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ABSTRACT

A new control design methodology is introduced for multi-input/multi-output systems with

unstable open loop plants and saturating actuators. A control system is designed using well known

linear control theory techniques and then a reference prefilter is introduced so that when the

references ,are sufficiently small, the control system operates linearly, as designed. For signals large

enough to cause saturr,:ions, the control law is modified in such a way to ensure stability and to

preserve, to the extent possible, the behavior of the linear control design.

Key benefits of this methodology are: the modified feedback system never produces

saturatin - control signals, inte_ators and/or slow dynangcs in the compensator never windup, the

directional properties of the controls are maintained, and the closed loop system has certain

guaranteed stability properties.

The advantages of the new design methodology are illustrated in the simulation of an

approxima'ion of the AFTI-16 (Advanced Fighter Technology Integation) aircraft multivariable

ton_tudinal dynamics.
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i. Introduction

In general the presence of saturations introduce stability and performance problem to closed

xoop nmltivarible control systems. One of those problems is the fact that control saturations alter

the direction of the control vector. Each saturation element operates on its input signal

independently of the other saturation elements; as it has been shown in the performance analysis in

[10] and [11] this can disturb the direction of the applied control vector. Consequently, erroneous

coanols can occur causing degradation of the performance of the closed loop system over and

above the expected fact that output transients will be "slower".

Another performance degradation occurs when a linear compensator with integrators is used

in a closed loop system and the phenomenon of reset-wh_dup appears. During the time of

saturation of the actuators, the error is continuously integrated even though the controls are not

what they should be. The integrator, and other slow compensator states, attain values that lead to

larger controls than the saturation limits. This leads to the phenomenon known as reset-windup,

resulting in serious deterioration of the performance (large overshoots and large settling times.).

The effects of the saturations on the closed loop stability of the control system are well

known. When the open loop plant is unstable one can only guarantee local closed loop "stability

and there are references and disturbances such that when applied the closed loop system becomes

unstable.

M£ny attempts have been made to address these problems for SISO systems, but a general

design process has not been formalized. One way to design controllers for systems with bounded

controls, would be to solve an optimal control problem; for example, the time optimal control

problem or the minimum energy problem etc. The solution to such problems usually leads to a

bang-bang feedback controller [1]. Even though the problem has been solved completely in

principle, the solution to even the simplest systems requires good modelling, is difficult to calculate

open loop solutions, or the resulting switching surfaces are complicated to work with. For these

reasons, in most applications the optimal control solution is not used.

Because of the problems with optimal control results, other design techniques have been

attempted. Most of them are based on solving the Lyapunov equation and getting a feedback which
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will guaranteeglobalstabilitywhenpossibleor localstabilityotherwise[2]-[3]. The problem with

these techniques is that the solutions tend to be unnecessarily conservative and consequently the

performance of the closed loop system may suffer.

Attempts to solve the reset windup problems when inte_ators are present in the forward

loop, have been made for SISO systems [4]-[6]. Most of these attempts lead to controllers with

substantially improved performance but not well understood stability properties. As part of this

research, an initial investigation was made on the effects on performance of the reset windups for

MIMO systems [8] showing potential for improving the performance of the system. A simple case

study was also recently conducted on the effects of saturations to MIMO systems where potential

for improvement in the performance was demonstrated [9].

A new design methodology has been introduced in [11] for designing MIMO control systems

for stable open loop plants with multiple saturations. Here a systematic methodology is

introduced to design control systems with multiple saturations for unstable open loop plants. The

idea is to design a linear control system ignoring the saturations and when necessary to modify that

linear control law. When the exogenous signals are small, and they do not cause saturations, the

system operates linearly as designed. When the signals are large enough to cause saturations, the

references are modified in such a way to preserve ("mimic") to the extent possible the responses of

the linear design. Our modification to the linear compensator is introduced at the error via a

Reference Governor (RG).

