
H 1/02





NASA Contractor Report 4186

Transonic Aeroelastic Analysis

of Launch Vehicle Configurations

Joao Luiz Filgueiras de Azevedo

Stanford University

Stanford, California

Prepared for

Langley Research Center
under Grant NGL 05-020-243

N/Lq/X
National Aeronautics
and Space Administration

Scientific and Technical
Information Division

1988





Contents

I Introduction I

I.i Background ................................ I

1.2 Computational Approach ........................ 4

1.3 The Present Method ........................... 5

2 Formulation of the Aerodynamic Problem 8

2.1 The Navier-Stokes Equations ...................... 8

2.2 Coordinate Trmasform_tion ....................... 14

2.3 Turbulence Model ............................ 17

2.4 Numerical Implementation ........................ 19

3 AeroelMtlc Formulation 31

3.1 Equations of Motion ........................... 31

3.2 Solution of AeroeIMtic Equations .................... 35

3.3 StabilityCotmiderations ......................... 37

4 Study of Hemisphere-Cyllnder Cues 41

4.1 Introduction ................................ 41

4.2 Grid Generation ............................. 42

4.3 Steady State Results ........................... 45

4.4 Pitching Oscillations ........................... 53

5 A General Hammerhead Payload Problem 59

5.1 Preliminary Remarks ........................... 59

t
r

..o

111

PRIDCF_DING PAGE BLANK NOT FILMED



CONTENTS

5.2 The Grid System ............................. 60

5.3 Initial Aerodynamic Solution ...................... 63

5.4 Aeroelasti¢ Amdysis ........................... 70

6 Analysis of an Atlas-Able IV Configuration 78

6.1 Initial Considerations .......................... 78

6.2 Confi_ration at Angle of Attack: Ste_y State Results ....... 81

6.3 Some Computational Di_culties .................... 94

6.4 Con_l_u'ation at Angle of Attack: Aeroelastic Results ........ 103

6.5 Study of s Zero Angle of Attack Case ................. 11;'

7 Conclusions 130

7.1 Summary ................................. 130

7.2 Recommendations for Future Work ................... 137

A Jacobian Matrices 140

B Periodic Tridiagonal Solver 142

Bibliography 146

iv



List of Figures

2.1

4.10

4.11

General body configuration illustrating the pencil (and block) data

structure format .............................. 29

4.1 General three dimensional view of the hemisphere-cylinder grid .... 43

4.2 Details of hemisphere-cylinder typical grid planes ........... 44

4.3 Flow solution for hemisphere-cylinder at Moo == 0.5 and a - 0". . . 46

4.4 Pressure coef_cient distribution on the body for hemisphere-cylinder

at Moo -- 0.5, a -.- 0", and ReD -- 1.5 × 106 ............... 47

4.5 Computed flow solution for hen_isphere-cylinder at Moo - 0.6, a ---

0", and ReD --- 490000 .................. : ....... 49

4.6 Pressure coefficient distribution on hemisphere-cylinder at Moo - 0.6

and zero angle of attack .......................... 50

4.7 Computed flow solution for hemisphere-cylinder at Moo - 1.5, a ---

0 °, and ReD -- 1.386 x 106 ........................ 51

4.8 Shock location based on pressure gradient for hemisphere-cylinder at

M_ - 1.5 and a -- 0" ........................... 52

4.9 Angular amplitude of eenterline deflection for forced slnusoidal pitch-

ing oscillation. .............................. 54

Unsteady aemdymume load on a hemisphere-cylinder undergoing a

sinusoidal pitching oscillation with _y --- 0.4 (Moo = 0.6 , a -- 0" ,

oo=5") .................................. 55
Comparative plots of unsteady aerodyx_a_nic load distrib_ .i_n on

henlisphere-cylinder in pitch oscillation (Moo - 0.6 , a - 0" , _--

0.4,00= 5")................................ 56

V



LIST OF FIGD'RF_

4.12 Unsteady aerodynamic load distribution on a pitching hemisphere-

cylinder at 0 = 0" (downward motion) for the 1st and 2nd cycles of

oKi11_tion ................................. 58

5.1 Three dimensional view of Eeneral hammerhead payload con_,urs-

tion _d system. ............................. 61

5.2 Typical lonsitudinal grid plane for hammerhead payload ....... 62

5.3 Flow solution about a hammerhead pometry at Moo = 0.8,5 , con-

stant a = 6" and 29._D=. 1.26 x I0 ° (side view) ............. 64

5.4 Pressure coe_cient distribution ,don s the body for a hammerhesd

payload st Moo : 0.85 , a : 6" , and ReD :1.26 x10 s.. . . . . . . 66

5.5 Computer _nerated oil-flow lines for l_nersl h,,,v,m,,_hesd payload

at/_droo :: 0.SS and a : 6" ........................ 68

5.6 Velocity profiles on the leeside in the regions of _ separation (side

view) .................................... 69

,5.7 Response for zero structural damping and very low flight dynamic

pressure ................................... 71

5.8 Modal response of a genersl lmmmerhesd conflSumtion at M_ :

0.8,5, a = 6" , and intermediate value of dynamic pressure. . . . . . 73

Total elastic deflection at the vehicle no0e. ............... 74

AeroeLestic root loci for general hammerhead configuration st Moo :

0.8,5 sad a = 6". The parameter varied is flight dywunic pressure. 75

6.1 Three dimensional view of Atlas-AbLe IV c_tion grid system.. 80

6.2 Typical Ionsitudin_ grid plebe for Atlas-AbLe IV confiSumtion.... 82

6.3 Flow solution about an Atlas-Able IV coition at Ma, == 0.8,5

a -- 6" (./de view) .......................... 83

6.4 Premure coemcLent distribution on the leeside of an Atlu-AbLe IV

payload (M.. = 0.8,5, a = 6") ...................... 84

6.5 Pressure coe_cient distributions for an Atlas-Able IV c_tion

(Moo = 0.S5, a = 6.) ........................... s6

vi



L/ST OF FIGURES

6.6

6.7

6.10

6.11

6.12

6.13

6.14

6.15

Oil-flow lines for Atlas-Able IV conf_umtion at M. = 0.85 and

88

Particle traces showing flow separation on the Atlas-Able IV config-

uration at angle d attack ......................... 90

Expanded view of flow separation close to the leeside ......... 91

Velocity profiles on Atles-Able IV configuration at _rs. = 0.8.5 and

a = 6" (side view) ............................. 92

Particle traces seen from the front of the vehicle showing symmetry

of the solution with respect to the pitch plane. ............ 93

Oil-flow lines for computation with search up to 20th grid point... 97

Side view of traces for particles released arouad the focal point on

the side of the body. ........................... 98

Particle traces showing vortex leaving the body surface on the side

of the vehicle. ............................... 99

Side view of oil-flow lines for computation with search up to _Sth

grid point .................................. 100

Side view of oil-flow lines for computation with search up to 4,Sth

grid point .................................. 100

6.16 Structural mode shapes used for aeroelestic analysk of the Atlas-Able

IV configuration. ............................. 105

6.17 Modal response for Atlas-Able IV configuration at 400 per dynamic

pressure (Ms. m 0.8,5 and o = 6") .................... 107

6.18 Detail of the re_xmJe on the second and third modes at 400 plf

6.19

6.20

6.21

dymunic pres.ur_

Modal respcQse for Atles-Able IV configuration at 1174 per dynamic

pres.ure (Ms. = 0.85, a ffi6")......................

Detail of the response on the second and third m,_es for 1174 per

_eestream dynamic pressure .......................

Generalized aerodynamic forces on Arias-Able IV configuration at

Ms.

............................ 108

110

111

_ O.85 , a f 6" and qz) f l174 psf ................. 112

vii



LIST OF FIGURES

6.22 _ded view of the modal general/z_ forces showing oscilIstory

behavior after initial transient has passed (qo == 1174 lxf) ...... 113

6.23 Aeroelastic root locus for Atlas-Able IV coition st Mr, = 0.85

and a = 6". The parameter varied iJ Right dynamic pressure ..... 114

6.24 Modal damping coelr_ient on Atlas-Able IV conflgm_tion for Right

at Mo, = 0.85 and a = 6" ........................ 115

6.25 Flow solution about an Atlas-Able IV vehicle Lt Mr.. = 0.8,5 and

a == 0. (side view) ............................. 118

6.26 Velocity proRles for flow over an Atlas-Able IV configuration at Mo. -

0.8S and a --- 0" (side view) ........................ 119

6.27 Pressure coefficient distribution over an Atlas-Able IV payload st

Mr,. = 0.85 and a ==0" .......................... 120

6.28 Modal response of Atlas-Able IV st M.. = 0.8,5, a =. 0" and dynamic

pressure qo = 400 psf .......................... 122

6.29 Expanded view of response on the second and third modes at Mro. =

0.85, a = O" and qo = 400 psf ..................... 123

6.30 Frequency content of the modal response of an Atlu-Able IV vehicle

at dynamic pressure qD = 400 psf .................... 125

6.31 Filtered second mode response for Atlas-Able IV vehicle. ....... 126

6.32 Modal S_.ners_ed forces on Atlas-Able IV at Mro. : 0.85 , a : 0"

and qo = 4(}0 pal ............................. 127

6.33 Unsteady aerodynamic load distribution on Atlas-Able IV at various

points along the first mode oscillation. ................. 128

VIII



List of Principal Symbols

a_

A

B

C

Cp

c,
c.
d

e

ed

E

Er(_)
F

P

FKz.,(_)

speed of sound

freestreamapeed of sound

fluxJscobisn matrix usociated with the _-direction

inviscicl part of flux J_obima matrix A

flux Jscobian matrix s_tociated with the ?-directic_

inviscid part of flux Jacobian matrix B

flux Jacobian matrix usociated with the _-direction

inviscid part of flux Jacobian matrix C

speci_c heat at constant pressure

specific heat st constant volume

body diameter

total enersy per unit of volume of the fluid

speci/k intema/energy of the _uid

flux vector in the z-direction

_ux vector in the _-direction

bendins sti_eu

_lux vector in the v-direction

flux vector in the q-direction

function used in outer re#on of turbu/ence model

Klebanoff intermittency factor

ix



G

h

H _

I

J

k

!

t,

L¢, L,. L¢

M

M.

Mc
N

0

P

PaD

P_

Pr

Prt

q_

laternl external load

flux vector in the z-direction

flux vector in the ¢-cUrection

fluid body forcm

enthalpy of the fluid

total enthalpy of the fluid

identity mstrix

Jacobiaa of the transformation

reduced frequency;, constant in turbulence model

length scale for inner region of turbulence model

reference length

dimensionless body length

dimensionlem running normal force

left-hand side finite diference operators

ma_ per unit of body length

nondimensicnal genenflized mass of the/-mode

(dimensional) generalized mmm of the/-mode

Msch number

fremtream Math number

viscous _ of the flux Jacobian matrix A

viscous part of the flux Jacobian matrix B

viscous part of the flux Jacobian matrix G

number of modm used in the aeroekstic aualysbs

order of magnitude

premure

fremtremn pre_ure

genemUzed aerodynamic force

Prandtl number

turbulent Prandtl number

best flux vector

freestrcmn dynamic preuur¢

X



qi

q=, qw, qs

Q

R

Re

Reo

t

T

Uoo

Udl 'Uj

[i", V, W

U

V_

tO

W_

Z_ W Z

Q

"7

6(z,t)

6..,6,,,

generalized modal coordinate

cartesian components of the best flux vector

vector of conserved quantities (cartesian coordinates); heat addition

vector of conserved quantities (body-conforming coordinates)

chamcter/stic gas cot_st_t for sir

greestream Reynolds number

freestream ReTno|ds number based on reference diameter

right-hand side finite difference opemtom

time

computational time step

temperature

period of integration for avemgin& the equstions

z-component of fluid velocity in the cartesian coordinate system

freestream z-component of fluid velocity

velocity components in cartesian eoonfinstes, (i, j ---- I, 2, 3)

magnitude of the freestream velocity vector

contravsrisnt velocity components

V-component of fluid velocity in the cartesian coordinate system

f_estream y-component of Fluid velocity

z-component of fluid velocity in the cartesian coo_te system

_eestream z-component of fluid velocity

cartesian coordinates

an_le of attack

expressions that contain the viscous terms in the energy equation

ratio of specific bests

total de_ection of the centerline

centnd difference operators

A¢, A_, _¢, At forward difference operators

_7¢, V_, Vc bsckward difference operators

es artificial dissipation coefficient for explicit side

ez artificial dissipation coefficient for implicit side

xi



¢
¢,

?

e(t)

eo
K

,X

/Jr

/&

v_

P

po.

O'

T

"r_j

4,,(z)
W

circumferential coordinate in body conforming system

modal dampin s ¢oe_cient

normal ¢oordinste in body conforming system

rigid body ¢enterline _ deflection

half-amplitude angle of the oscillation

coe/_ient of thermal conductivity

second coe_cient of viscosity

v/sccsity coe_¢ient; effective viscosity _ient

freestresm viscosity coefficient

molecular (!.m;f,.r) viscceity coe_]cient

eddy (turbulent) viscosity coe/_tcie_t

generalized modal velocity

longitudinal coordinate in body con_m_ system

density

freestream density

amplification factor

time in the body con.form._ system

component of the viscous stress tensor, (i, j == z, y, _)

normal mode of vibration

frequency

natural _'equency of the i-th mode

nondimensiona[ frequency, f_
6_

ruN.rude of vorticity vector

xii



Chapter 1

Introduction

1.1 Background

The transonic flight regime has proven to be very di_cult to analyze because of the

inherent nonlinearities associated with the equations governing the flow at transonic

speeds, even in their most simplified form. It is well known that, due to these

nonlinea_ties, small changes in geometry or freestresm conditions do not necessarily

produce small changes in the flow solution around the vehicle. Particularly for

unsteady problems, which is the cue in any flutter analysis, the shock motions

and variations in the shock strength can be significant even for small oscillations of

the body. In some cases shock-boundary layer interaction phenomenon can strongly

influence the point of flow separation. Besides being another nonlinear effect, it also

means that the position of separation is moving as the shock location and strength

vary with the body motion.

These combined problems have, over the years, meant that no methods were

developed which can treat general transonic flows. On the other hand, despite all

its dililculties, the transonic regime is very important in aeronautical applications.

Methods that would be able to perform routine aeroelastic analyses are necessary,

since current transport aircraR usually cruise in this regime and military aircraft

maneuver in it. Even missiles,or launch vehicles in general, that are designed to

acquire a very high speed in a reasonably short time, have to pass safelythrough



CHAPTER I. INTRODUCTION

transonic speeds. Such Munch vehicles are the focal subject of the present investi-

gation.

From the point of view of the aeroclastician the need to take into consideration

the inherent nonlinearities of transonic flow is specially annoying because it prevents

his accustomed use of superposition. Of course, this is not to say that one can never

find useful lineafized solutions in the transonic case. For instance, the work of Lan-

dsJ_ [I] shows that if, the reduced frequencies are high enough, linesrized equations

do a good job of predicting the unsteady aerodynsm/c forces on streamlined

and bodies. Another example of linearized transonic solutions can be found in ap-

plications of the indicial me_od (e. g. , Balllmus and Goorjian [2] and Nixon [3]) .

This method is a more limited form of superposition in which unsteady aerodyna_c

solutions are given as linear perturbations about nonlinear steady state solutions.

For small amplitudes of body motion and small shock motions, this method has

proved to be an acceptable approach to seroelastic anal)sis.

For the problems trested here, however, no lin_tion is possible since the non-

linear nsture of the aerodynamic forces is essential to capture the physical phenom-

ena involved. This work undertakes to analyze the seroelastic stability of ballistic

vehicles during their transonic phase of flight. Although the methodology devel-

oped ca_ be used for any flight vehicle, the reader will reco_ize that the particular

problems being addressed are most likely to occur on ballistic vehicles (boosters),

especial]y those car_Ting so-called ]mmmer]_eag psyloads. In such cases, the pro5-

lem can be compounded by the existence of relatively large regions of separated

flow.

Since the mean_ of & hammer_e6d payload may not be _ to all readers,

it is important to mention that throughout this work the term will denote all those

launch vehicles where the payload has s larger diameter than the adjacent booster

stage. It is clesz that such a eonflg_rstion will always be associated with some form

of boattail right at the _ront of the booster, which creates the possibility that at

least some of the vehicle could be immersed in a regio- ,_f separated flow.

The interest in such vehicle con/qgumtions, ss we//as in blunt geometr/es in

general, is related to the fact that they are sometimes very attractive options for

2



CHAPTER 1. INTRODUCTION

the designer. Aeroelastic problems have, however, been observed in the past on

certain vehicles with these conf_,urations [4,5,6] when passing through the transonic

regime. A study of nonlinear hammerhead dects is presented in considerable detail

by Woods and Ericsson [41 for an Atlas-Able IV launch vehicle, which was one of

the conSgurations that actually experienced flutter problems during transonic _ght

in the early 1960's. Another example where the hammerhead could have been a

possible source of aeroelastic instability was the original Sessat-A launch vehicle,

as described by Ericsson and Reding {51. In this case, the solution adopted com-

pletely eliminated the hammerhead by enclosing both the payload and the Agena

upper stage in a fairing with a diameter equal to the first-stage Atlas booster di-

ameter. Besides true flutter cases, some failures in early launch vehicles may have

been associated with buffeting during the transonic phase of flight, as described by

Rainey (6]

The classical approach to the analysis of the aeroelastic phenomena present in

the transonic phase of tqlght of ballistic launch vehicles has been to use experi-

mental data for the unsteady aerodynamic pressures together with some simplified

structural-dynamic representation of the vehicle. It is typified by the examples

presented in References [4], [5] and [6] . Actually, not only in the analysis of

launch vehicle problems but in any situation where transonic and separated flows

are present, the usual practice has been to rely on empirical, or semi-empirical,

methods for the treatment of the aerodynamic terms, as can be seen from Refer-

encea [7] through [i0]. The main di/_:ulty with these analyses is exactly that they

require the use of experimental data for the unsteady aerodynamic preuures in or-

der to formulate the aeroelastic problem. In some cases, since unsteady pressure

data are not £mually available, steady data are adapted in a quasi-steady fashion.

This whole ides of relying entirely on experimental serodyuamic data may be

highly undesirable in many situations. For instance, in the early stages of design of

a new vehicle, or when some modifications to an existing vehicle have to be made

to accommodate a payload with s larger diameter than the booster's uppermost

stage, such experimental data are not available. The problem is usually handled

3



CHAPTER I. INTRODUCTION

building wind tunael models, testing them, and modifying the design if aeroelas-

tic problems appear. This can be very expensive during the design cycle, not to

mention that it is perhaps another reason the aeroelastician is usually seen as a

polieem4_ as mentioned by Ashley and co-authors [111. Thus, the motivation for

the present work includes the development of the capability for calculating, as part

of the solution, the aerodynamic environment the vehicle is subjected to. Given the

necessary aerodynamic tools, the aeroelastic stability analysis can be performed.

Eventually, this computational procedure will become sutRciently cost-e_cient to

be incorporated in the design cycle, at least in the transonic regime where the usual

linearized methods break down.

1.2 Computational Approach

The recent progress in the field of Computational Fluid Dynamics (CFD) has al.

lowed the simulation of transonic t]owfields through the use of finite difference, or

finite volume, techniques. However, much more current research is focussed on

steady transonic calculations than on unsteady ones. The reason for this is that

unsteady calculations, and their aeroelastic applications, require that the equations

be solved in a time-6ccur4te manner. As a result, the time-step size_ :hat can be

taken in the time integration of the equations are severely restricte_ _ud increase

considerably the computer cycles required for solution.

There is also the question of at which level of approximation to perform those

computations. For some problems, it is sufllcient to consider the transonic small

disturbance equation, whereas in others a Yavier-Stokes formulation would be ap-

propriate. Interesting surveys in this regard, indicating also the stage of develop-

ment at the time of publication, are presented by Peterson [12] and by McCroskey,

Kutler and Brid_ [131. It is no surprise that most of the work that can be found

in the literature is restricted to airfc/l or wing flows. The aerodynamic formulation

is restricted to the transonic small disturbance or to the full potential equations,

since these formulations are less computationally demanding than more complex

ones based on the Euler or the Yavier-Stokes equations.

4
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Some examples of applications of CFD methods to unsteady transonic aerody-

namic calculations and to aeroelastic analyses, where the aerodynamic formulation

is based on the small disturbance or the full potential equations, can be found in

References [14]-[30]. The computational requirements, even in those cases, are by

no means trivial. Certainly they are already within acceptable limits of present com-

puters, as the work in these references shows. The study of transonic aileron buzz

by $teger and Bailey [31] can be considered one of the "classical" examples of the

use of CFD for seroelastic saalysis; even before 1980 it employed a Yavier-Stokes

formulation for the flow solver. A few other cases, where similar complex formula-

tions are used, can also be found in the literature. For example, References [32] and

[33] include applications of Euler equations, but still to airfoil or wing problems.

The main diCSculty when one starts to consider transonic aeroelastic problems of

bodies is that usually the disturbances are large enough that a potential formulation

is no longer adequate. Furthermore, the description of the aerodynamic phenomena

important to the aeroelastic analysis, such as the topology of flow separation or

shock-boundary layer interactions, may be beyond the scope of potential methods.

