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The goal of this work was to design and build a prototype for conducting
stress analysis and making spectroscopic measurements inside cavities. The

objectives of the project were" (i) to develop a prototype for radial

profilometry, (2) to explore the possibility of using the radial profilometer

for spectroscopic analysis, and (3) to interface the prototype with various

combinations of data acquisition and image processing equipment.

Scheduled Research

The following chart outlines the proposed research, and presents a timetable

for the entire project.

OUTLINE AND TENTATIVE TIMETABLE FOR THE PROJECT

DESCRIPTION MONTH 0 I 2 3 4 5 6 7 8 9

I. Radial profilometry.

- design measurement system

- build prototype

- feasibility tests

2. Spectroscopic analysis.

- fiber optic delivery ^

- fiber optic collection

- fiber optic delivery/collection
^

- quantify influences of fibers

- evaluate potential for spectroscopic

analysis using prototype

3. Data acquisition and image processing.

- upgrade existing system

- develop algorithms for data

acquisition and analysis

FINAL REPORT ^-^
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I. Introductory Remarks

Grant No. NAG8-686, awarded on September 22, 1987, called for the development

of an endoscopic probe to facilitate visual inspection and measurement inside

cavities. The probe relied on a novel panoramic doughnut lens (PDL) designed

and built by Professor Pal Greguss of the Technical University of Budapest.

As shown in Figure i, the PDL lens produces an annular Flat Cylinder

Perspective (FCP) image where the width of the annular image corresponds to

the vertical viewing angle; each concentric ring in the image plane is the

locl of points recorded at a constant horizontal field angle. The research

produced various endoscopic probes, computer algorithms for data acquisition
and analysis, and several technical papers and presentations including a first

place finish in a technical paper contest by one of the undergraduate students

supported under contract. Two other undergraduates and five graduate students
were partially supported under Grant No. NAGS-686; all students were U.S.
citizens.

2. Contractual Period - No-Cost Extensions

Negotiations for the purchase of the required PDLs began immediately prior to

the award of funding in August, 1987. As a result of unexpected delays in

securing the lenses, the authors requested (in December, 1987) that the
contract deadline be extended from June 21, 1988 to July 31, 1988. This

request was subsequently approved on January 20, 1988.

The subcontract for PDLs was approved by the Hungarian government on March 4,

1988, and the lenses were delivered by Dr. Greguss in June, 1988. To

adequately complete the proposed research, the authors requested (in July,
1988) a second extension through October 31, 1988. This request Was

subsequently approved on August 8, 1988.

3. Work Accomplished During the Performance Period (9/22/87 - 10/31/88)

All of the proposed objectives were either met or exceeded. The following

sections briefly review the objectives and associated tasks, and are followed

by a discussion of the work accomplished during the performance period.

Objective i" Develop a prototype for radial profilometry.

Task I. Design the measurement system, incorporating fiber optics to

increase flexibility and to gain optical access to remote test
areas.

Task 2. Build a prototype using the smallest available PDL.

Task 3. Conduct feasibility tests for profiling. Determine the limits

on the range of the system, and demonstrate the sensitivity and

accuracy of the technique.

Work conducted prior to the award of the contract described and brought to

practice a new device, called a radial profilometer, capable of contouring or

measuring deflections on the inner surfaces of cavities [i]. A fiber-based

design, shown on the cover page and detailed in Figure 2, led to the
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construction of an endoscopic probe which used a 40-mm diameter panoramic

doughnut lens (PDL) to capture an image of the cavity. A fiber cable and a
grin microlens were used to produce structured lighting for measurement

purposes, and a coherent bundle of optical fibers allowed PDL images to be

transmitted to a computer system for subsequent analysis (Task I). Efforts to

miniaturize the probe led to the development and construction of the 6-mm

diameter rigid endoscope shown in Figure 3. This probe relied on a series of

field lenses to transmit an image to the observer (Task 2). Cavities were

profiled using endoscopic probes and structured light, and some limits were

reported on the range, sensitivity and accuracy of the associated measurement

systems [2-4] (Task 3). Figure 4, for example, shows a photograph taken from
a video monitor of a test pattern drawn on the inside of a cylindrical pipe

and recorded through a 40-ram diameter endoscopic probe.

Reference 3 (included as part of the appendix) describes a device, called a

radial profilometer, which is capable of contouring or measuring deflections

on the inner surfaces of cavities. The main advantages of the profilometer

are that it is simple and relatively inexpensive, it can be miniaturized,

there are no moving parts, the image is continuously displayed in the image

plane, and measurements are completely automated. An analysis is presented

which demonstrates that an entire cavity can be profiled simply by moving the

profilometer through the cavity. Feasibility tests illustrate that the

measurement system can be designed so that profiling measurements are based on
a linear calibration curve. Automated analysis is also discussed including

the development of computer algorithms for transforming the image for improved

human viewing.

As described in Reference 3, the use of a line scan for profiling requires

that the profilometer be moved through the cavity to obtain measurements over

the original field of view. This procedure limits functional and real-time
capabilities. Reference 4 (also included as part of the appendix) describes

an alternative method for profiling in which measurements are made by

digitally recording and numerically correlating artificial speckle patterns
projected onto the walls of a cavity. In this case, the profilometer remains

stationary during the measurement. The main advantages of the method are that

it can be applied to any surface, it is non-contact and non-destructive, and

the analysis can be completely automated. In addition, the method offers the

potential to vary measurement sensitivity over a wide range and to access

occluded or remote areas by using fiber optic components.

Objective _2" Explore the possibility of using the radial profilometer for

spectroscopic analysis.

Task I. Conduct feasibility tests using a fiber optic for delivery to
a sample with conventional method of collection.

