b and y differentialmagnitudes are simply averaged. In each

season, there are as many as 30 nights of data for certainintenselyobserved groups.

Some groups have now been observed through three fullseasons, others through

four;thus, the totalnumber of data points per group typicallyisin the range of 50

to 150.

In our analysis, we consider variations on various time scales: interannual

variations are germane to the question of possible cyclical luminosity variation like

that suspected of the Sun; intraseason variations may foretell rotational modulation

of brightness; intranight cycle-to-cycle variations are an indication of the quality of

the night. Systematic or random errors of observation can enter at any stage and can

affect the results on any timescale. In the discussion that follows, we shall describe

the procedures and tests we use to differentiate stellar variations from observational

errors, and to set upper limits upon the variability of seemingly constant stars.

Interseason Variations: 12 Constant Pairs of Stars

In Table 1 we present the vitalstatisticsof 12 pairs of stars (out of the total

set of more than 100 such pairs in 30 groups) whose seasonal mean differential

magnitudes are unusually constant by ordinary standards (i.e.,to much better than

0.5%). Seven of the pairs contain a Wilson star as one of the members; the other

fiveare comprised of two comparison stars. Their averaged b and y interseason

lightcurves are displayed on Figure 2 where the solid line indicates the seasonal

means and 95_0 confidence intervalsof the differentialmagnitudes for the pairs.

Solid dots show the seasonal medians, which we have found useful as a confirming

second opinion on the true locationof the center of the data distributions,which, for

the more variable stars,often are skewed and deviate significantlyfrom normality.
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TABLE 1. Variability Characteristics of Some Extremely Constant Pairs of Stars

Spectral Range Analysisof Slope Attained No. of
HD Type V mag (%) Variance (% yr -1) Significance Yrs. Note

2488 F5 6.9 0.06 Constant 0.03 Constant 3
1388 G0V 6.5

10697 G5IV 6.3 0.09 Constant 0.04 Constant 3

11326 G5 6.7

13421* G0V 5.6 0.10 Constant 0.04 Constant
13683 F0 6.6

18256* F6V 5.6 0.11 Constant 0.04 Constant

18404 F5IV 5.8

61295 F6II 6.2 0.04 Constant 0.02 Constant 4
78234 F2V 6.3

83951 F3V 6.1 0.19 Var(>99_) 0.09 Var(>99%) 4
83525 F5 7.0

103095* G8V 6.4 0.14 Var(>99%) 0.05 Vat(>95%)
103520 KOIII 7.0

124570* F6IV 5.5 0.25 Var(>99%) 0.09 Var(>99%)
125451 F5IV 5.4

156635 F8 6.7 0.10 Constant 0.04 Constant

157347 G5IV 6.3

176095* F5IV 6.2 0.24 Var(>99%) 0.08 Var(>99%)
175515 KOIII 5.6

182572* GSIV 5.2 0.14 Vat(>95%) 0.05 Var(>95%)
180868 FOIV 5.3

215704* K0 7.9 0.26 Var(>99e_) 0.11 Var(>99%)
216175 G5 8.0

3 Mt. Wilson std. star

3 H+K similar to Sun

4 uvby std. star

4 Mt. Wilson std. star

4

4 H+K lower than Sun

*Wilson star [Wilson, 1978].

201



8000 6200 M_

n-_l_ I _ ' ' I ' ' ' I '

_'_ _
,I,, 1,,,1,

g000 8200 840Q

-._5 _- ' '

1 J _ r i

_.84 1 ' ' '

,y

"_ -.86 I

"-.855
i I i i i

8000

8000 _!500

|

J

8600 6200 8400 5800

, I , , , A:_ .la
860O 8000 8500

I

i
6800 8800 8000 8200 84_ 8600 8800

.
_ -_ ___,, I¢_A A_I , I, , ,l,,,

8000 8800 8000 8200 8400 _800 aO00

8800

7000

?000 aooo o20o 840Q 6600 aO00 7000

9' .o16 " -.o_" F -.., II

.a--.0,8_-.02 ".

