UAH RESEARCH REPORT NO. 752

LANGUAGES FOR ARTIFICIAL INTELLIGENCE:
IMPLEMENTING A SCHEDULER
IN LISP AND IN ADA

Prepared by:

Dan Hays
Psychology Department
The University of Alabama in Huntsville
Huntsville, AL 35805

Prepared for:

John Wolfsberger
System Software Branch
Information and Electronics Systems Lab
George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, AL 35812

October 1988

LANGUAGES FOR ARTIFICIAL INTELLIGENCE:
Implementing a Scheduler in LISP and in Ada

Abstract

A prototype scheduler for space experiments originally
programmed in a dialect of LISP using some of the more traditional
techniques of that language, was recast using an object-oriented
LISP, Common LISP with Flavors on the Symbolics. This object-
structured version was in turn partially implemented in Ada. The
Flavors version showed a decided improvement in both speed of
execution and readability of code. The recasting into Ada involved
various practical problems of implementation as well as certain
challenges of reconceptualization in going from one language to the
other. Advantages were realized, however, in greater clarity of the
code, especially where more standard flow of control was used.
This exercise raised issues about the influence of programming
language on the design of flexible and sensitive programs such as
schedule planners, and called attention to the importance of factors
external to the languages themselves such as system embeddedness,
hardware context, and programmer practice.

D. Hays, et al. - Languages for Al - Abstract
Johnson Research Center, U. Alabama in Huntsville 35899 - October 1988, i

—

i

Table of Contents

_ Introduction

_ The Al Language Problem

Versions

A. The

of the Scheduler

Original Version

B. The Common LISP/Flavors Version

C. The Ada Version

V. lssues and Conclusions

Appendices

D. Hay

s -Languages for Al - Johnson Research Center, U
1988, ii

PAGE

10

10

17

28

50

AH - October

LANGUAGES FOR ARTIFICIAL INTELLIGENCE:
Implementing a Scheduler in LISP and in Ada

|. Introduction

This report documents research to explore implementation of an
artificial intelligence application, a scheduler for space-resident
activities, in various computer languages. This task is one from a
larger research effort supported by Grant No. NAGS8-641 from NASA's
Marshall Space Flight Center to the Johnson Research Center at the
University of Alabama in Huntsville. Donnie Ford is Principal
Investigator on this grant. John Wolfsberger at Marshall Space
Flight Center, is the Contract Monitor. Dan Hays is Task Leader for
the research described in this document and the author of ‘this
report.! The report covers the project year.

Project Overview. A scheduler for experiments and other
resource-consuming activities in a Space setting, originally
developed by Floyd and Ford, was reprogrammed in two computer
languages.?2 The original was written in ZetalISP, using classical
techniques of LISP programming. The other two languages used were
Common LISP with Flavors, an object oriented language, and Ada.
The suitability of yet other languages was also examined briefly.

1 Comments on this report or questions about the research may be addressed
to Dr. Hays at 135 Morton Hall, The University of Alabama in Huntsville,
Huntsville, Alabama 35899, or to Dr. Ford at Johnson Research Center,
Research Institute Building, The University of Alabama in Huntsville,
Huntsville, Alabama 35899.

2 An earlier report from this project was delivered as a paper. D. Hays, S.
Davis, and J. Wolfsberger, “An Object-Oriented Implementation of a Scheduler
in LISP and in Ada”, to the 1988 Conference on Automation for Military and
Space Activities, Huntsville, AL.

D. Hays -Languages for Al - Johnson Rescarch Center, UAH - October 1988 - p.
1

The scheduler incorporated various features of “artificial
intelligence” programs, such as extended and variable searches and
flexible input. Since it had been shown to work with data drawn
from space missions, it qualified as a practical application of Al
programming techniques. Thus, the scheduler provided a sense of
realism that a more schematic or ad hoc program might not be able
to.

As it turned out, the reprogramming became much more a matter
of reconceptualization, in going from one computer language to
another, than of simple translation (if there is such a thing, even in
the world of digital devices). In particular, the recasting of the
scheduler from LISP to Ada provided a number of lessons of
implementation.

Research Staff. Persons at UAH specifically involved in the
investigation reported here have included the following:

Dan Hays, PhD. Research Scientist at the Johnson Research
Center, and Associate Professor of Psychology. Dr. Hays served
as Team Leader for this investigation.

Stephen W. Davis. Research Associate, Johnson Research
Center3. Mr. Davis was responsible for the programming
reported, as well as for aspects of the conceptual development.

Professors Donnie Ford and Stephen Floyd of the Johnson Center
and the Management Science/Management Information Systems
Department of the School of Administrative Science, provided an
essential ingredient of this task by supplying the original scheduling
program (see below). They also assisted this project by commenting

3 Now at Advanced Technology Inc., in Huntsville, AL.

D. Hays -Languages for Al - Johnson Rescarch Center, UAH - October 1988 - p.
2

program (see below). They also assisted this project by commenting
on the structure of their scheduler and their intentions in its design.
Discussion of various points was also provided by other personnel of
the Cognitive Systems Laboratory of the Johnson Center. In
addition, Mr. Davis was able to talk with several programmers in
other organizations who were familiar with Ada implementations,
during that part of the project.

Summary Conclusions. Though the discussion on which they rest
is contained subsequently in this report, several conclusions from
this project seem worth calling attention to here.

1. The difference is considerable between brief “benchmarks”
and programs meant for use in situations.

5 “Translation” of practical programs will probably not be
straightforward if you are trying to make a program that works
well.

3. “Object-oriented” techniques may offer advantages to
conceptualizing computations such as those involved in the
scheduler investigated here. They can also result in
improvements in performance.

4. What an “artificial intelligence technique” is, becomes less
clear after being examined.

5. Viewed as a case study, the adaptation of the scheduler to
Ada involved a number of problems that were in a sense external
to the language itself as an abstract structure. These ranged
from differences in implementation of memory allocation, to

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 3

“mundane” but sometimes frustrating problems of program
editors, hardware, and system features.

6. Finally, possibly because the project investigated a

program meant for real use, attention was called to contextual
factors, including the role of the programmer.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 4

Il. The Al Language Problem

From a machine-centered point of view, the reasons to worry
about the choice of a programming language would seem to be few:
whether or not one can symbolize a problem for processing by
machine, and the efficiency of the resulting machine-level code,
thus performance of the program.

But even for fairly standard programming problems, such as
straightforward numerical computation, or retrieval of specific
information from fully specified locations in an electronically
stored corpus, possibility and efficiency are not enough, so that
individual preference and social factors influence choice of
computer languages. The relation of the programmer to the language
used is not just one of simple preference. For example, habitual
usage is certainly a major source of preference for a language, but it
also contributes to expertise in using the language.. Some language
features—and features of the facilities that are associated with a
language, such as editors, compilers, libraries of code, and so on—
may make a programming system harder or easier to use, more or
less prone to some kinds of oversight, easier or problematic when
other programs must be coordinated, and easier to read ar more
opague. Such features, which might collectively be called human
suitability factors, are now much more widely recognized than they
were in earlier decades. For example, features intended to protect
writers of programs from certain kinds of errors of reference were
important in the design of Ada. Other languages have constrained
unconditional branching commands, a source of problems in many
programs. Again, to take a simple example, the difficulty that most
persons have in counting nested parentheses without putting a finger
or a pencil on them has lead to graphic aids for pairing parentheses

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 5

in LISP editors.

These five kinds of factors—possibility of expression, efficiency
of realization, individual preference, human suitability, and social
motives and constraints—apply to languages in which one may write
an “artificial intelligence” program, as well as to other
applications. Each will be discussed to some extent in this report.

The matter of languages for heuristic or otherwise “smart”
programs evokes more particular issues at this point in time,
however.

The question of which computer language to use for an Al program
is sometimes confounded in current thinking with the issue of the
acceptability of Al programs in the first place. Thus, some may
feel that a program written in a language familiar to their
applications, such as C or Fortran (depending), lends acceptability to
a program incorporating heuristic strategies, whereas a program to
accomplish the same results but written in a language that is not
well known to them, such as LISP or Prolog, adds unfamiliarity to
uncertainty. The acceptability of one or another kind of Al
programming concept is a serious question in some quarters. Lack of
understanding of what is involved in an Al program of one or another
sort may underlie reluctance to adopt Al techniques. Understanding
has not been helped in some instances by broad claims made for Al
programs by proponents or entrepreneurs. A better defined issue is
program validation. Many managers have raised questions about
program reliability. Since even programs which seem to promise
determinate or simple mathematical results have been known to
fail, incorporating programs which offer heuristic, or complexly
reasoned, solutions, seems to overextend program validation
procedures which are already expensi\)e and error-prone enough, even

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 6

using the apparently simpler programs. |If it can be said that, "After
all, this program is written in C,” some reassurance may be felt.4

It is probably no accident that many people today are considering
the incorporation of programs involving Al techniques at the same
time that they are contemplating much more extensively linked
software-hardware systems than they have previously had to
develop. A group might of course consider using isolated expert
systems in parts of their operations, running on small computers not
connected to one another; or adding more logical capability to a
decision-making program running on an isolated mainframe or
minicomputer. But it frequently seems to be the case that questions
about informationally interdependent computer systems seem to be
of concern to the groups that are also worried about how best to
incorporate heuristic programs.

We think that this connection is not at all accidental. We
believe that distributed computing that has to be flexible, and that
is fairly complex, will probably have to use some of the techniques
of “intelligent” programs in order to accommodate its own
complexity.

That programs might be part of larger systems, or might have to
run on different hardware at different times or in different
settings, is a major external motivation for entertaining the idea
of using of one language rather than another. For these reasons and
some others, pressure has been spreading, at least in the U. S. and
Britain, to adopt Ada as a standard computer language, since part of
its design intention was portability among devices. During the past
year and even during the past several months, the Ada question has

4 At least by those who are reassured by the use of C.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 7

become a real one for many organizations that had previously only
had incidental opinions on the matter.

Because of the timeliness of the issue, we chose to examine Ada
ahead of some other languages that might have been looked at.

If, as noted above, the use of Al programs is unfamiliar to
managers and programmers in many settings, it is conversely true
that persons who have been involved in the development of
artificial intelligence methods have not often had to have their
programs work in the operational settings of government and
business. At this point, limited expert advisory systems do work in
probably hundreds of settings, but many other heuristic programs
are still in the laboratory stage, or demonstrate certain techniques
without incorporating them into rugged, responsive systems.

The step from demonstration to operation may be a large one, and
it is related to the language issue in certain ways. To take a simple
example, if one is using a language whose implementation requires
that the computer stop now and then for “garbage collection” of
released storage allocations, what may be a mild nuisance in the
computer lab can become a faulty interface feature in an operational
setting.3

Other issues relating language choice to operational status of a
program are likely to be more subtle. For example, even if use of a
certain language produces more efficient code for a run-time
system—one thinks of some cases where Al programs originally
worked out in LISP were redone in carefully optimized C—it may or
may not be easy to update or correct bugs in these programs in the

5 Stopping for garbage collection is not a problem with computing machines
such as the Symbolics which are designed especially to run list-processing
languages.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 8

apparently leaner language.

These issues, implicated in the choice of languages for Al
programs, are large and in some cases difficult ones. This
investigation will not resolve them, but may add to their
understanding in a selected context.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p.

9

Ill. Versions of the Scheduler
A. The Original Version

The goal of the project was to explore the usefulness of one or
another computer language in programming a moderately complex
problem involving some of the organizing techniques of machine
intelligence applications. To accomplish this, a prototype scheduler
for space module activities developed by Donnie R. Ford and Stephen
A. Floyd® was chosen for reprogramming . This scheduler had
several things to recommend it to this project.

* It addressed a problem of practical importance: scheduling
resource-consuming activities in the constrained setting of an
orbital Space facility. By extension, it could apply to formally
similar situations of scheduling.

* The program was large enough to be interesting: it actually did
something useful. At the same time, it was small enough to be
manageable for this exercise. (The moderate size and
complexity did have implications for issues discussed below.
Briefly, a more complex version would have had the chance to
be more flexible and more “intelligent” in certain senses: but
would have involved much more reimplementation time.)

* The scheduler worked. It had been demonstrated on a number of
occasions, and was known to be rugged. In particular, it had
been checked with realistic data from Space missions (see the
listing in Table 1, taken from of Floyd & Ford, 1988).

€ Stephen Floyd and Donnie Ford, “A Knowledge-based Decision Support

System for Payload Scheduling”, Proceedings of the 1986 Conference on
Artificial Intelligence for Space, pp. 69-78. This paper is reprinted as

Appendix E.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 10

* It was written in the same lab we were in, though by different
persons. Thus, the original developers were close at hand to
resolve questions about how it was constructed.

Making comparisons among similar programs is not easy. If any
changes at all are made, it may be questioned whether the program
is really the same. Even in the area of limited-scope benchmarks,
reimplementing essentially the same procedure in another dialect of
a language, or preparing it to run on another machine, may raise
questions about the detailed correspondence of parts. If the program
has any complexity, and the languages, compilers, or machines are at
variance in any way, then exact correspondence is not possible, not
for that matter desirable, unless for some reason direct emulation
at issue.

In the versions prepared here, we were concerned to maintain the
major functioning of the original program, so that the various
versions would do about the same thing, though perhaps not in just
the same way. Such a task requires that judgements be made. It
should be clear that different approaches to the reprogramming
might have been undertaken. An attempt was made, though, to
preserve the major behavior of the original program. In addition,
both the original and subsequent programs were structured so as to
be open to further development. Thus, the coding might have been
simpler or more optimized if intentions for future development.had
not been kept in mind.

The prototype scheduler, in its 1986 version, was dubbed Dypas,
for Dynamic Payload Scheduler. It was written in Zetalisp for the
Symbolics™ computing machine. It was programmed using what
might be called traditional LISP techniques. Property lists (a kind

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 11

of structure available in most traditional LISP imp|ementations)
were used fairly heavily for information structures and for
specifying rules and evaluating them. Generation of pdssib!e
solutions involved a fair amount of concatenation of lists, and
searching over such structures.

Many varieties of scheduling programs exist, varying in scope of
constraints, in how they are tailored to likely process mixes, in
reliance on tightly algorithmic as contrasted with diverse and
heuristic bases, and so on. This scheduler was designed for space
tasks, and thus emphasized power requirements. Also, the processes
to be scheduled were mostly one of a kind, as contrasted to some
kinds of job-shop scheduling where the same kind of task might be
repeated. Because of the way space experiments are prepared to be
more or less self-contained, they did not rely on a variety of
resources. Various schedule planners for space activities have been
described. One that appears to be something like this one in general
scope is the MAESTRO system7. Another is the scheduler of
Bahrami and his colleagues®.

Floyd and Ford (1986) describe their routine in part as follows:

During the preparation phase the individual experiment
information is provided to the system from [a] data base and
appropriately stored, also the working memory is organized and
then prioritized for the scheduling phase. This is accomplished
using a priority scheme developed from user input. In the

7 A. L. Geoffroy, Daniel L. Britt, Ellen A Bailey, and John Gohring, “Power
and Resource Management Scheduling for Scientific Space Platform
Applications”, Proceedings, AlAA, 1987, pp. 660-664.

8 K. A. Bahrami, E. Biefeld, L. Costello, and J. W. Klein, “Space |Power
System Scheduling Using an Expert System”, American Chemical Society
Proceedings, 1986, pp. 1813-1818.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 12

scheduling phase, the experiments are scheduled under [a]
heuristic procedure [see next quote] and the schedule is created.
The schedule itself is part of the knowledge base and is
represented as frames. As experiments are scheduled, the
subintervals required by the heuristic procedure are defined by
start and stop times of the experiments. For each interval the
power available, crew available and the experiments that are
currently on-going are determined and stored. This information
is required for the remaining two phases, namely operation and
rescheduling (1986, p. 73).

After setting the schedule, the 1986 Dypas displayed the
progression of the scheduled tasks, which included both routine
operations and experiments, using a graphical representation. This
“operation” phase was not part of the reimplementation of this
paper, which stops with a somewhat simpler display of information.
It may be noted that the information presentation of the original
scheduler, which used familiar Gantt chart formatting, was one of
its interesting and useful features.