Task 2. Conduct feasibility tests using laser illumination and a fiber
optic for collection.

Task 3. Conduct feasibility tests using fiber optics for delivery and
collection.

Task 4. Quantify influences of fiber optics on spectroscopic analysis,
establish required power levels, etc.
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Task 5. Evaluate overall potential for conducting spectroscopic analysis

using the radial profilometer.

In prior research involving fiber optic sensing of groundwater contaminants,
the authors demonstrated that spectroscopic analysis can be conducted using

fiber optics [5]. This work was used as background for Tasks 1-3 and led to
the development of the many different PDL/fiber optic combinations described

below.

A number of tests were conducted on monomode and multimode fibers to

quantify effects such as microbending on spectroscopic analysis (Task 4)

[6,7]. Results indicated that multimode fibers may be preferable for remote

fiber spectroscopy, mainly because of their relatively large core diameters,
their linear response to bending, and their ability to transmit light without

modal shifts. This finding led to a series of tests conducted to establish

the feasibility of manipulating light to and from the PDL using individual
multimode fibers. However, this approach had to be abandoned after it was

determined that light could not be adequately transferred from the PDL to the
fiber. An alternative approach for light manipulation was subsequently

devised using an optical fiber bundle consisting of several thousand
individual multimode fibers. This required the development of an optical

system for coupling the PDL to the fiber bundle.

Figure 5 shows a photograph of a coupler built to collect the spectroscopic

signal from a specimen. The lens holder is approximately 1.25" long and, in
addition to the PDL, contains three achromatically corrected objective lenses

required to focus the PDL image onto the fiber optic imaging bundle. In the
device shown, the first lens collects light from a 12mm-diameter PDL and forms

a de-magnified virtual image. This image is further de-magnified by a second
lens which also forms a virtual image. The latter is focused onto a 4mm-

diameter fiber optic imaging bundle by a third lens, such that the image is

slightly smaller that the bundle diameter.

Spectroscopic analysis was performed with the PDL/bundle combination using the

system shown in Figure 6. Light is delivered to, and collected from, the

specimen through the fiber bundle by focusing an 8 watt Argon laser through a
4ram-diameter hole drilled in a front surface mirror. The mirror is located

approximately 1.5" from the end of the fiber optic bundle and is oriented so

that the return signal, which diverges from the bundle and reflects off the

mirror, can be focused and collimated into a SPEX's Triple-Mate monochromator.

The signal from this monochromator is analyzed and stored to disk using a

personal computer and software (see Objective 3). In addition, the inlet end
of the bundle is mounted on a translation stage so that it can be accurately

positioned relative to the laser source. This approach permits light to be

imaged onto any point within the field of view of the PDL.

The approach used for positioning and focusing the laser at different regions

within the field of view works efficiently and accurately; however, during

launch, a significant portion of the incident light is scattered from the end
of the bundle back into the monochromator. The scattered light acts as broad

band and very intense noise as compared to the relatively low level Raman

signal obtained from the surface of the specimen. In virtually all tests, the
noise due to the scattered light obscured the spectroscopic signal to the

point where analysis of the signal was impossible. This problem could not be



overcomeand the approach had to be abandoned.

Oneapproach that may ultimately solve the scattering problem was recently

evaluated by the authors in conjunction with other work performed in the area

of fiber optic senslng. In this approach, an individual optical fiber is used

to illuminate the surface. This fiber is surrounded by other fibers used to
collect and return the signal to the monochromator for analysis. The approach

was tested using a 200 micron-diameter fiber for illumination and four, 600

micron-diameter fibers to collect and transmit the return signal. The

numerical apertures of the fiber optics are exploited to collect the Raman

scattering as shown in Figure 7. Feasibility tests were conducted on

roughened silver surfaces using an aqueous mixture of pyridine and water.

Pyridine was selected because it produces an intense Raman signal and has been

well characterized by other researchers. Results indicated that surface

enhanced Raman spectroscopy (SERS) performed through optical fibers can be

used identify pyridlne at concentrations below I0 ppm.

As mentioned above, this approach could be applied to obtain spectroscopic

information from the PDL as a portion of future research. To apply this

technique, a fiber optic bundle would have to be purchased or specially
fabricated. An illuminating fiber, located at the center of the bundle,

would be coupled directly to the laser. This fiber would be focused through

the central portion of the PDL to a beam steering device positioned in front

of the lens. This device would direct the incoming laser excitation to

illuminate the surface. The image from the PDL, containing @pectroscopic

information scattered from the surface, would be focused into the fiber optic

bundle surrounding the illuminating fiber.

Additional tests were performed, without using fiber optics, to evaluate the

potential for spectroscopic recording using the PDL (Task 5). In these tests,
a laser was focused directly onto a target positioned within the field of view

the lens. The endoscope-like device shown in Figure 8 was constructed to

adapt the lens directly to the inlet port of a SPEX'S 1877B scanning Triple-

Mate monochromator. The 16" long, 5/8" diameter PDL adapter includes two

additional focusing lenses.

Feasibility tests were conducted to simulate spectroscopic analysis within a

cavity. "AN" fittings made of stainless steel and aluminum were used to

construct cylindrical test specimens by coupling stainless steel, aluminum,

and copper tubing. As shown in Figure 9, each specimen was machined to

remove one quarter of its circumference so that a laser could be directed to a

region in front of the PDL. In this case, the tubing at the left was machined

from copper while the AN fitting and tubing at the right were made of
stainless steel.

The fitting, with tubing installed, was attached to a linear translation stage

using nylon strapping bands, as shown in Figure 8. This enabled the specimen

to be moved relative to the PDL adapter; thereby, simulating movement of an
endoscope through a cavity. The laser was beam steered and focused on the

interior wall of the fitting at the location indicated by the arrow.

