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MULTIPLE POINT LEAST SQUARES EQUALISATION IN A ROOM

S. J. Elliott! and P. A. Nelson
Institute of Sound and Vibration Research

The University of Southampton, England

ABSTRACT

Equalisation filters designed to minimise the mean square error between a delayed
version of the original electrical signal and the equalised response at a point in a room, have
previously been investigated by several authors. In general such a strategy degrades the
response at positions in the room away from the equalisation point.

A method is presented for designing an equalisation filter by adjusting the filter
coefficients to minimise the sum of the squares of the errors between the equalised responses at
multiple points in the room, and delayed versions of the original electrical signal. Such an
equalisation filter can give a more uniform frequency response over a greater volume of the
enclosure than the single point equaliser above.

Computer simulation results are presented of equalising the frequency responses from a
loudspeaker to various typical ear positions, in a 'room’ with dimensions and acoustic damping
typical of a car interior, using the two approaches outlined above. Adaptive filter algorithms,
which can automatically adjust the coefficients of a digital equalisation filter to achieve this
minimisation, will also be discussed.

1This research was supported in part by the National Aeronautics and Space Administration under
NASA Contract No. NAS1-18107 while the first author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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1. INTRODUCTION

In sound reproduction systems an equalisation filter is sometimes used to modify the
frequency spectrum of the original source signal, before feeding it to the loudspeaker, in an
attempt to compensate for unevenness in the frequency response of the loudspeaker and the
listening room. Such an arrangement is illustrated in Figure 1 in which a microphone, whose
response is assumed to be flat, is substituted for the human observer in order to make the net
response of the reproduction chain purely electrical. Such equalisation filters can take many
forms. One common form is a parallel combination of bandpass filters, the outputs of which
have a manually adjustable gain and are added together to produce the output.  Such filters can
compensate for gross deficiencies in the frequency response of the sound reproduction chain,
which includes the electroacoustic response of the loudspeaker and the acoustic response of the
listening room. The transient properties of narrow bandwidth filters are, however, notoriously
bad and this can lead to a degradation in the impulse response of the equalised reproduction
chain.

Another approach is to design an equalisation filter by making the impulse response of
the equalised sound reproduction chain as close as possible to that desired, a net impulse
response of a delta function for example would mean that the sound reproduction chain had
been perfectly equalised. It is, however, not possxble in general to achieve such perfect
inversion of the equalisation chain, since the acoustic path usually has delays and other non-
minimum phase behaviour associated with it [1]. The ability of the equalisation filter to invert
the response of the reproduction chain is much improved if the equalised output is compared
with a delayed version of the original signal. Sucha "modelling delay" is illustrated in Figure
2. In Section 2 we will formalise the design of such single channel systems, and extend the

theory to the case of multiple microphones in Section 3.



2. SINGLE CHANNEL EQUALISATION

We assume that the equalisation filter to be designed is digital and has an all zero (FIR)
structure with coefficients hg to hj.;. We also assume that the response of the unequalised
reproduction chain is modelled by a digital FIR filter, with coefficients coto cy.1. If the
sampled source signal is x(n), the sampled signal fed to the loudspeaker is y(n) and samped
output from the microphone is a(n), then:

I-1 A J-1
= h; -i) , = . -3
y(n) izo ix(n - i) (n) j}Zi)cjy(n i)
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The summation of equation (1) can be written in vector form as

d(n) =rT(mh 3)
where

rT(n) = [r(n), r(n-1), ... r(n-I+1)]

hT =[hg, hy veer h1al

The most usual method of defining how a(n) is the 'best’ approximation to d(n) is to
minimise the mean square difference between these two signals, i.e., t0 adjust the coefficients
of the equalisation filter to minimise the "performance index"™:

J = E{e2(n)} 4

where e(n) =d(n) - a(n), and E represents the expectation operator. It should be noted,
however, that this performance index is not the only criterion which can be used to define the
difference between the desired and equalised signals [2]. One advantage, however, of the
mean square performance index, J, is that it is a quadratic function of each of the coefficients in

the equalisation filter:
J = E{(d2(n)} + 2hTE{r(n)d(n)} + hTE{r(n)rT(n)}h (5)

which has a globally minimum value for some unique set of filter coefficients (since the matrix
E{r(n)rT(n)} is positive definite). Using fairly standard optimisation methods this optimum
set of filter coefficients can be shown to be given by

hopt = - [E{r(m)rT(n)} "1E{r(n)d(n)} (6)

In practice, adaptive algorithms can be used to automatically adjust the coefficients of h
to be a close approximation to hopt, and these will be discussed in a later section. We are
concerned here with the physical consequences of designing an equalisation filter according to

this cniterion.

