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Chapter 1

Introduction

1.1 Background

The transonic flight regime has proven to be very difficult to analyze because of the
inherent nonlinearities associated with the equations governing the flow at transonic
speeds, even in their most simplified form. It is well known that, due to these
nonlinearities, small changes in geometry or freestream conditions do not necessarily
produce small changes in the flow solution around the vehicle. Particularly for
unsteady problems, which is the case in any flutter analysis, the shock motions
and variations in the shock strength can be significant even for small oscillations of
the body. In some cases shock-boundary layer interaction phenomenon can strongly
influence the point of flow separation. Besides being another nonlinear effect, it also
means that the position of separation is moving as the shock location and strength
vary with the body motion.

These combined problems have, over the years, meant that no methods were
developed which can treat general transonic flows. On the other hand, despite all
its difficulties, the transonic regime is very important in aeronautical applications.
Methods that would be able to perform routine aeroelastic analyses are necessary,
since current transport aircraft usually cruise in this regime and military aircraft
maneuver in it. Even missiles, or launch vehicles in general, that are designed to
acquire a very high speed in a reasonably short time, have to pass safely through
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transonic speeds. Such launch vehicles are the focal subject of the present investi-
gation.

From the point of view of the aeroelastician the need to take into consideration
the inherent nonlinearities of transonic flow is specially annoying because it prevents
his accustomed use of superposition. Of course, this is not to say that one can never
find useful linearized solutions in the transonic case. For instance, the work of Lan-
dahl (11 shows that if, the reduced frequencies are high enough, linearized equations
do a good job of predicting the unsteady aerodynamic forces on streamlined wings
and bodies. Another example of linearized transonic solutions can be found in ap-
plications of the indicial method (e. g. , Ballhaus and Goorjian (2] and Nixon [31) .
This method is a more limited form of superposition in which unsteady aerodynamic
solutions are given as linear perturbations about nonlinear steady state solutions.
For small amplitudes of body motion and small shock motions, this method has
proved to be an acceptable approach to aeroelastic analysis.

For the problems treated here, however, no linearization is possible since the non-
linear nature of the aerodynamic forces is essential to capture the physical phenom-
ena involved. This work undertakes to analyze the aeroelastic stability of ballistic
vehicles during their transonic phase of flight. Although the methodology devel-
oped cax be used for any flight vehicle, the reader will recognize that the particular
problems being addressed are most likely to occur on ballistic vehicles (boosters),
especially those carrying so-called hammerhead payloads. In such cases, the prob-
lem can be compounded by the existence of relatively large regions of separated
flow.

Since the meaning of & hammerhead payload may not be familiar to all readers,
it is important to mention that throughout this work the term will denote all those
launch vehicles where the payload has a larger diameter than the adjacent booster
stage. It is clear that such a configuration will always be associated with some form
of boattail right at the front of the booster, which creates the possibility that at
least some of the vehicle could be immersed in a region f separated flow.

The interest in such vehicle configurations, as well as in blunt geometries in

general, is related to the fact that they are sometimes very attractive options for
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the designer. Aeroelastic problems have, however, been observed in the past on
certain vehicles with these configurations (45.6] when passing through the transonic
regime. A study of nonlinear hammerhead effects is presented in considerable detail
by Woods and Ericsson 4! for an Atlas-Able IV launch vehicle, which was one of
the configurations that actually experienced flutter problems during transonic flight
in the early 1960's. Another example where the hammerhead could have been a
possible source of aeroelastic instability was the original Seasat-A launch vehicle,
as described by Ericsson and Reding ), In this case, the solution adopted com-
pletely eliminated the hammerhead by enclosing both the payload and the Agena
upper stage in a fairing with a diameter equal to the first-stage Atlas booster di-
ameter. Besides true flutter cases, some failures in early launch vehicles may have
been associated with buffeting during the transonic phase of flight, as described by
Rainey 6

The classical approach to the analysis of the aeroelastic phenomena present in
the transonic phase of flight of ballistic launch vehicles has been to use experi-
mental data for the unsteady aerodynamic pressures together with some simplified
structural-dynamic representation of the vehicle. It is typified by the examples
presented in References [4], [5] and (6] . Actually, not only in the analysis of
launch vehicle problems but in any situation where transonic and separated flows
are present, the usual practice has been to rely on empirical, or semi-empirical,
methods for the treatment of the aerodynamic terms, as can be seen from Refer-
ences (7] through [10] . The main difficulty with these analyses is exactly that they
require the use of experimental data for the unsteady aerodynamic pressures in or-
der to formulate the aercelastic problem. In some cases, since unsteady pressure
data are not usually available, steady data are adapted in a quasi-steady fashion.

This whole idea of relying entirely on experimental aerodynamic data may be
highly undesirable in many situations. For instance, in the early stages of design of
a new vehicle, or when some modifications to an existing vehicle have to be made
to accommodate a payload with a larger diameter than the booster’s uppermost
stage, such experimental data are not available. The problem is usually handled
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building wind tunnel models, testing them, and modifying the design if aeroelas-
tic problems appear. This can be very expensive during the design cycle, not to
mention that it is perhaps another reason the aeroelastician is usually seen as a
policeman as mentioned by Ashley and co-authors (11, Thus, the motivation for
the present work includes the development of the capability for calculating, as part
of the solution, the aerodynamic environment the vehicle is subjected to. Given the
necessary aerodynamic tools, the aeroelastic stability analysis can be performed.
Eventually, this computational procedure will become sufficiently cost-efficient to
be incorporated in the design cycle, at least in the transonic regime where the usual
linearized methods break down.

1.2 Computational Approach

The recent progress in the field of Computational Fluid Dynamics (CFD) has al-
lowed the simulation of transonic flowfields through the use of finite difference, or
finite volume, techniques. However, much more current research is focussed on
steady transonic calculations than on unsteady ones. The reason for this is that
unsteady calculations, and their aeroelastic applications, require that the equations
be solved in a time-accurate manner. As a result, the time-step size< that can be
taken in the time integration of the equations are severely restrictec and increase
considerably the computer cycles required for solution.

There is also the question of at which level of approximation to perform those
computations. For some problems, it is sufficient to consider the transonic small
disturbance equation, whereas in others a Navier-Stokes formulation would be ap-
propriate. Interesting surveys in this regard, indicating also the stage of develop-
ment at the time of publication, are presented by Peterson (12) and by McCroskey,
Kutler and Bridgeman (13, It is no surprise that most of the work that can be found
in the literature is restricted to airfail or wing flows. The aerodynamic formulation
is restricted to the transonic small disturbance or to the full potential equations,
since these formulations are less computationally demanding than more complex
ones based on the Euler or the Navier-Stokes equations.
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Some examples of applications of CFD methods to unsteady transonic aerody-
namic calculations and to aeroelastic analyses, where the aerodynamic formulation
is based on the small disturbance or the full potential equations, can be found in
References [14]-[30]. The computational requirements, even in those cases, are by
no means trivial. Certainly they are already within acceptable limits of present com-
puters, as the work in these references shows. The study of transonic aileron buzz
by Steger and Bailey Bl] can be considered one of the “classical” examples of the
use of CFD for aeroelastic analysis; even before 1980 it employed a Navier-Stokes
formulation for the flow solver. A few other cases, where similar complex formula-
tions are used, can also be found in the literature. For example, References (32] and
(33] include applications of Euler equations, but still to airfoil or wing problems.

The main difficulty when one starts to consider transonic aeroelastic problems of
bodies is that usually the disturbances are large enough that a potential formulation
is no longer adequate. Furthermore, the description of the aerodynamic phenomena
important to the aeroelastic analysis, such as the topology of flow separation or
shock-boundary layer interactions, may be beyond the scope of potential methods.
In other words, one has to resort to the Euler or Navier-Stokes equations in order to
appropriately simulate the physical flow features involved 34!, For these cases very
little has actually been published, although the idea of how one should proceed to
perform aeroelastic analysis is somewhat well established B3], The computational
requirements, both in terms of time and storage, are the major challenge, since
grid systems that would support a Navier-Stokes solution for typical launch vehicle
shapes are bound to be large, and CPU times associated with unsteady transonic
Navier-Stokes solutions are also substantial.

1.3 The Present Method

The approach followed in the present work uses CFD techniques to perform aeroe-
lastic analyses of launch vehicle configurations by coupling the structural-dynamic
equations representing the vehicle with an unsteady flow solver appropriate for the
physical situation being treated.
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The mechanism underlying the aeroelastic instabilities observed in flight involves
the existence of phase lags between the aerodynamic forces and the motion. In such
circumstances, these loads can do positive work on the oscillating vehicle. For launch
vehicle configurations, the accurate calculation of these lags involves resolving the
important features of the flow, which include transonic shocks and their motion,
shock-boundary layer interactions, and shock-induced flow separation. The problem
of flow separation is particularly important for hammerhead configurations, where
the existence of merged regions of separation (5] can have a definite influence on
the vehicle's aeroelastic stability. In summary, then, we can conclude that the
aeroelastic phenomena observed in flight indicate that, in the case of the ballistic
vehicles being emphasized here, the correct flow equations that should be used are
the Navier-Stokes equations.

The coupling of the two sets of equations is performed by integrating both of
them simultaneously in time and ensuring that the data generated by one set is used
in the next time step of the other. The aerodynamic equations are solved in a time-
accurate fashion, and their solution provides the forcing terms for the aeroelastic
analysis, which typically are weighted integrals of the pressure distribution along the
body surface. Solution of the structural-dynamic equations gives the new deformed
shape of the body, and so the boundary conditions for the aerodynamic solution at
the next time step.

The subject of time-accuracy of the aerodynamic equations deserves a more de-
tailed discussion. A solution would be considered time-accurate in a numerical sense
if all the scales supported by the computational mesh are being accurately resolved,
which in practical terms implies that the CFL number is at most of the order one
everywhere in the computational domain. Since the CFL, or Couraat, number can
be interpreted as the ratio of the length scale obtained by the product of some
characteristic velocity times the time step over the length scale determined by the
grid size, it is clear that this is a very restrictive condition in terms of the maximum
steps sizes that could be used. Chis is not the meaning we intend to assign to this

expression in the present work. Here, the solution is being called time-accurate
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in an aerodynamic sense, meaning that all the important aerodynamic phenom-
ena of interest are being resolved accurately. Since the time scales associated with
the structural-dynamic phenomena we will be studying here are much larger than
those associated with the pure aerodynamic phenomena, as we will demonstrate
later, by enforcing time-accuracy in an aerodynamic sense we automatically have
time-accuracy in an aeroelastic sense.

Since full solution of the Navier-Stokes equations around complex geometries
is still beyond our computational capabilities, the method employed here solves
the thin layer approximation to the Reynolds-Averaged Navier-Stokes equations,
where turbulence closure is obtained by using an algebraic eddy viscosity model.
Before the aeroelastic analysis could be started, the aerodynamic equations must
be marched in time in order to obtain an initial steady state solution for the flow
around the body, assuming that it does not deform under the loads. Once this
initial solution is obtained, one can start to oscillate the body and, from then on,
the aerodynamic solution must be time-accurate since the flow solver will be coupled
to the structural-dynamic equations as previously described. By tracing the growth
or decay of a perturbed oscillation, the aeroelastic stability of a given configuration
can be ascertained.

In the following chapters, the formulation of the problem and the detailed de-
scription of the method will be presented, together with the results obtained in
the various cases analyzed. The theoretical formulation that underlies the present
approach will be presented in Chapters 2 and 3. Chapters 4 through 6 will describe
several applications of the method, both for unsteady aerodynamic calculations as
well as aeroelastic analyses. Finally, Chapter 7 will summarize the possible contri-
butions of the present research, present its conclusions, and discuss some recom-
mendations for future work.



Chapter 2

Formulation of the Aerodynamic
Problem

2.1 The Navier-Stokes Equations

In order to correctly represent the physical phenomena present in this problem, the
appropriate set of flow equations to be used are the Navier-Stokes equations. These
equations can be written in differential form (3] o

continuity equation:

Dp -

Dt +pV.i=0 (2.1)

conservation of momentum equations:

Du - -
p-ﬁ? = —Vp +V.7+ PG (22)
energy equation:
DH @ S -

p.b.t_=3%+v.[r.u-a1+pé.u+a (2.3)

where the symbol D/Dt indicates the substantial or material derivative, the vector
G represents the body forces, and Q is the heat addition.
The set of equations above requires some constitutive relations in order to form

a closed system of equations. Starting with the equation of state, a perfect ga.s[s'”

. is assumed such that one can write

p=pRT =(v—- 1) pe; (2.4)
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where the specific internal energy of the fluid, e, is given by
e, =C,T (2.5)

The heat flux vector is given by the Fourier law of heat conduction

§=-x(VT) (2.6)
The components of the viscous stress tensor, 7, can be obtained from
Ou; = Ou; 2
i =ple—+2)-2 7)) 6;; 7
Tij “(6:;+az;) 34 (V.9)6; (2.7)

where we are considering an isotropic fluid and also that the coefficient of bulk
viscosity A is simply given by: A = —34 . Finally, the total enthalpy of the fluid,
H, is defined as

H=h+%|ﬁl’=c.~+§+%la’l’ (2.8)
where for a perfect gas one can also write the enthalpy 4 = C,T .