Scattered radiation was collected from this surface by the PDL, partially

focused by the other lenses in the probe, analyzed by the spectrometer, and

stored by the computer for additional signal processing.

Figure I0 shows preliminary results taken through the PDL when the surface of



the copper tube was cleaned and dopedwith ortho-toluidine. Laser excitation
of 488nmwas used, and spectral information was collected over 493 to 510
nanometers using a Sperry PCand a Metrabyte DASH-16data acquisition board.
Software developed during the project was used to analyze the data and to
instruct the SPEX's CD2Acompudrive monochromatorpositioner via RS232serial
communications. A total of 5106 data points were collected and stored to
disk. These data were later retrieved, manipulated, and graphed using ASYST
software on a Zenith PC. The results show a large improvement in the signal
to noise ratio when comparedto analyses conducted with devices constructed
during the early stages of the project. In general, the spectral lines are in
the proper location for ortho-toluidine; however, peak resolution and signal
to noise ratio could be enhancedby making further refinements in the PDL
recording system.

Objective _3" Interface the prototype with various combinations of data

acquisition and image processing equipment.

Task I. Upgrade existing photoelectronic/numerical system.

Task 2. Develop algorithms for data acquisition and analysis from the

radial profilometer.

The LSI 11/23 proposed to acquire and analyze data from the endoscopic probe

was upgraded to an LSI 11/73. This task involved reconfiguring the kernal of

the operating system and installing new device drivers and devices under

VENIX. A General Electric CID camera, a Poynting camera control unit, and a

DMA interface board were added to allow acquisition and playback of images
obtained from the endoscopic probe. The camera system captures an image using

a 256x256 pixel array and 256 gray levels. Extensive work had to be

performed to write the driver for the DMA board and the interface program for

the camera control unit. These efforts, conducted with help from Professor

Donald R. Matthys of Marquette University, resulted in several thousand lines

of computer code written in 'C' programming language.

Algorithms were also developed for acquisition and analysis of images recorded
through a PDL. As mentioned previously, the PDL lens produces an annular Flat

Cylinder Perspective (FCP) image where the width of the annular image

corresponds to the vertical viewing angle; each concentric ring in the image

plane is the loci of points recorded at a constant horizontal field angle.
With the help of Professor Matthys, computer programs were written in 'C' to

allow a user to segment and transform an FCP image so that a more conventional

view can be obtained. For example, Figure Ii shows a composite photograph
taken from a video monitor. In this case, a laser was used to scan inclusions

placed on the inner wall of a pipe. The lower portion of the figure shows the
image recorded directly through the probe, while the upper portion shows the

transformed image. The size of the inclusions can be determined from the

shift in the laser scan [2-4]. Other computer algorithms were developed to

numerically correlate subsets extracted from FCP images.

For fiber-based spectroscopic analysis, baselines associated with the fiber

optic selected, electronic noise from the monochromator (dark current), and

the baseline of the clean sample surface have to be recorded and manipulated.

Consequently, it was necessary to develop a new software package for

acquisition and real time analysis of spectroscopic data taken through fiber



optic systems. The required software package was written by ThomasBond (a
graduate student who worked on the project) and contains in excess of 3000
lines of code written in 'BASIC' programming language. The computer code not

only allows a relatively low level Raman signal to be analyzed by manipulating
up to three base lines, thereby removing background interferences, but

accurately positions the monochromator during the analysis.
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6. Conclusions and Future Research

The potential for recording spectroscopic information through a PDLlens
system has been clearly established, and several apparatuses have been
constructed in an effort to perform chemical analysis on internal surfaces
using optical fibers. Even though the fiber-based tests met with limited
success, they produced interesting results which can be used as background for
future work. Onepossible approach would makeuse of a special fiber optic
bundle consisting of a central fiber for illuminating the specimen surrounded
by several fibers to collect the spectroscopic signal.

In addition to this spectroscopic work, the authors have clearly demonstrated
the feasibility for making measurementsusing radial metrology and, with
international cooperation, have designed and built a 6-mmdiameter probe for



ORIGINAL PAGE

COLOR- P_OTOGRAPH

inspection within cavities. Future plans include further miniaturization of
the PDL probe, the design and construction of alternative configurations for
radial metroloEF, the use of more sophisticated computer hardware to shorten
the time required for data acquisition and analysis, and the development of
improved numerical algorithms and computer software to automatically extract
quantitative measurements from the acquired images. After developing these
tools, the authors expect to produce a three-dimensional, full-field computer
vision system for routine inspection and analysis within cavities.
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Figure I. A full cylindrical perspective (FCP) image obtained using a

panoramic doughnut lens (PDL). The photograph was taken in the

Huntsville Alabama's Space and Rocket Center and was recorded by

polntlng the camera toward the sky.
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1. ILLUMINATING FIBER FROM LASER

2. PROJECTION LENS

3. PANORAMIC DOUGHNUT LENS

4. COUJMATING LENS wrrH MASK

8. CONICAL MIRROR

6. TRANSPARENT WlNOOW

7. TEST OBJECT

& IMAGE BUNOLETO COMPUTER

Figure 2. One of the optical configurations evaluated for radial metrology.

