NASA Contractor Report 178383

Utilities for Master Source Code Distribution:
MAX and Friends

2F5§£~Ca°178383) OTILITIBS FCF MASTER
StURCE CODE DISIRYBGTICN: MAX 2BL FBIENES
tiocvhteed *issil:. apé Space Cc.) €9 &

&

L0 23K
Gl/39

Carlos A. Felippa

Lockheed Missiles and Space Company, Inc.
Palo Alto, California

Contract NAS1-18444

October 1988

NASN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

§89-13818

Unclas
0183279

Preface

MAX is a program for the manipulation of Fortran master source code or MSC. This is a
technique by which you maintain one and only one master copy of your important Fortran
programs under a program development operating system, which for MAX is assumed to
be VAX/VMS. The master copy is not intended to be directly compiled. Instead you have
to pass the MSC through MAX to produce compilable instances. These instances may
correspond to different code versions (for example, double precision versus single precision),
different machines (for example, IBM, CDC, Cray) or different operating systems (for
example VAX/VMS vs. VAX/UNIX).

The advantages of using a master source is more pronounced in complex application
programs that are developed and maintained over many years and are to be transported
and executed on several computer environments. The “version lag” problem that plagues
many such programs is avoided by this approach.

MAX is complemented by several auxiliary programs that perform nonessential func-
tions. The ensemble is collectively known as MAX and Friends. All of these programs,
including of course MAX, are executed as foreign VAX/VMS commands and can therefore
be easily hidden in customized VMS command procedures.

Section

TABLE OF CONTENTS

INTRODUCTION
1.1 What is MAX?

RUNNING MAX

2.1 How Can | Access MAX?
2.2 Program Execution

2.3 *Command Packaging

COMMAND COMPONENTS

3.1 Command Qualifiers

3.2 Input Filename

3.3 Output Filename

3.4 *Deck Specifications

3.5 *User-Specified Distribution Keys

MSC FILES: BASIC FEATURES

4.1 General Description

4.2 The DECK Controt Statement

4.3 The BLOCK and END Control Statements
4.4 Distribution Rules

4.5 Distribution Keys

4.6 Empty Distribution List: File Splitting

4.7 *Deck Header Mapping

4.8 *Syntactic Sugar

MSC FILES: ADVANCED FEATURES
5.1 *Macrokeys

5.3 *The ELSE Control Statement

5.3 ¥*Negated Keys

5.4 *The ELSEIF Control Statement

5.5 *INCLUDE Statement Translation

5.6 *Cycled Keys

* Advanced topic

2-1
2-2

2-4

3-1
3-2

3-6
3-6
3-8

5-1
5-3
5-5
5-6
5-7
5-9
5-9

TABLE OF CONTENTS (continued)

Section Page
6 REX 6-1
6.1 Motivation 6-2
6.2 Access and Use Information 6-3

7 INCLUDE 7-1
7.1 The INCLUDE Utility 7-2

8 SCAM 8-1
8.1 The SCAM Utility 8-2
8.2 How to SCAM 8-3
8.3 *Advanced SCAMiming 8-5

9 A TRIP DOWN MEMORY LANE 9-1
9.1 MAXifying Old Code 9-2
9.2 Inserting DECK Identifiers 9-3
9.4 Inserting FORTRAN Blocks 9-5

A ASSEMBLY CODE MAINTENANCE A-1
A-1 *Target Audience A-2

A-2 *All-Assembly MSC Files A-3

A-3 *Mixing Fortran and Assembly Decks A-9

A-4 *Mixed Decks A-13

* Advanced topic

i

1

1
Introduction

-1

Section 1: INTRODUCTION 1-2

§1.1 What is MAX?

The Master Distributor MAX is a utility “filter” that takes Master Source Code (MSC)
as input, and produces output tailored to specific user needs. Writing programs in Master
Source Code means that you work only on one and only one master version, which contains
all conceivable instances of code you want to submit to FORTRAN compilers or assemblers.

Some of the things MAX can do are: split a text file, extract selective portions of a
program source file, produce VAX, CDC or UNIVAC compilable output, or configure an
assernbly procedure file.

MAX is entirely coded in FORTRAN 77, and uses only formatted FORTRAN 1/0
with with internal (dynamic) unit assignments. On the VAX 11/780, MAX can be executed
through the foreign command facility of VAX/VMS; the net effect is that a MAX invocation
looks like any other VMS command.

When Should MAX be Used?

MAX is designed to maintain medium-scale FORTRAN application codes (which may
possibly incilude FORTRAN callable assembly language modules to do special things not
available in FORTRAN). By medium scale | mean substantial codes that are developed
and maintained over many years, but by one person. What I am trying to emphasize here
is that MAX is a personal utility.

MAX is not needed for simple “throw away” code, 1.e. the sort of code you hack out
in a few days and throw away after you are done with it. At the other extreme, MAX
is also inappropriate for very large-scale programming projects in which a more rigorous
source control is needed; here [am thinking of a formally-organized programming team
working on a big program with over 100,000 lines of code. :

To summarize: MAX is intended for the middle ground of scientific programming:

codes in the order of 1000 to 100,000 lines, which are understood and maintained by one
person, and which are likely to be transported to several computers over their lifetimes.

What Makes MAX Run?

Much of the power and flexibility of MAX comes from its ability to process distribution
keys. Distribution keys are labels that determine which portions of the input file are to be
put out, or “distributed”, for downstream use. For example, distribution key FORTRAN is
used to extract FORTRAN-compilable code lines,

There are predefined distribution keys in MAX, such as FORTRAN, ASSEMBLY, VAX,
IBM, etc. But most distribution keys are user-definable (where by “user” I mean the code
developer). In addition, MAX users may define macrokeys, which are keys that stand for
a logical combination of others; e.g., short key UC4 might stand for something like

UNIVAC .OR. (CDC .AND. FTHN4)

Running
MAX

Section 2: RUNNING MAX 2-2
§2.1 HOW CAN I ACCESS MAX?

If NICE 1Is Installed on Your VAX ...

On VAXs on which the NICE system is installed you probably will also find a MAX
executable on a directory which has the logical name NICE$EXE defined by the system.
You may verify that this is the case by typing

$ SHOW LOG NICE$EXE

which will tell you if HICE$EXE is defined as a system-wide logical name table.

If NICE$EXE: exists you simply insert the following foreign-command definition in your
LOGIN.COM file:

$ MAX:==$NICE$EXE:MAX.EXE

After doing QLOGIN you are all set to use MAX.

There is nothing magic, by the way, about the left-hand side symbol MAX. You can
select anything you please, for example if you already use the symbol MAX for other things.
The symbol MAX will be used throughout this document for definiteness. Another important
thing: don’t forget the dollar sign before NICE$EXE.

Otherwise ...

If HICE$EXE is not defined you will have to install MAX and Friends on your own. Suppose
that you acquire MAX by some unspecified means and manage to get an executable image
MAX .EXE in one of your directories. For definiteness assume that that directory is, say,
DSK4: [JOHNDOE.MAX]. Then in your LOGIN.COM you insert the foreign-command definition

$ MAX:==$DSK4:[JOHNDOE.MAX]MAX.EXE

and after a QLOGIN vou are ready to use MAX. Again it is important not to forget the $
before the disk name.

2-3 §2.2 PROGRAM EXECUTION

§2.2 PROGRAM EXECUTION

Once the definition is installed in your LOGIl.COM file, you can invoke MAX just like any
other VAX/VMS command. All of the information may usually be placed in a single line.
In the rare cases when more that one line is needed, the VAX/VMS continuation symbol
(hyphen) may be used.

If essential items such as the input and output filenames are left out, MAX will prompt
you for them; otherwise appropriate defaults are assumed.

The MAX-invocation command may be described formally as

$ MAX [/Qualifiers] <Inputfile >Outputfile [#Decknames] [Userkeys]

where components enclosed in brackets are optional. Note that the command name (MAX
being assumed here); input filename and output filename are required specifications.

Except for MAX appearing first, commmand components may appear tn any order. The
sequence shown above is nonetheless reconmended for disciplined use.

Here is how MAX invocations may look (for the moment don’t worry too much about
the statements that follow the symbol MAX; they are explained fully in §3):

MAX <CLIP.HLP

MAX <CLIP.VAX >/MSC

MAX/FOR <CLIP.VAX >.FOR

MAX/FOR <CLIP.VAX >.FOR #CLIM* MACRO COMPRO
MAX/F/CDC <CLIP.VAX >.CDC

MAX/F/CDC <CLIP.VAX >.CDC FTN4 MACRO GAL

P O H H H &

In these and subsequent examples, the first $ is the VAX/VMS prompt.

23

Section 2: RUNNING MAX 2-4

§2.3 *COMMAND PACKAGING

Abbreviations

An advantage of the one-line reference is that the symbol-definition facility of VAX/VMS
may be used to abbreviate frequently used MAX invocations. For example:

XCDCLIP:==$NICE$EXE:MAX/F/CDC <CLIP.VAX >.CDC FTN4 MACRO GAL

Now entering XCDCLIP as a pseudo-command has the same effect as typing the last example
line shown in §2.2.

Command Procedure References

If parameterization of certain MAX command components is desirable, command proce-
dures including one or more references to it can be readily constructed. Three examples
from the author’s collection are given below to clarify this point.