8000 8200 8400 0800 8000 7000 8OOO 0200 8400 8800 8800 7000
Jull_m _ Julian Date

Figure 2. Differential light curves of twelve constant or nearly constant pairs, b

and _/ averaged. The solid lines, with 95% confidence interval error bars, indicate

seasonal means over three (or four) years. Dots denote the seasonal medians. The

order of the light curves, left to right from upper left, is the same as the data in
Table 1.

While the median is more robust in the presence of outliers (such as observational

errors), its variance is over 50_0 larger than that of the mean for a given sample

size [Hoaglin et a/., 1983].

The pairs of stars in Table 1 share the following properties: (1) their in-

traseason rms variation was less than about 0.3% mag (0.003 mag) and (2) their
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interseason peak-to-peak amplitudes were less than 0.3_; i.e., by conventional stan-

dard, these are very constant stars. Even so, in formal tests of variability, six of the

twelve pairs show significant, albeit very low amplitude, variations.

Two indicators of variability are separately listed in Table 1. The first is

derived from an analysis of variance in which the overall pooled standard deviation

of the total set of observations is tested against the intraseason standard deviations,

via the F-test. If the pair shows variability, the attained significance level is listed.

The second indication of variability is more restrictive: it tests for a nonzero slope

of the light curve, expressed in the table in units of percent yr -1. The first test

thus merely indicates that the seasonal mean magnitudes are not all alike, while

the second reflects the presence of a significant linear trend.

Both tests happen to give the same result, perhaps fortuitously, or perhaps

because of some degeneracy in the derived statistics (owing to the common use of

various sums of squared errors). Six of the pairs show significant variation aver-

aging 0.08% yr -1 at a significance level of 95% or greater, while the other six are

"constant," changing by an average of 0.03% yr -1.

As an example of the data from which the star pairs in Table 1 were taken, in-

dividual b and y light curves for the entire trio containing the Wilson star HD 10476

are shown in Figure 3. Each cycle of measurement is denoted by a single plotted

point on the figure. Star 1 (the program star, a K1V star and, incidently, a uvby

photometric standard) is clearly variable since the two b and two y light curves

containing star 1 have the same shape. The differential light curve for (star 2-star

3) is the source for the constant pair listed in Table 1. The right-hand panels of the

figure illustrate interseason light curves in b and y for each of the combinations in

the trio.

No adjustments have been made thus far in any of our data to take into

account the very slow drift in the spectral response of our filter+photomultiplier

combination, which in the course of ordinary photometric reductions is compensated

by a "color term" that has changed by a few percent over the 15 years that this

particular EMI 6256S photomultiplier has been in service. An expected artifact of

an uncompensated color term would be a systematic secular drift in the differential

magnitudes of two stars having different (b - y) colors. No such effect is evident

among the pairs in Table 1. We conclude for the time being that instrumental color

effects are undetectable.

Interseason Variations

Among the 100÷ pairs of differential magnitude data sets contained in the

groups of stars observed, the incidence of apparent interseasonal variability is quite

high. The histograms, Figure 4, give the distribution of peak-to-peak three (or

four) season amplitudes (in magnitudes) for stars classified as "constant" (18 cases),
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Figure 3. The left-handpanels show the individualdifferentialb and p lightcurves

for the stars in the triocontaining the Wilson star HD10476 (star 1),a KIV star

whose H+K index issimilarto that of the Sun. There are usually two data points

(cycles)acquired each night in each filter.The right-hand panels show the corre-

sponding seasonal mean lightcurves. The obvious correlationbetween the mean

lightcurves for (star 1-star 2) and (star1-star 3) (panels 1 and 2, 4 and 5 from

the top) indicates that star 1 is rather grossly variable relativeto the sizeof the

changes seen in the stars shown in Figure 2.

"possibly variable" (95% attained significance level, 10 cases), or "variable" (99%
significance, 85 cases) according to the outcome of the analysis of variance of the
seasonal mean.