In this example, a device called a radial profilometer is shown

inserted into a cylindrical cavity. A diverging laser beam (shown

launched from a fiber optic labeled {I}) is directed through a

projection lens (2). The beam passes through a panoramic doughnut

lens (3) and is collimated and shaped by an appropriately masked

collimating lens [4] to produce a thin ring. The ring reflects off

a conical mirror {5) and passes through a transparent window (6)

onto the test surface (7}. The image of the illuminated surface is

captured through the transparent window {6) by the panoramic

doughnut lens (3) and is projected by the projection lens (2) onto

a coherent optical fiber bundle (8). The bundle transmits the

image from the device to a computer system where changes in the

image can be recorded and analyzed using digital acquisition and

processing techniques.
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Figure 3. Photograph of a 6-ram diameter PDL endoscopic probe. The FCP image
is transmitted to the observer by a series of field lenses; the

cavity is illuminated using laser light scattered from an optical
fiber wrapped tightly around the probe.
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Figure 4. Square-grid test pattern on the inside wall of a pipe recorded

using a 40-ram diameter PDL endoscopic probe.
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Figure 5. A photograph of the prototype coupler designed to collect
spectroscopic information and focus it onto the 4mm-diameter bundle
shown.
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Figure 6. Experimental apparatus showing the mirror with small

aperture which allowed the laser to focus on the fiber

optic bundle. Light returning from the PDL over the

fiber optic bundle is directed, using additional

optics, to the spectroscopic analysis equipment.
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Figure 7. A method to exploit the numerical apertures of different diameter
fiber optics in a bundle. Here a fiber with a relatively small
core and small numerical aperture illuminates the target (analysis

region). Scattered light is collected by the larger core fiber

optics which have greater numerical apertures.
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Figure 8. A photograph of the endoscopic-like device constructed to adapt the
PDLdirectly to the spectrometer inlet port. The translation stage
and specially machined fitting are also shown. The arrow in the
figure indicates the location of the laser excitation.
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Figure 9. A photograph of the AN fitting-tubing assembly showing the 90
access port required to illuminate the inner surface of the tubing.

16

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH



0

X

V

I.I
U_

Z

C3
1.0

493 495 497 4gg 501 503 505 507 S09

WAVELENGTH (nm)

Figure I0. Spectroscopic results for ortho-toluidine dispersed on a roughened
copper surface.
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Figure II. Photograph of a laser scan across inclusions inside a pipe. The

lower portion of the figure shows the image recorded using a 40-mm

diameter endoscopic probe; the upper portion of the figure shows

that the image can be transformed using computer algorithms to
obtain a more conventional view.
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ABSTRACT to identify parts outside of set tolerances,
and could potentially beused in biomedical

Radial metrology combines an optical applications to contour internal organs and
measurement technique with fiber optics and a arteries.
unique lens system to study material

properties and deformatloni on the inner Many other techniques including
surfaces of the cavities found, for example, photogrammetry[5,6], shadow moire[7-9], and
_nside pipes, tubes, and boreholes. The pro3ection speckle methods[10-12], have been
equations considered in designing and testing applied for profiling, and some of these

a prototype for profiling are described along techniques have been combined with computer ,.
with tests conducted to demonstrate proof of methods [6,8,9,11,12 ] to produce machine
principle. Digital image acquisition and vision systems capable of acquiring one or

more images of an object by an opticalprocessing techniques are used to interpret
various features appearing in the images and
to transform images for improved human
viewing.

I. INTRODUCTION

i In a recent paper Ill, some of the authors
ntroduced a technique to make optical

measurements within cavities. The

measurement system included a panoramic
doughnut lens (PDL) which produces an annular
Flat Cylinder Perspective (FCP) image[2,3].
The PDL has been used to make hole-

interferometric and speckle photographic
recordings [4 ] and, when combined with
appropriately structured illumination, can be
used for profiling.

noncontact sensing device. In these machine
vlslon systems, various characteristics of
the acquired images are studied to measure
deflections or predict the surface contour.

The profillng techniques described above
have been applied mainly to study the outer
surfaces of structural components. In
general, the. associated measuring system
reales on a large number of optical and
electronlc components, many of which are
difficult to m_niaturlze. Although opt$cal ....
fibers offer _otentlal for miniaturization
and could be in?orporated into such systems
uo profile remoue sur£aces[13], flber-based
systems (as well as the more conventional
non-fiber-based systems) suffer from a
limited fleld of view. This presents a
_roblem, forexam_le, when Profiling the
Inner wall or a plpe. In this case, the

Profiling measurements are important in
many areas. For example, the infiltration

and inflow of ground water into sewer lines imaging device would have to be translated
an d maintenance of collection systems present along, and rotated around, the optical axis
major problems to a civil engineer. These of thedevice to examine all points on the

problems have led to the development of inner surface of thepip&; c_mtralntlw_ich
plpeline television systems which are used to severely llmit functional and real-time
inspect sewer lines as part of new capabilltles.
constructinn acceptance _rograms, or to
trouble shoot a coliection System for leaking
joints, root intrusion, and Protruding taps.
Radial metrologyq as PrOPOSed in this paper,
enhances vlsual inspection and will allow a
variety of measurements to be performed
includlng the location and size of halrline
cracks, the position of offset joints, and
the detection of lost aggregate in concrete
pipe. Other important engineering
applications involve cases where chemical
deposits cause corrosion, or where

Ideally, a device for profillng the inner
___ o?_ cavlt¥ should be _gg_,
uumpa._u, aria capanAeof obtaining an
unoDstructea, complete, and comprehensive
image of the cavity space in every direction.
Unfortunately, it is virtually i_sslble to
develop a practical device capable of
recording a sphere of vision. However, most
cavities can be regarded as cylindrical
rather th.an spherical volumes, and