In other words, one has to resort to the Euler or Navier-Stokes equations in order to

appropriately simulate the physical flow features involved [34]. For these cases very

Little has actually been published, although the idea of how one should proceed to

perform aeroelastic analysis is somewhat weU established [35]. The computational

requirements, both in terms of time and storage, are the major challenge, since

grid systems that would support a Navier-Stokes solution for typical launch vehicle

shapes are bound to be large, and CPU times associated with unsteady transonic

Navier-Stokes solutions are also substantial.

1.3 The Present Method

The approach followed in the present work uses CFD techniques to perform aeroe-

lastic analyses of launch vehicle coafigumtions by coupling the structural-dyaamic

equations representing the vehicle with an unsteady flow solver appropriate for the

physical situation being treated.
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The meclumism underlying the a_roelastic instabilities observed in Right involves

the existence of phase lags between the aerodynamic forces and the motion. In such

circumstances, these loads can do positive work on the oscillating vehicle. For launch

vehicle conjurations, the accurate calculation of these lags involves resolving the

important festures of the flow, which include transonic shocks and their motion,

shock-boundary layer interactions, and shock-induced flow separation. The problem

of flow separation is particularly important for lmmmerhead configurations, where

the existence of merged regions of separation [51 can have a definite influence on

the vehicle's seroelastic stability. In summary, then, we can conclude that the

aeroelastic phenomena observed in flight indicate that, in the case of the ballistic

vehicles being emph_ized here, the correct flow equations that should be used are

the N&vier-Stokes equations.

The coupling of the two sets of equations is performed by integrating both of

them simultaneously in time and ensuring that the data generated by one set is used

in the next time step of the other. The aerodynamic equations are solved in a time-

accurate fashion, and their solution provides the forcing terms for the seroelutic

analysis, which typically are weighted integrals of the pressure distribution along the

body surface. Solution of the structural-dynam/c equations gives the new deformed

shape of the body, and so the boundary conditions for the aerodynan_c solution at

the next time step.

The subject of time.accuracy of the aerodynam/c equations deserves a more de-

tailed discussion. A solution would be considered time.accurate in a numerical sense

if all the scales supported by the computations/mesh are being accurately resolved,

which in practical terms implies that the CFL number is at most of the order one

everywhere in the computational domain. Since the CFL, or Courant, number can

be interpreted ss the ratio of the length scale obtained by the product of some

characteristic velocity times the time step over the length scale determined by the

grid size, it is clear that this is a very restrictive condition in terms of the maximum

steps sizes that could be used. _nis is not the meaning we intend to assign to this

expression in the present work. Here, the solution is being called time.accurate

6
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in an aerodynamic sense, meaning that all the important aerodynamic phenom-

ena of interest are being resolved accurately. Since the time scales associated with

the structural-dynamic phenomena we will be studying here are much larger than

those associated with the pure aerodynamic phenomena, as we will demonstrate

later, by enforcing time-accuracy in an aerodynamic sense we automatically have

time-accuracy in an aeroelastic sense.

Since full solution of the Navier-Stokes equations around complex geometries

is still beyond our computational capabilities, the method employed here solves

the thin layer approximation to the Reynolds-Avem1_'_i Navier-Stokes equations,

where turbulence closure is obtained by using an algebr_c eddy viscosity model.

Before the aeroelastic analysis could be started, the aerodymunic equations must

be marched in time in order to obtain an initial ate4_y a_te solution for the flow

around the body, assuming that it does not deform under the loads. Once this

initial solution is obtained, one can start to oscillate the body and, from then on_

the aerodynan_c solution must be time-accurate since the flow solver w_ be coupled

to the structural-dynamic equations as previously described. By tracing the growth

or decay of a perturbed oscillation, the aeroelastic stability of a given coition

can be ascertained.

In the following chapters, the formulation of the problem and the detailed de-

Scription of the method will be presented, together with the results obtained in

the various cases analyzed. The theoretical formulation that underlies the present

approach will be presented in Chapters 2 and 3. Chapters 4 through 6 will describe

several applications of the method, both for unsteady aerodynamic calculations as

well as aeroel_tic analyses. Finally, Chapter 7 will summarize the possible contri-

buticca of the present research, present its conclusions, and discuss some recom-

mendstions for future wof]c



Chapter 2

Formulation of the Aerodynamic

Problem

2.1 The Navier-Stokes Equations

In order to correctly represent the physical phenomena pre%ent in thh problem, the

appropriate set of flow equations.to be used arc the Navier-Stokes equations. These

equations can be written in differential form [34]

continuity equation:
Dp

h'T+ pv._= o

M:

DH ap
PVt = _+v.[_.e-q-1+_.e+q

conservation of momentum equations:

D_

energy equation:

(2.1)

(2.2)

(2.3)

where the rymbol D/Dt indicates the jubst=nti6l or m=te_i=l deei_=ti_e, the vector

repr_ents the l:_ly fm'ces, and Q is the heat addition.

The set of equations shove requires some constitutive relations in order to form

a closed system of equations. Starting with the equation of state, s perfect gas [37]

is assumed such that one can write

p ffipRT = (7 - 1) pc, (2.4)
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where the specific internal energy of the fluid, e_, is given by

= CuT (2.5)

The heat flux vector isgiven by the Fourier law of heat conduction

- -_ (VT) (2.6)

The components of the viscous stresstensor, _, can be obtained from

= + - (2.71

where we are considering an isotropicfluidand also that the coefficientof bulk

viscosityA is simply given by: A - -_p. Finally,the total enthalpy of the fluid,

H, is defined as
1 p 1

where for a perfect gas one can also write the enthalpy h = CaT.

Equations 2.1,2.2 and 2.3 are written in the non-conservation form. This may

create numerical problems when computing flow quantities across a shock wave,

since the use of the non-conservation form can cause loss,or creation,of mass and

momentum across the shock. So, from a numerical point of view, itisvery important

to recastthisset ofequations in the conservation-law form, or divergentform. Before

doing that, however, we willintroduce the assumptions that in the problems being

treated here there are no body forces (G = 01 and no heat addition (Q = 0). It

probably should be pointed out that the body J:orceJwhich we are referringto here

fieldeffectssuch mr gravity,for example. The introduction of these assumptions

isnot a necessary step at thispoint in the formul,Ltion.However, since they would

be involmd lateranyway, one might as well use them now and simplify the algebra.

It should be noted that the reason for using the above suumptions is physical, i. e.,

in the fllsht re,me being treated the contribution of the terms being disregarded

is indeed" negligible.

Rewriting Equations 2.1-2.3 in index notation, with the repeated-index implying

summation, and remembering that the substantial derivative is given by

D()D--'_= + _.V ( ) (2.91

9
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one obtains the foUowi_ equations :

ap _ o%_
_" + '=ia=i + P_'_'=i= o

I__._ =._,] ap ar,i'. +

p -- + ,.,_ = _- + [,-,_,=,- qj]

Defining the total energy per unit of volume, e, as

I o

(2.io)

(2.1i)

(2.12)

(2.13)

the equations can be written in the conservation-law form in the foLlowin K way,

continuity:

momentum:

energy:

a

=o (2.14)

T + azj +a=, O=#=° (2.15)

@e 8

g+ _-;=[(, + p),,_- ,.,_,,,+ q_]=o (2.1s)

Full solution of Equations 2.14-2.16 around complex geometries is still beyond

our computational capabilities, since the number of grid points required to capture

all the scales of a turbulent flow at _ight Reynolds numberJ would be prohibitive.

The alteruative approach consists then in avera_ng the flow variables such that

they can be expressed as a mean flow quantity plus a zero-mean perturbation. In

particul_, ff a mass weighted avem_ag is used, it is possible to rewrite the equations

in terms of the &versged quantities s/most in the same form as Equations 2.14-2.16.

A generic quanti.t_' z is &refaced such that

z ffi I, + z' (2.17)

where : _ _ _ f_+r, z dt

Here the period of integration Tj, should be small compared to the time scale for

10
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variationsin the mean flowquantitiesbut should be largeenough to providesome

averagingover the high frequencyturbulentscales.

The [lowvariablescan be writtenas:

p = p+p'

_, = _+ (_)'

• = g+e _

p = _+p'

pH = _+ (ps)'

ph = _+(ph)'

(2.1s)

However, if averaged velocities are necessary, for example, some other form of av-

eraging is required, since the quantity that was averaged above is the momentum.

So, for quantities like velocity and enthalpy, another average is defined as

as - ;_W/;_ (2.19)

_, ----_I_"

and with these new d_tions one could write

" (2.20)us = us 4- u s

h = _+h"

" and h" doIt isimportant to note, however, tl_t perturbation quantities such as ui

not necemu;.ly lmve zero mean v_lue.

Ifwe-perform the averagingprocesson F_itmtions2.14-2.16,the followinggov-

erningequationsare obtained,

continuity:
a

_--I- _ (_'_j) --- 0 (2.21)

11
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momentum:

energy:

a a a

+ p)o,l+

o[ (
One can observe that the new terms are:

_. II. II

u_ _j called Reynolds stress terms;

pu-_ called Reynolds heat flux terms;

tl 0O" _. called Reynolds dissipation ten_./

(2.22)

(2.23)

It is evident at this point that these new terms would require some additional

closure equations. It so happens, however, that ms one tries to derive a new equation

to calculate, say, the second order tensor _, another nete term is introduced,

namely the third order tensor " "" "" "_ uj u1, . This constitutes the so ca]/ed turbtdence

c[os=re problem, i. e. , every' time one tries to derive an equation for one of these

new terms, at least another new tensor one order higher than the previous one is

introduced.

An alternate approach, which we shall fo]/ow here, is the Bouuinesq concept of

effective v_coJi@ [_8, 39,],whereby the turbulent mLxing is modelled by upgrading

the usual molecular viscosity c_ient by some quantity usually called the eddl/

t_cos_7/coefficient. We will postpone the discussion of the particular turbulence

model being used here until a later section. By now, it is su/_cient to say that the

turbulent _ will be mode]/ed by an eddy viscosity coefficient, such that the

viscosity coe_Rcient that appears on the deletion of the viscous stress terms wi]]

be formed as [401

# _ #t + #, (2.24)

Here/Jr is the molecular viscosity coefficient and/J= is the eddy vis_'_,_ity coef_cient.

Simfl_ly, the coefficient of thermal conductivity _ can be obts/ned as

Cp/_ Cp/_, (2.25)

12
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where Pr is the Prandtl number and Pr, is the _rb_dent Prandtl number.

With the introduction of the model above mentioned into Equations 2.21-2.23,

they can now be expressed only in terms of the averaged quantities, i. e. , all the

terms that involved perturbations (primed and double-primed terms) are in some

sense replaced by the model. From now on, we shall drop all the bars and _ild_ in

the variables, just to simplify the notation, but one should understand that we are

talking about the averaged quantities. The equations can then be rewritten for the

averaged variables as

continuity:

momentum:

energy:

where

a

_- + _ (_) = o

_(_.) + _- (_,,_j + _ - ,-_)= o

(2.26)

(2.27)

(2.28)
_ge
+ z:'_[(e+p)=,-_,,=,+ _]= 0

(__z_ _) 2 ___a_,.

( m _,,) Oe,

(2.29)

(2.30)

pressure is stillgiven by Equation 2.4 , and the specificinternal energy can be

obtained as
e 1

e; = - - (2.31)p _uju_

The above set of equations constitutesthe so-calledReynolds-Averaged Navier-

Stokes equations, and they are the aerodynamic equations that are actually being

solved in thiswork. The equations are written above for a cartesian set of coordi-

nates. As we willsee shortly,thisisnot entirelydesirable,and so we willturn our

attention now to the problem of coordinate transformation.

13
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2.2 Coordinate Transformation

Before proceeding with our discussion, it is useful to rewrite the flow goveraing

equstions in the m_trix form they are usually seen in CFD spplications. So, Equa-

tions 2.26-2.28 can be Rwfitten in strong conservstion-lsw form, still in cartesian

coordinates, u:

_E aF /_G+ _-z+ _-+ _ --0 (2.32)

where the vector of conserved quantities Q is

p

pu

Q--_ pv (2.33)

pu_

and the t]ux vectors E, F and G _re

pu

pu 2 + P- _..

puv --_.y

puw --_..

(e + p --_..), --r,v - _..w + q.

(2.34)

pv

p_2 + p- r_

(e + p - _,) v - _., - f..w + q,

puw - _..

pw 2 + P - _..

(, + p - I'..)w - _..u - ry.v + q.

(2.35)

(2.36)

14
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Itisconvenient, for the purpose of actuallyimplementing the flow solvercode, to

have the governing equations transformed to a general body-conforming curvilinear

coordinate system. This will make the formulation in the code independent of

the detailsof the actual topolo_D,being solved, besides making itvery convenient

for applying the boundary conditions and implementing turbulence models. The

transformation isusually known only numerically,which does not p¢_ any di_culty

since wh_t one reallywants to know are the metrics of the transformation and its

Jacobian. Following the usual procedure in the CFD literature(see,for inJtance,

References[41|-[45]), one can convert the Navier-Stokes eqtmtions from cartesian

coordinates to general curvilinearcoordinates by means of the transformation :

I" = t

= _(=.v...t)

, = ,(=.v.=.t)

¢ = ¢(=.v.=.t)

(2.37)

Using chain rule expansions, the derivativesin terms of the cartesian variables

can he expressed in terms of the curvilinearderivatives,in matrix form, as

(2.38)

or conversely,

= 0 =¢ v¢ =¢ _ (2.39)
0 z. y. =.

Due to the special form of the transformation matrices above, the Jacobian of the

transformation, J', c,tn be simply written

.r = la(_,,7,C)/a(=,v, =)1

15
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or in the form it is actually used in computation

]-' = la(=,y,,)/a(:,,7,01 (2.40)

Sul:_tituting the transformation expressions given by Eq. 2.38 into Eq. 2.32 , one

can obtain:

8E 8E 8E

8F 8F 8F 86; aG _G

+,.,_T+,_,_+¢,_T+_._+,I._+¢._ = o (2.41)
Muhiplying the above equation by j-i , and completing the t _ such that at

least some of them can be written in divergence form, we have

a (s_,o)+a
O O

[J-* (:,Q + _,E + _,F + _,G)]

[s-' ((,Q+(.s +¢,F+¢.C)]

[a (s_,_.)+a (s_,,.)+ a (s_,_.)+E _ _

[o (s_,_,)+a_(s_,.,)+ o (s_,¢,)+F _. _

+_ _ _
If we follow the work on Ref. [41] , and use Eqs. 2.38 and 2.39 , an expression

for the Jacobian of the transformation can be found as

J = (zOI.z ¢ + z.yCz ¢ + z(_. - z_¢z. - z.y_z¢ - z¢y.z¢) -_

Similarly, the _o_o_in 6 metric rel,.tions can be found

_. = s(_.,c- _,c..) _, = s(=cz.- =.,¢)
G = S('._c- =¢_.),.= ](u¢,_- _,¢)

,7_= J (x_z¢- x¢,e) v, = J (zone- xe_¢)

(. = J(u_z.-_.z_)¢,= S(=,z_- z_z,)

(2.43)

16
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_., = -z,_, - y,_y- z,L

tit = -z,r I, - y,_y - z,rl,

¢. = -:,(:, - y,(, - _,_:,

(2.44)

Working with the above metric relations and the Jacobian expression, one can prove

that all the terms inside the curly brackets in Eq. 2.42 are identically zero. If we

define, then,

P

pu

___j-,q = j-I

pw

e

m j-_ (_,Q + _,,E + _,,F + _,G) (2.45)

_' m J-* (,7,Q + ?,,E + '7,F + '7,G)

= J-' ((,Q + ¢=E + (,F + ¢,G)

the $overnin$ equations can be rewritten, still in strong conservation-law form, but

for a general set of curvilinear coordinates, as:

o_ a_' o;' 0%" 0 (2._)
+ o-?=

This matrix equation, or its equivalent set of scalar equations, is essentially what

is implemented for the flow governing eqtmtions on the code developed. The above

still does not really explain the details of the numerical implementation of these

equations, and a later section will be dedicated to address this issue.

2.3 Turbulence Model

As previously mentioned, the concept of an e_'ec_/_eviscositycoelr_cientis used

here i*_ order to model the turbulent mixing by upgr_iing the molecular viscosity

coei_cient by the so called eddy viscosity coefllcient. In the present work, the eddy

viscosity coe_cient, p, , is obtained from the two-layer Baldwin and Lomax [46]

17
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algebraic model, which is implemented here in the usual way for wall-bounded

shear layers [47' 48]as

{ (_t)inner , '1 < rlcro_over (2.47)
_" = (#,)outer , '7 > ,/crc_over

Here '7 is the c'_rvilinear di.t_nce normal from the wall and. _crcssover is the stoniest

value of r/at which the inner and outer formulations give equal values.

The inner re&ion uses the Prandtl-Van Driest formulation, such t1_t

(*',)inn= = pt' l',.'l (2.48)

where I_ I is the magnitude of the local vorticity vector, and the length scale l is

obtained as

[i=k,7 l-e-_, -_-

A÷=and ,7+ = ,7 //J,,, k = 0.4,

The formulation for the outer region is similar to a Clauser formulation and is

_ven by

(_')outer = KC_F.h.FKt.6(_) (2.49)

where

F..k. = the smaller of C.,,._.U_I/F._ "

The values of r/,_,, and F,_u are obtained from the function

where Fmu is the maxhnum value of F(_) in the pro_le, and V,_,= is the value of

The function FK_.,(,?) , called the Klebanoff interm]ttency? at which it occurs.

factor, is given by

FKZ"(_)= [I+5"5(cKI'_#_e]-*\r/_ / j

Finally, Udi! is the difference between maximum and minimum total velocity mag-

nitudes in the profile (note that the w.in/mum total velocity is zero for boundary

Isyers), and the constants used have the foUowing values :/t" - 0.0168, C_ --- 1.6 ,

C,a, = 0.2,5, and CKl,,b = 0.3.

18
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2.4 Numerical Implementation

It is always good practice to perform some form of nondimensionalization on the

equations being used, even if it merely is to ensure more generality in the formu-

lation. The choice of dimensionless parameters is somewhat arbitrary, so long as

one does things consistently. In the present work, the density p is scaled by the

freestream density p_, the cartesian velocity components u, v and w are nondimen-

sionalized with respect to the freestream speed of sound a_ , sad the total ener_D,

per unit of volume e is referenced to p=a_ .

For simplicity of notation we will not use dL_'erent symbol to denote the nondi-

mensional variables, but we will continue to use the same nomenclature as before.

The reader should keep in mind, however, that we will be refering to the nondimen-

sionaLized variables for the remainder of this development. Equation 2.46 can still

be written as

where the vector of conserved quantities _ is st:).! w_itten as previously defined.

The reader should remember, though, that we are now referring to the nondimen-

sional quantities, despite keeping the same nomenclature. It is instructive at this

point, however, to rewrite the flux vectors with all their components in the gen-

era/ curviHnear coordinate system and to include the modifications caused by the

nondimensionalization process. Thus, they can be written as

pU

(• + p) u - p_, - _, (_._. + _,_, + _._.)

(2.50)
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pV

_v + _. - b[@(,. .,. + _,.,. + r..,.)

(e + p) v- _,- -_,(_._. + _,,, + _.,.)

pW

_ w + pC.- _ (..,_. + ,'.¢, + ,'.¢.)
_w + K, - -_'-(,'.¢. + ,',,¢, + ,',.¢.)
_w + ,_. - -_¢,(,-.¢. + ,.,.¢,+ ,-.¢.)

(, + p)w - ,_, - _ (_.G + _,<;,+ _._.)

(2.5_)

(2.52)

In the above equations, Ma. is the freestream Math number defined as

M. = _--- (2.53)
(Zoo

where/Jo. -- _/u 2 + v 2 + w _ is the magnitude of the freestream velocity vector. Re

is the Reynolds number, given in the usual way by

Re-- PJ"_to (2.54)

where p_ is the frecstream (|,_mln,_r) viscc4ity coefficient ¢0ad to k the reference

length. It should ako be mentioned that any viscosity coetRcient that appears

on the formulation is nondimensionalized with respect to p_. The contrav_iant

velocity components, U, V and W, are defined M

U = Q+Gu+_,v+Lw

V = ,7,+rt=u +_v + _,w

W ffi (,+Gu+Gv+G_,

(2._)

The _,. _, and _. ten,,- are siren by

8. = _..u + _v + r..w - q.

_, = r.,u + r_,v + r,,w - q,

(2.5_)
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AU the other variables that appear in the above equations have been previously

defined, and again we ca//the reader's attention for the fact the dimenJional vari-

ables should be just replaced by their nondimensions] counterparts in those def-

initions. It is interesting to note that the three dhnensionless numbers usually

encountered when nondimenaions_zing the Navier-Stokes equations, namely Mach

number, Reynolds number and Prandtl number also appear. Although not explic-

itly shown in the equstionm immediately above, the Prandtl number arises in our

case through the way in which we have defined the components of the heat flux

vector, q=, qy and qs •

The Beam and Warming implicit approximate factorization scheme [49' 50] is

used for the solution of the finite difference equations. The spatial derivatives in

Equation 2.46 are approximated using three-point, second-order central differencing,

and the implicit Euler method is used for the time march. With this method, we

can write

(#)-'_+'=_'+_t +o (_e) (2.5r)

where by O (AP) we mean that this is a firstorder method in time, and the su-

perscript n indicates at which inst-nt of time the quantity should be evaluated. If

Equation 2.46 is substituted in the above, we obtain

Since the flux vectors are nonlinear functions of the vector of conserved quantities,

in order to solve for _+I , while mxinta_ng the order of accuracy of the method,

Th_the nonlinearity is removed by a local Taylor series expansion about

proce_ yiel&.

r +
r+s- +o(Ae)

=
where A, B and C are the 3acobian matrices given h_,

(2.59)
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oP
B = a----_

a_7
c = a-_

Substituting the linearized expressions into Eq. 2.58 one obtains

n

0 ,,

or or
-At ._..+ _.- + +

(2.60)

where I is the identity mstrix.