EXAMPLE 2.1
File [FELIPPA.MAX]XFOR.COM contains the procedure
$ MAX/FOR <’'Pi’ > .FOR;999
$ DOT := 'F$LOCATE(".",P1)’
$ FNAME := 'F$EXTRACT(O,DOT,P1)’
$ SET noon
$ FOR 'FNAME' .FOR;999
$ DEL 'FNAME’ .FOR ;999

The procedure reference may be abbreviated by defining in your LOGIN.COM file
$ XF :==Q[FELIPPA.MAX]XFOR

Now typing
$ XF CLIP.VAX

extracts the FORTRAN source from CLIP.VAX into CLIP.FOR; 999, compiles it into CLIP.0BJ, and
deletes the intermediate .FOR file. N

REMARK 2.1 v
If the input filename extension is omitted, MAX assumes .MSC (cf. §3.3).

’

REMARK 2.2

The .FOR file is deleted regardless of whether the compilation was error-free or not, because of
the presence of the SET N0O! statement.

2 4

2-5 §2.3 *COMMAND PACKAGING

EXAMPLE 2.2
File [FELIPPA MAX]XNICE.COM contains the procedure
$ MAX/FOR <'P1' >.FOR;999 'P2' 'P3' 'P4’' 'P5’ 'P6’
$ DOT := 'F$LOCATE(".",P1)’
$ FNAME := 'F$EXTRACT(0,DOT,P1)’
SET NOON
FOR 'FNAME' .FOR;999
DEL 'FNAME' .FOR ;999
IF $STATUS THEN LIB HOME:!NICE 'FNAME' .0BJ
IF $STATUS THEN LIB/COM HOME:MNICE
DEL 'FNAME' .0BJ.*
PUR HOME:

@hPH P PP PH P

The abbreviated reference is

$ XNICE :== Q[FELIPPA.MAX]XNICE

Now entering ,

$ XNICE CLIP.VAX

performs the same compilation sequence as in the previous example, updates and compresses
object library HOME:NICE, and finally gets rid of the object file. Procedure parameters P2 through
P8 are available for user key or deck name specifications.

EXAMPLE 2.3
File [FELIPPA .MAX]JGETDECK.COM contains the one-line procedure

$ MAX #'P1’ >/MSC <'P3’
The abbreviated reference is
$ GETDECK :== Q[FELIPPA.MAX]GETDECK
Typing
$ GETDECK SKBSOL FROM SKYPUL.KER
extracts deck SKBSOL from the NISC file SKYPUL.KER, and puts it into file SKBSOL.MSC, which is

created by the run. In this abbreviated reference, FROM is a mnemonic “noise” word ignored by
the GETDECK procedure.

3

Command
Components

Section 3: COMMAND COMPONENTS 3-2

§3.1 COMMAND QUALIFIERS

MAX command qualifiers may be categorized into four types: ezecution mode specifiers,
target machine tdentifiers, option output sclectors, and prompters. These are described in
detail below.

Each command qualifier must be immediately prefixed by a slash; blanks may be
entered, however, before a slash. Upper or lower case input is acceptable.

Mode Qualifiers

These specify “MAX execution modes”. An execution mode answers the question: what
is the output intended for?

none Stream mode: no particular output use is implied. For example, if MAX
is simply used to split a file into decks.

FOR FORTRAN mode: output is to be processed by a FORTRAN compiler.

AsSM Assembly mode: output is to be processed by an assembler.

Both FOR and ASM may be abbreviated to the first character.

Machine Identifiers

These qualifiers specify the target computer for downstream use of the output. They are
only effective in conjunction with the FOR or ASM execution mod¢. In the stream mode,
machine identifiers are irrelevant.

none VAX computer.

CDC CDC Cyber computers.
UNI Univac 1100 computers.
IBM IBM 370-type computers.
CRAY CRAY 1 computers.

CY205 CDC Cyber 205 computers.

MACH=Machine Allows the specification of a machine identifier which is not one of the
above. For example,

/MACHINE=APOLLO

In this case, you can choose the machine identifier.

3-3

§3.1 COMMAND QUALIFIERS

Commonly Used Output Options

These qualifiers may be used to enable or disable various output options. The basic ones

are:

we

WM

uc

XM

Asks for informative listing: distribution keylist, and final MAX execu-
tion statistics (lines and decks written). If omitted, MAX remains silent
except for error diagnostics.

Used in conjunction with FOR or ASM to force comment lines to be writ-
ten to the output. Without this option, comment lines are skipped.
Meaningless in stream mode.

Used in conjunction with FOR or ASM to force MSC control lines (those
that start with C=, *=, t=0or . =) to be written to the output. This is
not necessary in stream mode.

Forces conversion of all case letters to upper case. Meaningless in stream
mode.

Suppresses writing of MSC lines in stream mode. It has no effect in FOR
or ASM mode.

*Exotic Output Options

TI

NL

SIC

SIC=char

HDG

WAC

In FORTRAN mode, it tells MAX to “translate” INCLUDE staternents from
the VAX form to those appropriate for Univac or CDC. (For further details,
see §5.5.)

For FOR/CDC mode only: generate appropriate C$LIST control lines for locally
turning-off of compiler listing. Primarily useful to suppress repetitive COMDECK
output (remember that CDC does not have an INCLUDE statement, so this is
the only effective way to achieve a no-list effect).

For FORTRAN mode only: strip inline comments from FORTRAN state-
ments. Inline comment text is assumed to start with the substring blank-
exclamation mark-blank. (To change the midcharacter to another one, use
the SIC=char form described below.) Caution: MAX doesn’t check for oc-
currence of the separator sequence in active character strings, e.g., DATA or
FORMAT statements; if they occur, the strings will be stripped.

Strip inline comments separated by blank-char-blank sequence sequence. For
example, MAX/F/SIC=Q specifies that inline comments follow an at-sign, for
Univac.

For FORTRAN/Univac or Assembly/Univac mode only: generate appropriate
Q@HDG, P control lines that display the deck name.

For FORTRAN mode only: force all comment lines to be written out.

33

Sectlon 3: COMMAND COMPONENTS 3-4

XDH For FORTRAN mode only: suppresses the output of the deck-header line
(§4.7).

*Prompt Requesters

These qualifiers request MAX to prompt for certain items instead of expecting command-line
specifications.

D=n where 7 is an unsigned integer (1 through 9) asks MAX to prompt for n deck
names for selective extraction.

K=n where n is an unsigned integer (1 through 9) asks MAX to prompt for n
user-specified distribution keys.

Qualifier Examples

In the following examples, only the MAX invocation and qualifiers are shown for brevity
(input filename, output filename and distribution keys are omitted). As always, $ is the

VAX/VMS prompt.

EXAMPLE 3.1
$ MAX
No qualifiers means: stream mode, everything written out.
EXAMPLE 3.2
$ MAX /F
FORTRAN mode; VAX assumed; MSC and comment lines suppressed.
EXAMPLE 3.3

$ MAX/F/CDC/WC/L/TI

FORTRAN mode; CDC computer target; MSC lines suppressed; comments written out; informa-
tive print; INCLUDE translation.

EXAMPLE 3.4

$ MAX /Ul /A

Assembly mode; Univac computer target: MSC and comment lines suppressed.

EXAMPLE 3.5

$ MAX/F/K=4/D=1/SIC

FORTRAN mode; VAX assumed; prompt for four user keys and one deck name; strip inline
comments after blank-exclamation mark-blank (default character for SIC).

3-5 §3.2 INPUT FILENAME

§3.2 INPUT FILENAME
The name of the input file, immediately preceded by <. For example:
$ max/f <sky:solver.msc

The filename is terminated by a blank or a carriage return. Note that lower case input is
acceptable.

This is a mandatory specification. If omitted, the user will be prompted for it. On
responding to be prompt, enter the filename without the < prefix. For example:

$ MAX/F >0
Input filename: SKY:SOLVER.MSC

Here the Input filename prompt message comes from MAX.

If the filename extension is omitted, as well as the period, .MSC is assumed. Thus in the pre-
vious two examples one may in fact use the abbreviation SKY:SOLVER for SKY:SOLVER.MSC.
To specify an input file with a blank extension, end the filename with a period and nothing
afterwards (except possibly a version specification).

Section 3: COMMAND COMPONENTS 3-6

§3.3 OUTPUT FILENAME

The output file is specified on the command line by prefixing the filename with a >. For
example:

$ MAX/FOR <SOLVER »>SOLVER.FOR
Output goes to SOLVER.FOR, which will be created in the default directory. (Note that the
input file is SOLVER .MSC.)

This is a mandatory specification. If omitted, the user will be prompted for it. On
responding to be prompt, omit the > prefix.

Shorthand output-file specifications are commonly used. If only the file extension,
preceded by a dot, is given, the input filename is assumed. For example:

$ MAX/FOR <SOLVER >.FOR

This is equivalent to the previous example. The extension may be also followed by a
specific version number, as in

$ MAX/F <SOLVER >.FOR:4

although this is rarely used outside of command procedures.

If the same extension is specified. as in
$ MAX/FOR <MATHLIB.VAX >.VAX
then the operating system will create a new cycle of MATHLIB.VAX to receive the output.
But this can be dangerous: one slip of the fingers typing PUR and your source is gone!

A file extension preceded by a slash forces file splitting. In this case one output file
will be created for each output deck. The namne of each output file is formed by appending
the specified extension to the deck name. Example:

$ MAX <SOLVER >/DEK

If SOLVER.MSC contains four decks, say A, B, C and D, four output files named A.DEK, B.DEK,
C.DEK and D.DEK will be created. Note the importance of the >; without that the /DEK

specification would look the same as a command qualifier.
Occasionally it is useful (for verification or educational purposes) to make MAX output
come to the terminal. The following specification does it:

$ MAX <SOLVER >0

i.e., a zero (not an oh!) after the > mark. (By the way. this command also works for the

input file: <0 specifies terminal input.)