2. Performance Analysis

Without loss of generality one can assume that each element ui (t) of the control vector u(t) = [

Ul(t)... up(t)] T has saturation limits +1 and the saturation operator can be defined as follows:

1 ui(t) _> 1
sat(ui(t)) = ui(t ) -1 _<ui(t ) _< 1

- 1 u i(t) _<-1

(2.1)
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Figure2.1showstheclosedloop systemwith thesaturationelementflu(t)) (f(u(t)) =

[sat(ul(t) ...sat(urn(t)]T) at thecontrols.ThecompensatorK(s) is designedusinglinearcontrol

systemtechniquesandit is assumedthattheclosedloopsystemwithout thesaturations(thelinear

system)is stablewith "good"properties.

+ e(t) ]r(t) K (s)

Compensator

d i (t) do (t)

_- f(u(t)) G(s)

Saturation Plant

y(t)

output

Figure 2.1" The closed loop system

There are well developed methods for defining performance criteria and for designing linear

closed loop systems which meet the performance requirements. It would then be desirable,

whenever the closed loop system operates in the linear region, to meet the a priori performance

constraints (because it easy to define them and easy to design control systems satisfying these

constraints). When the system operates in the nonlinear region new performance criteria have to be

defined and new ways of achieving the desired performance must be developed.

There are two major problems that multiple saturations can introduce to the performance of

the system: (a) the reset windup problem, and (b) the fact that multiple saturations change the

direction of the controls.

When the linear compensator contains integrators and/or slow dynamics reset windups can

occur. It is obvious that if the states of the compensator were such that the controls would never

saturate, then reset windups would never appear. More information about the performance

degradation of the feedback system caused by the saturations is given in [12].

To solve the performance problem a nonzero operator 02 is applied in the reference

signals and it will be called Reference Governor (RG).

e = O2r - y (2.2)
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Thenonzerooperatorischosen,if possible, so that the control u(t) never saturates, i.e.

llu(t)lI_ _< 1, for any reference and/or disturbances. It is also desired that the O2r signals are

"close" to the r(t) signals. In section 4 the RG operator will be defined in detail.

3. Mathematical preliminaries

This section is an introduction to the new design methodology. Some necessary mathematical

preliminaries will be given and a basic problem will be introduced. The basic problem will be

solved and it's solution will lead to the new control design methodology.

Consider the following linear time invariant system

:_(t) = Ax(t), x(0) = x0 A e R nxn, x(t) _ ,-j_.n (3.1)

y(t) = Cx(t) C _ R mxn, y(t) _ R m (3.2)

y(x0,t) = ceatx0 (3.3)

where e At is the state transition matrix (matrix exponential) for A

Definition 3.1: The scalar-valued function g(x) is defined as follows:

g(x0): R n _ R, g(x0) = b'(x0,t)l[ ° (3.4)

Definition 3.2: The set Pg is defined as:

Pg = { [x,v] : x_R n, wR, v > g(x) } (3.5)

Definition 3.3: BA,c is the set of all xe R n with 0 _<g(x) < 1, i.e.

BA,c = [x : 0 <_g(x) < 1 } (3.6)

Suppose that the system (3.1)-(3.3) has an initial condition x0_ BA, c. From this definition

we see that for such an initial condition the output of the system, y(t), will satisfy Ily(t)lloo < 1. For

neutrally stable systems the function g(x), the set Pg and the set BA, c have the following

properties.

(a) The set Pg is a convex cone.

(b) The B._,,c set is symmetric with respect to the origin and convex.

(c) .The function g(x) is continuous and even.

: (d) The function g(x) is not necessarily differentiable at all points in R n
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Definition 3.4 [71: The upper right Dini derivative is defined as

f(t)-f(t 0)
D+f(to ) = lim sup (3.7)

t.+t ° t-t0

The D+f(to) is finite at to if the function f satisfies the Lipschitz condition locally around to [7].

Note that the function g(x) defined by Definition 3.1 satisfies the Lipschitz condition locally if and

only if the system (3.1)-(3.3) is neutrally stable.

Theorem 3.1 [71: Suppose that f(t) is continuous on (a,b), then f(t) is nonincreasing on (a,b)

iff D+f(t)<0 for every te (a,b).

v = g(x) I

Figure 3.1: Visualization of the function g(x) and the sets Pg and Ba,c.