Equations 2.1, 2.2 and 2.3 are written in the non-conservation form. This may
create numerical problems when computing flow quantities across a shock wave,
since the use of the non-conservation form can cause loss, or creation, of mass and
momentum across the shock. So, from a numerical point of view, it is very important
to recast this set of equations in the conservation-law form, or divergent form. Before
doing that, however, we will introduce the assumptions that in the problems being
treated here there are no body forces (@ = 0) and no heat addition @=0).1t
probably should be pointed out that the body forces which we are referring to here
are field effects such as gravity, for example. The introduction of these assumptions
is not a necessary step at this point in the formulation, However, since they would
be invoked later Anyway, one might as well use them now and simplify the algebra.
It should be noted that the reason for using the above assumptions is physical, i. e.
in the flight regime being treated the contribution of the terms being disregarded
is indeed negligible.

Rewriting Equations 2.1-2.3 in index notation, with the repeated-index implying
summation, and remembering that the substantial derivative is given by

=24 a0, (2.9)
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one obtains the following equations :
dp dp Ou;

-3_t-+uj5:z_j+p5;:_,- =0 (2.10)
au; au.' - ap af.-,'
‘ [3? * 5‘] =" 3, @11)
0H oH i) a
P [-37 + ":‘g;j] = 3’;’ + 5z, [rijui — i (2.12)
Defining the total energy per unit of volume, ¢ , as
e=p [e‘- + %ujuj] (2.13)
the equations can be written in the conservation-law form in the following way,
continuity: 8 5
P, 9 N\ =
momentum: 3(pus) a( ) P Br
pui puY; P _9T; _
et =5 t5, 0s 0 (2.15)
energy:
Oe 0
%t [(e + p)uj — Tijui + ¢5] =0 (2.16)

Full solution of Equations 2.14-2.16 around complex geometries is still beyond
our computational capabilities, since the number of grid points required to capture
all the scales of a turbulent flow at flight Reynolds numbers would be prohibitive.
The alternative approach consists then in averaging the flow variables such that
they can be expressed as a mean flow quantity plus a zero-mean perturbation. In
particular, if a mass weighted averaging is used, it is possible to rewrite the equations
in terms of the averaged quantities almost in the same form as Equations 2.14-2.16.
A generic quantity z is averaged such that

z=2+7 (2.17)

where : T= 4 fio+T ; gt
Here the period of integration T, should be small compared to the time scale for

10
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variations in the mean flow quantities but should be large enough to provide some
averaging over the high frequency turbulent scales.
The flow variables can be written as:

p=P+p
pui = P+ (pu;)

e = T+e

P = P+p (2.18)
Tii = T+

% = Ti+q

pH = pH + (pH)
ph = ok + (ph)
However, if averaged velocities are necessary, for example, some other form of av-

eraging is required, since the quantity that was averaged above is the momentum.
So, for quantities like velocity and enthalpy, another average is defined as

.:C

= /P (2.19)
ph/p

and with these new definitions one could write

B
i

U, = ﬁ.--l-uf’ (2.20)
A = h+a"

It is important to note, however, that perturbation quantities such as u” and 4” do
not necessarily have zero mean value.

If we-perform the averaging process on Equations 2.14-2.16 y the following gov-
erning equations are obtained,
continuity:

11
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momentum:
8, 8 o B0 ()
ot (pu\) + 63,' (fﬁ,‘u,) + 63" 8::,- (rij = pY; uj) =0 (222)
energy:
gz 0 - a
=t -5;;[(?*'1’)“:'1'*’ 3, puTh)

Y Ty S T AY . A
_6::,- [ul (ru Puguj)+0,‘ Tij ) +3z,~ =0 (2.23)

One can observe that the new terms are:

pulu’ called Reynolds stress terms;
pu'}ﬁ called Reynolds heat flux terms;

" ‘M

u! (r.-,- - 12—-'-) called Reynolds dissipation terms.
It is evident at this point that these new terms would require some additional

closure equations. It so happens, however, that as one tries to derive a new equation
to calculate, say, the second order tensor m , another new term is introduced,
namely the third order tensor m . This constitutes the so called turbulence
closure problem, i. e. , every time one tries to derive an equation for one of these
new terms, at least another new tensor one order higher than the previous one is
introduced.

An alternate approach, which we shall follow here, is the Boussinesq concept of
effective viscosity {38'39,],whereby the turbulent mixing is modelled by upgrading
the usual molecular viscosity coefficient by some quantity usually called the eddy
viscosity coefficient. We will postpone the discussion of the particular turbulence
model being used here until a later section. By now, it is sufficient to say that the
turbulent mixing will be modelled by an eddy viscosity coefficient, such that the
viscosity coefficient that appears on the definition of the viscous stress terms will
be formed as (4%}

B~ pet e (2.24)
Here pq is the molecular viscosity coefficient and p¢ is the eddy visronity coefficient.
Similarly, the coefficient of thermal conductivity & can be obtained as

Coise Cp“t
Pr + Pre (2.25)

K Ket K =

12
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where Pr is the Prandt] number and Pr, is the turbulent Prandt! number.

With the introduction of the model above mentioned into Equations 2.21-2.23 ,
they can now be expressed only in terms of the averaged quantities, i. e. , all the
terms that involved perturbations (primed and double-primed terms) are in some
sense replaced by the model. From now on, we shall drop all the bars and tildas in
the variables, just to simplify the notation, but one should understand that we are
talking about the averaged quantities. The equations can then be rewritten for the
averaged variables as

continuity: 5 2
p . —
x 3, (pu;) =0 (2.26)
momentum: 3 5
3 (Pui) + 3z, (puiu; + pbij — ;) = 0 (2.27)
energy:
Oe 9
3 + 3—:2, [(e+p) Ui = Tui+¢]=0 (2.28)
where
Ou;, Ou; 2 Ou,
Tii = (We+ py) (371 + 6—:1) =3 (Be+ He) Ef&,‘ (2.29)
= (B B e
% = (Pr + Pr,) 76::,- (2.30)

pressure is still given by Equation 2.4 , and the specific internal energy can be

obtained as
1

&= ; ~ FUiY; (2.31)

The above set of equations constitutes the so-called Reynolds-Averaged Navier-

Stokes equations, and they are the aerodynamic equations that are actually being .

solved in this work. The equations are written above for a cartesian set of coordi-

nates. As we will see shortly, this is not entirely desirable, and so we will turn our
attention now to the problem of coordinate transformation.

13
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2.2 Coordinate Transformation

Before proceeding with our discussion, it is useful to rewrite the flow governing
equations in the matrix form they are usually seen in CFD applications. So, Equa-
tions 2.26-2.28 can be rewritten in strong conservation-law form, still in cartesian
coordinates, as:

8Q OE  9F  9G _
3 E"*'ay‘l'-a—;—o (2.32)
where the vector of conserved quantities Q is
4 p 1
pu
Q=% pv } (2.33)
pw
[ e
and the flux vectors E , F and G are
' pu ]
P“z +p— Tzs
E =« puY — Tzy > (2.34)
puw — Tes

L (e+p—r,,)u—1',,v-r,,w+q, J

. v 1
puY = Tay

F = i+ p— Ty : (2.35)
pOw = Tys

{ (°+P""'n)”-f=v“-fvlw+4v )
. o \
PUW — Tz

G =« PUW — Tys y (2.36)
pwl + P Tus

| (e+p-r,,)w—r,,u—r,,v+q, )

14
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It is convenient, for the purpose of actually implementing the flow solver code, to
have the governing equations transformed to a general body-conforming curvilinear
coordinate system. This will make the formulation in the code independent of
the details of the actual topology being solved, besides making it very convenient
for applying the boundary conditions and implementing turbulence models. The
transformation is usually known only numerically, which does not pose any difficulty
since what one really wants to know are the metrics of the transformation and its
Jacobian. Following the usual procedure in the CFD literature (see, for instance,
References[41}-{45]), one can convert the Navier-Stokes equations from cartesian
coordinates to general curvilinear coordinates by means of the transformation :

= ¢

r
¢ = {(zyst)

n = n(z,y,z1t) (2.37)
¢ = ((z,y,2,0)

Using chain rule expansions, the derivatives in terms of the cartesian variables
can be expressed in terms of the curvilinear derivatives, in matrix form, as

(387‘ rl & e Ct- (38:‘
8 2

] ¥ L — 0 & 7. Cs ! % | (2.38)
;,' 0& n ¢ 32,3

| & L0 & G L &

or conversely,

[ & (1 2z, 4, =, (&)
3 )

Jo b0z v 2] 5| (2:39)
é 0z, yy 2, 32;

L&) Lo < w 2] &

Due to the special form of the transformation matrices above, the Jacobian of the
transformation, J , can be simply written

J=10(£n,¢)/8(z,y,2)|

15
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or in the form it is actually used in computation

-1 = |9(z,y,2) /3 (6,1 ¢) (2.40)

Substituting the transformation expressions given by Eq. 2.38 into Eq. 2.32 , one

can obtain:

30 0Q 9 R 9E

3F GG 6G 6G
Multiplying the above equation by J~ -1 and completing the t xs such that at

least some of them can be written in dwergence form, we have

3r (J'la) + 52 [J-l (&.Q+ EE+§F + f,G)]

=0 (241)

+ 2 [ (0Q + nE +nF + 1G] + 3 [r* GQ+CE+ c,F +6:6)|
- {Q {58}' (1) +3 2 (J“Eg) + a (J“m (J"C )]
+E[ () + 5 2 (5na) + AR ]

[ (J"fu)+1(r‘m 5 (U76)

(2.42)

on
16| 2 (1e) + 2 (57n) + 37 (J“C,)]} =0

If we follow the work on Ref.[41] , and use Eqs. 2.38 and 2.39 , an expression

for the Jacobian of the transformation can be found as
J = (Zeyn2z¢ + Ta¥cZe + Z¢YeZn — TeYcEn — TaWEH T 3(yn2{)_l (2.43)
Similarly, the following metric relations can be found

§. = J (ynz¢ — y(Z,,) €& = J(z¢za— Za2()
£, = J(Zoyc — Tcyn) Ms = J (Vcze — Yex)
ny = I (zez¢c — T¢ze) M2 =J(Zcve = Teyc)
¢ = J(yezn = Ynze) G = J(za2z¢ — Z¢2y)
Co=J(zeyn - ToYe)

16
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§ = -z.6; — yréy — 2.6, (24‘4)
M = —Z.Nz= Y.y — Zrlls
G = —Z.(e — Yrly — 2.,

Working with the above metric relations and the Jacobian expression, one can prove

that all the terms inside the curly brackets in Eq. 2.42 are identically zero. If we
define, then,

( P )
pu
¢ = J'IQ=J"J pv }
pw
| e )
EF = J'EQ+&EE+E,F +£,6) (2.45)
F' = J! (r"Q+r]:E+r]vF+f],G)

G = J'((Q+CGE+(,F+(0G)

the governing equations can be rewritten, still in strong conservation-law form, but
for a general set of curvilinear coordinates, as:

6 oF oF o¥
$+¥+W+E—O (2.46)

This matrix equation, or its equivalent set of scalar equations, is essentially what
is implemented for the flow governing equations on the code developed. The above
still does not really explain the details of the numerical implementation of these
equations, and a later section will be dedicated to address this issue.

2.3 Turbulence Model

As previously mentioned, the concept of an effective viscosity coefficient is used
here in order to model the turbulent mixing by upgrading the molecular viscosity
coeflicient by the so called eddy viscosity coefficient. In the present work, the eddy
viscosity coefficient, y, , is obtained from the two-layer Baldwin and Lomax [46]

17
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algebraic model, which is implemented here in the usual way for wall-bounded

shear 1a.yers[47’48]a.s

e = { (I‘t)inner , N < Ncrossover (2.47)
(B)outer » M > fcrossover
Here 1 is the curvilinear Jistance normal from the wall and ncrossover is the smallest
value of n at which the inner and outer formulations give equal values.
The inner region uses the Prandtl-Van Driest formulation, such that

(Be)inner = AL vl (2.48)

where |w| is the magnitude of the local vorticity vector, and the length scale [l is

obtained as
nt
l=kn [1 — exp (—F)]

and 7+ = (nyPuTe) /M k=04, AT =26
The formulation for the outer region is similar to a Clauser formulation and is

given by
(Ht)outer = KCoF, wake F. kieb() (2.49)

where

Fuuke = the smaller of ( mas Fnas )
thﬂmsUz.' ]/ Frnas

The values of Nmes 304 Fimas are obtained from the function
- M
F(n) =nl«| [1 — exp (’F)]

where Fingg is the maximum value of F(n) in the profile, and fmes is the value of
n at which it occurs. The function Fiie(n) » called the Klebanoff intermittency

factor, is given by .
Cran\®]
Fri(n) = [1 +55 (_ﬂﬂ) ]
Nmes

Finally, Uqy is the difference between maximum and minimum total velocity mag-
pitudes in the profile (note that the minimum total velocity is zero for boundary
layers), and the constants used have the following values : K = 0.0168 ,C =16,
Cu =025, and Cxie = 0.3 .
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2.4 Numerical Implementation

It is always good practice to perform some form of nondimensionalization on the
equations being used, even if it merely is to ensure more generality in the formu-
lation. The choice of dimensionless parameters is somewhat arbitrary, so long as
one does things consistently. In the present work, the density p is scaled by the
freestream density p,, , the cartesian velocity components u, v and w are nondimen-
sionalized with respect to the freestream speed of sound a,, , and the total energy
per unit of volume e is referenced to pa2, .

