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SUMMARY

The theory of anisotropic elasticity was used to evaluate the anisotropic stress concentration factors of a com-
posite laminated plate containing a small circular hole. This advanced composite material was used to manufacture
the X-29A forward-swept wing. Observe that the usual isotropic material stress concentration factor is three. It
was found that for composite material, the anisotropic stress concentration factor is no longer a constant, and that
the locations of maximum tangential stress points could shift by changing the fiber orientation with respect to the
loading axis. The analysis showed that through the lamination process, the stress concentration factor could be re-
duced drastically, and therefore the structural performance could be improved. Both the mixture rule approach and
the constant strain approach were used to calculate the stress concentration factor of room temperature. The results
predicted by the mixture rule approach were about twenty percent deviate from the experimental data. However, the
results predicted by the constant strain approach matched the testing data very well. This showed the importance of
the inplane shear effect on the evaluation of stress concentration factor for the X-29A composite plate.

At low temperature (—60°F), the results predicted by the mixture rule approach provided good correlation with
the experimental data. At elevated temperature (200 °F), the results calculated from the constant strain approach were
about ten percent conservative than the experimental data. These showed both the advantages and the limitations of
different analytical models in predicting stress concentration factors at various temperature levels. Furthermore, the
experimental data showed the stress concentration factors decreased as the temperature increased.
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The X-29A features a unique forward-swept wing (Fig. 1), made of composite materials which offers weight
reduction of as much as 20 percent in comparison with convention aft-swept wings.

A forward-swept wing is prone to structural divergence, because as dynamic pressure increases, forces tend
to bend the leading edge up. If a divergent speed were reached, a cycle of leading edge bending, increased local
angle of attack and greater wing loading could grow to cause a structural failure. The wing’s high rigidity prevents
divergence from occurring within the X-29A’s flight envelope.

Because of their importance in aircraft design application, laminated, continuous-fiber reinforced-resin matrix
composites containing through cutouts have been the subject of considerable study (refs. 1 to 6). In this paper,
anisotropic plate theory was used to calculate the anisotropic stess concentration factors (SCF) for the X-29A com-
posite plate containing a circular hole.

NOMENCLATURE

Aij equivalent modulus or extensional stiffness for a multidirectional laminate

Ey modulus of elasticity of anisotropic plate in axis-1 direction

E, modulus of elasticity of anisotropic plate in axis-2 direction

E modulus of elasticity of laminated composite plate in axis-1 direction

E, modulus of elasticity of laminated composite plate in axis-2 direction

Ei transformed modulus of elasticity of single-ply in axis-1 direction

E‘z transformed modulus of elasticity of single-ply in axis-2 direction

E, modulus of elasticity of anisotropic plate in « direction

Ep modulus of elasticity of single-ply to fiber direction

Er modulus of elasticity of singie-ply transverse in fiber direction

G2 shear modulus of anisotropic plate associated with {1,2 } coordinate system

G2 shear modulus of laminated composite plate associated with {1, 2 } coordinate system
G2 transformed shear modulus of single-ply in {1, 2 } coordinate system

Grr shear modulus of single-ply associated with {L,T'} coordinate system

K stress concentration factor

k £

N; stress resultant

Qij reduced stiffness of single-ply

Qij transformed reduced stiffness of single-ply associated with {1,2 } coordinate system
v12 Poission’s ratio of anisotropic plate associated with {1, 2 } coordinate system
2,71 Poission’s ratios of laminated composite plate associated with {1, 2 } coordinate system

T

12, D21 transformed Poission’s ratios of single-ply in {1,2 } coordinate system

vLr Poission’s ratio of single-ply associated with {L, T’} coordinate system



€ constant strain

Ca stress in « direction
Coo remote tensile stress
ANALYSIS

Let axes 1,2 be the principal coordinate axes of the laminated plate, and let axes L,T be the principal material
axes of the single composite ply shown in figure 2.

For an anisotropic plate containing a circular hole subjected to remote uniaxial tensile stress g, acting at an
angle ¢ with respect to the principal elastic axis 1 of the plate (fig. 3), the tangential stress, g, and tangential stress
concentration factor, X' = 0,/0y4 along the circular hole boundary may be expressed as (ref. 3)
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where E, is the modulus of elasticity in the « direction (fig. 3) given by
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For isotropic materials £ = 1 and n= 2, and the stress concentration factor K (eq. (1)) reduces to

=% =12 cosAa—¢) (6)
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which gives K = -1 at(a—¢) =0 orm,and K =3 at (a - ¢) = +7/2.

To evaluate the modulus of elasticity of a laminated plate, both the mixture rule approach and the constant strain
approach could be used. In the mixture rule approach, the transformed ply-elastic constants {E1 , Ez , G 12,012,021}



with respect to the {1,2 } system can be related to the material constants { Er,, Br, G, vLT, vr1 } With respect to
the {L, T} system through the following equations (refs. 6 and 7).
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If the composite plate is made of N number of single plies with different fiber orientations, then by using the mixture
rule, the engineering elastic constants { £y, B2, G2, 712, 21} for the composite plate can be written as
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In the constant strain approach, it is assumed that the strain remains constant across the laminate thickness and
the inplane stress-strain relation for a laminate is used and it is actually the stress resultant versus inplane strain
relation.