The “heuristic procedure” referred to aboye that was central to
the scheduling was described by Floyd and Ford as follows:

The inference engine performs only forward chaining. This
was determined from the structure of the problem. There is an
abundance of related facts and information at the beginning of the
problem solving process which in turn accommodates the forward
chaining process. The conflict resolution problem is solved by
allowing the first rule that is satisfied to be implemented. This
necessitates an ordering of the rules. This resolution method
was chosen because of the short time frame for delivering a
[prototype] system. This also facilitates the search through the

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 13

working memory.” (1986, p. 72)

They defined a procedure whereby an experiment (or other power-
consuming task) is “placed on the chart”, with its beginning and
ending points tagging times for the possible start of other
processes. “By updating as each experiment is scheduled, one can
maintain for each subinterval of time the information necessary in
determining the time slot for the next experiment to be scheduled.
The determination of which experiment is to be scheduled next is
based on the user predefined priority structure in effect at the time
of the scheduling or rescheduling procedure.” (1986, p. 72)

In practice this meant that long tasks, which usually also had
high priority, were scheduled early in the procedure, based on the
“first process to be satisfied” arrangement. Then, others were fit
in, as various priorities might be satisfied without exceeding power
capabilities. This kind of procedure seems reasonable for the mix of
tasks that would be present in space work, where frequently the
long-term uses of resources would be those that were important to
environmental stability and overall mission Success.

Thus, the scheduler took into account important features of
space-resident tasks, and proceeded in a fairly direct way to
obtaining a feasible schedule that satisfied various constraints.
After system setup, the program calculated a schedule for the tasks
submitted to it as input databases, then displayed them graphically
as a Gantt chart on the screen of the Symbolics monitor.

The version of the scheduler essentially described above was

demonstrated on a number of occasions, both locally and in agency
settings, and at the 1986 American Association for Artificial

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 14

Intelligence meeting in

D.Hays - Languages for

Philadelphia.

Al - Johnson Research Center, UAH - October 1

988 - p.

15

LABORATORY MODULE - SPACE STATION

DYNAMIC PAYLOAD SCHEDULER

SUBSYSTEMS:
POWERPRIORITY
NAME WATTS CLASS AGENCY DURATION CREW
ECLSS 6200 1 NASA CONTINUQUS W/20 0
MIN. LAPSES OKAY
EVERY 4 HRS.
COMMUNICATIONS 1480 1 NASA CONTINUOUS 0
THERMAL CONTROL 600 1 NASA CONTINUOUS-REDUCES v}
LINEARLY TO 400W FOR
10 KW POWER LEVELS
HOUSEKEEPING(MISC) 6000 b ¢ NASA CONTINUOUS 1
PAYLOAD/EXPERIMENTS ¢
DOD/PAYLOAD 1 890) 34 poD 48 HRS 1
ESA PAYLOAD 1 1845 $3 4 ESA 214 HRS [
1Ps 165 11 ESA 240 URS i
ELECT DIAG STA 435 11 NASA 10 MIN OF EVERY HR |
1ECH 480 111 NASA 200 HRS 0
CRNE 930 v U.K. 240 HRS 0
GEN PURPOSE COMP 383 I1I NASA CONTINUOUS 1
(5 MIN/HR)
SOLID POLYMER ELECT 415 iv M 36 HRS 1-5 MIN.
EVERY 3 HRS
IEF 125 1v NASA 6 HRS 0
MLR 350 v U/108Q 20 HRS 0
FES-VCCS 600 111 NASA 15 HRS 0
ROTI 36 v UAH 43 HRS 0
SEN 2648 Iv NASA 6 HRS 0
RTC T 94 1v NASA 12 HRS 0
TAPE RECORDER 1 85 It NASA CONTINUOUS 0
TIME CODE GEN 32 14 ¢ NASA CONTINUOUS 0
MASS SPECTROMETER 215 v JAPAN 2 HRS 0
TOOL CHARGER 50 1L NASA CONTINUQUS 0
FILM PROCESSOR 163 1§44 NASA 1 NR/DAY 1
SUPER FURNANCE 7840 1 G.E. 32 HRS 0
SILICON WAFER PROD 4760 1944 INTEL 14 HRS 0
TAPE RECOMDER 2 85 111 NASA CONTINUOUS 0
TGA 612 v ESA 8 HRS 0
MEA 1800 1v NASA 14 HRS 0
WELDING EXP 1610 v NASA 4 HRS 0
CFES 890 11r NASA 36 HRS 0
3-AAL 500 v NASA 10 HRS 0
EML 420 1v NASA 2 HRS 0
GFFC 375 Iv NASA 6 HRS 0
ADSF 480 v NASA 48 HRS 1
ARG 215 v NASA 8 HRS 0
SAFE 400 I NASA 15 HRS 1
SOLAR 0BS 37s 1I NASA ORBIT/DAYTIME ONLY 0
FOR 36 ORBITS
LIGHTNING DET 125 v NASA ORBIT NIGHTTIME ONLY O
FOR 12 ORBITS
CRYSTAL GROWTH 1200 4 NASA 1 HR 0
COMET SEARCH 650 1IL JAPAN ORBIT NIGHTTIME ONLY O
FOR 40 ORBITS
LIFE SCI 1 135 111 AsM 36 HRS 0
LIFE SCI 2 1145 11t UAB 22 HRS 0
LIFE SCI 3 842 111 UAB 66 HRS 0
CLASSIFIED 1 1300 41 DOD 8 HRS 0
CLASSIFIED 2 645 11 DOD 18 HRS 0
MAPPING (WEATHER) 300 1§44 UswWs CONTINUOUS (CAN BE 0
INTERRUPTED ANYTIME)
MAPPING (GEO) 690 11 uscs 60 HRS 0
ORBITER DOCKING 6500 L1 NASA 24-72 HRS, WILL BE 0
X GIVEN 6 HRS NOTICE
ORBITER SERVICER 2400 L1 NASA 4-10 HRS, WILL BE 0

GIVEN 2 HRS NOTICE

#* WILL BE CIVEN TOP PAYLOAD PRIORITY WHEN NEEDED

Table 1.

Space-Resident Tasks Used to Check Dypas Scheduling
Programs (from Floyd and Ford,]9386)

B. The Common LISP with Flavors Version

What was taken to be the main functioning of the 1986 Dypas
scheduler was reprogrammed into object-oriented LISP. The base
dialect for this reprogramming effort was Common LISP, the
standard dialect of LISP that has gained wide acceptance over the
past several years. More important to the language issue than the
base dialect was the use of the object-oriented programming
facilities of Flavors, an extension of LISP. As in the case of the
earlier scheduler, this version was developed for the Symbolics
computer®. The Flavors/Common LISP program was developed
under Release 7 of the Symbolics operating system. S. Davis was the
programmer.

The processes, that is, the activities to be scheduled, were
treated as major objects in the program. They were generated,
evaluated, sent messages and in effect queried. The scheduler
itself, called a “Dypas”, was also treated as an cbject.

(In fact, the scheduler objects were constructed to run under a
multitasking operating system, so that there could be as many as
four Dypases working in virtual concurrency, communicating via
several state variables. This fact may help explain some of the
internal program details, since this version was set up also to
explore one kind of (quasi) concurrent organization that we are
interested in looking at for future versions of the scheduler.)

A list of names of the main methods, the computations to be
made, actions to be taken, invoked upon receipt of a message by a
computational object may suggest something of the approach taken.

9 Varicusly, Symbolics Model 3640 and 3670 machines were used.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 17

The following methods were defined for dypas-processes:

make-instance
describe-process (to provide a consistent format for noting

information about the process’s priority, current status,
‘geometry’, next neighbors, and so on)
remove-process

create-node
initlz-node

collect-time

The following methods were among those written for scheduler
(dypas) objects:

- initlz

- find-root (a major method; see below)

- find-children (a major method, also discussed below)

- find-max-power-in-interval

- power-at (more particular)

- graphical representation

- presentation-print

- print-power@

- print-name

- draw-tree (last several for communicating results to user)

- initlz-hash

- build-hash (to set information up for quick access)

The labeling of the methods suggests what the program is mainly
about, namely, setting up computational entities, manipulating them
in familiar kinds of structures such as trees, displaying them, and
So on.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 18

They also indicate that this program, as an example of object-
oriented realization, is structured more as what one of us (Hays)
refers to as “standard computational modularization” or even
“standard proceduralization” rather than “radical objectification”,
where the objects are treated in more metaphorical terms. Traces
of the latter can be found in this program, in references such as
“schedule-me” and “schedule-us”.

One of the central methods for a dypas, find-root, is shown as
Figure 1. Even without a tracing out of all of the details included, it
may suggest some of the approach taken. The method sorts currently
schedulable processes to identify those that need to be attached
first, then sets them in place.

A lengthier dypas method, find-children, is listed in Figure 2. It
looks ahead, so to speak, to try out places for subsequently
scheduled processes. In doing so, it consults information on
resource needs, priority, and timing. The problematical part of the
scheduling for this application is handled by find-children.

These two methods roughly reflect the general strategy of the
original scheduler of assigning high priority processes first,
considering constraints of resource usage (mostly power
requirements), then fitting in activities of less importance to the
mission, less power drain, and so on. A listing of the Common
LISP/Flavors version of the scheduler is given in Appendix B.
Instructions for running it on a Symbolics computer are given in
Appendix A.

It is interesting that in the mix of space tasks on which these
schedulers were tested, the high priority processes tended to be of

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 19

long duration and generally required substantial power. Less
critical processes were frequently shorter and less demanding of
resources, though there was some variation. These real-world
correlations are not essential to the performance of either
scheduler, but it might be noted that in actual scheduling
applications the processes being worked with might very well have
particular features such as these.

Rethinking the Scheduler. Though broadly similar in the way
scheduling proceeded, the original LISP version and the Common
LISP/Flavars version differed in various ways, as one might expect.

The Flavors version of the Dypas scheduler is clearly a recasting
and not just a translation to another programming system.

Both versions have in common the input of a record-like
description of the tasks to be scheduled, though these were formed
somewhat differently. The original version used property lists. The
Common LISP version used a somewhat leaner record format.

“Rules” for weighting the assignment of tasks to time periods,
given constraints of resource availability, were incorporated into
the original program as list structures. Neither program as
developed contained the overhead needed to ask for and immediately
take in arbitrary new rules, or to modify old ones short of entering
the appropriate part of the code. (Writing a more or less arbitrary
rule processor that impacted scheduling computation would have
involved a much greater programming and debugging effort than
either project could manage—and was not necessary either to
illustrate the principles involved, or to obtain programs that
worked. Indeed, to write such a “shell"would have involved
somewhat different programming considerations overall.) Even so,

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1388 -p. 20

the original version had a fairly strong rules-orientation
conceptually, it seems to us. The Common LISP/Flavors version
streamlined the «rules” of the earlier version into program logic.
That is, the invariant high priority rules of the original program that
essentially gave great weight to power requirements, and so on, can
be seen as for-loops in the central dypas methods of the recast
version. Thus, the approach of the second program was to embed
some of the semantics in the procedural logic, rather than to include
it in LISP structures which were referenced. This approach probably
contributed to the efficiency of the second version. But the effect,
of weighting certain kinds of factors in the search for a pattern for
the processes that would meet constraints, was about the same in
both schedulers. Even the original scheduler, though much more
given to structures that could be construed as “rules”, seemed to
opt for computational efficiency in its search-and-fit strategies.

One might not expect, just on the face of it, for an object-
oriented program to run efficiently. Though it seems pretty clear
that the “objectification" of computational entities that an object-
oriented system allows, can make thinking about the parts of a
problem easier, the overhead involved could be great enough to trade
clarity for bookkeeping overload. This would seem to be especially
true if the “objects” were generated in the profusion required for
searching and testing the fit of a schedule, or some other
prob|ematical pattern of the kind likely to be found in Al
applications..

It turned out that the Flavors version of the scheduler was
decidedly more efficient than the original version. Running on the
same machine, with the tasks of Table 1, the second version ran over
4 times as fast as the original, for the main record-consultation and
scheduling part of the program. (The display of items in a Gantt

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 21

chart was not implemented in the Common LISP version; nor was
this included in the timing figures.)

Thus, reliance on “objects” hardly swamped time or space
resources. It is not clear, on the other hand, that the use of object-
oriented facilities speeded up the scheduler, since there were
several other reasons that the second scheduler would run faster
than the original version. Because of these additional factors, we
cannot say that the Flavors realization of objects was definitely a
factor in speed, but we can at least say that we were left with the
strong impression, after going through traces of some of the
computation, that the implementation of objects in the Symbolics
version of Flavors seemed to work fairly leanly so may well have

contributed to the speedier perfcrmance.10

Other factors!! contributing to the faster performance of the
Common LISP/Flavors version would probably include:

- use of efficient hash addressing schemes for the “data”
records consulted by the program in working with tasks to be
scheduled;

— incorporation of high priority factors into program logic;

- miscellaneous program features.

Relative to the last point, it should be noted that although both
versions of the program were intended to work with practical data
in realistic situations, the second version was written with
efficiency definitely in mind.

10 By contrast, we have experienced sluggish performance of object-
oriented programs in some earlier systems, as well as major memory
requirements..

11 One difference between the two versions that had little to do with
performance differential, so far as we can tell, was the use of ZetalLISP for
the first version, and Common LISP as the base dialect of the second version.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 22

It might be noted also that some classical LISP programming
techniques may result in time-consuming operation. The use of
property lists is a conceptual aid, but is not always recommended,
for this and other reasons. Again, because of search
implementation, the original scheduler did a very large amount of
‘cons-ing’ or list concatenation—a familiar kind of behavior of
traditional LISP programs.!2

We were concerned with broadening the facility of the Common
LISP scheduler to handle rules in a more direct fashion. Some time
was spent in discussing ways to recast the scheduler into yet
another version that maintained the DYPAS objectification, but that
allowed rule substitution and more of a rule logic. Davis was able to
implement a version of the well-known RETE rule-examination
algorithm. It is given in Appendix C. The rule-based object-oriented
program variant was still in the design stage by the project’s end,
however.

On the subject of rules, and inference patterns that work with
logical structures, it may be remarked that, although one often
thinks of “intelligent” programs as being ones which process logic
statements (e.g., standard advisory expert systems, or theorem-
proving programs), rule-processing is by no means coextensive with
the kinds of heuristic, flexible computation we include as examples
of “machine intelligence”. The case of scheduling of one or another
sort, where computations of resource usage are important, suggest
that some mix of propositional processing and numeric computation,
even numeric modeling, could be useful. Several strategies of

12 |t is often something of an eye-opener for a person who is familiar only
with algorithmic programming, to monitor a trace of computation which uses
list-processing techniques. '

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 23

construction are possible in engineering this mix.

Summary: the Common LISP/Flavors Object Version. The original
scheduler for space-resident tasks, constructed using more
traditional techniques of list-processing, was redone, using the
object-oriented facilities of Common LISP with Flavors. Both the
original and the object version ran on the Symbolics computer. The
Flavors version incorporated what was taken to be the main thrust
of design of the original scheduler, including a basically forward-
chaining logic, search for an acceptable fit of tasks satisfying
resource requirements, input of records describing the tasks, and so
on. The Flavors version, however, set up computational “objects”,
and was organized as object-associated"methods” which did the
main work of computation based on information or messages passed
to the objects, in the usual object-oriented fashion. This program
also involved several features, such as hash-addressing of
representations of the tasks to be scheduled, aimed at enhancing
efficiency. The result was a program that did about the same thing
as the original but was much speedier.

D. Hays - Languages for Al - Johnson Research Center, UAH - October 1888 -p. 24

(defmethod (Find-root dypas) O
(loop with processes-sorted =
(map “list #°car
(sort (loop for object in PRESENTATIONS
collect (dypas-process-cther object))
#°> :key # cdr))

with available-power = *maxinum-wattage*
with pane = (get-pane ‘messages)

for object in processes-sorted :;: MAIN LOOP
for runpower = (dypas-process-max-power object)

when (>= available-power runpower)
do (setf available-power (- available-power runpower))
and do (push object ROOT)
and do (push object SCHEDULED)
and do (build-hash SELF runpower 0
(dypas-process-runtime object))
and do (create-node object T “Ignore)
and do (setf (dypas-process-begin object) 0)
and do (setf (dypas-process-end object)
(dypas-process-runtime object))
and do (newpush (dypas-process-runtime cbject) START-TIMES)
and do (setf (dypas-process-condition object) “scheduled)
and do (let ((pro (dypas-process-name object)))
(dw:with-output-as-presentation (:stream pane
:type “dypas-process
:object pro}
(format pane ""&"S scheduled with "D left.~%"
pro available-power)))))

Figure 1.

The find_;oot method from the scheduler,
Common LISP/Flavors version.