For simplicity of notation we will not use different symbols to denote the nondi-
mensional variables, but we will continue to use the same nomenclature as before.
The reader should keep in mind, however, that we will be refering to the nondimen-
sionalized variables for the remainder of this development. Equation 2.46 can still

£ n &
where the vector of conserved quantities § is st:!l written as previously defined.
The reader should remember, though, that we are now referring to the nondimen-
sional quaantities, despite keeping the same nomenclature. It is instructive at this
point, however, to rewrite the flux vectors with all their components in the gen-
eral curvilinear coordinate system and to include the modifications caused by the

be written as

nondimensionalization process. Thus, they can be written as

( pU ]
pulU + pé: - 'Ak (rssfz + TnEv + fnf:)
E=J" pvU + pt, ~ %’ (Tey€s + Toly + Tyss)
puU + pé, — Mo (1.6 + 146y + Tuakl)
\ (e +P) U- Pft - %(ﬂ:fs + ﬂvfr + ﬂxfa) J

v

(2.50)
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pV ‘
puV + pns — yﬁf’ (Tzene + Tayly + Tzals)
F= J-l L va +py - %‘ (Tﬂﬂ, + Ty + Tys”l) { (251)

pwV + pn, — %’ (Tasls + Tysy + TesTls)
| (e +p)V = pne — Y (Bane + Byny + Bants) |
] oW 1
P“W + pCs — Mﬂ (TS:C: + r:r(y + Tnc.-)
CT=J"{ poW+p(— -‘ﬁ'.‘(TnC: + Ty + TysCs)
pwW + p(, — MA? (Tesle + Ty + 7::Cs)
| (e +p)W — PG — 2= (Bele + Biy + Bsli) |
In the above equations, M, is the freestream Mach number defined as

My = Ue (2.53)

Goo

.

(2.52)

where Uy, = Vu% + v? + w] is the magnitude of the freestream velocity vector. Re
is the Reynolds number, given in the usual way by
= Pooucaeo
Hoo
where j is the freestream (laminar) viscosity coefficient and & is the reference
length. It should also be mentioned that any viscosity coefficient that appears

on the formulation is pondimensionalized with respect {0 poo. The contravariant

Re (2.54)

velocity components, U, V and W, are defined as

U = &+&utv+t §sw
V = 40+ N0+ 00 (2.55)
W = (+Cut+iut Gw

The 8., B, and B, terms are given by

B = Tesh+ TV + TosW — s
By = Tau+ Ty + TysW — qQy (2.56)
By = Testh + Tys¥ 4+ TeaW — s
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All the other variables that appear in the above equations have been previously
defined, and again we call the reader’s attention for the fact the dimensional vari-
ables should be just replaced by their nondimensional counterparts in those def-
initions. It is interesting to note that the three dimensionless numbers usually
encountered when nondimensionalizing the Navier-Stokes equations, namely Mach
number, Reynolds number and Prandtl number also appear. Although not explic-
itly shown in the equations immediately above, the Prandt] number arises in our
case through the way in which we have defined the components of the heat flux
vector, ¢., ¢, and ¢, .

The Beam and Warming implicit approximate factorization schemel4 90] ;¢
used for the solution of the finite difference equations. The spatial derivatives in
Equation 2.46 are approximated using three-point, second-order central differencing,
and the implicit Euler method is used for the time march. With this method, we
can write

T =T +at ( g) ™ +0(a#) (2.57)

where by O (At?) we mean that this is a first order method in time, and the su-
Perscript n indicates at which instant of time the quantity should be evaluated. If
Equation 2.46 is substituted in the above, we obtain

n+1
TH=0-at (%"' %:-’+ %) +0(At’) (2.58)

Since the flux vectors are nonlinear functions of the vector of conserved quantities,
in order to solve for J*** » while maintaining the order of accuracy of the method,
the nonlinearity is removed by a local Taylor series expansion about §" . This
process yields

" = T4 ar (T -T) +0(a8)

' = i @"-T)+o0 (a?) (2.59)

T = T o (@ -T) + 0 (an)

where 4, B and C are the Jacobian matrices given hy

oF
A=
aq
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oF
B=-63
8G
C=—56

Substituting the linearized expressions into Eq. 2.58 one obtains

0 oy gy 0o |g =
[I+At(-a-E-A +anB +a(C")]U"* =

3 n, 9pn, 9
[I+At(5€-.4 +anB +a—C-C)]U"

9F OoF  oG\"
-At (-a? tot 3-() +0 (At’) (2.60)

where I is the identity matrix.

In order to make the solution algorithm more cost effective, an approximate
factorization of the three-dimensional operator into three one-dimensional operators
is introduced. Following the work of Beam and Warming (49 and Pulliam [41] , 8

term of the form
n n »n ”n n " n n n +1_
[At“ (aB A OC9A~  3B"dC )+Maa 8C™ 8A ] (U“ z:“)

3 o T ¢ O T on & an B¢ o€ At

can be added to the left-hand side of unfactored equation. Furthermore, one should
Lote that the added term is of order At® and therefore does not alter the order of
atcuracy of the method. With the above term, the equation can be factored such
that the algorithm can be written in the so-called deita form as

& » d n a n —
(1o oxdr) (r+ouc?) (14 xfen) o -
9E oF aC\" )
-At (5? ot -5-() +0(ad) (2.61)
where A, is a forward difference operator in time, such that
Aﬂ' = Uﬂﬂ - U"

With the introduction the three-point second order central differencing to ap-
proximate the space derivatives, the final form of the algorithm can be written
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L,LLeAQ" = Re+ Ry + R (2.62)
where the above operators are defined as
Le = (I+At5A" - ¢ AI7'V,AJ - AtMoRe 5T M7 J)
L, = (I+At6,8"-AtJ"'V,A,7 - AtM Re™'T7-1 413 ))
Le = (I+At5C" - ¢AtIT'V AT - AtMoReT'EITMRT)  (2.63)

Re = —AtGE" — egAtI™ (VA I
Ry, = —At6,F" - egOJV(V,A,) T
Re = —Ot§G — eg At (VA IT"

Here & , 6, and §; are central difference operators; Ve, V, and V, are backward
difference operators; and A, , A, and A¢ are forward difference operators in the
§-, n-, and (-directions, respectively. For example,

1
5(@'.& = E[GTH,,-.;.-U?.L,;I.]
VeU:,;;. = a:'k ‘U;‘—l.j,h
AQiin = Tru—-Qisi

The &, 8, and ; are midpoint operators used to maintain a compact three point
second order accurate central difference scheme when differencing the viscous terms
in the left-hand side. As previously described, the A, is a forward difference operator
in time.

The Jacobian matrices were split such that 4, B and ¢ contain, respectively,
the inviscid terms of A, B and C, whereas M., M, and M, contain the viscous
terms. Expressions for these matrices are given in Appendix A. A few extra words
may be important to clarify the need for midpoint operators when working on
the viscous terms. The left-hand side matrices, as defined in Equations 2.63, are
block tridiagonal matrices where each block is 5 x 5. However, the viscous terms
themselves, i. e. , the components of the M matrices, already involve derivatives of
the velocity components in the case of the viscous stress terms and of the internal
energy in the case of the heat flux terms. Therefore, if we insist in using central
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differences, we need to use midpoint operators in order to avoid a five point stencil,
which would cause the operators to become full-block pentadiagonal. With the
midpoint operators we can keep the matrices block tridiagonal while retaining the
order of accuracy of the method.

Although linear stability analysis shows that the fully implicit algorithm is un-
conditionally stable, stability bounds are encountered in practice. The problem
comes about because of the nonlinear interactions in the convection terms of the
momentum equations. The problem can be understood easily if one thinks in terms
of waves interacting. When two waves interact, one of the products is a new wave
of higher frequency, which frequency is the sum of the original ones. This frequency
cascading will, at some point, exceed the resolution capacity of a finite mesh, with
the result that these frequencies either alias back into the lower frequency range or
pile up at the high frequency side. If not controlled, this process may cause serious
inaccuracies and quite poesibly numerical instability. The usual way the problem
is handled is to introduce some form of numerical dissipation into the algorithm,
with an error level that should not interfere with the accuracy of any viscous effects
being captured in the solution. Some numerical schemes, generically known as up-
wind schemes, intrinsically have this numerical dissipation built into the scheme by
the way they use one sided differences. Central difference schemes, however, do not
have this numerical dissipation built into the scheme, and so it must be explicitly
added in order to control the nonlinear instabilities above described.

The procedure adopted here consists of introducing a constant-coefficient, fourth-
order artificial dissipation in the right-hand side operators, and constant-coefficient,
second-order artificial dissipation in the left-hand side operators. In the right-hand
side, or ezplicit side, the amount of artificial disspation introduced is controlled by
the coefBicient eg , and on the left-hand side, or smplicit side, it is controlled by
the coefficient ¢; (see Equations 2.63). Ideally, one would like to use fourth-order
artificial dissipation on both implicit and explicit sides, because the use of different
orders of numerical dissipation schemes does introduce a small numerical error on
the solution. However, once again the issue of solution efficiency dictates that we

settle for the second-order numerical dissipation on the left-hand side, because a
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fourth-order scheme would cause a five point stencil and so block pentadiagonal
matrices.

One possible way to deal with the problem of having different orders of artificial
dissipation schemes on the implicit and explicit sides is to use the so-called diago-
nal algorithm, described by Pulliam and Chaussee 3] | The idea of the diagonal
algorithm is based on the diagonalization of the inviscid left-hand side matrices as
described by Warming, Beam and Hyett [51] . These authors show that the Jaco-
bian matrices A, B and € have real eigenvalues and a complete set of eigenvectors,
and so can be diagonalized. It is clear that for viscous calculations the algorithm
cannot be rigorously applied, since in order to diagonalize the left-hand side oper-
ators we need to neglect the implicit viscous terms. However, results by Pulliam
and Stegerlsz] show that for steady viscous flows and in convection dominated un-
steady flows the diagonal algorithm, as described above, produces very good results.
Furthermore, it allows the use of the fourth-order artificial dissipation scheme in
the left-hand side operators because, despite the fact that this makes the matrices
block pentadiagonal, now each block is a five by five diagonal matrix, making the
inversion process fairly inexpensive even for a block pentadiagonal system. In the
present work some attempt was made to program the diagonal algorithm, however
there were questions concerning the accuracy of the algorithm in the case of self-
excited unsteady calculations *, which is exactly what our aeroelastic analyses
are. Hence the idea was abandoned,

Although not explicitly mentioned in the previous equations, freestream sub-
traction[53] s performed in the flux vectors when computing the right-hand side
terms in Equation 2.62 . The reason for this comes is that, when arbitrary curvi-
linear coordiriates and general finite differences are used, there are small numerical
errors introduced in the calculation of the metrics of the transformation which may
cause the code to be unable to reproduce the freestream (or an uniform flow). By
perx‘orming the freestream subtraction in the flux vectors, we ensure the capability
of recovering freestream and reduce the overall error of the method.

Since a viscous formulation is used here, at body walls we have no-slip bound-
ary conditions, i. e. , u = v = 1 = 0 for steady problems, or u = z, ,v =y,

* Pulliam, T.H., personal communication, May 1988,
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and w = z, for unsteady cases. Here z., y, and z, are the cartesian components
of the grid velocity due to body motion. We assume also adiabatic walls and zero
normal pressure gradient at body walls. Uniform freestream is enforced at the up-
stream and far-field lateral boundaries. The treatment given to the downstream
boundary depends on the value of the freestream Mach number. For a supersonic
freestream, the downstream boundary is extrapolated from interior values. For a
subsonic freestream, according to characteristic relations, there are four characteris-
tics propagating downstream and one propagating upstream. To be consistent with
that, pressure is then fixed at the downstream boundary (at its freestream value)
and the other quantities are extrapolated from interior values. From a strictly nu-
merical point of view, it should be mentioned that all the boundary conditions are
treated explicitly in the present work. This means that they are applied using the
information available at the present time step.

There are some important points concerning the boundary conditions that should
be further discussed. In an attempt to save computational points in the grid, the
approach primarily used in the present work does not consider a body base, but
rather stops the computation at some point along the cylindrical afterbody section.
This may cause some concern when computing subsonic flows, since we will be as-
suming freestream pressure at this computational exit plane whereas the flow will
probably not be completely back to a freestream condition due to the presence of
the body. Essentially, there is an error being introduced, but care is being exercised
in order to make the afterbody cylindrical section long enough that whatever errors
are introduced at the downstream boundary will not propagate upstream to the
point of influencing the region of interest in the solution. Later, some results will
be presented that illustrate this point and confirm our statement that the regions
of interest are not being contaminated by whatever errors are introduced at the
downstream boundary.

Another point of concern is the treatment of the far-field lateral boundaries.
Since we have a body at angle of attack, lift will be generated and so there is a ques-
tion about the conservation of circulation in the far-field. To be precise, far-field
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lateral boundary conditions should have some way of enforcing this conservation-
of-circulation boundary condition. However, since we are dealing with three dimen-
sional bodies of revolution in the present work, we do not feel that the added ac-
curacy is worth the complication of the boundary conditions. Moreover, the results
obtained seem to corroborate our assumptions, indicating that assuming freestream
conditions in the upstream and far-field lateral boundaries is good enough for the
present case. |

Finally, the reasoning behind the zero normal pressure gradient condition at the
wall should be addressed. The code is implemented with the assumption that n is
the normal direction, and so this boundary condition is enforced by setting 8p/dn to
zero at the wall. Strictly speaking, for a viscous formulation there is no theoretical
reasoning that would lead to the zero normal pressure gradient condition without
the introduction of any simplifying assumption. In particular, for viscous flows over
curved walls this condition is not completely correct. However, if we study results
from boundary layer theory [54] and evidence from experimental measurements on
boundary layers, we observe that the pressure is approximately constant throughout
the thickness of the boundary layer. In our case, we can also argue that this
boundary layer assumption is being used only on the points that are nearest to the
wall. In other words, although there is a physical boundary layer, the zero normal
pressure condition is only being used up to the first grid surface off the body and not
throughout the whole layer. It should be pointed out that there are cases where this
condition can be rigorously demonstrated. For the general case in a Navier-Stokes
formulation, however, the justification for its use is based on experimental, as well
as numerical, evidence in conjunction with the insight provided by boundary layer
theory.