3.1 Design of a Time-Vary. ing Rate such that the Outputs of a Linear System are Bounded

Assume that a stable linear system is defined by the following equations

x(t) = Ax(t) + Br(t) A e R nxn, B e R nxm

y(t) = Cx(t) C_R mxn

The goal here, is to keep the outputs of the linear system bounded (i.e. lyi(t)l < 1 V t, i) for
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anyr(t). In reference[11] atime-varyinggainwasintroducedandthis problemwassolved

completely.Hereatime-varying-ratewill beintroducedandadifferentsolutionwill beobtained.

Onec,'mmodify theinputsto thesystemr(t) to r_.(t)with atime-varyingrateoperator,suchthatfor

anyinputr(t) thesystemoutputy(t) remainsbounded."Finenewsystemcanbedefinedasfollows

(alsoshownin figure 3.2).

_(t) = Ax(t)+Bru(t) (3.10)

_'_t(t) = It(t) ( r(t)- r_.(t)) (3.11)

y(t) = Cx(t) (3.12)

r_(t)
!

I

Ir(t) y(t)

I
,,if i b

r ....... ' LOgiC ;,4--- - - - .-,
|

I _. I

! I

! I

I !

r_(t)

Figure 3.2: The basic system for calculating g(t).

r

The Basic Problem:

At time t o find, if possible, the maximum time-varying rate It(to), 0 < It(t o)

<,_,, such that Vr(t), t > t o 3 It(t), t > t o such that the output will satisfy lyi(t)l < 1

Vi, t>t o.

Define the following auxiliary system

x(t) = Ax(t)+Br_.(t) (3.13)

l:_ (t)=It(t)e r (t) (3.14)

: y(t) = Cx(t) (3.15)

and with Xa(t) = [ x(t) r_a(t) ]T one can obtain the augmented system

_a(t ) = Aaxa(t)+BaIt(t)er.(t ) Aa_Rn+m x n+m, tsarS'-",,,,n+m x m (3.16)
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y(t) = Caxa(t) Ca_ Rmxn+m (3.17)

TO obtain the solution to the basic problem we define a function g(x) for the system (3.16)-

(3.17) for B a = 0 and a set BA,C as described previously.

g(Xa0): ?,n+m _ _, g(x0) = I Y(Xa0,t) lloo (3.18)

Xa(0) = xa0 ' (3.19)

BA,C = {X • g(x) < 1 } (3.20)

The function g(x) is finite for all xe R n since it is assumed that the system (3.8)-(3.9) is

stable and consequently the system (3.16)-(3.17) is neutrally stable.

Construction of fit):

For every time t choose It(t) as follows

a) if Xa(t)e IntBA, c then It(t) = ,-:, which implies that r(t) = r_(t) (3.21)

b) if Xa(t)_ BdBA, c then choose the largest It(t) such that (3.22)

0 _<g(t) < ,,,,

g(x a(t)+¢[Aax a (t)+BaIt(t)er(t)]) - g(x a(t))
lim sup < 0

_0 _: (3.23)

or for the points where g(x) is differentiable choose the largest It(t) such that

0 < It(t) < oo (3.24)

Dg(xa(t))[AaXa(t)+Bag(t)er(t)] -<0 V t > 0 (3.25)

where Dg(xa(t)) is the Jacobian matrix of g(xa(t)) as in definition 3.2.

c) if Xa(t)_ BA, C then choose It(t), 0 _<It(t) < oo such that the expression (3.23) is

minimum.

Theorem 3.2 [12]: For the system given in (3.16)-(3.17) and the given construction of It(t)

the following is always true Vxa_ _n+m.

g(x a (t)+E[A ax a (t)]) - g(x a (t))
lira sup < 0 (3.26)

E--)O 8

and at the points where g(x) is differentiable

: Dg(x a) Aax a < 0 VXae R n÷m (3.27)

where Dg(xa(t)) is the Jacobian matrix of g(Xa(t)).

The construction of It(t) is always possible because of theorem 3.2, namely one can choose
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_.(t)= 0 Vt andtheinequality(3.23)is alwaystrue.

Lemma 3.1 112]: In the system (3.16)-(3.17) ifxa0e BA, c and g(t) is constructed as it was

described above the states Xa(t) of the system belong to BA, c (i.e. Xa(t)e BA, c) for all t and for all

r(t).