(defmethod (Find-children dypas) (&key (stream *standard-output*)
(verbose nil))

{let ((clock-begin (qet-universal-time))
(schedule-us (map ‘list #car
(sort (loop for object in PRESENTATIONS
when (not (member object ROOT))
collect (dypas-process-other object))
#°> :key #'cdr))))
(loop for schedule-me in schedule-us ;;; MAIN LOOP
do (if verbose
(format stream ""& % bScheduling 5"
(dypas-process-name schedule-me)))
(let* ((those-scheduled (map "list # car
(sort (loop for object in SCHEDULED
collect (cons object
(collect-time object)))
#°¢ :key #7cdr))))
(fresh-line stream)
(loop for process-before in those-scheduled ;:; SUB LOOP
do
(if verbose
(format stream ""& Behind "S"
{dypas-process-namne process-before)))

(let* ((begin-time (collect-time process-before))
(required-power (dypas-process-max-pover schedule-me))
(available-power (- *naxinum-wattage* '

(find-maximun-power- in-interval
SELF schedule-me begin-time))))
(if verbose
(fornat strean "~%Available-Power = "D”
~% Required-Power = "D~
% Begin-Time = "D"
Available-Pover Required-Power Begin-Tine))

Figure 2.

The find_phildren method
(begins)

{cond ((>= available-power required-pover)

(setf (dypas-process-begin schedule-me) begin-time)

(setf (dypas-process-end schedule-me)
(+ begin-time (dypas-process-runtire schedule-ne)))

(create-node schedule-me process-before “ignore)

(build-hash SELF required-power begin-time
(+ begin-time

(dypas-process-runtime schedule-me)))

(push schedule-me SCHEDULED?

(newpush begin-time START-TIMES)

(newpush (dypas-process-end schedule-ne) START-TIMES)

(setf (dypas-process-condition schedule-ne)
“scheduled)

(return

(if verbose
(presentation-print *program*
(dypas-process-name schedule-ne) stream))))
(verbose (format stream n~% Look-beyond “S"
(dypas-process-name process-before))))))))
(format stream "~& %Scheduling took “\\time-interval\\"
(time-difference (qet-universal-time) clock-begin)))
(let* ((sun-usage-area (loop for object in PRESENTATIONS
sunning (* {dypas-process-mar-power object)
(dypas-process-runtime object))))
(longest-runtine (eval *(nax ,@START-TIMES)))
(validation (/ sum-usage-area (* longest-runtime *paxinum-wattage*))))

(format stream "~%Longest process runtine “\\time-interval\\"
longest-runtime)
(format stream "“%Power to time ratio ~2,5F" validation)))

Figure 2.

The find_phildren method
(cont'd)

C. The Ada Version

The Flavors version of the scheduler was chosen for
implementation using Ada, the language and programming system of
the U. S. Department of Defense.

This came at a time, early 1988, when many groups in work
organizations were very much concerned with questions of adopting
Ada for some of their own programming activities. At the time, the
drive to adopt Ada, or at least to evaluate it for adoption, had
extended well beyond those groups who were writing programs
directly for Department of Defense projects.

Given a choice of programming languages to explore for an Al
problem, Ada was most interesting to us, and it seemed probably
most interesting in general, for several reasons.

One reason was, of course, timeliness. The push to use Ada, or to
say why you weren’t going to, was underway.

It seemed also especially important to include in the evaluation
of Ada some of the programming techniques of machine intelligence.
When the design of Ada was worked out, several years earlier, Al
programs were probably not so much considered in its design'3
Since that time, a few people in the field have been concerned with
just this issue. Some of their work has been reported in the annual

13 This is a conjecture. Among the many persons who were concerned with
Ada in its stage of design and initial negotiation, some must have been aware
of the sorts of requirements of programs that were heavy on search and
dynamically generated, evanescent structures. But since Al applications were
much more in exploratory stages at that earlier time, it seems unlikely that
they would have been considered in the same arena as control programs,
database programs, and other more standard applications.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 28

Al and Ada conferences (or AIDA, to use the more memorable
abbreviation) which were held the past two years. But in the
mainstream of developmental work in artificial intelligence, judging
from the publications and major conferences of the American
Association for Artificial Intelligence, Ada has not been a language
that has been used, and the question of its adoption was not one that
people who were primarily concerned with the development of Al
methodology were concerned with. This would be quite proper, since
implementation details operate at a somewhat different level than
problems of program logic or concept.'¥ Since Ada was rapidly
being adopted, it seemed especially important to see how well it
suited the needs of Al programming. There was even a note of
urgency. A programming system not specifically designed for
heuristic programming gave indications of being adopted, largely
because of external pressures!'S. At the time, Al programs were

just gaining a foothold in many organizations, but the foothold was
tenuous in some cases. If Ada turned out to be widely adopted, but
unsuitable for the kinds of procedures useful to machine intelligence
applications, their benefits could not be realized.

Even if the adoption of Ada had not been an externally important
issue, Ada would have been interesting to explore. It is a very rich
programming system. And, it differs considerably from list-
processing languages.

Ada and LISP: a Note on their Locale. LISP is today a highly
evolved family of programming languages, with direct lineage to the
language formulated by John McCarthy over two decades ago. Ada, as

14 The issues are not entirely separate, since a programming system can

both set constraints on the realization of techniques and also make it easier to
use certain kinds.

15 which might be merited in the main. The overall suitability of Ada was a
larger question than we were prepared to address.

D. Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 29

a living language, so to speak, is in its early stages'6. As an
evolutionary product, most of its variation and selection has been on
the conceptual level, though there are indications of evolutionary
variation in its implementations over the past couple of years.
Conceptually, Ada might be said to have drawn on the forms of
previously existing computer languages, especially those which
carefully controlled the definitions of variables and the transfer and
binding of information. With its concern for portability and
communication among routines, and its intentions of comprehensive
usefulness (the evolutionary equivalent of territorial dominance, one
is tempted to theorize), Ada seems to emerge as something of a
super-species, or at least as a candidate for such an ecological
position. By contrast, LISP dialects, despite a certain level of
general capability, if not a certain aggrandizement of form and
posture over the past decade, have remained ecologically fairly
specialized. They are very much “niche” languages, though the size
of the niches has increased lately with the rapid growth of interest
in artificial intelligence and other symbolic processing.!”

Ada and LISP: some Language Features. The details of each
language are voluminous. There are some immediately contrastive
features, though.

Figure 3 lists instructions for a simple kind of computation, first
in generic LISP, then in Ada. The Ada code is realized as an Ada
function; the LISP code is a LISP function. Each version assumes
that certain terms have been defined and given values, and that
niceties to insure program acceptance have been observed.

16 pPersons who have been involved in the lengthy history of formulating,
revising, and supervising early implementations of Ada might disagree.

17 There are signs that the expanded arena of supercomputing with tightly
interconnected processors will be another somewhat specialized niche for LISP
variants.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 30

Both examples use recursion.

Perhaps the most obvious difference between the two is that the
LISP version looks like LISP, and the Ada version looks something
like Pascal or various other languages that trace certain amounts of
their syntax and notation to Algol. Neither are exactly “natural”
ways to tell a computer to do something—no one talks like this—but
each can be figured out. At a superficial level, the LISP function
seems replete with parentheses. We are left wondering, in each
case, about how recursion and other features are handled during
actual computation.

Apart from these impressions, a more substantial difference in
the languages is indicated by this example, that is, the emphasis on
control of keywords and variables in Ada. There are reserved terms
in LISP, even if they are not conventionally given in boldface, but it
is a much more easily extensible language. Ada is more the cousin
of Pascal or Modula-2 in being “strongly typed”, that is in specifying
or carefully restricting the definition of kinds and conventions of
elementary data units. Interestingly, in the treatment of typing,
numbers receive more attention than other conceivable data units,
belying the traditional, math-procedural concerns of these
languages. Along with the typing, Ada constrains very carefully, if
not severely, what can be passed as information to a routine. Some
of the limitations of reference and binding are likely to be
experienced as frustrations by persons used to programming in list-
processing languages. They are used to handling problems that arise
in working with the dynamically generated structures of symbolic
computation by layering or nesting references to whatever
structures may have come about. Such references are a bit tighter
in Ada, but also probably less prone to unexpected errors.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 31

Figure 4 shows Ada code for pushing an item onto a stack and
popping it up. This kind of action is familiar in many kinds of
programming, including assembly language routines. Pushing down
and popping up are frequently used list-processing operations.

In this example, the two stack-manipulation operations are
contained in an Ada “package” along with some definitional
material. The package concept is not limited to Ada, but is one of
its distinctive facilities. In a package, one can gather together, or
“wrap”, related computational entities such as constants, types, or
procedures. The package is a convenient place to place the code. It
can be found there if it needs to be revised or expanded. A subtler,
related benefit is that within the package, referencing is simpler, so
that less overhead of cross-referencing is involved in using the
items wrapped within.

This push/pop package works on data items of type “integer”.
Some kind of floating point numeric representation, or character
representations, would need additional code. However, Ada does
allow terms for such operations to be “loaded” so that they could be
applicable to more than one type, assuming that the proper code
were available and had been suitably referenced within the system.

Davis chose to program the integer push/pop routines as taking
place in a vector array. An alternative, rather more bulky approach
would have been to try to reimplement LISP-like data units in Ada.
The latter course would have provided needless overhead for most
situations. However, using the built-in array addressing of Ada (or
Pascal, or Modula-2, or whatever) does mean that the array must be
large enough to hold the data items that will be needed, and not so
large that too much memory relative will be taken relative to other

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 32

needs of the program.

This choice brings up another matter involved in doing list-
processing in languages that provide handier facilities for other
kinds of operations or memory allocation. Frequently, it is the best
course of action to adapt facilities of the language one is working
with, rather than to try to rewrite or comprehensively simulate the
source language in the target language. Choices of just how to use
the facilities of the resident language may have to be made after
surveying just what is needed to program the problem at hand.

Finally, in connection with Figure 4, note the code, here
unamplified, to raise error conditions when an attempt is made to
exceed stack depth or to pop an item from an empty stack. Though it
is not apparent from the example, Ada’'s error handling facilities are
generally thought to be very convenient in comparison to those of
other contemporary languages.

The extensive features of Ada are discussed in a number of
publications. Sources that we have found especially accessible are
the texts by G. Booch; various works written by N. Gehani; and |.
Sommerville's book on Software Engineering with Ada, to name just
a few. Though some of the material was written fairly early in the
short life history of Ada, comments in various articles contained in
Comparing and Assessing Programming Languages: Ada, C, Pascal,
edited by A. Feuer and N. Gehani (Prentice-Hall, 1984), are clear and
still relevant.

So far as discussions of LISP, the features of the language are

described clearly for programmers in a number of textbooks, often
containing “Al” in the title (texts by Winston, Brooks, Anderson et

O.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 33

al., and Tanimoto come to mind). More technical discussions of
strategies of implementation, and issues of how variables are
accessed and transferred are contained in comments in G. Steele’s
basic reference on Common LISP, and in Abelson and Sussman’s
Structure and Interpretation of Computer Programs.

Direct comparisons of LISP, or other list-processing languages,
with Ada, or for that matter other languages such as Pascal or
Modula-2, are not so easy to come by, though the discussions in the
last AIDA conferences are relevant.

Another example of Ada code for a list-processing job is given in
Figure 5. The two parts of Figure 5 show how the LISP function,
maplist, could be implemented in Ada. This example is taken from
Gehani’s 1983 book on advanced programming in Ada.!8

Maplist applies an operation (function) to each of the members
of a list that is specified. This is the kind of thing that one
frequently needs to do in symbalic programming. It is convenient
not to have to specify anything about the list, such .as its number of
members, or the kind of members that are in the list.

The Ada code is presented for a “generic” routine, one that has
meaning in broad contexts. Gehani only sketches the actual Ada
program for this function. In practice a number of details would
have to be taken care of. Note that the definitional part of the
routine is much lengthier than the “action code” or function body. A
suggestion is given of some of the matters that would have to be
accounted for to handle the kinds of lists (sequentially linked, with
expandable items, etc.) that are the basis of LISP data structures.

18 Also from Prentice-Hall.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 34

When working with a dialect of LISP, what one takes as basic
functions such as maplist or other “map” variants, or ones to
traverse lists and match items, pair items, reverse lists, and so on,
come to be relied on and thought of as simple operations, though
their actual coding may be non-trivial and in some cases may be
fairly subtle. This is true of the list manipulating part of Prolog
dialects.

When faced with handling list processing in languages with
Algol-like statement syntax and different kinds of management of
information items, the usefulness of such functions becomes felt
very definitely. One impulse is to reimplement them, necessarily
together with a basic list representation, in the new language.
Another approach is to implement just some of the more important
ones. In either case, some accommodation will have been made to
the facilities of the target language. Yet another approach is to try
to rethink the problem as one whose solution has to take place in the
second language, without reference to the way it would have been
solved in a list processing programming system. If the target
language is one in which it is difficult to do some things, such as
run-time storage allocation and deallocation, problems at the
conceptual level may result.

Recasting the Scheduler into Ada. It would have been a much
tougher job to reprogram the Ford-Floyd Dypas scheduler more or
less directly into Ada, than to work with the Davis Common
LISP/Flavors version.

The original scheduler relied heavily on traditional LISP
programming techniques and facilities. Though it is not unorderly in
overall structure, it looks much less modular than the Flavors
version, and at least to a programmer unfamiliar with its underlying

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 35

conceptualization, would seem to be far from the intense
modularization demanded by Ada programming.

Thus, the fairly “procedularized” recasting, using certain of the
object oriented facilities of Flavors, lent itself to translation into
Ada, at least at the level of major program modularization. |t was
not difficult to sketch a fairly direct correspondence between the
methods defined for the Flavors objects, and Ada procedures or
generic functions.

It did appear,though, that problems might be encountered in
storage allocation overhead, and possibly also in straining bounds of
readily available memory. These are matters where language
facility and system convention and coordination interact, so that
knowledge just of Ada language specifications could not tell us
exactly what would come about in doing large-scale searches in a
program implemented for various systems running Ada.1?

Figure 6 shows Ada code for setting up the major objects of the
conceptualization of the scheduler used in the Flavors version. The
Dypas_process was taken as the main object. (Treating individual
schedulers as objects, as in the Flavors version, was not considered
to be a good idea here. Instead, in a possible version that would use
concurrent processing we would intend it to be handled more
directly by the concurrent facilities built into Ada.)

Figure 7 lists the central procedure, FIND_CHILDREN, in Ada. In
comparison with the LISP/Flavors version, shown in Figure 2, the
Ada version is leaner. lts logic is revealed almost skeletally. The

19 |t is interesting that relative to a programming system and language that
is meant to be machine independent to a large extent, we so quickly
encountered a system problem in our planning.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 36

work of computation is mostly handled by calls to routines. Some
of the routines are unique to the scheduler, such as SCHEDULE_ME.
Others reflect more basic functions such as CREATE_NODE or PUSH.

The modularization and readability of Ada is seen very nicely
here. By comparison, the parallel Common LISP procedure, even in
the organizing context of some kind of object-oriented structuring,
seems to have more little details to take care of.

Not visible in this central procedure are the complexities of
specification and reference of the related declarations and routines.

About Ada Objects. Ada is sometimes referred to as a language
that is based on computational “objects”. Booch, for example, in
both editions of his text, emphasizes the importance of Ada objects.

This terminology may be confusing to someone not familiar with
the exact facilities of the language, since the term “object-oriented
programming” or “object-oriented programming system” (OOPS, for
short) is probably more frequently used today to refer to facilities
such as those in Smalltalk-802%, or Flavors extensions for LISP,
and several more recent languages.

The usage is closer to the terminology of “first-class objects” or
“second-class objects” in discussions of symbolic programming
languages, which have to do with matters of reference within a
program.

Both Ada objects and OOPS objects involve “information-hiding”,
as do the procedures of Modula-2 and other languages when internal

20 The language and programming system developed by Xerox Palo Alto
Research Center, and now available for various machines.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 37

terminology is not meaningful outside of procedural boundaries.

The inheritance of properties by instantiated objects is not easy
to manage in Ada, though it is a common and useful feature of
languages such as Smalitalk. The Generic definition facilities for
Types in Ada do not allow such referencing. Thus, hierarchies of
objects are not possible (unless simulated somehow), much less
multiple inheritance, where an object can draw characteristics from
more than one branch.

For this reason, translation from Flavors into Ada may run into
constraints fairly quickly, if many features of object-oriented
programming were included in the original.

Problems of Implementation. In redoing the Flavors version of
the scheduler using Ada, we had two kinds of problems. The first
were basically matters of language differences, such as different
ways of handling objects. The second, actually more serious
difficulties were experienced in areas peripheral to the language
itself. Of these, systems-related problems were very important.
These often interacted with what might be termed mundane
problems of working with specific language systems and hardware.