For each time step Equation 2.62 is solved by forming the right-hand side and
then inverting separately, and in the sequence indicated, each of the left-hand side
operators through the use of an L-U decomposition algorithm for block tridiagonal
matrices. In the cases when an “Q” type mesh is used in the circumferentia] direc-
tion, i. e. , the grid is completely wrapped around the body for the full 360°, the
grid is said to be periodic in the circumferential direction, For periodic grids, it is
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necessary to program periodic tridiagonal solvers, because in this case the left-hand
side matrix is not strictly tridiagonal but has extra blocks in the upper right and
the lower left corners. Appendix B has more details about the handling of periodic
tridiagonal matrices.

The database is structured in a pencil format which minimizes the amount of
data that has to be stored in main memory at & given time. The pencil data
structure concept, as well as the procedure for solving Equation 2.62 when the
database has such a format, are described in detail by Deiwert and Rothmund{*”
A pictorial idea of a general body configuration in physical space, together with how
this is mapped into computational space and showing the various blocks boundaries,
is presented in Figure 2.1 . Pencils of data are formed by storing sequentially the
blocks in the given sweep direction while keeping the pencil base restricted to one
block dimension in the other coordinates. Incidentally, this is a good point to
mention that the code primarily used (as the flow solver) in this work evolved from
a steady state version of the ARC3D code that the authors of szmnce[ssl had
optimized to run on & CDC Cyber 205 computer. The code is highly vectorized
and makes extensive use of random, or asynchronous, 1/0 in order to improve its
efficiency for a problem that is definitely not core contained.

The computational mesh for all the cases considered in this work was generated
using algebraic methods, since for the regular geometries typical of launch vehicle
configurations these methods are able to provide sufficiently good grids and they
are very simple to use. It is important to realize that, since the goal is to perform
aeroelastic analyses, the body will be deforming as the solution proceeds. This
means that some form of grid reshaping is necessary in order to account for this
deformation. "In the present approach, the complete grid is regenerated at every
time step (when performing aeroelastic calculations), which is another reason why
it is important to use algebraic grid generation methods which are very fast. If one
decides to analyze more complex geometries, say a vehicle with strap-on boosters,
probably a more elaborated grid generation scheme should be adopted.

Both exponential and hyperbolic-tangent[ 561 grid stretching techniques are used
where necessary to cluster grid points in the regions of higher flow gradients. One
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(a) Physical space.

(6) Computational space.

Figure 2.1: General body configuration illustrating the pencil (and block) data
structure format.
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obvious instance where such clustering must occur is close to the body in the normal
direction, since we need a very refined grid in order to capture the viscous effects.
Other situations where clustering is necessary may include regions where shocks
are expected to occur, of regions of rapid expansion, for instance, where the body
may have the sharp cornem[sﬂ typical of boattails and flares. A final note with
regard to grid clustering is that, despite the fact the viscous terms are kept in
all three coordinate directions in the present formulation, the approach used here
should still be considered within the scope of the thin layer approximation to the
Reynolds-Averaged Navier-Stokes equations (58] | This is because the grids used are
too coarse in the longitudinal and circumferential directions to capture completely

the viscous effects in these directions.
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Chapter 3

Aeroelastic Formulation

3.1 Equations of Motjon

The structural-dynamic equations for the vehicle are developed by considering free-
free flexural vibration of an elongated beam with variable properties. They are cast
in modal form. It is assumed that the angle of attack remains low enough that no
lateral forces will appear, and so bending in only one plane has to be considered.
The formulation developed is quite general, even allowing for rigid body degrees
of freedom, although in the applications presented here the rigid body degrees of
freedom were assumed to be constrained.

The equations of motion for a general beam in planar vibration can be found in
the extensive literature (see, for instance, References [591-62] . In terms of engs-
neering beam theory several degrees of approximation exist from which a selection
must be made. For the approach adopted here, it is not particularly important to
g0 over all the exact details of the derivation of these equations, since we will sim.
Ply assume that mode shapes and natural frequencies of free vibration are available
to us. The modes could have been obtained either from structural-dynamic tests

mulation but simply take it as a given quantity, obtained ejther from experiment
or some theoretical model. Finally, it should be clear that, although the overal]
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CHAPTER 3. AEROELASTIC FORMULATION

aeroelastic formulation is nonlinear (as we hope to demonstrate throughout this de-
velopment) , the strictly structural-dynamic formulation is linear and the principle
of superposition can be applied.

For the sake of completeness, and to clarify the dimensions of the quantities
involved here, the equation of motion for a beam in flexural vibration is presented.
When the effects of shear and rotary inertia are neglected,

m(z)%’t—f- + 582_’_2_ [El(z)g:—i] = F,(z,t)

where §(z, t) is the total lateral deflection of the centerline of the beam, m(z) is the
mass per unit of length, EI(z) is the bending stiffness, and F,(z,t) is the lateral
external load applied to the beam (units of force per unit of length). Again, it is
very important to stress that the equation above is merely an example of what a
very simplified equation of motion for lateral vibration of an elongated beam might
look like. As mentioned by Bisplinghoff and Ashleylso], “shear, rotary inertia, and
several other effects are automatically accounted for” when a modal superposition
solution technique is used.

The total deflection & (z, t) at any station along the body can be expressed [59],

using a modal approach, as
5(zt) = 300 (8) 4i(2) (3.1)
i=l :

where g; (t) are the generalized normal coordinates and ; () are the normal modes.
To be consistent with the aerodynamic formulation, we will assume that &(z, t) and
¢i(t) bave been pondimensionalized with respect to the same reference 1en.gth &
used for the serodynamic equations. It should be mentioned that the use of 2
modal approach assumes that the structure and the frequencies of interest are such
that disturbances are felt almost instantaneously throughout the structure. In other
words, problems with travelling structural waves, which are common in very large
space structures, are of no concern for the vehicles considered here. It is also clear
that in actual application only a finite pumber of modes is considered. In other
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words Eq. 3.1 should be more properly written as

N
6(z,t) = Zl qi(t)¢i(z)

where N represents the number of modes employed in the analysis.
Since the normal coordinates are not coupled either elastically or inertially, the
equation of motion for the i-th cooordinate can be written as

M [3(0) + 20@a() + D) = o) (3.2)

Here the quantities have already been nondimensionalized, and the dots indicate
derivatives with respect to (nondimensional) time. The nondimensional natura]
frequencies, T;, are defined by

O = bowi (3.3)

Qoo
where w; is the natural free-free bending frequency in the j-th mode, & is the refer-
ence length used for nondimensionalization of the aerodynamic equations, and G is
the freestream speed of sound. It is interesting to Point out that the nondimensional
frequency above is not the same as the so-called reduced ﬁ'equcncylsg’so’&], which
is a parameter usually seen in aeroelastic or unsteady aerodynamic applications.
However, since that reduced frequency, &, is usually defined as

k=l
they are related by
Wi = Mk,

The nondimensional generalized masses, 77;, can be obtained from the actual vehicle
mass distribution, m(z), from

% m(z)
0 Pl
where p, is the freestream density and ¢, is the (nondimensional) body length. If
the (dimensional) generalized masses 7, are already known, say, from experimental

m; =

$i(z)di(z)dz (3.4)
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results, it is clear that the integration described above is not necessary, and the
nondimensionalization is simply obtained by
"= (3.5)
Paoeg

It is important to emphasize that in the present approach the natural frequencies,
the structural damping coefficients (¢:), the normal modes and the mass distribution
are considered input data. They are assumed to be known either from tests or any
other theoretical analysis.

The real difference in the present approach, when compared to classical aeroe-
lastic analysis, is associated with the generalized aerodynamic forces, Py(t), which
:n this case are calculated from

Pt = “ Uz, t)$i(z)dz (3.6)

Here {(z,t) is the nondimensional running normal force acting on the vehicle, ob-
tained from suitable circumferential integrations of the body pressure distribution.
Note that the dimensional counterpart to £(z,t) would have units of force per unit
of length, and also that since we are dealing with small angle of attack cases (z,t)
is numerically very close to the running lift on the body. The important point is
that the true nonlinear character of the present analysis is somewhat hidden in the
generalized aerodynamic forces, because the pressure distribution around the body
is obtained from the pumerical solution of the Navier-Stokes equations. Note that
P(t) is identified with mode i, but has contributions of all modes through £(z,t) .
In this fashion all transonic aerodynamic nonlinearities are captured by the method,
whereas the a_tmctuml—dynamic formulation is still kept very simple.

Some points regarding the assumption that the angle of attack remains small
should be further clarified. First, and probably the most important reason why this
assumption is introduced, is the fact that the kind of boosters we are most interested
in here are prevented from attaining large angles of attack because the loads on the
structure would be tremendous. Most such vehicles have some maximum angle
of attack that, if exceeded, cause the launch to be aborted by the destruction

of the vehicle. For the Saturn V , this maximum tolerable angle of attack was
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approximately 4 degrees*. Second, there is nothing to indicate that the kind of

instability we are concerned with is a high-angle-of-attack phenomenon. Quite to

the contrary, since the major mechanism that drives the instability is associated

with lags in the aerodynamic forces due to the shock motion[64], its effect would

be more pronounced at very small angles of attack where the streamwise location
of the shock can actually be forward in the leeward side (when compared to the

windward side) for a portion of the motion and backward for the rest of it. Another

important observation is that there is no conceptual diffculty in extending the

present method to treat cases where asymmetric separation, or yaw angle exists,

such that bending in both planes and twisting of the vehicle are to be considered.

It is just a matter of coding the necessary geometric considerations and introducing

the structural modes associated with the added degrees of freedom. As far as the
aerodynamic formulation is concerned, it is valid for any angle of attack; its more
stringent limitation is associated with the turbulence model which originally was
derived for attached or mildly separated flows.

3.2 Solution of Aeroelastic Equations

Since the calculation of the flow solution at each time step, and so the evaluation
of P(t) , is much more time consuming then the solution of the structural-dynamic
equations, some constraints are imposed on the numerical method that can be used
for the time integration of Equation 3.2. The idea of transforming the second
order equation into a first order system as usually done in control theory may seem
attractive, but it is not very practical in this case. For instance, any implicit method
or any predictor-corrector sequence, which would typically involve the evaluation
of the forcing term at an instant of time ahead of the current time, would become
prohibitive as far as computational time is concerned with present computers. On
the other hand, the explicit Euler method can be shown to be always unstable in
such situations by a simple linear stability analysis.

The procedure selected to advance Equation 3.2 in time consists of a straight
finite differencing of both the first and second time derivatives, as also done by

* Ashley, H., personal communication, July 1987.
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Steger and Bailey [311, Guruswamy and Yangtas], and Borland and R.izzetta[%].
Using second order accurate formulas, we can approximate those derivatives as
Gine1 = 2in + Gin-1

(&)’
Qine1 = Gin-1

24t

Here the subscript i refers to the mode considered and the subscript n refers to
the time level at which the quantity is evaluated. With the above formulas, the
expression for gins1 , i- €, the generalized deflection of mode i at timen+1,1s
given by

g =

¢ =

[2 - (807 @) gin = (1 = DIT) gin-r + (A1)' Pra
imtr = ° (1 + Atl@)

where, for simplicity of notation, we have denoted Pi(t) = Pi(t)/m..

Linear stability analysis of the above scheme shows that it is conditionally stable.
However, this really poses no constraint in the time step size for aeroelastic anal-
ysis, because the values of At required for the stability, and more importaatly the
time-accuracy, of the aerodynamic equations alone is much smaller than whatever
restrictions could be imposed by the conditional stability of the above scheme (for
values of natural frequency that would be of any concern for aeroelastic stability).
More on the stability properties of this Equation 3.7 scheme will be discussed in
the next section. The analysis also shows that for {; — 0 the scheme is numerically
non-dissipative, which is of course the expected result since central differences are
being used. This is important to avoid Aiding physically unstable solutions because
of numerical dissipation introduced by the method.

The coupling of the two sets of equations, the Navier-Stokes equations governing
the flow behavior and the above described structural-dynamic equations governing
the oscillating veéhicle behavior, is performed in the following way. At each time
step, the aerodynamic equations are solved in a time-accurate fashion, and their

(3.7)

solution provides the forcing terms for the aeroelastic analysis. These are weighted
integrals of the pressure distribution along the body surface, as one can see =~m
Equation 3.6 . Solution of the structural-dynamic equations gives the new deformed
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shape of the body, as well as the body oscillating velocities, and therefore the
boundary conditions for the aerodynamic solution at the next time step. By tracing
the growth or decay of a perturbed oscillation, the aeroelastic stability of a given
configuration can be ascertained.

