
NASA Contractor Report 178383

Utilities for Master Source Code Distribution:
MAX and Friends

1389- 38 18

Carlos A. Felippa

Lockheed Missiles and Space Company, Inc.
Palo Alto, California

Contract N AS 1- 18444

October 1988

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

Preface
b

‘ 8

MAX is a program for the manipulation of Fortran master source code or MSC. This is a
technique by which you maintain one and only one master copy of your important Fortran
programs under a program deoelopment operating system, which for MAX is assumed to
be VAX/VMS. The master copy is not intended to be directly compiled. Instead you have
to pass the MSC through MAX to produce compilable instances. These instances may
correspond to different code versions (for exa.mple, double precision versus single precision),
different machines (for example, IBM, CDC, Cray) or different operating systems (for
example VAX/VMS vs. VAX/UNIX).

The advantages of using a master source is more pronoitnced in complex application
programs that are developed and maintained over many years and are to be transported
and executed on several computer environments. The “version lag” problem that plagues
many such programs is avoided by this approach.

MAX is complemented by several auxiliary programs that perform nonessential fanc-
tions. The ensemble is collectively known as MAX and Friends. All of these programs,
including of course MAX, are executed as foreign VAX/VMS commands and can therefore
be easily hidden in customized VMS command procedures.

1

TABLE OF CONTENTS

Sect ion Page

1 INTRODUCTION
1.1 What is MAX?

2 RUNNING MAX
2.1
2.2 Program Execution
2.3 *Command Packaging

Mow Can I Access MAX'?

1-1
1- 1

2- 1
2- 2
2-3
2-4

3 COMMAND COMPONENTS 3- 1
3.1 Command Qualifiers 3-2
3.2 Input Filename 3-5
3.3 Output Filename 3-6
3.4 "Deck Specifications 3-6
3.5 *User-Specified Ilistribution Keys 3-8

4 MSC FILES: BASIC FEATURES 4- 1
4.1 General 1)c~scription 4-2
4.2 The DECK Control Statement 4-3
4.3 The BLOCK and END Control Statements 4-4
4.4 Distribution Rules 4-5
4.5 Distribution Keys 4-6
4.6 Empty Distribution List: File Splitting 4- 7
4.7 *Deck Header hlapping 4-8
4.8 *Syntactic Sugar 4-9

5 MSC FILES: ADVANCED FEATITRES 5- 1
5.1 'Macrokeys 5-3
5.3 *The ELSE Control Statement 5-5
5 .3 *Negated Keys 5-6
5.4 *The ELSEIF Control Statement 5- 7
5.5 ' INCLUDE Statement Translation 5-9
5.6 'Cycled Keys 5-9

* Advanced topic

..
I1

TABLE OF CONTENTS (continued)

szction

6 REX
6.1 Motivation
6 .2 Access and Use Information

7 INCLUDE
7.1 The INCLUDE Utility

8 SCAM
8.1 The SCAM Utility
8 .2 How to SCAM
8.3 *Advanced SCAMrriiiig

9 A TRIP DOWN MEMORY LANE
9.1 MAXifying Old Code
9 .2 Inserting DECK Jdentifiers
9.4 Inserting FORTRAN Blocks

A ASSEMBLY CODE MAINTENANCE
A-1 *Target Audierice
A-2 *All-Assembly MSC Files
A-3
A-4 'Mixed Decks

*Mixing Fortran and Assembly Decks

Page

6- 1
6- 2
6- 3

7- 1
7-2

8- 1
8-2
8- 3
8-5

9- 1
9- 2
9-3
9-5

A- 1
A-2
A-3
A-9
A-13

* Advanced topic

...
111

Introduction

Sectlon 1: INTRODUCTION 1-2

$1.1 What is M A X ?

The Master Distributor MAX is a utility “filter” that takes h4aster Source Code (MSC)
as input, and produces output tailored to specific iiscr needs. Writing programs in Master
Source Code means that you work only on one arid only one master version, which contains
all conceivable instances of code you want to submit to FORTRAN compilers or assemblers.

Some of the things M A X can do are: split a text file, extract, selective portions of a
program socrce file, produce VAX, CDC or UNIVAC conipilable output, or configure an
assembly procedure file.

M A X is entirely coded in FORTRAN 77, and uses only formatted FORTRAN 1/0
with with internal (dynamic) unit assignments. On the VAX 11/780, M A X can be executed
through the foreign commarid facility of VAX/VMS; the net effect is that a MAX invocation
looks like any other VMS command.

When Should M A X be Used?

M A X is designed to maintain medium-scale FOItTRAN application codes (which may
possibly include FORTRAN callable assembly language modules to do special things not
available in FORTRAN). By medium scale I mean substantial codes that are developed
and maintained over many years, but by one person. What I am trying to emphasize here
is that M A X is a personal utility.

M A X is not needed for simple “throw away” code, b.e. the sort, of code you hack out
in a few days and throw away after you are done with it. At the other extreme, M A X
is also inappropriate for very large-scale programming projects in which a more rigorous
source control is needed; here I am thinking of a formally-organized programming team
working on a big program with over 100,000 lines of code.

To summarize: M A X is intended for the rriiddle ground of scientific programming:
codes in the order of 1000 to 100,000 lines, which are understood and maintained by one
person, and which are likely to be transported to several computers over their lifetimes.

What Makes M A X Run?

Much of the power and flexibility of MAX corries from its ability to process distribution
keys . Distribution keys are labels that determine which portions of the input file are to be
put out,, or “distributed”, for downstrc.arn i i w . For example, distrihuf.ion key FORTRAN is
used to extract F O n T H A N - c o r r i ~ ~ i l ; l t ~ l ~ ~ codc lirivs.

There are predefined distribution kvys i n MAX, such as FORTRAN, ASSEMBLY, VAX,
IBM, etc. But most distribution keys are user-definable (where by “user” I mean the code
developer). In addition, M A X users may define macrokeys, which are keys that stand for
a logical combination of others; e.g., short key U C 4 might stand for something like

UNIVAC . O R . (CDC . A N D . FTN4)

-.._ 1.- 2

3

Running
MAX

2.- 1

Sectlon 2: RUNNING MAX 2-2

52.1 HOW CAN I ACCESS MAX?

If NICE Is Installed on Your VAX ...
On VAXs 011 which the NICE system is irist,ailed you probably will also find a M A X

executable on a directory which has the logical name HICE$EXE defined by the system.
You may verify that this is the case by typing

$ SHOW LOG IIICE$EXE

which will tell you i f NICE$EXE is defined as a system-wide logical name table.

L O G I N . COM file:
If NICE$EXE : exists you simply insert the following foreign-command definition in your

$ MAX : ==$NICE$EXE :MAX, EXE

After doing (DL0GII.J you are all set to use MAX.
There is nothing magic, by the way, about the left-liand side symbol MAX. You ca.n

select anything you please, for example if you already use the symbol MAX for other things.
T h e symbol M A X will be used throughout this document for definiteness. Another important
thing: don’t forget the dollar sign before NICE$EXE.

Otherwise ...
If HICE$EXE is not defined you will have t,o install M A X and Friends on yorir own. Suppose
that you acquire M A X by sortie unspecified means arid manage to get an executable image
MAX.EXE in one of your directories. For definiteness assume that that directory is, say,
DSK4 : [JOHNDOE. M A X I . Then in your L O G I F J . COM you insert the foreign-command definition

$ M A X : ==$DSK4 : [JOHIIDOE . M A X] M A X . EXE

and after a dLOGIII y o u are ready to use RIAX. Again it is important not to forget the $
before the disk name.

2 2

2- 3 52.2 PROGRAM EXECUTION

52.2 PROGRAM EXECUTION

Once the definition is installed in your LOGIIJ . COM file, you can invoke MAX just like any
other VAX/VMS command. All of the information may usually be placed in a single line.
In the rare cases when more that one line is needcd, the VAX/VMS continuation symbol
(hyphen) may be used.

If essential items such as the input and output filenames are left out, MAX will prompt
you for them; otherwise appropriate defaults are assumed.

The MAX-invocation command may be described formally as

where components enclosed in brackets are optional. Note that the command name (MAX
being assumed here); input filename and output filename are required specifications.

Except for MAX appearing first, coinniand components may appear in m y order. The
sequence shown above is nonetheless rt~cornrric~ided for disciplined use.

Here is how MAX invocations may look (for the mornelit don’t worry too much about
the statements that follow the symbol MAX; they are explained ful ly in $3):

$ MAX <CLIP.HLP
$ MAX <CLIP.VAX >/MSC
$ MAX/FOR <CLIP.VAX >.FOR
$ MAX/FOR <CLIP.VAX >.FOR #CLIM* MACRO COMPRO
$ MAX/F/CDC <CLIP.VAX >.CDC
$ MAX/F/CDC <CLIP.VAX >.CDC FTM4 MACRO GAL

In these and subsequent examples, the first $ is the VAX/VMS prompt.

2 3

Section 2: RUNNING M A X 2-4

52.3 *COMMAND PACKAGING

Abbreviations

An advantage of the one-line reference is that, t hc syrrit,ol-dcfinition facility of VAX/VMS
may be used to abbreviate frequently used M A X invocat,ions. For example:

XCDCLIP:==$NICE$EXE:MAX/F/CDC <CLIP.VAX >.CDC FTN4 MACRO GAL

Now entering XCDCLIP as a pseudo-command has the same effect as typing the last example
line shown in s2.2.

Command Procedure References

If parameterization of certain M A X command components is desirable, command proce-
dures including one or more references to it can be readily constructed. Three examples
from the author's collection are given below to clarify this point.

EXAMPLE 2.1

File [FELIPPA .MAX]XFOR. Cob1 contains the procedure

$ MAX/FOR C ' P l ' > . F O R ; 9 9 9
$ DOT : = ' F $ L O C A T E (' . " , P l) '
$ FIJAME : = ' F$EXTRACT (0, DOT, P 1) '
$ SET 11001J
$ FOR ' FNAME ' . FOR ; 999
$ DEL ' FlIAME ' . FOR ; 999

The procedure reference may be abbreviated by tlefining in your LOGIN. COM file

$ XF : ==@ [FELIPPA, MAX] XFOR

Now typing
$ XF CLIP.VAX

extracts the FORTRAN source f r o r i i C L I P . V A X into C L I P . FOR; 999, compiles it into C L I P . OBJ, and
deletes the intermediate .FOR file.

R E M A R K 2.1

If the input filename exterision is omitted, M A X assumes .MSC (cf. 33 .3) .