In order to make the solution algorithm more cost e_ective, an approximate

factorization of the three-dimensional operator into three one-dimensional operators

is introduced. Following the work of Beam and Warming [49], and Pulliam [41], a

term of the form

can be aided to the left-hand side of unfactored equation. Furthermore, one should

note that the aided term is of order At s and therefore does not alter the order of

a_curacy of the method. With the above term, the equation can be factored such

that the algorithm can be written in the so-called de]_/oem as

ar ar (z_e)-_, _-+ _-+ +o

where At is a forward di_erence operator in time, such that

(2.61)

a,_ = _+' --

With the introduction the three-point second order central differencing to ap-

proximate the space derivatives,the _ form of the algorithm can be written
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L_L_ Le_t_ _" - R e + P_ + R_

where the above operators are defined as

L., = (l +At_.,_"-,,At.1-_V.,,',.,:-_t_.R,,-'_.1-',_::)

(2.62)

Here 6_ , 6_ and 6¢ are central difference operators; _7¢ , V_ and V¢ are backward

di_erence operators; and At , A_ and A_ are forward difference operators in the

(-, r/- , and ¢-directiens, respectively. For example,

¢,-,,.1_,._._ =
v_,._., = _,._._- _',_,._._
_,.,., = _÷_._._-_,._._

The _, _ and _ are midpoint operators used to maintain a compact three point

second order accurate central difference scheme when differencing the viscous terms

in the left-hand side. As previously described, the A_ is a forward difference operator

in time.

The Jacobian matrices were split such that ,_i, B and _' contain, respectively,

thein,i,,_a_ d A,_ andC,wh_as._, .,_,,andM_cont_ the,,'_ous
terms. Expremio,_, for these matrices are given in Appendix A. A few extra words

may be important to clarify the need for midpoint operators when working on

the vi_dtm terms. The Idl-haad side matrices, as defined in Equations 2.63, are

block tridiagonal matrices where each block is 5 x 5. However, the viscous terms

themselves, i. e., the components of the M matrices, already involve derivatives of

the velocity components in the case of the viscous stress terms and of the internal

energy in the case of the heat flux terms. Therefore, if we insist in using central
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diiTerences, we need to use midpoint operators in order to avoid a five point stencil,

which would cause the operators to become full-block pentadiagonal. With the

midpoint operators we can keep the matrices block tridiagonal while retaining the

order of accuracy of the method.

Although linear stability analysis shows that the fully implicit Mgorithm is un-

conditionally stable, stability bounds are encountered in practice. The problem

comes about because of the nonlinear interactions in the convection terms of the

momentum equations. The problem can be understood easily if one thinks in terms

of waves interacting. When two w_ves interact, one of the products is a new wave

of higher frequency, which frequency is the stun of the original ones. This f_.'_tuency

c_c_ding will, at some point, exceed the resolution capacity of a finite mesh, with

the result that these frequencies either alias back into the lower frequency nmge or

pile up at the high frequency side. If not controlled, th_s process may cause serious

inaccuracies and quite possibly numerical instability. The usual way the problem

is handled is to introduce some form of numerical dissipation into the algorithm,

with an error level that should not interfere with the accuracy of any viscous effects

being captured in the solution. Some numerical schemes, generically known as up-

u_nd schemes, intrinsically have this numerical dissipation built into the scheme by

the way they use one sided differences. Central difference schemes, however, do not

have this numerical dissipation built into the scheme, and so it must be explicitly

added in order to control the nonlinear instabilities above described.

The procedure adopted here consists of introducing a constant-coei_cient, fourth-

order artificial di_ipation in the right-hand side operators, and constant-coei_cient,

second-order artit]cial dissipation in the left-hand side operators. In the right-hand

side, or _plb:'i_ side, the amount of artificial disspation introduced is controlled by

the co¢_cieat ez , sad on the left-hand side, or implicit side, it is controlled by

the coetilcient ej (se¢ Equations 2.63). Ideally, one would like to use fourth-order

artificial dissipation on both implicit and explicit sides, because the use of di_erent

orders of numerical dissipation schemes does introduce a small numerical error on

the solution. However, once again the issue of solution efficiency dictates that we

settle for the second-order numerical dissipation on the left-hand side, because a

24



CHAPTER 2. FORMULATION OF TEE AERODYNAMIC PROBLEM

fourth-order scheme would cause a five point stencil and so block pentadiagonal

matrices.

One possible way to deal with the problem of having dii_erent orders of artificial

dissipationschemes on the implicitand explicitsides is to use the so-calleddiago.

n4/a/got/thin, described by Pulliam and Chaussee [43]. The ides of the diagonal

algorithm isbased on the diagonalization of the inviscidleft-hand side matrices as

described by Warming, Beam and Hyett [51]. These suthors show that the Jaco-

bian matrices A, B and C hsve realeigenvalues and a complete set of eigenvectors,

and so can be diagonalized. It is clear that for viscous calculationsthe algorithm

c_not be rigorously applied, since in order to disgonalize the left-hand side oper-

ators we need to ne$1ect the implicit viscous terms. However, resultsby Puiliam

and Steger [52]show that for steady viscous flows and in convection dominated un-

steady flows the diagonal algorithm, as described above, produces very good results.

Furthermore, it allows the use of the fourth-order artificial dissipation scheme in

the leR-haad side operators because, despite the fact that thismakes the matrices

block pentadiagonal, now each block is a fiveby fivediagonal matrix, making the

inversion process fairly inexpensive even for s block pentadiagonal system. In the

present work some attempt was made to program the diagonal algorithm, however

there were questions concerning the accuracy of the algorithm in the case of self-

excited unsteady calculations *, which is exactly what our aeroelastic analyses

are. Hence the ides wss sbsadoned.

Although not explicitly mentioned in the previous equations, freestream sub-

traction [ 53] is performed in the flux vectors when computing the right-hand side

termJ in Equation 2.62. The reason for this comes is that, when arbitrary curd-

linearcoordinates and general finitedilferencesare used, there are small numerical

errorsintroduced in the cakul_tion of the metrics of the transformation which may

cause the.code to be unable to reproduce the freestresm (or an uniform flow). By

performing the freestresm subtraction in the flux vectors, we ensure the capability

of recovering freestresm and reduce the overallenx_ of the method.

Since s viscous formulation is used here, at body walls we have no-slip bound-

sxy conditions, i. e. , u -- u _- tv - 0 for steady problems, or u ffi z_ , u --- y_

* Pulliam, T.H., personal communication, May 1986.
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and w = z. for unsteady cases. Here z,, V. and z, are the cartesian components

of the grid velocity due to body motion. We assume also adiabatic walls and zero

normal pressure gradient at body walls. Uniform freestream is enforced at the up-

stream and far-field lateral boundaries. The treatment given to the downstream

boundary depends on the value of the fremtream Math number. For a supersonic

freestream, the downstream boundary is extrapolated from interior values. For a

subsonic freestrean_ according to characteristic relations, there are four characteris-

tics propagating downstream and one propagating upstream. To be consistent with

that, pressure is then fixed at the downstream boundary (at its freestream value)

and the other quantities are extrapolated from interior values. From a strictly nu-

merical point of view, it should be mentioned that all the boundary conditions are

treated explicitly in the present work. This means that they are applied using the

information available at the present time step.

There are some important points concermng the boundary conditions that should

be further discussed. In an attempt to save computations/points in the grid, the

approach primarily used in the present work does not consider a body base, but

rather stops the computation at some point along the cylindrical sfterbody section.

This may cause some concern when computing subsonic flows, since we will be as-

suming freestream pressure st this computational exit plane whereas the flow will

probably not be completely back to a freestream condition due to the presence of

the body. Essentially, there is an error being introduced, but care is being ex_cised

in order to make the afterbody cylindrical section long enough that whatever errors

are introduced at the downstream boundary will not propsgate upstream to the

point of influencing the re, on of interest in the solution. Later, some results

be presented "that illustrate this point and confirm our statement that the re_ons

of interest are not beh_ contaminated by whatever errors are introduced at the

downstream boundsry.

Another point of concern is the treatment of the far-field lateral boundaries.

Since we have a body at au_e of attack, lift w_ be generated and so there is a ques-

tion about the conservation of circulation in the far-field. To be precise, far-feld
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lateral boundary conditions should have some way of enforcing this conservation-

of-circulation boundary condition. However, since we are dealing with three dimen-

sional bodies of revolution in the present work, we do not feel that the added ac-

curacy is worth the complication of the boundary conditions. Moreover, the results

obtained seem to corroborate our assumptions, indicating that assuming freestream

conditions in the upetream and far-field lateral boundaries is good enough for the

present case.

Finally, the reaso_ behind the zero normal pressure _fient condition at the

wall should be addressed. The code is implemented with the assumption that _ is

the normal direction, and so this boundary condition is enforced by setting ap/ar l to

zero at the wall. Strictly speaking, for a viscous formulation there is no theoretical

reasoning that would lead to the zero normal pressure _adient condition without

the introduction of any simplifying assumption. In particular, for viscous flows over

curved walls this condition is not completely correct. However, if we study results

from boundary layer theory [ 54] and evidence from experimental measurements on

boundary layers, we observe that the pressure is approximately constant throughout

the thickness of the boundary layer. In our case, we can also argue that this

boundary la_er assumption is being used only on the points that are nearest to the

wall. In other wordJ, although there is a physical boundary layer, the zero normal

pressure condition is only bein_ used up to the i]rst grid s_e oi_ the body and not

througvhout the whole layer. It should be pointed out that there are cases where this

condition can be rigorously demonstrated. For the general ease in a Navier-Stokes

formulation, however, the justification for its use is based on experimental, as well

as numerical, evidettce in conjunction with the insight provided by boundary layer

theory.

F_ each time step Equstion 2.62 is solved by forming the right-hand side and

then itttrer_ttg separately, and in the sequence indicated, each of the left-hand side

operators through the use of an L-U decomposition algorithm for block tridlagonal

matrices. In the cases when an "O" type mesh k used in the circtunfertmtial direc-

tion, i. e. , the grid is completely wrapped around the body for the full 360", the

grid is said to be periodic in the circumferential direction. For periodic grids, it is
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necessary to program periodic tridiagonal solvers, because in this case the left-hand

side matrix is not strictlytridisgonalbut has extra blocks in the upper right and

the lower leR comers. Appendix B has more detailsabout the handling of periodic

tridiagonalmatrices.

The database isstructured in a pencil format which minimizes the mnount of

data that has to be stored in main memory at a given time. The pencil data

structure concept, ms well as the procedure for solving Equation 2.62 when the

database has such a format, are described in detail by Deiwert and Rothmund [55]

A pictorial idea of a genera/body configuration in physical space, together with how

this is mapped into computational space and showing the various blocks boundaries,

is presented in Figure 2.1. Pencik of data are formed by storing sequentially the

blocks in the given sweep directionwhile keeping the pencil base restrictedto one

block dimension in the other coordinates. Incidentally,this is a good point to

mention that the code prima_y used (as the flow solver)in thiswork evolved from

a steady state version of the ARC3D code that the authors of Reference [ 55] had

optimized to run on a CDC Cyber 206 computer. The code is highly vectorized

and m_kes extensive use of random, or asynchronous, I/O in order to improve its

eEiciency for a problem that is definitely not core contained.

The computational mesh for all the cases considered in this work was generated

using algebraic methods, since for the regular geometries typical of launch vehicle

configurations these methods are able to provide sufficiently good grids and they

are very simple to us_ It is important to realize that, since the goal is to perform

aeroelnstic analyses, the body will be deforming as the solution proceeds. This

means that some form of grid reshaping is necessary in order to account for this

deformation. "In the present approach, the complete grid is regenerated st every

time step (when performing aeroelasticcalculations),which isanother reason why

itis important to use algebraic grid generation methods which are very fast.Ifone

decides to analyze more complex geometries, say a vehicle with strap-on boosters,

probably a more elaborated grid generation scheme should be adopted.

Both exponential and hyperbolic-tangent [ 56] grid stretching techniques are used

where necessary to cluster grid points in the regions of higher flow gra_lients. One
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(a) Physicalspace.

(b) Computational space.

Figure 2.1: General body conf_tn-ationillustratingthe pencil(and block)data
structureformat.
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obvious instance where such clust_ng must occur is close to the body in the normal

direction, since we need s very re_ned grid in order to capture the viscous e/_ects.

Other situations where clusterin s is necessary may include regions where shocks

are expected to occur, or regions of rapid expansion, for instance, where the body

may have the sharp comers [57] typical of boatta_ and/]ares. A final note with

regard to grid clustering is that, despite the fact the viscous terms are kept in

all three coordinate directions in the present formulation, the approach used here

should still be considered within the scope of the thin layer approximation to the

Reynolds-Averaged Nsvier-Stokss equations [58]. This is becsuse the grids used are

too coarse in the longitudinal and circumferential directions to capture completely

the viscous effects in these directions.
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Chapter 3

Aeroelastic Formulation

3.1 Equations of Motion

The structural-dynamic equations for the vehicle are developed by considering free-

free flexural vibrstion of an elongated beam with variable properties. They are cast

in modal form. It is assumed that the angle of attack remains low enough that no

lateral forces will appear, and so bending in on]y one plane has to be considered.

The formulation developed is quite general, even allowing for rigid body degrees

of freedom, although in the applications presented here the rigid body degrees of

freedom were assumed to be constrained.

The equations of motion for a general beam in planar vibration can be found in

the extensive literature (see, for instance, References [ 59] -[ 62] . In terms of eng/-

neel'ing beam theory several degrees of approximation exist from which a selection

must be made. For the spproach sdopted here, it is not particularly important to

go over sll the exact details of the derivation of these equations, since we will sim-

ply assume that mode shapes and natural frequencies of free vibration are available

to us. The modes could have been obtained either from structural-dynamic tests

or from some dynamic Rn;te element structural analysis of the vehicle. Moreover,

we will not discuss the issue of how structural damping is introduced into the for-

initiation but simply take it as a given quantity, obtained either from experiment

or some theoretical model. Finally, it should be clear that, although the overall
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aeroelastic formulation is nonlinear (as we hope to demonstrate throughout this cle-

velopment), the strictly structural-dynamic formulation is ]iuear and the principle

of superpoeition can be app}ied.

For the sake of completeness, and to clarify the dimensions of the quantities

involved here, the equation of motion for a beam in fl_ vibration is presented.

When the e/_ects of shear and rotary inertia are neglected,

where 6(z, t) ;_ the tots/lateral de_ection of the centerline of the beam, re(z) is the

mass per unit of length, EI(z) is the bending stillness, and F,(z, t) is the lateral

external load applied to the b.e&m (units of force per unit of length). Again, it is

very important to stress that the equation above is merely an example of what a

very simplified equation of motion for lateral vibration of an elongated beam might

look like. As mentioned by Bispllnghot_" and Ashley [60], "shear, rotary inertia, and

several other e/_ects are automatically accounted for" when a modal superposition

solution technique is used.

The tots/deflection 6(x, t) at a_y station along the body can be expressed [59],

using a modal approach, as

Oo

6(=,t) = q,Ct) (3.1}
dml

where q_ (t) are the generalized normal coordinates and _i (z) are the normal modes.

To be consistent with the aerodynamic formulation, we will mume that 6(z, t) and

q_(t) have been nondimensions/ized with respect to the same reference length to

used for the aerodynamic equations. It should be mentioned that the use of a

modal approach smmmes that the structure and the frequencies of interest are such

that disturbances are felt s/most instantaneously throughout the structure. In other

words, problems with trave]lh_ structural waves, which are common in very large

space structures, are of no concern for the vehicles considered here. It is also clear

that in actual application only a finite number of modes k considered. In other
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words Eq. 3.1 should be more properly written as

N

where N represents the number of modes employed in the analysis.

Since the normal coordinates are not coupled either elastically or inertiaUy, the

equation of motion for the i-th cooordinate can be written as

t_rd [_,(t) + 2¢,_d_,(t) -I- _-'_q,(t)] ----PdCt) (3.2)

Here the quantities have already been nondhnensionalized, and the dots indicate

derivatives with respect to (nondimensional) time. The nondimensional natural

frequencies, _'_, are defined by

_Ioo

where _ is the natural fz_..e-free bending frequency in the i-th mode, f.0 is the refer-

ence length used for nondimension,_Li_tion of the aerodynamic equstions, and a_o is

the freestream speed of sound. It is interesting to point out that the nondimensional

frequency above is not the same as the so-ca_ed red_u:ed _'e_tlency [59'80'63], which

is a parameter usually seen in aeroelastic or unsteady aerodynamic applications.

However, since that reduced frequency, k, is usually defined as

they are related by

The non_,4;m._.ional generalized masses, m',, can be obtained from the actual vehicle

mass distribution, re(z), from

,., =/o (3.4)
PooC6

where p_. is the _eestresm density and _ is the (notional) body length. If

the (dimension,d) generalized masses r_ are already known, ssy, _om experimental
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results,it k clear that the integrationdescribed above is not necessary,and the

nondimen_ionalJzation issimply obtained by

rh_

,r,= (3.5)

It is important to emphasize that in the present approach the natural frequencies,

the structuraldamping coe_cients (_,),the normal modes and the mass distribution

are considered input data. They are assumed to be known eitherfrom testsor any

other theoreticalanalysis.

The realdiRrerencein the present approach, when compared to classicalaeroe-

lasticanalysis,isassociated with the generalized aerodynamic forces,P,(t),which

in thiscase are calculated from

P,(t)= (3.6)

Here t(z,t) is the nondirectional running normal force acting on the vehicle,o5-

tained from suitable circumferentialintegrationsof the body pressure distribution.

Note that the d_me_ion61 counterpart to t(z,t) would have units of force per unit

of length, and also that since we are dealinK with small ankle of attack cases t(z,t)

is numerically very close to the running lifton the body. The important point is

that the true nonlinear character of the present analysis issomewhat/=_a_,leltin the

generalized a_odynamic forces,because the pressure distributionaround the body

isobtained from the numerical solution of the Navier-Stokes equations. Note that

P,(t) isidentifiedwith mode i,but has contributions of allmodes through _(z,t) .

In thisfashion alltransonic aerodynamic nonlinearitiesare captured by the method,

whereas the structural-dynamic formulation isstillkept very simple.

Some points _ the assumption that the an_le of attack remains small

should be further clm-i_. First, mad probably the most important r_mon why this

auumption is int_xiuced, is the fact that the kind of boosters we are most interested

in here are prevented from attaining large angles of attack because the loads on the

structure would be tremendous. Most such vehicles have some maximum ankle

of attack that, if exceeded, cause the launch to be aborted by the'destruct}on

of the vehicle. For the Saturn V , this maximum tolerable ankle of attack was
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appmxinmtely 4 degrees*. Second, there is nothi_ to indicate that the kind of

instability we a_e concerned with k & hi_-angle-of-attack phenomenon. Quite to

the contrary, since the major mechanism that drives the instability is associated

with lags in the aerodynamic forces due to the shock motion [64], its e_ect would

be more pronounced st very small an_es of attack where the streamwise location

of the shock can actually be forward in the leeward side (when compared to the

windward side) for a portion of the motion and backward for the rest of it. Another

important observation is that there is no conceptual di_qculty in extending the

present method to treat cases where asymmetric sepanttion_ or yaw an_e exists,

such that bending in both planes and twisting of the vehicle are to be considered.

Itisjust a matter of coding the necessary geometric considerations and introducing

the structural modes associated with the added desrees of freedom. As far as the

aerodynamic formulation isconcerned, it isvalid for any ansle of attack; its more

stringent limitation is associated with the turbulence model which ori_utlly was

derived for attached or mildly separated J]ows.

3.2 Solution of Aeroelastic Equations

Since the calculationof the flow solution at each time step, and so the evaluation

of _(t), ismuch more time consuming then the solution of the structural-dynamic

equations, some constraints are imposed on the numerical method that can be used

for the time intel_tion of Equation 3.2. The idea of transform_ the second

order equation into a Rrst order system as usually done in control theory may seem

attractive,but itk not very practicalin thiscase. For instance,any implicitmethod

or any pmdict_-corrector sequence, which would typicallyinvolve the evaluation

of the _rcing team at an instant of time ahead of the current time, would become

prohibitiveas far as computational time isconcerned with present computers. On

the other hand, the explicitELder method can be shown to be always unstable in

such situationsby a simple linearstabilityanalysis.

The procedure selected to advance Equation 3.2 in time consists of a stmirrht

finitedi@erencing of both the firstand second time derivatives,as also done by

" Ashley, H., personal communication, July 1987.
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Steger and Bailey [31], Guruswsmy and yang[65], and Borland and llizzetta [66].

Using second order sccurste formulas, we can spproximate those derivatives as

2

2_t

Here the subscript i refers to the mode considered and the subscript n refers to

the time level st which the quantity is ev_usted. With the shove formulas, the

expression for q_,,÷1 , i. e. , the seners/ized deflection of mode i st time n -t- I , is

given by

[2 - (_t)* Z;_] q,,,, - (1 - Llt¢i_,)qi,._l + (_t)' P,,.

where, for simplicity of notation, we hsve denoted _b_(t) = P,(t)/w_.