Some of these problems may have been unique to this particular
project, though we suspect that the sorts of problems that we
encountered were not.

Our situation in starting to work with the Ada scheduler may also
have been not exactly unique. The person doing the bulk of the
programming was not experienced in using Ada for any kind of
application. He had a sort of textbook familiarity with it, and
shared programmer lore, but had not programmed anything more than

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 38

a few exercises using the language. However, he would qualify both
as “an experienced programmer” and as “an experienced Al
programmer”. Besides LISP dialects, he had programmed in Pascal
and in C, so was familiar with the sorts of syntax and referencing in
those languages. Besides these, he was familiar with several Al
programming “shells”. In other words, he was both experienced in
programming, and used to some variety of programming systems 2!

Thus, the experience of recasting the scheduler into Ada could be
taken as a kind of case study in language adoption.

Relative to learning to use Ada as a language the following
comments can be made from this particular case:

. Textbook material was easily available, and generally clear,
though some of the more available and better known texts talked
about the language somewhat more than getting down to
examples that were worked out in thorough detail.?2 Such a
level of discussion was not a particular problem for someone
experienced in programming and knowledgeable about computer
systems, but might be puzzling to persons less experienced. (The
level of discussion may have been a function of the relative
novelty of the language, and. possibly also was traceable to the
scarce availability of validated compilers for Ada at the time
some of the textbooks were written. Since that time, we have
noticed somewhat more detailed and less discursive material
available.)

« We expected Ada not to be so restricted in its referencing as
it was. Possibly because the problem being worked with needed
somewhat flexible referencing, we found that it was easy to

21 By contrast, other accomplished programmers specialize in just one
language.

22 |4 will not surprise persons used to such material that some of the
examples in the texts did not work.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 39

assume that such was available.

. As the conventions of the language became more familiar,
the value of Ada’s modularity for clear communication and
structuring of program logic was very pleasant to discover.

. The facilities of the language for error handling were good
to have in an explicit form.

« Though primarily used in planning developments of the Ada
version, the facilities for concurrency seemed adequate.

. Generally, relative to ease of learning, Ada had extensive
facilities, each replete with particular conventions and
restrictions, so the information load was fairly heavy.

So far as learning Ada, features of the language itself were not
nearly so important as the computational facilities associated with
one or another implementation of the language. lronically, Ada is a
language whose realization in compiler form has been a matter of
explicit early discussion and subsequent attention by the
Department of Defense, its genitor. Compilers must be validated, to
check that the numerous specifications are met. Along with the
concern for validation is the well-known insistence on multiple-
machine usage. When taken together with the care in cross-
referencing routines and information items, and the safeguards for
internal consistency that is also part of the language design, a large
amount of compilation time seems to be taken up with checking the
code for such matters. Thus, to compile even short procedures

frequently involved substantial turn-around.?3

Turnaround time is turnaround time, and can be adjusted to. When
taken together with sparse documentation and diagnostics, though,

23 The suspicion was also raised in some cases that compilation time tended
to be lengthy because of the complexity of the language; or perhaps even
pecause some of the compilers had not peen well tuned.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 40

the delays for compilation seemed especially frustrating. In some
cases, no information was given regarding the reasons for an
unsuccessful compilation, and a search of the documentation did not
readily provide clues. We were left wondering |

- if the cause of the problem were an error or faulty
assumption in the program (likely),

- if so, what the error or inconsistency was,

. if in fact the problem might have resulted from not doing
what the editor or compilation front-end expected rather than
being a language error (more likely that we would have thought at
the outset),

- if the problem were in the procedure itself or in the linkage
checking,

_ if we had run into a compiler flaw (not as likely as we
thought at times, but with some of the earlier versions of
compilers which we worked with, a possibility that could not be
dismissed).

Problems with compilers, editors, linkage checkers, and so on
were encountered both with the Symbolics (which in general has a
superior user interface and system facilities) and with IBM Personal
Computers and their clones (which are not known for either). Ada on
the Symbolics would of course be written on top of the basic list-
processing structure of the machine and its system software. We
felt that this made it not the ideal machine to benchmark Ada on
because of this indirectness of implementation. Even so, because of
the Symbolics’ system facilities, we had thought that its Ada would
be easier to use. The main problem that we had with it (which may
also have been to some extent a function of our place on the learning
curve) was inadequate diagnostics. We are curious, however, as to
the future of an Ada implementation on this machine, since the
Symbolics systems software has already developed smooth-running

D.Hays - Languages for Al- Johnson Research Center, UAH - October 1988 - p. 41

multi-tasking, and has a number of other excelient software and
interface features to recommend it.

Generally speaking, Vaxes are not as convenient to use in
preparing and editing programs (though they have been steps ahead
of other minicomputers and various mainframes). We certainly had
no quarrel with Vax Ada itself, which must be something of a
landmark. Unfortunately, because of mundane reasons, such as
chronic hardware problems on oné machine, and uneven access then
memory inadequacy on the other Vax, for much of the time we were
unable to use one of these machines.

Thus, our early plan of developing the Ada version both for the
Symbolics and for the Vax was frustrated, given the time for this
part of the project.

Even though there was no chance of programming the complete
scheduler for a PC, some time was spent in working with smaller
routines using two kinds of Ada on IBM and similar personal
computers. Both of the Adas were in “early” versions?4. Both were
fairly frustrating to use. (We have since used a revised version of
one of the PC Adas, and do not believe we would have had the same
problems with it.)

Status of the Implementation. The complete scheduler had not
been implemented into fully functioning Ada by the close of the
project period. We felt that we had learned a considerable amount,
but also felt a sense of frustration that so many “peripheral”
matters, such as hardware access, capability of editing software,
and especially Ada-related system software (either compilers or

24 A relative term. |t appeared that an “garly” version of an Ada
implementation was one that did not work very well.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 -p. 42

closely related system features), had been sources of problems.

These are some interim conclusions regarding the Ada
programming experience that we felt could be offered at the end of
the project period:

. Ada is a large and capable language,

 Partly because of language complexity, and partly because of
system and compiler problems, using Ada for a reasonably complex
program involved various frustrations and delays.

. It seems to take somewhat longer to implement and integrate a
program of moderate complexity than would be the case with a
language of more traditional scope of integration.

. Ada routines are easy to read, in general.

. The transition to using Ada confidently, when other languages
have been used, may take longer and use more resources than one
anticipates.

. Translating Al applications such as this scheduler into Ada are
easier if they are “proceduralized”.

« We remained suspicious of the ability of computer systems
operating with Ada as their language/programming systems to
efficiently use memory in the voluminous and dynamic ways that
often seem necessary for Al problems.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 43

the collect-time function in LISP

(defun collect-time (process)
(if (eq T (process-before process)) ; if this is true
(process-runtime process) ; then do this
(+ (process-runtime process) ; else do this

(collect-time (process-before process)))))

the collect_pime function in Ada (recursive version)

function COLLECT TIME(P: in out PROCESS) is
begin
if T = PROCESS.BEFORE
then return PROCESS.RUNTIME;
elseif return PROCESS.RUNTIME +

COLLECT_TIME(PROCESS.BEFORE);
end COLLECT_TIME;

Figure 3.

Illustration of a function programmed in generic
LISP, and in Ada.

(sashojul jo Aeday ue 103
pojuswaTdur) suotaeaadp dog pue ysnd 103 abeyoed epPY

p aanbtg
SMOVILS pu9
:0=:dOL
ugdoq
-dOd pud
(1+dOL)S uinjax
:1-dO1=:dOL
J1 puUd
MO H Isrex
udyl 0 =dOL ¥
uisaq
ST YAOALNI winiax 4Od uogouny
‘HSNd pu?
X=:(dOL)V
‘1+d0OL=:dO.L
JI pud
DOWH 9stex
udyl XVIN = dOL It
uggaq

st (MADAINIX)HSN ainpadoxd

XVIN'0 28uel YADALNI ‘dOL
SJADFALNI 30 (dOL " 1)Aexre iV
‘0001 =:3uBIsuod XVIN

s1 IS Apoq ageyoed

(€86 ‘Tueyon WoIr) epy urt Istrden dSTIT 103 2po)d FO yojoys -¢ axnbrg

)

SLSTT WL (LS17 wi) LSITdVIN uorduny

st Kfidws ue--
“<> S LSIT uanjau dLVAYO uonduny yjm

-<> S NVATOO0q urmpas (LSIT Wt : A LJNG uonouny yjm

JUSWRLd 181y 9Yy) snuiw yng--
1 St dwes oy st jeyy sy oyj--
<> S1LSIT wamaa (LSIT wl :DIvL uonouny yum

‘<> St (NTTH ur iy -LSIT M0 Wy) LSVT aqy uonouny ym

T I8I] ay1 jo JUSWId[a 1s11J--
<> SIWHTE wWmaa (IS1T ur :7qvay uorduny yim

' uonouny oy; Suipuayxs 10J A1essaoou ore Ay 2ouis--
uonenueisur oy jo 1x01u0d5 ay) Ul d1qerreae oq 1o parddns oq--
Isnur [S17 2d£1 ayy jo sonfeA 10j suonerado uimorioy oyJ--

'PIpuLIXd Furaq uomduny oy s SIy, --
TWHTH wampa (W1 w)y uonduny Y

feand st wgTH 3dfy

$djearad st ggrq adf)
d119ua3

LSI'IdVIA

(£86[‘Tueyo woxj) epy UT IsTTdeW 4SIT 103 9POO Jo yo3lads - (p3uod) G 2anbid

(FAVNAOS “YADILNI ‘LSIT JADTLNDLSITdVIN Mau
st LSIT YADOILNI 3dVNOS uonouny

se gYVNOS uonouny 2yl
pue s1agowur Jo 11| e 10j pajenuelsut oq Aew LSITdVIN uohouny oLIouad QY

‘LSI'TdVIN pud
L 1NSHY winjau
¢dooj] pud
(V)YTIIVL =V
((V)avawd ‘LINsSTDISVT aayv
doo| (V)ALJWH 1ou aiym
sty Kidws ayi-- SHLVAYOD = LTNSHA
1 =V
st LSIT winyaa (LSIT Ul PLSITdVIN uoljouny

Apoq LSITdVIN

- 79TOpPoYDS 1O UOTSION BPY 103 Amommmucmmimmmyov syoolqo urew dn buraavs "9 2anbta

*001 1o8aiur 01 19s ANH 10[s M paeard g1 109fqo -
{001 <= NH) SSFD0¥d SVdAd 44l

‘|[nU 01 135 SI0[S YMm pIAeaId SSTIOH 199(qo --
‘SSHO0Ud SYAAQ -SSTOH

smo[[0] se st §192[qo oy Fule[dp Uy

‘pa0d31 pud
‘SSFO0YUd SVdAd -ddldV
‘SSHO0Ud SVAAd -HIOIdd

0€ " 1)ONIILS :NOLLIANOD
MADALNI -ANH
MAOALNI NIDHH
CAIOALNI ¥IMOd XVIN
p10331

s1 SSID0OUd 24K
‘SSADO U Ss3IE St SSHHOUd SVJAd 2d4)
‘SSAD0Ud 245

$SgD0dd SYdAd ad£1 ssaooe Juie[dp

Sepy UT 2INpooodd NIIQTIHD (NI TeIjuad oyl L oanbry

‘NIYATIHD ANIA pud

‘dOOT NIV dooj pud
‘d00OT1 4dns doo| pud

J1 pud
“wPIIOPAYOS,, = NOLLIANOD N A 1NAdHIS
(SINLL LIV.LS ANT N AT1NAIHOSHSNd
(SHNILL LAV.LS ANLL NIDFD)HSNd
(g 1NAgHOS AN A TNAIHIS)HSNd
W (aANF I 4 1NAIHOSTINLL NIDHE JAMOd ARINOMDHSYH a1Ind
| . (TAOJHd SSHOOUYdIN T 1NAIHIS)AAON ALVIID
HNLINNI G 4 1NAEHDS + HALL NIOFG =ANIJN 4 1NAIHIS
‘HALL NIOFd =NIOAdaN a10ddHDS
udy) YIMOd dFIINOAY =< YIMOd TV TIIVAV 2
‘(HNILL NIDFd IN d1NddHDS) ddMOd XVIN NI -
OVLLVM XV =4dMO0d ATdVIIVAY
AIMOd XVIW AN A TNAAHDS =4dMO0d AIINOTA
A (HAOJd I SSHOOYDANWLL LOATIOD ="dNIL NIOdd
| doo| QA TNAAHOS ASOH.L U! AYO4dd” SSAD0Ud 10)
dOOT dns
Ul mau O LXH.L
dool SN"9TNAFHIS W I dTNAFHIS 10)
:*dOOT NIVIA

HWLL TVSIIAINN LID Ol HNILL u“ZHOmmIMUOA%
ursaq
‘uornjediyioads agfeyoed SYJA(Q Ul dIe[Odp dle--
SN"ATNAAHOS pue g4 1INATHDS SdqerreA [eqo[3 ay[L--
'SSAD0YUd SVAAQ :TIOJdd SSFO0Ud ‘AN A T1NAAHOS
“YADALNI :NIDFd D01
S1 NI TIHD dNId 31Inpadoad

IV. Issues and Conclusions

What was Learned. Probably the most interesting finding to
emerge from the various attempts to recast the original LISP
scheduler into other programming contexts, was the efficiency and
speed of the object-oriented version. The improvement in
performance was substantial, and though it seemed to result from
several factors (program organization, speedy addressing schemes,
and so on), the programs were comparable in some important ways.
Apart from the difficulties of comparing any two complex programs,
the original scheduler and the Flavors version ran on the same
computing machine, and both were within the LISP programming
milieu. Thus, questions of recasting list-processing programs to an
essentially non-list-processing environment, as in the later
exploration of Ada, were irrelevant here.

The improvement in performance was especially interesting since
object-oriented techniques are commonly offered as aids to clearer
and more communicable conceptualization of a problem, but are not
usually suggested as leading to markedly improved efficiency. We
found here that at least in this case, the “objectification” at the
very least did not detract from performance and may well have
contributed to the improvement.

In relation to the above, we also learned more clearly the relation
between ordinary object-oriented techniques, which in the
literature are often discussed as just radical cases of “information
hiding” in procedures, and the tradition of very modular procedural
organization of programs—which of course is a strong cultural
feature found in the design of Ada25.

25 And other current languages in that tradition such as Pascal, Modula-2,
and others.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 50

It should be noted, though, that very tight modularization is not
necessarily a programming ideal for Al programs, especially when
it implies, as it often does, extensive constraints on symbolic
reference, ability to pass on information among procedures, and
kinds of data structures that are convenient to use within a
particular system. We ran into these constraints almost
immediately in setting up the recasting of the scheduler into Ada, in
the restrictions on generic types. (We think we would have had even
more problems with a more narrowly conceived language such as
Modula-2, despite its conceptual neatness.)

This is not to say that we have anything against clarity of
organization of programs26. Both clarity and effectiveness can
come from other organizational principles, and other
language/system bases. For example, the kind of organization into
inference routines and modifiable knowledge corpora that has
emerged in some machine intelligence work, is relatively clear and
certainly useful, but is different in approach from what would be
recommended by the dogmas of the Wirth school of thought.

Intelligence in Machines. A curious phenomenon of work in Al is
the disappearance of intelligence when a process is examined
closely, or comes to be understood.2” The case of now you see it,
now you don't ‘intelligence’ in the routines was something that we
experienced in regard to each of the programs that we worked with.

26 Regretably often taken to be the sole property of “structured”
algorithmic languages such as Pascal.

27 Though this has often been pointed out for the case of machines, it also
seems to apply at times when human intelligence is carefully scrutinized, and
what seems to have been whim or wisdom seems to be more determined by
simple causes than not.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 51

What seemed to be more significant was the embeddedness of
intelligence into the routines. Even in the original scheduler, much
is arranged and specified rather than left for inference. The Flavors
version of the scheduler in some ways went a little farther in
incorporating actual heuristics about the situation of scheduling
space tasks into code.

What this implies is that the critical issue is not whether a
program is intelligent because it does some reasoning or not, or is
smarter or less smart in an absolute situational sense, but the
modifiability of the program to meet new situations together with
the situational adequately of response. This makes the matter of
program “smartness” much more a matter of both interface and
external connectedness to a world of events and meanings, than
necessary features of internal procedure. So flexibility and
aptness become important more than particular formal features
that may have been seized upon as indicators of program virtue.