•nrormaulon can be transformedi using
combinations of thermal and mechanical stretching methods, onto a flat surface
stresses cause wear or produce cracks Such _creating a 2-D representation of the 3-D
conditions are typically encountered in
nuclear power plants and in rocket engines cylindrical surface. This transforLmtion,

called Flat Cyllnder Perspective (FCP), can
where many componentS, designed to function be perf?rmed optically using a panorallc
at high temPeratures and pressures, must be ' aougnnuu lens[2]. Figure I, for example,
periodlcally inspected to avoid catastrophic shows a photograph taken in a courtyard with
failures. Radia!metrology can als0 be used the lens pointed toward the sky. The width
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vertical viewing angle, and each concentric
ring in the image plane is the loci of points r' = f[w] (2)
recorded at a constant horizontal field

angle. Furtherlore, the central portion of
the lens can be colpletely removed, since it This function takes into account the
is not used to form the image, magnification factor, and includes the FCP

The PDL and Its.unlqu e properties lend
themselves to use in radiai metrology.
Figure 2 is a schematic of one of many
optical configurations currently being
evaluated for proEiling. The device, called

a radial _rofilometer, is shown inserted into
a cylindrzcal cavity. A diverging laser beam
(shown launched from a fiber optic labeled
(1)) is directed through a projection lens
{2 ). The beam passes through a panoramic

stretching methods used to creates ?-D

representation of the 3-D cyllndrical
surface. Ideally, one would like to design a
radlal profilometer so that the nonllnear

effects inherent in Equations (i) and (2)
compensate one another over as large a range
as possible such that,

r' =Cr+b (3)

doughnut lens (3) and is collimated and
shaped by an appropriately masked collimating where C and b are constants.
leni (4) to produce a thin ring. The ring
reflects off a conical mirror (5) and passes By measuring r' and knowin- C and b,
through a transparent window {6) onto the Equation (3) can be solved fo_ r. Once r is
_est surface {7). The image of the established for a known value of 8, the z-
11uminated surface is captured through the coordinate of the illuminated point can be

transparent window {6) by the panoramic calculated using
doughnut lens (3) and is projected by the
projection lens (2) onto a coherent optical
fiber bundle (8}. The bundle transmits the z = r (4)
image from the device to a computer system sin
where changes in the image can be recorded
and analyzed using digital acquisition and
processing techniques. Therefore, oneprocedure for profiling a

cavity is to initially establish a fixed
The following section describes the global axis system in space with its z-axls

radial profilometer_ Thls discussion is _!gure 3, and then to move th6 .
followed by a description of the calibration profilometer along the z-dlrection. The

procedure End feasibility tests conducted to _:ora_nates for r and e are the same for the
illustrate proof of principle. Digital image cai and global systems; z-coordinates in
acquisition and processing techniques are the global system are calculated by taking
also described. These techniques are used to into account the relative position of the
correct for image distortion, and to local system.

interpret various features appearing in the
images.

2. ANALYSIS

Figure 3 defines the cartesian and
cylindrical coordinate systems used for

3. EXPERIMENTAL

Figure 4 shows a cross-sectional view of a
device built to illustrate a calibration
procedure and to demonstrate proof of
principle of the measurement system described

subsequent analysis. In both systems, the above. An unexpanded beam produced by a
optlcal axis of the profilometer lies along laser (1} passes through a 90 degree prism
the z-direction; point S corresponds to the {2) (mounted on a transparent glass plate
point of intersection formed by tracing the {4}) and reflects off a rotating front"
ray reflected from the conical mirror back to surface mirror (3). The laser beam reflects
the optlcal axis of the profilometer(see off the mirror, passes through the glass
Figure 2). Light is projected to point P at plate (4}, and i11umlnates the interior wall
an angle a, and the image of the illuminated of a cavity (5). The figure shows a pipe
surface is captured at an angle S, measured being tested with its longltudinal axis
with respect to a radial line lying in the r- positioned symmetricallywith respect tot he
z plane. When the surface moves normal to optical axis of the profilometer. In this

the optical axis, the projected image appears case_ th.e laser traces out a circular ring on
to shift along the z-dlrection through a une!nslae wall of the pipe. The image of
displacement w. The corresponding radial the ill.uminate 9 surface ia-capcurea oythe
displacement r is given by panoramlc _ougnnut lens (6), and is projected

• by the projection lens (7).onto the image
plane of a conventional 35xm camera (8).

r -- w (z)
tan [90 - _] + tan B The device was designed and built to

satisfy the condition _nEquation (3), and
was tested as shown in Figure 4 by inserting

The relationship between r and w is At into a clrcular pipe with an inner radius,
nonlinear, since B varies from point to R, equal to 2.25" (57.2 Nil). The optlcal
point, axis of the device was positioned parallel to

the 10ngitudinal axis of thepipe; the
coordinate system shown in Figure 3 was usedThe displacement along the z-direction is

mapped into the image plane by the panoramic for analysis.
doughnut lens via a mapping function, f, as
follows
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_ Fig_..e5 shows the image photographed when pattern (drawn on the inside Wall era
une raalal profilometer is positioned at the cylindrlcal pipe_) recorded using an optical
c.enter of the pipe. The relatively thick configuration Similar to that shown in Figure
czrcle Im the laser trace; thin equispaced 2. The 4mm diameter coherent bundle used to
lines were drawn on the interior surface of record the image consists of several thousand
the pipe to vlsuallY illustrate the nonllnear individual 12 micron diameter fibers and has

mapplng inherent in Equation (2). a resolution capabillty of approximately 27
line pairs per mi11Imeter. The resolution

Figure 6 was recorded after the pipe was and contrast of the image is relatively poor,
translated along the x-di_ectlon through a since the photograph was recorded from a
displacement, u, of 0.35" (8.9 mm). Radial televlslon monitor.
lines, drawn every five degrees, were
superimposed on the photograph to aid in
calibrating the profilometer. Wlth 8
measured from x,

2 2 ]z/2r = u + R + 2uR cos (e +Y) (5)

When a cavity is relatlvely large (several
centimeters in diameter), the _DL imaging
sysuem can be fixed dlrectly to a small
vidicon, CCD, or CID camera. In this case,
visual information may by reiayed-%hr0ugh
coaxial cables to a remote monitoring system.