ORIGINAL PAGE I§
OF POOR QUALITY

3-7 §3.4 *DECK SPECIFICATIONS

§3.4 *DECK SPECIFICATIONS

Most MAX operations are to be performed on all decks contained in the input file. No
explicit deck specifications are then required. (If you don't know what a “deck” is, please
skip over this subsection until you do; it is explained in §4.)

Occasionally it may be desirable to restrict input file processing to a few decks. To
give an example, suppose that the input file BIG.ONE contains 80 decks, and it is desired
to split cut decks SOLV1 and SOLV2 into files SOLVE1.MSC and SOLVE2.MSC for convenient

editing. The following command does it:
$ MAX <BIG.ONE >/MSC #SOLV1 #SOLV2

If these happen to be the only deck names whose first 4 characters are SOLV, this can be
further abbreviated to

$ MAX <BIG.ONE >/MSC #SOLV+*
which takes advantage of the name-masking capabilities of MAX.
General rules for deck-name specifications are:
1. Deck names must be prefixed with a pound sign, and terminated by a blank or carriage
return.
2. Up to 16 deck names may be specified (but only up to 9 if a prompt-request is issued.)

3. Any deck name may contain masking characters, which work according to VAX/VMS
name-masking conventions. For example
#BQ+
matches all names starting with BQ,

#FORY%%4
matches all six-character deck names that start with FOR and end with 4, and so on.

Qualifier D=n may be used to request prompting for n deck names (¢f. §3.1). In response
to the prompt, omit the pound prefix.

3-7

{

)

Section 3: COMMAND COMPONENTS ’ 3-8

§3.5 *USER-SPECIFIED DISTRIBUTION KEYS

The invocation command may contain user keys that control the distribution process. For

example:
$ MAX/FOR <EZGAL.VAX >.FOR PROCEDURE MACRO

Here PROCEDURE and MACRO are user keys. These are recognized as such by not having any
special prefix.

Another way to specify user keys relies on the use of the qualifier K=n (see §3.1). For
example if you say

$ MAX/FOR/K=2 <EZGAL.VAX >.FOR

then you will be prompted for two keys.

Up.to 16 user keys may be entered. The effect of these keys on the distribution process
is explained in detail in §4.

4

MSC Files:
Basic Features

Section 4: MSC FILES: BASIC FEATURES 4-2

§4.1 GENERAL DESCRIPTION

The input to MAX is an MSC file. An MSC file is an aggregate of decks. A deck is a
sequence of card images identified by a name.

Decks include MSC control statements that describe it for various purposes. There is
at least one MSC control statement per deck, which specifies the deck name; but generally
there are many more. An MSC control statement begins with C= in its first two columns,
followed by 2 control word (an extension of this rule is given in §4.9).

MAX recognizes the following MSC statements:

C=DECK decknam; [decknamsy] [decktype]
C=BLOCK key, [keyy ... keyn]

C=END [key; ... key,l

C=IF key, [keys ... key,]

C=ELSEIF key,

C=ELSE

C=xmacrokey key, [.AND. keyoAND. key,]
C=*macrokey key, [.OR. keyyOR. key,]

In the above list, upper case strings shown in typewriter font denote literals, i.e. they
must be spelled exactly as shown. Shown in italics are labels or keys selected by the deck
writer. Expressions shown in brackets are optional. Everything after the control word can
be written free-field, with blank separators.

Here are actual examples of MSC statements so you can see how they look:

C=DECK SKYSOL

C=DECK SKYSOL SKYSOL FORTRAN
C=BLOCK FORTRAN

C=BLOCK CDC FTIIb

C=END

C=END FORTRAN

C=END =*UV

C=xCUV CDC .OR. UNIVAC .OR. VAX
C=+UA UNIVAC .AND. ASCII

C=xUAV xUA .OR. VAX

In this section only the DECK, BLOCK and END control statements will be described. Learning
these will get you started and will be sufficient if your programming is largely standard
FORTRAN. The other MSC statements are described under the advanced features covered
in §5.

4-3 §4.2 THE DECK CONTROL STATEMENT

§4.2 THE DECK CONTROL STATEMENT /

The C=DECK statement identifies a deck and must be the first line of each deck. Three
names may follow the control word; each name may be up to 12 characters long and
should consist of alphanumeric characters only.

Caution: if you plan to split MSC files on the VAX, deck names
should be restricted to nitne characters, because deck names become
filenames, and VAX/VMS filenames are restricted to nine characters.

The first name identifies the deck and is mandatory. The second one should be the same
as the first name. The third name identifies the deck type. If explicitly given, it should be
one of these:

FORTRAN for decks containing only FORTRAN source code

ASSEMBLY for decks containing only assembly-language code

MIXED for decks containing a mix of FORTRAN and assembly language
PROCEDURE for decks containing INCLUDE text

DATA for decks containing program data

If the deck type is omitted, FORTRAN is assumed. If the second name is omitted, a repeated
deck name is assumed.

Caution: Deck types PROCEDURE and DATA should not be intermixed
with other deck types in the same MSC file.

4-3

Sectlon 4: MSC FILES: BASIC FEATURES 4-4

§4.3 THE BLOCK AND END CONTROL STATEMENTS

The C=BLOCK and C=END statements serve as “dividers” that label internal deck sections
with active keys. Following the C=DECK line there are no active keys. When a C=BLOCK
line is encountered, its keys are appended to the active key list. When a C=END line is
encountered its keys are removed from the active key list.

A C=END statement with no keys after the EIID word removes the active keys introduced
by the matching C=BLOCK line.

The following example will be used in following subsections to illustrate the concept
and function of active keys:

Deck Text Active keys
line
1 C=DECK SLINE SLINE FORTRAN
2 mst
3 - C=BLOCK USAGE USAGE
4 cmt USAGE
5 cmt USAGE
6 C=END USAGE USAGE
7 mst
8 C=BLOCK FORTRAN FORTRAN
9 fst FORTRAN
10 fst FORTRAN
1 fst FORTRAN
12 C=BLOCK LAB1 FORTRAN LAB1
13 fst FORTRAN LAB1
14 C=BLOCK LAB2 LAB3 FORTRAN LAB! LAB2 LAB3
15 [st FORTRAN LAB1 LAB2 LAB3
16 C=END LAB2 FORTRAN LAB1 LAB2 LAB3
17 [st FORTRAN LAB1 LAB3
18 cmt FORTRANl LAB1 LAB3
19 C=END LAB1 LAB3 FORTRAN LAB1 LAB3
20 fst FORTRAN
21 C=END FORTRAl FORTRAN
In the above,
fst FORTRAN statement
cemt FORTRAN comment
mst Control statement ignored by MAX. For example, C=AUTHOR, C=EQUIPMENT,
C=VERSION, ... These statements are used primarily for documentation

rather than control purposes, and they recognized by the SCAM utility de-
scribed in §8.

4-5 §4.4 DISTRIBUTION RULES

§4.4 DISTRIBUTION RULES

Distribution rules vary according to the MAX execution mode. (If you don’t remember
what “execution modes” are, please reread §3.1.)

Stream Mode Distribution

A deck line, including MSC lines unless the XM qualifier is on, is output if each of its active
keys ts tr the distribution key list, and the latter is nonempty. An empty distribution list
receives special treatment (see §4.6).

For example, suppose that the distribution key list for the sample deck above is
FORTRAN LAB1 LAB3

In stream mode without the XM qualifier, lines 8 thru 13, 17 thru 21 (inclusive) will be
written out (total = 11 lines).

But if the XM qualifier is specified, only non-MSC lines 9, 10, 11, 13, 17, 18 and 20
will be written out (total = 7 lines).

FOR or ASM Mode Distribution

In FORTRAN or Assembly mode, each compilable source line with active keys in the
distribution list is written to output. Comment lines are not written unless the WC qualifier
appears; MSC lines are not written unless the WM qualifier appears. The deck identification
line is suitably transformed for compiler compatibility (cf. §4.7).

Going back again to the sample deck of §4.3, suppose that the distribution key list is:
FORTRAN LAB1 LAB2 LAB3

In the FORTRAN mode without WC and WM qualifiers, only the seven lines 9, 10, 11, 13,
15 and 20, plus a machine-dependent header line, will be output. If WC is specified, lines

4,5 and 18 also are deleted. If both WC and WM are specified, lines 8 through 21 (inclusive)
are deleted.

Sectlon 4: MSC FILES: BASIC FEATURES

§4.5 DISTRIBUTION KEYS

How are distribution keys specified? A distribution key may be of two types: implied key

or user key.

Implied distribution keys are the result of qualifier options. The following table sum-

marizes all possibilities.

Mode Machine Implied keys

Stream irrelevant none

FORTRAN VAX (default) FORTRAN VAX
CDC FORTRAN CDC
Univac FORTRAN UNIVAC
IBM FORTRAN IBM
CRAY FORTRAN CRAY
CY205 FORTRAN CY205
Machine FORTRAI Machine

Assembly VAX (default) ASSEMBLY VAX
Cchc¢ ASSEMBLY CDC
Univac ASSEMBLY UNIVA{C

User keys are additional distribution keys selected by the person that writes the deck for
whatever purposes he or she has in mind. The only constraints placed on user keys are:

1. May contain any printable character except > < , # = / or *. Asterisks are used to
identify macrokeys, ¢f. §5.1. Periods are reserved for cycled keys (§5.6). The first
character must not be $ or ! because these are reserved for inline comments (§4.8).

2. May contain up to 24 characters.

3. Should not clash with implied key names.

User keys supplied in the command may contain masking and cycle-range specifications.

This advanced use is explained in §5.8.