 3.7)

Linear stability analysis of the above scheme shows tl_t it is conditions_y stable.

However, this res//y poses no constraint in the time step size for seroe_tic anal-

ysis, because the va/ues of At required for the stability, and more importantly the

time-accuracy, of the serodymun/c equations s/one is much smaller than whatever

restrictions could be imposed by the conditional stability of the above scheme (for

values of natural frequency that would be of any concern for seroelMti¢ stability).

More on the stability properties of this Equation 3.7 scheme wiU be discussed in

the next section. The analysis s/so shows that for _ --. 0 the scheme is numerically

non-cUssipstive, which is of course the expected result since central diJFeronces are

being used. This is important to avoid hi4ing physicaUy unstable solutions because

of numerical dissipstion introduced by the method.

The ¢ou_ of the two sets of equations, the Y&vier-Stokes equations governing

the flow behsvi_ szxl the above described structurs/-dymunic equations governing

the oaci_ting _hicle behavior, is performed in the fotlowing wsy. At each time

step, the serodymum¢ equatiom are solved in s time-accurate fs4dxion, and their

solution provides the forcin_ terms for the seroelastlc s_s/ysis. These are weighted

int_ of the pressure distribution s/ong the body surface, as one can see _._m

Equation 3.6. Solution of the structurs/-<lynsmJc equations gives the new deformed
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shape of the body, as well as the body oscillating velocities, and therefore the

boundary conditions for the serodynan_c solution at the next thne step. By tracing

the growth or decay of a perturbed oscillation, the aeroelastic stability of a given

con_,umtion can be ascertained.

Note that once the response in terms of the generalized coordinate, q/s, is

calculated, the total deflection of the body centerline, 6(z, _), can be determined.

Since we are sssmning that body crcu-sections do not doform, this means that the

total deflection of the body surface is known, and the grid can be regenerated. The

solution process, u implemented here, recalcuk, tes the whole computational mesh

at every time step to account for the deformation and motion of the body. This

was done to provide greater generality to the method and enable it to treat not so

small deflections.

Finally, it should be stressed that, in the present implementation of the method,

the rigid body degrees of freedom were ass-reed to be somehow constrained, and

only the elastic ones were considered. There is no additional conceptual _culty

in including the rigid body modes in the current code. However, results by Woods

and Ericsson [4] seem to indicate that the inclusion of these modes is not critical for

determining the aeroe/aetic stability of a given vehicle, for the kinds of con_gurations

and phenomena dealt with in the present work.

3.3 Stability Considerations

In this section we intend to discuss further the numer/c.al stability of the scheme

implemented for the solution of the aeroelastic equations. The main objective here

is to mflmtantiste the claims made in the previous section regarding the stability

and accuracy of the algorithm. The techniques used in this analysis are the same

ones umml], y employed in the analysis of computations/fluid dynamics schemes and

are deicribed in detail by Lomax *. A linear stability analysis of the scheme

implemented for the solution of the aerodynamic equations, i. e., the compressible

Navier-Stokes equations, can be found in the literature (see for instance Refer-

ence [67] ) and will not be discussed here.

• Lomax,, H., Numerical Methods in Fluid Mechanics. Notes for course AA214A,
Dept. of Aeronautics and Astronautics, Stanford University, Autumn Quarter, 1983.
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The numerical algorithm being implemented here is given by Equation 3.7. Since

the generalized aerodynamic forces are a/orciag term ia this case, for stability anal-

ysis we should take jb_,,, __ 0. Considering q_,,,+l ffi _qi,., where _ is the sometimes

called 4mpli.f.:_tion/6e_r, and replacing this into Equation 3.7, one obtains

(2 - e,.,,- (1 -
ae . = .... (1 + (3.s)

Cancelling out the common term qi,_ and solving for _ we obtain

i

= 2(1 + &t¢,_,) (3.9)

The stability requirement is given by

lal 1 (3.10)

or, in words, the stability region is described by the circle of unit radius in the

complex ,T-plane.

A complete analysis of the above expression for _ is probably beyond the point

we want to make here. It is interesting to note that there _ essentially two

parameters that have to be considered, namely _D'_ and _. Since for most practical

applications the structural damping coetEcient is a small quantity, it is instructive

to study the limiting case when _ is zero. In this case the expression for the

amplification factor becomes

o'== 2
(3.11)

which shows that the scheme is numerically stable for L_JGT___ 2 for the case of

zero structund damping. Since the structural frequencies that would be of interest

are usually below 50 to 80 Hz, and also due to the fact that the nondimensional

frequencies s:¢_ refered to the speed of sound, it is safe to state that _ will,

at its largesL be a number around unity. However, this shows that the conditional

stability of the scheme poses no additional constraint on the time steps that could

possibly be taken, becattse the maximum time step required to ensure time-accuracy

of the aerodynamic equations alone is st least one order of magnitude, and quite
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possibly two orders of ma_tude, smaUer than the one determined by the above

condition. Moreover, the expression above shows that the modulus of o' is exactly

equal to I for all values of Z_t_7_ < 2, which means that the numerical scheme k

also non-dissipative _ .

In support of previous statements, we will consider now the other p<mibility

that has been su_ested before, i. e., to transform the second order equation into

a system of first order ones and then use the expficit Euler method for the time

march. We will show that th_ produces an unstable numerical algorithm. Rewriting

Equation 3.2 as a first order system produces

= v,(Oi,,(O= i'.(t) - t) - (3.12)

where we are essentially defining a new variable _'i 3 _, and the dot., indicate

derivatives with respect to nondhnensional time, as before. Using the explicit Euler

method, we can write

which then produces the fol/owing set of finite di_'erence equations

For stability sna/ysis, the forcing term is set to zero and we assume that qi, a+1 = _rq_,.

and _',._.l = Cv,... Writing the resulting equation in matrix form, we obtain

o ]/,)=0
The chamcterktic equation is obtained by setting the deter of the coe_Rcient

matrix to zero, which gives

(o'- 1)(o'- 1 + 2,_t(',_) - ,_t_:_"_=0

• Lomax., H., Numerical Methods in Fluid MechatliCS. Notes for course AA214A,

Dept. of Aeronautics and Astronautics. Stanford University, Autumn Quarter, 1983.
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If we consider again the limiting case of zero structural damping, the roots of the

above equation can be easily obtained as

which shows the method is always umtsble for any value of parameter /_t_, .

Numerical experiments support this theoretical result, indicating that in this c_e

the instability of the explicit Euler method is s very practical problem.
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Chapter 4

Study of Hemisphere-Cylinder

Cases

4.1 Introduction

The aerodynamic code being used in the present investigation evolved from a version

of the ARC3D code [411 that Deiwert and Rothrntmd [55] had rtmning on a CDC

Cyber 205 computer. The code ha4 been optimized for the Cyber 205 architecture,

but the formulation therein did not allow for general unsteady problems since it

was missing the metric terms associated with time derivatives. The first major

programming task undertaken here consisted of the introduction of the unsteady

terms into the aerodynamic equations. Before attempting any aeroelastic analysis or

even such complex coaFagurations as the hammerhead, it was important to check the

new code on some problem with a simpler geometry that would allow for validation

of the modilieatio_ introduced.

Due to the simplicity of the geometry, while still keeping the general launch

vehicle shape, a hemisphere-cylinder configuration was chosen to test the code.

Such a configuration is also attractive from the standpoint that experimental or

other computational results are available from the literature. The following sections

will describe the cases studied with such configuration, which include steady state

results for freestream Msch numbers of 0.5, 0:6, and 1.5 (all cases at zero angle of
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attack), as well as unsteady results for a rigid body pitching oscillation. It should

be noted that for these calculations the turbulence model was turned off, so that

they are [amin,,r computational results. Turbulent flow cases were run only for

the hammerhead payload conilgurations, which will be discussed in the subsequent

chapters.

4.2 Grid Generation

The body conforming computational mesh was generated using algebraic methods,

and the same mesh was used for all hemisphere-cylinder cases analyzed. Grid lines

run in the longitudinal, normal and circumferential directions, and 50, 40 and 20

grid points were used, respectively, in these directions. It should be pointed out

that this is a fairly coarse grid system, since again the point of these computations

was mainly to pinpoint any possible problems with the code before attempting any

aeroelastic solutions on more complex geometries.

A general three dimensional view of body and grid can be seen in Figure 4.1, and

details of typical _id planes, i. e. , longitudinal and crossbow planes, can be seen

in Figure 4.2. Mesh points in the normal direction are clustered near the body in

order to capture viscous effects, and a 25_ exponential grid stretching is used in this

direction. Over the hemispherical part of the body, grid lines in the longitudinal

direction are placed at equal angular increments, and over the cylindrical part dr'it,

these lines are equally spaced. The 50 points used in the longitudinal direction are

distributed such that 15 of them are over the hemispherical part of the body, and the

other 3,5 are located along the cylindrical section. Grid lines in the circumferential

direction are [_terated by rotating one longitudinal plane at equally spaced angles

around the body. Note that two circumferential planes are overlapped in order

to facilitate the enforcement of the boundary conditions when operating in this

direction.

The positive orientation of the circumferential direction is chosen such that a

right-handed system is obtained. In the present implementation of the code, this

means clockwise for an observer looking at the body from upstream. This is very

42



CHAPTER 4. STUDY OF HEI_ISPHERF_CYLINDER CASES

Figure 4.1: Gener_l three dimensional view of the hemisphere-cylinder grid.
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ORIGINAL PAGE IS

OF POOR QUALITY

(b) Crou_)w plane.

Figure 4.2: Details of hemisphere-cylinder typical grid planes.
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important to ensure ttutt anywhere on the body surface, or actually in the whole

Row_eld, the mathematical normal to any inf_tesimal region is positive pointing

outward. This becomes a crucial issue when computing particle traces with the

graphics post-processing programs used to obtain the flow visualizationfiguresthat

willbe presented below.

4.3 Steady State Results

As initial tests for the code, we started with subsonic _eestream cases. It is clear

that low subsonic cases should converge fasterto a steady state,because forward-

going signals would propapte faster. Howev_, one should be careful not to ap-

proach the incompressible limit. Essential/y the problem is that we are using a

compressible Navier-Stokes formulation, and the system of equations becomes ill-

behaved when the incompressible limit is approached because the energy equation

becomes redundant. Hence, for all the subsonic cases run here, care was exercised

to ensure that some compressibility effects were present and the above described nu-

merical problems avoided. Subsequently, one low supersonic case was run to verify

the capabilities of the code for supersonic problenm.

The first case run for the hemisphere-cylinder condition was at a Math num-

ber of 0.5, for zero angle of attack and a Reynolds number of 1.5 million based on the

cylindrical section diameter. Pressure coei]icient contours for the converged steady

state solution along two opposing longitudinal planes can be seen on Figure 4.3 .

Mach contours and density (nondimensionalized with respect to freestream) con-

tours are ako shown in the same figure. In this case it really does not matter whether

these mm side, or top, views of the body, because the solution is axisymmetric.

Since experimental results could not be found for thk case in the literature, the

present computations were compared to results obtained from another finite dillrer -

ence code, namely the F3D code [68' 53] generously made available to the present

author by Y'mg *. Both codes have a Navier-Stokes formulation, and the lam-

inar Row option was used. The F3D computations were performed on & Cray 2

supercomputer, but the grid system w_ essentially the same as that used for the

• Ying, S.X., personal communication, S_ptomber 1986.
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Fisure 4.3: Flow solution for hemisphere-cylinder at M'o. = 0.5 sad a = O".
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Figure 4.4: Pressure coefBcieat distribution on the body for hem_pher_cylinder at

M_ = 0.5,a = 0", and Reo = 1.5 x I06 .

Cyber computation, in order to make the two calculation, comparable. Plots of

the pressure coefficient distribution, on the body for the two computation, are pre-

seated on Figure 4.4. As can be see_ from this f_ure, the two computation, show

good s@'eemeat. The results from the F3D code indicate a j%Jtel" expansion over

the hemispherical part of the body, and also predict a slightly hi_,her magnitude

for the neEstive peak Cp around the hemkphere-cylinder intersection. Both com-

putatio_ show this ne_tive peak on the pressure co_ient occur_ ahead of the

hen_isphere-cylh_ier intersection. The F3D rema/ts also seem to return faster to

the freestresm pressure value over the cylindrical section of the body. Also shown

on Figure 4.4 is the value of the pressure ¢_ent at the nose stagnation point

as predicted by isentropic relation, [37]. These relation, predict Cp = 1.06 at the

stagnation point, and both calculation, sgree well with that value.

The next hemisphere-cylinder case studied involved a illght Math number M_o =
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0.6, zero angle of attack, and the Reynolds number Re = 490000 based on the

reference diameter. The Reynolds number in this case was chosen to match the

experimental results presented by Hsieh [69' 70] whose wind tunnel static pressure

distributions for a hemisphere-cylinder are in the Mach number range of interest

for this work and therefore were used for these benchmark computations. Com-

putational values of pressure coe_cient, Mach number, and density contours for

this ca_e are shown in Figure 4.5 . It can be seen fron_ Figure 4.6 , which shows

pressure coefRcient distributions on the body for both the present computation and

experiment [69] , that the computed results agree well with the experimental ones.

The only region along the body where the computations seem to have some dif-

ficulty in following the experiment is on the recompression side of the expansion

region around the henfispher-cylinder intersection. However, it is well known that

expansion regions are particularly dii_cult to predict accurately. Considering that

this is such a coarse grid system it is fair to say that the code is doing a good job

in this case. It should also be noted that the negative peak Cp is being very well

predicted, both in strength and location.

Finally, it is important to point out that this a fully subsonic flow, in other

words, there are no supersonic pockets in it. Although the ulthn_te objective of

this work is to investigate transonic flows, it was felt that the grid system was too

coarse to try to capture transonic shocks and all the possible complexity associ-

ated with them, such as shock-boundary layer interactions and flow separation due

to those interactions. For this reason, no transonic cases were analyzed for the

hemisphere-cylinder configuration, and instead a low supersonic case is considered

next. Transonic flow examples were studied for the hammerhead configurations, in

which case much more refined grids were crested.

Computational results for m, freestream Mach number M'_. -- 1.S case can be

seen in Figure 4._. In this example the Reynolds number was 1.386 million, based

on the reference diameter, and _ zero angle of attack was considered. A plot

of th,' bow shock location, calculated based on pressure gradient results, is shown

in Figure 4.8 . It should be pointed out that in Figure 4.8(b) we actua//y have

a complete shock surface. It was plotted only as lines in order to let the body
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(a) Pressure co_Ecient contours.

i | i

(c) Density contours.

Figur_ 4.5: Computed flow soluuon for hemisphere-cylinder at ._/'_ - 0.6, a -- 0°,
and P_o = 490000.

49



CHAPTER 4. STUDY OF ltEMISPHERF,-CYLI_DER CASES

2.$

1.0

A

0.0

.0

-]..S I

0

s_ . | I k

0 l 1 3 • S

Figure 4.6: Premum coefficient distribution on hemi_here_ytinder st M= = 0.6

and zero snide of sttaek.

ORIGINAL PAGE IS

OF. POOR QUALITY

5O



CHAPTER 4. STUDY OF HEAHSPHERE.CYLINDER CASES

ORIGINAL PAGE iS

OF POOR QUALITY

) z
i!!/! ",_. / _-_'_ "_

. , ) /,,..._,, . '. I'Y I/

"" _" " "0oo".,_-M._o=_,o=' '" '" _"_"o" <o"=.",.=,, o,o '"
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and ReD = 1.386 x 106 .
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(a) 2-D view.
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Figure 4.8: Shock location bued on pressure gra_ent for hemi_here-cylinder at
M_ - 1.5 and a -- O* .
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also be seen behind the shock. The shock standoff distance can be calculated as

-0.57 , nondimensionalJzed with respect to the radius of the cylindrical section.

This result compares well with the value of -0.60 for the shock standoff distance

for a hemisphere-cylinder obtained from shadowgraphs, presented in Reference [6 91.

It is clear, however, from the contour plots in Figure 4.7 that the computations are

not capturing such a crisp, well-defined shock as Figure 4.8 suggests. The most

obvious reason for this failure is the coarseness of the grid. But the main point

we intend to demonstrate with these results, namely, that the code is capable of

performing well for supersonic freestream conditions, is still valid. The results are

in the correct range despite the fact we have used a coarse grid.

Although the steady state cases studied for the hemisphere-cylinder configura-

tion cannot be considered extremely difficult problems for many existing computa-

tional fluid dynamics codes, the results shown provided enough confidence in the

present code that we moved on to more complex examples. The steady state so-

lution described above for a freestream Mach number M'_ - 0.6 was used as the

initial solution for the study of a forced unsteady case, which will be described next.

4.4 Pitching Oscillations

As a first actual unsteady test of the code, the hemisphere-cylinder vehicle was

subjected to a rigid body sinusoidal pitch oscillation in a flow with M'_ = 0.6. The

nondimensional frequency of the oscillation was taken as 0.4, and the half-amplitude

angle of the oscillation was 8o = 5 ° . The pitch axis was considered to be at the

computational downstream boundary, which in this case is about I0 body diameters

from the n_e'. The steady state solution previously obtained at this Mach number

was used as initial condition for the unsteady calculation as previously mentioned.

It should be pointed out that the frequency of the oscillation is rather large,

perhaps two to four times larger what one should realistically expect to find in flight.

Since experir-_.:atal, or computational, results could not be found in the literature

for the type of oscillatory motion we were interested in, regardless of the value of

frequency considered, the high value of dimensionless frequency was chosen mainly

53



CHAPTER 4. STUDY OF HE_SPHERE-CYLI_DER CASES

i
o s tt is. 18 Is 11o

tim

Figure 4.9: Angular amplitude of centerline deflection for forced sinusoidal pitching

os¢ill_tion.

to allow for a futer computational turnaround time. The reade: should observe

that, for the cases considered here, the m--_ml,m allowable time step w_ completely

determined by the aerodynanncs. The body motion, however, k determined by the

product _Tz_ . It is important to note that, despite the coarse grid being used,

the computational cmts of these unsteady calculations is not ne_gible. Since the

idea behind these computaticm wu primarily one of checking on the code, a higher

frequency would still allow for some qualitative study of the performance of the

code, while per_tthllS & f_lter turnaround.

The angular deflection of the body centerline, vemms time, is shown in Fig-

ure 4.9. Time h_ories ¢_ the _ normal force, i. e., the normal force per unit

of axial lengtli for two axial stations along the body, can be seen in Figure 4.10.

It is important to paint out that the "time" on both fqgures is the nondimensional

time. The distribution of the running normal force along the body is shown in

Figure 4.11 for several instants of time during the mcillation. Unfortunately no

experimental or computational results could be found to compare with the present

calculations, but they seem to produce the kind of behavior that could be expected

for this forced oscillation.
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! ;

Figure 4.10: Unsteady aerodynamic |oad on a hennbphere_yllnder undergoing a

sinusoidad pitching mcilhttion with _ - 0.4 (M_ -- 0.6, a -- O°, Oo = So).
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From Figures 4.10 and 4.11 one can see that the unsteady aerodynamic loads

on the body lag the motion with a phase shift of almost 90 °, and that the influence

of the freestream angle of attack at any iv,,tant along the oscillation is very small

in determining the total load at that time instant. For example, from Figure 4.11

we can see that at 8 = 0 ° in the downward stroke the load is close to its maximum

value, and at the _top" of the oscillation, 0 = 5°, the load is actually very small. In

other words, the loads in phase with the angular displacement are small compared

to the ones induced by body oscillating velocities. Figure 4.10 also shows that the

phase lag decreases as we move from the forebody to the aft portion of the body,

as one might expect since the pitch axis is located at the downstream boundary.

The reason for such a large phase lag in the aerodynamic forces, when compared

to the body motion, is easy to understand in the light of the very high value of

nondimensional frequency. Actually, in this case, the velocities induced by the

motion on the forebody are comparable to freestream velocities. Since we start

with a steady flow at time zero, we expect that the flow field will settle down

to its steady-state, simple harmonic limiting behavior after some time. The high

frequency also explains why these initial transients die out quickly in this case,

which can be seen from Figure 4.12 , where the running normal force distribution

along the body is shown for the same pitch angle position at two different cycles of

the oscillation. The curves almost coincide, indicating that after only a half-cycle

of osciUation the initial transients have already died out.

In summary, for such a heavily forced oscillation, one should expect to see the

aerodynamic loads being determined primarily by the motion itself, and the present

computations indeed display this feature. Although the unsteady computations

could not be-validated against any experimental results, the correct expected be-

havior k reproduced by the present calculations. The main objective of the analysis

of the hemisphere-cylinder conf_xu'ations can be considered as accomplished. In

the following sections we will turn our attention to the primary focus of the present

work, which is to apply the unsteady aerodynamic formulation to the analysis of

aeroelastic problems in the transonic flight regime.

57



CHAPTER 4. STUDY OF HE_SPHERF_-CYLINDER CASES

1.4

1.0

.6

"t .4
i

i i
I
I.0

O. 2. 4. 16.

Figure 4.12: Unstesdy aerodynamic load distribution on a pitching hemi-

sphert_ylindcr at # = O" (downward motion) for the 18t and 2nd cycles of ce-
cillation.
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Chapter 5

A General Hammerhead Payload

Problem

5.1 Preliminary Remarks

The ¢on_gumtion under consideration in this section does not attempt to reproduce

the geometry of any particular vehicle, but it has all the major characteristics one is

Likely to encounter in a hammerhead payload. For instance, it has a blunt nose and

the payload diameter is larger than the adjacent boosting stage (which implies the

existence of some form of boattail on the forebody). There is a tia_e region which is

bound to produce s good portion of the normal force on the vehicle for small angles

of attack and that can possibly be subjected to large unsteady forces due to flow

separation in the boattail region.