204

OR/GINAL PAQE I_

OF. POOR QUALITy



20

15

I0

5

0

J

L_ VARIABLE STARS (p>,99)

L_

2O

15

10

5

0

POSSIBLY-VARTLABLE STARS {.95<p<(_.99)

20

15

lo

S

o
0

CONSTANT STARS

- 4

.005 .01 .015 .02 .025 .OC_ .035

Peak to Peak Amplitude over 3-4 Seasons (rnag)

Figure 4. Distributions of the year peak-to-peak amplitudes of the complete sam-

ple over three (or four) observing seasons, classified by the outcome of the analysis

of variance of the seasonal mean magnitudes (b and V averaged).

Can it be true that nearly every pair of stars we have looked at is intrinsically

variable? This result certainly contradicts our expectation; yet, we have been un-

able to discover a plausible source of systematic error that would permit a small,

evidently random, subset of the light curves to remain fiat to better than 0.3% over

three or four years. The pairs of stars in Table 1 cover the full spectral range of

our survey, early-F to mid-K, and apart from the two stars that are Mount Wilson

H+K standards, none has a prior record of study or other unique distinguishing
characteristics.

Taking a somewhat conservative stance, we leave the question of the true

frequency of intrinsic variability among solar-like stars open for the time being.

Our experience shows that as the threshold of detection of variability has moved

downward toward the 0.1% level, the proportion of variable stars has increased

dramatically. If the Sun is, indeed, a typical G star that may vary by 0.1% over
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its 22-year magnetic cycle, then there may be no truly constant solar-like stars,

whatsoever.

Intraseason Variations

Intraseason (i.e., night-to-night) variations provide information about the in-

trinsic variability of the stars on timescales of days to weeks, and, perhaps more

importantly, define the baseline noise level needed to assess the reality of interseason

variations. A variability diagnostic that we have used extensively is the correlation

(or, more precisely, the cross correlation of the two time series with zero lag) be-

tween pairs of light curves. For example, if the light curve for (star 1-star 2) is

inversely correlated with the light curve for (star 2-star 3) we surmise that star

2 is variable, provided that the light curve for (star 1-star 3) is suitably flat. We

have used this test regularly in analyzing the intraseason, particularly rotationally

modulated, variation of stars [Lockwood et al., 1984, for example]. For the inter-

season light curves having only three or four annual points described above, this

test is premature; but, after a few more seasons, it will become more persuasive.

Usually the correlations between the various pairs of light curves leads to an

unambiguous identification of the variable star in a trio or quartet. Sometimes,

however, more than one star is variable, and these cases must be examined with

more care. To resolve ambiguities, several trios have been promoted into quartets

by adding another comparison star, with the expectation that the variability within

the group can ultimately be untangled.

Applied to the ensemble of sets of differential measurements obtained since

1984, the correlation technique yields the results in Figure 5, where the distinction

between constant and variable stars is based oil the standard test of the attained

significance level of the correlation coefficient [e.g., table c-3, Bevington, 1969]. As

in the interseason case, a majority of the stars are variable at low levels. Happily,

the boundary between variable and constant stars is fairly clear. The first quartile

among the variable stars (significance level greater than 99%) occurs at 0.0045

mag (0.41_0) while the third quartile among the constant stars lies at 0.0026 mag

(0.24%). Roughly a tenth of the cases lie in the intermediate (95% < p <: 99%)

range of attained significance; we designate these as _possibly variable."

Two elements of the analysis not shown here give us confidence that the de-

tections of intraseason variability are meaningful: first, among the Wilson stars,

the young, active stars (as determined by their chromospheric activity indices) are

consistently variable photometrically at about the same level every year. Second,

the night-to-night rms variations in b and y are always highly correlated.