Previous studies of such equalising filters [3,4] have demonstrated that it is possible to
obtain good equalisation at the equalisation microphone position, but that the equalised
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response away from this point can be worse than the unequalised response. In order to
illustrate this point, and to introduce the acoustic model which will be used in later sections, we
consider using the equalisation strategy above in an enclosure with dimensions and acoustic
damping typical of a car interior.

The acoustic response from an acoustic source in one position in the enclosure to a
microphone in another, was modelled as the sum of the contributions of a finite number of
acoustic modes in the enclosure [S]. The size of the enclosure was 1.9 mlong by 1.1 m high
by 1.0 m wide, and all modes with a natural frequency below 1200 Hz were included in the
modal summation (about 500 modes), even though the response was only calculated for
frequencies up to 512 Hz, the sample rate being 1024 Hz. The damping ratio of all the modes
was set to 0.1. This purely acoustic response was then convolved with a filter which had a
zero at d.c., and a zero at half the sample rate, which represented the high pass filtering action
of a loudspeaker and the low pass filtering action of the anti-aliasing and reconstruction filters
which would be used in any practical system. In the coordinate system used for the computer
simulation the origin was in the front bottom right hand corner of the enclosure (as seen from
the interior) and the coordinates (x1, x2, x3) represent the distance back, across and up,
respectively, from this origin. The loudspeaker was represented by a point acoustic source at
(0.0, 0.9, 0.7) which is approximately the position of a front dashboard loudspeaker on the left
hand side of areal car. The frequency response was calculated from this loudspeaker to a
microphone at (0.1, 0.1, 0.9) which corresponds approximately to the position of the driver's
right hand ear in a real car. This frequency response, and a truncated version of the
corresponding impulse response, obtained by inverse Fourier transformation from the
frequency response, are shown in Figure 3. These responses do have the gross characteristics
of those actually measured in car interiors. Of particular note is the delay of about 3-4 ms
before the dominant point in the impulse response, which corresponds to the acoustic delay
time for the distance from the loudspeaker to the microphone (0.92 m).

A 50 coefficient FIR filter has been used to equalise the frequency response of Figure 3
using a modelling delay of 15 samples. This filter was adapted to minimise the mean square
modelling error, using an algorithm discussed in Section 4 below. The frequency response
and impulse response of the equalisation filter after convergence are shown in Figure 4. Itcan
be seen that the frequency response in Figure 4 is a good approximation to the inverse of that in
Figure 3. This is further illustrated in Figure 5 which shows the original (solid) and equalised
(dashed) response at the equalisation microphone (microphone 0), and also the original
response and the effect of this equalisation filter at three other microphones: microphone 1, at
position (0.9,0.9,0.9), corresponding approximately to the front passenger's left hand ear;
microphone 2, at (1.9,0.1,0.9), corresponding approximately to the right hand rear



passenger's position; and microphone 3, at (1.9,0.9,0.9), corresponding approximately to the

left hand rear passenger's position.

It is clear that although the frequency response has been significantly improved at
microphone 0, and somewhat improved at microphone 1, this equaliston filter makes the
responses more peaky at the rear microphone positions. This is lagely due to the presence of
the first longitudinal acoustic mode in the enclosure, with a natural frequency of about 90 Hz.
This has little effect at microphones 0 and 1, since they are close to the nodal plane of this
mode, and these microphones have a relatively low response at about 90 Hz, which is boosted
by the equalisation filter. The microphones in the rear of the enclosure (2 and 3) pick up this
mode strongly, however, even before boosting by the equalisaton filter, so the effect of the
equalistion filter is to produce a peak of some 15 dB above the average response at 90 Hz.

Figure 5 illustrates a point made by Mourjopoulos (3] and Farnsworth et al [4], that
equalisation at one point can significantly disturb the response at other points in the enclosure.
The results presented here are in a rather lower frequency range than those presented in [3] and
[4], however, and may still represent a practical equalisation strategy for, say, the front two
seats if it were applied only to the low frequency ("woofer") unit of an in-car entertainment

system.