It is clear that the study of a configuration which does not correspond to any ex-

istin|_ vehicle _ake$ it di_cult to compare or validate whatever results are obtained.

For aeroekstic analysis the problem is compounded, because not only external ge-

ometrical similarity is necessary but also mass and sti_me_ similarity would he

required in order to compare any results correctly. However, at this point in the

course of the research, we had not found ac*',_ data for an existing vehicle in the

Literature. We considered that it was worthwhile to exercise the method just to

show what might be possible after more realistic data could be obtained.
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5.2 The Grid System

The computational mesh about the chosen hammerhead payload was also gener-

ated by algebraic methods. The grid has 106 points in the longitudinal direction,

66 points in the norms/(actually nearly normal) direction, and 38 points in the cir-

cumferential direction. Once a longitudinal plane of the grid is generated, this plane

is rotated through 360 ° to create the full three dimensions/&,rid. The ?-direction

in this case is being called nearly normal because, in the 5oattail and flare regions

of the grid, the ?-lines do not intercept the body surface at 90" angles.

A general three dimensional view of the 5ody and the grid is shown in Fig-

ure 5.1 . A typical longitudinal plane of the grid can be seen in Figure 5.2(a) ,

and details of the forebody and flare regions are shown in Figures 5.2(b) and (c) .

The latter illustrates the ?-Lines not intercepting the body surf_e at right angles

in the boattail and flare regions. This is not the ideal way of creating a computa-

tional mesh, since in principle we want the ,,oem_/coordinate Lines indeed coming

in normal to the body. A small numerical error is expected due to the fact that

this is not precisely true. However, numerical computations of bosttail flowfields by

Deiwert [57] indicate that this does not cause enough numerical problems to justify

a more elaborate _-id generation scheme, if the boattail (or flare) does not have

a very steep slope. Moreover, when performing aeroelastic analyses, the grid will

deform as _he computation proceeds, and it can be very di_cult to ensure that ?

&,rid Lines do not cross over each other if the grid generation scheme gets to be too

complex.

Since true transonic solutions are attempted, it is important in this case to have

a better clustering of the grid points along the body (in the longitudinal direction)

in regions where high gradients are Likely to occur. For this reason, one parameter

hyperbolic tsng_t grid stretching [56] is used to cluster the grid points around

the hemisphere-forebody cylinder and the flare-afterbody cylinder intersections. In

order to improve the resolution on the up,stream centerline region, one-parameter

hyperbolic tangent grid stretching is also used to cluster grid points around the

up, stream centerline. To avoid waJtin9 grid points on the downstream part of the

6o



ORIGINAL PAGE IS

OF. POOR QUALITY

CHAPTER 5. A GENERAL HAMMER.HEAD PAYLOAD PROBLEM

Figure 5.1: Three dimensional view of general hammerhead payload ¢onfl_u-_tion
grid system.
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Figure 5.2: Typical longitudinal grid plane for hammerhead payload.
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afterbody cylinder, where not much is happening, a 8.5% exponential stretching is

used to increase the grid spacing towards the downstream boundary. In the normal,

or nearly normal, direction a 16% exponential _d stretching is used everywhere in

order to cluster _rid points near the body for capturing viscous e_ects.

5.3 Initial Aerodynamic Solution

As previously explained, before the structural-dynamic equations are turned on,

an initial aerodynamic solution must be obtained at the desired _ight condition

under the assumption that the body is rigid. This is done by initializing all the flow

variables with f_eestream conditions, imposing the appropriate boundary conditions

for the problem, and then letting the aerodynamic solver march the solution in time

until some steady state condition is achieved. An important caution, however, is

that one should be aware that, for these transonic freestream conditions, a true

J_e4_/_ s_e condition is not necessarily obtained. It is possible that the aerodynamic

solution by itself is unsteady. In these cases what is being searched for in this initial

phase is is a correct possible solution for the flow_eld around the body at that

particular _ght condition.

For the examples considered here, however, true steady state solutions were

obtained in this initial phase. The steady state flow solution was calculated over

tt_ geometry for a freestream Mach number ._f_ = 0.85, an angle of attack a = 6°,

and the Reynolds number Re -- 1.26 × l0 s (based on the diameter). The flow, or

rather the boundary layer, was considered turbulent, i. e. , the turbulence model

wasturned on. Pre_ure coefllcient contours, Mach number contours and density

contours for leeside and windside are shown on Figure 5.3_ where essentially we are

looking at a side view of the body. The expected flowfield features are reproduced

by the c6mputation. For instance, the expansion regions around the hem_phere-

forebody cylinder intersection and around the flare-afterbody cylinder intersection

are clearly shown on the figures. A mild expansi-u around the forebody cylinder-

boattail intersection can be seen, and the compression region on the face of the

flare, mainly on the windside, is also very well defined.
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(b)Mach number contours. (c) Density contours.

Fisure 5.3: Flow solution about a hammerhesd Keometry at M_ = 0.85 , constant
a -- 6" and ReD = 1.26 x 106 (side view).
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All these features are even more apparent from Figure 5.4, which shows leeside

and windside pressure coefficient distributions on the body. As mentioned, these

pressure distributions seem to have all the characteristics that would be expected,

except that a more clearly dellned shock was expected to be seen on the leeside of

the forebody. Although we do not have experimental data with which to compare

these pressure coefBcient distributions, it is worth noting that_the magnitudes of

the negative peak C'p on the hemisphere-forebody cylinder intersection are in the

correct range for this flight condition.

An interesting point that was discussed previously concerning the downstream

boundary conditions can be clearly understood from Figure 5.4. One can see that,

on the afterbody cylinder, the pressure coefBcient has a constant value different

from zero for a good portion of this body section; it then smoothly drops to zero

at the downstream boundary. Of course, there is no surpr_e that C'p is zero at

the downstream boundary, because we are enforcing that as boundary condition.

However, the existence of a fiat region in the Cp distribution ahead of the down-

stream boundary evidences that there is an error in the boundary condition. If the

computational domain is extended further downstream, perhaps with the inclusion

of a body base, the flow would converge to a nonzero value of pressure coefIicient

at the body location where the botmdary condition is currently being enforced. On

the other hand, the existence of this fiat region is also an assurance that whatever

errors are being produced at the downstream boundary are not propagating far

enough upstream in order to influence the region of real interest in this case, which

is mainly the forebody.

It should be clear that the amount of data generated in these three dimensional

computational solutions is very large. The study of scalar flow variable contours

may prove inadequate to understand what is really happening. To this end, particle

traces are very useful. In particular, particle traces restricted to the first computa-

tional q-plane away from the body amount to computer generated oil.flow pictures

and are almc6t indispensable to understand the topology of the flow. It sho, dd be

pointed out that the latter can also be interpreted as plots of the skin-friction lines

on the body. We shall not go into any detailed discussion of these flow topologies,
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Figune 5.4: Pressure coefficient distribution along the body for a hammerhead pay-
load at Mo. ffi 0.85, a ffi 6" and Rev ffi 1.26 × 10e
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except to point out linesof separation and/or reattaclunent which willhelp us un-

derstand the solutions that are being obtained. The reader interested in detailed

discussions of topological flow structures isrefered, for example, to the works of

D,dlm_..[71, 72], Kaynak, Hoist and Cantwell[73], and Deiwert [74l

Figure 5.5 shows these computer generated oil-flow pictures for this conlqguration

at the converged steady state solution. One can clearly identify a separation region

on the cylindrica/forebody right after the hemisphere-cylinder intersection, and a

node of separation can be seen on the lee generator just behind this intersection.

There is another separation line on the boattail, which indicates that even the

winclside experiences some flow separation in that region. The line of reattachment

aft of the boattail is also clearly defined in the figures. All those cases can be

considered mild separations, in the sense that the re&dons of reversed flow are rather

limited. Fi_tres 5.6(a) and 5.6(b) show velocity profiles for the leeside in the regions

of separation on the forebody cylinder and boattail, respectively. The reversed flow

directions are apparent, indicating the backflow condition in the separation regions.

The convergence to steady state was rather slow, which is expected for a tran-

sonic flow condition. To achieve convergence, 4009 time steps (iterations) were

needed. It should be mentioned that, for the 105 × 66 x 38 grid being used, each

iteration takes approximately 10 CPU seconds in a CDC Cyber 205 computer. The

overall system time, however, is a little higher than what would be estimated from

this ft_tre, because the database is not core contained. Data must be shifted back

and forth from disk. As explained before, the database is structured in a pencil

format, and the metrics of the trax_ormation are what is kept in outside disk files.

When _perating in a particular direction, the metrics for that direction must be

read in from those files. Due to the use of asynchronous I/O, this can be done with-

out de_di_ very much the performance of the code for steady state problems. In

the pres_.t example, the CPU time represented approximately 60_ of the overall

system time.

67



CHAPTER 5. A GENERAL HAM'AfERtIEAD PAYLOAD PROBLEM

(a) Side view.

(b) Top view.

Figure 5.5: Computer generated oil-t]ow lines for general hammerhead payload at

M_ = 0.85 sad a = 6".
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Figure 5.6: Velocity prc_es on the lemide in the rqicms d _w eepsrsticm (side
view).
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5.4 Aeroelastic Analysis

The steady state aerodynamic solution described in Section 5.3 will be used as

the starting flow for the aeroeIastic cases studied here. Since this solution was

calculated for a rigid vehicle, the _irloads are not the correct actual loads at a

deformed equilibrium position for the elastic vehicle. This fact provides a way of

introducing the ini_i_l peeturb4tion to start the csciI]ation, which will be adopted

in the present work for all cases where the freestream angle of attack is different

from zero.

The structural information necessary for the present analysis consists of some

normal mode shapes and their corresponding natural frequencies, the structural

damping coef_cients associated with each mode, and the vehicle mass distribution or

the generalized masses associated with each mode. As previously discussed, we have

no actual data for an existing vehicle that match_ this conilguration. Therefore,

the approach followed consisted of estimating the necessary properties from what

could be gathered from the literature. For instance, three structural modes were

employed in this case, and the chosen mode shapes resemble those presented by

Woods and Ericsson [4]

The theoretical analysis of the numerical stability of the scheme selected for the

solution of the aeroelastic equations showed that the scheme is numerically nondis-

sipative. This is a very important issue, because we want to make sure that the

numerical scheme is not 8teb//iz/_tg physically unstable seroelastic solutions due to

numerical dissipation introduced by the method. The fi_st example here undertakes

to address this problem. Essentially, we want to demonstrate numerically what the

linear stability analysis already predicted, i. e. , that the numerical method is not

introducing say numerical dissipation (or instability) and that a pure sinusoidal re-

sponse can be captured. In this first case run, therefore, all the structural damping

coe_ilcients were set to zero, sad a very small value of dynamic pressure was con-

sidered. The small dynamic pressure is chosen so a.s to _ze the damping effect

of the sirstream. The response, in terms of the generalized modal displacements in

the second and third modes, is shown in Figure 5.7 . The results indeed confirm
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Figure 5.7: Response for zero structural damping and very low flight dynamic

pressure.
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what was expected, since an undamped response is obtained. Although this was the

anticipated result, it is important to see that all the complex algorithms developed

are able to reproduce such a simple phenomenon.

The other cases analyzed considered more realistic values of dynamic pressure

and also some nonzero values of the structural damping coeffcients. The proce-

dure followed was to keep the _ght Mach number and the angle of attack con-

stants, and vary the dynamic pressure. The structural parameters were, of course,

kept constant. For instance the values of structural damping cocd_cient used were

_1 = 0.0010 , _2 = 0.0018 and _3 = 0.0036, for the ftrst, second and third modes, re-

spectively. A typical vehicle response for an intermediate value of dynamic pressure

can be seen in Figure 5.8 , which shows the response in each of the three gener-

alized coordinates. By comparing the magnitudes of the responses for the three

modes, it is clear that the overall vehicle response is dominated by the Rrst mode

displacements. Figure 5.9 makes this point even more clearly by showing the total

deflection at the nose of the vehicle, which can be seen to be composed of the lust

mode deflection plus a small higher frequency influence.

The usual way in which the influence of the airstream is determined consists of

calculating the damping coeffcient for the run with the "air on," in other words,

for dyna_c pressure dii_'erent from zero, and comparing the rate of decay of the

motion with the pure structural damping c_cient. If the former is smaller than

the latter, we have a situation where the presence of the flow is destabilizing. Of

course, in order to obtain an unstable condition this in_uence must be large enough

to overpower the structural damping and cause the amplification of initial pertur-

bations. As one can see from Figure 5.8, the response in all three modes is damped

in this case. The response on the ilrst mode is only slightly damped, the second

mode shows a little faster decay, and the third mode decays the fastest. A closer

analysis of the damping coefficient reveals that, in this example, the fn'st and sec-

ond modes are rendered even more stable by the airstream. On the other hand, the

damping coefficient for the third mode, at the present dynamic pressure hvel, is a

bit smaUer than the structural damping G - 0.0036. One therefore cncludes that

the freestream is feeding energy into that mode's oscillation.
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Figure 5.8: Modal response of a gen=_-al hammerhead con_glu_tlon at M_ -- 0.85 ,

ffi 6° , _nd intermediate value of dynamic pressure.
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Figure 5.9: Total elastic deflection at the vehicle nose.

Despite the fact that these are time domain analyses, the results are beet sum-

marized by a root locus plot, which is shown in Figure 5.10. In this plot the arrows

indicate the direction of increasing dynamic pressure, which was the parameter var-

ied in the analysis. The abscissa is the real part of the aeroelastic root, which is a

measure of the rate _f the decay of the oscillation in each mode, formed by the prod-

uct of the damping coetru:ient at that particular dynamic pressure times the natural

frequency for that mode. The ordinate is the imaginary part of the aeroelastic root,

which is the frequency of the response of that mode at the dynamic pressure consid-

ered. Although one should note that the scales on the two axes are very d_erent,

it can be seen from the plot that the frequencies remain approximately unchanged

throughout the whole range of dynamic pressures considered.

All the cMa analyzed for this h,Lmm,.rhead shape were _tical/y stable,

although all the modes showed an initial tendency of going towards the unstable

side for very small values of dynamic pressure. This tendency was quickly reversed

as the dynamic pressure was increased further, such that it was hard to detect

any of this behavior from the time plot for the first and second modes. For the

third mode, however, the reversal of damping at low freestremn dynamic pressure
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is clearly visible from Figure 5.10 . After this initial trend was passed, what we

will call a pure dampin9 behavior, for the lack of a better description, was observed.

It is characterized by a simple increase of the damping in each mode as the flight

dynamic pressure is raised. The frequencies remain approximately unchanged. This

is not typical aeroelastic behavior for conventional flight vehicle conflguratiom with

wings and tails. However, it should be noted that the natural frequencies considered

for this analysis are quite high, which means that we axe probably assigning stiffness

values that are higher than they shonld be and explains why no flutter is observed.

Moreover, as already mentioned, this coneguration does not correspond to any

existing vehicle. It is, therefore, very di_cult to try to correlate these results with

some expected behavior.

Finally, the issue of the computational costs of these aeroelastic solutions should

be considered. For the 105 x 66 x 38 grid which was used here, each aeroelastic iter-

ation takes about 12 CPU seconds in a CDC Cyber 205. This represents an increue

of 20% over the CPU time per iteration for steady state aerodynamic calculations.

Ahaxost all the additional time is spent in regenerating the computatiomd grid once

a new body deflected position is determined from the solution of the structural-

dynamic equations.

One does not necessarily have to regenerate the complete grid at every time step,

but some form of reshaping is required in order to account for the deformation of

the body. Some authors, see for instance Steger and Bailey [31], prefer to use some

form of shearing transformations to account for the grid deformation, and avoid

solving the grid generation equations at every time step. In the present approach,

since an algebraic grid generation scheme is being used, we regenerate the whole

grid. The grid points on the body surface keep their relative position with respect to

the body centerllne at every axial station, and the far field boundary is kept fixed.

The remainder of the grid, which is all the interior part of the grid, is interpolated

between those ends using the same algorithm that initially created the whole grid.

Note that the structural-dymunic equations are solving for the deformation of the

body centerline, which means that most of the grid displacement is going to occur

• close to the body. This is consistent with what is physically happening, in the sense
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that the body motion should cause perturbations close to itself and the far field

should remain undisturbed.

The amount of time consumed by the solution of the structural-dynamic equa-

tions is truly negligible when compared to the overall CPU time. The point that

should be considered, though, is that modal analysis is being used. As previously

mentioned, this is a very powerful technique since a whole range of effects can be

considered. However, one may want to replace the modal superposition approach

by, for example, a finite element representation of the vehicle. In such a case, the

amount of time required for the structural-dynamic solution is bound to increase

considerably.

The overall system time per iteration for aeroelastic analysis, however, suffers

much more than the CPU time when compared to a pure steady state aerodynamic

solution. As discussed in the previous section, the major difficulty arises from

the fact that the database is not core contained. In this case, since the grid is

recalculated at every iteration, so are the metrics of the transformation. Essentially

we are doubling the amount of I/O per iteration, since now we have to output

the metrics as they are calculated and then read them back as we operate in each

direction. Although asynchronous I/O is still being used, the performance of the

code is lowered, and in this case the ratio of CPU time to overall system time is only

around 30%. This means that, 70% of the time the job is running, it is simply doing

input/output. Of course, those kinds of statistics are very machine dependent, and

all of this is true for the CDC Cyber 205 . Ideally, one would like to avoid all

this I/O. For the size of problem we are dealing with here this could certainly be

accomplished by using a computer such as the Cray 2. Nevertheless, all the effort

spent in making the algorithm suitable even for "smaller" computers is important,

because shows that the method could be used even by those without access to a

system of the size of the Cray 2.
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Chapter 6

Analysis of an Atlas-Able IV

Configuration

6.1 Initial Considerations

As previously mentioned, in the early 1960's some aeroelastic problems were ob-

served on launch vehicles with hammerhead payload configurations when passing

throush the transonic regime. One of those co_tions was the Atlas-Able IV,

in which case the problen_ observed in flight were later traced back to something

resembling flutter. The mechanism driving the instability was associated with the

lags in the aerodynamic forces caused by phenomena induced by the hammerhead,

which would cause the airstr_m to do positive work on the oscillating vehicle.

The ideal case to study here would be one where both steady aerodynamic data

and detailed aeroelastic results were available. Unfortunately, this is certainly a

difficult combination to find in the literature. At the time, the Atlas-Able IV con-

figuration repreeamted the best test case we could find, despite the fact that aeroe-

lastic information is somewhat limited. Geometrical data for this con_guration are

available, at least in nondimensional form * , and steady aerodynamic pressure

distributions from wind tunnel tests are also published [75] The structural data,

however, are rather sketchy because part of this information is still classified*.

" Ericsson, L.E., personal communication, April 1987.
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For instance, exact values for frequencies, structural damping coe_cients, and ve-

hicle mass distribution were not accessible from the same sources that provided

geometrical and steady aerodynamic data.

In the present work, the approximate range of frequencies to be considered, the

approximate form of mode shapes, and an estimate of rmsonable structural damping

coefficients were obtained from Woods and Ericsson [41, and Ericsson *. The mass

distribution was estimated from data available for Atlas boosters and provided by

Gen. Dynamics. Steady aerodylmmic wind tunnel data, which was used to validate

the initial aerodynamic solution, was available from Graham and Butler [75] .

Other steady and unsteady aerodynamic data were found in the literature for

similar hammerhead con6gurations. For instance, Coe [76] presents the steady and

unsteady aerodynamic pressures on an Able V payload model, and Robinson et

a/. [77] study the dynamic response of some hammerhead models to unsteady aerody-

namic loading. However, the Atlas-Able IV data still constitute the best information

and allow for a better comparison of results. Finally, it should be mentioned that

a very complete set of structural and seroelastic pa.,-smeters on two Titan/Centaur

models was made available to the author by Henning +. Unfortunately, because

of time limitations and the high computations/costs of these _tic solutions,

it was not possible to perform aeroelasti¢ simulations for these eases.

As we have done in the previous cases studied in this work, the computational

grid for the Atlas-Able IV cont"_mLtion was generated using algebraic methods. A

three dimensional view of the body and grid in this case can be seen in Figure 6.1.

The grid has 10,5 points in the longitudinal direction, 66 points in the normal direc-

tion, and 38 points in the circumferential direction which again is a periodic type

mesh _ 360" around the body. In this case, the body is composed of a ellip-

soidal nose, a cylindrical forebody section, a bosttail, and the cylindrical afterbody

section..The ratio between minor and major axes of the ellipse is approximately

0.605. The reference length adopted in this ease is the diameter of the cylindri-

cal afterbody section, and the diameter of the cylindrical forebodT l_ction is 1.5

reference lengths.

A typical complete longitudinal plane of the grid is shown in Figure 6.2(a), and

" Ericsson. UE, personal communication, April 1987.