Theorem 3.3 [121: For the system (3.16)-(3.17) with la(t) constructed as above the following

is always true

if xa0e BA, c then Ily(t)ll_,_< 1 Vinput r(t)

if xa0_ BA, c then [[y(t)ll,_ _<g(xa0) ginput r(t)

Theorem 3.4 [121: At every time to, if xa(to)e BA, c, then the time-varying gain g(t0) is the

maximum possible such gain so that 0 -< g(toi < ,:*,, and Vr(t), t > to 3 _(t), t > to such that the

output lyi(t)l -< 1 V i, t > to. If Xa(t0)_ BA, c then such a gain _.(to) does not exist.

A control structure that ensures that the control u(t) will never saturate is shown in figure

3.3. The time-varying rate, introduced in this section, will be used as a Reference Governor (RG).

e(t)

r(t)@r_(t)2() "-1K(S)_ sat _ G(s)[ y(t)_ "]

Compensator Saturation Plant

Figure 3.3: Control structure with the RG operator

4. Description of the Control Structure with the Operator RG

In the proposed control structure shown in figure 3.3 the Reference Governor will mask out

"large" references so they will not enter into the closed loop system. Choosing the Reference

governor appropriately one can ensure that the controls never saturate so that the feedback system

operates linearly.

To facilitate our discussion let us assume the following models for the systems shown in

figure 3.3.
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Plantmodel:

Compensatormodel:

Saturation model:

x(t) = Ax(t) + Bus(t ) (4.1)

y(t) = Cx(t) (4.2)

;;c(t) = acxc(t) + Bee(t) (4.3)

u(t) = Ccxc(t) (4.4)

e(t) = %.(0- y(t) (4.5)

us(t) = sat(u(t)) (4.6)

where r(t) are the reference signals, y(t) are the output signals, u(t) are the control signals

generated by the compensator, Us(t ) are the saturated (output of the saturation ) control signals.

In addition, consider the linear closed loop system (i.e th, system without the saturation)

with the controls as output and assume the following representation

Xci(t) = Ad Xcl (t) + Belt(t) (4.7)

u(t) =Cct Xc_(t) (4.8)

where x cl

X C

x

Acl =

A -BC
12 ¢

BC A
12

B
c!

B c

0

Ccl=[C c O]

Following the discussion of section 3 one can inject a time varying rate It(t) at the inputs of a

linear time invariant system and the outputs of that system will remain bounded. Consider the

closed loop system (4.7)-(4.8) and assume that a time-varying rate (4.9)-(4.11) is introduced at the

references as shown in figure 4.1

r(t) e (_) _ _ rt,(_)(_ u0)

Figure 4.1" The basic system for calculating g(t).

z(t) = t.t(t)er(t ) (4.9)
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er(t) = r(t)- r_t(t) (4.10)

rg(t) = z(t) (4.11)

As in section3, thetimevaryinggainIt(t) will bechosensothatif r(t) is small enough never

to cause control saturation then r(t) = r_(t), in contrast, if r(t) is large, then It(t) will limit the

references so that the controls will remain bounded. We now combine the dynamics of the rate

limiter (4.9)-(4.11) with the dynamics of the closed loop system (4.7)-(4.8) to obtain an

augmented system

where Xa(t) =

_:a(t) = AaXa(t)+Bala(t)er(t)

u(t) = Caxa(t)

z(t)

A
Xcl(t) a

0

Bcl

0

Acl

(4.12)

(4.13)

The objective here is to construct It(t), 0 -<It(t) -<0% in such a way so that for any error er(t)

the controls u(t) never saturates. This is similar to designing a time-varying rate so that the output

of a linear system remains bounded (section 3). At first, a function g(x) and a set BA, c have to be

defined. The symbols g(x) and BA, c should be thought as generic symbols and, when they are

used, they are always defined to avoid confusion.

g(XaO): g(XaO) =llu(t)l[_

where _a(t) = AaX_(t); x_(O) = Xao

u(t) = Caxa(t)

BA,C = { x: g(x)_<l }

(4.14)

(4.15)

(4.16)

(4.17)

For the function g(x) to be finite the linear system in eq. (4.15) has to be neutrally stable.

