Turbofan Forced Mixer
Lobe Flow Modeling

II—Three-Dimensional Inviscid
Mixer Analysis (FLOMIX)

T. Barber

CONTRACT NAS3-23039
OCTOBER 1988
Turbofan Forced Mixer
Lobe Flow Modeling

II—Three-Dimensional Inviscid Mixer Analysis (FLOMIX)

T. Barber
United Technologies Corporation
Pratt & Whitney Engineering Division
East Hartford, Connecticut

Prepared for
Lewis Research Center
under Contract NAS3-23039
The overall objective of this NASA program has been to develop and implement several computer programs suitable for the design of lobe forced mixer nozzles. The approach consisted of extending and existing analytical nacelle analysis to handle two stream flows where one of the streams is at a higher energy. Initially the calculation was set up to handle a round, free mixer including satisfying the Kutta condition at the trailing edge of the mixer. Once developed and calibrated, the same analysis was extended to handle periodic boundary conditions associated with typical engine forced mixers. The extended analysis was applied to several mixer lobe shapes to predict the downstream vorticity generated by different lobe shapes. Data was taken in a simplified planar mixer model tunnel to calibrate and evaluate the analysis. Any discrepancies between measured secondary flows emanating downstream of the lobes and predicted vorticity by the analysis is fully reviewed and explained. The lobe analysis are combined with an existing 3D viscous calculation to help assess and explain measured lobed data.

The program also investigated technology required to design forced mixer geometries for augmentor engines that can provide both the stealth and performance requirements of future strategic aircraft. For this purpose, UTC's available mixer background was used to design several preliminary mixer concepts for application in a exhaust system. Based on preliminary performance estimates using available correlations, two mixer configurations will be selected for further testing and analysis.

The results of the program are summarized in three volumes, all under the global title, "Turbofan Forced Mixer Lobe Flow Modeling". The first volume is entitled "Part I - Experimental and Analytical Assessment" summarizes the basic analysis and experiment results as well as focuses on the physics of the lobe flow field construed form each phase. The second volume is entitled "Part II - Three Dimensional Inviscid Mixer Analysis (FLOMIX)". The third and last volume is entitled "Part III - Application to Augmentor Engines".
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 ANALYTICAL APPROACH</td>
<td>5</td>
</tr>
<tr>
<td>A. Overview</td>
<td>5</td>
</tr>
<tr>
<td>B. Potential Flow Analysis</td>
<td>7</td>
</tr>
<tr>
<td>Separation of Variables</td>
<td>8</td>
</tr>
<tr>
<td>Surface No-Flow Boundary Condition</td>
<td>11</td>
</tr>
<tr>
<td>Solution Algorithm</td>
<td>13</td>
</tr>
<tr>
<td>Inlet Flow Boundary Condition - Compound Choked Flow Analysis</td>
<td>14</td>
</tr>
<tr>
<td>Kutta Condition - Powered Wake Analysis</td>
<td>18</td>
</tr>
<tr>
<td>C. Geometry Definition</td>
<td>22</td>
</tr>
<tr>
<td>3.0 RESULTS AND DISCUSSION</td>
<td>24</td>
</tr>
<tr>
<td>4.0 ANALYSIS IMPLEMENTATION (FLOMIX)</td>
<td>33</td>
</tr>
<tr>
<td>A. Geometry Definition</td>
<td>33</td>
</tr>
<tr>
<td>Finite Fourier Series Definition</td>
<td>37</td>
</tr>
<tr>
<td>B. Linking Diagram</td>
<td>42</td>
</tr>
<tr>
<td>C. Input Description For FLOMIX</td>
<td>43</td>
</tr>
<tr>
<td>D. Sample Input (JT8D-209 Forced Mixer)</td>
<td>47</td>
</tr>
<tr>
<td>E. Subroutine Definition</td>
<td>48</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>64</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>66</td>
</tr>
</tbody>
</table>
A forced mixer is a device that is used on gas turbine engines to internally mix the hot turbine efflux with the cooler, lower velocity fan bypass or secondary stream. The principle motivator for doing this on commercial gas turbine engines is to reduce the jet noise associated with the high energy core stream. Also, when designed properly, the mixer can also achieve an increase in gross thrust while realizing noise reductions. Figure 1 shows a typical separate and mixed flow nacelle. Note that to achieve the mixing, the duct surrounding the engine must be lengthened. This adds weight, as does the mixer and the larger centerbody plug. Normally, and particularly for short range aircraft applications, these weight penalties offset the thrust improvements. In addition, the increased difficulty of integrating the longer nacelle into the aircraft flow field without incurring interference drag penalties, in the past has prevented launching new engines into service as mixed flow nacelles purely on a performance basis. However, with increasingly stringent noise regulations, mixers are being considered for future commercial engine applications. Mixers are also being considered in military applications as variable area devices for varying cycle match and as a way of spreading the hot turbine exhaust ahead of afterburning flameholders. This report presents an analytical method which has been developed for the mixer lobe flowfield.

Figure 1 Typical Nacelle Exhaust Configurations
Conventional or commercial forced mixer geometries consist of periodic lobe structure that can be described in terms of a number of geometric features. Figure 2 illustrates two cross-sectional views of the lobe. The scarf angle or lobe cutback angle is used to reduce lobe length with increasing penetration into the core. Scalloping is a cutout of the lobe lateral surface used to minimize lobe wall structural problems while promoting tangential mixing.

Figure 2 Mixer Lobe Geometry Definition
For many years the mixer was designed using a trial and error experimental approach, wherein limited traverse and performance data was used to refine design concepts. More recently, "benchmark" experiments resorting to high response and LDV instrumentation have probed the mixing chamber in an attempt to explain the mixing process and its driving mechanisms. These experiments confirmed that the mixing process is a viscous dominated process, and that the primary driving mechanism is the secondary flows generated in the lobed region of the flow. Several researchers have proposed a variety of inviscid and viscid processes for producing the secondary flow, but as yet, no attempt has been made to analytically model them. Anderson and Povinelli have lumped these terms together under a "generic" vorticity label, analytically simulating its effect in terms of a vortex sheet distributed along the lobe exit surface. Such an approach has been used to generate inlet conditions for a viscous marching analysis in the mixing duct. The results of these calculations, as seen in Figure 3, have been shown to realistically simulate observed flow mixing patterns. The purpose of this paper is to develop an inviscid analysis which, in conjunction with a lobe boundary layer analysis, can predict the flow over the mixer lobes, thereby obtaining the conditions needed to initiate a marching viscous calculation in the downstream duct.

The analysis presented in this report is an attempt to examine one particular inviscid secondary vorticity generator called the "flap" vorticity scheme (Figure 4). In this model, the vorticity is associated with the periodic lift distribution produced by the periodic lobe trailing edge. The feasibility of an inviscid method predicting an observed level of flow penetration is dependent on the axial flow component remaining attached to the surface. Surface pressure and shed vorticity distributions will therefore be examined to calibrate the method.

Figure 3 Comparison of computed temperature profiles with experimental data, Case 12C Mixer, $T_f/T_c = 0.74$, Station 21.
SECONDARY FLOW GENERATION, PASSAGE VORTEX

Figure 4 Secondary Flow Generation Models
A. Overview

The forced mixer consists of a convoluted lobe section and a mixing chamber. Observations have proven that the lobe region is responsible for the secondary flow generation while the downstream duct region to the nozzle exit plane produces the resultant flow mixing. It is reasonable therefore to propose zonal analytical approach, wherein regions are treated using locally applicable techniques. The convoluted lobes can be viewed as a ring wing with a periodic "spanwise" loading distribution, $\Gamma(\theta)$, as is shown in Figure 5. The periodic lobe cambering produces a nonuniform loading distribution and a corresponding shed vorticity field where strength varies periodically in θ. The shed vorticity is associated with crossflow velocity field (secondary flow) that "mixes" the flow as it is convected downstream. The vorticity is then stretched and eventually dissipated in the mixing chamber through the action of viscosity.

Figure 5 - Ring Wing Analogue of Forced Mixer

A complete inviscid treatment of the three-dimensional lobe region is still a difficult problem, due to geometrical complexity, multiple energy streams and compressibility. Considering the lack of certainty about the relevant driving mechanism for the secondary flow generation, it is appropriate to consider a more approximate analysis that can verify the magnitude of the flap vorticity model. By neglecting the effect of wall boundary layer development, the flow can be considered as irrotational regions separated by a vortex sheet. Downstream of the lobe structure, the flows can initially considered to be inviscid also, with the wake modeling all of the energy jump. An analysis in terms of a velocity potential, defined within each region, is therefore possible.
The mixer lobe surface is characterized by two length scale ratios, which provide relative measures for the lobe height, axial and azimuthal variations.

\[\varepsilon_1 = \frac{\Delta R}{L} \quad \varepsilon_2 = \frac{N\Delta R}{2\pi R} \]

where \(N \) is the number of lobes, \(L \) the axial length and \(\Delta R \) the lobe height above some mean reference radius. For many current designs, the lobes are axially slender (\(\varepsilon_1 \ll 1 \)) and the local Mach numbers are low enough that a small disturbance model may be introduced as a means for treating the salient features of the lobe mixer problem. In the next section a unique small disturbance formulation will be developed that will analytically uncouple the \(\theta \) variation and reduce the problem to the solution of a sequence of axisymmetric problems. These problems can be solved by taking advantage of previous experience \(^8 \) whereby the effects of power addition and "exact" surface boundary conditions were modeled. In contrast to this earlier work, a finite volume cylindrical grid formulation similar to that of Wedan and South's \(^9 \) is used. This approach yields a straightforward treatment of extremely general geometries. Although Wedan's calculations have been applied to essentially symmetric geometries, the method presented below will have no such restrictions.

The power contribution and lobe loading result in a potential jump \([\phi] \) across the wake shed from the lobe trailing edge. The corresponding induced secondary flow has a net circulation \(\Gamma \). By appropriately choosing the closed path of integration over half a lobe, as shown on Figure 6, the circulation integral reduces to

\[\Gamma = [\phi]_{\theta=\theta_0} - [\phi]_{\theta=\theta_0} \quad (1) \]

![Figure 6 - Schematic of Lobe Trailing Edge Integration Path](image)
In the following sections, a potential analysis for the forced mixer will be developed. The complex three-dimensional problem previously described will be linearized permitting an uncoupling of its dependence in the governing equations. Special treatment of surface and Kutta conditions however will be needed to insure compatibility with the governing equations and the physics of the problem, while also uncoupling their dependence. Finally the treatment of power addition within a potential format will be developed.

B. Potential Flow Analysis

The inviscid lobe analysis will be applied to the flow domain between the fan and core flow discharge plane and a downstream plane in the mixing chamber, schematically shown on Figure 6. The plane should be displaced sufficiently from the nozzle exit plane so as to avoid non-linear compressibility effects.

![Figure 7 Mixed Flow Nacelle Analysis Domain](image)

The governing equation of mass conservation, applied to an arbitrary control volume in space, yields

$$\int \rho \mathbf{V} \cdot \mathbf{n} \, dA = 0$$ \hspace{1cm} (2)

The nondimensionalized mass flux is defined in terms of a perturbation flow from an upstream subsonic x-"aligned" flow as follows

$$\rho \mathbf{V} = 1 + \beta_x^2 \mathbf{i}_x + \beta_r \mathbf{i}_r + \frac{1}{r} \beta_\theta \mathbf{i}_\theta$$ \hspace{1cm} (3)
where \(\beta^2 = 1 - M_{\infty}^2 \) and \(\phi \) is the perturbation potential. Only the linear terms have been retained in Equation (3). The expansion is made assuming that all surfaces can be considered to have slender shapes in the streamwise direction.

Separation of Variables and Numerical Approach

Appropriate surface boundary conditions can be derived from a flow tangency condition given by:

\[
\mathbf{v} \cdot \nabla F = 0 \tag{4}
\]

where \(\mathbf{v} \), the velocity vector is given in terms of a velocity potential and \(F \) is a general surface described in terms of the \(r, \phi, x \) cylindrical coordinate system

\[
F(r, x, \theta) = r - f(x, \theta) = 0 \tag{5}
\]

If the velocity potential is assumed to be a perturbation about the upstream axial flow and if the perturbation velocity components are assumed small relative to the upstream flow, then the axial perturbation potential contribution can be neglected and the surface boundary condition reduces to an expression for the surface radial velocity on a mean surface \(R_m(x) \).

\[
\phi_r = f_x + \frac{f_\theta}{R_m^2} \phi_\theta \tag{6}
\]

The perturbation or small disturbance approximation is equivalent to limiting surface slopes to order \(\epsilon_1 \). This linearization of the boundary condition is needed to render the overall problem separable, as will be seen shortly. At first glance, it appears that the last term in Eq. (6) is of order \(\epsilon_1 \), however, no such perturbation restrictions has been imposed in the azimuthal direction. The terms, \(f_x, f_\theta \) are known functions which describe the lobe geometry.

Problem closure is obtained by imposing a quasi one-dimensional analysis for definition of the inlet flux and a Kutta condition to uniquely set the net circulation. In order to simplify the analysis, a cylindrical coordinate system orientation was used to simplify evaluation of the flux integral (2).
Normally, a body conforming or sheared Cartesian grid would appear the logical choice for a coordinate mesh. By treating the mixer with a pure Cartesian grid, the following analysis will be more tractable. Furthermore, one can also substitute storage of large arrays with the additional complexity of irregular boundary/mesh intersections. Analysis of complex geometries in two- and three-dimensions can be easily treated using such a scheme. The mixer lobe geometry is assumed to have no scalloping and scarfing so that the trailing edge will align with the mesh. Extensions of the analysis to include scarf effects will be discussed in an Appendix. Consider the situation where the general three-dimensional lobed mixer problem is perturbed about some mean surface. It is possible to avoid analyzing the full three-dimensional problem by recognizing that the flow is a periodic function of the number of lobes. Solutions to Equation (2) and any appropriate boundary conditions are therefore assumed to be separable, i.e.,

\[\phi (x, r, \theta) = g(x, r)h(\theta) \quad (7) \]

Combining Equations (2, 3, 7), the governing flux balance equation terms can be appropriately separated into terms that are either a function of \((r, x)\) or of \(\theta\) alone,

\[E - W \int_{N-S} g(x, r) dr + \int_{N-S} r g(x, r) dr = -h_{\theta} = K^2 \quad (8) \]

where \(K\) is the separation constant and the \(E-W, N-S\) and \(\Delta A\) integrals are elemental areas evaluated in the \((x, r)\) plane. The \(\theta\) component of Equation (8) can be recast to identify the periodic nature of the separated variable. The solution for \(h(\theta)\) includes linear combinations of trigonometric functions, where appropriate application of a symmetry boundary condition at the lobe crest simplifies this to

\[h_k = B_k \cos \left(\frac{k \pi \theta}{\theta_0} \right) \quad k = 0, 1, 2, \ldots NH \quad (9) \]

where \(K = k \theta/\theta_0\), \(\theta_0\) is the half angle of the lobe (crest to trough), \(NH\) is the number of harmonics used in the Fourier series, and \(B_k\) is a sequence of unknown coefficients still to be determined. The \(k = 0\) solution corresponds to the axisymmetric solution limit. Since the separation constant can take on multiple values, the potential assumes a more general form

\[\phi = \sum_k g_k h_k \]
The axisymmetric component of Equation (8) can be evaluated for an arbitrary point in the flow field on integrals aligned to the cylindrical mesh (Figure 8a) to produce

$$\int_{E-W}^{} \beta^2 g_{x_k} r dr + \int_{N-S}^{} g_{r_k} r dx - k^2 \Delta A \int_{A}^{} g_k dr dx = 0$$ (10)

The last integral is a source term integrated over the enclosed area ($dr dx$). Evaluating the flux balance Equation (10) on an arbitrary flow element yields

$$- \left(\beta^2 g_{x_k} \right)_W^{} A_W + \left(\beta^2 g_{x_k} \right)_E^{} A_E + \left(g_{r_k} \right)_N^{} A_N - \left(g_{r_k} \right)_S^{} A_S - g_k K^2 \Delta A^k = 0$$ (11)

where the r term has been approximated by its value of the center of each flux cell.