+ Henning, T., personal communication, May 1987.
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Figure 6.1: Three dimensional view of Atlas-Able IV configuration grid system.
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details of the nose and the 5oattail regions can be seen in Figures 6.2(b) and (c) ,

respectively. In the longitudinal direction, 29 points are used in the nose region,

12 in the cylindrical forebody region, 27 in the 5oattail, and 37 in the cylindrical

afterbody region. One parameter hyperbolic grid stretching [ "_%]techniques are used

in the eUipsoidal nose region to cluster grid points towards the upstream centerline

and towards the ellipsoid-cylinder intersection. An equally spaced grid is used over

both the forebody cylinder and 5oattail sections, and a 6.98% exponential grid

stretching is used in the cylindrical forebody section in order to gradually coarsen

the grid as we move towards the downstream boundary.

The normal direction (or r/-direction) would again be more properly called a

nearly normal direction, since ,'/-lines do not intersect the body surface at exactly

right angles on the nose and boattail regions. Since these lines meet the body at

angles that are very close to 90 ° , we will accept the small error being introduced

by this simplification, as already discussed in the previous chapter. To ensure

proper capturing of viscous effects in the normal direction, a 16% exponential grid

stretching was used everywhere in this direction in order to cluster grid points close

to the body.

6.2 Configuration at Angle of Attack: Steady State

Results

The initial aerodynamic solution involving the Atlas-Able IV was calculated for

a M_ = 0.85 and a = 6 e flight condition. The Reynolds number considered was

Re = 1.2637 x 106 , based in the reference diameter. It should be mentioned that this

number was chosen to match Graham and Butler's experimental conditions [75]

The tmundary layer was considered turbulent for most of the calculations performed

here. Starting from freestream everywhere and imposing the appropriate boundary

conditions, we allow the flow to evolve to a converged solution.

A side view of the pressure coefficient, Mach number, and density contour plots

around the body for the converged solution can be seen in Figure 6.3. These plots
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(a) Complete plane.

(b) Detail of nose region. (c) Detail of boattail region.

Figure 6.2: Typical longitudinal grid plane for Atlm-Able IV configuration.
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ANALYSIS OF AN ATLA_ABLE IV CONFIG URATION

I,

(a) Pressure coet_cient contours.

Figure 6.3: Flow solution about an Atlas-Able I'v configuration at Moo ffi 0.85 and

a = 6° (side view).
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Figure 6.4: Pressure coefficient distribution on the

payload (Moo - 0.85, a- 6°).

leeside of an Atlas-Able IV

give a good idea of the overall flowfield appearance, despite the fact that we are only

seeing leeward and windward planes. The Mach number contours seem to indicate

a sizable separated region on the leeside, which is evidenced by the b,@bie sort of

behavior of the contours over the forebody cylinder and bosttafl regions, where the

local velocity magz_tude (or Math number) increases, then decreases back to zero,

and fmal]y increm_ a_u up to the freestream condition as we move outwar_ from

the body towards the _d. This is very typical of reversed flow regions, and it

will be investipted in more detail later when discussing particle trace results.

Taking advantage of the fact that for this con/]_umtion there are experimental

results available, Figure 6.4 shows a compar_on of the computed pressure coefficient

distribution on the leeside of the body with wind-tunnel measurements by Graham

• and "Butler [75] . It can be seen that the calculated Cp distribution follows the trend
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of the experimental results well, but the strength of the shock is not being accurately

captured by the computation. The location of the shock seems to be correct, but

apparently the i]ow does not expand as much as the experiment indicates it should.

The result is a weaker shock. It is clear that the computational shock is spread over

s few grid points, which is typical of centrally dil]_erenced lucite dii_'erence schemes.

The computations indicate that the flow separates right after the shock, which

is also in agreement with the Schlieren photographs available from R_erence [75]

for this flight condition. As for the pressure coefBcient distributions, the sepa-

rated region is evidenced by the somewhat fiat Cp distribution. The success of the

present computation of numerical values of Cp over the separated region is also

less than perfect, although the computations capture the correct trends in the Cp

distribution. It must be pointed out that there is a small difference in the length of

the boattail region between the geometry provided by Ericsson {4] * and the one

provided by Graham and Butler [75] . The latter has a slightly shorter forebody

cylinder section and, consequently, a slightly longer boattail section such that the

overall payload length is the same. This makes the Cp comparisons over the boattail

section less reliable, but due to the problems regarding the shock strength it would

be _i_cult, in any event, to compare results downstream of the shock. The prob-

lem is compounded by the fact that in the separated region the uncertainty about

turbulence modelling becomes even more important, and this may be ai_ecting the

results.

A comparison of the pressure coe_cient distributions on the body for other lon-

gitucSnal plaaes can be seen in Figtu'e 6.5, which shows Cp values over the lateral

and windside planes. Essentially, the same observations made with respect to the

leeside results'are true for these other planes too. The computed pre_ure coef_cients

follow the trend of the experimental results, but they are slightly underexpandeci

over the ¢llipsoidal nose-forebody cylinder intersection. A new feature that can be

observed on these latter results is that there is a noticeable tendency of forming

a second dip on the Cp curves around the forebody cylinder-boattail intersection.

The reason for that is quite clear, since it is reasonable to expect the separation to

be less severe on the side of the vehicle, or on its windside, than it is on the leeside.

" Ericsson, L.E., personal communication, .4._n_;987.
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,,/d

(a) L&tez'u/plane.

_;J \ I

FiKure 6.5: Pressure coe_cie=t ciistributicms for an Atlas-Able IV con_sxxr_tion
(M= = 0.85, = = r).
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This second dip is merely a result of the 8ow reaction due to the expansion comer

over the forebody cylinder-boattail intersection. The experimental results for the

windward plane exhibit what seems to be some data scatter, as one can see from

Figure 6.5(b) . Reference [75] offers no explanation for its existence. Our calcu-

lations do not reproduce any of this behavior, and the calculated Cp distribution

follows the experimental curve that would be obtained if the scattered points were

neglected.

Finally, it is important to stress that the comparisons were made between the

computational results and the experimental ones at the same nominal tunnel Mach

number. In other words, there was no attempt to try to correct for the tunnel

blockage effect, which cause the effective Mach number in the tunnel to be different

from the nominal one. Usually one tries to match the vehicle lift coefficient instead

of matching the nominal tunnel parameters. This was not done in this case, and it

may be one of the causes of the discrepancies observed in the Cp results. There were

some numerical difBculties, mainly associated with artificial dissipation parameters,

which can also explain part of the discrepancies observed in the results. We would

prefer, though, to postpone the discussion of these purely numerical problems until

the next section.

A good pictorial description of the _iow topology can be seen from Figure 6.6 ,

which shows side and top views of oil-flow lines for the A tlas-Able IV configuration

at t]_ flight condition- One can see that the lqow separates almost at the ellipsoidal

nc6e-forebody cylinder intersection on the leeside. The line of separation extends all

the way down to the windside where the flow separates somewhere just downstream

of the forebody cylinder-boattail intersection- In order to help the understanding

of these figures, it is worth mentioning that, since oil-_1ow lines are generated by

restricting particle traces to the second plane above the body surface, lines of sep-

aration are evidenced by thicker lines where particle traces converge to it. On the

other hand, lines of re_ttachment are shown by e,nptlt sF_ces, where all traces go

away from it. Th- f_nu:e also shows that the boattail is completely immersed in a

region of reversed flow, and that the tqow reattaches somewhere downstream of the

boattail.
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(a) Side view.

(b) Top view.

Figure 6.6: Oil-flow Lines for Athm-Able IV coniiKur_tion at Moo ffi 0.8,5 and a = 6° •
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Unrestricted particle traces are shown in Figure 6.7 for some different viewpoints,

which help visualize and understand the overall flow topology in this example.

Figure 6.8 shows an expanded view of the particles talcing o_ from the body surface

around the lee generator region. It is clear from these figures that in this case

we have a very extensive region of reversed flow, and of course 8ow separation.

Figure 6.9 complements this picture by showing velocity pro_es on the lee and

windsides over the regions of reversed flow on the body, where we can see how far

the reversed velocities penetrate into the flowfleld. This information reassures us

of our interpretation of the Mach number contours presented in Figure 6.3 , which

have been previously discussed. It also makes it evident that even on the wind.side

there is a region of separated flow for this flight condition. Finally, Figure 6.10

shows a front view of the vehicle, with particle traces indicating that the solution

is indeed symmetric with respect to the pitch plane in this case, which confirms

statements previously made.

It is very important to realize the difference between the flow solution obtained

for the present configuration and the one for the configuration studied in Chapter

5 . Although the present configuration is a somewhat more slender one, the extent

of the flow separation region in the present case is much larger than on the previ-

ous case. It is the author's belief that such behavior is mainly associated with the

length of the forebody cylinder region. This region is short in the present configu-

ration, which allows for the merging of the distinct separation regions observed in

the configuration of the previous chapter. In other words, the separation caused

by the shock, which usually is located right after the nose region at least on the

leeside, merges with the flow separation due to the adverse pressure gradients on the

boattail. Thil creates a very extensive separated region, which explains the kind of

flow topology observed in this case. Moreover, the shorter forebody also produces

more severe adverse gradients, which again co_tribute to extend the separated re-

gion. The existence of such extensive flow separation raises questions with respect

to the aeroelastic stability of the configuration, besides being a source of conce

with respect to buffeting loads.

Since the grid size used in the present investigation is the same as in the case
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(a) Side view.

(b) Perspective view.

Figure 6.7: Particle traces showing flow separation on the Atlas-Able IV configura-

tion at angle of attack.
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FJ&nxre 6.8: Expanded view of Eow separstJoa close to the leesicie.
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Figure 6.9: Velocity profiles on Atlas-Able IV con_pzmtion at M_ - 0.85 and

a - 6" (side .view).
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.... '\

Fi_Lre 6.10: Particle traces seen from the front of the vehicle showing symmetry of

the solution with respect to the pitch plane.
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studied in the previous chapter, i. e., a 105 × 66 × 38 point grid, the computational

statistics are essentially the same as on the previous case at least as far as steady

state calculations are concerned. For a CDC Cyber 205 computer, each iteration

takes approximately I0 CPU seconds, and somewhere around 3500 to 4000 time

steps (iterations) are requLred to achieve a converged solution. The CPU time

represents approximately 60_ of the overall system time, and the remainder of the

time is spent in I/O because the database is not core contained.

6.3 Some Computational Difficulties

This section discusses some of the dii_[iculties encountered in the computation of the

aerodynamic flows studied here. It should be noted that we will be talking about

steady state calculations in the present section, since most of the validation of the

purely aerodynamic computational method was done for steady state cases. It is also

important to realize that, since the use of superposition in a modal form has been

certainly proved for a_roelastic analysis, the major concern in the present work is to

show that the computational techniques proposed here are capable of reproducing

the correct aerodynamic phenomena necessary for the seroelastic analysis. For this

reason, it is very important to study these initial aerodynamic solutions, or steady

state solutions, to ensure that the physical flow phenomena are being adequately

captured.

We have seen in the previous section that the code is doing a less than perfect

job in terms of capturing the shock strength One of the possible explanations for

this kind of d_ty is associated with the amount of artificial dissipation being

used in the 6._Iculation. As discussed before, for central difference schemes it is

necessary to introduce some form of numerical dissipation in order to control the

nonlinear instabilities associated with the aliasing back into the lower frequency

range of the high frequency phenomena that is not supported by the mesh. The

question is, then, how much artificial dissipation should be added.

The approach followed in this work consisted of adding the minimum amount

of artificial dissipation that would still ensure numerical stability of the solution
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process. Th_ .,ini,nu., 4mount was determined by numerical expenments. When

one starts from freestream and tries to march the solution in time up to a steady

state condition, the time steps that have to be taken in the beginning of this process

are very small. One way to speed up the convergence to steady state is to take larger

time steps and simultaneously use unrealistically high values of artificial dissipation

in order to keep the solution numerically stable. As the Aow solution approaches

the correct steady state condition, the numerical dissipation can be reduced to more

appropriate levels where it should not interfere with the physics of the computation.

The problem observed in the present work w_ that the amounts of artificial

dissipation necessary to keep the numerical stability of the solution process were

almost one order of magnitude higher than what is recognL_ed in the Literature

as the appropriate level for these computations. One po_ble consequence of this

use of excessive amounts of arti_cial dissipation is that the shock might have been

diJs_/_z_ed by them. This can be another factor explaining the features observed in

our computational results with regard to the transonic shock capturing, where the

flow does not expand as much as the experimental results indicate it should, and

consequently the shock strength is not correct.

It should be mentioned that the artificial dissipation schethe implemented in

the present code is what can be called a conJt4n_ coej_cient arti/icial dissipation

algorithm. This means that a constant value of artificial dissipation coefficient is

used throughout the computational domain. More recent flow solver algorithms,

still usin_ central differences, have more elaborate artificial dissipation algorithms,

usually weighting the artificial dissipation coefficient with the local norm of the

residue. The latter seems to produce better results, but unfortunately we did not

have the opportunity to implement it in the calculations performed here.

Another subject that presented considerable concern in the present work w_ the

issue of turbulence modelling. It is understandable that this should be true, since

the models are of an empirical nature. As we have mentioned before, the two layer

Baldwin and Lomax [46] algebraic eddy viscosity model was used for the present

computations. This model was originally derived for attached or mildly separated

boundary layers. The results in the previous section indicate that a rather massive

" Pulliam, T.H., personal communication, October 1987.
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flow separation condition is being observed in this case.

Actual/y, the problem becomes more complex by the fact that some small vari-

ations in the model computational parameters can csuse dramatic changes in the

flow topology. The parameter varied in the present work was the distance, in terms

of computational _'/d points, from the body wall that we search for the maximum

velocity in the profile, which is an important parsmeter in the present model imple-

mentation. In the results presented in the previous section, this search is done up

to the 25th grid point in the normal direction. This was the value of this parameter

(called eJgek in the present work) that seems to produce most realistic results in

terms of the flow topology. For values of edgek smaller than 25, the separation

region is even larger, and for values larger than 25 the flow shows a tendency to

remain attached over larger portions of the body.

Figure 6.11 shows oil-flow lines for a solution obtained using edgek equal to 20,

i. e., the search for the maximum velocity in the boundary layer pro61e is done up to

the 20th grid point. The freestream parameters are the same as before, _f_ = 0.85

and a = 6 ° . In this case there is a well defined foc_ [yl] on the side of the

body. Even ahead of the el_psoid-cylinder intersection on the lee generator there

is a saddle point of separstion, whereas on the solution presented in the previous

section a nodal point was observed in the corresponding position. The release of

particles around the focal point, as identified from Figure 6.11, produces the particle

traces plot shown in Figure 6.12 . This figure shows how the particles are caught

in the reversed flow region and convected upstream before reaching the forward

flowing stream region. Details of the vortex td_ng o_from the body surface can be

seen in Figure 6.13, for the same particle trace plot shown in the prev/ons figure.

It is clear from these _ that the topological structures o_erved in this

case are very di_erent from those observed on the results presented in the previous

section. Moreover, the region of separated flow in the present case is larger than

in the previous one. Although the flow reattaches just downstream of the bosttail,

as before, the separation occurs further upstream when compared to the previous

case. In this cue not on/y the boatta//, but also most o/' the forebo<ly cylindr/ca_

section are immersed in a reversed flow condition Finally, it should be mentioned
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(a) Side view.

(b) Top view.

Figure 6.11: Oil-flow lines for computation with search up to 20th grid point.
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Figure 6.12: Side view of traces for particles released around the focal point on the

side of the body.

that, even with such dramatic tqow separation, the solution is still symmetric with

respect to the pitch plane, as before.

We turn our attention to the cases when the parameter is varied in the other

direction. Figure 6.14 shows a side view of the oil-f_ow lines for the solution obtained

when the search for the maximum velocity in the boundary layer pro_le is performed

up to the 35th grid point. The low on the forebody cylindrical section is fully

attached in this case, and the separation region is limited to the upper portion of

the bosttail region. In terms of flow separation structure, the swirling of the flow

around the focal point on the bosttail is evident from the fgure. It is clear from

this _ure that the flow on the windside never really separates, which is also in

contrast with the results previously shown for this con_'stion.

The parameter can be further increased, and when the search is performed up to

the 4,Sth grid point the solution is fully attached, as evidenced by the oi/-/_ow lines

shown on Figure 6.15 , where we are lookin_ at a side view of the vehicle as before.

At this point, further increases of the parameter WIU not change the topology of the
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Figure 6.13: Particle traces showing vortex leaving the body surface on the side of
the vehicle.

gg



CHAPTER 6. ANALYSIS OF AN ATLAS.ABLE IV CONFIGURATION

Figure 6.14: Side view of oil-flow lines for computation with search up to 35th grid

point.

Figure 6.15: Side view of oil-flow lines for computation with search up to 45th grid

point.
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flow. However, when the search for the maximum velocity on the boundary layer

velocity profile is performed up to the 55th grid point, some numerical stability

problems start to be developed on the nose region In this last case, i. e. , search

up to 55th grid point, although a solution that looks very much like the one shown

on Figure 6.15 can be obtained, the maximum residue could not be dropped below

10 -3 and it was actually increasing at the point we stopped the computation.

Perhaps the most interesting point of all this discussion, at least as far as aeroe-

lastic applications are concerned, is that despite the dramatic changes in flow topoi-

ogy the pressure coe_cient distributions on the body are not much affected by all

these variations on the parameters of the model. Of course, there are some alter-

ations in the pressure coe_cient distributions, but these are really minor changes

considering the extreme variations in flow topology just described. It should be

noted, however, that despite being a somewhat unexpected behavior at first, this

actually makes some sense if one reason- in terms of boundary layer theory where

the streamwise pressure variation is determined by the outside flow. It is true that

this is correct only for unseparated flow, but it can still help the interpretation

the results obtained. Furthermore, the same basic problems obeerved in the pres-

sure coe_cient distributions, and discussed earlier in this section, are still present

regardless of the turbulence model parameters.

On the subject of obtaining a better pressure coefllcient distribution on the body,

another numerical experiment was performed. Since the data used for comparison

of the steady state aerodynamic data was obtained for a 7% scale model [75] , there

was the possibility that the actual flow on the experiment started laminar over the

body. The experimental model had carborundum grit No. 30 applied in a circum-

ferential band over some portion of the ellipsoidal nose region to ensure transition.

An attempt was made to reproduce this situation computationally by letting the

boundary layer start laminar at the nose, and then enforcing the transition at the

same axial stations where the experiment had the carborundum grit.

The results obtained indicated that the laminar flow ezpandJ faJter, and so

better agreement with the experiment was obtained over the upstream portion of

the nose region. However, the agreement was already very good over that portion
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of the body (see, for instance, Figure 6.4). Since the experimental grit was located

quite far forward on the nose, this beneficial effect of a faster expansion of the

laminar boundary layer was not being felt at the location of the shock, which is

where the problem was. This, however, suggested the idea of letting the boundary

layer stay laminar over a larger portion of the nose, perhaps even up to the shock

location or the point of separation.

Unfortunately, again, the results were not very encouraging. Although it is

true that the assumption of laminar flow causes a faster expansion of the flow

going over the body nose, it is also true that a laminar boundary layer separates

sooner than a turbulent one. The net result was that the computational pressure

coe_cients would follow the experimental values better over the ellipeoidal no6e,

but the negative peak in Cp was lower because separation would happen sooner.

In other words, besides being a somewhat arbitrary procedure, this approach was

causing the shock location, and the separation point, to move too far forward.

In light of all these observations, the idea was abandoned and the results pre-

sented in the previous section are for a fully turbulent flow, in the sense that the

boundary layer is assumed to be turbulent since the very nose of the body. It should

be mentioned, however, that it is very easy to implement these kinds of tests in the

current code, since the turbulence modelling routines are probably the only portion

of the code that is highly modular. Finally, it should be mentioned also that it is

important for these kinds of calculation to ensure that the flow becomes turbulent

at some point, at least after separation occurs. Otherwise, the separated flow usu-

ally becomes aerodynamically unsteady, if we insist in keeping the computational

solution laminar. It hl also unrealistic to expect that separated flow at those flight

Reynolds number should remain laminar.

102



CHAPTER 6. ANALYSIS OF AN ATLAS-ABLE IV CONFIGURATION

6.4 Configuration at Angle of Attack: Aeroelas*

tic Results

Using the steady state solution described in Section 6.2 as the initial aerodynamic

solution, aeroelastic analyses were performed for the Atlas-Able IV' configuration

by varying the dynamic pressure (qv) while keeping other parameters constant.

Pure aerodynamic solutions can be performed only in terms of nondimensional

parameters, if one is interested only in nondimension_ ¢oe_cients or quantities as

result. However, when performing seroelastic analyses, information is necessary

regarding the (dimensional) freestream values and a reference length in order to

consistently nondimensionaiize the structural dynamic equations. For the same

reason, it is important to decide whether one is considering a model or the full scale

vehicle. In our case, we will consider a full scale vehicle since the natural frequency

information we have in this case is for a full scale model.

Although the geometrical information about this con_guration was obtained

only in nondimensiona/form from References [4] sad * , the data of Reference [ 75]

was dimensional. Considering that the latter presented data for a 7_ scale model

and we wanted dimensions for a full scale vehicle, we chose the reference length

to ffi 0.81280 m , which in this case is the diameter of the afterbody cylinder.

The freestream speed of sound was chosen to match the experimental data of Ref-

erence [81] and it w_ set at _ ffi 336.75 m/8 . The freestresm density was

cnlculated at evex7 run in order to produce the desired freestresm dynamic pres-

sure. Note that by keeping the freestream Msch number and o_ constants, the only

parameter left to vary the dymunic pressure was the freestream density.