Even if the plant is unstable the compensator has been designed to stabilize it and the system (4.15)

is always neutrally stable. Consequently, the construction of It(t) is given by:

Construction of pit):

For every time t choose It(t) as follows

a) if xa(t)_ IntBA, c then It(t) = oo which implies that r(t) = r_.(t) (4.18)

b) if xa(t)_ BdBA, c then choose the largest kt(t) such that (4.19)

0 _<It(t) _<oo

'] [ ]Ba = 0 Ca = 0 Cc!
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g (xa (t)+_[Aa Xa (t)+Ba Ja(t)er (t)]) - g(Xa (t))
lira sup _<0

E_0 _ (4.20)

or for the points where g(x) is differentiable choose _(t) such that

0 < bt(t) < _ (4.21)

Dg(xa(t))[Aaxa(t)+Bagt(t)er(t)] < O V t > 0 (4.22)

where Dg(xa(t)) is the Jacobian matrix of g(Xa(t)) as in definition 3.2.

c) if Xa(t)_ BA, c then choose _(t), 0 < p.(t) < oo such that the expression (4.20) is

minimum.

The closed loop system with the RG operator has the following good properties.

a) The controls in the closed loop system will never exceed the limits of the

saturation and thus the direction of the control vector is not affected by the saturation. Hence,

any inversion of the plant by the compensator is not prevented.

b) Integrators or slow dynamics in the compensator do not windup.

The main disadvantage of this method is that the construction of gift) requires the

measurement of the plant states. More research is needed to assess if estimates of the states can be

used to approximate the real g(t).

It is clear that in principle this control structure can be used for any plant and any

compensator as long as the linear closed loop system is stable (true for all sensible control

systems). Because of the difficulty to compute gift), it is recommended to use the control structure

with the operator RG in feedback system with unstable plants and/or unstable compensator only.

For control systems with stable open loop plants and stable compensators one can use the

methodology described in [11].
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r(t)

r_(t)
I

I

!

|

,- ....... ,Logic
f t

I

I

I

+i

I

| I

!

I

I

I

., e(t) I ' lu(t)_u "-[G(s)_

K (s) _ sat [ s(t) _[-_--_/--"] Y(t)

Figure 4.2: Control structure with the operator RG.

4.1 Stability Analysis for the Control Structure With the RG

The simple closed loop system form r(t) to rg(t) (which is part of figure 4.2) is given by the

following:

_(t) = ta(t)(r(t) - z(t)) (4.23)

r_(t) = z(t) (4.24)

The system (4.23)-(4.24) is a BIBO stable system, i.e. for bounded r(t) the signal r_.(t) is

also bounded. This can be shown formally by using Lyapunov stability theory with a Lyapunov

function of V = zT(t)z(t) where V = 21a(t)zT(t)(r(t) - z(t)). If r(t) is bounded the function "V is

negative definite for large z(t) and thus, z(t) will be bounded.

With the RG operator the controls never saturate so the system from rp.(t) to y(t) (which is

part of figure 4.2) is a linear system; it is also assumed" to be stable since one of the purposes of

K(s) is to stabilize the linear feedback system. As a result, the control system from r(t) to y(t) is

BIBO stable. This is an important fact because when the open loop plant is unstable the linear

control system in the present of saturation may not be BIBO stable for all reference signals.

Since the RG operator is outside of the Closed loop system, when disturbances are present

one cannot guarantee that the control will not saturate. In fact, there always exists a disturbance that

will cause saturation and instability. The following analysis is done only for output disturbances
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d(t), similar analysis can be pcrfomled for other type of disturbances as well.

It is clear that if r(t) is chosen so that the controls will reach the saturation limits, then there is

a disturbance with IId(t)rloo < E, VE > 0 such that the controls will exceed the limits of the

saturation. To avoid that, one can introduce an artificial saturation level s = [ s 1 Sm]T with Si < 1

and choose ta(t) so that the references wiU never cause the controls of the system to exceed the

artificial saturation limit s. Then L_ bound._ can be defined, as we shall do in theorem 4. I, for the

disturbances so that if the disturbances do not violate those L_, bounds the controls will always

remain within the real saturation limits.

In effect, the controls action can be used, partly, to track commands (llui(t)tloo < si) and,

partly, to reject disturbances (Hui(t)ll,:,o < 1-si)..The artificial saturation s is "reserving" part of the

control action for command following and the rest of the control action is used for disturbance

rejection. In theorem 4.1 the relationship (trade-offs) between s and the L,,o bound on the

disturbances that can be rejected will be given.

