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Abstract

In thisnote fourchoicesofoutflowboundary conditionsare consideredfornumerical conser-

vation laws. All four methods are stableforlinearproblems. For nonlinear problems examples

are presented where eithera boundary layerforms or the numerical scheme, together with the

boundary conditionisunstable due to the formation of a reflectedshock. A simple heuristic

argument ispresented fordetermining the suitabilityof the boundary conditions.
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1 Introduction

Consider the one dimensional scalar conservation law

_, + f(_), = 0,

If

0<x<l. (1)

err*+ 1/2

¢-,-1/2

are the numerical fluxes and

the functions

u_+l -= u,_ - A(¢,,_+I/2 - ¢,_-1/2).

" = u(mAz, nat),ttrr,

¢(Um-k+l _ Um-k+2_... Urn+k)

¢(Um-k, tim-k-I-l,... Ura+k-1)

_(o,,,at) = g(t)

is specified. For consistency ¢ is required to satisfy

¢(_,u,... u) = f(_).

Since only the role of the boundary conditions is of interest, three point schemes will be consid-

ered. In this case, era+U2 = ¢(un_+l,Ur_) and 4,n-1/_ = ¢(urn, um-1). The Courant-Friedrichs-

Lewy condition requires

max la(_)_l _ 1.
u

(2)

Here,

H9
a(u) : --- > 0,

au-

then boundary data must be specified at x = 0. Since the characteristics have nonnegative slope,

one cannot set a-priori boundary conditions at x = 1 [Lax73].

To compute the solution to (1) by finite differences, the interval [0, 1] is discretized into M

pieces each of width

1
h_-_

M

and a time interval At > 0 is specified. Setting

At

a numerical scheme for solving (1) is, for each m = 1,2,... M - 1,



As mentionedabove,some form of artificial boundary condition is necessary at x = 1. Four

choices of boundary conditions are discussed:

1. Constant Extrapolation:

2. Linear Extrapolation:

un+l __ q. n+l n+l
"_M-1 -- _M-2,M (4)

3. Quadratic Extrapolation:

. n+l
tt_v _' = 3tt_,_ 1, -- 3U_v_12 + UM_ 3, (5)

4. Characteristic Extrapolation:

= t/nU_ 1 U_ -- _(f(u_4" ) -- f( M-I))" (6)

Note that extrapolations (3), (4) and (5) are equivalent to requiring the first, second and third

derivative, respectively, to be zero at the boundary.

All four boundary conditions are stable for linear problems, see for example [GKS72]. Boundary

condition (4) is of particular interest here. If _b is a monotone function of its arguments, then

[HHL76] showed that limit solutions of (2) are physical solutions of (1). They also showed that

such schemes are at most first order accurate. Thus, the error using linear extrapolation is the

same order as the error in the numerical method. In [AMS1] this choice was shown to be stable

for two dimensional explicit schemes, again for linear problems. Also, in [Pul81] this boundary

condition was applied to the Euler equations.

The purpose of this note is to point out that for a number of simple and well known explicit

methods boundary conditions (4) and (5) are unsatisfactory for nonlinear problems. Examples are

presented where, depending upon the flux function f(u), either an artificial shock forms at the

boundary or a reflected shock forms.

2 Numerical Observations

In the experiments the following initial data is used:

1 x<p, 0<p< 1:  0(x) = 0 • > p. (7)



The functionsf(u) are chosen so that the jump in u travelsin the directionof increasingz with

speed
1

2

Since uo >_ 0 the discrete solution at time t is simply

" uo(mAz _At)Uf.rl ' _ -- .

In particular,afterN time steps,where N depends on p,the numerical solutionis

The three choicesoff are:

Utrue(Z, N) - 1, 0 <_ z < 1.

1
f(u) = _u, (8)

fCu)= 12, (0)
2

1 (10)
fCu) = uCu- _).

was computed. The valueofA was chosen to be the smallerofthe CFL conditionand the stability

bound. Note that _50 isexpected to be zero-- the boundary conditionsshould not preclude the

profilefrom passingthrough.

The numerical schemes testedare:

Lax-Frledrlchs: Set

U_+I 1 , , A= _(_,_-1+ _,_+1)- _(/_+1 - f,,_d.

The Lax-Friedrichs scheme can be written in conservation form by setting

1 un _ 1 1_(Um+l,Um) = --_ m+l + u_n-F _fm+l-[- _f,_.

(11)

_n Un -= (,n Utrue(mAz)) 2

Equation (9)isknown as Burgers'equation.

Experiments were run with a number ofdifferentnumericalschemes. In allofthe tests,h = 1/32

and the initialjump in u was at z = 3/4. For the numericalexperiments,startingwith the initial

data in (7),50 iterationswere run and the error,



/
Method _u' _u' z u(u- ½)

Lax-Friedrichs 0 2.0 oo

MacCormick 0 0 oo

Lax-Wendroff 0 2.36 oo

Table 1: Error using Linear Extrapolation

MacCormick's Method: Firstset

and then put

u,,,"= u_,"- .x(/.,+_-/.,)

_'(fm+l- fro)- (f* -/m-l)"

Again (12) can be written in conservation form by setting

1
_(/_ A(/_+I f_,))._m+112 = _fm+l q- -- --

Lax-Wendroff: To compute u_ +1 by the Lax-Wendroff scheme, set

U_+I n A A 2

To write the scheme in conservation form set

1 1

In equations (11)-(13),

1 n 1 n
/.,=/(,,_,),a,,,+_/2= ,,(_,,.,+ _,.,+_), etc.

(12)

(13)

Tables 1 and 2 display the observed value of e5°. For constant and characteristic extrapolation

the error was equal to zero, for each choice of ].