R E M A R K 2.2 '

The .FOR file is deleted regardless of whether t t i c , cornpilation was error-free or not, because of
the presence of the SET 1iOO1.I statenient.

2 4

2-5 52.3 *COMMAND PACKAGING

EXAMPLE 2.2

File [FELIPPA .MAXlXIiICE. COM contains the proc~diire
$ MAX/FOR C ' P 1 ' > . F O R ; 9 9 9 ' P 2 ' 'P3' ' P 4 ' ' P S ' 'P6'

$ FNAME : = 'F$EXTRACT(O,DOT,Pl) '
$ SET NOON
$ FOR 'FNAME' . F O R ; 9 9 9
$ DEL 'FIIAME' . FOR; 999
$ I F $STATUS THEN L I B HOME:!IICE 'FHAME' . O B J
$ I F $STATUS THEN LIB/COM H0ME:HICE
$ DEL ' FIJAME' . OB J . *
$ PUR HOME:

s DOT : = e FSLOCATE (11 , P i)

The abbreviated reference is

$ XNICE : == 0 [FELIPPA. MAXI XIIICE

Now entering I

$ XNICE CLIP.VAX

performs the ailme compilation sequence as in t2he prcvioiis example. updates and compresses
object library HOME: NICE, and finally gets rid of the otjject file. Procedure parameters P 2 through
P 6 are available for user key or deck name specifications.

EXAMPLE 2.3

File [FELIPPA .MAX] GETDECK. COM contains the one-line procedure

$ MAX # ' P 1 ' >/MSC < ' P 3 '

The abbreviated reference is

$ GETDECK : == Q [FELIPPA. MAX] GETDECK

Typing

$ GETDECK SKBSOL FROM SKYPUL.KER

extracts deck SKBSOL from t,he hfSC file SKYPUL.KER, arid piit,s it into file SKBSOL.MSC, which is
created by the run. In this abbreviated rvfcrence, FROM is a nmernoiiic "noise" word ignored by
the GETDECK procedure.

2 -5

3
Command

Components

3- 1

Section 3: COMMAND COMPONENTS 3-2

$3.1 COMMAND QUALIFIERS

MAX command qualifiers may be categorized into four types: execution mode spec i f iers ,
target rnachtne tdent t f iers , optton output scIpcIors , o n d prompters. ‘I’hcse are described in
detail below.

Each command qualifier must be inmediately prefixed by a slash; blanks may be
entered, however, before a slash. Upper or lower case input is acceptable.

Mode Qualifiers

These specify “ M A X execution modes”. An execution mode answers the question: what
is the output intended for?

none Stream mode: no particular output, use is implied. For example, if M A X
is simply used to split a file into decks.

FOR FORTRAiY mode: out,put is to be processed by a FORTRAN compiler.

ASM Assembly mode: output is to be processed by an assembler.

Bot,h FOR and ASM may be abbreviated to the first character.

Machine Identifiers

These qualifiers specify the target corripi1tc.r for downstream use of the output. They are
only effective in corijunctiori with the FOR or ASM execution In,odd. In the stream mode,
machine identifiers are irrelevant.

noti e VAX computer.

CDC CDC Cyber computers.

UN I Univac 11 00 computers.

I BM IBM 370-type computers.

CRAY CRAY 1 computers.

CY 205 CDC C y l m 20.5 cornput (b u s .

MACH=Muchzne Allonis the specificat ion of a iriacliiiie identifier which is not one of the
above. For example,

/MACHINE=APOLLO

In this case, you can c h o o ~ c the riiacliirie identifier.

3-3 53.1 C O M M A N D QUALIFIERS

Cornrnonly Used Output Options

These qualifiers may be used to enable or disable various output options. The basic ones
are:

L Asks for informative listing: distribution kcylist, and final MAX execu-
tion statistics (lines and decks written). If omitted, MAX remains silent
except for error diagnostics.

WC Used in conjunction with FOR or A$M to force comment lines to be writ-
ten to the output. Without this option, coniment lines are skipped.
Meaningless in stream mode.

WM Used in conjunction with FOR or ASM to force MSC control lines (those
that, start with C=, *=, != or . =) to be written to the output. This is
not necessary in stream mode.

uc Forces conversion of all case letters to upper case. Meaningless in stream
mode.

Suppresses writing of hlSC lines in stream mode. It has no effect in FOR
or ASM mode.

XM

*Ex0 t ic Output Opt ions

T I In FORTRAN mode, it tells MAX t’o “translate” 11,ICLUDE statements from
the VAX form t.0 those appropriate for Univac or CDC. (For further details,
see 55.5:)

N L For FOR/CDC mode only: generate appropriate C$LIST control lines for locally
turning-off o f compiler listing. Primarily useful to suppress repetitive COMDECK
output (remember that CIIC does not have an INCLUDE statement, so this is
the oiily effective way to achieve a no-list effect).

SIC For FORTRAN mode only: sLrip inline comments from FORTRAN state-
ments. Inline comment text is assumed to start with the substring blank-
exclarnat ion mark-hlank. (‘1’0 rliarige the miclrharartjer to another one, use
the SIC=cliar form described below.) Caution: MAX doesn’t check for oc-
currence of khe separat,or sequence i n active character strings, e.g., DATA or
FORMAT statements; if they occur, the strings will be stripped.

SI C=c har Strip inline comments separated by blank-char-blank sequence sequence. For
example, hiAX/F/SIC=O specifies that inline comments follow an at-sign, for
Univar .

HDG

WAC

For FORTRAN/Univac or Assembly/Univac mode only: generale appropriate
O H D G , P control lines t,hat display the deck name.

For FORTRAN mode only: force n l l comment lines to be written out.

3--3

Sectlon 3: COMMAND COMPONENTS 3-4

XDH For FORTRAN mode only: suppresses the output of the deck-header line
(§4.7).

*Prompt Requesters

Thrse qiialifiers requesL MAX t o prompt for c c r h i n iterris instead of c>xpert,ing command-line
speci fica tioris.

D=n

K= n

where n is an unsigned integer (1 through 9) asks MAX to prompt for n deck
names for selective extraction.

where tz is an unsigned integer (I through 9) asks MAX to prompt for n
user-specified distribution keys.

Q ii a 1 i fi er Examples

I n the following examples, only the MAX invocation a n d yuatifiers are shown for brevity
(input filename, o u t p u t fileriame and distribution keys arc omitted). As always, $ is the
VAX/VMS prompt.

EXAMPLE 3.1

No qualifiers means: st,rearn ~riodc. evcbrythirig wri t Ieii out,.

EXAMPLE 3.2

$ MAX / F

FORTRAN mode; VAX assuiiied; hISC and coiiiment lines suppressed.

EXAMPLE 3.3

$ N A X / F / C D C / W C / L / T I

FORTRAN mode; CDC ronipiittir target; hISC lines suppressed; comments written ou t ; informa-
tive print; INCLI'DE translatfion.

EXAMPLE 3.4

EXAMPLE 3.5

$ M A X / F / K = 4 / D = l / S I C

FORTRAN mode; VAX assumed; prompt for four user keys and one deck name; s t r ip inline
comments after blank-exclamation rnark-blank (default character for SIC).

3 4

3-5 $3.2 INPUT FILENAME

53.2 INPUT FILENAME

The name of the input file, immediately prcceded by <. For example:

$ max/f <sky:solver.msc

The filename is terminated by a blank or a carriage return. Note that lower case input is
accept able.

This is a mandatory specification. If omitted, the user will be prompted for it. On
responding to be prompt, enter the filenaitie zuithout the < prefix. For example:

$ MAX/F >O
Input filename: SKY:SOLVER.MSC

Here the Input filename prompt message comes from MAX.

If the filename extension is omitted, as well as the period, .MSC is assumed. Thus in the pre-
vious two examples one may in fact use the abbreviation SKY :SOLVER for SKY :SOLVER.MSC.
To specify an input file with a blank extension, end the filename with a period and nothirig
afterwards (except possibly a version specification).

3- 5

Section 3: COMMAND COMPONENTS 3-6

$3.3 OUTPUT FILENAME

The output file is specified on the comnaricl linc h y prefixing 1,hc filename with a >. For
ex it 111 p I e :

$ MAX/FOR (SOLVER >SOLVER.FOR

Output goes to SOLVER.FOR, which will he crcatrd i t 1 the default directory. (Note that the
input file is SOLVER. MSC.)

This is a rnattdatory specification. I f oitiittecl, the uscr will be prompted for it. On
responding to be prompt, omit the > prefix.

Shorthand output-file specifications are cornmonly uscd. If only the file extension,
preceded by a dot, is given, the input filenaitie is assumed. For example:

$ MAX/FOR (SOLVER >.FOR

This is equivalerit to the previous exarriplc.
specific version number, as in

The extension may be also followed by a

$ MAX/F <SOLVER >.FOR;4

although this is rarely used outside of cornmaiid procediircs.
If the same extension is specificd. as in

$ MAX/FOR <MATHLIB. VAX > . VAX
then the operating system will creatc a ~ i i w cyc lr of MATHLIB. VAX to rticcive the output.
But this can be dangerous: one slip of t h c fingers typing PUR a n d your source is gone!

A file extension preceded by a slits11 forces f i l e splafting. 111 this case one output f i l e
will be created for each output d f c k . The nanit of each outpiit file is formed by appending
the specified extension to the deck name. Example:

,

$ MAX (SOLVER >/DEK

If SOLVER .MSC contains four (I c c ~ s , say A, B, C and D, four out p i i t files nar~ied A . DEK, B. DEK,
C .DEK and D .DEK will be created. Not(. t h v iiriportaiice of the >; without t8hst the /DEK
specification would look the same as R coiiiriianci qiia1ifit.r.

Occasionally it is i isc~fril (f o r \rcrificnt ion o r cvliicat i o n i t 1 p i i r p w s) to rnakc MAX 0111 p i i t

come to the fe rmtr ta l . ' lhe following spccilicat ion docis it:

$ MAX <SOLVER >O

i . e . , a zero (not an oh!) sft,er the > mark. (1Jy t l i i . way. this command also works for the
input file: <O specifies terminal input,.)

3- G

3-7 $3.4 *DECK SPECIFICATIONS

§3.4 *DECK SPECIFICATIONS

Most MAX operations are to be performed on all decks contained iii the input file. No
explicit deck specifications are then rcyuired. (I f you don’t know what a “deck” is, please
skip over this subsection until you do; it is explained in $4 .)