In addition, the stars judged variable according to the above criteria share yet

another common property: the ratio of the rms dispersion in b to that in y is about

1.1, while the same ratio is close to 1.0 for the constant stars (shown as a function
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Figure 5. Distribution of intraseason rms dispersions (b and y averaged) for stars

classified as variable, possibly variable, or constant, according to the significance of

the correlation between pairs of light curves. Each star is included three (or four)

times, i.e., once per season; however, its status is usually the same each season.

of the rms dispersion in b on Figure 6). The ratio becomes very noisy close to the

night-to-night instrumental noise limit of about 0.0015 mag rms; hence, it alone is

not a particularly good diagnostic of variability.

Astrophysically, the observed ratio of dispersion in b to the dispersion in y is

plausible, since the b filter lies shortward of the blackbody maximum in cool stars,

while y is near the peak. Luminosity variations imply a temperature change (i.e., a

corresponding change in the Planck function), so the stars must become bluer (hot-

ter) or redder (cooler). However, we cannot explain why the ratio approaches the

value 1.04, not 1.00, for constant stars, unless there is a small residual instrumental

or atmospheric effect.
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Possible Instrumental Errors

Among those relatively few stars that have not shown any sign of variability in

any season, we have sought to identify systematic, perhaps instrumental, effects re-

lating to the size of the night-to-night rms dispersion of the differential magnitudes.

What is the source of the breadth of the histogram for constant stars shown in the

bottom panel of Figure 5? Some pairs of stars are consistently quiet at the level

of 0.15_ night-to-night, while others, not evidently variable by our formal tests,

fluctuate each season by two or three times as much.

In Figure 7, we have plotted the standard deviations of the intraseason differ-

ential magnitudes (b and y averaged) as a function of four likely candidates for the

source of noise: (1) The mean airmass of the group. Groups at high airmass should

be noisier than groups at low airmass. No significant effect is seen in this sample;

however, we have sparse data at high airmasses. (2) The difference in (b - y) color

between the stars in a pair. An instrumental effect, possibly temperature-related,

should show up here. No effect is seen. (3) The difference in V magnitude. Time

dependent nonlinearities in the photometer electronics (e.g., deadtime errors) could

cause trouble. No effect is seen. (4) The V magnitude of the fainter star of the

pair. Photon noise becomes significant only at the lower right corner of the figure.
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sign of intrinsic stellar variability) plotted against four parameters that are conceiv-
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(A noise levelof 0.0015 mag occurs at V=8 mag, _pproximately.)

Having failed to identify a source of the range of variances occurring among

supposedly constant stars, we are, as in the case of the interseason variations dis-

cussed above, forced to conclude, hesitantly, that (1) there may be an as-yet un-

recognized instrumental or observational effect or (2) intrinsic variability may be

common among those stars.

Intranight Considerations

We have noted above that often the night-to-night repetition of a series of

measurements is noisier than expected from the internal cycle-to-cycle errors during

the night. One possible source of noise worth considering is differential atmospheric

extinction, since we reduce our data using seasonally adjusted mean values of the

extinction coefficients [Lockwood and Thompson, 1986]. Figure 8 (lower panel)
shows the distribution of differential airmass for all of our data. The median is

less than 0.01, and the upper quartile is less than 0.02 airmass. Assuming a rather

generously large random error in the extinction coefficient, say 0.05 mag airmass-l,

the resulting error is on the order of 0.001 mag (0.1%). Clearly, this effect should

be imperceptible among even our most constant stars.
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greater than the median for b (0.0022 mag). (Lower panel) Distribution of the ab-

solute values of the difference in airmass between the various pairs of stars, summed

over all groups and all nights. The median lies at 0.008 airmass.

The distribution of the absolute values of the intranight cycle-to-cycle differ-

ences in the differential magnitudes has some interesting properties that we do not

understand. First, the absolute dispersion in y (median value 0.0024 mag, cycle

1-cycle 4) is consistently greater than that in b (0.0022 mag, cycle 2-cycle 3) by

about 4%, a small but statistically very significant amount (Figure 8, upper panel).

This difference persists among all the star pairs in trios and quartets alike; it is a

fixed constituent of the measurements as presently recorded. Moreover, it is inde-

pendent of the temporal order of the observations within a cycle: stars observed

consecutively in time behave the same as pairs separated by an intervening star.