Figure 8 - Cartesian Flux Volume Element Description

Equation (11) is a discrete approximation whose subscripts refer to the respective faces of the elemental volume shown on Figure 8a. Central differencing of the flux terms and collecting the contributions at each node results in a tridiagonal equation system in terms of g_{ijk}.
A, g_{i,j-1,k} + B_j g_{i,j,k} + C_j g_{i,j+1,k} = W_{j,k} \quad (12a)

where

\[A_j = \frac{A_S}{\Delta r} \quad (12b) \]
\[B_j = -\left[\frac{\beta^2}{\Delta x} \left(A_E + A_W \right) + \frac{1}{\Delta r} \left(A_H + A_S \right) \right] - \frac{K^2 \Delta A}{r_{ij}} \quad (12c) \]
\[C_j = \frac{A_H}{\Delta r} \quad (12d) \]
\[W_{j,k} = -A_W \frac{\beta^2}{\Delta x} g_{i-1,j,k} - A_E \frac{\beta^2}{\Delta x} g_{i+1,j,k} \quad (12e) \]

Closure to the problem formulation requires application of boundary conditions on the boundaries of the domain of integration. Referring to the computational outline in Figure 7, the no flow condition will be imposed on all solid surfaces. The upstream flows normally are defined in terms of the engine discharge conditions, but flow continuity (Kutta condition) at the lobe trailing edge necessitates an alternate approach to avoid overspecifying the inlet conditions. These boundary conditions will be explained in the following sections.

Surface No-Flow Boundary Condition

In a flux formulation, the no-flow boundary condition is implemented as a zero flux condition on all solid surfaces. The flux balance for an element intersecting the three-dimensional lobe surface is not separable along the lines previously derived. In order to render the problem separable, the boundary conditions must be linearized in the \(r \) direction resulting in a modified boundary condition with a source-like term applied on a mean axisymmetric surface, \(R_m(x) \). The surface intersecting computational element effectively looks like Figure 8b. The flux balance on such an element must be modified by an additional source term representing the "surface" flux \(g_{x_r} \) in the \(r \) direction,

\[
\int_{E-W} \beta^2 g_{x_r} r dr + \int_{N-S} g_{r_k} r dx - \int_{R_m} g_{x_r} r dx - K^2 \int_{\Delta A} g_k \frac{dr dx}{r} = 0 \quad (13) \\
\quad k = 1,2, \ldots, NH
\]
The areas in the integrals describe only the external portion of the cell on the side and azimuthal (θ) faces.

By applying the mean radius approximation to the contour, one can also express the lobe surface in terms of separable variables, i.e.,

\[f(x, θ) = R_m(x) + \sum_{k=1}^{N_H} \lambda_k(x) h_k(θ) = \sum_{k=0}^{N_K} \lambda_k(x) h_k(θ) \]

(14)

where \(λ_0(x) \) is the axisymmetric modal shape and may be used as a mean radius. A Fourier moment analysis couples the θ dependence of the contour with dependent variables. The unknown coefficients \(λ_k \) are determined by using the angular definition shown on Figure 9 and arbitrarily defining the potential within a constant \(B_k \).

\[\lambda_k(x) = \frac{1}{\theta_0 - \theta_0} \int_{\theta_0}^{θ_0} f(x, θ) \cos \left(\frac{k \pi θ}{\theta_0} \right) dθ \]

\[B_k = 1 \]

Figure 9 - Domain Definitions for Moment Analysis

Substituting the modal description of the geometry into the no-flow condition and taking advantage again of the orthogonality of alternate Fourier modes for the \(g_k \)'s on the boundary, reduces the surface boundary condition to a flux along a mean surface, which is given by

\[\bar{g}_k(x, R_m) = \lambda_k(x) + \frac{1}{2R_m^2} \sum_{j} \sum_{n} \lambda_n(x) g_j(x, R_m) \begin{bmatrix} δ_k,n-j - δ_k,n+j \end{bmatrix} \]

(15)

\[k = 0, 1, 2, ..., NH \]
where δ_{ij} is the Kronecker delta function. The first term on the right side is the primary contribution to a given mode. The second term represents a coupling of the different modal solutions due to the product $f_\theta \phi_\theta$ in the no-flow equation. If parameter ϵ_2 is small, this term is absent. Observe that Equation (15) is a mixed type boundary condition. Therefore, the solution algorithm cannot explicitly determine the $g_k(x,r)$'s from the given boundary conditions. This problem of coupled modal equations is alleviated by lagging the alternate modes in the iterative solution that will be discussed shortly.

The modal solutions for the functions $g_k(x,r)$ can be discretized along to the cylindrical mesh to yield

$$-\beta^2 g_{xw} A_w + \beta^2 g_{xE} A_E + g_{rN} A_N - g_{rK} A_s - \bar{r}_m \delta x \frac{\beta^2}{\bar{p}_m} g_k \Delta \bar{A} = 0$$

where A denotes the exterior portions of the areas of the intersected cells and $\Delta \bar{A}$ the exterior area of its azimuthal face, see Figure 8b. In general, a surface element includes a region of flow and a region interior to the body. Along the mean surface however, an element includes a core flow and fan flow region. Correct flux balancing in each region is expedited by tracking the potentials of each flow separately across the surface.

Discritizing the boundary Equations (15) and (16) is complicated by the mixed mode term in the "surface" flux. In order to solve the equations numerically, the coupled term is introduced into the $W_{j,k}$ right side term and lagged in the iterative solver, i.e.,

$$W_{j,k} = W_{j,k}^\prime + \bar{R}_m \delta x \left(\lambda_k + \frac{G_2}{2R_m^2} \right)$$

$$B_j = B_j^\prime + \bar{R}_m \delta x \frac{G_1}{2R_m^2}$$

where G_1 and G_2 are the coefficients from Equation (15) of the kth mode and the mixed modes (minus the kth term) respectively.

Solution Algorithm

The governing equations and boundary conditions reduce the analysis problem to a system of linear algebraic equations in terms of the $g_k(x,r)$'s and correspondingly the velocity potential. These equations are solved iteratively using a successive line over-relaxation procedure (SLOR). To optimize the calculations, a grid halving algorithm is utilized. In such an algorithm, the previous coarse grid solution is interpolated onto the next or finer grid as its initial guess. The solution convergence on each grid is monitored by
tracking either the residual, defined as the normalized error in the mass conservation equation at the nth iterate, or the jump in potential at the splitter trailing edge. This latter variable is the "flap" vorticity discussed in the introductory remarks. Typically the residual is a monotonically decreasing function that, in a SLOR scheme, achieves only a two orders of magnitude reduction per grid. Finally, the results are displayed in terms of the pressure coefficient defined for each stream relative to its own upstream dynamic head.

Inlet Flow Boundary Conditions (Compound Choked Flow Analysis)

Flow requirements for cruise engine operating conditions are typically determined by engine power settings as well as by inlet and nozzle exit areas. Analysis of the localized mixer/nozzle problem requires a completely specified set of boundary conditions; however, precautions must be taken to avoid specifying inconsistent fan and engine core flow conditions such that the Kutta condition at the lobe trailing edge will not be maintained. For example, if the onset flows each were specified in terms of \(p_0, T_0 \) and \(I \), the problem could be over-defined. Use could be made of the nozzle exit flow conditions in conjunction with the wake contact surface matching conditions to determine uniquely the fan and core flow requirements. The problem is further complicated by trying to ensure that the analysis would include both choked and unchoked conditions at the nozzle exit plane. Table I details duct operating conditions for several mixed flow installations. The table indicates that the nozzle exit operating condition is dependent on the mission profile of the aircraft and that choked and unchoked conditions are indeed possible.

![Figure 10 Dual Stream Choked Flow Domains](image)

Figure 10 Dual Stream Choked Flow Domains
<table>
<thead>
<tr>
<th></th>
<th>(E^3)</th>
<th>JT8D-209 (Super 90)</th>
<th>JT15D (no scal lon)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SLTO</td>
<td>SLTO</td>
<td>Avg. Cruise</td>
</tr>
<tr>
<td>Tamb</td>
<td>543.7</td>
<td>519.0</td>
<td>393.8</td>
</tr>
<tr>
<td>Pamb</td>
<td>14.7</td>
<td>14.7</td>
<td>3.46</td>
</tr>
<tr>
<td>(T_{OF})</td>
<td>625.6</td>
<td>627.5</td>
<td>560.2</td>
</tr>
<tr>
<td>(P_{OF})</td>
<td>22.45</td>
<td>24.36</td>
<td>9.33</td>
</tr>
<tr>
<td>WF</td>
<td>1157.2</td>
<td>299.1</td>
<td>120.1</td>
</tr>
<tr>
<td>(T_{OP})</td>
<td>1490.0</td>
<td>1276.0</td>
<td>1221.0</td>
</tr>
<tr>
<td>(P_{OP})</td>
<td>21.65</td>
<td>25.60</td>
<td>10.1</td>
</tr>
<tr>
<td>(H_p)</td>
<td>159.6</td>
<td>161.4</td>
<td>70.5</td>
</tr>
<tr>
<td>AF</td>
<td>36.01</td>
<td>1080.0</td>
<td>1080.0</td>
</tr>
<tr>
<td>Ap</td>
<td>908.0</td>
<td>648.3</td>
<td>648.3</td>
</tr>
<tr>
<td>(A_N)</td>
<td>--</td>
<td>1096.7</td>
<td>1096.7</td>
</tr>
<tr>
<td>(T_{ON})</td>
<td>737.3</td>
<td>864.1</td>
<td>814.3</td>
</tr>
<tr>
<td>(P_{ON})</td>
<td>22.20</td>
<td>24.76</td>
<td>0.60</td>
</tr>
<tr>
<td>(\Delta M)</td>
<td>85.0Δ</td>
<td>92.0Δ</td>
<td>92.0Δ</td>
</tr>
<tr>
<td>(P_{ON}/P_{oo})</td>
<td>1.50</td>
<td>1.68</td>
<td>2.78</td>
</tr>
</tbody>
</table>

Condition

- Unchoked
- Unchoked
- Choked
- Unchoked

15
The analysis developed is based on a compound nozzle model, wherein the curvature induced traverse pressure gradients are neglected and the static pressure is only a function of axial position. Approximating the nozzle exit flow by a quasi-one dimensional flow, the continuity equation for a single flow

$$\frac{d}{dx} (\rho v A(x)) = 0$$ \hspace{1cm} (18)

and the isentropic forms of the energy equation can be combined to give

$$\frac{dA}{dx} = A \left(\frac{1}{\gamma} \left(\frac{1}{M^2} - 1 \right) \right) \frac{d}{dx} \ln p$$ \hspace{1cm} (19)

This equation has been generalized \(^{11}\) for multistream flows as follows

$$\frac{dA_i}{dx} = \frac{A_i}{\gamma_i} \left(\frac{1}{M_{i}^2} - 1 \right) \frac{d}{dx} \ln p$$ \hspace{1cm} (20)

where quasi-one dimensional matching conditions across each dividing streamline prevent mixing but allow pressure communication \((p_i = p)\) across the flow. But area continuity

$$A_T = \sum_i A_i$$

therefore,

$$\frac{dA_T}{dx} = \sum_i \frac{dA_i}{dx} = v \frac{d}{dx} \ln p$$

where \(v\), the compound flow indicator is

$$v = \sum_i \frac{A_i}{\delta_i} \left(\frac{1}{M_{i}^2} - 1 \right)$$ \hspace{1cm} (21)

Reference \(^{10}\) also demonstrated that the nozzle flow exit state corresponds to the sign of \(v\), i.e.,

\[
\begin{align*}
 v > 0 & \quad \text{compound subsonic} \\
 v = 0 & \quad \text{compound sonic} \\
 v < 0 & \quad \text{compound supersonic}
\end{align*}
\]

Equation (21), in conjunction with the definition of the local mass flows, in terms of their stagnation properties,

$$w_i = w_i (A_i, p_i, p_{o_i}, T_{o_i})$$ \hspace{1cm} (22)
and the isentropic relation are sufficient to provide closure of the problem. For a dual stream flow, equation (21) becomes

\[v = \frac{A_1^n}{\gamma_1} \left(\frac{1}{2} \left(\frac{1}{M_{1n}} \right)^{\gamma_1 - 1} + \frac{A_2^n}{\gamma_2} \left(\frac{1}{2} \left(\frac{1}{M_{2n}} \right)^{\gamma_2 - 1} \right) \right) \] (23)

The superscripts refer to axial locations defined on Figure 10. This can be further reduced using equation (40). In particular, assume that the flow at the nozzle plane is subsonic, then

\[p_2^n = p_1^n = p_\infty \]

and the compound flow parameter becomes

\[v = A_1^n \left[\frac{1}{\gamma_1 - 1} \left(\frac{p_{01}}{p_\infty} \right)^{\gamma_1 - 1} \right] - 1 \] + \[A_2^n \left[\frac{1}{\gamma_2 - 1} \left(\frac{p_{02}}{p_\infty} \right)^{\gamma_2 - 1} \right] - 1 \] (24)

The value of \(v \) is not determinate in its present form, since \(A_1, A_2 \) are not known. An iteration to determine these areas follows.