Occasionally it rnay be desirable to restrt’ct input file processing to a few decks. To
give an example, suppose that the input file B I G . OlIE contains 80 decks, and it is desired
to split c a t decks SOLVl and SOLV2 into files SOLVE1 .MSC and SOLVE2 .MSC for convenient
editing. The following command does it :

$ MAX <BIC.OIJE >/MSC #SOLVl #SOLV2

If these happen to be the orily deck names whose first 4 characters are SOLV, this can be
further abbreviated to

$ MAX < B I G . O N E >/MSC #SOLV*

which takes advantage of the name-masking capabilities of MAX.

General rules for deck-name specifications are:

1 .

2.

3.

Deck names must be prefixed with a pound sigii, arid terminated by a blank or carriage
return.

Up to 16 deck names may be specified (but orily up to 9 if a prompt-request is issued.)

A n y deck name rnay cotltiiirl masking c h o m c t c r s , which work according to VAX/VMS
n ame- mas k i t ig co 11 ve n t i 011 s . Fo I‘ ex an I p le

#BQ*
matches all names starting with BQ,

matches all six-character deck names that start with FOR and end with 4, and so on.
#FOR%%4

Qualifier D=n rnay be used to request prompting for ti deck names (cf. 53.1). In response
to the prompt, omit the pourid prefix.

3-7

Sectlon 3: COMMAND COMPONENTS 3--a

53.5 *USER-SPECIFIED DISTRIBUTION KEYS

The invocation cornrnand may contain user keys tliat control the distribution process. For
c s ani p le :

$ MAX/FOR <EZGAL.VAX >.FOR PROCEDURE MACRO

Here PROCEDURE and MACRO are user keys. ‘These are rtcognizcd as such by not having any
special prefix.

Another way to specify user keys relies on the use of the qualifier K=n (see 53.1). For
example if you say

$ MAX/FOR/K=2 <EZGAL.VAX >.FOR

then you will be prompted for two keys.

is explained in detail in 54.
U p to 16 user keys may be entered. The effect of these keys on the distribut,ion process

3 --8

I . MSC Files:
Basic Features

4-1,

Section 4: M S C F ILES: B A S I C F E A T U R E S 4-2

$4.1 GENERAL DESCRIPTION

The input to MAX is an MSC file. An A4SC f i l e is an aggregate of decks. A deck is a
sequence of card images identified by a name.

Decks include MSC control s t a t e m e n t s that, describe it for various purposes. There is
a t least one MSC control statement pcr deck, which specifies the deck name; but generally
there are many more. A n hISC control statement begiris wi th C= in its first two columris,
followed by 1 control word (an extension of t,his rule is given in 54.9).

MAX recognizes the following MSC‘ statements:

C=DECK decknarnl [decknarn;!] [decktype]
C=BLOCK key1 [key2 . . . key,]
C=END [keyl . . . key ,]
C = I F key1 [key;! . . . key ,]
C = E L S E I F key1
C = E L S E
C = * n z a c r o k e y key1 L: .AND. k e y a AND. k e y , I
C=*macrokey k e y , [.OR. key2 O R . key ,]

111 the above list, upper case strings shown in typewriter font denote literals, i.e. they
must be spelled exactly as shown. Shown in italics are labels or keys selectcd by the deck
writer. Expressions shown i n brackets are optional. 1’:verything after the control word call

be written free-field, with blank separators.

Here are actual examples of MSC statements so you can see liow they look:

C=DECK SKYSOL
C=DECK SKYSOL SKYSOL FORTRAN
C=BLOCK FORTRAFJ
C=BLOCK CDC FT1J5
C=EIID
C=ElJD FORTRAN
C=EIID *UV
C=*CUV CDC . O R . Ul l IVAC . O R . VAX
C=+UA UNIVAC . A I l D . A S C I I
C=*UAV *UA . O R . V A X

In this section only the DECK, BLOCK and EIJD control statements will be described. Learning
these will get you started and will bc sufficicnt i f your programmirig is largely standard
FORTRAN. The other MSC statements are described under the advanced features covered
in $ 5 .

4-2

4-3 $4.2 T H E DECK C O N T R O L S T A T E M E N T

I
54.2 THE DECK CONTROL STATEMENT

The C=DECK statement identifies a deck arid trillst be the first line of each deck. Three
names may follow the control word; each name may be up to 12 characters long and
should consist of alphanumeric characters only.

Caution: if you plan to split MSC files on the VAX, deck names
should be restricted to nine characters, because deck names become
filenames, and VAX/VMS filenames are restricted to nine characters.

The first name identifies the deck and is mandatory. The second one should be the same
as the first name. The third name identifies the deck type. If explicitly given, it should be
one of these:

FORTRAN
ASSEMBLY
MIXED
PROCEDURE
DATA

for decks containing only FOR.TRAN source code
for decks containing only assembly-language code
for decks containing a mix of FORTRAN and assembly language
for decks containing INCLUDE text
for decks containing program data

If the deck type is otnitted, FORTRAN is assurnd . If the second name is omitted, a repeated
deck name is assumed.

I I
Caution: Deck types PROCEDURE and DATA should not be intermixed
with other deck types in the same h4SC file.

I I

4 - 3

Sectlon 4: M S C FILES: BASIC FEATURES 4-4

94.3 THE BLOCK AND END CONTROL STATEMENTS

The C=BLOCK and C=END statements serve as “dividers” that label internal deck sections
with active keys. Following the C=DECK line there are no active keys. When a C=BLOCK
line is encountered, its keys ale appended to the active key list. When a C=END line is
encountered its keys are removed from the active key list.

by the matching C=BLOCK line.
A C=EHD statement with no keys after the EIJD word removes the active keys introduced

The following example will be used in following subsections to illustrate the concept
and function of active keys:

Deck
line

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Text

C=DECK S L I N E S L I l l E FORTRAI’J
nzst
C=BLOCK USAGE
cm.t
c mt
C=END USAGE
mst
C=BLOCK FORTRAtl
f s t
1st
fst

fst

js t

f s t

C=BLOCK L A B l

C=BLOCK L A B 2 L A B 3

C=EIJD L A B 2

cmt
C=EIJD L A B l L A B 3

C=EIID FORTRAIJ
fst

In the above,

js t FORI‘RAN statement

c m t FORTRAN corrirntntJ

Act i ve keys

USAGE
USAGE
U S A G E
USAGE

FORTRAll
FORTRAN
FORTRAIJ
FORTRAN
FORTRAN L A B l
FORTRAN L A B l
FORTRAN L A B l L A B 2 L A B 3
FORTRAH L A B l L A B 2 L A B 3
FORTRAN‘ L A B l L A B 2 L A B 3
FORTRAIJ L A B l L A B 3
FORTRAIl L A B l L A B 3
FORTRAII L A B l L A B 3
FORTRAN
FORTRAII

mst Control statement ignored by M A X . For example, C=AUTHOR, C = E q U I P M E I J T ,
C = V E R S I O N , . , . These statetncrits are used primarily for documentation
rather than control purposes, and they recognized by the SCAM utility de-
scribed in $8.

4- 4

4-5 54.4 DISTRIBUTION RULES

54.4 DISTRIBUTION RULES

Distribution rules vary according to the MAX execution mode. (If you don’t remember
what “execution modes” are, please reread 53.1 .)

Stream Mode Distribution

A deck line, including MSC lines unless the XM qualifier is on, is output, if each of its active
keys is ir; the distribution k e y list, and the l a t t e r is tionempty. An empty distributioii list
receives special treatment (see Fj4.6).

For example, suppose that the distribution key list for the sample deck above is

FORTRAIJ L A B l L A B 3

In stream mode without the XM qualifier, lines 8 thru 13, 17 thru 21 (inclusive) will be
written out (total = 11 lines).

But if the XM qualifier is specified, only non-MSC lines 9, 10, 11, 13, 17, 18 and 20
will be written out (total = 7 lines).

F O R or ASM Mode Distribution

In FORTRAN or Assembly mode, each compilable source line with active keys in the
distribution list is written to output. Comment lines are not written unless the WC qualifier
appears; hlSC lines are not written unless the WM qualifier appears. The deck identification
line is suitably transformed for compiler compatihility (cf. 54.7).

Going back again to the sample deck of $4.3, suppose that the distribution key list is:

FORTRAN L A B l L A B 2 L A B 3

In the FORTRAN mode without WC and WM qualifiers, on ly the seven lines 9, I O , I t , 13,
15 and 20, plus a inachine-dependent header line, will be output,. If WC is specified, lines
4 , 5 and 18 also are deleted. If both WC and WM are specified, lines 8 through 21 (inclusive)
are deleted.

4 -5

Section 4: M S C FILES: BASIC FEATURES 4-6

$4.5 DISTR,IBUTION KEYS

IJow are distribution keys specified? A distribution kcy m a y be of two types: i m p l i e d k e y
or u s e r k e y .

Implied distribution keys are the result of qualifier options. The following table sum-
mar izes a 11 poss i b il i t ies .

M o d e h4a c h i n e Impl ied keys

Stream i rreltwani, none

FORTRAN VAX (default) FORTRAN V A X
CDC FORTRAN CDC
IJnivac FORTRAN UN I V A C
IBM FORTRAN IBM
CRAY FORTRAN CRAY
CY205 FORTRAN CY205
Machine FORTRAIJ M a c h i n e

Assembly VA X (default) ASSEMBLY V A X
C1)C ASSEMBLY CDC
IJnivac ASSEMBLY U N I V A C

U s e r keys are additional distribution keys select,ed by the person that writes the deck for
whatever purposes he or she has i n mind. The only constraints placed on user keys are:

1 . May contain any printable charact,er except > < , # = / or *. Asterisks are used to
identify macrokeys. cf. $5.1. Periods are reserved for cycled keys (55.6). The first
character must not be $ or ! because these are reserved for inlirie comments ($4.8).

May contain up to 24 characters.

Should not clash with implied key names.

2.

3.

ITser keys supplied in thr corrirnantl may con1 a i r 1 nclsk77,g ccnd cyc le - range spccificat ions. I

I This advanced use is explained in 55.8.