4-7 §4.6 EMPTY DISTRIBUTION LIST: FILE SPLITTING

4.6 EMPTY DISTRIBUTION LIST: FILE SPLITTING

Can the distribution list be empty? Yes, but only in the strecam mode when no user keys
arc specified. According to the rules of §4.3, nothing should be generated. But this case
occurs so frequently in practice that the rule is reversed: everything is generated.

If everything is generated, what is the use of MAX? Simple answer: file splitting and
selective deck extraction. Two examples:

$ MAX <EZGAL.VAX >/MSC
$ MAX <EZGAL.VAX >/FOR #GMOPEN

The first MAX command splits the entire file EZGAL.VAX with MSC as comimon extension.
The second extracts deck GMOPEN from EZGAL.VAX and puts it in file GMOPEN . FOR.

4-7

|

Section 4: MSC FILES: BASIC FEATURES . 4-8

§4.7 DECK HEADER MAPPING

In FOR or ASM mode, MAX “maps” the C=DECK line into a deck-header line appropriate
to the target computer. To illustrate the mapping process, assume that the deck name is
DEKNAM and that the deck type is FORTRAN. Then the header line format is as shown in the
following table.

Target Output header form Comments

VAX CSFORTRAN DEKNANM Innocuous editor “hook”
CDC *DECK DEKNAM For UPDATE utility
Univac QFTN,ST DEKNAM FTN element identifier
1BM presently same as VAX

CRAY presently satne as CDC

CY205 presently saine as CDC

Machine presently same as VAX

These headers can be “massaged” with the text editor if necessary. For example, to expand
all @FTN,SI to @FTN,SIO before submitting to Univac’s ASCII FORTRAN compiler.

For ASSEMBLY and MIXED decks, the header line on Univac starts with QASM,SI and
QELT,SI, respectively.

A similar mapping takes place for PROCEDURE-type decks that contain INCLUDE text.
Look at the output and you’ll get the idea.

4-9 §4.8 *SYNTACTIC SUGAR

§4.8 *SYNTACTIC SUGAR
Inline Comments

In an MSC statement line, anything after blank-dollar sign or blank-exclamation mark is
treated as comment text.

Other Control Statement Prefixes
In addition to €=, MAX recognizes the following control statement prefixes:
k= '/.: !: .=

which are useful for exotic applications.

The IF and ENDIF Variants of BLOCK and END
MAX treats the following control statements
C=IF C=ENDIF

as equivalent to C=BLOCK and C=END, respectively. These statements provide enhanced
readability in the use of the ELSEIF and ELSE control statements, which are discussed in
§§5.2-5.4.

5

MSC Files:
Advanced Features

-

Section 5: MSC FILES: ADVANCED FEATURES

IMPORTANT: This section describes the more advanced features
of MAX. Description relies heavily on specific examples. It is assumed
that readers interested in these features can go from the particular to
the general with only a modicum of help.

5-3 §5.1 *MACROKEYS

§5.1 *MACROKEYS

Consider the following problem. A section of a machine-dependent FORTRAN subroutine
contains code that works on both Univac and CDC, but not on other machines. How
should the section be labeled with MSC statements? The brute-force solution is

C=BLOCK CDC
(code section)

C=END
C=BLOCK UNIVAC

(duplicated code section)
C=END

This is obviously unclean if the code section is substantial. The elegant solution is to use

a macrokey:

C=xCU CDC .OR. Univac
C=BLOCK =*CU

(code section)

C=END

The name of the macrokey in this example is CU, which stands for “either CDC or Univac”.
The name is picked by the code developer; it should not conflict with other key names,
and must be defined before it appears in a C=BLOCK statement.

A macrokey definition statement may contain only one type of logical connective: AND

or OR. Inasmuch as a macrokey definition may contain previously defined macrokeys, this
is not much of a restriction, as the following example below shows..

Caution: There must be at least one blank space before and after
an .0OR. or .AND. connective.

5-3

Section 5. MSC FILES: ADVANCED FEATURES 54

Now suppose that a particular code section is valid only for two specific environments:
CDC computer, FTN4 FORTRAN compiler
Univac computer, FORTRAN V compiler

With the nested macrokey concept, this is easy Lo represent:

C=xC4 CDC .AND. FTH4

C=+U5 UNIVAC .AND. FORTRANS
C=%C4Ub *C4 .OR. *Ub
C=BLOCK %C4Ub

(code section)
C=ElND

Here FTN4 and FORTRAND are names selected by the user; anything goes in this regard.

There are no limits on levels of mnacrokey nesting; however, in practice one level should

be more than enough. (If you need more, your code is either too complex or machine
dependent — simplify it.)

5-56 §5.2 *THE ELSE CONTROL STATEMENT

§5.2 *THE ELSE CONTROL STATEMENT

Let’s consider a variation on the previous theme. A section of a FORTRAN subroutine
happens to work only on CDC. A “complementary” section works on everything but CDC.
This can be elegantly expressed with the help of the C=ELSE statement:

C=BLOCK CDC
(CDC-restricted code)
C=ELSE

(code for other machines)
C=END

The code comprised between the ELSE and END will be written out if and only if CDC is not
on the distribution list.

Here is another useful feature for FORTRAN subroutines that do floating-point arith-
metic: '

C=BLOCK DOUBLE

double precision a(n), b(4,n)
C=ELSE

real a(n), b(4.,n)
C=END DOUBLE

Unless DOUBLE is explicitly specified as a distribution key, the single-precision version is
generated — if that’s your intention.

(51}
%4l

Sectlon 5: MSC FILES: ADVANCED FEATURES 5-6

§5.3 *NEGATED KEYS

The C=ELSE effect discussed in §5.2 can be achieved in a more direct manner with negated
keys. These are simply keys prefixed by a minus sign. For example:

C=BLOCK -UNIVAC
(code valid for any but Univac)

C=END -UNIVAC

meaning that the enclosed code block is written out unless key UNIVAC appears in the
distribution list. This is the same as saying

C=BLOCK UNIVAC
C=ELSE

(code valid for any but Univac)
C=END UNIVAC

but saves one line of typing.

Negated keys may appear in macrokey definitions, as in

C=+«SINGLE -DOUBLE .0R. CDC .OR. CRAY
with a “logical complement” meaning. It is also permissible to negate macrokeys, as in
C=BLOCK -xCU

User-specified distribution keys may also be negated. This feature has few practical uses
for MAX execution, for why specify, say, -DEBUG, when the same effect is obtained by
leaving out DEBUG in the first place? But it has more application when running SCAM (see
§8.3).

3]
(o]

5-7 §5.4 *THE ELSEIF CONTROL STATEMENT

§6.4 *THE ELSEIF CONTROL STATEMENT

The most elaborate block-control structure accepted by MAX involves the combined use
of BLOCK (or IF), ELSEIF, ELSE and END (or ENDIF) control statements. (Recall from §4.9
that C=IF is the same as C=BLOCK, and C=ENDIF the same as C=END.)

The structure strongly resembles the FORTRAN 77 IF-THEN-ELSE construct. This
is again best explained by an example.

C=IF CDC

(code for CDC)

C=ELSEIF IBM

(code for IBM)

C=ELSEIF VAX

(code for VAX)

C=ELSE

(“else” code)

C=ENDIF
Code for CDC will be written out if distribution key CDC appears. Code {or IBM will be
written out if distribution key IBM appears and CDC doesn’t. Code for VAX will be written

out if distribution key VAX appears and neither CDC nor IBM does. Finally, the “else” code
will be written out if none of those three keys appears.

Note that if the keys appearing in this construction are mutually exclusive, the order
in which the subordinate code blocks appear is irrelevant; but it does matter if they are
not. In practice this construction is hest reserved for mutually exclusive keys or macrokeys.
This is of course the case in the example, because the keys define different target computer

environments.

5-7

Section 5: MSC FILES: ADVANCED FEATURES 5--8

A completely equivalent construction that uses only C=BLOCK and C=END is possible with
negated keys (§5.3):

C=BLOCK CDC
(code for CDC)

C=END CDC
C=BLOCK -CDC IBM

(code for IBM)

C=END -CDC IBM
C=BLOCK -CDC -IBM VAX

(code for VAX)

C=END -CDC -IBM VAX
C=BLOCK -CDC -IBM -VAX

(“else™ code)
C=END -CDC -IBM -VAX

This is not only less readable, but takes longer to type. The interesting point, however,
is the way MAX internally handles ELSEIF and ELSE control statements: it maps them to
C=BLOCK and C=END pairs according to the correspondence illustrated above, so it is in fact
the latter form that is processed by MAX.

Some general comments. A C=ELSEIF must be followed by one and only one key or
macrokey, while a C=ELSE takes none. The final C=END or C=ENDIF must be either key-less,
or explicitly list all of the keys (or macrokeys) appearing in the matching C=BLOCK (or
C=IF) and in the C=ELSEIFs.

Other C=BLOCKs may be nested arbitrarily deep within the code blocks shown above.

Macrokeys, C=ELSEIF, C=ELSE and nesting provide the adventurous user unlimited
power on logically combining implied and user-defined keys to achieve any unusual effect.

5-9 §5.5 *INCLUDE STATEMENT TRANSLATION

§5.5 *INCLUDE STATEMENT TRANSLATION

INCLUDE statements provide a structured and convenient way of specifying global symbols
in FORTRAN programs, such as common blocks or PARAMETER declarations. Unfortunately
FORTRAN 77 has not standardized the INCLUDE statement, and its format varies across
compilers (if provided at all). Fortunately, the VAX-FORTRAN form

INCLUDE 'filename’

appears likely to become the standard in the next revision of the FORTRAN language?
(perhaps without the apostrophe delimiters).