4. DISCUSSION
.....

Direct visual interpretation of a PDL
where R Is the inner radius of the pipe, and image is" often difficult for the unskilled

-1 observer. With this in mind, an algorithm
y - sin [(u sine)/R], was developed to allow the doughnutshaped

images to be linearized for viewing and
Equation (5) can be derive d using simple measuring PUrposes. It must be recognized

geometry, and defines the radial distance that there is no way to present a non-
between the plpe and the optical axis of the rectangular image in a rectilinear format
profilometer for any angle %. More withoub distortion. This is essentially the
importantly, the equation holds for any z- same problem as making a flat _p of_a round
coordinate, since the optical axis of the globe. However, the t_ of distortion
device remains parallel to the longitudinal introduced can be chosen and controlled by
axls of the pipe and the cross section of the the choice of mapping scheme that is used
pipe is constant. This makes the translated (equal maximal dimensions, equal area s,
pipe ideal for calibrating the profilometer, etc.). The mapping used here maintains equal
since r' can be measured on Figure 6. maximal dimensions by 'rolling' the annular

image along its outer circumference and
Figure 7 shows the calibration curve moving all the pixels between the conta_

establlshed by plottlng r [calculated on the point and the center of the lamge to a
vertical line in the final rectangular image.'basis of Equit--_on (5) ] versus r _ _rmeasured --

along the radial lines superimvosed on Fiaure
(6)] for points taken at five degree " The first step in linearizing the images
increments as e ranged from 0 to 360 degrees, obtaine d from the panorami c doughnut lenm is
The curve holdm over a 0.70" (17.8 ms) range to specify the desired region of the annular
where the value of r liem between 1.9" (48.26 image that is to be straightenedl This is
_) and 2_6" (66.04 _}. In this range, the done by entering four (x,y) locations into
response is linear and governed by Equation the computer. The first two points should be
(3) with C equal to 2.06. A value ogb - on the outer circumference of the image and
T0.71" (-18 ms) is established by specify the end points of the region of
interpolating the curve back to r - 0. No interest. The third point must be on the
physica I interpretation can be associated same circumference and allows the computer to
with this value of b (r' at r = 0), since the calculate the radius appropriate to the image
c?ntral.portion of the PDL contains no image, being examined and also Specifies which of
+u Is slmply oneofthe parameters required the tw O possible segments between the first
in Equation (3) to evaluate r within _e two points is desired. The last point is
calibrated range, chosen anywhere along the inner circumference

and allows the machine to determine the image
Figure 8 clearly indicates that the height. The machine now.knows the entire

profil0meter can be used to vlsua!1y detect segment that is desired and can proceed to
inclumlons of constant cross section located straighten it out.
on the inner wall of a pipe. The ring shown
in the figure was created uslng a rotating First the center location of the annulus
mirror but could have been produced as is calculated (this center point need not be
depicted in Figure 2, or formed by in the portion of the image which is stored
diffracting light through a transparency i, the computer), and then the height and
con=aln_ng closely spaced concentric circles, width of the output rectangular imageare
In any case, the laser trace maps out shapes determined in units of plxels. The width
in the image plane which are "slmilar" to will be equal to the length of the outer
those of the Inclusions. Each shape is circumference of the selected segment, and
reduced (or magnified) in size as defined by the height will be the differencebetween the
the constant, C, in Equation (3). inner and outer radii of the annular image.

To be useful for internal inspection of
long cyllndrlcal cavities, a radlal
profilometer must be small enough to pass
through the cavity, and must include a means
for relaying data to a remote location.

Figure 9 shows the image of a square tgst

A'sampling factor is selected which
determines the spacing of radial lines along
which samples will be taken. This same
sampling factor is used to determine the
separation between samples along each radlal
line. Starting from one end of the chosen -
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seqle_, _ polar coordinates of each sample
along a radialline are mapped to .
corresponding (x, y) coordinates in the
•original image. The intensities of the
samples calculated along each radial llne are
asslgned to a column in the final image.
Figure i0 illustrates how samples (shown as
o's) in the annular image are mapped into a
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Figure 2. One of the optical configurations
currently being evaluated for radial
profilometry.
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Figure 5. Image of a pipe located

symamtrlcally wlth re s_ct to the optical
'axis of the profilometer. The thick white
l lne is the laser trace. Thinner dark l lnes

enrm_dra.wn equally spaced along the
g_rualna_ axss of the pipe and illustrate

the nonlinear mapping of the PDL.

i °-
7O

,l_lllll. II_tnllll._11'1',11,ii1_iiIiiii_1l_l'l'llr_l_,i,III _ Illall

Figure 7. Calibration curve for the

profilometer for displacements ranging £rom 0
to 0.35" (8.9 ram).

Figure 6. Image of a pipe translated 0.35"
(8.9 _a) along the x-dlrect:ion. The thick
white llne is the laser trace. Thinner dark
inem were drawn equally spaced along the
ongltudlnal axls of the pipe and illustrate

the nonlinear mapping of the PDL.

Figure 8. Laser trace obtained when
inclusions are placed on the inner wall of
the pipe.
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Figure 9. PDL image photographed through a Figure 11. The digitized image reaultlng £roi

coherent fiber optic bundle of a square test applying a trans, formation algorith_ to a

grid located on the inner wall of a pipe• portion of une Image shown in Figure i•
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(b)

Figure I0. Samples (shown as o's) in the
annular PDL image (a), can be mapped into a
rectangular array (b).