4- 6

4-7 $4.6 EMPTY DISTRIBUTION LIST: FILE SPLITTING

54.6 EMPTY DISTRIBUTION LIST: FILE SPLITTING

Can the distribution list be empty? Yes, but only i n tlit! stream mode when no user keys
arc’ spcx-ified. According to 1 . 1 1 ~ 11~10s of !j,1.3, riot,lliilg shoiild b c ! gc:rieraf,ccl. Ilut this case
occurs so frequently in practice that the rule is reversed: everything is generated.

selective deck extraction. Two examples:
If everything is generated, what is the use of MAX? Simple answer: file splitting and

$ MAX <EZGAL.VAX >/MSC

$ MAX <EZGAL.VAX > / F O R #CMOPEIJ

The first MAX comitiand splits t lie entire file EZGAL. VAX w i t h MSC as cornrnon extension.
The second extracts deck GMOPEN from EZGAL. VAX and puts it i i i file GMOPEN .FOR.

4- 7

Section 4: MSC FILES: BASIC FEATURES 4-8

$4.7 DECK HEADER MAPPING

I n FOR or ASM mode, MAX “maps” the C=DECK Iinc iiito a tlcck-header line appropriate
to (lie target computer. ‘li) illustrate the* rriappirig process, assurIie that the deck name is
DEKNAM and that the deck type is FORTRAN. ‘l’lien the header line format is as shown in the
following table,

Target
VAX
CDC
Univac
IBM
CRAY
CY 205
Machine

0 u 1 p u t h ea d e r fo r 172

(: $ I C 0 fU“1A N 11 E I(N A h l
‘DlCCK IIEKNAhI For UPDATE utility
@! FTN ,S 1 I) E K N A hl
presently same as VAX
presently same as CDC
presently same as CIIC
presently same as VAX

Cotntn e t i t s
Iriiioci~ous editor “1iook”

F T N element identifier

These headers can be “niassaged” with the text editor if necessary. For example, to expand
all (DFTN ,SI to (DFTN ,SI0 before suhmittiiig to Univac’s ASCII FORTRAN compiler.

For ASSEMBLY and MIXED decks, the Iieatler line 0 1 1 Ilriivac starts with (DASM,SI and
(PELT, S I , respectively.

Look a t the output and you’ll get the idea.
A similar mapping takes place f o r PROCEDURE-type decks that contain INCLUDE text,.

4- 8

4-9 54.8 * S Y N T A C T I C SUGAR

$4.8 *SYNTACTIC SUGAR

Inline Comments

In an MSC statement line, anything after hla.nk-dollar sign or blank-exclamation mark is
heated as comment text.

Other Control Statement Prefixes

In addition to C=, MAX recognizes the following control statmilent prefixes:

- *= %= I = -

which are useful for exotic applications.

The IF and ENDIF Variants of BLOCK and END

MAX treats the following control statements

C=IF C=EIfD I F

as equivalent to +BLOCK and C=EI.ID, respectively. These staterr~ent~s provide enliariced
readability i n the use o f the ELSEIF and ELSE control statenlents, which are discussed in
$55.2-5.1.

4- -9

MSC Files:
Advanced Features

5-1

Section 5: M S C FILES: ADVANCED F E A T U R E S

IMPORTANT: This section describes the Inore advanced features
of M A X . Description relies heavily on specific examples. It is assiirried
that readers interested in tahese feat,iires can go from the particular to
the general with only a modicurn of help.

5--2

5-2

5-3 $5.1 *MACROKEYS

$5.1 *MACROKEYS

Consider the following problem. A section of a machine-dependent FORTRAN subroutine
contains code that works on both Univac and CI)C, brit not o n other machines. How
should the section be labeled with MSC stateincnts? The brute-force solution is

C=BLOCK CDC

(code section)

C = E1.J D
C=BLOCK U l I I V A C

(duplicat.ed code section)

This is obviously unclean if the code section is substantial. The elegant solution is to use
a macrokey:

C=*CU CDC . O R . Univac
C=BLOCK *CU

(code section)

C=EHD

The name of the rnacrokey in t h i s example is CU, which starids for “either CDC or Univac”.
The name is picked by the code developer; it should not conflict with other key names,
and must be defined before it appears in a C=BLOCK, statement.

A macrokey definition statement. rimy contain only one type of logical connective: AND
or OR. Inasmuch as a macrokey definition may contain previously defined macrokeys, this
is not much of a restriction, as the‘ following exarnplc below shows..

Caution: There must be at, least one blank space before and after
an . O R . or . A N D . connective.

5-3

Section 5: M S C FILES: ADVANCED FEATURES 5-4

Now suppose that a particular code section is valid only for two specific environments:

CDC computer, FTN4 FORTRAN compiler
Univac computer, FORTRAN V compiler

With the nested macrokey concept, this is easy to represent:

C = * C 4 CDC .AND. FT114
C = * U 5 UIIIVAC .AND. FORTRAIJ5
C = * C 4 U 5 * C 4 . O R . + U 5
C=BLOCK * C 4 U 5

(code sect ion)

C=EIID

llcre FTH4 and FORTRAN5 a re names sclerted h y thc uscr; anything goes in this rega.rd.
There are no limits o n levc3ls of macrokey liesting; however, i n practice one level should

be more than enough. (I f you need more, your code is either t,oo complex or machine
dependent - simplify it.)

5-4

5-5 $5.2 *THE ELSE CONTROL STATEMENT

$5.2 *THE ELSE CONTROL STATEMENT

Let’s consider a variation on the previous theme. A section of a FORTRAN subroutine
happens to work only on CDC. A “complementary” section works on everything but CDC.
This can be elegantly expressed with the help of the C = E L S E statement:

C=BLOCK CDC

(CDC-res tric ted code)

C = E L S E

(code for ot,ticr rnachines)

The code comprised between the E L S E and EIID will be written out, if and only if CDC is not
on the distribution list.

Here is another useful feature for FORTRAN subroutines that do floating-point arith-
metic:

C=BLOCK DOUBLE

C = E L S E

C=END DOUBLE

double precision a(n>, b(4 ,n>

real a h > , b(4 ,n>

Unless DOUBLE is explicitly specified as a distribution key, the szngle-precision version is
generated - if that’s your intention.

5 - 5

Section 5: M S C FILES: ADVANCED FEATURES 6 4

55.3 *NEGATED KEYS

Thc C = E L S E effect discussed in 55.2 can he acliiwcd ir i a rriorf’ direct, rriilnncr witrh n c g d e d
kcys. ‘ I ’ f t c w) are sirtiply kcys p r ~ f i x ~ d I)y it r r i i r i i t s sigri. I;or cxarripk:

C=BLOCK -UIIIVAC

(code vitlitl for a n y h u t 1Jriiva.c)

C=END -UIIIVAC

meaning that the enclosed code block is written o u t unless key UNIVAC appears in the
distribution list, This is the same as saying

C=BLOCK UNIVAC
C = E L S E

(code valid for a n y biit ITriivac)

C=EHD UNIVAC

but saves one line of typing.

Negated keys may appear in macrokey definitions, as in

C = * S I N G L E -DOUBLE . O R . CDC . O R . CRAY

with a “logical complement” meaning. I t is also permissible t,o negate macrokeys, as in

C=BLOCK -:CCU

t1sc.r-spccified distribution kcys may also I)(\ nvgatcc{. ‘I’his feai,urc has tew practical iiws

for MAX execution, for wliy specify, s a l , -DEBUG. w h e n the sarric effect is obtained by
leaving out DEBUG i r i t h t . first placc~? nrit i t has m o r c application !r.hen r.ririnirig SCAM (see
$8.3) .

6 - G

5-7 $5.4 *THE ELSEIF CONTROL STATEMENT

$6.4 *THE ELSEIF CONTROL STATEMENT

The most elahoratPC block-control strrictiirc. acccpted hy MAX involves the combined use
of BLOCK (or IF), ELSEIF, ELSE and END (or ENDIF) coritrol stateiiients. (Itecall from $4.9
that C=IF is the same as C=BLOCK, and C=ENDIF t , l i c A saiiie as C=EIID.)

The structure strongly resembles the 1’0tlTRAN 77 IF-TIIEN-ELSE construct. This
is again best explained by an example.

C = I F CDC

(code for CUC)

C=ELSEIF IBM

(code for H3M)

C=ELSEIF VAX

(code for VAX)

C=ELSE

(“else” code)

C=EIIDIF

Code for CDC will be written out if distribution key CDC appears. Code for TBM will be
written out if distribution key IBM appears atid CDC doesn’t. Code for VAX will be written
out if distribution key VAX appears atid neither CDC nor IBM does. Finally, the “else” code
will be written out if none of tliose t,Iiree keys appears.

Note that if the keys appearing in this construction are muttidly exclusive, the order
in which the subordinate code blocks appoar is irrc:lcvant; but it does matter if they are
not. In practice this coristriiction is best reserwd for niutiially c>xclusive keys or macrokeys.
This is of course the case in the exampk, becallso the kcys tfefiiie different target computer
environments.

5 -7

Section 5: M S C FILES: ADVANCED FEATURES 5 - 8

A completely equivalent construction that uses only C=BLOCK and C=END is possible with
negated keys (85.3):

C=BLOCK CDC

C=END CDC
C=BLOCK -CDC IBM

(code for I D M)

C=EHD -CDC IBM
C=BLOCK -CDC -1BM V A X

(code for VAX)

C=EHD -CDC -1BM V A X
C=BLOCK -CDC -1BM - V A X

(“else” code)

C=END -CDC -1BM - V A X

This is not only less readable, hut takes longer to type. The interesting point, however,
is the way MAX internally handles E L S E I F and E L S E control statements: it maps them to
C=BLOCK and C=END pairs according to t l i e corrc>spondence illtistrated above, so it is in fact
the latter form that is processed by M A X .

Some general cornments. A G E L S E I F must be followed by one and only one key or
macrokey, while a C = E L S E takes nonc. The final C=END or C = E N D I F must be either key-less,
or explicitly list all of the keys (or macrokeys) appearing in the matching C=BLOCK (or
C = I F) and in the C = E L S E I F s .

Other C=BLOCKs may be nested arbitrarily deep within the codc blocks shown above.

Macrokeys, C = E L S E I F , C = E L S E and nesting provide the adventurous user unlimited
power 011 logically cornbiriing implied a n d iistir-dc.fined keys to achieve any unusual effcct.

5 - 8

5-9 55.5 *INCLUDE STATEMENT TRANSLATION

55.5 *INCLUDE STATEMENT TRANSLATION

INCLUDE statements provide a structured aiitl convenient way of specifying global symbols
in FORI’ItAN programs, such as common blocks or PARAMETER tlcclarations. UIifortunately
FORTRAN 77 has not standardized the INCLUDE statement, and its format varies across
compilers (i f provided a t all). Fortunately, the VAX-FORL’RAN form

INCLUDE ‘filename’

appears likely t o become the standard in tlie next revision of the FORTRAN languaget
(perhaps without the apostrophe delimiters).