Note that once the response in terms of the generalized coordinates, ¢;'s, is
calculated, the total deflection of the body centerline, §(z,t), can be determined.
Since we are assuming that body cross-sections do not deform, this means that the
total deflection of the body surface is known, and the grid can be regenerated. The
solution process, as implemented here, recalculates the whole computational mesh
at every time step to account for the deformation and motion of the body. This
was done to provide greater generality to the method and enable it to treat not so
small deflections.

Finally, it should be stressed that, in the present implementation of the method,
the rigid body degrees of freedom were assumed to be somehow constrained, and
only the elastic ones were considered, There is no additional conceptual difficulty
in including the rigid body modes in the current code. However, results by Woods
and Ericsson 4] seem to indicate that the inclusion of these modes is not critical for
determining the aeroelastic stability of a given vehicle, for the kinds of configurations
and phenomena dealt with in the present work.

3.3 Stability Considerations

In this section we intend to discuss further the numerical stability of the scheme
implemented for the solution of the aeroelastic equations. The main objective here
is to substantiate the claims made in the previous section regarding the stability
and accuracy of the algorithm. The techniques used in this analysis are the same
ones usually employed in the analysis of computational fluid dynamics schemes and
are described in detail by Lomax*. A linear stability analysis of the scheme
implemented for the solution of the aerodynamic equations, i. e. , the compressible
Navier-Stokes equations, can be found in the literature (see for instance Refer-
encel67] ) and will not be discussed here.

* Lomax,, H., i i ' i Notes for course AA214A,
Dept. of Aeronautics and Astronautics, Stanford University, Autumn Quarter, 1983.
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The numerical algorithm being implemented here is given by Equation 3.7. Since
the generalized aerodynamic forces area forcing term in this case, for stability anal-
ysis we should take P; . = 0. Considering gin+1 = 9qims where o is the sometimes
called amplification factor, and replacing this into Equation 3.7, one obtains

(2 - At’U?) Qin — (1 - Af(.‘U.’) d"‘q.',,.

OQin = YD) (3.8)
Cancelling out the common term gin and solving for o we obtain
(2 - aneh) + /orw! - 48T (1~ C)
7= 2(1+ &) (349)
The stability requirement is given by
ol <1 (3.10)

or, in words, the stability region is described by the circle of unit radius in the
complex o-plane.

A complete analysis of the above expression for o is probably beyond the point
we want to make here. It is interesting to note that there are essentially two
parameters that have to be considered, namely AT, and ;. Since for most practical
applications the structural damping coefficient is a small quantity, it is instructive
to study the limiting case when (; is zero. In this case the expression for the

amplification factor becomes

o= % [(2 — OGP % (4w [D6T - ] (3.11)

which shows that the scheme is numerically stable for A2 T; < 2 for the case of
sero structural damping. Since the structural frequencies that would be of interest
are usually below 50 to 80 Hz, and also due to the fact that the nondimensional
frequencies are being refered to the speed of sound, it is safe to state that @; will,
at its largest, be a number around unity. However, this shows that the conditional
stability of the scheme poses no additional constraint on the time steps that could
possibly be taken, because the maximum time step required to ensure time-accuracy

of the aerodynamic equations alone is at least one order of magnitude, and quite
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possibly two orders of magnitude, smaller than the one determined by the above
condition. Moreover, the expression above shows that the modulus of o is exactly
equal to 1 for all values of A2 T; < 2, which means that the numerical scheme is
also non-dissipative™.

In support of previous statements, we will consider now the other possibility
that has been suggested before, i. e. , to transform the second order equation into
a system of first order ones and then use the explicit Euler method for the time
march. We will show that this produces an unstable numerical algorithm. Rewriting
Equation 3.2 as a first order system produces

{ a(t) = wi(t)

E 3.12
ui(t) = Pi(t) - Wlqi(t) - 24Twi(t) (3.12)

where we are essentially defining a new variable v; = ¢, and the dots indicate
derivatives with respect to nondimensional time, as before. Using the explicit Euler
method, we can write

é'. =] !&A‘Lk:_ﬁd‘. = Vin
b X Hedimia = P 3, — 2 Tia

which then produces the following set of finite difference equations

Qintl = Qin+ Dy o
Viner = (1 = 288(T;) v; o — DD2q 0 + NP,

For stability analysis, the forcing term is set to zero and we assume that ¢; ,1 = i

and v 41 = oV, .. Writing the resulting equation in matrix form, we obtain

(e-1) A Gin | _o

~om (o -1+2083) | | wia |
The characteristic equation is obtained by setting the determinant of the coeflicient
matrix to zero, which gives

(0 - 1) (d -1 + 2&(.3.) - At’a‘,' =0

* Lomax,, H., Numerical Methods in Fluid Mechanics, Notes for course AA214A,

Dept. of Aeronautics and Astronautics, Stanford University, Autumn Quarter, 1983.
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If we consider again the limiting case of zero structural damping, the roots of the
above equation can be easily obtained as

12 = 1:’:&5.

which shows the method is always unstable for any value of parameter &N T,; .
Numerical experiments support this theoretical result, indicating that in this case
the instability of the explicit Euler method is a very practical problem.
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Chapter 4

Study of Hemisphere-Cylinder

Cases

4.1 Introduction

The aerodynamic code being used in the present investigation evolved from a version
of the ARC3D code *!! that Deiwert and Rothmund!°®! had running on a CDC
Cyber 205 computer. The code had been optimized for the Cyber 205 architecture,
but the formulation therein did not allow for general unsteady problems since it
was missing the metric terms associated with time derivatives. The first major
programming task undertaken here consisted of the introduction of the unsteady
terms into the aerodynamic equations. Before attempting any aeroelastic analysis or
even such complex configurations as the hammerhead, it was important to check the
new code on some problem with a simpler geometry that would allow for validation
of the modifications introduced.

Due to the simplicity of the geometry, while still keeping the general launch
vehicle shape, a hemisphere-cylinder configuration was chosen to test the code.
Such a configuration is also attractive from the standpoint that experimental or
other computational results are available from the literature. The following sections
will describe the cases studied with such configuration, which include steady state
results for freestream Mach numbers of 0.5, 0.6, and 1.5 (all cases at zero angle of
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attack), as well as unsteady results for a rigid body pitching oscillation. It should
be noted that for these calculations the turbulence model was turned off, so that
they are laminar computational results. Turbulent flow cases were run only for
the hammerhead payload configurations, which will be discussed in the subsequent
chapters.

4.2 Grid Generation

The body conforming computational mesh was generated using algebraic methods,
and the same mesh was used for all hemisphere-cylinder cases analyzed. Grid lines
run in the longitudinal, normal and circumferential directions, and 50, 40 and 20
grid points were used, respectively, in these directions. It should be pointed out
that this is a fairly coarse grid system, since again the point of these computations
was mainly to pinpoint any possible problems with the code before attempting any
aeroelastic solutions on more complex geometries.

A general three dimensional view of body and grid can be seen in Figure 4.1, and
details of typical grid planes, i. e. , longitudinal and croesflow planes, can be seen
in Figure 4.2 . Mesh points in the normal direction are clustered near the body in
order to capture viscous effects, and a 25% exponential grid stretching is used in this
direction. Over the hemispherical part of the body, grid lines in the longitudinal
direction are placed at equal angular increments, and over the cylindrical part of it,
these lines are equally spaced. The 50 points used in the longitudinal direction are
distributed such that 15 of them are over the hemispherical part of the body, and the
other 35 are located along the cylindrical section. Grid lines in the circumferential
direction are generated by rotating one longitudinal plane at equally spaced angles
around the body. Note that two circumferential planes are overlapped in order
to facilitate the -enforcement of the boundary conditions when operating in this
direction.

The positive orientation of the circumferential direction is chosen such that a
right-handed system is obtained. In the present implementation of the code, this
means clockwise for an observer looking at the body from upstream. This is very
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Figure 4.2: Details of hemisphere-cylinder typical grid planes.
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important to ensure that anywhere on the body surface, or actually in the whole
flowfield, the mathematical normal to any infinitesimal region is positive pointing
outward. This becomes a crucial issue when computing particle traces with the
graphics post-processing programs used to obtain the flow visualization figures that
will be presented below.

4.3 Steady State Results

As initial tests for the code, we started with subsonic freestream cases. It is clear
that low subsonic cases should converge faster to a steady state, because forward-
going signals would propagate faster. However, one should be careful not to ap-
proach the incompressible limit. Essentially the problem is that we are using a
compressible Navier-Stokes formulation, and the system of equations becomes ill-
behaved when the incompressible limit is approached because the energy equation
becomes redundant. Hence, for all the subsonic cases run here, care was exercised
to ensure that some compressibility effects were present and the above described nu-
merical problems avoided. Subsequently, one low supersonic case was run to verify
the capabilities of the code for supersonic problems.

The first case run for the hemisphere-cylinder configuration was at a Mach num-
ber of 0.5, for zero angle of attack and a Reynolds number of 1.5 million based on the
cylindrical section diameter. Pressure coefficient contours for the converged steady
state solution along two opposing longitudinal planes can be seen on Figure 4.3 .
Mach contours and density (nondimensionalized with respect to freestream) con-
tours are also shown in the same figure. In this case it really does not matter whether
these are side, or top, views of the body, because the solution is axisymmetric.

Since experimental results could not be found for this case in the literature, the
present computations were compared to results obtained from another finite differ-
ence code, namely the F3D codel63: 53] generously made available to the present
author by Ying*. Both codes have a N avier-Stokes formulation, and the lam-
inar flow option was used. The F3D computations were performed on a Cray 2
supercomputer, but the grid system was essentially the same as that used for the

° Ying, S.X., personal communication, September 1586,
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Figure 4.4: Pressure coefficient distribution on the body for hemisphere-cylinder at
M, =05, a=0° and Rep = 1.5 x 10°.

Cyber computations in order to make the two calculations comparable. Plots of
the pressure coefficient distributions on the body for the two computations are pre-
sented on Figure 4.4 . As can be seen from this figure, the two computations show
good agreement. The results from the F3D code indicate a faster expansion over
the hemispherical part of the body, and also predict a slightly higher magnitude
for the negative peak Cp around the hemisphere-cylinder intersection. Both com-
putations show this negative peak on the pressure coefficient occuring ahead of the
hemisphere-cylinder intersection. The F3D results also seem to return faster to
the freestream pressure value over the cylindrical section of the body. Also shown
on Figure 4.4 is the value of the pressure coefficient at the nose stagnation point
‘as predicted by isentropic relations {37]. These relations predict Cp = 1.06 at the
stagnation point, and both calculations agree well with that value.
The next hemisphere-cylinder case studied involved a flight Mach number M, =
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0.6, zero angle of attack, and the Reynolds number Re = 490000 based on the
reference diameter. The Reynolds number in this case was chosen to match the
experimental results presented by Hsieh!(59 70], whose wind tunnel static pressure
distributions for a hemisphere-cylinder are in the Mach number range of interest
for this work and therefore were used for these benchmark computations. Com-
putational values of pressure coefficient, Mach number, and density contours for
this case are shown in Figure 4.5 . It can be seen from Figure 4.6 , which shows
pressure coefficient distributions on the body for both the present computation and
experiment[egl , that the computed results agree well with the experimental ones.
The only region along the body where the computations seem to have some dif-
ficulty in following the experiment is on the recompression side of the expansion
region around the hemispher-cylinder intersection. However, it is well known that
expansion regions are particularly difficult to predict accurately. Considering that
this is such a coarse grid system it is fair to say that the code is doing 2 good job
in this case. It should also be noted that the negative peak Cp is being very well
predicted, both in strength and location.

Finally, it is important to point out that this a fully subsonic flow, in other
words, there are no supersonic pockets in it. Although the ultimate objective of
this work is to investigate transonic flows, it was felt that the grid system was too
coarse to try to capture transonic shocks and all the possible complexity associ-
ated with them, such as shock-boundary layer interactions and flow separation due
to those interactions. For this reason, no transonic cases were analyzed for the
hemisphere-cylinder configuration, and instead a low supersonic case is considered
next. Transonic flow examples were studied for the hammerhead configurations, in
which case much more refined grids were created.

Computational results for a freestream Mach number M, = 1.5 case can be
seen in Figure 4.7. In this example the Reynolds number was 1.386 million, based
on the reference diameter, and again zero angle of attack was considered. A plot
of the bow shock location, calculated based on pressure gradient results, is shown
in Figure 4.8 . It should be pointed out that in Figure 4.8(b) we actually have
a complete shock surface. It was plotted only as lines in order to let the body
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also be seen behind the shock. The shock standoff distance can be calculated as
—0.57 , nondimensionalized with respect to the radius of the cylindrical section.
This result compares well with the value of —0.60 for the shock standoff distance
for a hemisphere-cylinder obtained from shadowgraphs, presented in Reference [89],
It is clear, however, from the contour plots in Figure 4.7 that the computations are
not capturing such a crisp, well-defined shock as Figure 4.8 suggests. The most
obvious reason for this failure is the coarseness of the grid. But the main point
we intend to demonstrate with these results, namely, that the code is capable of
performing well for supersonic freestream conditions, is still valid. The results are
in the correct range despite the fact we have used a coarse grid.

Although the steady state cases studied for the hemisphere-cylinder configura-
tion cannot be considered extremely difficult problems for many existing computa-
tional fluid dynamics codes, the results shown provided enough confidence in the
present code that we moved on to more complex examples. The steady state so-
lution described above for a freestream Mach number M, = 0.6 was used as the
initial solution for the study of a forced unsteady case, which will be described next.