(a) Guess value for \(p_1^m \) for given \(p_{01}, A_1^n, A_2^m \).

(b) Calculate \(w_2 \) from following equation given in Reference 11.

\[w_2 = w_2 \left(A_2, p_1^m, p_{02} \right) \] (25)

(c) Determine the new value of \(p_1^m \) from equation (22)

\[w_2 = w_2 \left(A_2, p_1^m, p_{02}, T_{02} \right) \]

but under relax update according to the following

\[p_1 = p_1^m + \alpha \left(p_1^m - p_1 \right) \]

and continue iteration until \(\Delta p_1^m \) within given tolerance.

(d) Determine

\[w_1 = w_1 \left(A_1^m, p_1^m, p_{01}, T_{01} \right) \]
(e) Determine A_1, A_2 using equation (22), i.e., solve

$$w_1 = w_1 (A^n_1, p_\infty, p_0^1, T_0^1) \text{ for } A^n_1$$

(f) Calculate ν according to equation (21).

If $\nu < 0$, then the solution is complete and the flows are defined in terms of the given upstreams data and the flows determined in iteration (a-f). If $\nu = 0$, then the flow is compound choked and p_e is not p_∞.

For compound choked flow, a dual iteration is performed to find the exit pressure for a convergent nozzle, and the splitter exit plane static pressure. In this case, it is known that the compound flow indicator $\nu = 0$. An initial guess for the primary and secondary nozzle flow areas is given by:

$$A^n_1 = A^n_t \left(\frac{A^s_1}{A^n_t} \right)$$

$$A^n_2 = A^n_t \left(\frac{A^s_2}{A^n_t} \right)$$

Using equation (24) with p_∞ replaced by p_e, an iteration is performed until a value of p_e is obtained which gives $\nu = 0$. Now the primary and secondary flows can be computed from the continuity equation (22) at the exit. The secondary flow continuity equation is then used to compute the splitter exit pressure, which is then used to compute a primary splitter exit flow. If this flow does not match the primary nozzle flow, a new primary and secondary nozzle area are computed using the primary splitter exit flow, and the entire choked flow calculation is repeated until the flows balance and $\nu = 0$.

Finally, with the flows, pressures and temperatures in both streams known, the reference Mach numbers at the inlet plane for each stream are computed from the continuity equation (22) and the isentropic equations. The velocity ν_x of each stream is therefore directly known. In the present analysis, it is assumed that $\nu_x = \nu_{x0}$ while all higher nodal derivatives at the inlet plane are identically zero.

Kutta condition - Powered Wake Analysis

Treatment of the flow downstream of an arbitrary body is complicated by the unique interaction of the stream from above and below the body. Even in nonpowered situations, the lift of flow turning is reflected as a jump in potential convected from the sharp trailing edge. This jump will remain constant and will follow the trailing stagnation streamline. In the situation of power addition, streams are assumed locally irrotational with different energy levels. They inviscidly interact through the local potential jump that is determined from the basic consistency conditions across a "contact discontinuity," i.e., static pressure match on the wake or vortex sheet S_U and streamline slope continuity

$$\vec{v} \cdot \vec{n} = 0 \text{ on } S_U, S_U$$
Classical linear theory assumes the wake lies along a constant radius surface (Rm) from the trailing edge, and the streamline slope condition is relaxed. Flow is permitted to cross through the constant radius. Consistent with the surface boundary condition formulation, the wake can be modelled by a mean or axisymmetric surface that varies with axial position.

Consider the mass flux balance on an element that includes an arbitrarily oriented mean wake streamline (Figure 8c). Applying the flux balance (16) to the upper and lower portions of the (ij) element results in equations that assume a mass flux can exist across the given wake contour, thereby allowing a lagging of the wake path in the iteration cycle. Adding the conservation components together will produce an equation for the ijth element where the flux contributions across the wake \(g_{r u} \) identically cancel each other out. If the potentials on both sides of the wake are defined in terms of a mean potential and a wake jump \([g_k]\) as follows

\[
\bar{g}_{ijk} = \frac{1}{2} (g_{ijk}^u + g_{ijk}^L) \quad (26a)
\]

\[
[g_k]_{ij} = (g_{ijk}^u - g_{ijk}^L) \quad (26b)
\]

the flux balance for a wake element becomes

\[
A_j^L \bar{g}_{i,j-1,k} + (B_j^u + B_j^L) \bar{g}_{i,j,k} + C_j^u g_{ij+i,k} = \frac{w_{ij,k}^u + w_{ij,k}^L}{2} - \frac{[g_k]_{ij} (B_j^u - B_j^L)}{2} \quad k = 0,1,2,... \: NH \quad (26c)
\]

This Equation corresponds to one row in the general \((JMxJM)\) tridiagonal matrix for the ith line,

\[
\begin{align*}
A_{j-1} & B_{j-1} C_{j-1} \\
A_j & (B_j^u + B_j^L) C_j^u \\
A_j^L & B_j & C_j \\
& & \ddots
\end{align*}
\]
The structure of the matrix is equivalent to the following \((JM+1) \times (JM+1)\) tridiagonal matrix

\[
\begin{array}{ccc}
A_{j-1} & B_{j-1} & C_{j-1} \\
A_j & B_j & 0 \\
0 & B_j^u & C_j^u \\
A_{j+1} & B_{j+1} & C_{j+1}
\end{array}
\]

The two new \((ij)^{th}\) equations are similar to individual wake element flux balances with the added proviso that the \(A\) terms are zero. This is equivalent to assuming that the wake is a solid boundary since all boundary areas are assumed by the program logic to be zero. Under such a format, the program can automatically treat these constructed equations in the algorithm and the real wake equation is arrived at by contracting or adding the appropriate equations.

The matrix solution for the \(i^{th}\) row needs an algorithm for defining the \([g_k]\) and for updating the wake path. The potential jump, \([g_k]\) is obtained from the constraints of static pressure and streamline slope continuity. Expressing the flows relative to the same reference freestream static pressure, the pressure match condition reduces to

\[
\frac{C}{p_i} = \frac{\gamma L}{\gamma U_\infty^2} \frac{P_L}{P_U} + \frac{2 \Delta P_\infty}{\gamma U_\infty^2}
\]

The pressure coefficient \(C_p\) can be taken from the general isentropic definition or from a formulation consistent with our linearized algorithm and thus separate out the axisymmetric component on each mode \(C_{p_i}^k\).

\[
C_{p_i}^k(x,r) = -2 g_k(x,r) \quad (28)
\]

The streamline slope matching conditions, along the general wake contour

\[
\frac{\phi_r^u}{1 + \beta_u^2 \phi_x^u} = \frac{\phi_r^L}{1 + \beta_L^2 \phi_x^L}
\]

can also be simplified by assuming that the axial velocity flux contribution is small relative to unity, then

\[
\phi_r^u = \phi_r^L \quad \text{or for each mode} \quad g_r^u = g_r^L
\]
If the slope
\[\frac{dr}{dx} \equiv g_r \equiv 0, \]
the wake follows the constant radius approximation.

In order to obtain closure (Kutta condition) for the problem an additional assumption is needed. Although the global Kutta condition,
\[C_{pu} = C_{pL} \]
(31a)
needs to be maintained individual modes need their own boundary condition. It is proposed therefore that each mode satisfy
\[g_x^L = g_x^k \]
(31b)
and therefore equation (31) is implicitly satisfied. Equations (28b), (26a,b) are then combined to determine the potential jump
\[[g_k]_x = E_1 \delta_{ok} + E_2 g_{x_k} \]
(32)
Ideally, the jump in potential along the wake is obtained by integrating out axially from the trailing edge along the mean radius as follows
\[[g_k]_{ij} = E_1 \delta_{ok} (x-x_{te}) + E_2 g_{ki} + \left([g_k] - E_2 g_k \right)_{TE} \]
(33)
In the entire preceding discussion, the slope was assumed given. In actuality, the path is evolved as the program iterates. A simple streamline tracing procedure could be used to periodically update the wake path. Another attractive approach would be to drive the slope using the nonconservation over the local flux cell.

Equation (1) can now be re-expressed in terms of the separated variables as follows
\[\Gamma = \frac{NH}{2} \sum_{k=1}^{N} \left(g_{2k} \Delta u_{\infty} - [g_{2k}]_{\infty} \right)_{TE} \]
(34)
where only the odd nodes contribute to the net induced circulation field.
C. Geometry Definition

General lobe contour definition can be a complex problem even if scalloping and scarf angle cutouts are not included. Current commercial designs fall within three general categories: radial sidewalls, parallel sidewalls, circular arc sidewalls with the remaining segments of the lobe defined in terms of tangentially intersecting circular arc segments. Considering the periodic nature of the analysis formulated in the previous section, one must limit the geometry capability to axisymmetric duct wall configurations while the lobe cross-section must be limited to radial sidewall geometries to avoid multiple valued structures. Using this approach, a mixer centerbody and fan cowl can be defined and replicated using the BYU Movie Three-Dimensional hidden line graphics program, to produce Figure 10.

Figure 11 Three Dimensional Display of JT8D-209 Mixer Geometry

A measure of the feasibility of the Fourier decomposition method can be made by considering a finite number of harmonics and comparing the reconstructed lobe versus the given lobe definition. A equal angle series construction permits use of fast Fourier scheme (FFT) to evaluate the Fourier coefficients. The reconstructed lobes are shown in Figure 12 for WH = 1, 3 and 9. The base contour was generated analytically using 50 points. The modal analysis, however, does not demonstrate the perfect agreement. The largest excursions occur at points where the curvature changes instantaneously. Whereas this aspect is commonly found in square wave reconstructions, where a large number of nodes must be used to obtain an accurate wave representation, the slight lobe contour mismatch should not be significant in establishing the "flap" vorticity field. The sensitivity of the analysis to the number of modes, however, will be shown below to be a critical factor in determining the mean radius, the leading term obtained from the FFT analysis.
Figure 12 Comparison of Fourier Modal Reconstruction of JT8D Lobe Near Trailing Edge Plane
The analysis (FLOMIX) described in the previous section has been applied to several lobed mixer configuration. When \(\lambda_k = 0 \) \((k=1, 2, \ldots NH)\), the zeroth mode solution will describe the powered flow over a completely axisymmetric configuration. An initial calculation of a planar mixer lobe in a straight duct is presented to calibrate the analysis. Planar conditions are simulated by considering an axisymmetric geometry at large radius. In such a situation comparison calculations can be made with an available analytically constructed solution that simulates an isolated planar mixer lobe using distributed doublets along a mean planar surface \(\Pi \) (PLANMIX). Figure 13 shows a sideview of the configuration analyzed. The duct walls are defined sufficiently far from the lobes \((H = 8"") \) so that any interactions would be minimal. Numerical calculations demonstrate that there is no potential interaction effect due to these walls. The lobe surface in both calculation methods is generated from a single cosine wave, therefore a single modal \((NH = 1)\) solution models the flowfield. In this study no power addition effects are considered. Predictions are presented for the reconstructed (as a function of \(\phi \)) components of the perturbation velocity on the lobe surface. Figures 14(a), (b), (c) show comparison calculations between FLOMIX and PLANMIX the three components for several azimuthal cuts running from the lobe crest \((\theta' = 0)\) to the inside of the lobe trough \((\theta' = 1.0)\). The axial scale runs from the lobe leading edge to its trailing edge. The profiles reflect the effect of the linear theory approximations at the trailing edge, i.e., the Kutta condition is satisfied and the axial velocity perturbation goes to zero. Although both methods are based on linear theories, slight differences should be expected since the planar analysis is an inverse method evaluating singular integrals numerically as input while the present method is a finite difference flux volume scheme.

![Figure 13 Sideview Representation of Planar Mixer/Wind Tunnel Geometry](image-url)
Comparison Calculations of Axial Velocity for a Symmetric Planar Mixer in a Planar Duct

Comparison Calculations of Vertical Velocity for a Symmetric Planar Mixer in a Planar Duct

Comparison Calculations of Spanwise Velocity for a Symmetric Planar Mixer in a Planar Duct
More realistic applications of the method can be found by considering flight type configurations. In particular, two specific powered applications are presented due to the "benchmark" nature of their experiments: (1) the Energy Efficient Engine (E^3) configuration 29, which is an 18 lobe forced mixer12,13, and (2) a JT8D-209 12 lobe forced mixer5. The E^3 configuration, shown in Figure 13, is well suited to the present formulation in that although it was modeled for a modern high bypass engine, it was designed specifically for code verification, i.e., no scalloping or scarfing of the lobes was used and extensive surface static pressure surveys were made in the lobe region of the mixer. In contrast, the JT8D-209 forced mixer is a higher penetration 12° scarf angle design typical of first generation low bypass applications. While this geometry is not strictly suitable for code comparison, the experimental data included LDV profile measurements of all components of velocity at the lobe trailing edge. Satisfactory modeling of these lobe cross-sections, even for the JT8D-209 high penetration lobe (Figure 12) is possible with only ten Fourier terms, however, a more definitive approach to defining NH is given below.

![18 LEBES](image)

Figure 15 Schenence Representation of E^3 Configuration 29 Lobed mixer
Postprocessing of the solution produces surface Mach number definition and quantifies the level of "flap" vorticity or circulation through the potential jump at the lobe trailing edge. The surface solutions, although strictly determined along the approximate mean surfaces can be interpreted, to first order, as solutions on the actual surfaces. By examining the potential jump variable, an effort will be made to separately quantify the contributive effects of mean flow turning, power addition and lobe aspect ratio (penetration angle) on the overall mixing process.

Numerical solutions initially have been made for the E3 configuration 29 lobed mixer and comparisons have been made with test data measured on a full scale model at Fluidyne Engineering Corp. The experimental cruise flow conditions were characterized by power settings* of $\Delta P_0/P_{0s} = 0.094$ and $\Delta T_0/T_{0s} = 1.5n$. Computational simulation of the measured flow conditions is obtained by setting the upstream total conditions in each stream as well as settings the exit static pressure. The quasi one-dimensional choked flow analysis correctly sets up a choked flow at the nozzle exit plane and sets the inlet flows and Mach numbers to within 10% of those measured by the facility flowmeters. Solution accuracy, relative to the level of modal approximation, however, is to be answered.