For completeness, Figure 6 also shows the time domain response from the loudspeaker
to each microphone before and after equalisation. An extra delay equal to the modelling delay
has been added to the unequalised responses for clarity. It is again clear that although the
equalised impulse response at microphone 0 is very close to that desired (a delayed delta
function), a considerable amount of low frequency ringing has been added to the responses in
the rear of the car by the equalisation filter.

3. MULTIPLE POINT EQUALISATION

The failure of single point equalisation schemes to control the response at points away
from the equalisation microphone within the enclosure suggests that the problem of
equalisation at a number of points might be cast as a more general least squares problem. This
is illustrated in Figure 7, in which the output of a single equalisation filter is coupled to multiple
microphones via multiple room impulse responses, and each microphone output is subtracted
from a desired signal, formed by passing the source signal through an individual modelling
delay (of A¢ samples for the ['th microphone), to obtain an error signal at each microphone.



The vector of output signals can now be represented [6,7] as:

e(n) = d(n) + R(n)h )
where

eT(n) =[ej(n), ea(n) ...  er(n)]

dT(n) = [d1(n), da(n) ... dp(n)]

RT(n) =[ri(n), ra(n) ...  rp(n)]

and  r(n) and h are defined similarly to the vectors in the previous section. The object of
the equalising filter is now to minimise the sum of the squares of each of the errors, and this

new performance index may be written as:
J= E{eT(n)e(n)},
so that
J = E{dT(n)d(n)} + 2hTE(RT(n)d(n)} + hTE(RT(n)R(n)}h ¢:))

This performance index again has a globally minimum value for a unique set of equalisation

filter coefficients given by
hopt = - [E{RT(n)R(n)}]'1E(RT(n)d(n)} %)

An adaptive algorithm is presented below for automatically adjusting the coefficients of h to
be a close approximation to hopt, and this has been used to obtain an equalising filter for the
enclosure described in the last section. This equalising filter, however, now attempts to do the
best job of equalising at all four microphone positions by minimising the sum of the squares of
the differences between the microphone outputs and delayed source signals.

The frequency response and impulse response of this new equalisation filter are shown
in Figure 8, and Figure 9 shows the equalised response at all microphone positions, compared
to the original responses. It is clear that the peaks which are common to all four microphone
responses, for example that at about 200 Hz, have been largely removed. However, the
equalising filter has to cope with conflicting requirements at about 90 Hz: of increasing the
response in the front of the enclosure and of suppressing the response in the rear. In fact the
equalisation filter does suppress the peak in the rear at the expense of creating a dip in the front



at this frequency, since this strategy generates a smaller total residual error than boosting the
response in the front and having the response in the back rise even further. Apart from the
dips in the equalised responses at about 90 Hz in the front, and at about 180 Hz at microphone
2, the equalisation filter can be seen to be doing a reasonable job of equalisation at all points.
The variation in the frequency response function from 2 Hz to 500 Hz, averaged across
microphones, is about 15 dB when using this equalisation filter, compared to the original
average variation in the frequency response fi anction of some 28 dB over this frequency range.
Figure 10 shows the original and equalised impulse responses at the four microphones, again
with a shift equal to the individual modelling delay added to the original responses for clarity.
The equalised responses at each of the microphones tend to be more “compact” in time than the
unequalised responses, and a significant pair of “reflections” at about 25 and 30 ms have been
largely removed from the responses at the front microphones.

The modelling delays used to generate the desired signals, d(n), at each microphone for
these results were chosen for microphones 0, 1, 2 and 3 to be 15, 14, 18 and 17 samples
respectively. It was found that if all the modelling delays were set to be equal, a significantly
poorer equalised response was obtained overall. It is interesting to note that the differences in
the modelling delays used above are approximately equal to the differences in the propagaton
times of a direct acoustic wave from the loudspeaker to each of the microphones. This
suggests that the equalisation filter can equalise the response at each microphone best by

simulating a plane propagating wave in the enclosure.