4.4 Pitching Oscillations

As a first actual unsteady test of the code, the hemisphere-cylinder vehicle was
subjected to a rigid body sinusoidal pitch oscillation in a flow with M, = 0.6 . The
nondimensional frequency of the oscillation was taken as 0.4, and the half-amplitude
angle of the oscillation was 6, = 5° . The pitch axis was considered to be at the
computational downstream boundary, which in this case is about 10 body diameters
from the nose. The steady state solution previously obtained at this Mach number
was used as initial condition for the unsteady calculation as previously mentioned.

It should be pointed out that the frequency of the oscillation is rather large,
perhaps two to four times larger what one should realistically expect to find in flight.
Since experir-satal, or computational, results could not be found in the literature
for the type of oscillatory motion we were interested in, regardless of the value of
frequency considered, the high value of dimensionless frequency was chosen mainly
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Figure 4.9: Angular amplitude of centerline deflection for forced sinusoidal pitching
oscillation.

to allow for a faster computational turnaround time. The reader should observe
that, for the cases considered here, the maximum allowable time step was completely
determined by the aerodynamics. The body motion, however, is determined by the
product JAZ . It is important to note that, despite the coarse grid being used,
the computational costs of these unsteady calculations is not negligible. Since the
idea behind these computations was primarily one of checking on the code, a higher
frequency would still allow for some qualitative study of the performance of the
code, while permitting a faster turnaround.

The angular deflection of the body centerline, versus time, is shown in Fig-
ure 4.9 . Time histories o.f the running normal force, i. e. , the normal force per unit
of axial lengtli for two axial stations along the body, can be seen in Figure 4.10 .
It is important to point out that the “time” on both figures is the nondimensional
time. The distribution of the running normal force along the body is shown in
Figure 4.11 for several instants of time during the oscillation. Unfortunately no
experimental or computational results could be found to compare with the present
calculations, but they seem to produce the kind of behavior that could be expected
for this forced oscillation.
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Figure 4.10: Unsteady aerodynamic load on a hemisphere-cylinder undergoing a
sinuscidal pitching oscillation with T = 0.4 (M = 06,a=0°,0="5).

55



CFimtess g

CHAPTER 4. STUDY OF HEMISPHERE-CYLINDER CASES

1.
3 ———— O 60g., PvEd motin
1.0 w0 d0g., (0vOvErd metinm

. 2 4 ‘6 @ 100 12 14 18
extel position
(a) Distributions for § = 0° (upward and downward motions) and for § = 5° .

4 : [| m—— 23 ey, v ard metim
12 |} i ] ce G @y, éoveovard mstim
; — 230y, SVevEd metin

3w - —

8 \
i s \\
g p

2

9 ; i

._2 i

o 2 4 6 [} 0. 12 14 14
exiel position
() Distributions for § = 2.5 , 0. , and —2.5° , downward motion.

Figure 4.11: Comparative plots of unsteady aerodynamic load distribution on hemi-
spherecylinder in pitch oecillation (Mo =06,a=0°,0=04, 6, = 5°)

56



CHAPTER 4. STUDY OF HEMISPHERE-CYLINDER CASES

From Figures 4.10 and 4.11 one can see that the unsteady aerodynamic loads
on the body lag the motion with a phase shift of almost 90°, and that the influence
of the freestream angle of attack at any instant along the oscillation is very small
in determining the total load at that time instant. For example, from Figure 4.11
we can see that at § = 0° in the downward stroke the load is close to its maximum
value, and at the “top” of the oscillation, § = 5°, the load is actually very small. In
other words, the loads in phase with the angular displacement are small compared
to the ones induced by body oscillating velocities. Figure 4.10 also shows that the
phase lag decreases as we move from the forebody to the aft portion of the body,
as one might expect since the pitch axis is located at the downstream boundary.

The reason for such a large phase lag in the aerodynamic forces, when compared
to the body motion, is easy to understand in the light of the very high value of
nondimensional frequency. Actually, in this case, the velocities induced by the
motion on the forebody are comparable to freestream velocities. Since we start
with a steady flow at time zero, we expect that the flow field will settle down
to its steady-state, simple harmonic limiting behavior after some time. The high
frequency also explains why these initial transients die out quickly in this case,
which can be seen from Figure 4.12 , where the running normal force distribution
along the body is shown for the same pitch angle position at two different cycles of
the oscillation. The curves almost coincide, indicating that after only a half-cycle
of oscillation the initial transients have already died out.

In summary, for such a heavily forced oscillation, one should expect to see the
aerodynamic loads being determined primarily by the motion itself, and the present
computations indeed display this feature. Although the unsteady computations
could not be validated against any experimental results, the correct expected be-
havior is reproduced by the present calculations. The main objective of the analysis
of the hemisphere-cylinder configurations can be considered as accomplished. In
the foﬂdwing sections we will turn our attention to the primary focus of the present
work, which is to apply the unsteady aerodynamic formulation to the analysis of
aeroelastic problems in the transonic flight regime.
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Figure 4.12: Unsteady aerodynamic load distribution on a pitching hemi-
spherecylinder at § = 0* (downward motion) for the 1st and 2nd cycles of ce-
cillation.
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Chapter 5

A General Hammerhead Payload

Problem

5.1 Preliminary Remarks

The configuration under consideration in this section does not attempt to reproduce
the geometry of any particular vehicle, but it has all the major characteristics one is
likely to encounter in a hammerhead payload. For instance, it has a blunt nose and
the payload diameter is larger than the adjacent boosting stage (which implies the
existence of some form of boattail on the forebody). There is a flare region which is
bound to produce a good portion of the normal force on the vehicle for small angles
of attack and that can possibly be subjected to large unsteady forces due to flow
separation in the boattail region.

It is clear that the study of a configuration which does not correspond to any ex-
isting vehicle makes it difficult to compare or validate whatever results are obtained.
For aeroelastic analysis the problem is compounded, because not only external ge-
ometrical similarity is necessary but also mass and stiffness similarity would be
required in order to compare any results correctly. However, at this point in the
course of the research, we had not found act-sl data for an existing vehicle in the
literature. We considered that it was worthwhile to exercise the method just to
show what might be possible after more realistic data could be obtained.
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5.2 The Grid System

The computational mesh about the chosen hammerhead payload was also gener-
ated by algebraic methods. The grid has 105 points in the longitudinal direction,
66 points in the normal (actually nearly normal) direction, and 38 points in the cir-
cumferential direction. Once a longitudinal plane of the grid is generated, this plane
is rotated through 360° to create the full three dimensional grid. The n-direction
in this case is being called nearly normal because, in the boattail and flare regions
of the grid, the n-lines do not intercept the body surface at 90° angles.

A general three dimensional view of the body and the grid is shown in Fig-
ure 5.1 . A typical longitudinal plane of the grid can be seen in Figure 5.2(a) ,
and details of the forebody and flare regions are shown in Figures 5.2(b) and (c) .
The latter illustrates the 7-lines not intercepting the body surface at right angles
in the boattail and flare regions. This is not the ideal way of creating a computa-
tional mesh, since in principle we want the normal coordinate lines indeed coming
in normal to the body. A small numerical error is expected due to the fact that
this is not precisely true. However, numerical computations of boattail flowfields by
Deiwert[57] indicate that this does not cause enough numerical problems to justify
a more elaborate grid generation scheme, if the boattail (or flare) does not have
a very steep slope. Moreover, when performing aeroelastic analyses, the grid will
deform as the computation proceeds, and it can be very difficult to ensure that 7
grid lines do not cross over each other if the grid generation scheme gets to be too
complex.

Since true transonic solutions are attempted, it is important in this case to have
a better clustering of the grid points along the body (in the longitudinal direction)
in regions where high gradients are likely to occur. For this reason, one parameter
hyperbolic tangent grid stretchinglss] is used to cluster the grid points around
the hemisphere-forebody cylinder and the flare-afterbody cylinder intersections. In
order to improve the resolution on the upstream centerline region, one-parameter
hyperbolic tangent grid stretching is also used to cluster grid points around the
upstream centerline. To avoid wasting grid points on the downstream part of the
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Figure 5.2: Typical longitudinal grid plane for hammerhead payload.
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afterbody cylinder, where not much is happening, a 8.5% exponential stretching is
used to increase the grid spacing towards the downstream boundary. In the normal,
or nearly normal, direction a 16% exponential grid stretching is used everywhere in
order to cluster grid points near the body for capturing viscous effects.

5.3 Initial Aerodynamic Solution

As previously explained, before the structural-dynamic equations are turned on,
an initial aerodynamic solution must be obtained at the desired flight condition
under the assumption that the body is rigid. This is done by initializing all the flow
variables with freestream conditions, imposing the appropriate boundary conditions
for the problem, and then letting the aerodynamic solver march the solution in time
until some steady state condition is achieved. An important caution, however, is
that one should be aware that, for these transonic freestream conditions, a true
steady state condition is not necessarily obtained. It is possible that the aerodynamic
solution by itself is unsteady. In these cases what is being searched for in this initial
phase is is a correct possible solution for the flowfield around the body at that
particular flight condition.

For the examples considered here, however, true steady state solutions were
obtained in this initial phase. The steady state flow solution was calculated over
this geometry for a freestream Mach number M,, = 0.85, an angle of attack a = 6°,
and the Reynolds number Re = 1.26 x 10° (based on the diameter). The flow, or
rather the boundary layer, was considered turbulent, i. e. , the turbulence model
was turned on. Pressure coefficient contours, Mach number contours and density
contours for leeside and windside are shown on Figure 5.3, where essentially we are -
looking at a side view of the body. The expected flowfield features are reproduced
by the computation. For instance, the expansion regions around the hemisphere-
forebody cylinder intersection and around the flare-afterbody cylinder intersection
are clearly shown on the figures. A mild expansi-t around the forebody cylinder-
boattail intersection can be seen, and the compression region on the face of the
flare, mainly on the windside, is also very well defined.
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Figure 5.3: Flow solution about a hammerhead geometry at M, = 0.85 , constant

a = 6° and Rep = 1.26 x 108 (side view).
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All these features are even more apparent from Figure 5.4 , which shows leeside
and windside pressure coeficient distributions on the body. As mentioned, these
pressure distributions seem to have all the characteristics that would be expected,
except that a more clearly defined shock was expected to be seen on the leeside of
the forebody. Although we do not have experimental data with which to compare
these pressure coefficient distributions, it is worth noting that.the magnitudes of
the negative peak Cp on the hemisphere-forebody cylinder intersection are in the
correct range for this flight condition.

An interesting point that was discussed previously concerning the downstream
boundary conditions can be clearly understood from Figure 5.4 . One can see that,
on the afterbody cylinder, the pressure coefficient has a constant value different
from zero for a good portion of this body section; it then smoothly drops to zero
at the downstream boundary. Of course, there is no surprise that Cp is zero at
the downstream boundary, because we are enforcing that as boundary condition.
However, the existence of a flat region in the Cp distribution ahead of the down-
stream boundary evidences that there is an error in the boundary condition. If the
computational domain is extended further downstream, perhaps with the inclusion
of a body base, the flow would converge to a nonzero value of pressure coefficient
at the body location where the boundary condition is currently being enforced. On
the other hand, the existence of this flat region is also an assurance that whatever
errors are being produced at the downstream boundary are not propagating far
enough upstream in order to influence the region of real interest in this case, which
is mainly the forebody.

It should be clear that the amount of data generated in these three dimensional
computational solutions is very large. The study of scalar flow variable contours
may prove inadequate to understand what is really happening. To this end, particle
traces are very useful. In particular, particle traces restricted to the first computa-
tional n-plane away from the body amount to computer generated osl-flow pictures
and are almost indispensable to understand the topology of the flow. It should be
pointed out that the latter can also be interpreted as plots of the skin-friction lines
on the body. We shall not go into any detailed discussion of these flow topologies,
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except to point out lines of separation and/or reattachment which will help us un-
derstand the solutions that are being obtained. The reader interested in detailed
discussions of topological flow structures is refered, for example, to the works of
Dallmannl71: 72], Kaynak, Holst and Ca.ntwell[73], and Deiwert! ™4

Figure 5.5 shows these computer generated oil-flow pictures for this configuration
at the converged steady state solution. One can clearly identify a separation region
on the cylindrical forebody right after the hemisphere-cylinder intersection, and a
node of separation can be seen on the lee generator just behind this intersection.
There is another separation line on the boattail, which indicates that even the
windside experiences some flow separation in that region. The line of reattachment
aft of the boattail is also clearly defined in the figures. All those cases can be
considered mild separations, in the sense that the regions of reversed flow are rather
limited. Figures 5.6(a) and 5.6(}) show velocity profiles for the leeside in the regions
of separation on the forebody cylinder and boattail, respectively. The reversed flow
directions are apparent, indicating the backflow condition in the separation regions.

The convergence to steady state was rather slow, which is expected for a tran-
sonic flow condition. To achieve convergence, 4000 time steps (iterations) were
needed. It should be mentioned that, for the 105 x 66 x 38 grid being used, each
iteration takes approximately 10 CPU seconds in a CDC Cyber 205 computer. The
overall system time, however, is a little higher than what would be estimated from
this figure, because the database is not core contained. Data must be shifted back
and forth from disk. As explained before, the database is structured in a pencil
format, and the metrics of the transformation are what is kept in outside disk files.
When \opa'a.ting in a particular direction, the metrics for that direction must be
read in from those files. Due to the use of asynchronous I/O, this can be done with-
out degrading very much the performance of the code for steady state problems. In
the present example, the CPU time represented approximately 60% of the overall
system time.
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(@) Side view.