Since our data are always taken in the cycle order lt,b,b,y, we might suspect a

mysterious temporal effect in our equipment, possibly just the result of moving the

filter wheel from y to b (for 2 consecutive cycles), then back to y again.

An extinction effect is clearly ruled out here, because the extinction in y is

30% lower than in b and because the differential airmasses are so small. A purely

temporal effect of unknown origin seems excluded by our previous finding [Lock-

wood, 1984] that the precision of differential magnitudes is unchanged when the
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time between the measurements of the two stars is extended from 2 minutes to 5

minutes to 7 minutes. The two y cycles are separated by 20 minutes (for quartets/,

while the two b cycles are separated by 10 minutes.

A hypothesis previously put forth [Lockwood, 1984] has to do with possible

inhomogeneities in the sky background brightness around the stars. Our practice

is to measure the sky in the first two cycles (y,b) in one direction away from the

stars (say, North) and in the second two cycles (b,y) in the opposite direction.

These values are then subtracted from the corresponding measurements of star+sky.

Since the sky background is littered with unseen generic, probably red, field stars,

a possible source of error is introduced. Typically, the stars on the program are

6th magnitude; hence a single, undetected background star 7.5 magnitudes fainter

would introduce an effect at the level of 0.001 mag {0.1_). However, a single star

this bright would easily be seen and avoided by the observer except, perhaps, on

moonlit nights. Further, star count data summarized by Roach and Gordon [1973]

suggests that this particular explanation is implausible owing to the rather low

density of stars in the appropriate magnitude range.

We have the data to test this admittedly implausible scenario, but have not yet

done so. For example, the problem should be worse for fainter stars than brighter

stars; it should be worse on moonlit nights when stray background stars might not

be noticed; and it should be worse near the galactic plane. Also, we should make

a series of measurements in the cycle order b,y,y,b to see if the temporal order of

observation is important.

Conclusions

Low-level variability is a widespread observable characteristic of early F to mid-

K stars of all luminosity classes, including lower main-sequence stars quite similar to

the Sun. This finding is completely consistent with the observed variation of the Sun

itself, which has evidently decreased in total output by about 0.1_0 since 1980. In

both the stellar and the solar case, the existence of luminosity cycles corresponding

to the magnetic cycles has yet to be demonstrated, but further observations seem

certain to be capable of providing this badly needed information.

Of the three dozen program stars observed differentially for brightness vari-

ations since 1984, a majority have proven to be variable at levels typically below

1%, as have many of their comparison stars. None of the program stars that were

variable on intraseason timescales were constant from one season to the next, but

a few that were completely quiescent within each season seem to vary from one

year to the next. More often the variation detected within each season produced

an interseasonal change.

We have satisfied ourselves that instrumental or other systematic effects, if
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present, are quite small indeed, but we have not clearly identified a lower level of

instrumental precision as a fixed element of the observational record for all pairs of

stars. While some pairs are observable every year with a night-to-night dispersion as

small as 0.15% and possibly even approaching 0.10% (averaging b and y together),

others are much noisier without showing clear evidence of an identifiable stellar

signal from the statistical tests that we have utilized so far. One reason for this

limitation is quite simply that within each group, the quietest pair of stars is taken

to be the "constant" by which the variability of the others is judged; i.e., we do not

assume an a priori level of instrumental performance, based, for example, on simple

photon statistics.

Over the three-year span of the observations, a dozen pairs of stars have shown

remarkable constancy, although six of these are evidently variable according to the

formal analysis, with an average linear slope of 0.08% yr -1 . The six pairs that are

constant according to the same criteria show an average interseason slope of 0.03%

yr- 1, comparable to that observed for the Sun. Thus, if stars like the Sun vary over

the course of their solar-like magnetic activity cycles with amplitudes of, say, 0.1

to 0.5%, it should be possible to measure and characterize these variations through

continued application of the techniques we have described.
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