The now you see it phenomenon also is related to issues of
programming language features and capabilities. Assume for the
moment that only one computer arrangement was being used.
Various high level languages, in which programmers would express
what needs to be done to solve real problems through computation,
must be transformed into machine instructions. The machine will do
what it can do. But, it turns out that it is much easier to do some
things using some higher-level languages. It is virtually impossible
to do some things with some languages. For example, it used to be
next to impossible to do any substantial amount of list processing
with Fortran, and it is still difficult to do so without special
routines in more specific languages.

So the reality of the programming language, with its domain of

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 52

meanings and operational possibilities, is very real indeed.

If machines are different from one another in certain ways, the
discussion becomes more complex. For example, in this project the
difference between the underlying structure of the Symbolics, which
has special hardware facilities to help list-processing addressing
and even some higher order operations, is different enough from the
underlying structure of a Vax, or a PC, that one would want to
examine not just language differences when exploring how programs
should best be written for these systems.

From the point of view of the humans who use the computers,
either the possibilities and constraints of the software, or the
possibilities and constraints of the hardware, could be the source of
easy problem solution, or of frustration in trying to solve a
computational problem. In this project, for example, the major
problem was what software would allow or facilitate. It turned out
that even on the same machine, it was relatively easy to solve
certain problems with some software, and a real challenge to do so
with another programming language, even one that is advertised as
being diverse and capable.

Possible Future Investigation. Further exploration of Ada would
seem to be of considerable interest. Both the more limited approach
to the scheduling problem, and ones that were only mentioned in
passing here, such as multitasking versions, would be interesting to
gain more experience with.

Of languages that are in concept more limited than Ada, Modula-2
and C seem especially interesting. C is widely used and has a good
reputation for implementing efficient programming solutions.
Modula-2 is becoming increasingly appreciated by people who write

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 53

serious software, including applications for machine control and
coordination. Both have certain restrictions of conceptualization,
though. |

Because of the results for the object-oriented version, it might
also be worthwhile to pursue that kind of technique in future
studies.

in addition, various projects have been underway to provide either
somewhat general list-processing facilities, or more specialized
“expert system” systems written in some of the more classically
structured languages. These could be evaluated using problems such
as this scheduler.

Summary. A realistic application involving the concepts and
certain programming techniques of artificial intelligence, was
examined in several versions. The original, in classic LISP,
contrasted with an object-oriented version. Work on a recasting
into Ada, at base a ditferently structured language, involved a
number of both practical and conceptual problems.

D.Hays - Languages for Al - Johnson Research Center, UAH - October 1988 - p. 54

APPENDICES

Appendix
A. Instructions for Common LISP/Flavors DYPAS Scheduler
B. Common LISP/Flavors Scheduler: Listing
C. Rule-Search (RETE) Algorithm Adapta_tion
D. Routines from Ada Version of the Scheduler

E Floyd and Ford's Description of their Scheduler

D. Hays et al. -Languages for Al - Johnson Research Center, UAH - October 1988

Appendix A.

Instructions for Common LISP/Flavors DYPAS Scheduler

These are the instructions supplied by
S. Davis for running the Common LISP/Flavors
Version of the Scheduler
on the Symbolics computing machine.

D. Hays et al. -Languages for Al - Johnson Research Center, UAH - October 1988

To Set Up the Common LISP/Flavors Version of DYPAS -

Begin by restoring the distribution from tape.

The best way
to do this is by enter

ing the Command Processor command;

Edit File SYS:SITE:DYPAS.TRANSLATIONS
and typing the form

(fs:set-logical-pathname-host "DYPAS"®
itranslations 7 (("#x ;w ">dypas>##>1)))

The physical directories do not have to exist.

Now, evaluate
and save this file, then go back to the Listener.

From the Command Processor do a Resto
the Cart Unit to use and begin restoring.

re Distribution, specify
To load DYPAS into working memory do;
Load System DYPAS

then type <SELECT>-Square.

Running DYPAS is equally simple. Six of the eight commands
displayed are mouse sensitive. The two that are not are Describe
Process and Remove Process. They are available from the Keyboard.
Describe Process is also available by mousing on a process name
after selecting Show Schedule. The top four commands should be
selected in sequence initially, and then used 1logically
afterwards. A short introduction of these commands follow.

INITIALIZE sets-up program definitions and clears the Frame
Base. It 1is always correct to select this command first.
Initialize prepares DYPAS working memory for new processes.

SELECT PROCESSES allows the user to individually select the
processes he wants to schedule. When selected it brings up other
windows that can be logically followed.

SCHEDULE begins the scheduling process, but does it in the
background. You can then actively Describe Processes, Create

Processes or Show Schedule to give a dynamic view of what is being
scheduled.

SHOW SCHEDULE does its best description after the scheduling
is done. You can Describe Processes by mousing on the tree
structure for any process name that is sensitive.

Try removing a few processes after scheduling and then select
Schedule again. See what kind of schedule differences exist. When
you want to begin again select Initialize and start fresh.

NOTE: To allow DYPAS to run quickly, keep the mouse pointer out of
the Message window. Some of the processes are mouse sensitive and
it will slow down the scheduling when mouse and process conflict.

Appendix B.

Common LISP/Flavors Scheduler: Listing

D. Hays et al. -Languages for Al - Johnson Research Center, UAH - October 1988

- -

(I9UYT: NVWOY: XId:)

:o7h3s-1910RaEYD-3TNRIDG ‘JSIT :9POW QT :osed ‘yasn :ebejyoeg !(dsTT-uowwod :XeJUAS —x-

(MAUD u[~popodu!l/~papsau j0U] t~ IPL~MIIDY~,, aued jewioy)

(AINTILNNY YIAMOJ-XYW YOSNO4S ALIVOIYd

wd~ awTauny
~g~(J~ ! I9Mod-xER
~Y~Ga 10osuodsg
~E~~ : Ka1tI10Ta1d3~%~. oued 3jewio])
((1 @soqaaan) Aayx sued) (ssadoad-sedAp sseooaxg-eqraoseq) poylawjisp)

((((((((yweaboady suoTarjuosaid-sedAp) JTSs oSaowax)
(ywexboady suotTjyejuasaad-sedip) 3Faes)
(ssa@o0ad-1001, IFWYN ba))
({((AWYN °SS98D001d © sv poppe S~ ¥~, WEdI]S JPWIOF)
(1 SIOTI8JUT-2ATITSUDS-MOTT®!
TNYN 2109fqo: ssaocoad-sedAp, a2dhka: weaxls wesals:)
uotarauasaid-se-1ndino-yiTmM: mMp)
(ueaxls aUTT-YsaiJ)
(ssaooad-q001, AWYN bau)) puoo)
Aybtem ! (((dIAMOJ-XVYW FWILNNY +) JTIAS sSUOD) HAHLO FIss)
((yuexboxdy suoTaeiuasaid-sedAp) JT1ds ysnd)
(J13S xssoooad-3sefy 219s)
(TWYN xSsedoad-3sefy, 212S)
(((IWYN o¥~. TTU EUXOT)
(ssoooxd-sedip, adkia:
INYN 308lqo:)
uoTtaeluasaad-se-3ndino-y3atm:mp)
NOILYINISAMA JI9F)
(((sobessau, aued-18b) weaials)) 21o7)
(((yweaboad, suoTtiejuesaizd-sedip)
((x oweu-ssaoo0xd-sedAp)
(x) epquet) ,#
3sT7, dew)
JNYN Ioquaw) ssatun)
‘werboad 091100 uT Apeaafe st ssadoxd JT 895 pue yooyp !¢

W' ATI08ITp pBTTIPO I3AdU ST BOUPISUTI-8XPR °T030nIjsuod sedAgreq
Aq pasn sT 3PYy3 ‘sseooig-sedAg 1oy poylsul 8oURPISUT-OYBW ¥,

(2x10uUbT 1591%3) (SSAD0Yd-SYAXQ ®OUBRISUI-®APR) POYIBWIsp)

12

LG29-668-G0Z I®1U8) YodaIEedsdy Uosuyor !
staeq "M usydeijs !

(2N
LN

ORI
[ENERIN

((TTu ayoqag zaes)
(TTu ¥3rav zass)
() (ssodoad-sedip ®pou-zI3TUI) poylzvwep)

(((4354¥ (I1933p-ssoooxd 1ea3) ysndmau)
(4738 (x@33e-sseooxd 8x1039q-ssavoaxd-sedip) Jaes)
()
(oa0ubT, 1993P-8809001d ba) 371)
(
((2x1039Qq-ssaooad Tea®) 90439 J3os)
((ex038q-s83001d I933ye-ssadoad-sedip) g1a3g ysndmau)
*ssanoiad 3001 e $9TITUbTS! (3 d¥0oJ3g 31°98)
(L sx03sq-ssasoiad ba) 371)

w9813 5Yy3 sszed 03 JueMm opr 10 noAk usym psrres 8q prnoys poyjzsw STYL .
(x933e-ssoooad 81039q-ssadoxd) (ssesoad-sediq epou-ejwer)) poyjsujsp)

({((ANYN .g~os5PQg dWeld WOIJ PIAOWDIT S~%~F~, wesI13s JrwIoy)
(((ssbessoau, aued-q0b) weaiqs)) 1971)
(((xwexboxd, suoTjiejussard-sedip) a13s aAowax)
(xweaboad, suoT3iejussard-sedip) zies)
(sx0ubT 3501%) (sseooad-sedip §sesoxg-eaowey) poyjswisp)

((and N19a3"g
:we//ﬁm>umucﬂlm5ﬂu//: : e spuj
~%~\\TePATSUT-2WTI\\~ : 1Je® sutbegy~, oaued jewrog)

((((30alqo sweu-ssasoxd-sedip) 108102
¥3LIY ut 30°fqo 103 doort)
((3vo0aag sweu-ssadoxd-sedip)
300y,
({3 Fyoadg be)
(TTu 390a3g be) z10) 37)
NOILIANOD SNIVIS IJNNII-TWIL

WE~S~ : I833Y

~3~G~ t 810399
~%~(~S~)~ : uoT3ITPUOD
~g~(~G~)~ 2 snaeas

~%~(~S~)~ : Bwexg suTL%~, dued jewzoy)
950qaaA uaym)

(SNOONNIINOD . [~s®&f~0u]:~ : snonurjuodg~, dsued jewroy)

((QITLATANOONN, (30alqo UorlTpuod-ssadoxd-sedAp) Jass)
(Tru (3108lqo urbaqg-sseooad-sedAp) j3es)
(TTu (302fqo pus-ssaooad-sedAp) Jaes)
(TTu (3109lqo ®i0r3q-ssesoxd-sedip) Jias)
(TTu (308lqo I8j3ye-ssovoird-sedAp) 3i9s) op
SNOILYINISANd uT 3o9(lqo 103 dooT)
() (sedAp sepou-TTe-zT3TUr) poylsujsp)

((({(pus urbeq Hew
w{((((p~ 10 ~) n)
((p~ 10 -) n) -) P~ ¥))u. TTU 3eWIO])
butiys-woxy-peesx)
ALYLS
puadde) FLVIS Jaos)
(pua utbaq bew) (sedip prTng) poyasuysp)

((((TTU SNOILVINISIYd J39s)
((((((adalqgo sueu-ssavoxd-sedip) ' yooT)

punoqunjew-uoT3lenoy), ieas) uboiad) op
SNOILVINISAYd uT 2302(qgo 103 door)
11®2) puod)
(), a31nA3HOS 339s) ((0), SAWIL-IYYLS 3JI95)
(3T®2s ss8doad-joo0x-oyew)
(ITEYL-HSYH YseyaTo)
(TTu L1ood Fa@s) ((+), AIVIS 3JIos)
((3 TT®) ZXeOx3) (sedip zT3TuI) poyzsugep)

#|
HEXXRN RN RN NN XN RN N KRN RN KY
* »
¥ “SpPOU3ISW IOARTJ pPauTIap YIomaweld 4
x *
XXX FXNREXXNXXN R RN NN NN NN NN XN

| #

((((390339 2wT31-108TTOD) FAWIINNY +)
ANIINNY

(3yo43g I ba) 371)
() (ssaoo0ad-sedAp ewrjz-goerro)) poylra2wjep)

WC~S~ BUTTNP2YDISDq,~%~TI~u wealls 2IBWIOF)
asoqien JT) ©op
3001 NIYW {¢!! sSn-a[npayss ut 2w-2[NpPaYds 103 dooT)
((((xpo,# Aot <. ¥
({(aoelgo umsuolmmmooumcmmamvv 1097102
((LooYd qoolqo Iequaw) qou) usym
SNOIIVINASTId UT qoalqo 103 dooT) 2I0S)
1e0,4 1sT1T, dew) sn-aTNpayos)
AAoEﬁuIHMmuw>ﬂcznummv utbeq-)12012)) 1271)

. "K31321d 8q 03 putobh 3ou ST STUI syzearq Inok pToY XOw
((TTU 2s0qIan)
(x3ndano-pIepuelsy weails) Aayw) (sedAp ueIpTTYL -PUTd) poyasuyep)

(((((12mod-aT1qeTTeA® oad
W%~ 130T d~ UYITM pa2TnpayYds S~3~u aued jeuxo})
(oxd aoelqo:
ssonoid-sedip, odAa:
sued weaixas:) :OHumucmmquImM|u:QuSO|sua3"znv
(((aoalqo owreu-~ssasoxd-sedAip) oxd)) 2aeT) op pue
(poTnpaUOS, (aoafqo :0Huﬁncousmmmuoumamma>vv Ja19s) op pur
(SAWIL-TUVLS (ao09fqo mEﬂu:sunmmmooumume>ﬁv ysndmsu) op pue
((ao9alqo mEﬁucsu|mmmoouQ1me>uv
(aoelqo v:muwmmoouaummawvv Jaos) op pue
(0 (23o0e(qo cﬁamnummmuouanmmamuv 319s) op pue
(exoubi, L ao9fqo spou-931e2Id) Op PUE
((aoalqgo wEﬁucsulmmeoualmmahvv
o Iomoduni JT13S ysey-prIng) op pue
(a31naauos 1oefqo ysnd) op pue

(z00y 3oelqo ysnd) op pue
((zomoduna zomod-eTqeTTRAR -) 1omod-sTqeTTEAR J19S) OP
(xomoduna 1amod-arqeTRA® Z) uaym

(ao0elqo 1omod_xeu-sseooid-sedAp) = 1omoduna 103
dooT NIVW ‘77 nmuuomumwmmmooum ut 3o08lqo 103

(sobessau, sued-qab) = sued UYIATM
robEIIBM-WNWTXEU, = 1omod-aTqeTTEA®R UYITHM
((1p2 .4 Roy: <.#
((ao=alqo uwsuo|mmmooumtmmm>nv 3091100
SNOIIVINISAdd ut 3o09fqo 103 dooY) 23x08)
10,4 3ISTT. dew)
= vmuu0m|mmmmmooum yatm dooT)
() (sedkp 300x-pUTd) poyaswioap)

((((308lqo swrtiuni-ssaooad-sedAip)
(102l qo 1omod-xew-ssapoad-sedAp) x) Dbutumns
SNOILVINASANd uT 309lqo 103 dooT) eare-sbesn-wns)) xa97)
(((uthbag-yoo10 (PWT3l-TEsI=a2aTUN-18D) BSOUBIDIITP-2WTI)
«\\TEAISUT-8WTI\\~ 3001 BUTTOPaYDISE~T~, WEDSIAS JBUIOCT)
((((((((21030q-s59001d swru-ssado1d-sedip)
2SS~ puoksg-3oo1 wz: weaIls JPWIAOF) BSOQIDA)
{ (((weax3s (ouw-oTnpayss sweu-ssadoxd-sedAp)
syweiboid, jutad-uoraejussaad)
asoqien JT)
urniyax)
(peTnpayos,
(suw-aTnpayoss uoTiTpuoo-ssaoord-sedip) 3Faos)
(STWIL-IYVYILS (Pu-aTnpayss pua-ssacoid-sedAp) ysudmau)
(SAWIL-I1YVLs 2uta-urbeq ysndmau)
(gATNAIHIS dw-oTnpayss ysnd)
(({ (sw-oTnpPayds awrjuni-ssaooxd-sedAp)
auty-utbeq +)
swty-utboq Ismod-paxtnbex JT1IAS ysey-piTng)
(sa10oubt, @21032q-sso201d sw-a[nPIYDS IPouU-3]3BIID)
(((sw-aTnpayss swrjuni-ssodoxd-sedip) swra-utbeq +)
(sw-oTnpayos pua-ssedcoid-sedip) 3Ja98)
(ewT3-utbaq (suw-oTnpayss urbag-ssaooxd-sedAp) 3aes)
(xemod-paaTnbax xamod-sfgerteane Z)) puod)
({sutl-urbag a9MOog-pa1tnbay 19Mog-oTqeETTEAY

wd~ = Bauwrl-utrbed $~
~d~ = JIoMod-~paatnbay g~
~J~ = JI9MOd-OTqRTIRAYE~, WEDIIS JPUWIOT)

asoqiaa JT)
{(((pwr3-utrbeq sw-oTnpayas JATIS
TPAI9UT-UT-IoMmod-wWNWTIXRW-PUTT)
0be3eM-—wnuTXRW, -) Io2Mod-afqelteAR)