(b) Top view.

Figure 5.5: Computer generated oil-flow lines for general hammerhead payload at
My =085and a=6°.
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5.4 Aeroelastic Analysis

The steady state aerodynamic solution described in Section 5.3 will be used as
the starting flow for the aeroelastic cases studied here. Since this solution was
calculated for a rigid vehicle, the airloads are not the correct actual loads at a
deformed equilibrium position for the elastic vehicle. This fact provides a way of
introducing the initial perturbation to start the oscillation, which will be adopted
in the present work for all cases where the freestream angle of attack is different
from zero.

The structural information necessary for the present analysis consists of some
normal mode shapes and their corresponding natural frequencies, the structural
damping coeficients associated with each mode, and the vehicle mass distribution or
the generalized masses associated with each mode. As previously discussed, we have
no actual data for an existing vehicle that matches this configuration. Therefore,
the approach followed consisted of estimating the necessary properties from what
could be gathered from the literature. For instance, three structural modes were
employed in this case, and the chosen mode shapes resemble those presented by
Woods and Ericsson (4 .

The theoretical analysis of the numerical stability of the scheme selected for the
solution of the aeroelastic equations showed that the scheme is numerically nondis-
sipative. This is a very important issue, because we want to make sure that the
numerical scheme is not stabilizing physically unstable aeroelastic solutions due to
numerical dissipation introduced by the method. The first example here undertakes
to address this problem. Essentially, we want to demonstrate numerically what the
linear stability analysis already predicted, i. e. , that the numerical method is not
introducing any numerical dissipation (or instability) and that a pure sinusoidal re-
sponse can be captured. In this first case run, therefore, all the structural damping
coefficients were set to zero, and a very small value of dynamic pressure was con-
sidered. The small dynamic pressure is chosen so as to minimize the damping effect
of the airstream. The response, in terms of the generalized modal displacements in
the second and third modes, is shown in Figure 5.7 . The results indeed confirm
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Figure 5.7: Response for zero structural damping and very low flight dynamic
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what was expected, since an undamped response is obtained. Although this was the
anticipated result, it is important to see that all the complex algorithms developed
are able to reproduce such a simple phenomenon.

The other cases analyzed considered more realistic values of dynamic pressure
and also some nonzero values of the structural damping coefficients. The proce-
dure followed was to keep the flight Mach number and the angle of attack con-
stants, and vary the dynamic pressure. The structural parameters were, of course,
kept constant. For instance the values of structural damping coefficient used were
¢; =0.0010, ¢; = 0.0018 and (3 = 0.0036 , for the first, second and third modes, re-
spectively. A typical vehicle response for an intermediate value of dynamic pressure
can be seen in Figure 5.8 , which shows the response in each of the three gener-
alized coordinates. By comparing the magnitudes of the responses for the three
modes, it is clear that the overall vehicle response is dominated by the first mode
displacements. Figure 5.9 makes this point even more clearly by showing the total
deflection at the nose of the vehicle, which can be seen to be composed of the first
mode deflection plus a small higher frequency influence.

The usual way in which the influence of the airstream is determined consists of
calculating the damping coefficient for the run with the “air on,” in other words,
for dynamic pressure different from zero, and comparing the rate of decay of the
motion with the pure structural damping coefficient. If the former is smaller than
the latter, we have a situation where the presence of the flow is destabilizing. Of
course, in order to obtain an unstable condition this influence must be large enough
to overpower the structural damping and cause the amplification of initial pertur-
bations. As one can see from Figure 5.8, the response in all three modes is damped
in this case. The response on the first mode is only slightly damped, the second
mode shows a little faster decay, and the third mode decays the fastest. A closer
analysis of the damping coefficient reveals that, in this example, the first and sec-
ond modes are rendered even more stable by the airstream. On the other hand, the
damping coefficient for the third mode, at the present dynamic pressure level, is a
bit smaller than the structural damping {3 = 0.0036 . One therefore cncludes that
the freestream is feeding energy into that mode’s oscillation.
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Despite the fact that these are time domain analyses, the results are best sum-
marized by a root locus plot, which is shown in Figure 5.10 . In this plot the arrows
indicate the direction of increasing dynamic pressure, which was the parameter var-
ied in the analysis. The abscissa is the real part of the aeroelastic root, which is a
measure of the rate of the decay of the oscillation in each mode, formed by the prod-
uct of the damping coefficient at that particular dynamic pressure times the natural
frequency for that mode. The ordinate is the imaginary part of the aeroelastic root,
which is the frequency of the response of that mode at the dynamic pressure consid-
ered. Although one should note that the scales on the two axes are very different,
it can be seen from the plot that the frequencies remain approximately unchanged
throughout the whole range of dynamic pressures considered.

All the cases analyzed for this hammerhead shape were aeroelastically stable,
although all the modes showed an initial tendency of going towards the unstable
side for very small values of dynamic pressure. This tendency was quickly reversed
as the dynamic pressure was increased further, such that it was hard to detect
any of this behavior from the time plot for the first and second modes. For the
third mode, however, the reversal of damping at low freestream dynamic pressure
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is clearly visible from Figure 5.10 . After this initial trend was passed, what we
will call a pure damping behavior, for the lack of a better description, was observed.
It is characterized by a simple increase of the damping in each mode as the flight
dynamic pressure is raised. The frequencies remain approximately unchanged. This
is not typical aeroelastic behavior for conventional flight vehicle configurations with
wings and tails. However, it should be noted that the natural frequencies considered
for this analysis are quite high, which means that we are probably assigning stiffness
values that are higher than they should be and explains why no flutter is observed.
Moreover, as already mentioned, this configuration does not correspond to any
existing vehicle. It is, therefore, very difficult to try to correlate these results with
some expected behavior.

Finally, the issue of the computat ional costs of these aeroelastic solutions should
be considered. For the 105 x 66 x 38 grid which was used here, each aeroelastic iter-
ation takes about 12 CPU seconds in a CDC Cyber 205. This represents an increase
of 20% over the CPU time per iteration for steady state aerodynamic calculations.
Almost all the additional time is spent in regenerating the computational grid once
a new body deflected position is determined from the solution of the structural-
dynamic equations.

One does not necessarily have to regenerate the complete grid at every time step,
but some form of reshaping is required in order to account for the deformation of
the body. Some authors, see for instance Steger and Bailey B, prefer to use some
form of shearing transformations to account for the grid deformation, and avoid
solving the grid generation equations at every time step. In the present approach,
since an algebraic grid generation scheme is being used, we regenerate the whole
grid. The grid points on the body surface keep their relative position with respect to
the body centerline at every axial station, and the far field boundary is kept fixed.
The remainder of the grid, which is all the interior part of the grid, is interpolated
between those ends using the same algorithm that initially created the whole grid.
Note that the structural-dynamic equations are solving for the deformation of the
body centerline, which means that most of the grid displacement is going to occur

- close to the body. This is consistent with what is physically happening, in the sense

76



CHAPTER 5. A GENERAL HAMMERHEAD PAYLOAD PROBLEM

that the body motion should cause perturbations close to itself and the far feld
should remain undisturbed.

The amount of time consumed by the solution of the structural-dynamic equa-
tions is truly negligible when compared to the overall CPU time. The point that
should be considered, though, is that modal analysis is being used. As previously
mentioned, this is a very powerful technique since a whole range of effects can be
considered. However, one may want to replace the modal superposition approach
by, for example, a finite element representation of the vehicle. In such a case, the
amount of time required for the structural-dynamic solution is bound to increase
considerably.

The overall system time per iteration for aeroelastic analysis, however, suffers
much more than the CPU time when compared to a pure steady state aerodynamic
solution. As discussed in the previous section, the major difficulty arises from
the fact that the database is not core contained. In this case, since the grid is
recalculated at every iteration, so are the metrics of the transformation. Essentially
we are doubling the amount of I/O per iteration, since now we have to output
the metrics as they are calculated and then read them back as we operate in each
direction. Although asynchronous I/0 is still being used, the performance of the
code is lowered, and in this case the ratio of CPU time to overall system time is only
around 30%. This means that, 70% of the time the job is running, it is simply doing
input/output. Of course, those kinds of statistics are very machine dependent, and
all of this is true for the CDC Cyber 205 . Ideally, one would like to avoid all
this I/O. For the size of problem we are dealing with here this could certainly be
accomplished by using a computer such as the Cray 2. N evertheless, all the effort
spent in making the algorithm suitable even for “smaller” computers is important,
because shows that the method could be used even by those without access to a
system of the size of the Cray 2.
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Chapter 6

Analysis of an Atlas-Able IV

Configuration

6.1 Initial Considerations

As previously mentioned, in the early 1960’s some aeroelastic problems were ob-
served on launch vehicles with hammerhead payload configurations when passing
through the transonic regime. One of those configurations was the Atlas-Able IV,
in which case the problems observed in flight were later traced back to something
resembling flutter. The mechanism driving the instability was associated with the
lags in the aerodynamic forces caused by phenomena induced by the hammerhead,
which would cause the airstream to do positive work on the oscillating vehicle.
The ideal case to study here would be one where both steady aerodynamic data
and detailed aeroelastic results were available. Unfortunately, this is certainly a
difficult combination to find in the literature. At the time, the Atlas-Able IV con-
figuration represented the best test case we could find, despite the fact that aeroe-
lastic information is somewhat limited. Geometrical data for this configuration are
available, at least in nondimensional form*, and steady aerodynamic pressure
distributions from wind tunnel tests are also published”sl . The structural data,
however, are rather sketchy because part of this information is still classified * -

* Ericsson, L.E., personal communication, April 1987.

78



CHAPTER 6. ANALYSIS OF AN ATLAS-ABLE IV CONFIGURATION

For instance, exact values for frequencies, structural damping coefficients, and ve-
hicle mass distribution were not accessible from the same sources that provided
geometrical and steady aerodynamic data.

In the present work, the approximate range of frequencies to be considered, the
approximate form of mode shapes, and an estimate of reasonable structural damping
coefficients were obtained from Woods and Ericsson [41, and Ericsson * . The mass
distribution was estimated from data available for Atlas boosters and provided by
Gen, Dynamics. Steady aerodynamic wind tunnel data, which was used to validate
the initial aerodynamic solution, was available from Graham and Butler{?) .

Other steady and unsteady aerodynamic data were found in the literature for
similar hammerhead configurations. For instance, Coel[78] presents the steady and
unsteady aerodynamic pressures on an Able V payload model, and Robinson et
al177] study the dynamic response of some hammerhead models to unsteady aerody-
namic loading. However, the Atlas-Able IV data still constitute the best information
and allow for a better comparison of results. Finally, it should be mentioned that
a very complete set of structural and aeroelastic parameters on two Titan/Centaur
models was made available to the author by Heaning*.  Unfortunately, because
of time limitations and the high computational costs of these aeroelastic solutions,
it was not possible to perform aeroelastic simulations for these cases.

As we have done in the previous cases studied in this work, the computational
grid for the Atlas-Able IV configuration was generated using algebraic methods. A
three dimensional view of the body and grid in this case can be seen in Figure 6.1 .
The grid has 105 points in the longitudinal direction, 66 points in the normal direc-
tion, and 38 points in the circumferential direction which again is a periodic type
mesh going 360° around the body. In this case, the body is composed of a ellip-
soidal nose, a cylindrical forebody section, a boattail, and the cylindrical afterbody
section. .The ratio between minor and major axes of the ellipse is approximately
0.605 . The reference length adopted in this case is the diameter of the cylindri-
cal afterbody section, and the diameter of the cylindrical forebody 3xction is 1.5
reference lengths.

A typical complete longitudinal plane of the grid is shown in Figure 6.2(a) , and

* Ericsson, L.E., personal communication, April 1987,

+ Henning, T., personal communication, May 1987.
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Figure 6.1: Three dimensional view of Atlas-Able IV configuration grid system.
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details of the nose and the boattail regions can be seen in Figures 6.2(b) and (c) ,
respectively. In the longitudinal direction, 29 points are used in the nose region,
12 in the cylindrical forebody region, 27 in the boattail, and 37 in the cylindrical
afterbody region. One parameter hyperbolic grid stretch.ing[ 3 techniques are used
in the ellipsoidal nose region to cluster grid points towards the upstream centerline
and towards the ellipsoid-cylinder intersection. An equally spaced grid is used over
both the forebody cylinder and boattail sections, and a 6.98% exponential grid
stretching is used in the cylindrical forebody section in order to gradually coarsen
the grid as we move towards the downstream boundary.

The normal direction (or n-direction) would again be more properly called a
nearly normal direction, since n-lines do not intersect the body surface at exactly
right angles on the nose and boattail regions. Since these lines meet the body at
angles that are very close to 90° , we will accept the small error being introduced
by this simplification, as already discussed in the previous chapter. To ensure
proper capturing of viscous effects in the normal direction, a 16% exponential grid
stretching was used everywhere in this direction in order to cluster grid points close
to the body.

6.2 Configuration at Angle of Attack: Steady State
Results

The initial aerodynamic solution involving the Atlas-Able IV was calculated for
a M, = 0.85 and a = 6° flight condition. The Reynolds number considered was
Re = 1.2637x 108, based in the reference diameter. It should be mentioned that this
number was chosen to match Graham and Butler’s experimental conditions!?% |
The boundary layer was considered turbulent for most of the calculations performed
here. Starting from freestream everywhere and imposing the appropriate boundary
conditions, we allow the flow to evolve to a converged solution.

