CERAMIC OXIDE REACTIONS WITH V_2O_5 AND SO_3

R. L. Jones and C. E. Williams
Naval Research Laboratory
Washington, DC 20375-5000

Ceramic oxides are not inert in combustion environments, but can react with, inter alia, SO_3 and Na_2SO_4 to yield low melting mixed sulfate eutectics (mp 700-800°C), and with vanadium compounds to produce vanadates, e.g., YVO_4, or other species.

Assuming ceramic degradation to become severe only when molten phases are generated in the surface salt (as found for metallic hot corrosion), the reactivity of ceramic oxides can be quantified by determining the SO_3 partial pressure necessary for molten mixed sulfate formation with Na_2SO_4. The critical SO_3 pressures measured for Y_2O_3, CeO_2, and ZrO_2, for example, were of the order of <10 Pa, 100 Pa, and 1000 Pa, respectively. Therefore, use of oxides such as CeO_2 rather than Y_2O_3 for stabilization of ZrO_2 may increase the resistance of ZrO_2-based ceramics to SO_3-Na_2SO_4 attack, as limited experience seems to confirm.

Vanadium pentoxide is an acidic oxide that reacts with Na_2O, SO_3, and the different ceramic oxides in a series of Lux-Flood type of acid-base displacement reactions. To elucidate the various possible vanadium compound-ceramic oxide interactions, a study was made of the reactions of a matrix involving, on the one axis, ceramic oxides of increasing acidity ($Y_2O_3 < CeO_2 < ZrO_2 < GeO_2 < Ta_2O_5$ (most acidic)), and on the other axis, vanadium compounds of increasing acidity ($Na_3VO_4 < NaVO_3 < V_2O_5$ (most acidic)). Resistance to vanadium compound reaction increased, up to ZrO_2, as the oxide acidity increased with, e.g., Y_2O_3 reacting with $NaVO_3$ and V_2O_5, although not Na_3VO_4, while CeO_2 reacted only with V_2O_5, and neither $NaVO_3$ or Na_3VO_4. Oxides more acidic than ZrO_2 displaced V_2O_5 (i.e., acted as a stronger acid than V_2O_5), giving such reactions as: $2 Ta_2O_5 + 2 NaVO_3 = Na_3Ta_4O_11 + V_2O_5$. Sulfur trioxide interacts via the reaction, $2 NaVO_3 + SO_3 = Na_2SO_4 + V_2O_5$, and can, for example, cause vanadation of CeO_2, which does not react with pure $NaVO_3$, by producing V_2O_5 in the melt.

Examination of Y_2O_3- and CeO_2-stabilized ZrO_2 sintered ceramics which were degraded in 700°C $NaVO_3$ has shown good agreement with the reactions predicted above, except that the CeO_2-ZrO_2 ceramic appears to be inexplicably degraded by $NaVO_3$.

85
POTENTIAL CERAMIC COATING BENEFITS TO NAVY

IMPROVED THERMAL EFFICIENCY
CORROSION RESISTANCE
USE OF LOW QUALITY FUEL
WITHSTAND 700°C OPERATION

Figure 1.

CERAMIC REACTION WITH FUEL CONTAMINANTS

SO₃

\[Y₂O₃ + SO₃ \Rightarrow Y₂O₂(SO₄) \]
\[Y₂O₃ + SO₃ + Na₂SO₄ \Rightarrow Y₂(SO₄)₃·Na₂SO₄ \]

V₂O₅

\[Y₂O₃ + V₂O₅ \Rightarrow 2 YVO₄ \]

V₂O₅ + SO₃

\[2 NaVO₃ \Rightarrow Na₂O + V₂O₅ \]
\[2 NaVO₃ + SO₃ \Rightarrow V₂O₅ + Na₂SO₄ \]
\[CeO₂ + V₂O₅ \Rightarrow 2 CeVO₄ \]

Figure 2.
Figure 3.

Sulfation of 50 m/o ZrO₂-Na₂SO₄ at 700 C

Figure 4.
SO$_3$ PARTIAL PRESSURE FOR MOLTEN MIXED SULFATE FORMATION AT 700°C

$\begin{align*}
Y_2O_3 & \quad <10 \text{ Pa} \\
CeO_2 & \quad 100 \text{ Pa} \\
ZrO_2 & \quad 1000 \text{ Pa}
\end{align*}$

Figure 5.

SODIUM VANADATE COMPOUNDS

$\begin{align*}
\text{Na}_2O + 6 \text{V}_2\text{O}_5 & \rightleftharpoons \text{Na}_2\text{V}_{12}\text{O}_{31} \quad \text{vanadium bronze I} \\
\text{Na}_2O + 3 \text{V}_2\text{O}_5 & \rightleftharpoons 2 \text{NaV}_3\text{O}_8 \quad \text{vanadium bronze II} \\
\text{Na}_2O + \text{V}_2\text{O}_5 & \rightleftharpoons 2 \text{NaVO}_3 \quad \text{sodium metavanadate} \\
2 \text{Na}_2O + \text{V}_2\text{O}_5 & \rightleftharpoons \text{Na}_4\text{V}_2\text{O}_7 \quad \text{sodium pyrovanadate} \\
3 \text{Na}_2O + \text{V}_2\text{O}_5 & \rightleftharpoons 2 \text{Na}_3\text{VO}_4 \quad \text{sodium orthovanadate}
\end{align*}$

Figure 6.
VANADIUM-CERAMIC OXIDE REACTIONS

<table>
<thead>
<tr>
<th></th>
<th>Na₃VO₄</th>
<th>NaVO₃</th>
<th>V₂O₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y₂O₃</td>
<td>NR</td>
<td>YVO₄</td>
<td>YVO₄</td>
</tr>
<tr>
<td>CeO₂</td>
<td>NR</td>
<td>NR</td>
<td>CeVO₄</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>NR</td>
<td>NR</td>
<td>ZrV₂O₇(BUT SLOWLY)</td>
</tr>
<tr>
<td>GeO₂</td>
<td>Na₄Ge₉O₂₀</td>
<td>Na₄Ge₉O₂₀(*)</td>
<td>NR</td>
</tr>
<tr>
<td>Ta₂O₅</td>
<td>NaTaO₃</td>
<td>Na₂Ta₄O₁₁α-TaVO₅</td>
<td></td>
</tr>
</tbody>
</table>

NR = NO REACTION
(*) AS PPT FROM H₂O SOL’N

INFLUENCE OF Na₂SO₄ AND SO₃ IN VANADIUM-CERAMIC REACTIONS

2 NaVO₃ + SO₃ ⇌ V₂O₅ + Na₂SO₄

INCREASING SO₃ PROMOTES VANADATE FORMATION

CeO₂ + NaVO₃ + SO₃ → CeVO₄

ZrO₂ + NaVO₃ + SO₃ → NR
 (AT LEAST UP TO 110 Pa OF SO₃ AT 700°C)

Figure 7.

Figure 8.
DEGRADATION OF Y$_2$O$_3$-ZrO$_2$ BY NaVO$_3$ AT 700°C

Figure 3.
ATTACK OF CeO$_2$-ZrO$_2$ BY NaVO$_3$ UNDER 40 Pa OF SO$_3$ AT 700°C

Figure 11.

ORIGINAL PAGE IS OF POOR QUALITY
CONCLUSIONS

CERAMIC CORROSION ELUCIDATED

GUIDELINES LAID FOR DEVELOPMENT OF CORROSION-RESISTANT CERAMICS

EFFECTS OF CERAMIC PROCESSING STILL TO BE IDENTIFIED

Figure 12.