Figure 12. The digitized image resulting from

applying a transformation algorithm to a

portion of une lmage shown in Figure 8.
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Abstract

Radial metrology is a process devised to study the inner surfaces of

cavities found, for example, inside pipes, tubes, and boreholes. This paper
describes some recent advances in radial metrology and introduces a new

computer-based optical method for profillng cavities. In this method,

speckles are projected onto the surface under study and the speckle pattern
is dlgltally recorded and compared to either a reference standard or to

other speckle patterns recorded as the cavity changes shape. The apparent
speckle movement is computed by numerically correlatlng small subsets

extracted from each pattern. These shifts are used to measure surface

deflections or to contour the cavity with respect to a reference shape.

I. Introduction

Eecently, a new technique called radial metrology was introduced to
make measurements within cavities[I,2]. The measurement system included a
panoramic doughnut lens (PDL) which produces a 2-D representation of a 3-D
cylindrical surface using Flat Cylindrical Perspective (FCP). The optical
transformation performed by the PDL results in an annular FCP image where
the width of the image corresponds to the angular field of view measured

with respect to the optical axis, and each concentric ring in the image
plane is the loci of points recorded at a constant field angle[3].

Figure 1 illustrates one of the optical configurations evaluated for

radial metrology. In this example, a device called a radial profilometer is
shown inserted into a cylindrical cavity. A diverging laser beam (shown
launched from a fiber optic labeled (1)) is directed through a projection
lens {2). The beam passes through a panoramic doughnut lens (3) and is
collimatedand shaped by an appropriately masked collimating lens (4) to

produce a thin ring. The ring reflects off a conical mirror (5) and passes
through a transparent window (6) onto the test surface (7). The image of
the illuminated surface is captured through the transparent window (6) by
the panoramic doughnut lens (3) and is projected by the projection lens (2)

onto a coherent optlcal flber bundle (8). The bundle transmits the image
from the device to a computer system where changes in the image can be

recorded and analyzed using digital acquisition and processing techniques.
Figure 2 demonstrates how a profilometer can be used to visually detect

inclusions located on the inner wall of a pipe. In this case, the laser

scan which was originally circular traces out shapes in the image plane
which are "similar" to those of the inclusions. As demonstrated by FiEure
3, computer algorithms can be applied so that portions of this image may be
linearized for viewing and measurement purposes. The resolution and
contrast of the image are relatively poor, since the photograph was recorded
from a television monitor. The lower portion of the trace represents a
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constant radial distance from the optical axis of the proftlometer to the
vall of the pipe. The shape and dimensions of the inclusions can be easily
observed and measured with respect to this baseline.

The equations required to analyze Fibre 2 and the algorithms used to
produce Fi_tre 3 are included in Reference 2. Procedures for calibrating
the profilometer and for profiling a cavity are also described in that work.
The use of a line scan for profiling requires that the proftlometer be moved

through the cavity to obtain measurements over the original field of view.
This procedure limits functional and real-time capabilities. Ideally, the
progtlometer should remain stationary during the measurement.

This paper demonstrates that the entire region imaged by the PDL can be
profiled using a method initially developed for measuring deflections on the
outer surfaces of structural components[4,5]. In this method, artiftcal
speckles are projected onto the component using an ordinary 35 mm projector
equipped with a clear glass slide splattered with black paint. Speckle
patterns are digitally recorded as the surface changes shape, and the
apparent in-plane movements of the projected speckles are computed by
numerically correlating small subsets extracted from each pattern. These
movements are related to the deflection of the surface with respect to a
reference shape.

The following section describes the application of this method to
radial met rology and gives an overview of the expressions considered when
profiling a cavity.

2. AnalTslS '

Figure 4 defines the cartesian (x,y,z) and cylindrical (r,@,z)
coordinate systems used for the analysis. It is assumed that the optical
axis of the measurement system lies along the z-direction. Projected
speckles fall on point P at an angle a, and the image of the illuminated
surface is captured at an angle 8, measured with respect to a radial line
lying in the r-z plane. When the surface moves normal to the optical axis,
the projected image appears to shift along the z-direction through a
displacement w. The corresponding radial displacement r is given by

r = . (I)
tan [90 - a] + tan 8

The relationship between r and w is nonlinear, since u and 8 vary from point
to point.

The displacement along the z-dlrectlon is mapped into the image plane

by the panoramic doughnut lens via a mapping function, f, as follows

r' - f[.]. (2)

This function takes into account the magnification factor, and includes the
FCP stretching methods used to create a 2-D representation of the 3-D
cylindrical surface. Equations (1) and (2) can be combined and

r' - gIr]. (3)

The function g[r] is determined by calibrating the measurement system.
By measuring r' and knowing g[r], Equation (3) can be solved for r. Once r
is established for a known value of 8, the z-coordinate of the illuminated

point can be calculated using

z - r . (_)
sin

The profile of the entire surface in view may be obtained by repeatinE this
procedure for other points in the image as required.
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3. Experimental

An experiment was conducted to illustrate a calibration procedure and
to demonstrate the method described above. Two 38 mm diameter PDLs, spaced
at a distance of 61.7 mm (2.43") apart, were positioned with their optical

axes aligned with the Z axis of the coordinate system shown in Figure 4. A
circular pipe with an inner radius, E, equal to 52.5 mm (2.07"), was mounted
on a kinematic stage and positioned midway between the PDLs with its
longitudinal axis also along Z. A speckled slide was projected onto the
inner wall of a 43.0 mm (1.69") long section of the pipe using a 35 mm

projector and one of the PDLs. A 35 mm camera and the second PDL were used
to photograph the speckle pattern with the pipe in its initial position.
Four additional photographs were taken as the pipe was translated along the
X axis, through four 2.54 nun (0.1 -) increments. The five photographs were

subsequently digitized using a CID camera and stored as digital arrays of

256 x 256 plxels wlch each plxel assigned a grey level ranging from 0 to
255.