Table I summarizes the individual modal potential jumps $[g_k]$ obtained from a series of calculations in which different levels of modal approximation ($NH = 0,1,2,3...$) were used to simulate the E3 mixer. The calculations were initially made for an axisymmetric configuration where the effect of flow turning of the mean radius (-0.093) and power addition (-0.012) could be identified. With the mean radius having a positive trailing edge angle, these results demonstrate that a positive circulation corresponds to a clockwise rotation. The tabulated calculations varied both the number of harmonic terms (NH) used to represent the θ dependence of the velocity potential and the number of Fourier terms (NF) used to represent the θ dependence of the lobe surface. The tabulated results indicate that while each approximation produces different total and modal potential jumps, the individual modes approach fixed values as more terms are included. Although the higher modal solutions converge much more rapidly than the leading terms, the additional storage required for these higher order terms is impractical. A study of the governing differential equations indicates that the modal coupling is extremely weak for the axisymmetric mode and that its primary driving term is the mean radius, determined from the Fourier analysis. Since higher order solutions (NH large) contribute little to the total circulation field, one can neglect these equations while retaining the addition terms for an improved Fourier (NF) definition. For example, calculations with $NH = 3$, $NF = 5$ yield the same modal jumps as $NH = 5$, $NF = 5$. In the comparisons described below the solution parameters $NH = 5$, $NF = 18$ were used as representative of an "asymptotic" solution.

* The subscript s refers to reference conditions in the secondary or fan stream.
Table I. Potential Jump Comparisons $[g_k]$

<table>
<thead>
<tr>
<th>NH</th>
<th>NF</th>
<th>Power Addition</th>
<th>Total Jump</th>
<th>$k=0$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>axi (18)</td>
<td>No</td>
<td>-0.093</td>
<td>-0.093</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>axi (18)</td>
<td>Yes</td>
<td>-0.118</td>
<td>-0.118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>-1.396</td>
<td>-1.328</td>
<td>-0.068</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Yes</td>
<td>-0.527</td>
<td>-0.467</td>
<td>-0.084</td>
<td>0.018</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Yes</td>
<td>-0.353</td>
<td>-0.292</td>
<td>-0.087</td>
<td>0.013</td>
<td>0.007</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Yes</td>
<td>-0.367</td>
<td>-0.293</td>
<td>-0.087</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>Yes</td>
<td>-0.263</td>
<td>-0.187</td>
<td>-0.088</td>
<td>0.008</td>
<td>0.009</td>
<td>-0.004</td>
<td>-0.003</td>
</tr>
</tbody>
</table>

Asymptotic Value for NH=5, NF=18

Asymptotic Value

-0.191 | -0.118 | -0.089 | 0.008 | 0.010 | -0.002 | -0.003

Figure 16 Surface Mach Number Comparisons for E3 Duct Walls at Lobe Crest Orientation
Figure 17 Surface Mach Number Comparisons for E₃ Mixer Lobe at Lobe Crest Orientation

Figure 18 Surface Mach Number Comparisons for E₃ Duct Walls at Lobe Trough Orientations
Surface Mach number calculations, compared to measured data within the lobe region, are shown on Figs. 16-19. Figures 15, 17 present comparisons made for an azimuthal cut aligned to the lobe crest while Figs. 18, 19 show comparisons for the lobe trough orientation. Initial calculations indicated that the quasi-one-dimensional boundary condition set the flow and inlet conditions approximately 10 percent too high, therefore, a nozzle flow coefficient \(C_v = 0.94 \) was introduced to adjust the inlet flow conditions. With this modification, the figures show substantial agreement between analysis and data. The axisymmetric fan nozzle and centerbody comparisons shown on Figures 16 and 18 show little angular variation and are largely one dimensional in behavior. The lobe surface solutions, however, show substantial \(\theta \) dependence. A major discrepancy is noted near \(X/L = 0.50 \), the cross-over point for the fan and core flows. A Mach number pulse at this point is produced primarily by the first modal solution in a manner similar to Figure 12a, observed in the previously discussed planar mixer case. Viscous interaction effects should decrease the analytically predicted gradients and reduce this mismatch.

The FLOMIX analysis has also been applied to the JT8D-209 lobed mixer configuration. This configuration was previously studied at NTRC in a scaled model test but still simulating the hot flow \(\Delta P_{O}/P_{OS} = 0.044, \Delta T_{O}/T_{OS} = 1.617 \) full scale engine cruise conditions. Analysis of this configuration
is complicated by the additional effect of a 12° scarf angle. While no surface or flowfield details were measured within the lobe region of the duct, LDV measured velocity components were obtained at the lobe trailing edge and in the mixing duct. Any analysis comparison with data, however, requires an interpretation of the small disturbance solution off the mean radius. Examination of the Mach number indicates that axial component is largely one-dimensional and has little variation with radius, within each stream. Displacing the flow relative to the physical lobe trailing edge results in comparisons for the radially measured axial component of Mach number, shown on Figure 20 at the crest location and on Figure 21 for the trough location. Both figures show substantial agreement between analysis (NH = 5, NF = 9) and experiment.

Figure 20 Comparison of Axial Mach Number at Lobe Trailing Edge Plane for JT9D-209 Mixer, Crest Orientation

Figure 21 Comparison of Axial Mach Number at Lobe Trailing Edge Plane for JT8D-209 Mixer, Trough Orientation
A fuller interpretation of the flowfield at the lobe exit plane must be inferred from slender body theory 14,15, whereby the outer potential is determined as a function of x from the solution of an axisymmetric problem and the inner potential is determined as a solution of the two-dimensional Laplace's equation in the cross plane (r,\theta). This philosophy will be used with the modal axisymmetric solutions to infer the cross flow or inner solution by viewing the potential jump as the doublet source equivalent obtained from the outer solution.
A. Geometry Definition

A generalized procedure to obtain the coordinates of an arbitrary forced mixer application can be extremely complex. Although an engine centerbody is usually an axisymmetric surface, the outer cowl, which is initially also axisymmetric, can transition to a high AR rectangular cross section at the nozzle exit plane (Figure 22). Commercial applications are typically fully axisymmetric, but military applications can include such ducts. Superellipsoidal coordinates can be used to analytically approximate such circular to rectangular transition ducts.

![Figure 22 Engine Exhaust Transition Duct.](image)

Lobe contour definition is however a more complex problem. Even if scalloping and scarf angle cutouts are not modelled, lobe contours can still be very general. Current commercial designs fall within three general categories; radial sidewalls, parallel sidewalls, circular are sidewalls (See Figure 23). The remaining segments of the lobe are then defined in terms of tangentially intersecting circular arc segments.

![Figure 23 Typical Lobe Cross-Section Contours](image)
Considering the periodic nature of the analysis formulated in the previous section, one must limit the geometry capability to axisymmetric duct wall configurations. The lobe cross-section must also be limited to radial sidewall geometries to avoid multiple valued structures. Lobe coordinates are analytically evaluated by dividing the lobe into three segments (shown on Figure 24).

Using this approach, the baseline JT8D-209 model 12 mixer is defined in terms of the radii given on Table II, where the appropriate radii and the sectional locations are shown on Figure 25. Finally, after generating the mixer coordinates, one can replicate the lobe and display, using the BYU Movie Three-Dimensional hidden line graphics program, the lobe portion (Figure 26) as well as the complete forced mixer configuration (Figures 27, 28).

Table II - JT8D-209/12C Lobe Mixer Definition

<table>
<thead>
<tr>
<th>AXIAL SECTION</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>951</td>
<td>1.236</td>
<td>1.593</td>
<td>1.837</td>
<td>2.093</td>
<td>2.284</td>
<td>2.313</td>
<td>3.141</td>
<td>3.070</td>
<td>3.998</td>
<td>4.106</td>
<td>4.613</td>
<td>5.399</td>
<td></td>
</tr>
<tr>
<td>R<sub>r_v</sub></td>
<td>2.729</td>
<td>2.719</td>
<td>2.694</td>
<td>2.642</td>
<td>2.593</td>
<td>2.517</td>
<td>2.449</td>
<td>2.276</td>
<td>2.103</td>
<td>1.929</td>
<td>1.756</td>
<td>1.632</td>
<td>1.508</td>
<td>1.190</td>
</tr>
<tr>
<td>R<sub>c_w</sub></td>
<td>2.503</td>
<td>2.503</td>
<td>2.503</td>
<td>2.526</td>
<td>2.593</td>
<td>2.617</td>
<td>2.831</td>
<td>2.994</td>
<td>3.105</td>
<td>3.160</td>
<td>3.167</td>
<td>3.146</td>
<td>2.997</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>.301</td>
<td>.313</td>
<td>.310</td>
<td>.296</td>
<td>.279</td>
<td>.258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R<sub>r_v</sub></td>
<td>2.512</td>
<td>2.295</td>
<td>2.086</td>
<td>1.891</td>
<td>1.757</td>
<td>1.628</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>.313</td>
<td>.313</td>
<td>.313</td>
<td>.313</td>
<td>.313</td>
<td>.313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>.299</td>
<td>.274</td>
<td>.250</td>
<td>.235</td>
<td>.233</td>
<td>.239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>2.56</td>
<td>2.760</td>
<td>2.902</td>
<td>2.975</td>
<td>2.984</td>
<td>2.957</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>.963</td>
<td>.754</td>
<td>.303</td>
<td>.247</td>
<td>.207</td>
<td>.197</td>
<td>.173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>.302</td>
<td>.300</td>
<td>.278</td>
<td>.255</td>
<td>.241</td>
<td>.239</td>
<td>.244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 25 JT8D-209/12 mixer (-12° scarf angle) Geometry Description
Figure 26 3-Dimensional Movie Plot of Input-Generated JT8D-209 Mixer

Figure 27 3-Dimensional Movie Plot of Complete JT8D-209 Mixer Geometry

Figure 28 3-Dimensional Movie Plot of Complete JT8D-209 Mixer Geometry (Looking Upstream)
Finite Fourier Series Decomposition

Lobe contours are constructed using tangential intersection of radial lines with a variety of circular arc segments. The contours are assumed symmetric about the either the crest or trough of the lobe. The half lobe is then subdivided into NINT equal angle segments. At these points \((R_i, \theta_i)\) the lobe can be represented by a finite Fourier series, where the number of Fourier Terms is determined by the \((NINT+1)\) constraints. A measure of the feasibility of the Fourier decomposition method formulated in Section II can be made by considering a finite number of harmonics \((NH = NINT/2)\) and comparing the reconstructed lobe versus the lobe definition array from the given input data.

The definition of an arbitrary point on the lobe surface is given by the following series

\[
F = R_j(\theta_j) = \sum_{k=0}^{NH} \left[A_k \cos(k\alpha_j) + B_k \sin(k\alpha_j) \right] + R_0
\]

where

\[
\alpha_j = \frac{2\pi \theta_j}{2\theta_0} = \frac{\pi \theta_j}{\theta_0} \quad 0 \leq \theta_j \leq 2\theta_0
\]

and \(\theta_j, \theta_0\) are shown on the figure below.

![Diagram](image)

Evaluation of the unknown coefficients is possible by forming \(2NH\) moment relations that take advantage of the orthogonality of the basic Fourier functions, e.g.

\[
\int_0^{2\pi} \Delta F \cos(i \alpha) \, d\alpha = \sum_{k=1}^{NH} \left[\int_0^{2\pi} A_k \cos(k \alpha) \cos(i \alpha) \, d\alpha + \int_0^{2\pi} B_k \sin(k \alpha) \cos(i \alpha) \, d\alpha \right]
\]

\[
i = 0, 1, 2, \ldots, NH
\]
Using trigonometric integral identities to simplify the above equation one obtains

\[B_k = \frac{1}{\pi} \int_{0}^{2\pi} \Delta F \sin(k\alpha) \, d\alpha \quad k = 0, 1, 2, \ldots \text{NH} \]

\[A_k = \frac{1}{\pi} \int_{0}^{2\pi} \Delta F \cos(k\alpha) \, d\alpha \quad k = 0, 1, 2, \ldots \text{NH} \]

An equal angle series construction permits use of fast Fourier scheme (FFT) to evaluate the unknown coefficients. A more reasonable contour definition, however, can be obtained by using an equal arc length definition of the input data. In such a formulation, the coefficients must be evaluated using a more conventional matrix inversion procedure.

The truncated Fourier series has been applied to the three lobe families shown on Figure 23. The limit on angular double valuedness for the parallel and curved side wall geometries was eliminated, only for this geometry study, by using an equal arc length decomposition of the lobe surface. The reconstructed lobes are shown on Figures 29, 30, 31 for \(\text{NH} = 3 \) and 5. The base or reference contour was generated analytically using 50 points. One can see that relatively few modes are required to produce a good surface representation of the parallel and curved side wall cases. The radial analysis however does not demonstrate the same degree of agreement. The largest excursion occurs at points where the curvature changes instantaneously. This aspect is commonly found in square wave reconstructions, where a large number of modes must be used to obtain an accurate wave representation. The relative mismatch is, however, enhanced by the magnification of the abscissa scale.

The level of error should be compared however not only to the analytic contour reference but also to the manufacturing tolerance of the mixer. Mixer lobes can be accurately fabricated by three-dimensional machining of a solid mass, however, this is prohibitively expensive. Our JT8D-200 mixer experience, also used for the JT8D benchmark mixer (Ref. 5), shows that a typical mixer can have dimensional variations as large as 0.4 inch. For example, a calibration of two adjacent lobes on the benchmark mixer (Figures 32, 33) shows substantial lobe to variation. It therefore seems reasonable that only 3-5 modes will be necessary to provide adequate three-dimensional contour and flow reconstruction. In production practice the lobe-to-lobe variations seem to compensate as long as lobe flow area is maintained.
Figure 29 Comparison of Fourier Modal Reconstruction of Lobe Contour for Curved Sidewall Model of JT8D Lobe at STA 13, X/L = 93% (.....X Fourier, o Analytic)
Figure 30 Comparison of Fourier Modal Reconstruction of Lobe Contour for Radial Sidewall Model of JT8D Lobe at STA 13, X/L = 93% (......X Fourier, o Analytic)
Figure 31 - Comparison of Fourier Modal Reconstruction of Lobe Contour for Radial Sidewall Model of JT8D Lobe at STA 7, X/L= 45% (...X Fourier, ___o Analytic)

Figure 32 Axial Profile JT8D-209 Baseline Mixer

Figure 33 Circumferential Profile of JT8D-209 Baseline Mixer
B. Linking Diagram for FLOMIX Program

```
MAIN
  | ECHO
  | FORMIX
  |   | RWINPT
  |   | PLOT
  |   | LOGGEN
  |   | EQNASS
  |   | FOREGO
  |   | FORVAL
  |   | REPLIC
  |   | OUTJO
  |   | LAMDA$
  | EBC
  | HAF

GRID
XRSUBS
BCSETS
PGUESS
PLTGRD
   | PLOT
INITL
FARFLD
   | MATRIX
   | TRIDI
   | BCABCH
   | PDEABCH
   | PLUME
SLOR
RESCLI
   | MATRIX
   | EXTRAP
UPDATE
OUTPUT
   | PHIPLT
   | CPPLOT
   | FLOPLT
   | PLOT
RECOMB
   | PHIPLT
   | PLOT
PJMPLT
   | PLOT
TEPLAN
```

42
C. Input Description for FLOMIX Program

The format of each input item is identified by type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TEST CASE</td>
<td>Alphanumeric: Any keyboard characters are specified within the given field.</td>
</tr>
<tr>
<td>F</td>
<td>23.64</td>
<td>Floating Point: Decimal fractions including decimal point are specified anywhere within the given field. Positive values are assumed unless the value is preceded by a minus sign.</td>
</tr>
<tr>
<td></td>
<td>-.2364 E2</td>
<td>Scientific notation may be substituted by specifying a decimal mantissa (as above) and a right adjusted base 10 multiplier preceded by a symbol E.</td>
</tr>
<tr>
<td>I</td>
<td>42</td>
<td>Integer: Right adjusted whole numbers (no decimal point) are specified within the given field.</td>
</tr>
</tbody>
</table>

Blank F or I fields are set equal to zero, but blank A fields are set equal to blank characters.