4. ADAPTIVE ALGORITHMS

4.1 Single Channel FIR Algorithms

All of the algorithms used here for adaptively adjusting the coefficients of the
equalisation filters are based on the instantaneous gradient descent methods introduced widely
by Widrow [8]. The simplest and most common form of this algorithm is the LMS algorithm
in which the single error signal e(n) is given by

ei(n) = d(n) - xT(n)h(n) (10)
where

xT(n) = [x(n), x(n-1), ..., x(n-I+1)]
hT(n) = [ho(n), h1(n), ... hr-1()]



The LMS algorithm adjusts each of the filter coefficients in h(n) ateach sample time by an
amount proportional to the gradient of the instantaneous mean square error [8]:

de 12(n)

h(n+1) =h(n) - a -a-m

Therefore
h(n+1) = h(n) - ax(n)e1(n) 1y

a is the convergence coefficient of the algorithm which determines the speed of convergence
of the algorithm. If a istoo large, however, the algorithm will become unstable and an
estimate of the largest stable value of o (Omax) has been given by Haykin [9], from a
consideration of the second order statistics of h(n), as
Omax = 2 (12)
x2 1

The use of an adaptive filter using the LMS algorithm for single channel equalisation is
illustrated in Figure ll(aj. One disadvantage of the algorithm, however, is that the
coefficients will be biased by any measurement noise at the input to the adaptive filter, i.e., the
output of the system to be inverted [8]. For this reason, Widrow introduced the "filtered x"
LMS algorithm, illustrated in Figure 11(b), which also has the advantage that it may be used
on-line, and was later found to be generalisable to multiple channels, as we shall see below.
The output error for this arrangement may be written, as in Section 2 above, as:

e2(n) =d(n) - rT(n)h(n) (13)

Applying the same philosophy, of minimising the instantaneous squared error, leads to the
algorithm:

h(n+1) = h(n) - a r(n)ez(n) (14)

This is called the “filtered x” al gorithm because r(n) consists of the reference signal, x(n),
filtered by the impulse response of the system to be inverted as in equation (2) above. In
practice this impulse response can only be imperfectly estimated and an approximation to r(n)
must be used in the algorithm, although it is found that the algorithm is very robust to errors
made in the generation of this reference signal.



a is once again a convergence coefficient which has a certain maximum value before

the algorithm becomes unstable. A consideration of the first order statistics of h(n) suggests

that Otmax is inversely proportional to r2 in this case rather than x2 above. In this case,
however, the maximum convergence coefficient is found to depend not only on the length of
the adaptive filter and the spectrum of the filtered reference signal, but also on the delays
inherent in the error path (i.e., in c(n)). Computer simulations, using a white noise reference
signal and a pure delay (of & samples) in the error path, have been used to establish the

maximum convergence coefficient under a variety of conditions. The results of these
simulations are shown in Figure 12 and they suggest that Otmax in *his case is of the form

2

(15)

Amax =

r—2(1+8)

If the filtered reference signal is not white, however, which was the case when this algorithm
was used in the arrangement of Section 2, in which a white reference signal, x(n), was passed
through a filter with a non-uniform frequency response to give r(n), this simple formula no
longer holds. In particular, 1/0max becomes approximately proportional to 1.21, rather than
0.51 as in equation (15) above. This more complicated behaviour is probably due to the
correlation between the samples of the filtered reference signals, which was not present in the
simulations used to obtain the results presented in Figure 10. This may be similar to the
"eigenvalue spread" problem discussed in [8] and [9), and certainly the convergence of the
squared error, in the simulations of the filtered x algorithm used to obtain the results in Section
2, shows evidence of several "modes” of convergence.

4.2 Multiple Channel FIR Algorithm
The generalisation of the single channel filtered x algorithm to multiple channels has
been discussed [6] and may be expressed, using the notation of Section 3, as

h(n+1) = h(n) + aRT(n)e(n) (16)

The expression for the maximum convergence coefficient in the single channel case (equation
(15)) suggests a generalisation for Otmax, for the case of L microphones, of the form

2 (17

Omax = L

z_r;f(l +3¢)

(=1
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where rt_z 1s the mean square value of the ['th reference signal and the ['th error path has a

delay of & . In the simulations of the 4 channel filtered x algorithm performed for Section 3 of
this paper, the delays in the error path were relatively small ( § = 4 to 8 samples) so their effect
was difficult to determine, but the variation of omax with filter length (I) conformed

reasonably well to the expression

Cmax =~ ———F—— (18)

4.3 Adaptive IIR Algorithm

One other algorithm was investigated for use in this application, which differed from
those above in that the equalisation filter had a recursive form, i.e., its output y(n) was related
to its input x(n) by

12 12
y(m)= } ajx(n-i) + ¥ bjy(n - j) (19)
i=0 j=1

where the total number of filter coefficients (aj and bj) is now [ + 1. The motivation for such
recursive (IIR) filters is that they are potentially more efficient than non-recursive (FIR) ones,
1.e., they can achieve the same performance with a smaller number of coefficients.
Unfortunately the recursive nature of equation (19) potentially complicates any adaptive
algorithm designed to adjust the coefficients. This is partly due to the fact that for some
combinations of the coefficients bj, the filter may be inherently unstable and an adaptive
algorithm may find it difficult to recover from such an instability. Another difficulty is that the
mean square error is now no longer a simple quadratic function of each of the filter
coefficients, so gradient descent methods such as those used above are no longer guaranteed to

converge.