A side view of the pressure coefficient, Mach number, and density contour plots
around the body for the converged solution can be seen in Figure 6.3 . These plots
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Figure 6.2: Typical longitudinal grid plane for Atlas-Able IV configuration.
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Figure 6.3: Flow solution about an Atlas-Able IV configuration at M., = 0.85 and
a = 6° (side view).
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Figure 6.4: Pressure coefficient distribution on the leeside of an Atlas-Able IV
payload (M, = 0.85 , a = 6°).

give a good idea of the overall flowfield appearance, despite the fact that we are only
seeing leeward and windward planes. The Mach number contours seem to indicate
a sizable separated region on the leeside, which is evidenced by the dubdble sort of
behavior of the contours over the forebody cylinder and boattail regions, where the
local velocity magnitude (or Mach number) increases, then decreases back to zero,
and finally increases again up to the freestream condition as we move outwards from
the body towards the farfield. This is very typical of reversed flow regions, and it
will be investigated in more detail later when discussing particle trace results.
Taking advantage of the fact that for this configuration there are experimental
results available, Figure 6.4 shows a comparison of the computed pressure coefficient
distribution on the leeside of the body with wind-tunnel measurements by Graham
- and Butler |72, It can be seen that the calculated Cp distribution follows the trend
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of the experimental results well, but the strength of the shock is not being accurately
captured by the computation. The location of the shock seems to be correct, but
apparently the flow does not expand as much as the experiment indicates it should.
The result is a weaker shock. It is clear that the computational shock is spread over
a few grid points, which is typical of centrally differenced finjte difference schemes.

The computations indicate that the flow separates right after the shock, which
is also in agreement with the Schlieren photographs available from Reference! "9
for this flight condition. As for the pressure coefficient distributions, the sepa-
rated region is evidenced by the somewhat flat Cp distribution. The success of the
present computation of numerical values of Cp over the separated region is also
less than perfect, although the computations capture the correct trends in the Cp
distribution. It must be Pointed out that there is a small difference in the length of
the boattail region between the geometry provided by Ericsson (4} * and the one
provided by Graham and Butler [75] . The latter has a slightly shorter forebody
cylinder section and, comsequently, a slightly longer boattail section such that the
overall payload length is the same, This makes the Cp comparisons over the boattail
section less reliable, but due to the problems regarding the shock strength it would
be difficult, in any event, to compare results downstream of the shock. The prob-
lem is compounded by the fact that in the separated region the uncertainty about
turbulence modelling becomes even more important, and this may be affecting the
results.

A comparison of the pressure coefficient distributions on the body for other lon-
gitudinal planes can be seen in Figure 6.5 , which shows Cp values over the lateral
and windside planes. Essentially, the same observations made with respect to the
leeside results are true for these other planes too. The computed pressure coefficients
follow the trend of the experimental results, but they are slightly underexpanded
over the ellipsoidal nose-forebody cylinder intersection. A new feature that can be
observed on these latter results is that there is a noticeable tendency of forming
a second dip on the Cp curves around the forebody cylinder-boattail intersection.
The reason for that is quite clear, since it is reasonable to expect the separation to
be less severe on the side of the vehicle, or on jts windside, than it is on the leeside.

* Ericsson, L.E., personal communication, Apri! 1537,
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Figure 6.5: Pressure coefficient distributions for an Atlas-Able IV configuration
(Mo =085,a= 6°).
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This second dip is merely a result of the flow reaction due to the expansion corner
over the forebody cylinder-boattail intersection. The experimental results for the
windward plane exhibit what seems to be some data scatter, as one can see from
Figure 6.5(b) . Referencel”’] offers no explanation for its existence. Our calcu-
lations do not reproduce any of this behavior, and the calculated Cp distribution
follows the experimental curve that would be obtained if the scattered points were
neglected.

Finally, it is important to stress that the comparisons were made between the
computational results and the experimental ones at the same nominal tunnel Mach
number. In other words, there was no attempt to try to correct for the tunnel
blockage effect, which cause the effective Mach number in the tunnel to be different
from the nominal one. Usually one tries to match the vehicle lift coefficient instead
of matching the nominal tunnel parameters. This was not done in this case, and it
may be one of the causes of the discrepancies observed in the Cp results. There were
some numerical difficulties, mainly associated with artificial dissipation parameters,
which can also explain part of the discrepancies observed in the results. We would
prefer, though, to postpone the discussion of these purely numerical problems untj]
the next section.

nose-forebody cylinder intersection on the leeside. The line of separation extends all
the way down to the windside where the flow separates somewhere just downstream
of the forebody cylinder-boattail intersection, In order to help the understanding
of these figures, it is worth mentioning that, since oil-flow lines are generated by
restricting particle traces to the second plane above the body surface, lines of sep-
aration are evidenced by thicker lines where particle traces converge to it. On the
other hand, lines of reattachment are shown by empty spaces, where all traces go
away from it. Th- f gure also shows that the boattail is completely immersed in a
region of reversed flow, and that the flow reattaches somewhere downstream of the
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(a) Side view.

(b) Top view.

Figure 6.6: Oil-flow lines for Atlas-Able IV configuration at Mo, = 0.85and a =6°.
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Unrestricted particle traces are shown in Figure 6.7 for some different viewpoints,
which help visualize and understand the overall flow topology in this example.
Figure 6.8 shows an expanded view of the particles taking off from the body surface
around the lee generator region. It is clear from these figures that in this case
we have a very extensive region of reversed flow, and of course flow separation.
Figure 6.9 complements this picture by showing velocity profiles on the lee and
windsides over the regions of reversed flow on the body, where we can see how far
the reversed velocities penetrate into the flowfield. This information reassures us
of our interpretation of the Mach number contours presented in Figure 6.3 , which
have been previously discussed. It also makes it evident that even on the windside
there is a region of separated flow for this flight condition. Finally, Figure 6.10
shows a front view of the vehicle, with particle traces indicating that the solution
is indeed symmetric with respect to the pitch plane in this case, which confirms
statements previously made.

It is very important to realize the difference between the flow solution obtained
for the present configuration and the one for the configuration studied in Chapter
5 . Although the present configuration is a somewhat more slender one, the extent
of the flow separation region in the present case is much larger than on the previ-
ous case. It is the author’s belief that such behavior is mainly associated with the
length of the forebody cylinder region. This region is short in the present configu-
ration, which allows for the merging of the distinct separation regions observed in
the configuration of the previous chapter. In other words, the separation caused
by the shock, which usually is located right after the nose region at least on the
leeside, merges with the flow separation due to the adverse pressure gradients on the
boattail. This creates a very extensive separated region, which explains the kind of
flow topalogy obeerved in this case. Moreover, the shorter forebody also produces
more severe adverse gradients, which again contribute to extend the separated re-
gion. The existence of such extensive flow separation raises questions with respect
to the aeroelastic stability of the configuration, besides being a source of conce
with respect to buffeting loads.

Since the grid size used in the present investigation is the same as in the case
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(a) Side view.

i (3) Perspective view.

Figure 6.7: Particle traces showing flow separation on the Atlas-Able IV configura-
tion at angle of attack.
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Figure 6.8: Expanded view of flow separation close to the leeside.
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I

Figure 6.9: Velocity profiles on Atlas-Able IV configuration at M, = 0.85 and
a = 6° (side view).
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Figure 6.10: Particle traces seen from the front of the vehjcle showing symmetry of
the solution with respect to the pitch plane.
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studied in the previous chapter, i. e., a 105 x 66 x 38 point grid, the computational
statistics are essentially the same as on the previous case at least as far as steady
state calculations are concerned. For a CDC Cyber 205 computer, each iteration
takes approximately 10 CPU seconds, and somewhere around 3500 to 4000 time
steps (iterations) are required to achieve a converged solution. The CPU time
represents approximately 60% of the overall system time, and the remainder of the

time is spent in I/O because the database is not core contained.

6.3 Some Computational Difficulties

This section discusses some of the difficulties encountered in the computation of the
aerodynamic flows studied here. It should be noted that we will be talking about
steady state calculations in the present section, since most of the validation of the
purely aerodynamic computational method was done for steady state cases. It is also
important to realize that, since the use of superposition in a modal form has been
certainly proved for seroelastic analysis, the major concern in the present work is to
show that the computational techniques proposed here are capable of reproducing
the correct aerodynamic phenomena necessary for the aeroelastic analysis. For this
reason, it is very important to study these initial aerodynamic solutions, or steady
state solutions, to ensure that the physical flow phenomena are being adequately
captured.

We have seen in the previous section that the code is doing a less than perfect
job in terms of capturing the shock strength. One of the possible explanations for
this kind of difficulty is associated with the amount of artificial dissipation being
used in the calculation. As discussed before, for central difference schemes it is
necessary to introduce some form of numerical dissipation in order to control the
nonlinear instabilities associated with the aliasing back into the lower frequency
range of the high frequency phenomena that is not supported by the mesh. The
question is, then, how much artificial dissipation should be added.

The approach followed in this work consisted of adding the minimum amount
of artificial dissipation that would still ensure numerical stability of the solution
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process. This minimum amount was determined by numerical experiments. When
one starts from freestream and tries to march the solution in time up to a steady
state condition, the time steps that have to be taken in the beginning of this process
are very small. One way to speed up the convergence to steady state is to take larger
time steps and simultaneously use unrealistically high values of artificial dissipation
in order to keep the solution numerically stable. As the flow solution approaches
the correct steady state condition, the numerical dissipation can be reduced to more
appropriate levels where it should not interfere with the physics of the computation.

The problem observed in the present work was that the amounts of artificial
dissipation necessary to keep the numerical stability of the solution process were
almost one order of magnitude higher than what is recognized in the literature *
as the appropriate level for these computations. One possible consequence of this
use of excessive amounts of artificial dissipation is that the shock might have been
dissipated by them. This can be another factor explaining the features observed in
our computational results with regard to the transonic shock capturing, where the
flow does not expand as much as the experimental results indicate it should, and
consequently the shock strength is not correct.

It should be mentioned that the artificial dissipation scheme implemented in
the present code is what can be called a constant coefficient artificial dissipation
algorithm. This means that a constant value of artificial dissipation coefficient is
used throughout the computational domain. More recent flow solver algorithms,
still using central differences, have more elaborate artificial dissipation algorithms,
usually weighting the artificial dissipation coefficient with the local norm of the
residue. The latter seems to produce better results, but unfortunately we did not
have the opportunity to implement it in the calculations performed‘hete.

Another subject that presented considerable concern in the present work was the
issue of turbulence modelling. It is understandable that this should be true, since
the models are of an empirical nature. As we have mentioned before, the two layer
Baldwin and Lomax!*) algebraic eddy viscosity model was used for the present
computations. This model was originally derived for attached or mildly separated
boundary layers. The results in the previous section indicate that a rather massive

* Pulliam, T.H., personal communication, October 1987.
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flow separation condition is being observed in this case.

Actually, the problem becomes more complex by the fact that some small vari-
ations in the model computational parameters can cause dramatic changes in the
flow topology. The parameter varied in the present work was the distance, in terms
of computational grid points, from the body wall that we search for the maximum
velocity in the profile, which is an important parameter in the present model imple-
mentation. In the results presented in the previous section, this search is done up
to the 25th grid point in the normal direction. This was the value of this parameter
(called edgek in the present work) that seems to produce most realistic results in
terms of the flow topology. For values of edgek smaller than 25, the separation
region is even larger, and for values larger than 25 the flow shows a tendency to
remain attached over larger portions of the body.

Figure 6.11 shows oil-flow lines for a solution obtained using edgek equal to 20 ,
i. e. , the search for the maximum velocity in the boundary layer profile is done up to
the 20th grid point. The freestream parameters are the same as before, M, =0.85
and @ = 6° . In this case there is a well defined focu.s[“] on the side of the
body. Even ahead of the ellipsoid-cylinder intersection on the lee generator there
is a saddle point of separation, whereas on the solution presented in the previous
section a nodal point was observed in the corresponding position. The release of
particles around the focal point, as identified from Figure 6.11, produces the particle
traces plot shown in Figure 6.12 . This figure shows how the particles are caught
in the reversed flow region and convected upstream before reaching the forward
flowing stream region. Details of the vortex taking off from the body surface can be
seen in Figure 6.13 , for the same particle trace plot shown in the previous figure.

It is clear from these figures that the topological structures observed in this
case are very different from those observed on the results presented in the previous
section. Moreover, the region of separated flow in the present case is larger than
in the previous one. Although the flow reattaches just downstream of the boattail,
as before, the separation occurs further upstream when compared to the previous
case. In this case not only the boattail, but also most of the forebody cylindrical
" section are immersed in a reversed flow condition. Finally, it should be mentioned
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(@) Side view.

(b) Top view.

Figure 6.11: Oil-flow lines for computation with search up to 20th grid point.
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Figure 6.12: Side view of traces for particles released around the focal point on the
side of the body.

that, even with such dramatic flow separation, the solution is still symmetric with
respect to the pitch plane, as before.

- We turn our attention to the cases when the parameter is varied in the other
direction. Figure 6.14 shows a side view of the oil-flow lines for the solution obtained
when the search for the maximum velocity in the boundary layer profile is performed
up to the 35th grid point. The flow on the forebody cylindrical section is fully
attached in this case, and the separatio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>