Because of the foregoing remark, MAX assumes that the VAX form of INCLUDE is
“reference”. This reference form may be exemplified by the VAX/FORTRAN statement

INCLUDE 'PROC:SYMBIO.PRC'®

where the logical directory name and file extension (PROC and PRC in this example) are
optional. When executing in FOR mode with the TI option on (§3.1), and the target
machine is CDC or Univac, MAX translates the sample statement to

*CALL SYMBIO
INCLUDE SYMBIO

respectively. Translation is performed by stripping off the filename, and preceding it with
INCLUDE for Univac or *CALL for CDC, with * in column 1. (On CDC, *CALL is an
UPDATE directive, rather than a compiler recognizable statement.)

To make the translation process work smoothly, the following should be kept in mind.
The word INCLUDE must appear in columnns 7-13; all-uppercase or all-lowercase is accept-
able. The filename should not exceed sixz characters for Univac compatibility. It is a good
idea to keep all your INCLUDE text in one directory (PROC: in the example) because then
it can be readily packed in one MSC file and translated as a block.

There is a separate converter utility (not MAX) which physically inserts INCLUDE text
in the MSC file itself. This is useful if preparing FORTRAN code for shipping to a computer
whose FORTRAN compiler does not provide an INCLUDE mechanism (for example, IBM).
This utility is described in §7.

t Also called FORTRAN 8X.

Cﬂ
©

Sectlon 5: MSC FILES: ADVANCED FEATURES 5-10

§5.6 *CYCLED KEYS

Three programmers, A. B. Cee, Jo. B. Queue and X. Y. Zee, are in charge of maintaining
and updating a very large program, whose master source code is in file GODZILLA .MSC.

To keep track of who is doing what to which, the three agree on a “dated fingerprint”
scheme to systematically mark updates and fixes before they are eventually incorporated
in GODZILLA. They decide to use MSC blocks with “signature+date” keys. For example, a
correction made by Mr. Cee on 7 November 1983 mnight be identified by the MSC statement

C=BLOCK ABC.31107 ! Fix relativistic viscoplasticity
(code)
C=END ABC.31107

A user key of the form
name.cycle

is called a cycled key. Name is an ordinary string, but must not include periods. Cycle is
an unsigned integer in the range 0 through 999999. Both components are separated by a
period. (The statement after the exclamation mark is an inline comment, cf. §4.8.)

After some time of using this convention, GODZILLA.MSC may contain many cycled
keys. Explicit specification of such keys in the distribution list may be inconvenient, and
the MAX limit easily exceeded. This difficulty is eliminated by masking and cycle-range
specifications in the user-specified distribution keys. The following examples should be
sufficient to illustrate how these things work:

User key Activates for distribution

ABC* All keys signed by ABC

ABC.3x All 1983 keys signed by ABC

Whh. 3% All 1983 keys with 3-char signatures

%, 3% All 1983 keys

JBQ.306% June 1983 keys signed by JBQ
JBQ.30100:30830 Jan-Aug 1983 (incl) keys signed by JBQ
XYZ.:30830 Pre-Sept 1983 keys signed by XYZ
Whh.30131: All post-Jan 1983 keys

Of course, the cycled-key scheme also fits less formal identification conventions, for example
VERSION.1, VERSION.2, ... These may be attractive for one-person programs, for which a
signature component is unnecessary.

5-10

REX

Section 6: REX 6-2

§6.1 MOTIVATION

Consider the following situation. A large MSC file, SOLVER.MSC, contains over a hundred
decks. Three of these: FACTOR, FORSUB and BACSUB, are split out into files FACTOR.DEK,
FORSUB.DEK and BACSUB.DEK, respectively. and their code modified. After verifying the
new software, the programmer wants to put the modified decks back into SOLVER.MSC.
How to do this? On the VAX, you can follow three methods.

Using the Text Editor
You can edit SOLVER.MSC in order to delete the text of the old decks and then invoke

external-file copy to include the new decks. This approach is clumsy, time-consuming,
and above all dangerous. It is easy to delete too much, or the wrong deck. Furthermore,
external-file copy is very slow when editing large files.

MAXsplit, Rename and Repack

This can be illustrated for the example case:

$ MAX <SOLVER.MSC >/DDD

$ REN FACTOR.DEK =.DDD
$ REN FORSUB.DEK =.DDD
$ REN BACSUB.DEK =*.DDD
$ PUR

$ COPY +.DDD SOLVER.MSC
$ DEL *,DDD . *

$ PUR

This approach is much safer than the text-editor method, and can be readily encapsulated
in a command procedure. But splitting a big file can be quite slow, and the disk space of
SOLVER.MSC triples during the process.

Using REX

REX is a “deck replacement” utility which can be invoked very much like MAX. For the

example case,

$ COPY FACTOR.DEK,FORSUB,BACSUB DECKS.DEK
$ REX <DECKS.DEK >SOLVER.MSC

REX produces another cycle of file SOLVER.MSC in which all decks that match those in
DECKS.DEK — namely, FACTOR, FORSUB and BACSUB -- are replaced by the latter. The
replaced decks occupy the same position in the new MSC file as before.

If the three decks were in the same file to begin with, the first copy statement becomes
unnecessary. If you plan to use REX. you may want to keep that fact in mind.

6-3 | §6.2 ACCESS AND USE INFORMATION

§6.2 ACCESS AND USE INFORMATION
Accessing REX

If the NICE system is officially installed in your VAX, you can gain access to REX simply
by inserting the foreign-command definition

$ REX :==$NICE$EXE:REX.EXE

in vour LOGIN.COM file. As always, the symbol on the left can be anything; here we shall
assume REX.

If NICE is not installed on your VAX, the above command should reference the REX
executable file located in one of your directories; see §2.1.

Invoking REX

The format of the REX-invocation command is

$ REX [/Qualifiers] <Deckfile >MSCfile

where the file specifications are mandatory; if omitted, you will be prompted for them.
Except for REX appearing first, command components can actually appear in any order.

The optional command qualifiers are:

APP Enable deck-append mode, as explained below.

L Give run statistics. If omitted, REX stays silent except for error messages
and a running commentary on decks replaced and/or appended.

The file specifications are:

Deckfile Name of the file that contains the updated decks. Up to 24 decks are permit-
ted; if more, the execution is terminated and no replacement is performed.
If the file extension is omitted, .MSC is assumed.

MSCfile The name of the MSC file that contains decks to be replaced. The output
file has the same name but a higher version number (usually the next one).
If the file extension is omitted, .MSC is assumed.

Caution: Other than leaving out the extension, no file-
name abbreviations are permitted.

6-3

Section 6: REX 6—4

How Does REX Work?

During REX execution, each MSCfile deck whose name matches a deck name in Deckfile
is replaced by the latter. — -

If a Deckfile deck does not match any deck name in the MSCfile, the outcome depends
on whether the append mode has been specified with the APP qualifier. If the append
mode is on, all unmatched Deckfile decks are written to the end of MSCfile. If the append
mode is not on, nothing happens and an informative message to the effect that there were
unmatched decks is given.

REMARK 6.1

If you always want the APPEND mode to be on when you invoke REX, you may redefine the foreign
command as

$ REX :==$IICE$EXE:REX.EXE /APP

Examples
$ REX/L <UPDSTUFF.DDD >MARK6LIB.MSC
$ REX/L/APP <BRAND.NEW >CLIP.VAX
$ REX <FACTOR.CMD >SOLVER.HLP

Warning: When it begins running, REX opens one scratch file for each
deck present in the Deckfile before it begins scanning the MSCfile. For
example, if the Deckfile has 20 decks, at a certain point there will be 23
files simultaneously open (20 for decks -+ Deckfile + input MSCfile 4- output
MSCfile). If a REX execution terminates with an error message that says
something about too many files being open at one time, have your computer
system manager increase your “open file” quota and try again.

[
INCLUDE

Section 7: INCLUDE 7-2

§7.1 THE /INCLUDE UTILITY

Purpose

INCLUDE is a utility processor that replaces IlICLUDE statements as in VAX-FORTRAN
(cf. §5.4) with actual text lines taken from the referenced files.

Accessing and Executing /INCLUDE

To make use of INCLUDE on a VAX with the NICE systemn installed, insert the foreign-
command definition

$ Il :==$NICE$EXE:INCLUDE.EXE

in your LOGIN.COM file. (If the NICE system is not available on your VAX, proceed as
indicated in §2.1.)

Once the command definition is activated, you can invoke /INCLUDE as an input-
output filter:

$ IN [/Qualifier] <Inputfile >Outputfile

The file specifications are mandatory; if omitted, the program will prompt you for them.
The only optional qualifier is L, which tells INCLUDE to print run statistics on comple-
tion.
The input and output filenames are specified in the usual way. The output filename
may be abbreviated to the version portion only, for example >.FOR. For verification pur-
poses terminal output may be specified by >0.

Important. INCLUDE is not restricted to processing
MSC files; in fact, it pays no attention whatsoever to MSC

statements.

Example
$ IN/L <CLIP.VAX >CLIP.IBM

. SCAM

Sectlon 8: SCAM 8-2

§8.1 THE SCAM UTILITY
Motivation

A program developer that maintains a large program file, say ADVLAM.MSC, would like to
do the following:

“Find and list on the screen all source lines included in each MSC control
block that has the key UPDATE.4"

Trying to do this with MAX, for example by saying
$ MAX <ADVLAM >0 UPDATE.4

will not usually work. The trouble is that the distribution process depends on the way in
which key UPDATE .4 “telescopes” with regards to other keys. But for the foregoing request
key interrelations are irrelevant. Only the UPDATE .4 key, by itself, matters.