Card Type 1

<table>
<thead>
<tr>
<th>Column</th>
<th>Item</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-52</td>
<td>AXITLT</td>
<td>A</td>
<td>Title for plotting routine</td>
</tr>
</tbody>
</table>

Card Type 2

<table>
<thead>
<tr>
<th>Column</th>
<th>Item</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-80</td>
<td>TITLE</td>
<td>A</td>
<td>Title of case for printout</td>
</tr>
</tbody>
</table>

Card Type 3

<table>
<thead>
<tr>
<th>Column</th>
<th>Item</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>NLOBE</td>
<td>I</td>
<td>No. of mixer lobes</td>
</tr>
<tr>
<td>6-10</td>
<td>NHARM</td>
<td>I</td>
<td>No. of harmonic solutions</td>
</tr>
</tbody>
</table>
Card Type 4

<table>
<thead>
<tr>
<th>Column</th>
<th>Item</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>PT1</td>
<td>F</td>
<td>Total pressure of primary flow, psi</td>
</tr>
<tr>
<td>11-20</td>
<td>TT1</td>
<td>F</td>
<td>Total temperature of primary flow, °R</td>
</tr>
<tr>
<td>21-30</td>
<td>GAM1</td>
<td>F</td>
<td>γ_1, specific heat ratio of primary flow</td>
</tr>
<tr>
<td>31-40</td>
<td>R1</td>
<td>F</td>
<td>R_1, gas constant of primary flow, $\text{ft}=\text{lb/\text{lbf-}°\text{R}}$</td>
</tr>
<tr>
<td>41-50</td>
<td>P1NF</td>
<td>F</td>
<td>Static pressure of external or ambient flow, psi</td>
</tr>
</tbody>
</table>

Card Type 5

<table>
<thead>
<tr>
<th>Column</th>
<th>Item</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>PT2</td>
<td>F</td>
<td>Total pressure of fan flow, psi</td>
</tr>
<tr>
<td>11-20</td>
<td>TT2</td>
<td>F</td>
<td>Total temperature of fan flow, °R</td>
</tr>
<tr>
<td>21-30</td>
<td>GAM2</td>
<td>F</td>
<td>γ_2, specific heat ratio of fan flow</td>
</tr>
<tr>
<td>31-40</td>
<td>R2</td>
<td>F</td>
<td>R_2, gas constant of fan flow, $\text{ft}=\text{lb/\text{lbf-}°\text{R}}$</td>
</tr>
</tbody>
</table>

Card Type 6

<table>
<thead>
<tr>
<th>Column</th>
<th>Item</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>IMXFIN</td>
<td>I</td>
<td>No. of axial (I) grid lines on finest</td>
</tr>
<tr>
<td>6-10</td>
<td>JMXFIN</td>
<td>I</td>
<td>No. of radial (J) grid lines on finest</td>
</tr>
<tr>
<td>11-20</td>
<td>XMIN</td>
<td>F</td>
<td>X_{min}, minimum axial grid location</td>
</tr>
<tr>
<td>21-30</td>
<td>XMAX</td>
<td>F</td>
<td>X_{max}, maximum axial grid location</td>
</tr>
<tr>
<td>31-40</td>
<td>RMIN</td>
<td>F</td>
<td>R_{min}, minimum radial grid location</td>
</tr>
<tr>
<td>41-50</td>
<td>RMAX</td>
<td>F</td>
<td>R_{max}, maximum radial grid location</td>
</tr>
</tbody>
</table>

Coordinate data for centerbody and fan cowl geometries must be specified within these radial grid limits.
Card Type 7

Maximum of five grid halvings are possible, with last being on finest mesh. Setting NGRIDS=1 will calculate only on finest mesh.

<table>
<thead>
<tr>
<th>Column</th>
<th>Item</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>NGRIDS</td>
<td>I</td>
<td>No. of grids used in mesh halving</td>
</tr>
<tr>
<td>6-10</td>
<td>MAXSWP(1)</td>
<td>I</td>
<td>Maximum No. sweeps on grid 1 without satisfying its convergence tol.</td>
</tr>
<tr>
<td>11-15</td>
<td>MAXSWP(2)</td>
<td>I</td>
<td>Maximum No. sweeps on grid 2</td>
</tr>
<tr>
<td>16-20</td>
<td>MAXSWP(3)</td>
<td>I</td>
<td>Maximum No. sweeps on grid 3</td>
</tr>
<tr>
<td>21-25</td>
<td>MAXSWP(4)</td>
<td>I</td>
<td>Maximum No. sweeps on grid 4</td>
</tr>
<tr>
<td>26-30</td>
<td>MAXSWP</td>
<td>I</td>
<td>Maximum No. sweeps on grid 5</td>
</tr>
<tr>
<td></td>
<td>(NGRIDS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Card Type 8

<table>
<thead>
<tr>
<th>Column</th>
<th>Item</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>RLXSUB</td>
<td>F</td>
<td>Over Relaxation factor for SLOR (Recommended=1.7)</td>
</tr>
<tr>
<td>11-20</td>
<td>PHIXT</td>
<td>F</td>
<td>Factor controlling $\Phi_x t$ artificial time term</td>
</tr>
<tr>
<td>21-30</td>
<td>PHIR</td>
<td>F</td>
<td>Factor controlling Φ_t artificial time term</td>
</tr>
</tbody>
</table>

Card Type 9

Extrapolated Relaxation Parameters (Set to zero for no extrapolation)

<table>
<thead>
<tr>
<th>Column</th>
<th>Item</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREE FORMAT</td>
<td>INSTEP</td>
<td>I</td>
<td>Minimum No. iteration sweeps before forced extrapolation (default=250)</td>
</tr>
<tr>
<td></td>
<td>INDJMP</td>
<td>I</td>
<td>Minimum No. iteration sweeps between extrapolation cycles (default=25)</td>
</tr>
<tr>
<td></td>
<td>TOLJMP</td>
<td>F</td>
<td>Tolerance factor (default=1.5)</td>
</tr>
<tr>
<td></td>
<td>NSWAVE</td>
<td>I</td>
<td>No. of sweeps used in calculating average residual for extrapolation (default=5)</td>
</tr>
</tbody>
</table>
Card Type 10

Output control parameters

<table>
<thead>
<tr>
<th>Column</th>
<th>Item</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>IDUMP</td>
<td>I</td>
<td>IDUMP</td>
</tr>
<tr>
<td>6-10</td>
<td>NTH</td>
<td>I</td>
<td>Number of azimuthal output planes at lobe trailing edge</td>
</tr>
<tr>
<td>11-15</td>
<td>NR</td>
<td>I</td>
<td>Number of radial output points at lobe trailing edge</td>
</tr>
<tr>
<td>16-20</td>
<td>IPLOT</td>
<td>I</td>
<td>IPLOT</td>
</tr>
</tbody>
</table>

Card Type 11

Specify NSTA cards of input data (Program will read to end of file)

<table>
<thead>
<tr>
<th>Column</th>
<th>Item</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>STA(I)</td>
<td>I</td>
<td>Axial Station, in</td>
</tr>
<tr>
<td>11-20</td>
<td>RID(I)</td>
<td>I</td>
<td>RID, Centerbody/plug radius, in.</td>
</tr>
<tr>
<td>21-30</td>
<td>REL(I)</td>
<td>I</td>
<td>R crown, lobe crown or maximum radius, in.</td>
</tr>
<tr>
<td>31-40</td>
<td>ROD(I)</td>
<td>I</td>
<td>ROD, Fan cowl radius, in.</td>
</tr>
<tr>
<td>41-50</td>
<td>RFV(I)</td>
<td>I</td>
<td>RFV, lobe fan valley or minimum radius, in.</td>
</tr>
<tr>
<td>51-60</td>
<td>XPCNT(I)</td>
<td>I</td>
<td>XPCNT</td>
</tr>
</tbody>
</table>