To ensure that only part of the control is used for command following the operator RG can be

used to guarantee that Ilui(t)11_ _<s i. The computation of p(t) for this case is similar to the case

where the saturation limit is 1. For example, in the computation of It(t) one could scale the

compensator so that the control saturation limits instead of s they would be 1. In the

implementation, by rescaling the compensator, the actual saturation levels will be s again.

Theorem 4.1 [ 12]: If the RG operator is used in any feedback system so that the controls

(llui(t)ll,,.o < si), for some vector s the following is true. With zero initial conditions, the closed loop

system with the RG operator will have bounded controls (llu(t)_, < 1) and bounded outputs for any

reference and for output disturbances that satisfy the following condition.

is1]ihill....hlmllI llI
L l'hm 1 "1.... Ilbm m Ill JL tldm I1..]

] (4.25)

where hij is impulse response of the ij th element of the following transfer function matrix

H(s) = [I + K(s)G(s)]-lK(s) (4.26)

From the previous discussion theorem 4.1 can be used to illustrate the trade-offs between

"good" command following and "good" disturbance rejection. There are two ways to use theorem
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4.1.

(a) If we "know upper bounds on the output disturbances that exist in the operating

environment of the control system, the following is tnle; one can compute the artificial saturation s

so that all possible disturbances will be rejected. These upper bounds usually come from

experimental data and the specific operating environment of the system. Then the vector s is

computed by the following:

[_] I]]hll]]l .... ]]hlm]]l ][]k]l]],,_ ]

sl" < .............. + (4.27)

LlIhm1]]i.... Ilhm m II1JL Ildm IIJ

An operator RG will be included in the control system to guarantee that the references will

never cause the controls to exceed the artificial saturation s. In this context, if s i, for some i, is

negative then there exists a disturbance that will cause the system to saturate even if r(t) = 0 for all

t. If s i is positive, for all i, then there is a disturbance (dj(t) = Ildj(t)ll_osign(hij), for some i) with

magnitude within the specified upper bounds and some reference, to cause the controls to reach the

limits of the real saturation (+1). In that sense theorem 4.1 is not conservative.

(b) If the disturbances are not known then the control designer has to define the artificial

saturation s. The value of s should be specified so that with, Ilu(t)lloo < s, there is "enough" control

action for ._he system to perform (command following) well. One can compute s by using

experimental data, the specifications of the control system, and the specific application. With the

value of s one can compute an upper bound for the disturbances that will never cause saturation

(+1) as follows:

............. < "1.... (4.28)
_llhmill I .... '[hmmlllJLlldml[ J s m

From theorem 4.1 (expression 4.25) is evident that the smaller the disturbances (in the

operating environment of the system) the better the command following.

In addition to disturbances, modelling errors can cause the feedback system to saturate and

thus degrade the performance or even to drive the system unstable, At this point, it is not clear how
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to define a class of modelling errors so that the closed loop system with the RG operator will

rem,"dn stable in the presence of those modelling errors.

5.2 Simulation of the F16 Aircraft

As it was described previously the introduction of the saturation in the a closed loop system

when the open loop plant is unstable can

(a) cause instability of the closed loop system

(b) cause integrator windups

(c) alter the directions of the controls and thus affect the performance of the system.

The purpose of the next example is to illustrate these problems and to show how the new

control design method solves these problems.

Consider a model of the AFTI-16 (Advanced Fighter Technology Integration) aircraft, which

is a modified F-16 aircraft. The following linear time invariant model is an approximation of the

aircraft lonNtudinal dynamics at 3,000 ft altitude and .6 Mach velocity [12].

x(t) =

-.0151 -60.5651 0 -32.174

-.0001 -1.3411 .9929 0

•00018 43.2541 -.86939 0

0 0 1 0

x(t) +

-2.516 -13.136

-.1689 -.2514

-17.251 -1.5766

0 0

0 1 0 0]y(t)= 0 0 0 1 x(t)

and in compact form

x(t) = Ax(t) + Bus(t )

y(t) = Cx(t)

Us(t)

(4.29)

(4.30)

(4.31)