Also note that, although the speed of sound value being used would corre-

spond to _ht at approximately I000 m altitude if we consider a standard atmo-

sphere[ 78] , the ides of having a constant speed of sound with a varyiag freestresm

density k reslktic if we think in terms of flight in the stratosphere. In this portion

of the atmosphere, the temperature is constant and therefore the speed of sound

is constant, while the density varies with the altitude due to the changes in the

pressure. It should be also pointed out that we do not have to keep the speed of

" Ericsson, L.E., personal communication, April 1987.
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sound constant in the s_s/ysis,s/though we could not devises more realisticway of

varying the dymunic pressure while keeping the Msch number constant than the one

described above. The mason for keeping the Msch number constant is a practical

rather than a theoretics/one. Essentiallywe want to avoid having to regenerate the

initis/a_rodymunic solution for every am-oehstic run, because of the computational

costs of so doing. The solution isto perform seroelasticruns _ some other

parameter, for instance the dynamic pressure, while keeping Mach number, angle

of attack, and all the other parmmetem used to generate the initial aerodynamic

solution constants.

Thcee elastic structural mode shapes were used in the present analysis, and the

rigid body degrees of freedom were assumed to be constrained. The first mode nat-

ur_ frequency was estimated as 5 Hz, according to dJscuuions with Ericsson

A comparison of the first and second mode responses presented by Woods and

Ericsson [41 , together with some typical l_unch vehicle responses available from

BispUnghoff and Ashley [60] permit the estimation of a vs/ue of 17 Hz for the

second mode L-'equency. Finally, the third mode f_.quency was picked st 29 Hz.

The mode shapes were obtained by an ext,rapolstion of the information avail-

able in Woods and Ericsson [41 , together with additional information regaxding

the location of the Krst nodal point for the first mode The mode shapes

used are shown in Figure 6.16. It is important to point out that all modes go to

zero amplitude at the downstream boundary because this was the way chosen here

to constrain the rigid body degrees of freedom. In other words, the downstream

computational boundary is held fixed throughout the calculation. It must also be

pointed out that, for z/d greater than approximately 12.5, the mode shapes were

obta£ned by eb_.-_pohtion of the existing data using low order polynomials. More

specifically, cubic polynomials were used for all three modes, and the boundary con-

ditions enforced were tlmt they should give the same values of deflection _mplitude

at the last two available experiments/points, ms well as givin s zero de_ction and

slope at the downstream boundary.

A constant value of mass per unit of length wM used in these calculations, which

may be sort of an oversimplification. We do recommend s more care_ description

" Ericsson, L.E., personal communication, April 1987.
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Figure 6.16: Structural mode shspes used for seroelutic analysis of the Atlas-Able

IV conflS_'stion.
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of the mass properties of the vehicle if more accurate results are sought. This

parameter was obtained from data availableon some Atlas booeters, and a value

of 2555 kg/m was used. The structural damping coef[icientswere estimated from

data presented by Woods and Ericsson [4],and the values used were _, - 0.0010,

¢2 = 0.0018 and ¢3 = 0.0036, for the first,second and third modes, respectively.

The initialperturbation necessary to start the oscillationis provided, as in the

cases studied in the previous chapter, by the fact that the initialaerodynamic

solution iscalculated for a rigidvehicle. Since the angle of attack isdifl_erentfrom

zero,there isa net aerodynamic forcedistributionthat isnot balanced yet by elastic

forces due to vehicle deformation. In other words, the body deflected position is

not in equilibrium with the applied force distribution.

A typical vehicle response in this case, for an intermediate value of dynamic

pressure, qD -- 400 psf , can be seen in Figure 6.17 , where the time history

of the generalized modal deflections is shown for all three modes. As it could be

expected, the first mode response dominates the other modes, and so details of the

response on the second and third modes are shown in Figure 6.18. All three modes

are damped in this case, which is not surprising since we did assume some small

amount of structural damping and the dynamic pressure is still in the intermediate

range. What is somewhat unexpected is the fact that the damping coe_cient is

hig, her than the plain structural damping coe_cient for all the modes, indicating

that the airstream is contributing politive damping for all the modes in this case.

This increase in damping is really not very signiflcant for the second and third

modes, being only of the order of 6_ and 3_ , respectively. However, the dampin_

coe_cient for the f_t mode is 0.0016 , which implies a 60% increase over the

corresponding structural damping coe_cient. It should be noted, however, that we

are presenting some very small numbers. _ may be questionable how far one can

trust the precisionof the numerical results,considering the amount of computation

and possible truncation errors involved in these calculations. Nevertheless, the

qualitativeresultleaves no margin to question. It indicatesthat the firstmode is

damped much fasterthan itwould be the case under the structural damping alone.

It is instructiveto mention that the damping coe_cient iscalculated from the
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Figxtm 6.18: Detail of the response on the second and third modes at 400 psf
dynamic pressure.
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time histories of the response in each mode by ass_m-Ang an exponential decay. The

code generated for this purpose initially estimates the mean value of the oscillation.

Then, using a least squares curve fitting technique, it finds the parameters for the

exponential envelope of the response. The slope of the natural logarithm of this

envelope curve is the product of the damping coe_cient by the natural frequency

of that particular mode. From the parameters of the exponetial envelope, the

structural chunping coe_cient can be obtained.

It can also be observed from the results that the frequency of the response in

each mode is very close to its natural frequency. This is in agreement with the re-

sults obtained in the previous chapter, where it was observed that the frequency of

the response remains approximately unchanged regardless of the dynamic pressure.

This may not seem typical for those used to aeroelastic analysis of lifting surfaces,

where the mechanism of flutter is usually associated with the merging of the fre-

quencies for two different modes. However, if an instability exists in the present

case, it will probably be an one degree of freedom phenomenon, and the fact that

the frequencies remain unchanged is indeed the expected result.

The response in terms of the generalized deflections for a much higher value

of dynamic pressure, qD-- 1174 psf, is shown in Figure 6.19 , where all three

modal amplitudes are presented. As expected, the magnitude of the response in

the first mode is again much larger than for the other two modes. Details of the

response in the second and third modes are shown in Figure 6.20. Except for the

fact that the amplitudes are about one order of ma_tude higher, these results

are strikingly similar to those obtained for 400 psf dynamic pressure. This is

not the anticipated behavior. For such high value of dynamic pressure, one would

expect that the aeroelastic instability condition would be evident, assuming that

the configuration would develop any aeroelastic problem at this _g_ht condition.

Even mm'e interesting, however, is the fact that the damping coefficients for all

three modes in this case are higher than their corresponding values at 400 p6f.

This last observation raised questions about what kind of generalized aerody-

namic forces were being computed by the method, since a dynamic pressure of

1174 psf is already somewhat higher than what is actual/y encountered at this
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Fi_ze 6.20: Deta/l of the response on the second and third modes for 1174 pd
freestream dynamic pressure.
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Figure 6.21: Generalized serodymum¢ forces on Atlss-Able IV confl_u-stion at

M'_. = 0.8,5, a - 6 ° and qo - 1174 psf .

flight Mach number in practice. A plot of the generalized aerodynamic forces for

the 1174 psf dynamic pressure cue can be seen in Figure 6.21. If we remember

a previous _ion concerning how the initial perturbation is introduced to start

the oecillstion, the response observed in Figure 6.21 is indeed the expected result.

In other words, there is • initial transient that takes into account the fact that the

deflected p_i_on is not in equih'brium with the applied aerodynamic load. This is

shown in the _ure by the initial drop on the value of the modal genem/ized forces.

After •pprcximsf_.ly 0.05 see the forces settle down to some nonzero mean value

together with some small oscillations around this mean. Althoush not completely

apparent from Figure 6.21, this behavior can e_ily be _ if we look st expanded

views of the response in each mode after the initial transient has passed. This is

done in Figure 6.22.
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Figure 6.22: Expanded view of the modal generalized forces showing oscillatory

behavior after initial transient has passed (qD = 1174 psf ).
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Figure 6.23: Aeroelasti¢ root locus for Atlas-Able IV configuration st Mo. = 0.85
and a = 6". The parameter varied is Right dynamic pressure.

Since the magnitude of the response on the first mode is much larger than on

the other modes, the overall body deflection is dominated by the first mode. There

is no surprise that the ges_erslized aerodymm_c forces follow the _Lrst mode oscil-

lation, with just some minor higher frequency influence. However, the importsnt

obecrvstion is that the forces show very little lag with respect to the deflection. This

can explain why • damped behavior is being obtained eve,, st _ch high dymunic

pressures. A study of the modal generalized forces for the 400 pat cue _dded

similar condusfoim.

A few other eases for di_erent values of dynamic pressure were run, and all the

results are summarized on the root locus plot shown in Figure 6.23 . As before,

the flee parameter of the locus is the dynamic pressure, and the arrows indicate

the direction of increasing dynamic pressure. It can be noticed that the frequency
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Figure 6.24: Modal damping coe_cient on Atlas-Able IV con_g_ration for flight st

Moo = 0.85 mad a = 6" .

remains approximately unchanged regardless of the value of dynamic pressure, as

we have previously mentioned. It is evident that no instability is present, and hi_her

values of dynamic pressure just seem to move the roots deeper into the lefl-haad

plane.

It is di_icult to completely see the behavior of the solution for smaller values

of dynamic pressure f_'om the root locus plot because of the small variation in the

frequency. A better understanding can be obtained from s plot of the damping

coe_clent in each mode as a function of the dymunic pressure, which can be seen in

Figure 6.24. The llrst and third modes show a continuous incres_ in the damping

as the dynamic pressure is incressod. The behavior of the second mode is more

interesti_, showing an increase in damping in the lower range of dynamic pressures,

then the damping starts to decrease as this parameter is further increased. However,
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at the very high values of dynamic pressure, the damping on the second mode starts

to increase agal_

From a physical standpoint, the results indicate that the _st and third modes

show no tendency of presenting seroelastic problems. The second mode, although

it never goes unstable, indicates a tendency towards instability in the dynamic

pressure range of approximately 500 to 800 psf. It is interesting that, according

to the results presented by Woods and Ericsson [41 , the second mode is the one

that should present flutter problems. Despite the fact that we are not capturing

the expected instability, our computational results are showing some of the correct

trends.

Part of the foregoing discrepancy between prediction and expectation can be

explained by the structural data used, which involved some approximations due

to the lack of the actual vehicle data. It is well known that mass distribution

can have significant ei_ects on flutter results and, as we have previously discussed,

some rather severe assumptions were introduced here. The diflqculties in getting

the correct shock strength with the current aerodyna_c flow solver may also have

some role to play in explaning part of the difference in the results. As we have

mentioned before, the shock motion and the shock-boundary layer interactions are

expected to be an important feature of the mechanism that causes the instability.

The capability of numerically reproducing the instability can be impaired by the

lack of a better resolution of the shock region.

The computational costs of these aeroelastic solutions is not trivial, and a few

comments about this issue would be important. For the grid size being used in

the present investigation, each aeroelaatic iteration takes approximately 12 CPU

seconds in a CDC Cyber 206 computer. The calculation of the vehicle response,

for each Right condition considered, involves typically somewhere around 3600 time

stepe due to the limitations on time step size in order to keep the time-accuracy of

the solution. Of course, this is also dependent upon the range of natural frequencies

considered, and the number of it,._,'ations above is correct for the frequencies used

in this work. Actually, it is determined by the lowest frequency, since we must get

at least a few cycles of the lowest mode in order to fully ascertain the stability of
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the configuration.

The significant outcome is that something of the order of 12 CPU hours of a

Cyber 205 are necessary in order to produce a vehicle response such as the one

shown in Figure 8.17. Note that this does not count the time required to generate

the initial aerodynamic solution. Furthermore, this is not the overall computer time

for one aeroelastic run either. As we mentioned before, due to the heavy amount

of I/O required on these aeroelastic solutions (because the database is not core

contained), the CPU time represents only 30_ of the overall system time.

6.5 Study of a Zero Angle of Attack Case

The Atlas-Able IV coition was also studied at a zero angle of attac.kRight

condition. Since the geometry was the same, we used the same grid system previ-

ously generated for this analysis. The structural and aerodynamic data were also

the same, except that in thiscase the angle of attack was set to zero,and so were

allthe structural damping coe_cients. The initialaerodynamic solution was, then,

calculated for the M_ ---0.85 and a = 0" Right condition. The Reynolds number

was the same as before,and the boundary layer was considered turbulent.

A flow visualJzationof the steady state solution obtained, which will be the

starting solution for aeroelasticanalysis,can be seen in Figure 6.25 . The figure

shows pressure coefficient,Mach number and density contour plots for a side view

of the body. The solution is axisymmetric, as is clear from the figure since the

top and bottom contours are a mirror image of each other. Even at zero angle of

attack, there isflow _mration over the vehicle.This isevidenced by the reversed

velocityprofll_ shown in Figure 6.26 fora portion of s longitudinalplane. The flow

separatm stillover the forebody cylindricalsection,and the boattail iscompletely

immersed in the region of reversed flow. Reattachment willoccur only downstream

of the b0sttail over the afterbody cylinder region.

The computed pressure coefficientdistributionover the vehicle is compared to

experimental results[75] as a way of validatingthe steady state aerodynamic solu-

tion. This comparison can be seen in Figure 8.27. It is not particular important
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R

(a) Pre_ure coe_cient eontourL

F_i_e 6.25: Flow solution shout an Atlas-Able IV vehicle st M_. = 0.85 and a = 0°

(side view).
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Figure 6.26: Velocity pro/lies for flow over an Atlas-Able IV conjuration at

M_o = 0.8.5 ud a = O" (side view).
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which longitudinal plane of results was used for this comparison, because the solu-

tion is axisymmetric. However, for the sake of completeness, the plane correspond-

ing to the leeside in case of a po6itive angle of attack was the one used. The results

show the same features observed in the solution at angle of attack. The compu-

tations/ pressure coel_cients follow the correct trend of the experiments/results,

but the shock resolution is less than perfect. As was previously discussed, problems

with the numerics/dissipation algorithm may be causing the discrepancies in these

results.

Only one aeroelasticcase was run at thisflightcondition because of time llmi-

tations. The dynamic pressure was set at 400 psf . The structural data used were

the same considered in the cases studied in the previous section, except that the

structural damping coe_cients were set to zero in the present simulation. Since the

angle of attack iszero,we need a di_erent way of introducing the initialperturbation

that starts the oscillation.An initialdisplacement of the firstmode generalized co-

ordinate, while keeping the other two modes undisturbed, was the method selected

here. The magnitude of the initialdeflectionwas selected to be of the same order

of the maximum elasticdisplacement observed in that mode at 6° angle of attack

when the same dynamic pressure was being used.

Time history of the response in terms of the generalized modal de_ections is

shown in Figure 6.28 . It must be emphasized that all three modes are shown on

this figure. However, due to the large dii_erence in the magnitude of t]4e response,

the second and third modes are only seen as a zero line. An expanded view of these

latter modes response is presented in Figure 6.29. Just by looking at the results,

it is clear that the oscillation amplitude of the second and third modes seems to be

growing. The IL,at mode appears to be neutrally stable. Furthermore, the higher

modes seem to be modulated by by the first mode response.

A more complete analysis of the __,st mode response can be accomplished using

the same software developed for the study of the previous aeroelastic runs. The

result of the analysis is that the respovae is at a frequency of 5 Hz , which is

exactly the natural frequency for this mode, and that the damping coefficient is

(I = -9 x 10 -6 . In a strict sense, this mode would be called unstable since the
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1.0

FiS_Pe 6.28: Modal response of AtIM-Able IV at Moo - 0.88, o -- 0" and d3PmunJc

pressure qo =" 400 psf .
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damping coefficient is negative. However, considering the smallness of the value

of _1 , it is probably more appropriate to accept the mode as neutrally stable. It

is important to look at the problem from a practical point of view too. Since the

vehicle will be accelerating through the transonic regime, and not flying continuously

in it, such an extremely slow-growing instability would probably be of no concern.

Due to the apparent modulation of the response on the second and third modes,

their study is a little more complex. We decided to study first the frequency content

of the responses shown in Figure 6.29 . This can be done by taking the Fourier

transform of those time traces. The result of such operation is shown in Figure 6.30,

where we are plotting the magnitude of the FFT of the response on each of those

modes. The reader should note that, rigorously, the Fourier transform of a diverging

signal does not exist. Here, however, we are simply taking a discrete FFT over a

finite time interval. For the second mode response, the peaks at 5 and 17 Hz are

evident from Figure 6.30(a) . Similarly, for the third mode, peaks at 5 and 29 Hz

can be seen in Figure 6.30(b) .

It is interesting to note the relative magnitude of the response in each frequency.

The response on the third mode seems closer to the expected result, where the

spike at 29 Hz is much larger than the one at 5 Hz. The trend is reversed in the

second mode response, where the 5 Hz peak has a larger magnitude than the one at

17 Hz. This explains why the third mode response is much _clesner', in the sense

that it is much easier to distinguish between the higher frequency response and

the modulation itself. There seems to be more inter_tion of the two frequencies

in the second mode relrpomm, which accounts for the more complex pattern in

Figure 6.29(a). Moreover, with the two frequencies being closer to each other, it is

underst_udsbie that the time trace should get more complex.

Although it JeemJ clear from Figure 6.29 that the amplitude of response in

those modm is increuing, we attempted to filter out the 5 Hz portion of it. This

can be accomplished by eliminating the 5 Hz component of the Fourier transform

of the response, and then taking the inverse transform. We were not completely

successful in eliminating the modulation, and the filtered third mode response does

not add much information to what can already be seen from Figure 6.29 (b). For the
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second mode, however, the filtered response clearly instates the 8Wowix_ amplitude

of oscillation. The latter is shown in Figure 6.31.

As we have seen from the results of the previous section, it k also interes6ng

to look at the modal generalized forces. These are shown in Figure 6.32. There is

no surprise that the forces follow the first mode de_ection, since the overall vehicle

deformation is almost completely determined by the first mode. It can be observed

that there is very little phase lag between the motion and the aerodynamic forces.

Fi_.u'e 6.33 shows the aerodynamic load distribution along the body for several

instants dur_. the oscillation. Since, again, the first mode amplitude dominates

the other ones, we used the fL,st mode generalized coordinate as the total deflection

amplitude when selecting at which _stant of time we would sample the running

normal force. Essentially, Figure 6.33 k showing that most of the load is located

at the vehicle elliptical nose for the zero s_e of attack case. This explains why

the magnitudes of the generalized forces are so similar, since the mode shapes are

similar to one another for that body region (see, for _tance, Figure 6.16).
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Fi&_u-e 6.32: Modal senemlized forces on Atlu-Able IV st Moo = 0.85, a = 0" and

qo = 400 pd .
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Fi_tre 8.33: Unsteady aerodynamic load dbtribution on Atlas-Able IV at various
points &lonK the/Irst mode oscillation.
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Finally, as we mentioned before, the second mode was expected to become aero-

elastically unstable, according to results presented on Reference [4] . For the zero

angle of attack case, our computational results are capturing the instability appro-

priate|y, as evidenced by the foregoing analysis. It is also interesting to note that

our predictions regarding the proneness of the sgaaller angle of attack situations

to seroelastic instability were confirmed by the results. Despite the fact that our

calculations at the 6 e angle of attack condition assumed nonzero structural damp-

ing coe_cients, we saw that at 400 per dynamic pressure the airstream was still

contributing po6itive damping. On the other hand, an unstable solution is obtained

at zero angle of attack for the same dynamic pressure. So, at least qualitatively,

our computations are predicting the correct behavior in the cases anaJyzed.
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Chapter 7

Conclusions

7.1 Summary

The idea of using computational fluid dynamics techniques for aeroelastic analysis

in the transonic regime of fl_ht is not new. Several of the references cited through-

out this text substant_te this statement. In this context, the contributions of the

present work are associated with the use of the three-dimensional unsteady

pressible Navies-Stokes equations for the flow simulation and am'oeJz.stic analysis of

realistic 3-D body configurations. It is a substantial departure from p_t investiga-

tions, where a potential formulation was commonly used to solve the aerodynamic

problem or where only two-dimensional flows were consideTed.

The present research initially studied a hemisphere-cylinder configuration. Steady

state, as well as unsteady aerodynamic, results for this geometry were presented

and discussed. The steady state results showed good agreement either with exist-

ing expe:im_tal information or with data obtained from other comparable CFD

codes. They provided good insight into the code's behavior for both subsonic and

supersonic freestream conditions. No seroelastic cases were investigated for the

hemisphere-cylinder. On the other hand calculations for forced rigid body osci]la-

tions were performed, wi .., ;he primary objective of scquiri_ a better understand-

ing of the parameters involved in these unsteady computations.

The unsteady airloschdue to thisforced,sinusoidal rigidbody oscillationcould

130



CHAPTER 7. CONCLUSIONS

not be compared to amy results in the literature because we were unable to locate

similar experimental investigations. To the author's knowledge, this was the fu-st

attempt to capture the unsteady behavior of such a configuration undergoing sinu-

soidal pitching oecillations using a Navier-Stokes formulation. Happily, the unsteady

calculations reproduced the expected flow features. Due to time constraints, how-

ever, we refrained from studying cases at lower reduced frequencies which probably

would be more representative of actuai flight conditions.

The stud), of a general hammerhead payload provided further confidence in the

code developed by producing physically reasonable results for a transonic flow con-

dition. Hammerhead vehicles are by no means simple geometries for computations/

simulation, because some form of flow separation is usually associated with the

presence of'a boattailin the forebody. This isin addition to the shock-induced sel>-

aration due to the transonic shock impingement on the body surface. The steady

state aerodynamic resultsreproduced the expected flow features. The aeroelastic

calculationsshowed that the firstcon_guration studied was freefrom instabRity at

the flightconditions considered.