Figure 5 shows a photograph of the the FCP image of the speckle pattern
recorded through the PDL with the pipe in its original position. The

photograph was digitized so that the center of the annulus, C, was located

in the center of the CID array at pixel coordinates C(128,128). Two 15 x 15

pixel subsets were extracted from the pattern with their centers located at

points A(222,128) and B(34,128). These diametrically opposed points lle on

a llne parallel to the direction of translation and are located, midway
between the outer and inner edges of the FCP image, 94 pixels away from

point C. Ordinary correlatlon techniques (with Lagranglan weighting for
interplxel interpolation) were applled to determine the dlsplacement of the

subsets, measured in terms of pixel shift, for each of the four

translations. The location of the dlsplaced subset coincides with the point
at which the correlatlon coefficient attains its maximum value.

Table I shows the results obtained from the analysis. The plxel shift

is measured in the image plane along a radial axis, r', originating from

point C; a peak correlatlon value of 1.0 represents a perfect match.

Table I

FT. TRANS. ALONG r r PIXEL SHIFT r ' PEAK CORRELATION

A -I0.16 nnn (-0.4") 42.34 mm (1.67") -15.35 78.65 pixels
A

A

A

A,B
B

B

B

B

.541

-7.62 mm (-0.3") 44.88 mm (1.77") -II.05 82.95 pixels .735

-5.08 mm (-0.2") 47.42 nun (1.87") -7.05 86.95 plxels .882

-2.54 nun (-0.I") 49.96 mm (1.97") -3.20 90.80 plxels .954

0.00 mm (0.0") 52.50 mm (2.07") 0.00 94.00 pixels 1.000

2.54 nun (0.I") 55.04 mm (2.17") 3.00 97.00 plxels .954

5.08 nun (0.2") 57.58 mm (2.27") 6.75 100.75 pixels .874

7.62 mm (0.3") 60.12 mm (2.37") 9.85 103.85 plxels .776

i0.16 nun (0.4") 62.66 nun (2.47") 13.20 107.20 plxels .715

The calibration curve in Figure 6 was established by plotting r versus

r', and define8 g[r] in Equation (3). Measurements are independent of the
z-coordinate, since the optical axis of the measurement system remains
parallel to the longitudinal axis of the pipe and the cross section of the
pipe is constant. The calibration is valid over a 20.32 mm (0.80") range
where the value of r lles between 42.34 mm (1.67") and 62.66 nun (2.47"). In

this range, the response is nearly linear with one plxel representing a

radial displacement of approximately 0.71 mm (0.028"). A precise value for

r may be obtained by selecting a subset centered at a point on the image
plane with a given r', and numerically correlating the subset with subsets

in the displaced image to compute the pixel shift. The value of r is

determined by locating the point corresponding co the selected value of r'
on the curve in Figure 7, and then moving up or down the curve through a
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vertical distance equal to the pixel shift.

4. Discussion

OF POOR QUALITY

Table 1 shows thac the masnttude of the peak correlation decreases with

increasing displacement. This can be attributed to the apparent change in
the size of the speckles as they move in the FCP image. Speckles moving
coward the center of the image are compressed while speckles movtn S away
from the center are elongated. This places a restriction on the range over
which displacements can be measured, since peak correlations of less than
0.7 are generally suspect. Future research will focus on the development of
computer algorithms co remove this distortion.

The measurement system used to demonstrate the method has some major
drawbacks which limit Its potential for practical application. A practical

device should be packaged so chat it can be easily manipulated throughout a

cavity to access and profile resions of interest. Future plans include

modlfyln E the prof£1omecer shown in Figure I to include a means for speckle
projection. The advantages of such a device will be that is slmple and

relatively inexpensive, it can be miniaturized, there will be no movln S

parts, the image will be continuously displayed in the image plane, and
measurements will be completely automated.

Finally, the method of callbratlon described above has the disadvantage
that several speckle patterns must be recorded and analyzed. An alternative
method of calibrating the system involves recording only two patterns; the
speckle pattern with the pipe in its initial location, and the speckle
pattern with the pipe translated along the x-direction through a
displacement, u. This procedure will be demonstrated in future work.

After developing these tools, the authors expect to produce a three-
dimensional, full-field computer vision system which will automatically draw
an isometric view of a relatively large cavity by recognizing and combining
various features of several images taken through the measurement system.

5. conc lus ions

This paper discusses some recent advances in radial metrology and
describes a profiling method in which measurements are made by digitally
recording and numerically correlating artificial speckle patterns projected
onto the walls of a cavity. The main advantages of this method are that it
can be applied to any surface, it is non-contact and non-destructive, and

the analysis can be completely automated. The method offers the potential
to vary measurement sensitivity over a wide range and to access occluded or
remote areas by using fiber optic components.

Future plans for improving the method were also discussed. These
included the plans for the design and construction of a practical

measurement device, the development of computer algorithms to correct for
speckle distortion in the acquired images, and refinements in the method
used for calibrating the measurement system.
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Fig. I. Schematic diagram of a radial profilometer.

°

Fig. 2. FCP image taken through a PDL shoving the trace obtained vhen
inclusions are placed on the inner wall of a cylindrical pipe.
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Fi E . 3. Digitized image after

applylng a transformation

algorithm to a portion of

the image shown in Fig. 2.

Fig 4. Coordinate axis system used

for analysls.

Fig. 5. Image of the projected

speckle pattern with the
pipe located symmetrically
vith respect to the opt lcal
axis of the measurement

system.
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Fig. 6. Calibration curve for
displacements ranging
over 20.32 mm (0.8").
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