N1 = Aner + Arzez + Asses
Ny = Az1€1 + Anzex + Azseg )
Ng = Ag1€1 + Ag2€e2 + Ass€s

where A;; are defined by (refs. 7 and 8)

N
Aij = 3 (Qide(ze — 2k-1) i,7=1,2,6 (10)
k=1



in which

Qn = Qi cos* 6+ 2(Q12 + 2Qes) sin? fcos? § + Qo sin? @

Q12 = (Q11 + Q22 — 4 Qes) sin? 8 cos? 6 + Qq2(sin?  + cos* 9)

Q2 = Qu sin® 0+ 2(Q12 + 2Qss) sin? § cos® 8 + Q cos* 9

Q16 = (Qu — Q12 —2Qes) sin dcos® 6+ (Q12 — Qo + 2Qes) sin’ Hcos § (11)
Q26 = (Qu1 — Q12 —2Qes) sin> 6cos 8 + (Q12 — Q22 + 2Qes) sin fcos® 9
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The calculation of the effective engineering elastic constants { By, B2, G2, 912 } is performed by relating the
compliance components to inplane engineering constants under uniaxial tension along the 1-axis (ref. 9).

RESULTS

The X-29A forward-swept wing composite plate is made up of 40-plies with the total thickness of .56 cm (.22 in.).
The stacking sequence and the ply-engineering elastic constants are given by

[£45(04| £ 45/90;| + 45|04 | £ 451021,

—60°F 70°F —200°F
Er,=19.23 x 106psi E; =18.76 x 106psi Ep =18.29 x 106psi
Er=1.71 x 10%psi Br =1.57 x 10%psi Er =144 x 10%psi

Grr = 0.858 x 10%psi Gir = 0.82 x 108 psi Grr =0.785 x 10%psi
vir = 0.312 vir = 0.312 v = 0.312

By replacing { E1, E;, G2, v12 }, respectively, with { E1, B2, G12, 712 } in equations (1), (2), (3), and (4), the
tangential stresses o, around a circular hole in a laminated X-29A composite plate were calculated for three loading
cases: ¢ = 0 (loading in axis-1 direction), ¢ = 7, and ¢ = 5 (loading in axis-2 direction). The results obtained
from the constant strain approach and the mixture rule approach of three different temperature levels (—60 °F, 70 °F,
and 200 °F) are plotted in figures 1 to 27 and figures 28 to 33, respectively. Figures 1, 4, and 7 show the plot of
stress concentration factors around the circular hole of the laminated X-29A composite material when the plate is
under uniaxial tension in the composite elastic axis-1 direction. The maximum stress concentration factor X for the
laminated X-29A composite plate reached the peak value of about 4.5 (larger than 3) in three different temperature




levels at two locations (o = 90° and o = 270°). Figures 2, 3, 5, 6, 8, and 9 show the polar coordinate plots of o4
for the laminated X-29A composite material when the plate is under uniaxial tension in the composite elastic axis-1
direction. When the loading axis is ¢ = J oblique to the composite axis-1 (figures 10, 13, and 16), the maximum
stress concentration factor K reached the peak value of 3 in three different temperature levels at four locations
(o = 120°,300° by constant strain approach and « = 105° and 285° by mixture rule approach). Again, figures 11,
12, 14, 15, 17, and 18 show the polar coordinate plots of o, for the laminated X-29A composite material when the
plate is under uniaxial tension and the loading axis is 45° oblique to the composite axis-1.

As the loading axis is ¢ = F perpendicular to the composite axis-1, figures 19, 22, and 25 show the maximum
stress concentration K for the laminated X-29A composite plate reached the peak value of about 3 in three different
temperature levels at two locations (o = 0° and o = 180°). And figures 20, 21, 23, 24, 26, and 27 show the polar
coordinate plots of o, for the laminated X-29A composite material when the plate is under uniaxial tension and the
loading axis is 90° perpendicular to the composite axis-1.

For comparison purposes, figures 28, 30, and 32 show the correlation of the maximum stress concentration
factors in polar coordinate plots at three different temperature levels. Figures 29, 31, and 33 show the variation of
the maximum stress concentration factor along the boundary of the circular hole at three different temperature levels.

The stress concentration factors evaluated from different approaches (mixture rule and constant strain) discussed
previously were compared by performing simple coupon tests. The width W of the rectangular specimen is 3.81 cm
(1.5 in.) and the diameter of the small central circular hole is 0.635 c¢m (0.25 in.). The comparison of stress concen-
tration factors between theoretical predictions and experimental results are listed in table 1.

CONCLUSION

The theory of anisotropic elasticity was used to evaluate the anisotropic stress concentration factors for laminated
OBX-29A (forward-swept wing) research aircraft composite plates of three different temperature levels.

It is well known that the usual isotropic material stress concentration factor is three. However, the analysis
showed that the anisotropic stress concentration factor could be greater or less than three for composite materials,
and the locations of the maximum tangential stress points could shift by the change of fiber orientation with respect
to the loading axis.

Both the mixture rule approach and the constant strain approach were used to calculate stress concentration
factors of room temperature. The results obtained by the mixture rule approach were about twenty percent deviate
from the experimental data. However, the results predicted by the constant strain approach matched the testing data
very well. This showed the importance of the inplane shear effect on the evaluation of stress concentration factors
for the laminated X-29A composite plate. A further investigation about the inplane shear effect will need a three
dimensional model from anisotropic elasticity plus the interlaminar stress analysis.

At low temperature (—60 °F), the results predicted by the mixture rule approach provided good correlation with
the experimental data. At elevated temperature (200°F), the results calculated from the constant strain approach
were about ten percent more conservative than the experimental data. These showed both the advantages and the
limitations of different analytical models in predicting stress concentration factors at various temperature levels.
Furthermore, the experimental data showed the stress concentration factors decreased as the temperature increased.

The anisotropic stress concentration of laminated plates is a difficult and complicated problem. To obtain a better
understanding of this physical phenomenon, consideration of the hole size effect and utilization, the theory of linear
elastic fracture mechanics, and the theory of micromechanics is imperative.
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