This key-lookup job can be conveniently done with another MAX helper called SCAM
(a contraction of “SCAn Msc”). First, as usual, a foreign command definition is inserted
in your LOGIN.COM file:

$ SCAM :==$NICE$EXE:SCAM.EXE

assuming again that NICE is available to you; if this is not the case please read again §2.1.
Once the definition is activated, the command

$ SCAM <ADVLAM >0 UPDATE.4

will work. The output from SCAM will display the requested blocks appropriately identified
(in cols. 73-80) by the deck name and deck line number. It should look something like
this:

C=BLOCK UPDATE.4 MASTER
x = colblk (mat, n, m, 1) 000343
y = sqrt(x) ' 000344
C=END UPDATE .4 MASTER

In this example the SCAM output shows lines 342 through 345 of deck MASTER.

8-38 §8.2 HOW TO SCAM

§8.2 HOW TO SCAM

The general form of the SCAM-invocation command is

$ SCAM [/Qualifiers] <Inputfile >Outputfile Scankeys [#Decknames)

where

Qualifiers The optional qualifiers are: L, which causes run statistics to be printed,
and NOID (which may be abbreviated to N) to suppress deck identification
text in columns 73-80.

Inputfile Name of the MSC file to be scanned. If omitted, you will be prompted for
it. If the file extension and prefix period are omitted, .MSC is assumed.

Outputfile Name of the file that will receive SCAM output. If omitted, you will be
prompted for it. Often set to zero to get output on the screen; an actual
name may be used, however, to create a file that is then sent to a printer
or inserted in a document.

Scankeys A list of MSC-block keys to be scanned for. Keys do not interact; the
output will be simply the union of the outputs for each scan key. At least
one key must be specified; if none given, you will be prompted for one key.

Decknames Optionally, a list of deck names to which the scanning process will be
restricted. The specification forinat is the same as for MAX.

Examples

$ SCAM <SOLVER >.SCH CDC

$ SCAM/L <SOLVER >0 VAX UNIVAC

$ SCAM/N <CLIP.VAX >0 MACRO #CLMx
$ SCAM/L <CLIP.VAX >0 DECK

REMARK 8.1

SCAM recognizes no implied keys, as MAX does. To display all FORTRAN lines, for example,
the scan key FORTRAN must be given explicitly in the SCAM invocation.

REMARK 8.2
The output will also contain macrokey-controlled C=BLOCKs if a scan key intervenes in the macrokey
definition.

REMARK 8.3

If C=BLOCKs are followed by C=ELSEIFs or C=ELSEs, negated scan keys may be used to discern the
internal structure (see §8.3).

83

Section 8: SCAM 8-4

REMARK 8.4

One-line control statements such as C=PURPOSE, C=AUTHOR, etc., which are ignored by MAX, are not
ignored by SCAM. For example, the following command will display on the screen all C=PURPOSE
lines (and nothing more) included in MSC file ADVLAM.MSC:

$ SCAM <ADVLAM >0 PURPOSE

8-4

8-6 §8.3 *ADVANCED SCAMMING

§8.3 *ADVANCED SCAMMING

This subsection covers some of the more advanced features of SCAM.

Listing C=DECK Lines

Special scan key DECK causes C=DECK lines to be listed. No identification field appears. If you do
this sort of thing often, it is convenient to define a one-line procedure

$ SCAM <'P1’ DECK >0
whose execution is abbreviated to, say, LD. Then
$ LD SOURCE.MIR

lists all deck lines (and nothing else) in SOURCE.MIR.

Macrokeys

Special scan key ** causes all macrokey-definition lines to be displayed.

Negated Keys
To list all CDC-dependent code lines in CLIP.VAX you would say

$ SCAM <CLIP.VAX >0 CDC

That was easy. Now, how about all “other than CDC” code lines in blocks that mention CDC?

Use the negated scan key:
$ SCAM <CLIP.VAX >0 -CDC

So there is some use for negated distribution keys, after all.

A Trip Down
Memory Lane

Section 9: A TRIP DOWN MEMORY LANE ' . 9-2

§9.1 MAXIFYING OLD CODE

By now you are hopefully sold on the virtues of MAX and Friends. You have probably
noticed that using Master Source Code on new software developiments is straightforward.
The first operation in making a new deck usually consists of copying an existing one;
recurring descriptive constructs such as PURPOSE, ABSTRACT and USAGE are edited, and
MSC control statements inserted while the source code is written. But how about old
FORTRAN programs brought from other computers or your old tapes?

If these programs are fairly large, the conversion to MSC form can be laborious.
Fortunately there are a couple of utilities that can reduce the work by getting you started

with the minimum necessary to use MAX. These two utilities, PUTDECK and EZ2ZMAX
are described in the following subsections.

9-3 §9.2 INSERTING DECK IDENTIFIERS

§9.2 INSERTING DECK IDENTIFIERS

To use MAX, decks have to be labelled with C=DECK lines. This is the irreducible minimum:
once deck identifiers are in place you can at least split files and extract decks. This insertion
can be automatically done with the PUTDECK utility.

The first step is to merge all program units (subroutines, functions) into a single file.
(This step is only needed if the code comes from a machine such as Univac, which keeps
programs fragmented into elements.) A masked copy such as

$ COPY =.FOR BIGFILE.MER

should make this happen.

Next, insert the foreign-command definition
$ PD:==$NICE$EXE:PUTDECK.EXE

in your LOGIN.COM, and activate it with a @LOGIN. (If NICE is not in your Vax, read §2.1.)
Finally, execute PUTDECK as an input-output filter, for example

$ PD <BIGFILE.MER >.MSC

This execution inserts C=DECK lines immediately before each subroutine or function state-
ment. The name of the subroutine or function becomes the deck name. Decks are typed
as FORTRAN. (If you don’t like these rules, you can always edit the output file.)

PUTDECK Restrictions

To ensure successful operation of PUTDECK, you must keep certain restrictions in mind.

The input file must be without any MSC control statements. Never use PUTDECK
on a “partly-MSCed” tile.

The input file should be free of parasite control cards brought from other machines,
e.g., Univac’s QFORs and QELTs.

In subroutine-declaration lines, the word SUBROUTINE must be followed by at least one
blank; furthermore, columns 1-6 of that line must. be blank. The word SUBROUTINE need not
start in column 7, however, and may be in lower or upper case. The subroutine name need
not be terminated by a blank, but must be in the same line as the SUBROUTINE declaration.
The argument list need not start in the same line. Thus the following declarations are
acceptable:

SUBROUTINE SOLVE(A,B,C)
Subroutine Solve (A, B, C)
The following, however, is not acceptable
SUBROUTINESOLVE (A,B,C)
and will be sadly missed by PUTDECK.

Section 9: A TRIP DOWN MEMORY LANE 9-4

Very similar constraints apply to function-declaration code lines. The word FUNCTION
must be followed by a blank, and the function name must be in the same line. The word
FUNCTION may be preceded in the same line by one of the following type qualifiers

CHARACTER

DOUBLE PRECISION
COMPLEX

INTEGER

LOGICAL

REAL

If any of these qualifiers appear, they must be delimited by one or more blanks. For
example the function declaration

DOUBLEPRECISION FUNCTIOHN

will be missed.

The CHARACTER function qualifier may be followed by a length specification such as
CHARACTER*4 or CHARACTER* (*). Lower or upper case is acceptable.

Two more limitations should be mentioned. PUTDECK does not recognize main
programs, BLOCK DATA units, and INCLUDE text. These have to be done by hand.

If in doubt as to whether the input file complies with these requirements, look at the
PUTDECK output with the text editor or with SCAM, correct the source file as needed,
and try again.

9-56 §9.3 INSERTING FORTRAN BLOCKS

§9.3 INSERTING FORTRAN BLOCKS

If you are satisfied with just the C=DECK lines, you need not proceed further. Now you can
at least split out decks with MAX and put them back in with REX.

To go a step further, insert and activate the definition
$ E2M:==$NICE$EXE:EZ2MAX
then execute EZZMAX as an input-output filter, as in
$ E2M <BIGFILE.MSC >FORFILE.MSC

This inserts C=BLOCK FORTRAN and C=END FORTRAN lines after each C=DECK line and before
the next C=DECK line, respectively. Now you can try MAX/F.

A

Assembly Code
Maintenance

Appendix A: ASSEMBLY CODE MAINTENANCE A—-2

§A.1 TARGET AUDIENCE

This Appendix has been prepared for the minority of “real programmers” that maintain
sizable amounts of assembly language code for CDC, IBM, Univac, Cray or VAX comput-
ers. AII-FORTRAN programmers need not be aware of this material.

With the advent of FORTRAN 77 the nced for assembly language programming has
drastically diminished. There are threc areas, however, in which assembly language can
be useful:

1. To do things not provided for in the FORTRAN 77 language and unavailable as
FORTRAN extensions. Example: get the machine address of a variable in IBM
FORTRAN.

2. To speed up time-critical sections of number-crunching programs when assembly code
make possible to fully exploit hardware features such as pipelining.

3. To reference system level input/output facilities otherwise inaccessible. Example: the
RMS (Record Management Services) level of VAX/VMS.

If you keep a few assembly language routines around that are hardly ever changed, there
is little motivation for putting such routines into MSC files. But if you keep a substantial
amount of assembly code in support of specific application packages, the source should
be kept just like FORTRAN, :.e., neatly packaged in MSC files on the VAX. This ap-
proach centralized maintenance and lets you rapidly extract versions for shipping to other
machines.