Method

Lax-Friedrichs

MacCormick

Lax-Wendroff

_.u. _ _

0 0.0

0 c_

0 co

Table 2: Error using Quadratic Extrapolation

3 Linear and Quadratic Boundary Conditions

From Tables 1 and 2 it is clear that when linear and quadratic extrapolation is used to compute

the value of UM something fundamentally different happens when f is nonlinear. Figure 1 displays

the solution for each of the 50 time steps for Burgers' equation and the Lax-Friedrichs scheme.

Note that the value of UM-i is fixed and that UM < 0. The picture for the Lax-Wendroffscheme is

similar. This is equivalent to overspecifying the problem data. For simplicity, only the calculations

for linear extrapolation will be discussed. The quadratic case is similar.

Starting with the initial data in (7), for a finite number of time steps the boundary conditions

at XM do not affect the solution. However, when

U n = 0M-Z > 0 and u nM-1 (14)

the boundary conditions do affect the character of the solution. The specific value of u___ will

depend on the particular numerical fluxes used in (1).

When updating n+l using (2), the new value isUM- 1

n+l n
UM- 1 = UM-1 -- _(_m+l/2 -- Crn-1/2)

-- UM_I -']- aM_ 1 .

Notice that it is the sign and magnitude of 8M-1 which determines how the solution will behave

at XM-a. In successive iterations the numerical experiments indicate that the behavior of the

solution is determined by the situation described in (14).

The three choices of f will be considered separately.



Lax-Friedrichs, X= 1
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Figure 1: Burgers' Equation, Linear Extrapolation
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3.1 f Linear

When f is linear, in this case

the correction for all three schemes is

8M- 1 = "_UM- 2 > O.

Here, the solution continues to travel to the right as it should.

3.2 Burgers' Equation

For Burgers' equation

one sees that the correction, using both the Lax-Friedrichs scheme and the Lax-Wendroff scheme,

to UM_ 1 is

8_f_ 1 = 0

since

n
f(--UM_2) m f(UM_2).

Here an artificial boundary layer forms at XM-1. Notice that the fact that UM-1 --- 0 does not

depend on the choice of A. This same argument shows that UM-1 -_ 0 for all successive iterations.

As uM-2 _ 1, uM --* --1 and the total variation approaches 2. Note also that UM < 0 does not

solve (1) since the continuous solution is positive for positive initial data.

The situation for the MacCormick scheme is different. A direct calculation shows that the

difference in the numerical fluxes is

)t2 U$
8M-1 --- "_" M-2

and the solution propagates to the right. For UM-2 small the speed of propagation is very slow.

This creates a boundary layer at x -- 1 for a number of time steps. Eventually, the solution does

move off to the right. Figure 2 displays the solution for 50 time steps.

/(,) = ½)

Finally, for

1
/(,,)= ,,(,,_



MacCormick's Method, _, = 1
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Figure 2: Burgers' Equation, Linear Extrapolation
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Boundary Condition lu lu2

/

_' = 2,,#__- ,,;._'_ + o

1.,n+l __ i/._4+11- + +

t,n+lM = "_- _(I("_) - ]("_-_)) + +

D

+

+

Table 3: Sign of SM-X

the observations in Tables 1 and 2 indicate that the solution reflects off the boundary and that the

boundary conditions are unstable.

Calculating the correction

"M-1= --A(¢(--_M-2,0) - ¢(0, _M-2))

for the three schemes yields:

sL_ F A
_-_ - 2"_-2' 05)

sMac AM-1 - [2(_-2)2_ _+ (20__2) 2 - 2(___)s)A + __2], (16)

L-W A n 2
,M-I - _12(-M__)_+,,___]. 07)

For all three methods the correction is less than zero and the computed solution diverges.

4 Other Boundary Conditions

The argument in Section 3 indicates that it is the speed and direction of propagation of the solution

at the boundary which determines what the character of the solution will be. For the initial data

in (7), Table 3 summarizes the sign of aM-1 for the Lax-Friedrichs scheme. The situations for

MacCormick's method and the Lax-Wendroff method are similar.

Note that it is exactly those cases where aM-1 _<0 that interfere with the solution propagating

to the right.



4.1

When

Constant Extrapolation

U_ -- U n_r-1,

the correction to u_t_ I reduces to evaluating

un UnsM-1 = ¢("7_-1, M-l) - '_( _-1,'_-2)-

At each iteration

and since the functions ¢m+I/2 approximate f(UM:t:I/2) , the solution will continue to propagate to

the right.

4.2 Characteristic Extrapolation

For characteristic extrapolation,

U n+ 1 n= _ - _(/(_) -/(__1)),

and the solution passes through the boundary as remarked in Section 2.

argument to compute SM-1 for u_d_ 2 > 0 and tt__ I = 0 one sees that equation (18) implies u_4 ----

0. Evaluating the correction term to update u__ 1 yields

sM__ : -_C¢C0,0) - ¢(0, _-2))

< 0

and u_11_ >_ 0. In this case the solution continues travelling to the right.

(is)

Applying the above

5 Concluding Remarks

In conclusion, the experimental results and the arguments in Sections 2 and 3 show that the

boundary condition can have a dramatic effect on the solution. The stability analysis for linear

problems does not extend to nonlinear problems and a different analysis is needed.

To address the question of what is a 'safe' outflow boundary condition, the numerical experi-

ments show that either constant or characteristic extrapolation is suitable. Unfortunately constant

extrapolation is zero order accurate with respect to the meshsize. Hence the solution at the bound-

ary will suffer a loss of accuracy. To preserve higher order accuracy in the entire domain fictitious

points will be needed. Characteristic extrapolation, while first order accurate, is more expensive

to evaluate.
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