Despite these potential disadvantages, single channel adaptive recursive filters have
been used by Eriksson et a/ [10] in active noise control applications, which are formally very
similar to the equalisation problem considered here, and these authors have reported that the
algorithm they used was reliable and robust. A multiple-channel generalisation of the Eriksson
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algorithm was reported in [11] and this has been used in a simple comparison with the results

of using a non-recursive adaptive filter reported in Section 3.

The results suggest that the algorithm reported in [11] when used to minimise the
modelling error at 4 microphones in Section 3 with 26 non-recursive and 25 recursive
coefficients, does converge on a timescale comparable with that of the convergence of the FIR
algorithm. The final residual error is also very close to that found with the 30 coefficient FIR
equalisation filter, and if the responses at each of the microphones are calculated when
equalised with the TIR filter, they are barely distinguishable from those using the FIR filter
reported in Figure 9. The converged IIR filter coefficients have been used to calculate the first
100 samples of the (infinite) impulse response of this equaliser which is shown in Figure 13,
together with the 50 coefficients which comprise the complete impulse response of the
converged FIR filter from Figure 8. It is clear that the impulse responses of the two
equalisation filters are very similar and although the recursive property of the IIR filter allows it
to have some response beyond 50 samples, this response is small and has little effect on the
frequency domain behaviour.

This preliminary investigation suggests that although the multiple channel IIR adaptive
algorithm does converge, in the application considered here, it gives no better results than an
FIR adaptive filter with a comparable number of coefficients.

5. CONCLUSIONS

The equalisation of the acoustic response of rooms using adaptive digital filters has
been considered. The problem of equalising the response at one position only in the room is
first discussed, and this is formulated in the time domain by minimising the mean square error
between the equalised response and a delayed version of the original signal.

The acoustic response of a small enclosure, with dimensions and acoustic damping
typical of a car interior, has been modelled, using a modal summation, up to a frequency of
about 500 Hz. Using an adaptive FIR digital filter with 50 coefficients, and a modelling delay
of 15 samples, it is found that the response at one position can be very effectively equalised.
The consequence of equalisation at this one point, on the response at other points in the
enclosure, has also been calculated. It is found that at some other points in the enclosure the
response is significantly degraded by the equalisation filter, as has previously been suggested
by Mourjopoulos er al [3] and Farnsworth er al [4].



An alternative equalisation strategy has been presented in order to try to overcome this
problem; that of minimising the sum of the mean square errors between the equalised
responses at several points in the enclosure and individually delayed versions of the original
signal. Results from applying this approach at four rather widely spaced positions in the
enclosure above have been presented, which demonstrate that some improvements can be
effected, although there inevitably remain differences in the equalised responses at the four
positions. The modelling delays, used to form the error signals at the four equalisation
positions, which gave the most convincing overall equalisation suggest that the equalisation
filter does best by attempting to simulate a plane progressive wave in the enclosure.

Various algorithms have been presented for practically adapting the coefficients of an
FIR equalisation filter to achieve a good approximation to the single or multiple point least
squares solution. The maximum convergence coefficients of these algorithms have been
considered in relation to the delays in the path to be equalised and the number of coefficients in
the adapting filter. An algorithm for adapting the coefficients for an IR digital filter for
multiple point equalisation has also been investigated. This filter converges to a solution very
similar to that found by an adaptive FIR of comparable length, and there would appear to be no
advantage to using such a filter over an FIR filter in this particular application.
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Figure 11: Block diagrams showing the difference between the conventional LMS
algorithm used for equalisation of c(n), (a) and the filtered x algorithm (b).
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Figure 12 The reciprocal of the largest convergence coefficient before instability for
Simulations of the filtered x algorithm with a white noise reference signal,
various pure delays in the error path and for filter lengths of : 1 coefficient

("), 25 coefficients (o) and 50 coefficients (A).
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Figure 13: The impulse response computed from the coefficients of the adapted IIR
Silter used for equalisation at four microphones (solid line), and the
coefficients of the adapted FIR filter (dotted line), which extends only for
the first 50 samples.
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