Packaging assembly code in MSC files requires some care, however, as some surprises
may otherwise result. The purpose of this Appendix is to explain how to proceed so you
get it right the first time.

A-3 §A.2 ALL-ASSEMBLY MSC FILES

§A.2 ALL-ASSEMBLY MSC FILES

The simplest MSC organization of assembly code is one in which

(1) All decks contain only assembly code; these are called ASSEMBLY decks.
(2) MSC files contain only ASSEMBLY decks.

This organization is recommended if you keep just a moderate number of general purpose
assembly language routines around. Putting thein together in one MSC file simplifies
keeping track of where they are.

Later subsections in this Appendix discuss two more general organizations: keeping
ASSEMBLY and FORTRAN decks in the same MSC file (§A.3), and keeping FORTRAN and
assembly code in the same deck (§A.4).

Structure of ASSEMBLY Decks

The basic structure of an ASSEMBLY deck identified as Deckname for a target computer
identified by key Machine is

C=DECK Deckname Deckname ASSEMBLY
C=BLOCK Machine ASSEMBLY

(assembly code)

C=END Machine ASSEMBLY

Appendix A: ASSEMBLY CODE MAINTENANCE A-4

To illustrate this structure, here is an “unadorned” assembly language routine for Univac,
written by somebody that obviously does not believe in comments:

C=DECK RW RW ASSEMBLY
C=BLOCK UNIVAC ASSEMBLY

AXR$

$(1) |
LA A0 ,%0,X11
SA AO,PKT
LA A0, *1 ,X11
SA AO,PKT+1
SZ PKT+2
Sz PKT+3
LA A0,2,X11
SA,1 AOQ,PKT+4
LA A0, *3,X11
SA,2 AO,PKT+4
LMA AO,*4,X11
SA AO,PKT+5
LA A0, +5,X11
SA,12 AO,PKT+3
LA,U AO,PKT
ER I0w$
LA,13 AQ,PKT+3
SA A0, *6,X11
LA,1 AO,PKT+3
SA A0, x7 ,X11
J 9,X11

$(0)

PKT RES 10
END

C=END UNIVAC ASSEMBLY

This example shows the minimum number of MSC control lines for an ASSEMBLY deck,

namely three,

REMARK A.1

The above code is compatible with Univac’s ATHENA FORTRAN (also called FORTRAN V)
compiler. A different version of RW is required for Univac’s ASCIH FORTRAN compiler, which
implements the FORTRAN 77 standard. An example that illustrates packaging for both compilers
appears later in this subsection.

A-5 ‘ §A.2 ALL-ASSEMBLY MSC FILES

The following ASSEMBLY deck does have the recommended level of documentation:

*=DECK LOCF LOCF ASSEMBLY

*=BLOCK IBM ASSEMBLY

*=PURPOSE Get absolute machine address of argument (IBM)
*=AUTHOR F. A. Weiler

*=VERSION July 1982

*=KEYWORDS get absolute argument address

*=EQUIPMENT IBM

*=BLOCK ABSTRACT

* LOCF is a function that returns the absolute address of its
* argument. On CDC, Univac and Vax, this is an inline

* function provided by the FORTRAN compiler, and is named

* LOCF, LOC and %LOC, respectively (LOCF and LOC return a

* WORD address, whereas JLOC returns a BYTE address).

* IBM FORTRAN does not provide such a function, hence this

* assembly routine generously contributed by Frank Weiler.

*=END ABSTRACT

*=BLOCK USAGE

* The function reference is:

*

* IADDR = LOCF (ARG)

E 3

* and IADDR receives the absolute address of ARG in BYTES.
*

*=END USAGE

LOCA CSECT

RO EQU 0 WORKING REGISTER

R1 EQU 1 WORKING REGISTER

R13 EQU 13 .~ COMMUNICATION REGISTER

R14 EQU 14 COMMUNICATION REGISTER

R15 EQU 16 PROGRAM ADDRESSING REGISTER
ENTRY LOCF)

LOCF DS OA DEFINE START OF SUBROUTINE
L RO,0(R1) ADDRESS OF ARGUMENT TO RO
BR R14 RETURN TO CALLING ROUTINE
END

*=END IBM ASSEMBLY

REMARK A.2

The use of *= in lieu of C= has no deep significance; *= is always equivalent to C= and * happens
to be the column-1 comment character for IBM assembly code.

A-5

Appendix A: ASSEMBLY CODE MAINTENANCE A-6

REMARK A.3

It is always a good idea to make the C=BLOCK AMachine ASSEMBLY the second line of the deck. This
makes it easier for MAX to avoid writing empty decks to the output file when ASSEMBLY and
FORTRAN decks are intermixed (§A.3).

Can the same ASSEMBLY deck hold assembly code for more than one machine? Yes. Just
stack C=BLOCKs as illustrated next:

C=DECK FAKER FAKER ASSEMBLY
C=BLOCK UNIVAC ASSEMBLY

(Univac assembly code)

C=END UNIVAC ASSEMBLY
C=BLOCK IBM ASSEMBLY

(IBM assembly code)

C=END IBM ASSEMBLY

Another way of doing it, with the IF ... ELSEIF ... ENDIF construct:

C=DECK FAKER FAKER ASSEMBLY
C=BLOCK ASSEMBLY

C=IF UNIVAC
(Univac assembly code)

C=END UNIVAC
C=ELSEIF IBM

(IBM assembly code)

C=ENDIF
C=END ASSEMBLY

Here the use of the IF ... ENDIF does not necessarily make things more readable if
assembly sections are fairly long. Personally [prefer the first form.

A-T §A.2 ALL-ASSEMBLY MSC FILES

Multicompiler Packaging

Not only is assembly code machine dependent but sometimes within the same computer
the subroutine linkage changes as another FORTRAN compiler appears on the scene. Such
change has the unfortunate consequence of requiring multiple versions of the same assembly
routine to be maintained (at least until the old compiler finally disappears). For Univac,
the appropriate packaging for say, RW would be as follows:

C=DECK RW RW ASSEMBLY
C=BLOCK UNIVAC ASSEMBLY
C=IF ATHENA

(ATHENA-FORTRAN-compatible version)
C=ELSE
(ASCII-FORTRAN-compatible version)

C=ENDIF
C=END UNIVAC ASSEMBLY

Use of the identifier ATHENA is not mandatory but is recommended because MAX looks for
it when generating deck-header control cards for Univac.

For other computers the recipe is the same. Fortunately, it is not presently needed for
CDC (the old RUN compiler is no longer used), VAX or Cray; as for IBM I don’t know.

Univac Code Extraction

To extract the Univac version from an all-assembly MSC file, the following MAX commands
are recommended:

Compatible unth
ASCII FORTRAN $MAX/A/UNI/WC/HDG <Inputfile >Outputfile
ATHENA FORTRAN $MAX/A/UNI/WC/HDG <Inputfile >Outputfile ATHENA

REMARK A.4

The ATHENA distribution key is assumed (see Multicompiler Packaging); if you use a different
key replace it in the second invocation form.

REMARK A.5

Each nonempty output deck is preceded by @ASM, SI so that the output file can be directly @ADDed
to the runstream once it has been shipped to Univac.

REMARK A.6

The WC qualifier forces comment-only lines to be written out. Most assembly code is (or should be)
commented line by line, so sending comment-only lines probably does not make much difference.

AT

Appendix A: ASSEMBLY CODE MAINTENANCE A-8

REMARK A.7

A QHDG,P line bearing the deck name is generated hefore each QASM,SI; if you don’t want this
remove the HDG qualifier.

CDC Code Extraction

To extract the CDC version from an all-assembly MSC file you should use a MAX-
invocation command such as ‘

$ MAX/A/CDC/WC <Inputfile >Outputfile

The output file is a multideck file suitable for input to CDC’s UPDATE utility. The
COMPILE output from UPDATE can be presented to either the COMPASS assembler or
to the FORTRAN compiler (more about this choice in §A.3).

VAX Code Extraction

To extract the VAX version from an all-assembly MSC file you should use

$ MAX/A/WC <Inputfile >/ Extension

For example:
$ MAX/A/WC <UTILITY.ASM >/MAR

Note the split output specification. Each VAX assembly deck thereby becomes a separate
file. These files can then be processed by VAX/VMS’s MACRO assembler through a
system command such as

$ MAC COMPARE,PRODUCT,SUM

which assume a .MAR extension. This approach is necessary because MACRO, unlike the
FORTRAN compiler, cannot assemble multiple modules contained in one file; it quits on
detecting an .END line.

REMARK A.8

To circumvent the multiple-file prohlem von conld keep all VAX assembly code stacked in one
deck, with a single .ElID card. this is not recommended, however, if the total code is voluminous
as maintenance would be hindered.

A-9 §A.3 MIXING FORTRAN AND ASSEMBLY DECKS

§A.3 MIXING FORTRAN AND ASSEMBLY DECKS

Most assembly code is written in support of specific application or utility packages; for
example a terminal reader in support of a command language interpreter. If the FORTRAN
package is merged into a MSC file, it is natural to include the supporting assembly code
with it.

Intermixing ASSEMBLY and FORTRAN decks should cause no problems. The only thing
to watch for is uniqueness in deck names. In this regard you are reminded that the deck
name does not necessarily have to be the same as the entry point name.