((ow-sTnpeyss i1amod-xew-ssaooid-sedAp) zsmod-paxtnbox)
((®1039q-ssac0xd auwTl-31027T0o0) suti-urbeq)) »397)
({(231038q-ssavoid sweu-ssov01d-sedAp)

«S~ putyad %~, wWeails euwioy)

asoqasa JIT)

op
dooT €AS {!! paTnpayos-asoyl UT aioyag-ssevoxd 1oz dooT)
(weaxls auUTT-Ysaxy)

((((xp2,# Lox: > .4
(((209fqo swT3-309TT0D)
qoelqo suod) 3Io9[[oO
Q3TINAIHOS uT 302fqo xo3y door) 3x08)
1eo 4 1ASTT, dew) pearnpsyss-osoyl)) x219T)
(((pu-aTnpayos sweu-ssadord-sedip)

Auﬂmzmnmmwuoua~ UoTI3TpuUOD:
J3o, sniejys:
«wSTARQ ®A93S I03 3TEM, swery-swry:
(vowery-weiboad, xweiboidy, suoo) I92yjo0:
3 snonuTjuoD:
3 MaIo:
0 auwrtjunIy:
xobejzem_unurxew, Iamod-xew:
«I8Us) yoreassy uosuyopr, zosuods:
01 A3Txotad:
«butrsseooxg urbag,, aweu-A3ysxd:
ss®d01d-j00y, sedApzaq)
(230UbT 3801%) (sedip anwooumnuOOM|¢xmzv Poylawgap)

(((oweu s«C~paTnpayss g~ 29 ,~%~, wWeaIjls JBWIOJF)
(TTU SIOTISIUT-SATITSUSS-MOTTE:
sweu 7joefqo:
ssovoxd-sedAp, adijy:
weaxls wesarjys:)
COHumu:wmmumxmmlus&u:o::uﬂz"Bﬁv
(weaxys suweu) (sedAp u:au@u:Oﬂumu:wmemv poyiswyap)

(3 poTTTS:
aued weaxjs:
14 1% o0& ox wam:muowH|3muv"muasmmumv
((1 (sewr3.yabusay) =))
(CC(((souty 352T3) zT@s jeIoMOd) I03oey-I9Mod) aybrey -) {A)
((((sewt1 puooes) z1o3oey_sury) UIPTIA -) 1X)
((sawt3 3sx13) 0x)
(0 14)
((sswT3 Ip2) (>,¥ SAWIL-INWVIS 3I0s-81qe3s) sawtl)) op)

AAAwEﬂuc:ulquOSOH yaptm /) I0310eJ-3uT])
((xemod-wnutxeu, Iybtay) 103dey-gemMod)) 3a7)
(9zTs: sued puss) (1ybray yaptm) pPurq-sntea-sydryTnu)
(TTu 12 A103s1Ty-ae075: SuUed puas)
(((uoradraosaep, aued-38b6) sued)) 397)
AQEﬂucsulquOCOHVAmmahn GOﬂumucmmqumunHNOﬁ:Qmumv poyasuiap)

(((uotaeptTeEa wdG’2~ OT3Ex BUIT]Y 01 I8MOJg~, uUeaI3s jewroy)
(swTjuni-3sabuot
://am>uwu:ﬂ|wﬁﬂu//z 2WTIUNI ssasoxd Isabuory~, weeijs Jewroy)
AAAA«wmmuum3|E:Eﬂme« sSwrjuni-3ssbuotr) earxe-abesn-ung /) uoT3eprtea)
(((STINIL-1¥VIS®’ xew), feas) swWTUNI-3s8buoT)

weails (ssavoad [eAd) sso001d-9qTI1059P)
aqTaosep IT)
(weaIx3s ssaooad) epqueT) ,#
((ss@o001d-23001 TeA8) sweu-ssaooxd-sedAp) 1001-wox3y-ydeab-aeuroy)

(((pweu-oxd

(((((oaxd aweu-ssaooxd-seddp) 23)
((oxd
((x swru-ssascoid-sedip)
(x) epquet) ,# 3IsTT, dew)
(oxd dastT1)) puod)
sueu-o01d)
{((ss@o01d TEA9D) 1933e-ssado1d-sedip) oxd)) x2°71)
(ssaoo0ad) sassasoad—jusuoduos)) sT2qeT)
((TTu °qTa0SeP)
(xa3ndano-pIepuelsy wesaxls) AsN® ssoooad-qoo1) (sedip o1l -meId) poyalsuiap)
((((ssbessau, aued-weiboid-1ab:mp) wearls:
gsonoad-sedip, (aoelqo sweu-ssaooid-sedip) 3ussaad) op
sn-aTnpayos urt 308lqo 103 dooT)
(sn-aTnpayos) (sedip soweN-3uUTId) poy3lauiap)

(((owTa 3FT®S aexsmod) Bwld
wd~ = pIemod ‘' d~ —2WTL%~w (SODEessau, sued.qeb) ewioy)
(swt3) (sedAp §xemod-3urxd) PouILSWISP)

((((a13s‘ @wrd’ gxomod), Tead)! (((suta yuexboady qeiamod) ezTwIxXeW
1STT-SoWT3-31e1S-Yd2Ieds Ut suty 103 dooT)

((< % 4STT-S2WTI-3ARAS-YDIESS swty-urTbeq anoudIMBY)
1STT-S2WT3-1IBIS-YoI1eds baes)
AumﬂA|mmEHu|uumum|zuumwm sut3-utbaq ysnd)
((>,% STWIL-IHYLS PUd snoOWEIMAU) 3ASTT-60UTI-3IRIS-YDIEDS bass)
(((pu-oTNPaYOS mEau:ﬂulmmmooumumma>U. swty-utbaq +) pud bass)
AAumﬂalmmEHunuumumunoumwm pua Tetoads) aie1o9p)
(suTa-utbaq aw-a2TNPaYos) (sedAp dubuoucdldﬂluasomcasaﬂumﬁtvnﬂuv poyasugap)

((fTu { (ssoooad-3001, Teas) a103eq-sseooid-sedAp) 3398)
((SNOILVINISAYA (ssedoad-3001, {ea®) oaowel) SNOILVINISIHA FI2S)
(1004 ({ss®d01d-3001, 1eas) 19330-sso001d-sedip) Jaes)

(TTU ((ss@d01d-3001, Teaa) pus-ssaooid-sedap) J3es)

(TTU AAmmwuoumluoou~ 1eA9) utboq-sseooad-sedip) Faes)

({(((Pew ¢ -) (IATAYL-HSYH pu® yseyisb) 33es)
((bew snTeA -) (IATAYLI-HSYH Pud yseyish) Jies)
punojy JT)
(3TEYI-HSYH pu® yseyisb) (punojy antea)
putg-entea-adrarnu)
(((bew (ITEYIL-HSVYH uTbaq yseyjzeb) 3aies)
((bew antea +) (IATAVI-HSYH utbaq yseyisb) zaos)
punoy JT)
(379v1-HSYH utbeq yseyish) (punojy eniea)
putqg-antea-atdrainu)
(pus utbaq bew) (sedip yseHg-pyTNE) PoUIBWIAP)

(({((=, 1s®21: arqel-ysey-axeuw) ITVLI-HSYH 3J3I95)
(ATEYL-HSYH UYSeyao)
(IT9¥L-HSYH d-e1qei-ysey) IT)

() (sedAp YyseH-zT3ITUI) poylawyap)

((Tea-uxnaax
(IT9YL-HSVH
(
((enTea-2sTnd feA-UINIBI 4) TeA-UINJDT Uuwm“
(30 swTl 5) IT)
(enTea-asTnd awrl) epqueT) ,# yseydeuw)
({0 Tea-uiniax)) 3IeT)
(12) (sed&p jeaemog) poylrswiap)

(((3 se3jeorTdnp-meip-3juop:
Gz buroeds-uumToo-uTYITM:
£ JI9pioq:

Teao: I9ploq:

TR3UOCZTIOY: UOTIRIUATIO:
weails weaIls:
sossaooxd-quasuoduwos , #

(((weax3s wesxs:
sseoo1d-seddp, ssovoad juasaxd)
(TTU 250QI9A:

Appendix C.

Rule-Search (RETE) Algorithm Adaptation

This is an adaptation by S. Davis of the
RETE algorithm of Charles Forgy
for a future version
of the Common LISP/Flavors scheduler

D. Hays ct al. -Languages for Al - Johnson Rescarch Center, UAH - October
1988

i

; -x- Mode: LISE; Synt

:LARGE}; ~-*-

. e »
vl

rs

ax: Common-Lisp; package: RETE; Base:

Stephen W. Davis -
: ; Johnson Research Center 205-895-6257

(defun rule-interpreter nil

(defu

(defun perform-

(let (choice}

(do ((add-list database (cdr add-1list)

(conflict-set n

{{and (null

(setq choice (con

)

add-1list) (null conflict-set))
(cond ((null add-list)

(perform—action choice)
(setq add-list {(ecdr choice))

(setq conflict-set

1))

n conflict—resolution {(conflict-s

action (action)

(let ((rule (first action))
(pred (first (second action)))
(actor (second (second action)))
(lesser {(third (second action))))

(format t w~%Firing rule ~A -=>

pred lesser)

(defun remove-repeats

(setq database (cons (second action) d

(values)))

(do ((temp conflict-set (cdr temp))
cond ((equal (cadar temp) action) result)
(t (cons (car temp) result)))))

{ (null temp) result)))

(result nil (

(defun enter-clause (clause)

(let* ((pred (car
(args (cdr

clause))
clause)))

(putprop pred (cons args (get pred ’‘bi

(append

atabase))

(conflict-set action)

ndings))

10.; Default-character-style: (:FIX :ROMAN

i1 (append (enter-clause (car add-list)) conflict-set)))

database)

flict-resolution conflict-set))

(remove—repeats conflict-set {second choice))))

et) (first conflict-set))

~A 1is ~: [a~;the~] ~A~@[of ~A~]." rule actor lesser

' bindings)

(mapcan #’ (lambda (prod)(enter—first args prod)) (get pred rfirst))
(mapcan #’ (lambda (prod) {enter-secon

{mapcan #' (lambda (

(defun enter-first

(defun clauses

(mapcan %’ (Lambda
{(cross—pro

args prod)
(x)(match—and—execute
duct (list args) (claus

(prod position)

{or (get (get prod position) ' bindings)

(list nil)))

(defun cross-product (1isl 1lis2 1lis3)

(mapCAN #’ (lambda

(x)

(mapCAN #' (lambda (Y)

1is1))

(mapCAR #’/ (lambd
11s82))

(defun match-and-execute (args pred)

(cond ((apply {get

prod ' condition) args

d args p

x prod))
es prod

rod)) (get pred ' second))

prod)(enter-third args prod)) (get pred third)))))

/' second) (clauses prod rthird))))

a (z)(list X Y z)) 1is3))

)

(check-for-dups prod (apply (get prod raction) args)))
(t nil)))

(defun check-for-dups (prod acticn)
(cond ((member* action database) nil)
(t (list (list prod actien)))))

(defun member* (target 1lis)
(do ((temp lis (cdr temp)))
((null temp) nil)
(cond ((equal (car temp) target) (return temp)))))

(defun enter-second (args prod)
{mapcan #’ (lambda (x) (match-and-execute X prod))
(cross-product {(clauses prod s £irst) (1ist args) (clauses prod ‘third))))

(defun enter-third (args prod)
(mapcan #’ (lambda (x)(match—and—execute x prod))
(cross-product (clauses prod ' first) (clauses prod / second) (list args))))

(defun traceon2 QO
(trace enter-first enter-clause remove-repeats perform-action
conflict-resolution rule-interpreter clauses enter-third enter-second
member* check-for-dups match-and-execute cross-product putprop))

:1: =%- Mode: LISP; Syntax: Common-Lisp; Package: RETE; Base: 10.; Default-character-style: (:FIX :ROMAN
:LARGE); =-*-

;::; Stephen W. Davis home: 205-533-7308

:;; Johnson Research Center 205-895-6257

(defun encode-productions nil (setq initlist ' ()) (mapcar ' encode-a-production product
jons))

(defun encode-a-production (production)
(let ((name (first production))
(condition (second production})
{action (fourth production)))
(let ((predl (first (first condition)))
(pred2 (first (second condition)))
(pred3 (first (third conditicen)))
(predact (first action)))
(when (notmember predact initlist)
(setf (symbol-plist predact) nil)
(push predact initlist))
(setf (symbol-plist name) nil)
(cond ((and predl (notmember predl initlist))
(setf (symbol-plist predl) nil)
(push predl initlist)
(cond ((and pred2 (notmember pred2 initlist))
(setf (symbol-plist pred2) nil)
(push pred2 initlist)
{(cond ({and pred3 (notmember pred3 initlist))
(setf (symbol-plist pred3) nil)
(push pred3 initlist}))

IRRRE
(encode-condition condition name)
(putprop name {(build-action (mapcar ’cdr condition) action) ‘action)})

(defun encode-condition (conditions prodname)
(let (first second third)
(setq first (first conditions))
(update prodname (first first) ’'first)
(cond ({cdr conditions)
(setq second (second conditions))
(update prodname (first second) ’second)))
(cond {(cddr conditions)
(setqg third (third conditions))
(update prodname (first third) ’third)))
(putprop prodname {build-condition (cdr first) (cdr second) (cdr third))
’condition)))

(defun update (prodname pred relation)
(putprop prodname pred relation)
(putprop pred (cons prodname (get pred relation)) relation))

(defun build-condition (varsl vars2 vars3)
‘(lambda (first second third) , (build-test varsl vars2 vars3)))

{defun build-test (varsl vars2 vars3)
(let ({test (append (encode-pair varsl vars2 ’‘first ’second)
(encode-pair varsl vars3 ‘first ‘third)
(encode-pair vars2 vars3 *gecond ‘third))))
(cond ((null test) t)
((null (cdr test)) (first test))
(t (cons ’and test)))})

/7 ;ENCODE-PAIR (=X =Y) (=2 =X} FIRST SECOND
/77 ENCODE-PAIR ((EQ (FIRST FIRST) (SECOND SECOND))

(defun encode-pair (vars] vars2 namel name2)
(and varsil vars2 (cond ((eq (first varsl) (first vars2))

‘((eq (first -namel) (first .name))))

((and (cdr varsl) (eq (second varsl) (first vars2)))
‘((eq (second +namel) (first +nameal))))

((and (cdr vars?) (eq (first varsl) (second varsz2)))

‘(leq (first .namel) (second +Name}))))

({(and (cdr varsl) (cdr vars2) (eq (second varsl) (second vars2))

‘({eq (second +namel) (second +name2)))))))

(defun build-action (condition action)
‘(lambda (first second third) (list (quote , (first action))
,@(describe-args condition (cdr action))y)))

(defun describe—args (condition action)
(let ((argsi (first condition))
(args2 (second condition))
(args3 (third condition)))

(mapcar #’ (lambda (x)}) (cond ((equal x (car argsl)) ' (first first))

((and (cdr argsl) (equal x (second argsl))) ’ (second fi
rst))

((equal x (first args2)) ' (first second))

({and (cdr args2) (equal x (second args2}))) '’ (second se
cond))

((equal x (first args3)) ’ (first third))

((and (cdr args3) (equal x (second args3))) ' (second th
ird))))

action)))

(defun traceon nil
(trace describe-args build-action encode-pair build-test build-condition
update encode-condition encode-a~production encode—productions))

A ad

yle: (:FIX :ROMAN :LARGE) —-*-

(cp:define-command (com-production-system :command-table "User")
((trace ’‘scl:boolean
:prompt "Trace forms"”
:default nil
:display-default t
:documentation "Trace all encoding and firing forms."))
(1f trace (progn (traceon) (traceon2))
(untrace))
(production-system))

(cp:define-command (com-encode-productions :command~table "User")
((trace ’‘scl:boolean

:prompt "Trace forms"
:default nil
:display-default t
:documentation "Trace all encoding and firing forms."))