Because of the foregoing remark, MAX assiitnes that t,he VAX forrn of INCLUDE is
“reference”. This reference form may be exemplified by the VAX/FOR’l‘ItAN statement

INCLUDE ’PROC : SYMBIO .PRC ’

where bhe logical directory name and file extension (PROC and PRC in t,liis example) a.re
optional. When executing in FOR mode with tlie T I option on (53.1), and the target
machine is CDC or Univac, MAX translates the sample statement to

*CALL SYMBIO
IbICLUDE SYMBIO

respectively. Translation is performed by stripping off the filename, and preceding it with
INCLUDE for Univac or *CALL for CDC, with (On CL)C, *CALL is an
IJE’DATE directive, rather than a compiler recognizable statement.)

l‘o make the translation process work snioot,hly, the followitig should he kept in mind.
The word INCLUDE must appear in columns 7-13; all-uppercase or all-lowercase is accept-
able. T h e filename should not e i c e e d szx characters for Uiiivac compatibility. I t is a good
idea tjo keep all your IMCLUDE text in one directory (PROC: in the example) because then
it can be readily packed in one MSC file and translated as a block.

There is a separate converter utility (not M A X) which physically inserts INCLUDE text
in the MSC file itself. This is useful if preparing FORTRAN code for shipping to a computer
whose FORTRAN compiler does not provide a n It lCLUDE rriechanism (for example, IRhl).
This utility is described in $7.

in column 1.

__ -

t Also called FORTRAN 8X.

6 -9

Section 5: M S C FILES: ADVANCED FEATURES 5 --lo

56.0 *CYCLED KEYS

Three programmers, A. B. Cee, Jo. 13. Queue arid X. Y. Zee, are in charge of maintaining
and updating a very large program, whose master source code is in file GODZILLA .MSC.

To keep track of who is doing what to which, the three agree on a “dated fingerprint”
scheme to systeniatically mark updates arid fixes before they are eventually incorporated
i r i GODZILLA. They decide to use MSC tilocks with “signaturekdate” keys. For exaniple, a
correction made hy Mr. Cee on 7 November 1983 rnighl be idenlified by the MSC statement

C=BLOCK ABC.31107 ! Fix relativistic viscoplasticity

C=END ABC.31107
(code)

A user key of the form

nani e . c y c 1 c:

is called a cyc led key. Name is an ordinar>- string, brit rriust not include periods. Cycle is
an unsigned integer in the range 0 through 999999. Both cotriporients arc separated by a
period. (The statement, after the exclarriation iriark is a n inlirie coiriinenf,, cf. 54.8.)

After some time of using t.Iiis convention, CODZILLA .MSC may roritain many cycled
keys. Explicit specification of s u c h keys in the dist rihution list tilay be inconvenient, and
the MAX limit easily exceeded. This difficulty is elirninat,ed by masking and cycle-range
specifications i n the user-specified distribu tiori keys. The following examples should be
sufficient to illustrate how these things work:

User k e y
ABC*
ABC .3*
h h h . 3* 0 0 0

* .3:k
JBq .306*
JBQ.30100:30830
XYZ.:30830
hhh.30131: 0 0 0

Acfiziates for distribution
All keys sigricd by ABC
All 1983 keys signed by ABC
All 198.3 kqis with 3-char signatures
All 1983 keys
Jriiie 1!183 kcys signed by .JHQ
Jan-Ai ig 1!)83 (irirl) kcys sigiictl t)y , I R Q
I) i . c + h y t 1083 kcys signc~l by XYZ
All post-Jan 1983 keys

Of course. the cycled-key scheme also f i t s less formal identification convent ions, for example
VERSION. 1, VERSIOll. 2, ... These rtiay be attracti\-e for one-person programs, for which a
signature component is unnecessary.

6
REX

I

6-1

Section 6: REX 0-2

56.1 MOTIVATION

Consider the following situation. A large MSC file, SOLVER .MSC, contains over a hundred
decks. Three of these: FACTOR, FORSUB and BACSUB, are split out into files FACTOR.DEK,
FORSUB. DEK arid BACSUB . DEK, respectively. a n d their code modified. After verifying the
new software, the programmer wants to put the modified decks back into SOLVER.MSC.
How to do this? On the \‘AX, you can follow t Iiree rtietliods.

Using the Text Editor

You can edit SOLVER.MSC in order to delete the text of the old decks and then invoke
external-file copy to include the new dccks. ’I’his approach is clutnsy, time-consuming,
and above all dangerous. It is easy to delete loo niiicli, or the wrong deck. Furthermore,
exterrial-file copy is very slow when editiiig large files.

M A X s p l i t , Rename and Repack

This can be illustrated for the example case:

$ MAX <SOLVER.MSC >/DDD
$ REI1 FACTOR.DEK * . DDD
$ REIJ FORSUB.DEK .DDD
$ REIJ BACSUB.DEK ‘.DDD
$ PUR
$ COPY :.DDD SOLVER.MSC

$ PUR
$ DEL . DDD . *

This approach is rriuch safer than the tcxt-edit,or method, and can be readily encapsulated
in a command procedure. nut splitting a big f i l c i can be quiic’ slow, and the disk space of
SOLVER. MSC triples during t lie process.

Using REX

REX is a “deck replacerncnt” u t i l i t y which car1 bc invoked w r y much like M A X . For the
example case,

$ COPY FACTOR.DEK,FORSUB,BACSUB DECKS.DEK
$ REX <DECKS.DEK >SOLVER.MSC

REX produces another cycle of f i le SOLVER.MSC i n wtiicli all dvcks that match those i r i

DECKS.DEK - namely, FACTOR, FORSUB a n d BACSUB are replaced by the latter. The
replaced decks occupy the same positron i i i lhc riew hlSC file as before.

iiniiecessary. If you plan to use REX. yo11 triay want to keep that fact in i n h i d .
If the three decks were in the same file to h g i n with, the first copy statement becomes

6--2

0-3

§6.2 ACCESS AND USE 1NFOR.MATION

Accessing REX

If the NICE systcrn is officially installed in your VAX, you c a n gain access to REX simply
by iriserting the foreign-command definition

$6.2 ACCESS AND USE INFORMATION

$ REX : ==$NICE$EXE : REX. EXE

in vour LOGIN.COM file. As always, the symbol on the left can be anything; here we shall
assurnc REX.

If NICE is not installed on your VAX, the above command shoilld reference tlie REX
executable file located in one of your directories; see $2.1.

Invoking REX

T h e format of the REX-invocation comrnand is

where the file specifications are mandatory; if omitted, you will be prompted for them.
Except for REX appearing first, cornmarid components can actually appear in any order.

The optional command qualifiers are:

APP Enable deck-append mode, as explained below.

L Give r u n stat,istics. If omitt,ed, REX stays silent except for error messages
and a running commentary on decks replaced and/or appended.

The file specifications are:

Deckfile Kame of the file that contains the updated dccks. IJy to 2.1 decks are permit-
ted; if more, the execution is terminated and 110 replacement is performed.
Tf the filc cxtensioii is orri i t td, . MSC is assumed.

M S C f i l e The iiame of the MSC file that contains dccks to be roplaced. T h e outpiit
file has t,he same iiatiie but a Iiigher version number (usually the next one).
If the file extension is omitted, .MSC is assumed.

Caution: Other than leaving out the extension, no file-
name abbreviations are permitted.

6-3

~ Section 6: REX 6-4

1 How Does REX Work?

During REX execution, each AiSCjile deck whose name matches a deck name in Deckfile

If a Deckfile deck does not match any deck name in the hfSC’file, the outcome depends
on whether the append mode has been specifictd witfli the APP qualifier. If the a p p e n d
mode is on, all untnatclicd Deckf i le dccks are written to the end of hlSCfile. If the appcnd
mode is not on, nothing happens and an informative message t,o the effect that there were
unmatched decks is given.

is replaced by the latter. -

REMARK 6.1

If you always want the APPEIID mode to be on when you invoke REX, you may redefine the foreign
command as

I

$ REX : ==$IIICE$EXE :REX. EXE /APP

I Examples
$ REX/L <UPDSTUFF.DDD >MARKGLIB.MSC
$ REX/L/APP (BRAIJD . IdEW >CLIP. VAX
$ REX <FACTOR.CMD >SOLVER.HLP

~ Warning: M’hen it, begins riinning, REX opens one scrat,ch fila for m c h
deck present in the Deckfile Iwforc it, begins scanning t,he MSCjile. For
example, if the L)eckf i /e has ‘LO decks, a t a certain point, there will be 23
files simultaneously open (20 for dccks -1- Deckfile + input MSCfile i- o u t p u t
MSCfile). If a REX execrit,ion t.erniinates ivith a n error message t h a t says
something about. too many files being open at, one time, have your computer
system manager increase your “open file” quota and try again.

INCLUDE

7 1

Section 7: INCLUDE 7-2

$7.1 THE INCLUDE UTILITY

Purpose

lNCLUDE is a utility processor that replaces IIJCLUDE statements as in VAX-FORTRAN
(cf. $5.4) with actual text lines taken from tlie referenced files.

Accessing and Executing INCLUDE

To make use of INCLUDE on a \‘AX w i l h t h e NICE system irlstillled, insert the foreign-
command definition

$ IIJ : ==$IlICE$EXE : IIJCLUDE . EXE

in your LOGIN .COM file. (If tlie NJCE systeiti is not available on your VAX, proceed as
indicated in $2.1.)

Once the command definition is activated, you can invoke lNCLUDE as an input-
ou t pu t fi 1 t er :

The file specifications are mandatory; if omitted, the program will prompt you for them.

The only optional qualifier is L. which tells IIICLUDE to print run statistics on comple-

The input and outsput filenames are speci f ied in the usual way. The output filename
may be abbreviated to the version portion only, for example > .FOR. For verification piir-
poses terminal output, may be specificd by >O.

tion.

I 1
Important. lNCL UDE is n o t restrict,ed to processing
hlSC files; in fact , it pays no attention whatsoever to MSC
st aternen 1s.