(4.32)
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where x(t) =

u(t) forwardvelocity(ft/sec)

o_(t) angleof attack(deg)

q(t) pitchrate(deg/sec)

0(t) pitchangle(deg)
(4.33)

u(t) =
8e(t) elevatorangle(deg) Emitat25°

8f(t) flaperonangle(deg) limit at25°
(4.34)

y(t) =

ct(t) angle of attack (deg)

0 (t) pitch angle (deg)
(4.35)

Assume that we wish to design a closed loop system so that the F16 follows angle of attack

and pitch attitude with zero steady state error required for step commands. Linear control theory

will be used to design the closed loop system, then the linear design will be modified as indicated

previously with a time varying rate bt(t). Finally, simulations will be performed to assess the

benefits of the new design methodology.

To obtain the linear closed loop system, inte_ators have to be added at the controls; and the

augmented system is given by the following

Xa(t) = AaX a(t) + BaUa(t)
(4.36)

y(t) = CaXa(t )
(4.37)

I
u(t) = - u (t) (4.38)

S a

00 [i] Ewhere Aa = B A Ba = 0 Ca = 0 C

A linear compensator was designed for the augmented system to control the angle of attack

and the pitch angle tracking errors. The LQG/LTR methodology was used to design the
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compensator,whosenumericalspecificationis asfollows:

K(s) = G[ sI - A a - BaG - HCa ]4 tt

I K(s)
Ka(S) = s

where

n

1.6144 -2.5463

-7.1687 7.5901

-15.808 -149.5065

5.924 5.1557

37.0141 40.7261

5.1557 7.4747

56.3 8.37 .0014 -535.6 -88.67G= 8.37 19.2 .0115 -791.35 -12.96

(4.39)

(4.40)

It is assumed that the G(s)K(s) loop is the desired forward loop transfer matrix. If it is not,

then the Linear compensator has to be redesigned. Figure 4.3 shows the control feedback system

with the RG operator.

-908.22]

418.46 J

Figure 4.3: Closed loop system for the F16 example with RG.

We now deal with a multivariable control system for an unstable open loop plant with

integrators and a saturation element in the forward loop. Without the RG operator the control

system is expected to have the following problems (a) for certain references r(t) the outputs y(t)

will be unbounded, (b) integrator windups may be present, and (c) the saturation can alter the

direction of the controls and thus degrade the transient performance of the system.

Three types of simulation were performed for the closed loop system shown in figure 4.3.

These different types of simulation are the following:

1) The first simulation is for the linear system. Again we assume that the compensator K(s)

we designed yields desirable linear responses.



Page18

2) In thesecondsimulationthesaturationelementisaddedto thelinearsystem,us(t)=

sat(u(t)),without anyothermodifications.Thissimulationisreferredto asthesimulationfor the

system with saturation.

3) In the third simulation Us(t) = sat(u(t)), and la(t) is computed entirely on-line by the

method given in section 5.2.2. The simulation was performed in a Macintosh 512K and it required

approximately 15-16 hours. This simulation is referred to as the simulation of the system with

saturation and the RG.

At first, the linear system was simulated for r = [ 0 10] T corresponding to a 10 ° pitch angle

with zero (trim) angle of attack. Figures 4.4 and 4.5 show the output and control responses of the

linear system. Note that the controls have "impulsive" action at the beginning and they exceed by

far the 25 ° limits so saturation is expected. Also note that the maximum flaperon control value is

approximately 83 ° .

We remark that the quality of the linear output transients (figure 4.4) are not particularly

"nice" due to the overshoots present. However, for the sake of comparisons that follow we shall

assume that they represent desirable shapes.

Figures 4.6 and 4.7 show the output and control responses of the system with saturation.

The closed loop system for the reference input r = [ 0 10] T is unstable. Note that, in general,

when the open loop system is unstable and saturation at the controls is present the resulting control

system is only locally stable.

Figures 4.8 and 4.9 show the output and control responses of the system with saturation and

the RG operator. The stability of the closed loop control system is recovered and the shape of the

transient response is similar ( but slower, as expected) to the linear response. Compare figures 4.4

and 4.8; they are almost identical !!!. Also, the controls u(t) never exceed the saturation limits, as

guaranteed by the design methodology.