The stable aeroelasticbehavior of this vehicle can be explained by the exis-

tence of a longer hammerhead section,i.e. , a longer cylindricalforebody region.

It prevents the merging of the two separation regions mentioned above, therefore

resultingin a milder unsteady aerodynamic environment. This observation agrees

with existing empirical rules for the design of hammerhead payloads. Besides the

physical considerations of aeroelasticstabilityof this configuration,its study was

instrumental in developing the detailsof the structural-dynamic portion ofthe code.

A more _ppropriate mmessment of the computational requirements for aeroelastic

analysil w_ Ik_mible,and acceptable time step levelscould be selected.

For the Atlas-Able IV vehicle,steaziystate wind tunnel pressure coef_cient dis-

tributions were availablein the literaturefor various tunnel conditions in the tran-

sonic regime. Actual in flighttransonic aeroelasticstabilityinformation was also

available,as well as the resultsof semi-empirical analyses. The detailsof the exact

flightconditions encountered were, unfortunately, rather sketchy. The configura-

tion was studied at two differentangles of attack, and for each flightcondition the
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dynamic pressure was the parameter varied in the search for the stabilityboundary.

The steady state resultscompared well with experiment, except that a better

computational resolution of the shock region would be desirable. In the process

of performing these calculations,some numerical di_culties with the present flow

solver were uncovered. The artificialdissipationalgorithm used showed some lira-

Rations in the sense that, in order to maintain numerical stability,the required

magnitude of this parameter was already interferingwith the physics of the flow.

The turbulence model employed proved very sensitiveto some of its parameters,

producing a wide varietyof flow topologies for the same flightcondition when the

only thing varied was the distance of the search for the maximum velocity in the

boundary layer profile.

This last observation can probably be explained by the fact that the kind of

massively separated flows which occur in thiscase may exceed what the turbulence

model was originallyderived for. A discussionof the possibilitiesfor furtherupgrad-

ing the current flow solver algorithm will be presented in the next section. While on

the subject of flow solutions, it must be said that the availability of a good graphics

post-processing paclmge is absolutely essential for interpretation and understanding

of these three dimensional CFD calculations. The study of body pressure distribu-

tions only, even though important, is not enough to ensure that the correct solution

is being obtained. A very good example was seen in the numerical experiments

performed with the turbulence model parameters.

The aeroelastic calculations reproduced the known Atlas-Able IV results qualita-

tively very well. The second mode instability [4] was clearly oboerved at zero angle of

attack and/Mr_ ----0.85. At an angle of attack of 6 degrees and the same freestream

Mach number, no unstable aeroelastic be/utvior was predicted. However, the second

mode again showed some tendency of becoming unstable for some portion of the

dynamic pressure range investigated. The instability, when it occurs, is certainly a

one degree of freedom phenomenon. The frequency of the response in each mode

remains approximately unchanged, regardless of the variations in dynamic pressure.

The Atlas-Able IV configurstion has a much shorter cylindrical forebody sec-

tion than the first hammerhead configuration analyzed, which explains the merged
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separation. As previously discussed, in these cases the shock-induced separated re-

_ion merges with the flow separation due to the adverse pressure gradients at the

boattail. The result,in terms of vehiclestability,isthat the pcuibility iscrested

of larger lags in the airloads with respect to the motion. Therefore, the risk of

aeroelastic instability is increased. As extensively discussed in the previous chap-

ter, the computational results also conf_med the prediction that the smaller angle

of attack cases would be more susceptibleto instability.However, despite the good

qualitativeagreement, improvements in the aerodynamic solver sad more accurate

structural data axe stillnecessary for a quantitative prediction of flutterspeeds by

means of the present method.

The CPU time per iteration for aeroelasticanalysis is o-ly 20% higher than

for steady state aerodynamic calculations. The time spent on purely structural-

dynamic calculationsin the present implementation is,however, trulynegligible.All

the computational time increase isaamciated with the need to regenerate the grid

at every time step when performing aeroelasticcalculations.Typically, approaches

based on modal analysis willspend almoet negligibletime on the solution of the

structural-dynamic equations. On the other hand, ifthe vehicle isrepresented by

some finiteelement model, this time iscertainlybound to increase.

It must be emphasized that the increase in overall system time per iteration

is much higher for aeroelasticthan for purely aerodynamic examples. Since the

database isnot core contained, some rather extensive I/O isrequired every iteration

even in steady state calculations. Use of asynchronous I/O allows an e_ciency of

60% for pure aerodynamic computations. Ei_Iciencyhere isbeing measured as the

ratio of CPU time to overallsystem time. For aeroelasticanalyses, however, the

code eIBciency is reduced to only 30% , because of the considerable increase in

the in1:mt/output required per iteration. These e_ciency figures me, of course,

very machine dependent. The discussion here applies only for the Cyber 205 ,

although Other machines may experience similar trends for databases that axe not

core-contained.

It is true that the computational requirements for using of the present method

axe stillquite high. However, considering recent improvements in hardware as well
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as numerics/methods, it is fair to say that we are getting very close to acceptable

levels. On the the storage side, i. e. , in terms of the interns/memory required,

environments such as the Cray 2 supercomputer completely e/iminste the need for

out.o/.core temporary storage. Our requirements, which are for about 7 mi]]]on

words in the database plus a comparable amount for temporary' arrays, can be

considered small for a 256 mega.wor_ core machine.

Since in most systems a problem of this size would require reads/writes to tem-

pora-'7 6]es, the subject of computations/time must be looked at on the two levels

of CPU time and overa_ system time. There is no question that, as far as the latter

is concerned, the optimum condition is obtained when everything is kept irt-co_ .

The problem with I/O sometimes can be minimized by intelligent structuring of the

database and by streaming the flow of information in the code to take advantage

of that. As the statistics given in the previous chapters show, the present code was

successful in doing this for steady state problems. For seroelastic ana]yses, however,

the performance dropped considerably.

A reduction in actua] CPU time can be accomplished either by faster flow solver

_Igorithms or by faster machines. The search for faster and more reliable computa-

tions/ schemes is a continuing objective of CFD research. A breakthrough in terms

of raw machine speed was realized with vectorizstion. More recently, some attention

has been given to the approach of having a multi-processor t computer, where each

processor could work on a portion of the program st the same time. An example

of this technology is the ETA-10 system. It is worth pointing out that the pencil

data structure used in the present work is very suitable for such multi-processor

environments.

A discussion of possible extensions for the method is now presented. The main

purpose is to relate the work done here with similar applications, which may in-

volve even more complex configurations or flight conditions than the ones described

in the preceding chapters. The aerodymunic formu]Ation is very general. Actu-

ally, it is as genend a_ one would require for the flight regime and vehicle types

*Note tlmt the nomenclature may be misleading, since there are many machines which have more
than one processor but do not have the capability we are describing here.
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under consideration, except with respect to the representation of turbulence. The

structural-dynamic formulation, however, has several assumptions which may seem

quite restrictive at first. These assumptions are believed adequate for the physical

situation being treated by the present work. Nevertheless, a user may be interested

in generalizing this formulation.

If we assume that a modal approach would still be used, the major general-

izations that could be incorporated would be to introduce rigid body degrees of

freedom, to consider that the modes might be elastically or inertially coupled, and

to allow for a full three dimensional beam type of behavior. The present theoretical

formulation already allows for rigid body degrees of freedom However, they were

never implemented in the code, and a few pro_mming changes would be required

for their introduction.

If normal vibration modes are not known, i. e. , the modes to be used are

coupled either elastically or inertially, the method can be easily extended. The

difference would be that, instead of solving for each of the generalized coordinates

separately, the solution would have to be done considering the (now) coupled system

of equations. In terms of computational effort, this means that matrices would have

to be inverted, as opposed to the solution of a number of scalar equations. One

should note, however, that the number of structural modes considered in a typical

aeroelastic analysis is extremely small compared to the size of the matrices involved

in the solution of the aerodynamic problem. As a result, the overall computational

cost of the solution should not be a_ected very much.

The aerodynamic formulation allows for arbitrarily large an_es of attack, which

includes cases where asymmetric Separation may occur. It would be interesting to

give to the striactural-dynamic formulation the capability of handling the same iqight

condition. This would involve considering bending in two planes and possibly tor-

sion of the body about its longitudinal axis. This extension is very straightforward

in concept, although its programming may require some very careful thought.

On the other hand, if the curreut low angle of attack restrictio_ are kept for the

structural-dynamic formulation, some simplifications can be incorporated in the flow

solver. The computational &,rid used in all the calculations presented here is a 360 °
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mesh in the circumferential direction. The results presented in the earlier chapters

show that the flow solutions obtained are symmetric with respect to the pitching

plane. In other words, the pitching plane can be used as a plane of symmetry for the

flow solution, and almost half of the grid points could be saved. This simplification

would cut the complete database in half, and the savings in computational time

would be much larger since this time increases nonlinearly with the size of matrices.

The use of an algebraic grid generation scheme proved to be appropriate for the

applications in the present work. However, this may not be true if _:ore complex

geometries are considered. There are some hammerhead configurations with very

steep boattail angles. In such cases, the approximation used here of letting the

norm_l grid lines come into the body surface at angles slightly 4/fferent from 90 °

may be inadequate. Although algebraic schemes could still be used for these cases,

more care would have to be exercised to ensure that normal grid lines do come

in normal to the body. Some launch vehicle configurations have fins, or strap-on

boosters, or even cluster desi_as. For these cases, certainly more elaborate grid

generation schemes would be required.

The procedure for locating the downstream boundary followed in the present

approach was possible because all the physical phenomena of interest were hap-

pening at the forebody. If confi_u'ations like the ones mentioned above are under

consideration, the loads on the afterbody may significantly influence the overall ve-

hicle's aeroeLsstic behsv/or. The more appropriate strategy for those cases would

be to introduce the body base into the computational domain. The downstream

computational boundary would have to be moved a least one body length down-

stream. This would make the flow solution more complex, in the sense that mixing

layers and hue flows wou/d appear in this downstream portion of the computa-

tional domain. However, since we are not interested in these phenomem_ as far as

our aeroelutic analysis is concerned, they would have to be resolved only to the

extent of avoiding sigai_cant inaccuracies in the aerodynamic loads on the body.

In conclusion, the method developed in the present work seems to be an at-

tractive option for seroelastic analyses of launch vehicles in the transonic phase of

flight. In this regime, the usual linearized methods break down, and an approach
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that would take into consideration the aerodynamic nonlinearities is required. The

applications presented provide confidence in the method, but it is clear that some

details still need improvement before the code could be used in a production envi-

ronment. There are launch vehicles being currently designed (e. g. , a commercial

Atlas/Centaur and the Titan IV series) which probably could benefit from the tech-

niques presented here in terms of reducing design costs.

It should be kept in mind that in the recent years there has been a substantial

reduction in the cost of computation, whereas experiments are still very expensive.

It is the author's belief that, eventually, computational procedures llke the one

proposed here will be capable of full integration into the design process. Thus,

they may permit a more rational aeroelastic design instead of the usual ftzeJ that

characterized the aeroelastic clearance of flight vehicles over the years.

7.2 Recommendations for Future Work

The applications presented throughout the work exemplify the capabilities of the

method. Despite the good qualitative agreement of the present results with existing

data, it was clear that further consideration of a few computational problems was

still necessary. The dit_iculties encountered _ith the artificial dissipation model
r_

deserve a more care_ examination. For instance, a comparison of the magnitudes

of the eddy viscosity coefficient and of the amount of artificial dissipation being

introduced would be instructive. Moreover, the question left answered in the present

work of why we are being forced to use such large amounts of artificial dissipation

in order to keep the scheme stable should be resolved.

A pcmible solution to this problem might simply be that a more elaborate

artificial dkeipation scheme is necessary. Recent versions of the ARC3D code [52]

have a ncmUnear numerical dissipation model The amount of artifichd dissipation

introduced at each computational point is weighted by a spectral radius scaring,

which is a sum of the spectral radii of the Jacobian matrices. This model produces

better results, and it may be helpful for solving the diliiculties encountered by our

present code with respect to artificial dissipation.
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The foregoing discussion assumes, however, that the Beam and Warming ap-

proximate factorizstion scheme [67] will continue to be used. This does not have to

be true. Recent so-called upend schemes eliminate the need to explicitly introduce

artificial dissipation into the scheme. The numerical dissipation is already built

into the scheme by the way the governing equations axe approximated by means of

one-sided difference formulas. The replacement of the current solver by these up-

wind schemes may be a possible form of hnproving the present code. Furthermore,

so-called TVD schemes [79] are well known for having very good shock capturing

features. A possible drawback is that these schemes rrmy be slower than the Beam

and Warming algorithm.

As we have seen, another point of serious concern was the turbulence model

Some work could be done in this area in order to enhance the present flow solver

algorithn_ The tradeoff used to be that more elaborate models, despite produc-

ing better results for some flow cases, still would not yield sig_ficant enough ira-

provements in most _ to justify the increase in complexity and computational

requirements. Recently, however, some turbulence models have been created (e. g.,

the Johnson and King model [80]) which advance the numerical representation of

turbulence with very little increase in computational costs.

Another enhancement to the present code could be accomplished by incorpo-

rating some self-adaptive grid techniques [$!' 82] into the current algoritluzL These

techniques let the position of the grid points be driven by the solution, concentrat-

ing them on regions of higher flow gradients. The tradeofl" usually involved is that,

by positioning the grid points in some optimum way, fewer points are necessary for

a given accuracy. Thus, s faster run time is achieved. On the other hand, time is

consumed to 4g4pt the grid, which increases the total run time. Since in the present

approsr.h the grid k beixgg regenerated at every time step for aeroelastic analysis,

we would only get the advantages of self-adaptive grid methods without paying the

additional costs.

The subject of improved graphic capabilities for visualization of flow results has

been extensively discussed in the Literature. The author believes that the currently

available packages (e. g. , PLOT3D, RIP, GAS, etc. ) are very useful for the

138



CHAPTER 7. CONCLUSIONS

analysis of steady state aerodynamic results. When dealing with unsteady problems,

however, the requirements are more stringent. Static colored figures are not enough,

and one has to resort to animation techniques in order to comprehend fully all the

phenomena involved. The amount of data that has to be stored and then shipped

across the network in order to use the e_dsting graphic and animation packages is

tremendously large.

As a result, there is a tendency to settle for an analysis of modal generalized

dei_ections, as we cbd here, or some integrated aerodynamic quantity. Although

these are important too, there is much more information being generated by the

computation that is never studied because of the lack of practical ways of displaying

it. For instance, a visualization of how the flow topology is modified as the body

oscillates might be very helpful for understanciing the mechanism behind a possible

aeroelastic instability. Although the necessary took for these visualizations exist

today, their use is still so time consuming as to discourage a more widespread

utilization.

The current trends in launch capabilities have given rise to a renewed interest

in expendable launch vehicles. As discussed above, hammerhead payload con_g-

urations will certainly be under consideration This fact should provide enough

motivation for the continuing development of aeroelastic analysis techniques like

the one presented here. Furthermore, it should also provide plenty of experimental

data that could be used to validate these techniques and to guide their develop-

merit.
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Appendix A

Jacobian Matrices

The th_eee_imensiomtl, inviscid flux 3scobian m_trices in generalized ct=vilJnemr

coordinates axe given by

._orb or_' =

/¢¢

,c,¢2 - .0

_,¢ 2 - vO

,c,@ - wO

o(2@ - _,ep-;)

/¢8

,¢, + 0 - ,¢=("r - 2)u

,_=v- ,¢,,('r - 1) =

,¢,to - ,¢, ("r- 1) u

,¢=('rep-t - @) - ('r - 1)=0

ICy

_,+ 0 - _,(_- 2)u

where

_g

_.u- _,('_- I)u_

_,+ 0 - ,¢,("r- 2)to

,_.('yep-_- ¢')- (a'-i),.O

0

,(=(.y-z)

_=,(.y- I)

,,.(-y-z)
_t + 70

(A.Z)

0 "-- RzM + KWt? + R=tD

@= 1 v== _(._-11(e + +_')

Here i¢- _, r/or _ for ,_,,B or C',respectively.
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APPENDLX A. JACOB[AN MATPJCES

where

The viscous flux 2acobian matrices are obtained from

0

TTI21

._a-- D'131

rr'141

v'rlSl

0 0 0 0

a,&(p-_)_2&(p-_)a3& (p-_) 0

a26.(p-_) a46_(p-L) a,6.(p-_) 0
a_8.(p-*)as6.(f') a,6.(p-Z) 0

ms2 ms3 ms, ao6. (p-')

1Tt21 --" --al_a

TT'_51 "- --(]rO_

TTt52

1/153

Tr154

Oro

cr 3 -----

cr 4 ---_

or S :

ot 6 _-

(,,/p) - _,,& (,_/p)- _6. (to�p)

(,,/p) - _,,,5.(,,/p)- ,_,6,.(,,,/p)

(,,/p) - ,_,& (,_/p) - a,a,.(,,,/p)

[(./;)-(.'+_'+_'1/,1
(.,/,,1- o,_.(,,'/,,)- o.,.(,,,'/,,)

-2c,2a. (uvlp) - 2asa. (utolp) - 2a,a. @to/p)

-ao6,, (u/p) - m21

-ao& @lp)- m31

-ao6,, (to�p) - m,1

1

_(t + P,)'_='s,
1
_(* + p,),_=,_.

4 2 + a2,')(1 + p,) (4 + _"_,
/

i (I + p,)xvx,

( ,+ 4 )

(A.2)

As in the inviscid case, _; = _, 1'/or ¢ for ._r(, 2t_/'. or 2_/'¢, respectively. Furthermore,

we remind the reader that aU variables in these expressions are dimensionless. In

particular, _, = _,/p=, where p® is the freestream (laminar) viscosity coeflicient.

141



Appendix B

Periodic Tridiagonal Solver

A periodic, block tridiagonal matrix has the genera/form

B1 C2 0 .-. 0 ,'to

A_ B2 C3 "" 0 0

0 A2 B_ "'. : :

: 0 As "" C,,-1 0

0 : : "'. B,,-I C,,

C,,+1 0 0 "-" A,.-I B,,

(B._)

For the present application, each element in .A is a 5 × 5 matrix. However, there

is another "dimension" to .A, which we are not showing here. Since the domain

of calculation is a parallelepiped in computational space, we actually operate in

a whole plane of data when perform/ng the solution in a certain direction. This

other dimension of .4, which one may call its _depth', is equal to the number

of grid points in this plane. The reader should also realize that we are using a

somewhat loose nomenclature by calling these entities _matrices". They would be

(more appropriately) referred to as multi-dimensional arrays.

It is instructive to think in terms of matrices because they are easier to represent.

Furthermore, for each point in this grid plane (or grid surface, if one thinks in terms

of the physical space), the finite difference equations are matrix relations. On the

other hand, it is important to remember that we are solving for a whole data plane
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APPENDIX B. PERIODIC TRIDIAGONAL SOLVER

at once, since the storage requirements are determined by the size of the resulting

multi-dimensional arrays.

The process of inversion involves an L-U decomposition of matrix .A, such that

where

Here I is the identity matrix.

A = _ (B.2)

Lz 0 0

M_ L2 0

0 M_ L3

: : M3

0 0 :

N2 -..

IU20

O I U3

0 0 I

0 0 0

0 0 0

''" 0

.o i 0

°o 0

•.. Ln_ |

N.-2 M.-I

• 0 I/i

• 0 V_

• _]'n- I

• I

0

0

0

0

0

L.

Vn-2

I

(B.3)

(B.4)

In order to present the algorithm for solution adopted in the present work, we

will assume that the solution for a system of the form

A.X" = Y (B.5)

is bein 8 sought. Furthermore, we will call the intermediate result

where

X

q

zx Yl

=2 Y2, Y=, R'=
• o
o

X. Yn

p

1"i
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APPENDIX B. PERIODIC TRIDIAGONAL SOLVER

The solution a_orithm can be written as follows:

Forwa_ sweep

• First element (i --- 1):

• Fori-2untiln-2:

Mt =At

2_t -- L_tyt

Vt = L_t Ao

T. = Nt_

-1V_ = L,_tC,

L_ = B, - M_-tVi

M, =A_

r, = L; t (v, - M,-t_',-t)

Vi -'- -L_'tM__tV_-I

T. = T.+N,V_

• Next-to:lut element (i = n

u_

M_

ri

Tb

- 1):

-1
= L,_lC,

= B, - M,-tV_

---- Ai- Ni-lUi

ffi L; 1 (Y_ - M_-tr-t)

144



APPENDIX B. PERIODIC TRIDIAGONAL SOLVER

Last element (i - n):

u,, -' (c,, - T,)

T. = T.+M._JI.

L,, = B,,-T,

_,, = L; 1(m,- M,,__,,__)

Backward sweep

• Last and next-to-lastelements:

::.-1 = _.-1 - U,,x,,

• Forifn-2untill:

As theexpressionsabove show, only thearraysrequiredforthebackward sweep have

to be completelystored.At a givenpointalong the forward sweep,only the arrays

in the current"cohmm" of £ and ih the precedingone are needed. All information

prior to that can be discarded. Furthermore, .the arrays in .A are generated as they

are needed during the forward sweep. In summary, care is exercised in order to

reduce the storase requirements to a minimum. Further reduction in storage space

could only be achieved at coetly penalties to the computational time, since it would

involve regen_h'ating portions of _4 during the backward sweep.
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