\[\alpha/\theta \text{, Percent of half lobe angle to radial side-wall plane (input some dummy value for axisymmetric problems)} \]
D. Sample Input (JT80-209 Forced Mixer)

```
FLOMIX TEST CASE
3 12
1 38.1 360.0 1.4 53.3 14.5
5 36.5 519.7 1.4 53.3 1.0
6 129 129 0.0 10.0 4.3
7 3 500 400 300
8 1.50
9 10 0 0 0.0
11 0.30000 1.37000 2.50308 3.59941 2.72835
12 0.50000 1.37000 2.50220 3.66273 2.73194
13 0.70000 1.37000 2.44995 3.59008 2.73019
14 0.90000 1.37000 2.46682 3.58596 2.72254
15 1.10000 1.37000 2.49372 3.56882 2.70907
16 1.30000 1.37000 2.49210 3.54987 2.68888
17 1.50000 1.37000 2.49592 3.53214 2.66104
18 1.70000 1.37000 2.50770 3.51697 2.62474
19 1.90000 1.37000 2.54077 3.50459 2.57560
20 2.10000 1.37000 2.60664 3.49427 2.51038
21 2.30000 1.37000 2.68890 3.45539 2.43535
22 2.50000 1.37000 2.76950 3.47558 2.35800
23 2.70000 1.37000 2.84437 3.46676 2.27979
24 2.90000 1.37000 2.91311 3.45240 2.20069
25 3.10000 1.37000 2.97525 3.43847 2.12076
26 3.30000 1.37000 3.03944 3.42368 2.04014
27 3.50000 1.37000 3.07743 3.40714 1.95911
28 3.70000 1.37000 3.11496 3.39006 1.87790
29 3.90000 1.37000 3.14233 3.37188 1.79665
30 4.10000 1.36046 3.15581 3.35311 1.71544
31 4.30000 1.33175 3.16393 3.33430 1.63440
32 4.50000 1.29293 3.15617 3.31538 1.55361
33 4.61333 1.26135 3.14000 3.30470 1.50000
34 4.90000 1.15748 0.0 3.27834 0.0
35 5.10000 1.08316 0.0 3.26075 0.0
36 5.30000 1.00863 0.0 3.24317 0.0
37 5.50000 0.93637 0.0 3.22710 0.0
38 5.70000 0.85979 0.0 3.21132 0.0
39 5.90000 0.78520 0.0 3.19571 0.0
40 6.10000 0.71067 0.0 3.18172 0.0
41 6.30000 0.63636 0.0 3.16774 0.0
42 6.50000 0.56219 0.0 3.15439 0.0
43 6.70000 0.48860 0.0 3.14216 0.0
44 6.90000 0.41623 0.0 3.12992 0.0
45 7.10000 0.34448 0.0 3.11836 0.0
46 7.30000 0.27501 0.0 3.10742 0.0
47 7.50000 0.20651 0.0 3.09663 0.0
48 7.70000 0.13948 0.0 3.08634 0.0
49 7.90000 0.07433 0.0 3.07611 0.0
50 8.10000 0.01003 0.0 3.06597 0.0
```

```
E. Subroutine Definition for FLOHIX Program

C******************************************************************************
C
C WELCOME TO FLOHIX, THE AXI-SYMMETRIC POTENTIAL FLOW ANALYSIS. THE
C Guderley-Von Karman Transonic Small Disturbance Equation is the
C governing partial differential equation. The discretized
C formulation is based on a finite volume conservation of mass
C fluxes. The boundary conditions are applied on the exact surface.
C A nonconservative shock point operator is available in lieu of
C the default conservative operator. The configurations which
C can be analyzed include sting-mounted or finite length nacelles
C with or without a centerbody. Both freestream or wing tunnel
C conditions can be simulated. An actuator disk model is used to
C simulate power addition to the flow. Grid refinement and
C extrapolation techniques are used to accelerate convergence.
C
C THE MAIN ROUTINE CONTAINS THE BASIC STRUCTURE OF THE PROGRAM.
C
C ROUTINES CALLED:
C
C ECHO - ECHOES CARD IMAGE INPUT
C FORHIX - READS THE SPECIFIED DATA FILE, OR HELPS THE USER CREATE
C A NEW DATA FILE WHEN ONLY THE CONTOUR IS GIVEN.
C EBC - CALCULATES THE POSITION OF THE DOWNSTREAM BOUNDARY AND THE
C DOWNSTREAM MACH NUMBERS FOR EACH STREAM.
C GRID - GENERATES A CARTESIAN MESH FOR THE DENSEST GRID.
C XRSUBS - GENERATES COARSE GRID SUBSETS OF THE DENSEST GRID,
C AS WELL AS CALCULATING COARSE GRID VALUES OF VARIABLES
C SUCH AS IMAX, JMAX, IH, AND ITE.
C BCSETS - GENERATES THE ARRAYS WHICH ARE USED TO ESTABLISH THE
C EXACT SURFACE BOUNDARY CONDITIONS.
C PGUESS - GENERATES AN INITIAL GUESS FOR THE POTENTIAL, PHI. THE
C GUESS IS OBTAINED EITHER FROM A SAVED SOLUTION, THE
C SOLUTION FROM THE PREVIOUS GRID, OR A GIVEN FUNCTIONAL
C FORM.
C INITL - SETS UP INITIALIZATION FOR EXTRAPOLATED RELAXATION
C FARFLD - GENERATES THE FAR FIELD BOUNDARY CONDITIONS. THIS
C SUBROUTINE IS INCLUDED IN THE RELAXATION SHEPPING LOOP TO
C ALLOW FOR PERIODIC UPDATING BASED ON THE CIRCULATION.
C SLOR - PERFORMS A SUCCESSIVE LINE OVER-RELAXATION. FOR
C EACH COLUMN IN THE CARTESIAN MESH, A TRIDIAGONAL MATRIX
C IS SET UP AND SOLVED. THE CORRECTIONS ARE APPLIED WITH
C AN OVER-RELAXATION FACTOR FOR SUBSONIC FLOW, AND AN
C UNDER-RELAXATION FACTOR FOR SUPERSONIC FLOW. WHEN
C THE PROPER CRITERIA ARE MET, AN EXTRAPOLATION IS CALLED.
C UPDATE - UPDATES CORRECTIONS FOR NEXT SHEEP THROUGH RELAXATION LOOP
C RESCL - CALCULATES RESIDUES FOR EACH SHEEP THROUGH RELAXATION LOOP
C OUTPUT - CALLS THE VARIOUS OUTPUT SUBROUTINES THAT APPLY
C TO EACH GRID. THESE INCLUDE THE CP PLOTS, THE MASS
C FLOW INTEGRATIONS, AND THE DRAG CALCULATION.
C FINISH - PROVIDES A SUMMARY OF THE ANALYSIS, AND WRITES
C INFORMATION TO A FILE FOR FUTURE CALCULATIONS.
C RECOMB - RECOMBINES EACH HARMONIC SOLUTION INTO ONE SOLUTION
C PJMPLT - PLOTS THE JUMP IN PHI OVER ALL ITERATIONS
C
C ROUTINES CALLED BY:
C
C******************************************************************************

SUBROUTINE ECHO
C
C CARD IMAGE INPUT ECHO
C
C ROUTINES CALLED BY:
C
C FLOHIX PROGRAM

48
**SUBROUTINE FORMIX(THE,A)TILT)**

FORMIX does the following:

1. Reads the lobe cross-section geometry data from R. WILEY's program.
2. Forms a series of points at equal intervals of angle PHI to define the lobe cross-section for Fourier decomposition.
3. Forms a Fourier decomposition of a selected cross-section.
4. Recreates the mixer cross-section using a selected number of terms of the Fourier expansion.
5. Gives a Tektronix scope picture of the mixer cross-section and the Fourier representation.
6. Calculates a table of the mixer cross-section values, corresponding Fourier values, absolute errors between corresponding values, and gives the RMS error and Max. Abs. error for the cross-section.

**OUTPUT ARGUMENTS:**

- THE - Theta angles
- AXITLT - Plot title

**ROUTINES CALLED:** 

- LOBGEN, EQANGS, FOREGO, FORVAL, RWNPT, REPLIC, OUT3D, LAMDAS
- LOBGEN - Calculates mixer lobe shapes and cross sections
- EQANGS - Computes the series of (Z,Y) pairs which describe the shape of a diffuser lobe for a Fourier decomposition of the shape into its frequency representation.
- FOREGO - Computes the coefficients of the Fourier series representation of R vs. Arc. One lobe of a diffuser cross-section is thus approximated from PHI-THETA to PHI+THETA.
- FORVAL - Computes the value of a Fourier series at arcs using NTERM terms in the expansion
- RWNPT - Performs reading or writing of user input
- REPLIC - Replicates the single lobe representative into a mixer cross-sectional view
- OUT3D - Creates 3D output file for 'movie' plotting
- LAMDAS - Calculates and plots lambda and lambda primes

**ROUTINES CALLED BY:**

- FORMIX program

**SUBROUTINE RWNPT(A)XITLT,XPCNT,STA,ISHAPE,ALF,THE,EY,EZ,RE,RY,FZ,RF,IRWLOPT)**

This subroutine performs reading or writing of user input.

**INPUT AND OUTPUT ARGUMENTS:**

- AXITLT,XPCNT,STA,ISHAPE,ALF,THE,EY,EZ,RE,RY,FZ,RF
- IRWLOPT - Read/Write option
  - = 0, Read
  - = 1, Write

**ROUTINES CALLED BY:**

- FORMIX - Reads the specified data file, or helps the user create a new data file when only the contour is given.

**SUBROUTINE OUT3D(XFF,YFF,ZFF,PF,IANL,NSTA,NTOTL)**

Creates 3D output file for 'movie' plotting

**INPUT ARGUMENTS:**

- XFF - X Coordinates
- YFF - Y Coordinates
- ZFF - Z Coordinates
- PF - Complex array for Y and Z
- IANL - Array identifying stations that were analyzed
- NSTA - No. of stations
- NTOTL - No. of points about a lobe

**ROUTINES CALLED:**

- REPLIC - Replicates the single lobe representative into a mixer cross-sectional view

**ROUTINES CALLED BY:**

- FORMIX

49
**SUBROUTINE AREA**

_C THIS SUBROUTINE CALCULATES MIXER AREA ON A NON-VERTICAL PLANE_
_C DEFINED BY THE X AXIS INTERCEPT, XO, AND ANGLE, W._
_C NOTE: POSITIVE W IS CCW FROM VERTICAL._

_C INPUT ARGUMENTS:_
_C XO - X AXIS INTERCEPT
_C W - ANGLE
_C NLOBE - NO. OF LOBES
_C NST - NO. OF LOBE STATIONS

_C OUTPUT ARGUMENTS:_
_C APRI - PRIMARY AREA
_C AFAN - FAN VALLEY AREA
_C AGAP - GAP AREA
_C PEN - AMIX / ATOT
_C IERR - ERROR CODE (0-NO ERROR, 1-ERROR)

_C ROUTINES CALLED:_
_C SPLIT - DETERMINES THE INTERSECTION OF A PLANE DEFINED BY_
_C X-INTERCEPT, XO, AND ANGLE, W., AND A SPLINE FIT CURVE_
_C DEFINED FROM VALUE OF IND._

_C ROUTINES CALLED BY:_
_C LOBGEN - CALCULATES MIXER LOBE SHAPES AND CROSS-SECTIONS_

**SUBROUTINE SPLIT**

_C THIS SUBROUTINE DETERMINES THE INTERSECTION OF A PLANE_
_C DEFINED BY X INTERCEPT, XO, AND ANGLE, W., AND A SPLINE_
_C FIT CURVE DEFINED FROM VALUE OF IND._
_C IND IS USED IN FUNCTION RADIUS(X,IND,R) AS AN INDICATOR_
_C OF WHICH SPLINE FIT IS TO BE READ._

_C INPUT ARGUMENTS:_
_C XO - X INTERCEPT
_C W - ANGLE
_C IND - SPLINE FIT INDICATOR
_C NST - NO. OF LOBE STATIONS

_C OUTPUT ARGUMENTS:_
_C XI - X INTERSECTION
_C R1 - INTERSECTION RADIUS

_C ROUTINES CALLED:_
_C RADIUS - EVALUATES SPLINE FIT CURVES AT SPECIFIED LOCATIONS_

_C ROUTINES CALLED BY:_
_C AREA - CALCULATES MIXER AREA ON A NON-VERTICAL PLANE DEFINED_
_C BY THE X AXIS INTERCEPT, XO, AND ANGLE, W._

**REAL FUNCTION ZPRI**

_C THIS FUNCTION EVALUATES MIXER PRIMARY LOBE WIDTH AT AXIAL STATION X_
_C AND HEIGHT Y._
_C USED AS F(X) FOR SIMPSON'S RULE INTEGRATION._

_C INPUT ARGUMENTS:_
_C X - AXIAL STATION
_C Y - HEIGHT

_C OUTPUT ARGUMENTS:_
_C ZPRI - MIXER PRIMARY LOBE WIDTH

_C ROUTINES CALLED:_
_C GEOM - CALCULATES VERTICAL SECTION GEOMETRY_

_C ROUTINES CALLED BY:_
_C AREA - CALCULATES MIXER AREA ON A NON-VERTICAL PLANE DEFINED BY_
_C THE X AXIS INTERCEPT, XO, AND ANGLE, W._
SUBROUTINE LOGEN(STA, RID, REL, RFV, ROD, XPCHT, NST, ITRANS, ALF, THET, BYY, BZZ, RBB, CYY, CZZ, RCC)

Radial Wall Mixer Deck - Obtained from D. Wiley (2-23-83)

This routine calculates mixer lobe shapes and cross-sections.

Input arguments:
STA - Station X Values
RID - Plug Radius
REL - Engine Lobe Radius
RFV - Fan Valley Radius
ROD - Outer Case Radius
XPCHT - Lobe Angle Percentage
NST - No. of Stations

Output arguments:
ITRANS - Mixer shape at each axial station
ALF - Angle to mixer wall
THET - Angle of half a lobe
BYY - Y coordinate of centerpoint of lobe
BZZ - Z coordinate of centerpoint of lobe
RBB - Radius of the lobe
CYY - Y coordinate of centerpoint of fan valley
CZZ - Z coordinate of centerpoint of fan valley
RCC - Radius of fan valley

Routines called:
BMFIT - Spline fits mixer lines
GEOM - Calculates vertical section geometry
AREA - Calculates mixer area on a non-vertical plane

Routines called by:
FORMIX

SUBROUTINE GEOM (X, STA, RID, REL, RFV, ROD, XPCHT, ISTA, ITRANS, IERR)

This routine calculates vertical section geometry.

Input arguments:
X - Axial station to be examined
STA - Station X Values
RID - Plug Radius
REL - Engine Lobe Radius
RFV - Fan Valley Radius
ROD - Outer Case Radius
XPCHT - Lobe Angle Percentage
ISTA - No. of Stations

Output arguments:
ITRANS - Mixer shape at station X
IERR - Error indicator

Routines called:
BEVALE - Evaluates BMFIT splines
ARC - Calculates values for lobe radius, fan valley radius, and the height of the fan valley.
RADIUS - Evaluates spline fit curves at specified location

Routines called by:
LOGEN - Calculates mixer lobe shapes and cross-sections.
SUBROUTINE ARC (RS, RFAN)


INPUT ARGUMENTS:
RS - POINT ON RADIAL WALL

OUTPUT ARGUMENTS:
RFAN - HEIGHT OF FAN VALLEY

Routines called:
Routines called by:
GEOM - CALCULATES VERTICAL SECTION GEOMETRY

REAL FUNCTION RADIUS(XIN, IND, STA, RID, REL, RFV, ROD, XPCT, ISTA)

THIS FUNCTION EVALUATES SPLINE FIT CURVES AT XIN. IND IS USED AS INDICATOR DEFINING CURVE IDENTITY

INPUT ARGUMENTS:
XIN - X VALUE AT WHICH SPLINE FIT CURVES ARE EVALUATED
IND - INDICATOR DEFINING CURVE IDENTITY
STA - STATION X VALUES
RID - PLUG RADIUS
REL - ENGINE LOBE RADIUS
RFV - FAN VALLEY RADIUS
ROD - OUTER CASE RADIUS
XPCT - LOBE ANGLE PERCENTAGE
ISTA - NO. OF STATIONS

Routines called:
BEVALE - EVALUATES BMFIT SPLINES
Routines called by:
GEOM - CALCULATES VERTICAL SECTION GEOMETRY

DIMENSION STA(1), RID(1), REL(1), RFV(1), ROD(1), XPCT(1)
COMMON / SPLINE/ ARID(50), BRID(50), CRID(50), DRID(50),
2 AREL(50), BREL(50), CREL(50), DREL(50),
3 ARID(50), BRID(50), CRID(50), DRID(50),
4 AROD(50), BROC(50), CROC(50), DROC(50),
5 APCT(50), BPCNT(50), CPCNT(50), DPCNT(50)