(Lf trace (traceon)

(untrace))
(encode-productions))

(cp:define-command (com-rule-interpreter :command-table "User")
({trace ’'scl:boolean

:prompt "Trace forms"”
:default nil
:display-default t
:documentation "Trace all encoding and firing forms."))

(1f trace (traceon2)

(untracae))
(rule-interpreter))

—-*- Syntax: Common-Lisp; Package: RETE; Base: 10; Mode: LISP; Default-character-st

;;; —*—- Mode: LISP; Syntax: Common-Llsp; Package: RETE; Base: 10.; Default-character-s
tyle: (:FIX :ROMAN :LARGE), -*-

;:;; Stephen W. Davis home: 205-533-7308

::; Johnson Research Center 205-895-6257

(defun Production-System nil (in-package ‘rete) (lnitvars) (encode-productions) (rule
-interpreter))

(proclaim ’ (special productions database initlist))

(defun putprop (predicate value slot) (setf (get predicate slot) value))

(defun initvars ()

(setqg productions ’ ((pl ((father =x =y) (wife =z =x)) implies (mother =z =y))
(p2 ((mother =x =y) (husband =z =x)) implies (father =z =y))
(p3 ((wife =x =y)) implies (husband =y =x))
(p4 ((husband =x =y)) implies (wife =y =x))}
(p5 ((father =x =z) (mother =y =z)) implies (husband =x =y))
(p6 ((father =x =z) (mother =y =z)) impllies (wife =y =x))
(p7 ((husband =x =y)) implies (male =x))
(p8 ((wife =x =y)) implies (female =x))
)}

(setq database ’ ((father Alan Alta) (wife Alice Alan)

(mother Bertha Bet) (husband Bob Bertha)
(wife Caitlin Carter)

(husband David Dianne)

(father Earnest Earnie) (mother Evelyn Earnie)
(father Frank Fred) (mother Felicia Fred)
(husband George Georgia)

(wife Helen Herbert))))

(Defvar *hook-level* 0)

(defun hook (x)
(let ((*evalhook* ’'eval-hook-function))
(eval x)))

(defun eval-hook-function (form &optional env)
(let ((*hook-level* (incf *hook-level¥*)))
(format *trace-output* "~%~v@TForm: ~S"
(* *hook-level* 2) form)
(let ((values (multiple-value-list
(evalhook form
#’ eval-hook-function
nil
env)}))
(format *trace-output* "~%~v@TValue: ~{~S~}"
(* *hook-level* 2) values)
(values-1list wvalues))})

Appendix D.

Routines from Ada Version of the Scheduler

These routines were programmed
by S. Davis
as part of the Ada adaptation
of the scheduler.

D. Hays et al. -Languages for Al - Johnson Research Center, UAH - October 1988

‘NHAYATHD NI pud

‘dOOT NIV doo| pud
:d001 dns doo| pud

Jur pud
L. PAPaYdS,, = NOLLIANOD I ' 1NAIHDS
(SHNLL LAV.LS ANT I 2 TNAIHISHSNd
{(SHNILL LIV.LS FNLL NIOFIDHSNd
(A9 TNAIHOS TN I TNAIHIS)HSNd
(AN IW T TINAIHDOSAWLL NIOFAd YIMOd ATIINOMDHSVH Ad1INd
(FAOAAG SSAOOYIIN A TNATHIS)AAON dLVAID
HNLINNY AN G TNAAHDS + ANLL NIDFI =ANd'dN 4 1NAdHIOS
‘HALL NIDFd =NIOAq dN 2 1NddHIS
wY) YIMOd ATIINOTY =< JIMOd dTdVTIIVAV I
‘(HNLL NIOdd dN A TNATHDS) JIMOd XVIN ANIA -
HOVLLYVM XVIN =4dMO0d 19V TIVAY
MAMOd XYW AN FTNAIHOS =4dM0d” aIINOTA
{(HIOJdd SSAOOYDIWIL LOFTT0D ="dIL NIOdd
doo| 4 TNATHDS dSOH.L Ul Y0499 SSID0Ud 10§
:dOOT 9NS
tour”mouQI LXHL
dooy SN~ TNAIHDS Ut FN A TNAIHIS 10)
:dOOT NIV

HALL TVSYTAINN LD O ANILL MHZHOmmJ_UOAwU
uls9q
‘uontednjioads afeyoed SyJA(ur aIe[osp aue--
SN A 1NAAHDS pue A4 TNAAHDS so[qelrea [eqo[3 ay[--
'SSHDOUd SVAAJ -FIOJdI SSHO0Ud ‘AW 4 TNAIHOS
YADALNI :NIDdd JMD0T1D
St NFAATIHD ANId d1npadosd

‘001 19391ur 01 105 NH 10[S Ylm PIjeIId 441 109lqo --

‘inu

“001 <= ANZ) SSHO0Ud” SVJAQ :J4d]

01 198 S10Is Yiim pajeard SO 1990qo --

*SSHO0Ud SVAAd :SST10A

SMOT[0J se st s199[qo oY1 Furre[oop uoy)

¢ P1023. puo
‘SSHO0Ud SVAAQ -¥ALIY
‘SSHD0Yd” SYAAQ :FJ0O4dd
(0€ "DONIYLS :NOLLIANOD
“YIOFLNI :ANH
“JIOALNI NIDAd
“HIOFLNI “YIMOd XVIN
P1033.1

SI SSHD0Yd 2d4y
"SSHDOYJ 55399¢ 1 SSHDOUd SVIAQ 2d4)
:SSAD0Ud 24Ky

SSHD0¥Ud SVJAQ 2dA1 ssadoe Suuepoop

Appendix E.

Floyd and Ford’s Description of their Scheduler

from the 1986 Proceedings of the Conference
on Applications of Artificial Intelligence to Space

D. Hays et al. -Languages for Al - Johnson Research Center, UAH - October 1988

A Knowledge-based Decision Support System for Payload Scheduling

Stephen Floyd*
and
Donnie Ford**

*Department of Management Information Systems and Management Science
School of Administrative Scliences, University of Alabama in Huntsville

**Cognitive Systems Laboratory - Johnson Research Center
University of Alabama in Huntsville

ABSTRACT

The purpose of this paper 1s to 1illustrate the role that artificial
intelligence/expert systems technologlies can play in the development and
implementation of effective decision support systems. A recently developed
prototype system for supporting the scheduling of subsystems and
payloads/experiments for NASA”s space station program 1is presented and serves
to highlight various concepts. The potential 1integration of knowledge based systems
and decision support systems which has been proposed in several recent articles and
presentations is 1llustrated.

1. INTRODUCTION

At the Sixth International DSS Conference (DSS-86) Peter Keen in the closing
plenary address entitled "DSS: The Next Decade" discussed what he perceived as the
important roles of current and future AI/ES technology in extending the field of
decision support systems. Among his perceptions was the fact that the field of AL
could play a major role in the development of systems to support the tougher,
ill-structured types of problems. He also viewed current AI/ES hardware and
software technology as "power tools" for DSS development. A few months earlier John
Little in an article entitled "Research Opportunities in the Decision and Management
Sclences" promoted similar observations while discussing research priorities of
NSF“s Decision and Management Science program [9]. Major among these priorities was
the role that expert systems technology could play in advancing the Decision
Sciences. Similar ideas have been expressed over the past few year by other
regeachers in articles and at major conferences such as ORSA/TIMS, DSS-86, IDS and
AAAT [81, [13], (161, [17]. This paper supports these observations by
describing knowledge-based DSS for scheduling payloads for NASA“s space station
program. The payload scheduling system serves to {illustrate the potential
1ntegration of DSS and ES as it involves the addition of a knowledge based component
to a system which currently provides decision support via extensive 1interaction
between scheduling persoanel and more traditional scheduling techniques. It 1s the
authors” hope that the following discussion of the scheduling system will help other
researchers 1n establishing the applicabllity of the new "power tools" in DSS
development.

This paper concerns the development of a solution procedure and interactive
system for sacheduling subsystems and payloads/experiments for the National
Aeronautics and Space Administration gpace sgtation program. Traditionally,
scheduling problems have been viewed as static in nature (i.e., a schedule is
developed for a particular planning horizon and adhered to) and were cast as having
one or more clearly defined objectives (e.g., minimize overall completion time,

maximize resource utilization, etc.). As such, these problems were most commonly
solved via application of optimal seeking algorithms, heuristics or simulation
analysis (1] [4] [6] [7] [15]. The payload scheduling problem, 1in contrast, is
representative of a class of scheduling problems which are highly dynamic in nature.
Not only may the various parameters change at any time, but the objectives
themselves may change also. As will be 1llustrated in thig paper, the nature of
this class of problems 1s such that they can be most effectively solved by knowledge
baged expert systems [2] (3] [5] (11] (18] [19].

Provided 1in the first section of the paper is a detailed degscription of the
class of problems under Llnvestigation. After an overview of the problem domain, the
specificse are provided for the NASA problem which lead to the development of the
system. The third section discusses the initial dynamic scheduler solution strategy
that was developed for the prototype system. The details of this prototype expert
system and its development are provided in the fourth section. The fifth section
discusses future enhancements that have been identified for the systen. The final
section of the paper provides some concluding remarks on the research to date, and
some suggestions for future research in the area of dynamic scheduling,

2. PROBLEM DESCRIPTION

The application addressed in this paper concerns development of a system for
the scheduling of subsystems and payloads aboard the space station. Subsystems
are gystems which function to support space station on an ongolng basis, These
include such subsystems as life Support systems, communications systems, and
various "housekeeping" systems. Aboard space station will also be various payloads
and experiments. These will be sponsored not only by NASA but also by other U,s.
and foreign government agencies, universities and private industries.

Each of the subsystems or payloads has a certain set of characteristics and
requirements which must be considered in determining when during the mission 1t
should be scheduled. For example, each subsystem and most of the
payload/experiments will draw operating power from Space Station”s 1limited power
supply. Additionally, certain of them will require astronaut intervention either on
a8 continuous basis for the duration of the experiment or for specified subintervals
of time. Some subsystems and experiments are continuous 1in nature and run
uninterupted throughout the entire mission. Still others operate either
continuously or intermittently for only a specified subinterval of the mission time
window. The nature of some experiments will require that they be conducted only
during certain phases of the mission (e.g., during day orbit, during night orbit,
during certain orientations of space station, etc.). These example characteristics,
as well as others which will not be detailed here, coupled with the fact that
Payload/experiments are placed in priority classes which must be reflected in the
schedule, form the basic criteria for establishing feasible schedules.

The complexity of the scheduling problem is compounded further by the fact that
events which will be occurring during the mission will serve either directly or
indirectly to upset current schedules and/or influence future ones. For example, at

any time during the mission an ongoing experiment may fail or be aborted for some
reason, a scheduled experiment may be withdrawn from the schedule, an experiment or
entire class of experiments may be added and/or experiment priorities changed. The
scheduler must be designed to handle such dynamlic changes via interaction with

various mission personnel, including astronauts, mission planning speclialists and
principal investigators of affected experiments,

As mentioned previously, each subsystem and payload/experiment will consume
various resources. Major among these will be energy from the Space Station”s power
supply and manpower provided by the ascronauts on board. Such 1limited resources
place constraints on what systems and experiments can be concurrently ongoing.
Additionally, and this is another of the dynamic aspects of the problem, the power
and manpower allotments themselves may change at various times throughout the
mission. In some 1instances the change notification will provide lead time for
scheduling adjustments, whereas in others no lead time will be provided. Changes
will occur, for example, when vehicles dock with Space Station. Such changes result
from the fact that the docking will usually draw on such resources as the power and
manpower supply. In light of the above mentioned characteristics, the scheduler
must have capabilities beyond the generation of traditional static feasible
schedules. The dynamic scheduler must have the capacity to respond interactively
to such changes and, when required, maintain feasibility via a rescheduling
procedure,

A final characteristic of the payload scheduling problem is that the scheduling
objectives are variable. During the course of a Space Station mission, mission
specialists may re-structure the scheduling objectives. For example, it might be
that early in a mission a resource leveling strategy is adopted which will maintain
a fairly constant and conservative power consumption rate. Such an objective
would naturally "stretch out" the scheduling of experiments over some designated
planning horizon. Later in the mission cycle, however, factors may change this
objective to one of scheduling as many payloads/experiments as possible (subject to
the maximum power availability and other constraints) in a glven time frame. These
characteristics then establish the need to develop a system which 1s capable of not
only establishing static schedules but also of dynamically maintaining feasible
payload/experiment schedules which reflect the varying parameters of the problem.

3. SOLUTION STRATEGY

Sample data around which the prototype system could be constructed was provided
by NASA“s Power Branch. The data as considered by NASA to be representative of
actual scheduling data. As seen from Table 1, four subsystems and forty-five (45)
payloads/experiments were included. Provided in the table are the experiment name,
the assoctated power consumption requirements in kilowatts, the sponsoring agency,
the time duration (including other gpecifications such as continuous/intermittent,
day orbit/night orbit, etc.) and crew involvlement required. In addition to the
data in the :able, other problem specifications were also provided. Most pertinent
among these were (1) the specification of a normal lab module power level of 25
kilowatts, (2) a priority structure based on the sponsoring agency and the nature of
the payloads/experiments, and (3) a two-week scheduling horizon. Additionally,
several system requirements pertaining to the actual operation of the scheduler were
specified. These provided a framework for the user interface and system output as
detailed later in the system description section of the paper.

To prototype an 1initial system for wuser evaluation and feedback, a
means of generating feasible schedules in the absence of a complete corporate
knowledge base had to be developed. This was accomplished via the modification of
a scheduling strategy presently used by NASA scheduling personnel which involves
conceptualizing schedules using a Gantt chart type format. This heuristic procedure
1s representative of those that when augumented by various scheduling rules will
comprise the scheduling knowledge base of the final system. An example schedule
for a simple four experiment problem is given in figure 1. As can be seen,
experiments one, two and three are continuous, and experiment four is intermittent,

E-3

Given 1inside the bars, which represent the experiment durations, is the ' power
requirement of the particular experiment. For simplicity these power requirements
adre assumed constant as long as the experiment is "on." Through the use of this
four experiment example, the heuristic will now be described.

As an experiment is placed on the chart, its beginning and ending point(s) serve
to divide the overall time window, the x-axis, into intervals as 1llustrated by the
dotted 1lines in figure 1. By updating as each experiment is scheduled, one can
mwaintain for each subinterval of time the information necessary in determining the
time slot for the next experiment to be scheduled. The determination of which
experiment is to be scheduled next is based on the wuser predefined priority
Structure 1n effect at the time of the scheduling or rescheduling procedure. For
the sake of illustration we will simplify the four experiment example further by
assuming a single scheduling objective of maximizing power wutilization. Each
experiment is scheduled by searching through time on the x-axis in figure 1 from
left to right until a subinterval or group of successive subintervals is found which
has sufficient duration and power availability to support the given experiment.
The experiment 1s then scheduled and added to the chart in correspondence with
this subinterval. Subinterval information 1s wupdated to reflect resource
availability to reflect resource availability (i.e., power and manpower) and the
scheduling procedure continues.

Applying the scheduling heuristic to the representative problem provided by
NASA is obviously much more involved than the example provided above as the various
experiment characteristics and requirements must be matched to appropriate
intervals. As the number of requirements increases for experiments, so too does the
amount of infor mation being kept on each subinterval, Additionally, as the number
of experiments already scheduled increases, the number of subintervals to be
examined during each individual scheduling process also increases. This increase in
the number of subintervals 13 compounded even further when the experiment
scheduled is of an intermittent nature. These facts, coupled with the previously
mentioned dynamic aspects of the problem, necessitate an automated procedure for
generating schedules, The next section of the paper will describe the prototype
system developed to accomplish this,

4. SYSTEM DESCRIPTION

The prototype system follows the basic production system structure of a
knowledge base, 1inference engine and working memory or global data base. The
knowledge base consists of a reduced set of scheduling rules and knowledge
pertinent to the example problem. The system utilizes a frame representation
scheme which allows for utilization and exploitation of knowledge other than rules,
This feature increases the speed and efficiency of the s8ystem; in particular,
the inferencing process.

The inference engine performs only forward chaining. This was determined from
the structure of the problem. There 1s an abundance of related facts and
information at the beginning of the pProblem solving process which 1n turn
accomodates the forward chaining process. The conflict resolution problem is solved
by allowing the first rule that Ls satisfied to be lmplemented. This necessitates
an ordering of the rules. This resolution method was chosen because of the short
time frame for delivering a "demo" System. This also facllitates the search through
the working memory.

The working memory consists of a list of experiment names. Associated with

E-4

these names are certain facts that are placed into the knowledge base. These
include the power requirements, identification number, priority class, sponsoring
agency, duration of the experiment, and the required crew involvement. Using this
information, a prioritized list of experiments is generated for utilization during
the scheduling phase.