Example

$ II ,J/L (C L I P . VAX > C L I P . IBM

7- 2

8
SCAM

8 - 1

Sectlon 8: SCAM 8-2

$8.1 THE SCAM UTILITY

Motivation

,4 program developer that maintains a large program file, say ADVLAM. MSC, would like to
do the following:’

“Find and list on the screen all s o i i r c ~ lines included in each MSC control
block that has the key UPDATE. 4”

Trying to do t.his with M A X , for cxarilple by siijtirtg

$ MAX <ADVLAM >O UPDATE.4

will not usually work. The trouble is that tlie distribution process depends on the way in
which key UPDATE. 4 “telescopes” with regards to other keys. f3ut for tlie foregoing request
key interrelations are irrelevant. Only the UPDATE. 4 key, by itself, matters.

This key-lookup job can be conveniently done with another MAX helper called SCAM
(a contraction of “SCAn Msc”). First, as usiial, a foreign command definition is inserted
in your LOGIN. COM file:

$ SCAM :==$NICE$EXE:SCAM.EXE

assuming again that NICE is available to you; i f this is not the case please read again $2.1.
Once the definition is activated, the command

$ SCAM <ADVLAM >O UPDATE.4

will work. The oritput from SCAM will display t lit1 rcqiiestcd hlocks appropriately identified
(in cols. 73-80) by the deck name and deck line number. It should look something like
this:

C=BLOCK UPDATE.4
x = c o l b l k (mat, n , m , 1)
y = sqrt(x)

C=EWD UPDATE. 4

MASTER
000343
000344
MASTER

In this example the SCAM out.piit shows lincs 342 through 345 of deck MASTER.

8 2

8-3

$8.2 HOW TO SCAM

The general form of the SCAM-invocat.ion command is

$8.2 HOW To SCAM

I $ SCAM [/ Q u n l i f i e r s J < Inpulfile >Outputf i le Scnnkeys [# D e c k n a m e s] I

where

62 u a1 if; e rs

In,putfile

0 ti t p u t f i le

Scnnke ys

I> e c k n a tn e s

Examples

The optional qualifiers are: L, whicli caiises run statistics to be printed,
and NOID (which may he abbreviated to N) to suppress deck identification
text in columns 73-80.

Name of the MSC file to he scanned. If omitted, you will be prompted for
it. If the file extension and prefix period are omitted, .MSC is assumed.

Name of the file that will receive SCAM output. If omitted, you will be
prompted for it. Often set to zero to get output on the screen; an actual
name may be used, however, to create a file that is then sent to a printer
or inserted in a document.

A list of MSC-block keys to he scanned for. Kflys do not interact; the
output will be simply the union of the outputs for each scan key. At least
one key must be specified; if none given, you will be prompted for o m key.

Optionally, a list of dock names 1.0 wliicli the scanning process will be
restricted. The specification format is the same as for MAX.

$ SCAM (SOLVER >.SCIJ CDC
$ SCAM/L (SOLVER >O VAX UIJIVAC
$ SCAM/fI <CLIP.VAX >O MACRO #CLM*
$ SCAM/L <CLIP.VAX >O DECK

REMARK 8.1

SCAM recognizes n o implied key.;, as hl,Z,Y does. To display all FOR'I'RAN lines, for example,
the scan key FORTRAN must be given explicitly in the SCAM invocation.

REMARK 8.2

The output will also contain macrokey-cont rolled C=BLOCKs if a scan key intervenes in the macrokey
definition.

REMARK 8.3

If C=BLOCKs are followed by C = E L S E I F s or C=ELSEs, negated scan keys may be used to discern the
internal structure (see $8 .3) .

8 3

Section 8: SCAM 8-4

REMARK 8.4

Onr-lirir control st,atrrnc%nts such as C=PURPOSE, C=AUTHOR, c t r . , which arc’ ignored by M A X , are not
igriored by SCAM. For exaIriph1, t Iici followiiig c o ~ ~ ~ ~ r i a t i d will display or1 thc s c r w n all C=PURPOSE
lilies (and nothing more) included in MSC filr ADVLAM.MSC:

$ SCAM (ADVLAM >O PURPOSE

8 - 4

8-6 38.3 *ADVANCED S C A M M I N G

$8.3 *ADVANCED SCAMMING

Thia subsection covers some of the more advanccd features of SCAM.

Listing C=DECK Lines

Special scan key DECK causes C=DECK lines to be listed. N o identification field appears. If you do
this sort of thing often, it is converiient to define a one-liiie procedure

$ SCAM <’PI’ DECK >O

whose execution is abbreviated to, say, LD. Then

$ LD SOURCE.MTR

lists all deck lines (and nothing else) in SOURCE.MTR

Mac ro key8

Special scan key ** causes all macrokey-definition lines to be displayed.

Negated Keys

To list all CUC-dependenl code lines i n CLIP .VAX you would say

$ SCAM <CLIP.VAX >O CDC

That was easy. Now, how about all “other Illan CDC” code lines in blocks that mention CDC?
Use the negated scan key: -.

$ SCAM <CLIP.VAX >O -CDC

So there is some use for negated distribution keys, after all.

8 - 5

A Trip Down
Memory Lane

9--1

Sectlon 9: A TRIP DOWN MEMORY LANE

-.
9- 2

59.1 MAXIFYING OLD CODE

Uy now you are l i o p d u l l y sold o i l t l i v v i i t u c k s oi' MAX a i d Friends. Y o u liave probahly
noticed that iisirig Master Source Codc5 o n ttc70 software developments is straightforward.
The first operation in making a new deck usually consists of copying an existing one;
recurring descriptive constructs such as PURPOSE, ABSTRACT and USAGE are edited, arid
h4SC control statements inserted while the source code is written. But how about old
FORTRAN programs brought from other coinputcrs or your old tapes?

If these programs are fairly large, the conversion to hlSC form can be laborious.
Fortunately there are a couple of utilities that can reduce the work by getting you startcd
with the minimum necessary to use MAX. These two utilities, PUTDECK and EZZMAX,
are described in the following subsections.

9-2

9-3 $9.2 INSERTING DECK IDENTIF IERS

$9.2 INSERTING DECK IDENTIFIERS

To use MAX, decks have to be labelled with C=DECK lines. ‘l’liis is the irreducible minirniim:
once deck identifiers are iri place you can a t lmst split files and extract decks. This insertion
can be automatically done with the P U T D K K utilit,y.

The first st,ep is to merge all program u n i t s (srrI)rotit,incs, functions) into a sirxgle, f i l e .
(This step is only needed if the code cor~ios fro111 a niacliinc such as (Jnivac, which keeps
yrogranis fragmented into elements.) A rnaskctl copy sucli as

$ COPY *.FOR BIGFILE.MER

should make this happen.

Next, insert the foreign-command definition

$ PD:==$MICE$EXE:PUTDECK.EXE

in your LOGIN.COM, and activate i t with a QLOGIII. (If NICE is not in your Vax, read $2.1.)
Finally, execute PUTDECK as an input-orit,put filter, for example

$ PD <BIGFILE.MER >.MSC

T h i s execution inserts C=DECK lines i tn tnedzde ly before each subroutine or function state-
ment. The name of the subroutine or function becomes the deck name. Decks are typed
as FORTRAN. (I f you don’t like these rules, you can always edit the output file.)

PUTDECK Restrictions

To ensure successful operation of PUTDECK, y o u must keep certain restrictions in mind.

The input file must be wit,hout any MSC control statements. Never use PUTDECK
on a “partly-MSCed” file.

The input file should be free of parasite control cards brought from other machines,
e.g., Univac’s (DFORs and (DELTs.

IJI subroutine-declaration lines, the word SUBROUTINE niiist be followed by a t leastJ one
blank; furthermore, columns 1-6 of t h a t line must, be blank. The word SUBROUTINE need riot
s tar t in column 7 , however, and may be in lower or ripper case. The subroutine name need
not be terminated hy a blank, hut must be in the same line as the SUBROUTINE declarat,ion.
The argument list need not start in the same line. l’hus the following declarations are
accept ab le :

SUBROUTINE SOLVE(A ,B ,C>

Subrout ine Solve (A , B. C>

The following, however, is not acceptable

SUBROUTIIIESOLVE (A ,B, 6)

and will be sadly missed by PUTDECK.

9 3

Section 9: A TRIP DOWN MEMORY LANE 9-4

Very similar constraints apply to function-declaration code ‘lines. The word FUNCTION
must be followed by a blank, and the function name must be in the sairie line. The word
FUHCTION may be preceded in the same line by one of the following type qualifiers

CHARACTER
DOUBLE PRECISIOIJ
COMPLEX
IIITEGER
LOGICAL
REAL

If any of these qualifiers appear, they must, be deli~nited by one or more blanks.
example the function declaration

For

DOUBLEPRECISION FUIICTIOIJ

will be missed.
The CHARACTER function qualifier may be followed by a length specification such as

CHARACTER*4 or CHARACTER* (* 1. Lower or upper case is acceptable.

Two more limitations should be mentioned. PUTDECK does not recognize main
programs, BLOCK DATA unit,s, atid INCLUDE text,. These have to he done by hand.

If in doubt as to whether the input file complies with these requirements, look at the
PUTDECK output with the text editor o r with SCAM, correct, the source file as needed,
and try again.

9--4

9-6 59.3 INSERTING F O R T R A N BLOCKS

99.3 INSERTING FORSTRAN BLOCKS

If you are satisfied with just the C=DECK lines, you need not proceed further. Now you can
at least split out decks with MAX and put them back in with REX.

To go a step further, insert and activate the definition

$ E2M : ==$MICE$EXE : EZ2MAX

then execute EZZMAX as an input-output filter, as in

$ E2M <BICFILE.MSC >FORFILE.MSC

This inserts C=BLOCK FORTRAN and C=EIID FORTRAN lines after each C=DECK line and before
the next C=DECK line, respectively. Now you can try MAX/F.

.. .

9--5

I ’

Assembly Code
Maintenance

A--1

Appendlx A: ASSEMBLY CODE MAINTENANCE A-2

SA.1 TARGET AUDIENCE

This Appendix has been prepared for the minority of “real programmers” that maintain
sizable amounts of assembly language code for CDC, IRM, Univac, Cray or VAX comput-
ers. AII-FORTRAN programmers rieed not be aware of 1,liis material.

With the advent of FORTRAN 77 the need for assembly language programming has
drastically diminished. There are threc areas, however, in which assembly langua.ge can
be useful:

1.

2.

3.

To do things not provided for ill the FORTRAN 77 language arid unavailable as
FORTRAN extensions. Example: get the machine address of a variable in IBM
F 0 RTR A N .
To speed up time-critical sections of number-crunching programs when assembly code
make possible to fully exploit hardware features such as pipelining.