COMMON / SLOPE/ RIDIP, RELIP, RFVIP, RODIP

IND = 1, READ PLUG RADIUS
IND = 2, READ ENGINE LOBE RADIUS
IND = 3, READ FAN VALLEY RADIUS
IND = 4, READ OUTER CASE RADIUS
SUBROUTINE EQANGS (EOA,EAR,FOA,FAR,THETAO,ALPHA,ISIDOP,CURRAD,N,P)

* THIS SUBROUTINE COMPUTES THE SERIES OF (Z,Y) PAIRS WHICH DESCRIBE THE
  SHAPE OF A DIFFUSER LOBE FOR A FOURIER DECOMPOSITION OF THE SHAPE
  INTO ITS FREQUENCY REPRESENTATION.

* INPUT:
  EOA = Y-DISTANCE TO CENTER OF CIRCULAR ARC AT THE PEAK,
  EAR = RADIUS OF THE CIRCULAR ARC AT THE PEAK,
  FOA = Y-DISTANCE TO CENTER OF CIRCULAR ARC AT THE VALLEY,
  FAR = RADIUS OF THE CIRCULAR ARC AT THE VALLEY,
  THETAO = ANGLE FROM THE PEAK TO THE VALLEY,
  ALPHA = ANGLE TO THE END OF THE UPPER ARC AND THE START OF THE
         LOWER ARC
  ISIDOP = SIDE LOBE GEOMETRY OPTION
  CURRAD = SIDE LOBE RADIUS IF CURVED GEOMETRY (ISIDOP=2)
  N = TOTAL NUMBER OF POINTS FROM THE PEAK TO THE VALLEY EQUAL
      SPACED IN ARC LENGTH.

* OUTPUT:
  P(I) = (Y,Z) PAIRS DEFINING ONE LOBE OF THE MIXER FROM

Routines called:
  FORMIX

SUBROUTINE LAMDA(IANL)

* CALCULATES AND PLOTS LAMBDAS AND LAMDA PRIMES

* INPUT ARGUMENTS:
  IANL - ARRAY IDENTIFYING STATIONS THAT WERE ANALYZED

* ROUTINES CALLED:
  BHFIT - PERFORMS A SPLINE FIT OF THE USER LAMBDAS
  BEVAL - PERFORMS AN EVALUATION BASED ON THE SPLINE FIT

* ROUTINES CALLED BY:
  FORMIX
SUBROUTINE FOREGO(NPL,P,AR SIN,BRCOS,AZR,BNR)

THIS SUBROUTINE COMPUTES THE COEFFICIENTS OF THE FOURIER SERIES
REPRESENTATION OF R VS. ARC. ONE LOBE OF A DIFFUSER CROSS-SECTION
IS thus APPROXIMATED FROM PHI=-THETA TO PHI=THETA.

INPUT:
NPL = EVEN NUMBER OF DATA POINTS.
P(I) = (Z,Y) PAIRS, I=1,...,NTOTL.

OUTPUT:
AR SIN = (NPL/2-1) COEFFICIENTS FOR THE SINE TERMS OF THE EXPANSION
BRCOS = (NPL/2-1) COEFFICIENTS FOR THE COSINE TERMS OF THE
EXPANSION
AZR = CONSTANT TERM IN THE SERIES.
BNR = COEFFICIENT BNZ=COS(NTOTL/2*DELPHI), WHERE
DELPHI = 2.8318*(K-1)/NPL, K=1,2,...,NPL.

ROUTINES CALLED:
SERIES - DETERMINATION OF COEFFICIENTS IN SERIES

ROUTINES CALLED BY:
FORMIX

SUBROUTINE FORVAL(NTERM,ANGL,ACOEF,BCOEF,AZ,FVAL,BNR)

THIS SUBROUTINE COMPUTES THE VALUE OF A FOURIER SERIES AT ARC.
USING NTERM TERMS IN THE EXPANSION.

INPUT:
NTERM = NUMBER OF TERMS USED IN THE EXPANSION.
ANGL = ANGLE TO BE EVALUATED
ACOEF(I) = COEFFICIENT OF COSINE TERMS, I=1,...,NMAX.
BCOEF(I) = COEFFICIENT OF SINE TERMS, I=1,...,NMAX.
AZ = CONSTANT TERM IN THE SERIES.

OUTPUT:
FVAL = VALUE OF THE EXPANSION.

ROUTINES CALLED:
FORMIX

ROUTINES CALLED BY:
FORMIX

SUBROUTINE REPLIC(PF,NTOTL,HLOBE,IP,ZSD,XF)

SUBROUTINE REPLIC REPLICATES THE SINGLE LOBE REPRESENTATION INTO
A MIXER CROSS-SECTIONAL VIEW.

INPUT:
PF(I) = (ZF,YF) PAIRS, I=1,...,NTOTL.
IP = STATION INDICATOR
ZSD = SINGLE OR TOTAL STATION REPLICATION INDICATOR
NTOTL = NO. OF PAIRS
XF = STATION LOCATIONS

ROUTINES CALLED:
PLEK2

ROUTINES CALLED BY:
FORMIX

54
SUBROUTINE SERIES (Y,N,AZ,A,B,AN,YY,Z,W)

DETERMINATION OF COEFFICIENTS IN SERIES

INPUT:
Y(K) = INPUT VALUE OF FUNCTION AT AN ANGLE OF TK=2.*PI*(K-1)/N
FOR K=1 TO K=N
PI = 3.1415927.......
N = EVEN NUMBER OF INPUT FUNCTION VALUES (MUST EXCEED 2)

OUTPUT:
AZ = CONSTANT TERM IN SERIES
A = (N/2-1) REAL OUTPUT VALUES OF COEFFICIENTS IN COS SERIES
B = (N/2-1) REAL OUTPUT VALUES OF COEFFICIENTS IN SINE SERIES
AN = COSINE(N/2*TK) TERM IN SERIES
YY = DUMMY STORAGE OF LENGTH N+2 (REAL)
Z = DUMMY STORAGE OF LENGTH 2*N (REAL)
W = DUMMY STORAGE OF LENGTH N (REAL)

L=N/2-1
Y(K)=AZ+ SUM (A(L)*COS(L*TK)+B(L)*SIN(L*TK)+AN*COS(N/2*TK))

ROUTINES CALLED:
RFAST - FAST FOURIER TRANSFORM OF REAL DATA

ROUTINES CALLED BY:
FOREGO - COMPUTES THE COEFFICIENTS OF THE FOURIER SERIES
REPRESENTATION OF R VS. ARC. ONE LOBE OF A DIFFUSER CROSS SECTION IS THUS APPROXIMATED FROM PHI=THETA TO PHI=2*THETA.

SUBROUTINE SERINV(Y,N,AZ,A,B,AN,YY,Z,W)

REVERSE OF 'SERIES'

INPUT:
Y(K) = INPUT VALUE OF FUNCTION AT AN ANGLE OF TK=2.*PI*(K-1)/N
FOR K=1 TO K=N
PI = 3.1415927.......
N = EVEN NUMBER OF INPUT FUNCTION VALUES (MUST EXCEED 2)

OUTPUT:
AZ = CONSTANT TERM IN SERIES
A = (N/2-1) REAL OUTPUT VALUES OF COEFFICIENTS IN COS SERIES
B = (N/2-1) REAL OUTPUT VALUES OF COEFFICIENTS IN SINE SERIES
AN = COSINE(N/2*TK) TERM IN SERIES
YY = DUMMY STORAGE OF LENGTH N+2 (REAL)
Z = DUMMY STORAGE OF LENGTH 2*N (REAL)
W = DUMMY STORAGE OF LENGTH N (REAL)

ROUTINES CALLED:
RFAST - REVERSE OF 'RFAST'

ROUTINES CALLED BY:
SUBROUTINE RFAST(X,Y,N,Z,N,S)
   FAST FOURIER TRANSFORM OF REAL DATA
   INPUT:
   X = N REAL INPUT VALUES
   N = EVEN NUMBER OF INPUT VALUES (MUST EXCEED 2)
   S = SIGN CONTROLLING DIRECTION OF TRANSFORM
   OUTPUT:
   Y = N/2+1 COMPLEX OUTPUT VALUES
   Z = DUMMY STORAGE OF LENGTH 2N (REAL)
   W = DUMMY STORAGE OF LENGTH N (REAL)
   THIS PRODUCES 'OUTPUT Y' FROM 'INPUT X', WHERE
   ******************************************************
   K=N
   Y(J)=SUM X(K)*EXP(SIGN(1.,S)*I=2*PI*(J-1)*(K-1)/N)
   ******************************************************
   WITH I=SQRT(-1) AND PI=3.14159........
   NOTE THAT Y(N-J+2)=CONJ(Y(J)) FOR J=1 TO J=N/2+1
   THIS ONLY Y(1) TO Y(N/2+1) ARE CALCULATED
   COMPLEX NUMBERS ARE HANDLED IN FORTRAN 4 CONVENTION, NAMELY THE
   REAL AND IMAGINARY PARTS ARE STORED IN ALTERNATE CELLS, STARTING
   WITH THE REAL PART OF Y(1) IN THE FIRST LOCATION, ETC.
   ROUTINES CALLED:
   FAST - FAST FOURIER TRANSFORM OF COMPLEX DATA
   ROUTINES CALLED BY:
   SERIES - DETERMINATION OF COEFFICIENTS IN A SERIES

SUBROUTINE FAST(X,Y,N,Z,N,W,S)
   FAST FOURIER TRANSFORM OF COMPLEX DATA
   INPUT:
   X = N INPUT VALUES (COMPLEX)
   N = NUMBER OF VALUES
   OUTPUT:
   Y = N OUTPUT VALUES (COMPLEX)
   Z = DUMMY STORAGE OF LENGTH 2N (COMPLEX)
   W = DUMMY STORAGE OF LENGTH N (COMPLEX)
   S = SIGN CONTROLLING DIRECTION OF TRANSFORM
   THIS PRODUCES 'OUTPUT Y' FROM 'INPUT X', WHERE
   ******************************************************
   K=N
   Y(J)=SUM X(K)*EXP(SIGN(1.,S)*I=2*PI*(J-1)*(K-1)/N)
   ******************************************************
   WITH I=SQRT(-1), S=+1. OR S=-1., AND PI=3.14159........
   ROUTINES CALLED:
   ROUTINES CALLED BY:
   RFAST - FAST FOURIER TRANSFORM OF REAL DATA
   RFASTI - REVERSE OF 'RFAST'
SUBROUTINE EBC

This subroutine calculates the position of the downstream boundary and the downstream Mach numbers for each stream. Input aero data:

PT1, PT2, PINF, TT1, TT2, GAM1, GAM2, R1, R2

Output arguments:

EM1S - primary stream Mach no. for the splitter
EM2S - secondary stream Mach no. for the splitter

Routines called:

HAF - search routine used by EBC

Routines called by:

FLOMIX program

SUBROUTINE HAF(MAX,MIN,X,Y,ZC,ZER,IC,IER)

This routine is a search routine for EBC.

Input arguments:

MIN - minimum value of output parameter for search
MAX - maximum value of output parameter for search
X - current value of output parameter during search
Y - input parameter to be matched
IC - 1, input parameter is splitter secondary flow area
    - 2, input parameter is compound flow function, beta
    - 3, input parameter is secondary flow rate

Output arguments:

X - IC=1, output parameter is splitter static pressure
    - IC=2, output parameter is nozzle exit static pressure
    - IC=3, output parameter is downstream boundary static pressure
IER - error indicator: 0 is O.K., 1 is no convergence in 20 tries.

Routines called:

Routines called by:

EBC - calculates the position of the downstream boundary and the downstream Mach numbers for each stream.

SUBROUTINE GRID

This subroutine generates a Cartesian mesh for the densest grid.

Routines called:

Routines called by:

FLOMIX program

57
SUBROUTINE XRSUBS
C
C THIS SUBROUTINE GENERATES COARSE GRID SUBSETS OF THE DENSEST GRID,
C AS WELL AS CALCULATING COARSE GRID VALUES OF VARIABLES
C SUCH AS IMAX, JMAX, IM, AND IT.
C
C ROUTINES CALLED:
C
C ROUTINES CALLED BY:
C FLOMIX PROGRAM

SUBROUTINE BCSET(XNTR,RNTR,IMXINT)
C
C THIS SUBROUTINE GENERATES THE ARRAYS WHICH ARE USED TO ESTABLISH THE
C EXACT SURFACE BOUNDARY CONDITIONS.
C
C OUTPUT ARGUMENTS:
C XNTR - X INTERPOLATED SURFACE COORDINATES FOR CPLOT
C RNTR - R INTERPOLATED SURFACE COORDINATES FOR CPLOT
C IMXINT - NO. OF VALUES IN X AND R FOR EACH SURFACE
C
C ROUTINES CALLED BY:
C FLOMIX PROGRAM

CONTOUR BOUNDARIES
L = 1 - CENTERBODY
    = 2 - INTERNAL SPLITTER
    = 3 - EXTERNAL SPLITTER
    = 4 - NOZZLE

SUBROUTINE PGEUS
C
C THIS SUBROUTINE GENERATES AN INITIAL GUESS FOR THE POTENTIAL, PHI.
C THE GUESS IS OBTAINED EITHER FROM A SAVED SOLUTION, THE
C SOLUTION FROM THE PREVIOUS GRID, OR A GIVEN FUNCTIONAL FORM.
C
C ROUTINES CALLED:
C
C ROUTINES CALLED BY:
C FLOMIX PROGRAM

SUBROUTINE PLTGRD(XNTR,RNTR,IMXINT)
C
C THIS ROUTINE HANDLES GRID PLOTTING
C
INPUT ARGUMENTS:
XNTR - X INTERPOLATED SURFACE COORDINATES FROM BCSETS
RNTR - R INTERPOLATED SURFACE COORDINATES FROM BCSETS
IMXINT - NO. OF VALUES IN X AND R FOR EACH SURFACE

ROUTINES CALLED: PLT2K2

ROUTINES CALLED BY: FLOMIX PROGRAM
SUBROUTINE INIT

This subroutine sets up initialization for extrapolated relaxation.

Routines called:

Routines called by:

This subroutine performs a successive line over-relaxation. For each column in the Cartesian mesh, a tridiagonal matrix is set up and solved. The corrections are applied with an over-relaxation factor for subsonic flow, and an under-relaxation factor for supersonic flow. When the proper criteria are met, an extrapolation is called.

Routines called:

This subroutine generates the far field boundary conditions. It is included in the relaxation sweeping loop to allow for periodic updating based on the circulation.

Routines called:
SUBROUTINE MATRIX

C THIS SUBROUTINE SETS UP THE MATRIX OF COEFFICIENTS RESULTING
C FROM THE PARTIAL DIFFERENTIAL EQUATION AND THE BOUNDARY
C CONDITIONS. THE R*PHIR RULE FOR THE CENTERBODY AND THE
C OUTER BOUNDARY IS INCLUDED IN THE MATRIX TO SIMPLIFY THE
C LOGIC FOR VARIABLE COLUMN LENGTHS. AT SOME FUTURE DATE
C IT MAY BE CHANGED FOR THE SAKE OF EFFICIENCY.

C ROUTINES CALLED:
C BCABCM - ESTABLISHES BOUNDARY CONDITION VALUES FOR MATRIX
C COEFFICIENTS A, B, C, AND M
C POEABC - CALCULATES THE PDE MATRIX COEFFICIENTS A, B, & C, AND THE
C RIGHT HAND SIDE M

C ROUTINES CALLED BY:
C SLO - PERFORMS A SUCCESSIVE LINE OVER-RELAXATION. FOR
C EACH COLUMN IN THE CARTESIAN MESH, A TRIDIAGONAL MATRIX
C IS SET UP AND SOLVED. THE CORRECTIONS ARE APPLIED WITH
C AN OVER-RELAXATION FACTOR FOR SUBSONIC FLOW, AND AN
C UNDER-RELAXATION FACTOR FOR SUPersonic FLOW. WHEN
C THE PROPER CRITERIA ARE MET, AN EXTRAPOLATION IS CALLED.

SUBROUTINE TRIDI(A,B,C,VECTOR,M,N)

C THIS SUBROUTINE SOLVES A SET OF N TRIDIAGONAL EQUATIONS AS
C OBTAINED IN THE MAIN PROGRAM FOR A RADIAL COLUMN. THE RESULTS
C ARE LEFT IN THE ARRAY *VECTOR* AND A,B,C AND M ARE DESTROYED.

C INPUT:
C A - WORK VECTOR FOR TRIDIAGONAL EQUATIONS
C B - WORK VECTOR FOR TRIDIAGONAL EQUATIONS
C C - WORK VECTOR FOR TRIDIAGONAL EQUATIONS
C M - WORK VECTOR FOR TRIDIAGONAL EQUATIONS
C N - NO. OF TRIDIAGONAL EQUATIONS

C OUTPUT:
C VECTOR - RESULTING ARRAY

C ROUTINES CALLED:
C
C ROUTINES CALLED BY:
C SLO - PERFORMS A SUCCESSIVE LINE OVER-RELAXATION. FOR
C EACH COLUMN IN THE CARTESIAN MESH, A TRIDIAGONAL MATRIX
C IS SET UP AND SOLVED. THE CORRECTIONS ARE APPLIED WITH
C AN OVER-RELAXATION FACTOR FOR SUBSONIC FLOW, AND AN
C UNDER-RELAXATION FACTOR FOR SUPersonic FLOW. WHEN
C THE PROPER CRITERIA ARE MET, AN EXTRAPOLATION IS CALLED.

SUBROUTINE RESCL

C THIS SUBROUTINE CALCULATES RESIDUES FOR EACH SWEEP THROUGH RELAXATION
C LOOP.

C ROUTINES CALLED:
C MATRIX - SETS UP THE MATRIX OF COEFFICIENTS RESULTING
C FROM THE PARTIAL DIFFERENTIAL EQUATION AND THE BOUNDARY
C CONDITIONS. THE R*PHIR RULE FOR THE CENTERBODY AND THE
C OUTER BOUNDARY IS INCLUDED IN THE MATRIX TO SIMPLIFY THE
C LOGIC FOR VARIABLE COLUMN LENGTHS. AT SOME FUTURE DATE
C IT MAY BE CHANGED FOR THE SAKE OF EFFICIENCY.

C ROUTINES CALLED BY:
C FLOX PROGRAM

60
SUBROUTINE PDEABS(ISTR)

This subroutine calculates the partial differential equation matrix coefficients, A, B, and C, and the right hand side, W.

Routines called:

Routines called by:

Matrix - sets up the matrix of coefficients resulting from the partial differential equation and the boundary conditions. The r=phi rule for the centerbody and the outer boundary is included in the matrix to simplify the logic for variable column lengths. At some future date it may be changed for the sake of efficiency.

SUBROUTINE BCABCH(ISTR,IBND)

This subroutine establishes boundary condition values for matrix coefficients A, B, C, and W

Input arguments:

ISTR - stream number (1-primary, 2-secondary)
IBND - boundary number (1-cent., 2-inner spl., 3-outer spl., 4-nozzle)

Routines called:

DELTA - calculates delta functions

Routines called by:

Matrix - sets up the matrix of coefficients resulting from the partial differential equation and the boundary conditions. The r=phi rule for the centerbody and the outer boundary is included in the matrix to simplify the logic for variable column lengths. At some future date it may be changed for the sake of efficiency.

SUBROUTINE PLUME

This subroutine is used for configuring the plume.

Routines called:

Routines called by:

Matrix - sets up the matrix of coefficients resulting from the partial differential equation and the boundary conditions. The r=phi rule for the centerbody and the outer boundary is included in the matrix to simplify the logic for variable column lengths. At some future date it may be changed for the sake of efficiency.

SUBROUTINE UPDATE

This subroutine calculates the corrections for the next sweep.

Routines called:

EXTRAP - calculates the extrapolated relaxation for the next sweep

Routines called by:

FLORIX program

SUBROUTINE EXTRAP

This subroutine calculates the extrapolated relaxation for the next sweep.

Routines called:

Routines called by:

UPDATE - calculates the corrections for the next sweep
FUNCTION DFL(T,Z)
C
THIS FUNCTION IS USED BY BCABCW TO CALCULATE DELTA FUNCTIONS.
C
ROUTINES CALLED BY:
C
BCABCW - ESTABLISHES BOUNDARY CONDITION VALUES FOR MATRIX
C
COEFFICIENTS A, B, C, AND W
C
---------------------------------------------------------------------------------

SUBROUTINE OUTPUT(XNTR,RNTR,ZMXINT)
C
THIS SUBROUTINE CALLS THE VARIOUS OUTPUT SUBROUTINES THAT APPLY TO
C EACH GRID.
C
INPUT ARGUMENTS:
C
XNTR - X INTERPOLATED SURFACE COORDINATES FROM BCSETS
C RNTR - R INTERPOLATED SURFACE COORDINATES FROM BCSETS
C ZMXINT - NO. OF VALUES IN X AND R FOR EACH SURFACE
C
ROUTINES CALLED:
C
MASFLO - PERFORMS THE MASS FLOW INTEGRATIONS
C CPPLOT - PLOTS CP CALCULATIONS
C FLDPLT - PLOTS CPS IN THE FLOW AREA
C
ROUTINES CALLED BY:
C
FLOMIX PROGRAM
C
---------------------------------------------------------------------------------

SUBROUTINE PHIPLT(PHI,X,R,IMAX,JMAX,NI,NJ,K,KL,D,H,UP,SHR,ETA)
C
THIS ROUTINE HANDLES PLOTTING OF PHI VALUES.
C
ROUTINES CALLED: PLTEKZ
C
ROUTINES CALLED BY:
C
---------------------------------------------------------------------------------

SUBROUTINE CPPLOT(XNTR,RNTR,ZMXINT)
C
THIS ROUTINE PLOTS CP CALCULATIONS
C
INPUT ARGUMENTS:
C
XNTR - X INTERPOLATED SURFACE COORDINATES FROM BCSETS
C RNTR - R INTERPOLATED SURFACE COORDINATES FROM BCSETS
C ZMXINT - NO. OF VALUES IN X AND R FOR EACH SURFACE
C
ROUTINES CALLED: PLTEKZ, MVCHAR
C
ROUTINES CALLED BY:
C
OUTPUT - CALLS THE VARIOUS OUTPUT SUBROUTINES THAT APPLY
C TO EACH GRID. THESE INCLUDE THE CP PLOTS, THE MASS
C FLOW INTEGRATIONS, AND THE DRAG CALCULATION.
C
---------------------------------------------------------------------------------

SUBROUTINE FLDPLT
C
PLOTS CPS IN THE FLOW AREA
C
ROUTINES CALLED BY:
C
OUTPUT - CALLS THE VARIOUS OUTPUT SUBROUTINES THAT APPLY TO EACH
C GRID
SUBROUTINE RECOMB(THE,CPS,IMX,INT,NEXT)

This routine combines each harmonic solution into one solution.

INPUT arguments:
THE - Theta angles
CPS - CPS for each contour
IMXINT - No. of values in each contour
NEXT - No. of external splitter stations

Routines called by:
FLOMIX program

SUBROUTINE PHiPLT(PMJPTT,RMXPTT,RAVPTT,IMXRSP,JMXRSP,NSTOT,NHARM)

This routine handles plotting of the jump in phi values and the maximum and average residuals.

INPUT arguments:
PMJPTT - jump in phi values
RMXPTT - maximum residuals
RAVPTT - average residuals
IMXRSP - maximum residual pointer for each sweep for I
JMXRSP - maximum residual pointer for each sweep for J
NSTOT - maximum no. of points to plot
NHARM - no. of harmonics (modes)

Routines called: PLTEK2

Routines called by: FLOMIX program
REFERENCES


REFERENCES (Cont'd)


APPENDIX

Scarf Angle Analysis

Mixing performance has been found to depend on the geometry characteristics of the lobe trailing edge plane. In particular, cutback or scarfing can be used to optimize mixer performance. Typically, the scarf angle ($\xi$) can vary $\pm 15^\circ$ from a radial cut. Analysis of such configurations is complicated by the irregular radial surface presented when viewed in a cylindrical frame of reference. An alternate representation, using a skewed system aligned to the lobe trailing edge avoids this problem.

The governing equations can be transformed from the physical $(x,r)$ to the computational plane $(\xi,\eta)$ by means of the following transformation.

\[ \xi = x - \Lambda r \quad \eta = \frac{r}{c} \quad (A.1) \]

where $\Lambda = \tan \xi = $constant and $c = \cos \xi = $constant. The local velocities can then be related to these coordinates through chain rule differentiation.

\[ \frac{\partial}{\partial x} \frac{\partial}{\partial \xi} + \frac{\partial}{\partial x} \frac{\partial}{\partial \eta} = \frac{\partial}{\partial \eta} \quad (A.2a) \]

\[ \text{or} \quad \frac{\partial}{\partial r} \frac{\partial}{\partial \xi} + \frac{\partial}{\partial r} \frac{\partial}{\partial \eta} = \frac{1}{c} \frac{\partial}{\partial \eta} \quad (A.2b) \]

\[ \beta^2 q_x = \beta^2 q_{\xi} \quad \xi \quad q_r = -\Lambda \beta^2 q_{\xi} + \frac{1}{c} q_{\eta} \quad (A.3) \]
The $g^3$ term has been introduced to reflect the comprisable term from the s.d.t. expansion. Applying these flux definitions to a balance over a general element, in a cylindrical mesh, yields

$$\int (\rho^2 g_{kx}) r dr - \int g_{rk} r dx + \int g_{rS} r dx - K^2 \int g_k \frac{dA}{\Delta \theta} = 0$$  \hspace{1cm} (A.4)

Discriticizing reduces (A.4) to

$$\begin{bmatrix} \rho^2 g_{kE} c A_E - \rho^2 g_{kW} c A_W \end{bmatrix} - \begin{bmatrix} g_{rE} S A_E - g_{rW} S A_W \end{bmatrix} \begin{bmatrix} A_N - A_S - \frac{K^2}{r} q_k \Delta A \end{bmatrix} = 0,$$

where $g_x, g_r$ are differenced along the mesh when expressed in terms of (A.3). Similarly one can treat boundary intersecting elements in this skewed system. Recalling equation (22)

$$\int \rho^2 g_{kx} r dr + \int g_{rk} r dx - \int g_{rS} r dx - K^2 \int g_k \frac{dA}{\Delta \theta} = 0$$

where

$$\overline{g_r} = \chi_k + \hat{g}(\lambda_m, g_m)$$

is the "known" surface flux along the main surface $R_m(x)$. The flux balance in the skewed system becomes

$$\begin{bmatrix} A, S \end{bmatrix} - R_m \Delta x \overline{g_r} = 0$$

where the local area as again represent only the exposed portion of the cell.
It is desirable, in general, to have a skewed radial mesh over the entire calculation domain but boundary conditions are typically defined along radial upstream and downstream planes. The skewing transformation \( \Lambda = \Lambda(x,r) \). A generalization of the previous analysis is simplified if we introduce the flux balance in terms of the contravariant velocity components; those defined normal to the \((E,\eta)\) coordinates. Following the approach of Doria, equations (A.2) applied to \((x,r)\) yields four separate equation systems for the transformation metrics; eq.

\[
\begin{align*}
1 &= \xi_x \xi_x + \eta_x \eta_x \\
0 &= \xi_r \xi_r + \eta_r \eta_r \\
\xi_r &= \frac{\eta_r}{\xi_r \eta_r - \eta_x \xi_r} = 1
\end{align*}
\]

If \( \Lambda = \) constant, these equations yield the following metrics relations

\[
\xi = 1 \quad \eta = \nu \quad \xi_r = 0 \quad \eta_r = c
\]

(A.6)

Associated with this transformation are the Jacobian

\[
J = \xi \eta - \xi \eta \xi = c
\]

(A.7a)

and the three invariant components of the metric tensor

\[
\begin{align*}
a_{11} &= \xi^2 + \eta^2 = 1 \\
a_{12} &= \xi \eta + \xi \eta = 0 \\
a_{22} &= \xi^2 + \eta^2 = 1
\end{align*}
\]

(A.7b)

The conservation flux balance, in terms of the contravariant velocities \((U,V)\) associated with \((E,\eta)\) directions, is now given by the following components

\[
\begin{align*}
J U A_E &= r_x A_x + \frac{A_x}{J} \left[ a_{12} \beta^2 q_x - a_{12} q_y \right] = r_x A_x + \frac{A_x}{J} \left[ \beta^2 q_x - \Lambda q_y \right] \\
J V A_\eta &= -r_x A_\eta + \frac{A_\eta}{J} \left[ -a_{12} \beta^2 q_x + a_{12} q_y \right] = -r_x A_\eta + \frac{A_\eta}{J} \left[ -\beta^2 q_x \Lambda + \frac{q_y}{\xi} \right]
\end{align*}
\]

(A.8)
The leading term in each expression reflects the contribution of the freestream velocity in the x-aligned perturbation potential formulation. One can compare (A.8) and (A.5) to check for consistency of the models.

\[
\begin{align*}
\{ g_{rN} A_N &= \left[ -\Lambda q^2 \eta \varepsilon + \frac{1}{c} q \tilde{\eta} \right]_N \\
\left[ J^N A \right]_N &= A_N \left[ -\Lambda q^2 \eta \varepsilon + \frac{1}{c} q \tilde{\eta} \right]_N \\
\{(\beta q c - g_r)_{x} w \} &\ = A_w \left[ \beta c q \varepsilon - (\beta q^2 \varepsilon - \frac{1}{c} \tilde{\eta} \eta) \right]_w \\
\{(J \cup A_f)_{x} w \} &\ = A_w \left[ \beta q \varepsilon - \Lambda q \tilde{\eta} \right]_w
\end{align*}
\]

In the above analysis the freestream component is neglected. For a general element it will cancel out with the opposing face's contribution. Special consideration is needed for the surface intersecting case.

The previous analysis can now be extended to include problems to wherein the mesh skewing varies.

\[
\xi = x - \Lambda (x, r, \varepsilon) \\
\eta = \frac{r}{c(x, r)}
\]

The metric invariants and Jacobian (A.7a,b) can be reevaluated in terms of

\[
\begin{align*}
\xi_x &= 1 - \frac{r}{c} \frac{\partial \xi}{\partial x} \\
\xi_r &= -\Lambda - \frac{r}{c^2} \frac{\partial \xi}{\partial r} \\
\eta_x &= \frac{\Lambda}{c} \frac{\partial \xi}{\partial x} \\
\eta_r &= \frac{1}{c} + \frac{\Lambda}{c} \frac{\partial \xi}{\partial r}
\end{align*}
\]
The exact relationship for $\xi, C, \Lambda$ can be obtained as follows. Consider the mesh generated from the lobe trailing edge to some downstream phase. Generate mesh skewing from fan valley contour.

$$x(r) = \eta$$

$x_0$ is  

$$x_0(r) = x_0(r_0) + (r - r_0) \Lambda_{o}^{-1}$$

Similarly the downstream mesh boundary is given by

$$x_d(r) = x_d$$

Linearly adjusting between these boundaries

$$\lambda = \left( \frac{x - x_0(r)}{x_d - x_0(r)} \right) = \frac{x_0(\lambda) - x_0(r_0)}{x_d - x_0(r_0)}$$

one obtains a general function expression for the $x$ grid variation

$$x(\lambda) = (1 - \lambda)x_0(r) + \lambda x_d$$

In this frame $\Lambda$, at any $\gamma$ line, is given by

$$\Lambda(\lambda) = \Lambda(x, r) = \frac{(r - r_0)}{\left[x(\lambda) - x(\lambda_0)\right]}$$
A three-dimensional potential analysis (FLOMIX) has been formulated and applied to the inviscid flow over a turbofan forced mixer. The method uses a unique small disturbance formulation to analytically uncouple the circumferential flow from the radial and axial flow problem, thereby reducing the analysis to the solution of a series of axisymmetric problems. These equations are discretized using a flux volume formulation along a Cartesian grid. The method extends earlier applications of the Cartesian method to complex cambered geometries. The effects of power addition are also included within the potential formulation. Good agreement is obtained with an alternate small disturbance analysis for a "high penetration" symmetric mixer in a planar duct. In addition, calculations showing pressure distributions and induced secondary vorticity fields are presented for practical turbofan mixer configurations, and where possible, comparison has been made with available experimental data. A detailed description of the required data input and coordinate definition is presented along with a sample data set for a practical forced mixer configuration. A brief description of the program structure and subroutines is also provided.