As an example of this organization, suppose that VAX file MELANGE .MSC contains

C=DECK APPEND
C=BLOCK FORTRAN

(FORTRAN code)
C=END FORTRAN
C=DECK FASTPROD FASTPROD ASSEMBLY
C=BLOCK CDC ASSEMBLY

(CDC assembly code)

C=END CDC ASSEMBLY
C=BLOCK UNIVAC ASSEMBLY

(UNIVAC assembly code)

C=END UNIVAC ASSEMBLY
C=BLOCK VAX ASSEMBLY

(VAX assembly code)

C=END VAX ASSEMBLY

C=DECK ZZZ
C=BLOCK FORTRAN

(FORTRAN code)

C=END FORTRAN

Appendix A: ASSEMBLY CODE MAINTENANCE A-10

In the stream mode, a file like this is processed just like any other MSC file, because in
the stream mode MAX ignores deck types. The difference comes when FORTRAN or
Assembly mode is used. The invocation

$ MAX/F ..

extracts only FORTRAN decks and ignores ASSEMBLY decks, so it works as if ASSEMBLY decks
were not physically there. For MELANGE .MSC, deck FASTPROD would be “transparent”. On
the other haud,

$ MAX/A ...

extracts only ASSEMBLY decks and ignores FORTRAN decks, so it works as if FORTRAN decks
were not physically there. For MELANGE>MSC, decks APPEND and ZZZ would be “transpar-
ent”. '

The combined specification
$ MAX/A/F ...

processes both FORTRAN and ASSEMBLY decks in one pass. No deck is transparent. This
makes sense for two target machines: Univac and CDC, but for different reasons.

MAX/A/F for Univac

The output file receives extracts of both FORTRAN and ASSEMBLY decks, in the same order
as they appear in the MSC file, preceded by appropriate control cards. For the example
file the command

$ MAX/A/F/UNI/WC/HDG <MELANGE >.UNV

will give you MELANGE . UNV, which looks like
QHDG,P APPEND

QFTN,SIO APPEND
(ASCII FORTRAN code)

QHDG,P FASTPROD
Q@ASM,SI FASTPROD

(ASCII FORTRAN-compatible assembly code)

QHDG ,P YA AN A
QFTN,SIO ZZZ

(ASCII FORTRAN codc)

A--10

A-11 §A.3 MIXING FORTRAN AND ASSEMBLY DECKS

Although in Univac the FORTRAN compiler and the Assembler are separate system pro-
cessors, a file configuration such as MELANGE . UNV makes sense because it embeds the control
cards which specify which processor is to be called. Consequently, MELANGE .UNV can be
Q@ADDed to the runstream as one file.

REMARK A.9
If the ATHENA distribution key is specified, all @FTN,SI0 become QFOR,SI.

MAX/A/F for CDC Cyber
If the example file is processed by
$ MAX/A/F/CDC/WC <MELANGE >.CDC

you get MELANGE.CDC, which looks like
*DECK APPEND

(CDC FORTRAN code)
*DECK FASTPROD

(COMPASS code)

*DECK 2722

(CDC FORTRAN code)

Note that the resulting output contains intermixed FORTRAN and Assembly code but
no control cards; only UPDATE cards. Merging does make sense, however, because of a
unique feature of CDC FORTRAN: both the FTN (FORTRAN 66) and FTN5 (FORTRAN
77) compilers can detect and process interspersed COMPASS assembly code as long as such
code is properly identified by an IDENT line with the word IDENT starting at column 11.

A-11

Appendix A: ASSEMBLY CODE MAINTENANCE

A-12

Another interesting consequence of this CDC capability is the fact that COMPASS code
that implements features unique to CDC can be maintained in FORTRAN decks if you wish.

For example:

*=DECK FL

*=BLOCK CDC FORTRAN

IDENT

* X X

ENTRY
FL BSS
SA2
BX7
LX2
SA7
BX6
SA6
MEMORY
SAt
SA2
AX1
BX6
SA6
EQ
TEMP BSS
STAT BSS
END

FL (K)

SUBRQUTINE FL(K)
RETURN FIELD LENGTH IF K = 0
SET FIELD LENGTH TO K IF K = O

FL
1

X1

X1

30

TEMP

X2

STAT
CM,STAT,RECALL
STAT

TEMP

30

X1

X2

FL

1

1

*=END CDC FORTRAN

X2=K

X7=ADS(K)

SHIFT K TO LEFT HALF
SAVE ADS(K) IN TEMP
X6=SHIFTED K

STORE IN STAT

MACRO FOR FIELD LENGTH
X1=STAT

X2=TEMP

MOVE STAT TO RIGHT HALF
RESULT TO X6

RETURN STAT TO K
RETURN

FL is a good candidate for being in a FORTRAN deck because it implements a program-
ming function unique to CDC equipment. The fact that a * in column 1 also identifies
comment lines in FORTRAN 77 is quite useful because MAX’s WC qualifier acquires uniform

re

implementation.

A-12

A-13 §A.4 MIXED DECKS

§A.4 MIXED DECKS

A deck that contains both assembly code and FORTRAN code is called a MIXED deck,
and must be identified as such in the C=DECK line. This deck organization may be.used
(with caution!) when you have the same subroutine or function implemented on both
FORTRAN and assembly code for some machines.

To give an example, suppose that you have CDC and Univac assembly versions of sub-
routine ABORT (which forces abnormal run termination) and also a more-or-less machine-
independent version implemented in FORTRAN. This can be collectively packaged into
one deck with the following structure:

C=DECK ABORT ABORT MIXED
C=IF CDC
C=BLOCK ASSEMBLY

(CDC assembly code)

C=END ASSEMBLY
C=ELSEIF UNIVAC
C=BLOCK ASSEMBLY

(Univac assembly code)

C=END ASSEMBLY
C=ELSE
C=BLOCK FORTRAHN

(FORTRAN version)

C=END FORTRAHN
C=ENDIF

The IF ... ELSEIF ... ELSE ... E!IDIF organization is a foolproof one for MIXED
decks in spite of the fact that it is somewhat difficult to read. Here are the basic rules:

1. Assembly versions go within ELSEIF blocks except the first one, which goes in the IF
block.

2. The C=1IF statement must be the second line of the deck. .

3. Ordering of the assembly versions is irrelevant, but multicompiler versions, if any,
must be properly nested (this is not shown in the example).

4. The FORTRAN version is always the last one, and it goes in the ELSE block.

A-13

Appendix A: ASSEMBLY CODE MAINTENANCE A-14

An Alternative Structure

There is a seemingly simpler deck organization that does not use the IF ... ENDIF

construct:
C=DECK ABORT ABORT MIXED

C=BLOCK CDC ASSEMBLY
(CDC assembly code)

C=END CDC ASSEMBLY
C=BLOCK UNIVAC ASSEMBLY

(Univac assembly code)

C=END UNIVAC ASSEMBLY
C=BLOCK FORTRAHN

(FORTRAN version)

C=END FORTRAN

But this has a flaw. Can you think what it is? Answer: if you try to MAX/A/F this deck
for Univac or CDC, both the assembly and the FORTRAN version will be written to the
output file, which will get you some nasty Assembler diagnostics. This problem can be
circumvented by qualifying the FORTRAN block with negative keys:

C=DECK ABORT ABORT MIXED
C=BLOCK CDC ASSEMBLY

(CDC assembly code)

C=ENID CDC ASSEMBLY
C=BLOCK UNIVAC ASSEMBLY

(Univac assembly code)

C=END UNIVAC ASSEMBLY
C=BLOCK FORTRAlIl -CDC -UNIVAC

(FORTRAN version)

C=END FORTRAN -CDC -UNIVAC

but this is not very readable. And if vou later on insert another assembly block, say for
VAX, you have to remember to add -VAX to the FORTRAN block.

A-14

NASA

ot 0dt AT LaduTl s aned
“ld e ARt gle

Report Documentation Page

1. Report No. 2. Government Accession No.

NASA CR-178383

3. Recip'ient’a Catalog No.

4. Title and Subtitle
Utilities for Master Source Code Distribution: MAX and Friends

5. Report Date
October 1988

7. Author(s)
Carlos A. Felippa

6. Performing Organization Code

8. Performing Organization Report No.

LMSC-D812789

9. Performing Organization Name and Address
Lockheed Missiles and Space Company, Inc.
Research and Development Division
3251 Hanover Street
Palo Alto, California 94304

10. Work Unit No.
505-63-01-10

11. Contract or Grant No.
NAS1-18444

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23865-5225

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor: W. Jefferson Stroud

Current affiliation: Carlos A. Felippa, Center for Space Structures and Controls, Campus Box 429,
University of Colorado, Boulder, CO 80309-0429

16. Abstract

be directly compiled.

VMS command procedures.

MAX is a program for the manipulation of Fortran master source code (MSC). This is a technique by
which one maintains one and only one master copy of a Fortran program under a program development
operating system, which for MAX is assumed to be VAX/VMS. The master copy is not intended to
Instead it must be pre-processed by MAX to produce compilable instances.
These instances may correspond to different code versions (for example, double precision versus single
precision), different machines (for example, IBM, CDC, Cray) or different operating systems (for example
VAX/VMS versus VAX/UNIX). The advantages of using a master source is more pronounced in complex
application programs that are developed and maintained over many years and are to be transported
and executed on several computer environments. The “version lag” problem that plagues many such
programs is avoided by this approach. MAX is complemented by several auxiliary programs that perform
nonessential functions. The ensemble is collectively known as MAX and Friends. All of these programs,
including MAX, are executed as foreign VAX/VMS commands and can be easily hidden in customized

17. Key Words (Suggested by Authors(s))
Software engineering utilities
Source code maintenance

18. Distribution Statement
Unclassified—Unlimited

Subject Category 39

19. Security Classif.(of this report)
Unclassified

20. Security Classif.(of this page)
Unclassified

21. No. of Pages | 22. Price
68 A04

NASA FORM 1626 oCT 8¢

For sale by the National Technical Information Service, Springfield, Virginia 22161.2171