To reference system level input/output facilities otherwise inaccessible. Example: the
RhlS (Record Management Services) level of VAX/VMS.

If you keep a few assembly language routines around that are hardly ever changed, there
is little motivation for putting such routines into MSC files. But if you keep a substantial
amount of assembly code in support of specific application packages, the source should
be kept just like FORTRAN, t’.e., neat,ly packaged in MSC files on the VAX. This ap-
proach centralized maintenance and lets you rapidly extract versions for shipping to other
machines.

Packaging assembly code i n MSC files requires some care, however, as some surprises
may otherwise result. The purpose of this Appendix is to explain how to proceed so you
get it right the first time.

A-2

A-3 §A.2 ALL-ASSEMBLY M S C FILES

§A.2 ALL-ASSEMBLY MSC FILES

The simplest MSC organization of assenibly code is one in which

(1) All decks contain only assembly code; these are called ASSEMBLY decks.

(2) MSC files contain only ASSEMBLY decks.

This organization is recommended if you keep just a moderate number of general purpose
assenibly language routines around. Putting thctn together in one MSC file simplifies
keeping track of where they are.

Later subsections in this Appendix discuss two more general organizations: keeping
ASSEMBLY and FORTRAN decks in the sattie MSC file (§A.3) , and keeping FORTRAN and
assembly code i n the same deck (5A.4).

Structure of ASSEMBLY Decks
' The basic structure of an ASSEMBLY deck identified as Deckname for a target computer

identified by key h4achine is

C=DECK Deckname Decknanze ASSEMBLY
C =BL 0 CK Mac hin e ASSEMBLY

(assembly code)

C=END Machine ASSEMBLY

A- -3

Appendlx A: ASSEMBLY C O D E MAINTENANCE A-4

To illustrate this structure, here is an “unadorned” assembly 1angua.ge routine for Univac,
written by somebody that obviously does riot believe in comrnents:

C=DECK RW RW ASSEMBLY
C=BLOCK UtdIVAC ASSEMBLY

AXR$

LA
SA
LA
SA
sz
sz
LA
SA,1
LA
SA.2
LMA
SA
LA
SA.12
LA,U
ER
LA,13
SA
LA,1
SA
J

$(1)

$ (0)
PKT RES

END

A0 , *O , XI 1
A0 , PKT
AO,*l ,Xi1
A0 , PKT+ 1
PKT+2
PKT+3
A0 ,2, X11
A 0 , PKT+4
AO, *3 ,X11
A0 , PKT+4
A 0 , *4, X11
AO, PKT+5
AO, *5,Xll
A 0 , PKT+3
A 0 , PKT
IOW$
AO, PKT+3
A0 , :k6, X 1 1
AO, PKT+3
A0 , *7, X11
9,x11

10

C=EMD UNIVAC ASSEMBLY

This example shows the miriirnrlm n1irnt)cr of MSC ’coni rol lirics for an ASSEMBLY tleck,
namely three.

REMARK A . l

The above code is compatible with IJriivac’s ATIIENA FOR’l’RAN (also called FORTRAN V)
compiler. A different version of RW is required for IJnivac’s ASCII I’OR‘I’RAN compiler, which
implements the FORTRAN 77 standard. An exauiple that illust8ratrs packaging for both compilers
appears l a t e r in t h i s subsection.

A-4

A-6 5A.2 ALL-ASSEMBLY M S C FILES

The following ASSEMBLY deck does have the recommended level of documentation:
*=DECK LOCF LOCF ASSEMBLY
*=BLOCK IBM ASSEMBLY
*=PURPOSE Get absolute machine address of argument (IBM)
*=AUTHOR F. A. Weiler
*=VERSION July 1982
*=KEYWORDS get absolute argument address
*=EQUIPMENT IBM
*=BLOCK ABSTRACT

* LOCF is a function that returns the absolute address of its
* argument. On CDC, Univac and Vax. this is an inline
* function provided by the FORTRAN compiler, and is named
* LOCF, LOC and %LOC, respectively (LOCF and LOC return a
* WORD address, whereas %LOC returns a BYTE address).
* IBM FORTRAN does not provide such a function, hence this
* assembly routine generously contributed by Frank Weiler.

*=END ABSTRACT
*=BLOCK USAGE
* The function reference is:

* IADDR = LOCF (ARG)

* and IADDR receives the absolute address of ARC in BYTES.

*=END USAGE
LOCA CSECT
RO EQU 0 WORK I FJG REGISTER
R1 EQU 1 WORK I IJG REGISTER
R13 EQU 13 COMMUII ICATIOIJ REGISTER
R14 EQU 14 COMMUNICATION REGISTER
R15 EQU 15 PROGRAM ADDRESSING REGISTER

LOCF DS OA DEFINE START OF SUBROUTINE

*

*

*

*

*

I

EIITRY LOCF

L RO , 0 (R1) ADDRESS OF ARGUMENT TO RO
BR R14 RETURN TO CALLII’IG ROUTINE
END

*=END IBM ASSEMBLY

R E M A R K A.2

The use of *= in lieu of C= has no deep significance; :?= is always equivalent t.o C= and * happens
to be the column-1 comment character for It3M assemhly code.

A-5

I Appendix A: ASSEMBLY CODE MAINTENANCE A-0

REMARK A.3

It is always a good idea to make the C=BLOCK M a c h i n e ASSEMBLY the second line of the deck. This
makes it easier for MAX to avoid writing enipty decks to the outputr file when ASSEMBLY and
FORTRAIJ clerks are iriterrnixed (SA.3).

, Can the same ASSEMBLY deck hold assembly code for rnorc than one machine'? Yes. .Justr
stack +BLOCKS as illustrated next: I

C=DECK FAKER FAKER ASSEMBLY
C=BLOCK UHIVAC ASSEMBLY

(Univac assernhlv code)

C=EHD UldIVAC ASSEMBLY
C=BLOCK IBM ASSEMBLY

(IBM assembly code)

C=EI?D IBM ASSEMBLY

Another way of doing it, with the I F . . . E L S E I F . . . E H D I F construct:

C=DECK FAKER FAKER ASSEMBLY
C=BLOCK ASSEMBLY

C = I F UWIVAC

(Univac assembly code)

C=EIJD UIIIVAC
C = E L S E I F IBM

C=EI.IDIF
C = El4 D A S S EMB L Y

Here the use of the I F . . .
assembly sections are fairly long. Personally I prefer the first form.

E I I D I F does not necessarily make things more readable if

A-6

A-7 5A.2 ALL-ASSEMBLY M S C FILES

Multiconipillpr Packaging

Not only is assembly code machine dependent h i t 8 sometimes within the same computer
the subroutine linkage changes as another FORTRAN compiler appears on the scene. Such
change has the unfortunate consequence of requiring multiple versions of the same assembly
routine to be maintained (at least until the old compiler finally disappears). For Univac,
the appropriate packaging for say, RW would be as follows:

C=DECK RW RW ASSEMBLY
C=BLOCK UNIVAC ASSEMBLY
C=IF ATHENA

(ATIIENA-FOFt?’llAN-compatiblc version)

C=ELSE

(AS C I I- F 0 Kll’ R A N- corn p a t i b le version)

C=EIIDIF
C=END UHIVAC ASSEMBLY

Use of the identifier ATHENA is not mandatory but is recornniended because MAX looks for
it when generating deck-header control cards for Uiiivac.

For other computers the recipe is the same. Fortunately, it is not presently needed for
CDC (the old R l J N compiler is no longer used), VAX or Cray; as for IBM I don’t know.

Univac Code Extraction

To extract the Univac version from an all-assembly R4SC file, the following MAX commarids
are recommended:

Coinpatible u d i

ASCII FORTRAN $MAX/A/UN I /WC/HDG < Inputfile > Outputfi le
ATHENA FORTRAN $MAX/A/UNI/WC/HDC c lnptr t f i le > Outputfile ATHENA

R E M A R K A.4

The ATHENA distribution key is assumed (see Multicompiler Packaging); if you use a different
key replace it in the second invocation form.

REMARK A.5

Each nonempty output deck is preceded by (DASM,SI so that the output file can be directly (DADDed
to the runstream once it has been shipped to Univac.

REMARK A.6

The WC qualifier forces comment-only lines to be written out. Most assembly code is (or should be)
commented line by line, so sending comment-only lines probably docs not make much difference.

A 7

Appendlx A: ASSEMBLY C O D E MAINTENANCE

REMARK A.7

A @HDC,P line bearing the deck name is generated before each (DASM,SI; if you don't want this
remove the HDC qualifier.

CDC Code Extractioii

To extract the CIIC version from an all-assembly MSC file you should use a MAX-
invocation command sucli as

A-8

$ MAX/A/CDC/WC <Ittpti tf i le > Outpu t f i l e

The oiitpiit file is a multideck file suitable for input to CIIC's UPJIA'I'E utility. The
COMPILE output from UPDATE can be presented to eillier the COMPASS assembler or
to the FORTRAN compiler (more about this choice in 5A.3) .

VAX Code Ext.raction

To extract the VAX version from an all-assembly MSC file you should use

$ MAX/A/WC <In.putfile >/Extension

For example:

$ MAX/A/WC <UTILITY.ASM >/MAR

Note !!lie split atrtpuf specification. Each \'AX assernhly deck thereby becomes a separate
file. These files can then be processed by VAX/VMS's MACR.0 asserribler t h o u g h a
system command sucli as

$ MAC COMPARE.PRODUCT,SUM

which assume a .MAR extension. This approach is necessary because MACRO, unlike the
FORTRAN compiler, cannot asserrible multiple modules contained in one file; it quits on
detecting an .END line.

REMARK A.8

To circiimvrnt the miilt iple-file prohlt-m yoii coiild k w p a11 VAX aswrnI>ly rode stjacked in one
deck, with a single . El1D card. this is not recorrimerided, however, if the total code is voluniinous
as maintenance would be hindered.

A 8

A-9 5A.3 MIXING F O R T R A N A N D ASSEMBLY DECKS

5A.3 MIXING FORTRAN AND ASSEMBLY DECKS

Most assembly code is written in support of specific a.pplicat,ion or utility packages; for
example a terminal reader in support of a command lmguage interpreter. If the FORTRAN
pa.ckage is merged into a MSC file, it is natural to include the supporting assembly code
with it .

Intermixing ASSEMBLY and FORTRAN decks should cause no problems. The only thing
to watch for is uniqueness in deck names. In this regard you are reminded that the deck
name does not necessarily have to be the same as the entry point name.