Figure 4.10 show the modified reference rm2 (t). Since the first reference is zero the rml (t) is

zero Vt and it was not plotted. Note that the rm2(t), commanded pitch attitude, starts at =3 ° and

ramps up to the desired steady state value of I0 °. The reason that the rm2(t) is initially =3 ° is

because the linear system with an rrro.(t) of=3 ° will have controls with maxi:-mm at =25 °

(remember that with an rm2(t ) of =10 ° the controls had a maximum value of =83°). Then as the

outputs follow the modified references the rp.(t) approaches r(t) in such a way that the controls will

never exceed the saturation limits.
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Fibre 4.4: Output response of the F16 linear system, (r = [0

Control in the F 16 closed loop system with r =[ 0 10 ] T
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0.0
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Figure 4.5: Controls in the F16 linear system, (r = [0 10]T).
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Figure 4.6: Output response of the F16 system with saturation, (r = [0

Control in the F 16 closed loop system with r =[ 0 10 ] T

300000.0

180000.0

60000.0

-60000.0

-180000.0

-300000.0

_r

o
D

S,

2.00.0 4.0 6.0 8.0

Time @ec.)

I0.0

10]T).

• Figure 4.7: Controls in the F16 system with saturation, (r = [0 10]T).
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Figure 4.8: Output response for the F16 system with saturation and the RG, (r = [0
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Figure 4.9: Controls in the F16 system with saturation and the RG, (r = [0 10]T).
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12.0
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7.2

r_2 0)

4.8

2.4

0.0

•r 1- .v- ¢
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8.0

4.0
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Time(sec.)

10.0

Figure 4.10: r_.2(t ), the commanded pitch, in the F16 system with saturation and the

RG, (r = [0 10IT). Insert: Blowup with 0 < t < .6.

A second simulation was performed for the same system with reference r = [2.5 2.5] T.

Now we are commanding simultaneously 2.5 ° angle of attack and pitch. Figures 4.1 1 and 4.12

show the output and control responses of the linear system. Again the controls exceed the limits of

25 ° and saturation is expected.

Figures 4.13 and 4.14 show the response of the system with saturation from the output

response one can see _hat the integrators windup although, now, the closed loop system is stable.

In addition, the direction of the outputs is not similar to the direction of the outputs in the linear

system and thus the control system does not behave as it was designed to behave.

Figures 4.15 and 4.16 show the output and control response of the system with saturation

and the RG. The controls never exceed the limits of the saturation and thus integrator windups are

not present. The output response verify the absence of integrator windups. The output response is

slower because of the limited controls but the direction of the outputs i:; similar to that of the linear

sjystem. Figure 4.17 show the modified reference rla(t).
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Figure 4.13: Output response for the F16 system with saturation, (r = [2.5
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Figure 4.14: Controls in the F16 system with saturation, (r = [2.5 2.5]T).
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Figure 4.15: Output response for the F16 system with saturation and the RG, (r = [2.5
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Figure 4.16: Controls in the F16 system with saturation and the RG, (r = [2.5

2.5]T).
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2.51T).

5. Concluding Remarks

In this paper it has been shown how that the operator RG can be used to design control

systems for plants with multiple saturations. The operator RG preprocesses the reference signals in

such a way so that the references never cause the controls in the closed loop system to saturate.

Typically, sudden large step commands are translated by the RG operator into slower commands,

so as to allow the limited controls not only to stabilize the system but also to eventually track the

reference. Thus the signals in the closed loop system remain bounded for any reference and if

integators are present in the loop they never windup. The control structure with the operator RG

can be used in any closed loop stable linear feedback system.

In addition, we have shown how to define disturbance sets so that, if the disturbances belong

to these sets, then the outputs of the system remain bounded. With this new design methodology

one can distribute the control action among rejecting disturbances and following references as it is

needed for specific applications.

The main benefits of the methodology are that it leads to controllers with the following

properties:
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(a)Thesignalsthatthemodifiedreferencesnevercausesaturation.

(b)Possibleintegratorsor slowdynamicsin thecompensatorneverwindup.

(c)Theclosedloopsystemhasinherentstabilityproperties.

Theseproperties,,,,'eredemonstratedin simulationsof theF8aircraft (stable)modelandan

academicexample.
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