The system has been designed and developed in an open-ended fashion to allow
system to be extended with only minor adjustments. It contains, 1in addition to the
knowledge-base system structure, an output interface which is at present for
demonstration purposes only. This interface will be detailed later. he system
itself 1s dynamic in that it moves through or between different phases of the
problem solution. The phases include preparation, scheduling, operation, and
rescheduling.

During the preparation phase the individual experiment information is - provided
to the system from an external data base source and appropriately stored, also the
working memory is organized and then prioritized for the scheduling phase. This is
accomplished using a priority scheme developed from user input. In the scheduling
phase, the experiments are scheduled under the previously explained heuristic
procedure and the schedule is created. The schedule itself is part of the knowledge
base and 1s represented as frames. As experiments are scheduled, the subintervals
required by the heuristic procedure are defined by start and stop times of the
experiments. For each 1interval the power available, crew available, and the
experiments that are currently on-going are determined and stored. This information
1s required for the remaining two phases, namely operation and rescheduling. The
initial schedule is provided to the user for evaluation in a Gantt chart format with
appropriate labels (i.e., experiment identification, start and end times, resource
loadings, etc.). The user is then afforded an apportunity to make several types of
scheduling changes including changing the planning horizoan, manually scheduling
experiments, reprioritizing experiments, changing rfesource parameters, etc. Based
on nthe changes specified, the system determines whether any rule/constraint
conflicts exist and if so performs a rescheduling operation as descr5ibed below to
resolve the conflicts. In cases where the specified changes do not allow for
conflict resolution, the user is so informed.

The output interface during the operétion and rescheduling phases is graphical
in nature and menu driven. During the operation and rescheduling phases, the system
simulates control of the power source for the experiments, 1i.e., 1t turns them off
or on at the appropriate times indicated by the schedule and wupdates all the
necessary interface information accordingly. The operation phase has two modes:
(1) static and (2) dynamic. In the static mode, the system is capable of displaying
a power utilization graph for a two week, one week, one day or six hour period of
time. Also, the vital informatlon for each experiment (start time, end time, etc.)
can be requested by the user simply by using the mouse and a selection menu. In the
dynamic mode, the system uses the output interface (see figure 2) to interact with
the user through four basic windows - a current status window, a schedule window, a
power curve window and a message window. The current status window shows the
current status of all the experiments of a payload at a particular point in time.
This 1s accomplished, as {llustrated in the window at the top of the screen 1in
figure 2, by representing each experiment as a numbered box. Reverse video is
then used to differentiate the on state. Labels placed within the boxes indicate
such statuses as aborted, removed, completed, etc. The schedule window (bottom left
of screen in figure 2) displays the names of the experiments on separate lines and
uses a Gantt chart format similar to that shown in figure 1 to display the
scheduling of each experiment. This window simulates movement through time, i.e. as

time passes the bars that represent the experiment move to the left and disappear as
the experiment is completed. When the experiment is completed the word "completed"
appears unext to the experiment name. In the schedule window the experiments are also
numbered to provide a cross~reference to the numbered experiment boxes 1in the
current status window. The power curve window (middle right of display screen) plots
percent power utilization as it scrolls through time. The remaining window is the
message Window. This {s used for interaction and control purposes.

One of the important capabilities built into this system is its ability to
reschedule the experiments when deemed necessary. This 1is one of the main
differentiators of this system when compared to others developed for such scheduling
applications. The system 1s capable of determining when 1t 1{s necessary to
reschedule. When such a determination is made, the experiments affected are
identified and removed from the active schedule. A rescheduling is conducted and
the new schedule is implemented (i.e., made active). There are, based on the
inttial problem description, a limited number of occurences that would warrant a
reschedule., These 1include an experiment failure, an experiment abort, a power
allotment {increase or decrease, or the announced arrival of orbital docking and/or
servicing vehicles. The first two occurrences require an automatic rescheduling
while the others require the system to check working memory and the knowledge base
to determine 1if rescheduling is in fact necessary. Thus we see the system 1is
capable of moving between the different phases, capable of recognizing where it is
and what knowledge 1is applicable, and dynamic in its abllity to genenrate and
majintain a schedule that will accomplish the objective or objectives of the mission
as specified by mission
planning specialists.

3. FUTURE ENHANCEMENTS

While the system demonstrates the potential of using a knowledge base system
approach 1n the area of scheduling, there are several enhancements that have
been identified and are currently being implemented to improve the
performance and capabilities of the system. First and foremost 1s that more
experiential knowledge needs to be added to the knowledge base. Sessions have been
scheduled with the appropriate NASA personnel to begin the task of knowledge
engineering [2] (3] (11] [18]. Also, knowledge concerning the determination of
alternatives to the schedule instead of just developing a single initial schedule
will Dbe added. This will provide the gsystem with the capability of helping NASA
personnel 1in satisfying the dynamlc objectives experienced during a mission and
will also faclilitate the rescheduling process. An example of such an objective 1is
when power allotment reduction forces the schedule to run past the end-of-mission
time. Having "knowledge" of alternatives, the system will have a better
understanding of which experiments to schedule. Should it continue with the normal
rescheduling rules or does some special set of priorities apply? Not only will more
objectives be handled in the enhanced system, but the system will be able to handle
more constraints, (e.g., fluctuating power requirements of experiments, orlentation
of the experiments, etc.). Another area of knowledge enhancement concerns
the rescheduling function. It has been determined that the system should be
capable of performing a quick-fix reschedule when necessary. This will provide
the necessary time to perform a more detailed and thorough reschedule fn the event
of an emergency situation where a temporary "quick fix" is necessary.

The second area of improvement and enhancement to the gystem 13 efficiency.
Not only is the efficiency of the code being considered, but a more efficient and
effective method for searching the schedule and determining experiment slots 1s

under development. This search process, as was mentioned previously, is complicated
by the scheduling of intermittant experiments early in the scheduling process. In
particular, one experiment {in the sample data is required to be scheduled ten
minutes out of every hour that the mission is operating. Under the present system
this creates 336 additional time intervals that might have to be checked for power
and crew avallability in determining a feasible interval for a later experiment.,
The present system takes 15 minutes to schedule the 47 test experiments. The
majority of this time is due to the early scheduling of intermittent experiments.
Another efficiency enhancement is for the system itself to determine the mission
time horizon. This will reduce any excess time that is added in order to accomodate
all the experiments. At present, the time horizon is driven by the number of
experiments requireing crew fnvolvement and the number of crew available to work
with the experiments. A critical path algorithm 1is being investigated for
application in this area.

The final area of enhancements 1s in the user interface, both input and out put
interfaces. On the input side, a query/answer system will be added to allow for
easy 1input of experiment data and knowledge base maintenance. This interface will
have a 1limited, natural language parser (10] [12] and will exploit the wuse of
graphics. On the output side several enhancements will be made. First, the system
will have an explanation capability for how and why it chose the schedule it is
recommending. This capability will soon be provided since the system is currently
being redone using an expert system shell which provides how and why facilities.
Also, a hardcopy capability for printing out the schedule in "readable" form will be
added. Currently the schedule is only stored in symbiolic form. These output
enhancements will facilitate the evaluation of system performance. This should
allow the system in turn to gain user acceptance more quickly and will also help
facilitate the implementation phase.

6. CONCLUSIONS

This paper has detailed a knowledge—~based system for solving the NASA space
station payload/experiment scheduling problem. The problem is representative of a
larger class of dynamic scheduling problems which, for the most part, have been
ineffectively handled using more traditional numeriec techniques. An expert systems
approach allows one to effectively deal with the dynamics and incomplete fnformation
which characterize this class of problem. Still in prototype form the system 1is
meeting with wide acceptance and interest not only from the sponsoring agency, but
also from other independent sources.

The 1interest this project has received indicates that there 1s potential for
further research in this area. The wide problem domain encompassed by dynamic
scheduling provides many areas for future applications (e.g., project scheduling,
production scheduling, manpower scheduling,. etc.). Additionally, as systems are
implemented and knowledge engineering continues, there is a good likelihood that
commonalities will be established across various scheduling applications.
This would allow devlopment of an expert system shell for such problenms. Such
a shell would allow scheduling systems to be readily developed and implemented.

REFERENCES

l. Baker, K, R., Introduction to Sequencing and Scheduling, New York: John
Wiley and Sons, Inc. 1974. -

2. Barr, A. and Fiegenbaum, E., The Handbook of Artificial Intelligence,
Volumes I and II, William Kaufmannm Inc., 1982,

E-7

3. Davis, Randall, and Douglas B. Lenat, Knowledge ~ Based Systems in
Artificial Intelligence, New York: McGraw - Hill, Inc., 1982.

4., French, S., Sequencing and Scheduling: An Introduction to the Mathematics
of the Job Shop, New York: John Wiley and Sons, Imc., 1982,

3. Harmon, Paul, and David King, Expert Systems, New York: John Wiley and
Sons, Inc., 1985.
6. Johnson, L. A. and D. C. Montgomery, Operations Research in Production
Planning, Scheduling and Inventory Control, New York: John Wiley and Sons,
Inc., 1974.

7. Lawler, E. L., J. K. Lenstra and A. H. G. Rinnooy Kan, "Recent Developuments
in Deterministic Sequencing and Scheduling: A Survey," in M. A. H. Dempster
et. al. (Eds.), Deterministic and Stochastic Scheduling, Reidel, Dordrecht,
1982, 35-73.

8. Lehner, P. E. and Donnel, M. L. "Building Decision Aids: Exploiting the
Synergy Between Decision Analysis and Artificlal Intelligence," Paper at
ORSA/TIMS, San Francisco, May 1984.

9, Little, John D. C., "Research Opportunities in the Decision and Management
Sclences", Management Scieace, Vol. 32, No. l, January 1986.

10. Rauch-Hindin, Wendy, "Natural Language: An Easy Way to Talk to Computers,"
Systems & Software, January, 1984, pp. 187-230.

11. Riesbeck, C. K. and Roger Schank, "Comprehension by Computer: Expectation-
based Analysis of Sentences in Context,” in W. J. M. Levelt and G. B. Hores
d"Arcais (Eds.),Studies in the Perception of Language. Chichester, England:
John Wiley and Soms, 1976, pp. 247-294.

12. Rich, E., Artificial Intelligence, New York: McGraw-Hill, Inc., 1983.

13, Sprague, R., "The Role of Expert Systems in DSS," Paper at ORSA/TIMS,
Dallas, Nov. 1984,

l4, Symbolics software. Report, Symbolics, Inc., 21150 Califa Street,
Woodland Hills, California, 198l.

15. Tersine, Richard J., Production/Operations Management: Concepts,
Structure, ggg_Analysis, TZnd ed.), New York: North-Holland Press, 1985.
16. Turban, E., and King, David, "Building Expert Systems For Decision
Support ," DSS-86 Transactions, Jane Fedorowlcz, Editor, 1986.

17. Turban, E., and Watkins, P., "Integrating Expert Systems and Decision
Support Systems," MIS Quarterly, June 1986.

18, Waterman, Donald A., A Guide to Expert Systems, Reading, Massachusetts:
Addison-Wesley Publishing Company.,

19. Winston, Patrick H., Articial Intelligence, (2nd ed.), Reading,
Massachusetts: Addison-Wesley Publishing Company, 1984.

20. Winston, P. H., and Horn, B, K. P. LLSP, Reading, Massachusetts: Addison-.
Wesley Publishing Company.

LABORATORY MODULE ~ SPACE STATION

DYNAMIC PAYLOAD SCHEDULER

SUBSYSTEMS:
POWERPRIORITY
NAME WATTS CLASS AGENCY DURATION CREW
ECLSS 6200 ¢ NASA CONTINUOUS W/20 /]
MIN. LAPSES OKAY
EVERY 4 HRS.
COMMUNTICATIONS 1480 1 NASA CONTINUOUS 0
THERMAL CONTROL 600 1 HASA CONTINUQUS-REDUCES o
LINEARLY TO 400W FOR
10 KW POWER LEVELS
HOUSEKEEPING(MISC) 6000 I NASA CONTINUOUS i
PAYLOAD/EXPERIMENTS:
DOD/PAYLOAD 1 890 11 DOD 48 HBS 1
ESA PAYLOAD 1 184S 19 ¢ ESA 214 HRS 1
1PS 165 I ESA 240 URS 1
ELECT DIAG STA 435 I NASA 10 MIN OF EVERY HR 1
e 480 I1r NASA 200 HRS 0
CRNE 930 1y U.K. 240 HRS 0
GEN PURPOSZ COMP 383 111 NASA CONTINUOUS o1
(5 HMIN/HR)
SOLID POLYMER ELECT 415 v n 36 HRS 1-5 MIN.
EVERY 3 HRS
1EF 125 v NASA 6 HRS 0
MLR 350 v U/10WQ 20 HRS 0
FES-VCGS 600 IIL NASA 15 HRS 0
ROTI 36 v UAH 43 HRS 0
SEM 2648 v NASA 6 HRS 0
RTG T 9% 1v NASA 12 HRS 0
TAPE RECORDER 1 85 44 NASA CONTINUOUS 0
TIME CODE GEN 32 i NASA CONTINUOUS 4
MASS SPECTROMETER 215 w JAPAN 2 HRS o
TOOL CHARCER 50 1z NASA CONTINUOUS 0
FILM PROCESSOR 163 | §¢ NASA 1 HR/DAYe 1
SUPER FURNANCE 7840 11 G.E. 32 URS]
SILICON WAFER PROD 4760 111 INTEL 14 HRS 0
TAPE RECORDER 2 85 1844 NASA CONTINUOUS 0
TGA 612 v ESA 8 HRS 0
MEA 1800 v NASA 14 HRS 0
WELDING EXP 1610 v NASA 4 HRS 0
CFES 890 I1I NASA 36 HRS 0
3-AAL 500 1v NASA 10 HRS 0
EML 420 v NASA 2 HRS 1]
GFFC 375 v NASA 6 HRS 0
ADSF 480 v NASA 48 HRS 1
ARM 218 v NASA 8 HRS 0
SAFE 400 111 NASA 15 HRS i
SOLAR OBS 378 11 NASA ORBIT/DAYTIME ONLY 0
FOR 36 ORBITS
LIGHTNING DET 12s v NASA ORBIT NIGHTTIME ONLY 0
FOR 12 ORBITS
CRYSTAL GROWTH 1200 11 NASA 1 HR 0
COMET SEARCH 650 I JAPAN ORBIT NIGHTTIME ONLY O
FOR 40 ORBITS
LIFE SCI 1 135 111 ASM 36 HRS 0
LIFE SCIL 2 1145 1334 UAB 22 HRS 0
LIFE SCI) 842 341 UAB 66 HURS 0
CLASSIFIED 1 1300 I popD 8 HRS 0
CLASSIFIED 2 645 1 DoD 18 HRS 0
MAPPING (WEATHER) 300 111 uysus CONTINUOUS (CAN BE o]
INTERRUPTED ANYTIME)
MAPPING (GEO) 690 1844 uscs 60 HRS 0
ORBITER DOCKING 6500 L] NASA 24-72 HRS, WILL BE 0
GIVEN 6 HRS NOTICE
ORBITER SERVICER 2400 ew NASA 4-10 HRS, WILL BE 0

GIVEN 2 HRS NOTICE

#» YILL BE GIVEN TOP PAYLOAD PRIORITY WHEN NEEDED

Table 1. Experiment Oata

Experiment

Power
Avatlable (KW)

CTETETETETE D T s e b ey

@DDDEDUUUHUL

IWEEDITWMNRW

ORIGINAL PAGE IS
OF POOR QUALITY

!
[
|
{

10 x4)
[}
t
I
10 K4 J '
i I
I I
[i
{ 12 vy |
i 1 1
| 1 I
] { i
cew] (2w | 2w] G]
) T e B SR T i
| [| b | | ! !
1 oo P |
i [Y R I i1 i
I [(N | | | | Time
1 | | j | | | | !
S 403 4543 113 1 131

Pigure 1. Example Schedulas

e

$tatic Bipley b

r 1 i ‘|.

= WVWWWWV O'MNV\
Ii

) N

<= —— N

- v]

' i Pt @t

-
Wt J

:-
‘: e —
"6 S e wn e ‘.

-
7. o0 —

Cwengutz
= YAH
5‘_.'_. Dynamic
- Scheaduler
= —— Sheowee | lawd
:: A el
:‘:—-.- 1hosast o>) e ol
——— [0 O ML)
Fioure 2, Scheduler Display Screen