As an example of this organization, suppose that VAX file MELANGE .MSC contains

C=DECK APPEND
C=BLOCK FORTRAN

(FORTRAN code)

C=EIID FORTRAII
C=DECK FASTPROD FASTPROD ASSEMBLY
C=BLOCK CDC ASSEMBLY

(CDC assembly code)

C=EIID CDC ASSEMBLY
C=BLOCK UNIVAC ASSEMBLY

(UNIVAC assembly code)

C=EIID UlJ IVAC ASSEMBLY
C=BLOCK V A X ASSEMBLY

(\.'AX assembly code)

C=EIID VAX ASSEMBLY
. . .
. . .

C=DECK 2 2 2
C=BLOCK FORTRAN

(FORTRAN code)

C=END FORTRAN

A -9

Appendix A: ASSEMBLY CODE MAINTENANCE A-IO

In the stream mode, a file like this is processed just like any other MSC file, because in
the stream mode MAX ignores deck types. The difference comes when FORTRAN or
Assembly mode is used. The invocation

$ MAX/F . . .
extracts only FORTRAN decks a n d ignores ASSEMBLY decks, so it works as i f ASSEMBLY decks
were not physically there. For MELANGE .MSC, deck FASTPROD would be “transparent”. On
the other halid,

$ M A X / A . . .
extracts only ASSEMBLY decks and ignores FORTRAN decks, so it works as if FORTRAM decks
were not physically there. For MELAItGE>MSC, decks APPEND and ZZZ would be “transpar-
ent”.

The combined specification

$ M A X / A / F . . .
processes both FORTRAN and ASSEMBLY decks in one pass. No deck is transparent. This
makes sense for two target machines: Uriivac and CDC, but for different reasons.

M A X / A / F for Univac

The output file receives extracts of hoth FORTRAN and ASSEMBLY dwks, i n the same order
as they appear in the MSC file, preceded hy appropriate contrrol cards. For the example
file the command

$ M A X / A / F / U N I / W C / H D G <MELANGE > .UNV

will give you MELAHGE.UIJV, which looks like
(DHDG , P A P P E N D
QFTN , SI0 APPEIJD

(ASCII FORTRAN codc)

(DHDG , P F A S T P R O D
(DASM,SI FASTPROD

(ASCII F ’ORTRAN-~~HI patihle assembly code)

. . .
(DHDG , P z z z
(DFTN,SIO ZZZ

(ASCII FORTRAN codc)

A-11 5A.3 MIXING F O R T R A N A N D A S S E M B L Y D E C K S

Although in Univac the FORTRAN compiler and the Assembler are separate system pro-
cessors, a file configuration such as MELANGE . U N V rrlilkes sense becausc it, embeds bhe control
cards which specify which processor is to be called. Coriseqiiently, MELANGE . U N V can be
(DADDed to the runstream as one file.

R E M A R K A.9

If the ATHENA distribution key is specified, all BFTH,SIO become @FOR.SI.

MAX/A/F for CDC Cyber

If the example file is processed by

$ MAX/A/F/CDC/WC CMELAFIGE > . CDC

you get MELANGE. CDC, which looks like

*DECK APPEND

(CDC FORTRAN code)

*DECK FASTPROD

(COMPASS code)

. . .

. . .
*DECK ZZZ

(CDC FORTRAN code)

Note that the resulting out,put contains intermixed FORTRAN and Assembly code but
no control cards; only UPDATE cards. Merging does make sense, however, because of a
unique feature of CDC FORTRAN: both tho FTN (FORTRAN 66) and FTN5 (FOILTRAN
77) compilers can detect and process interspersed COMPASS assembly code as long as such
code is properly identified by a n IDENT line wi th thc word I D E N T starting at. column 1 1 .

Appendlx A: ASSEMBLY CODE MAINTENANCE A-12

Another interesting consequericc of this CI)C capihility is the fact that COMPASS code
that iriipleiriciils fealfures uiiiqw fro Cj)C C i i i i h t t i i L i i i t i i i i i C d iii FORTRAN decks if yori wish.
For exatriple:

*=DECK FL
*=BLOCK CDC FORTRAN

IDENT FL (K)
*
* SUBROUTIIIE FL(K)
* RETURN FIELD LENGTH IF K = 0
* SET FIELD LENGTH TO K IF K = 0
*

ENTRY
FL BSS

SA2
BX7
LX2
S A 7
BX6
S A6
MEMORY
SA 1
SA2
AX 1
BX6
SA6
Eq

TEMP BSS
STAT BSS

END

FL
1
x1
x1
30
TEMP
x2
STAT
CM,STAT,RECALL
STAT
TEMP
30
x1
x2
FL
1
1

*=END CDC FORTRAN

X 2 = K
X7=ADS (K)
SHIFT K TO LEFT HALF
SAVE A D S (K) 11.1 TEMP
XG=SHIFTED K
STORE IN STAT
MACRO FOR FIELD LENGTH
Xl=STAT
X2=TEMP
MOVE STAT TO RIGHT HALF
RESULT TO X6
RETURN STAT TO K
RETURN

FL is a good candidate for being in a FORTRAN deck because it implements a program-
ming frinction unique to CDC equipment. ‘Fhe fact that a * in column 1 also identifies
comment lines in FORl’ItAN 77 is quite useful because MAX’S WC qualifier acquires uniform
implementation. ’

A -12

A-13 gA.4 M I X E D DECKS

5A.4 MIXED DECKS

A deck that contains both assembly code and FORTRAN code is called a MIXED deck,
and must be identified as such in tlie C=DECK line. This deck organization may be used
(with caution!) when you have the same subroutine or function implemented on both
F'oIt'I'RA N arid assembly code for some m;ichines.

To give an example, suppose that you have CDC arid Univac assembly versions of sub-
routine A6ORT (which forces abriorrnal run 18ermination) and also a more-or-less machine-
independent version implemented in FORTRAN. This can be collectively packaged into
one deck with the following structure:

C=DECK ABORT ABORT MIXED
C=IF CDC
C=BLOCK ASSEMBLY

(CDC assembly code)

C=END ASSEMBLY
C=ELSEIF UNIVAC
C=BLOCK ASSEMBLY

(Uriivac assemhly code)

C=END ASSEMBLY
C=ELSE
C=BLOCK FORTRAII

(FORTRAN version)

C=END FORTRAN
C =END I F

The IF , , , ELSEIF : . . ELSE . . . EIIDIF organizalinn is a foolpronf nnc for MIXED
decks in spite of the fact that i t is somewhat difficult t,o read. llere are the basic rules:

1. Assembly versions go within ELSEIF blocks except the first one, which gocs in the IF
block.

2.

3.

The C=IF statement must be the second line of tlie deck. I

Ordering of the assembly versions is irrelevant,, but multicompiler versions, if any,
must be properly nested (this is not shown in the example).

The FORTRAN version is always the last one, and it goes in the ELSE block. 4.

A-14 Appendix A: ASSEMBLY C O D E MAINTENANCE

An Alternative Structure

There is a seemingly simpler deck organization that does not use the I F . . .
construct:

E N D I F

C=DECK ABORT ABORT MIXED
C=BLOCK CDC ASSEMBLY

(CDC assembly code)

C=EMD CDC ASSEMBLY
C=BLOCK UNIVAC ASSEMBLY

(Univac assembly code)

C=END UIIIVAC ASSEMBLY
C = BL 0 CK F 0 RTRAIJ

(FORTRAN version)

C=EIJD FORTRAN

But this has a flaw. Can you think what it is'! Answer: if you try to MAX/A/F this deck
for Univac or CDC, both the assembly and the FORTRAN version will be written to the
output file, which will get you some nasty Assembler diagnostics. This problem can be
circumvented by qualifying the FORTRAN block with negative keys:

C=DECK ABORT ABORT MIXED
C=BLOCK CDC ASSEMBLY

(Cl>C asserrihly cotlc)

C=EIID CDC ASSEMBLY
C=BLOCK UIJIVAC ASSEMBLY

(l11iivar ass t~mhly codri)

C=EIJD UIJIVAC ASSEMBLY
C=BLOCK FORTRAII -CDC -UIIIVAC

(FORTRAN \ ersiori)

C=ElID FORTRAN -CDC -UIIIVAC

but tliis is not very readable. And if you latcr or1 iriscrt another assemhly block, say for
VAX, you have to renierriber to add -VAX to t , l i c> FORTRAN block.

t A - 14

Report Documentation Page

I. Report No.
NASA CR-178383

2. Government Accession No.

r. Author(s)

Carlos A. Felippa

.7. Key Wordr (Suggested by Authors(8))
Software engineering utilities
Source code maintenance

b . Performing Organization Name and Addresa

Lockheed Missiles and Space Company, Inc.
Research and Development Division
3251 Hanover Street
Palo Alto. California 94304

18. Distribution Statement
Unclassified-Unlimited

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

19. Security Classif.(of this report)
Unclassified

3. Recipient's Catalog No.

20. Security Classif.(of this page) 21. No. of Pages 22. Price
Unclassified 68 A04

5. Report Date

October 1988
6. Performing Organization Code

8. Performing Organieation Report No.

LMSC-D8 12789
10. Work Unit No.

505-63-01-10
11. Contract or Grant No.

NAS 1-18444
13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

15. Supplementary Notes
Current affiliation: Carlos A. Felippa, Center for Space Structures and Controls, Campus Box 429,

University of Colorado, Boulder, CO 80309-0429

Langley Technical Monitor: W. Jefferson Stroud
16. Abstract

MAX is a program for the manipulation of Fortran master source code (MSC). This is a technique by
which one maintains one and only one master copy of a Fortran program under a program development
operating system, which for MAX is assumed to be VAXIVMS. The master copy is not intended to
be directly compiled. Instead it must be pre-processed by MAX to produce compilable instances.
These instances may correspond to different code versions (for example, double precision versus single
precision), different machines (for example, IBM, CDC, Cray) or different operating systems (for example
VAX/VMS versus VAX/UNIX). The advantages of using a master source is more pronounced in complex
application programs that are developed and maintained over many years and are to be transported
and executed on several computer environments. The "version lag" problem that plagues many such
programs is avoided by this approach. MAX is complemented by several auxiliary programs that perform
nonessential functions. The ensemble is collectively known as MAX and Friends. All of these programs,
including MAX, are executed as foreign VAX/VMS commands and can be easily hidden in customized
VMS command procedures.

I Subject Category 39

