NASA Contractor Report 181732

Application Developer’s Tutorial for
the CSM Testbed Architecture

(LASA—CB-181732) APPLICATICK LCEVELCPER'S N89-14473
TUTOKIAL FOR TEF (SM TESTEEFL JRCHITECTURE
(Lockheed Missiles and Space (c.) 94 p
CsCL 20K uynclas
G3/39 0185074

Phillip Underwood and Carlos A. Felippa

Lockheed Missiles and Space Company, Inc.
Palo Alto, California

Contract NAS1-18444

October 1988

NASA

National Agronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

g~

Introduction

1. Introduction

This tutorial is an extension of [1]t Appendix D to include a simple interface to GAT-
DBM (Global Access Library - Database Management), the database management system
for the CSM Testbed Architecture. GAL-DBM is described in [2]. The goal is to present
a complete, but simple, introduction to using both CLIP (Command Language Interface
Program) and GAL to write a NICE Processor. To achieve this goal the first author has
extended the second author’s work to include the interface to GAL. Much of the previous
text describing commands and CLIP has been retained to make the tutorial stand alone.

Before beginning this tutorial, you should be familiar with the CSM Testbed Archi-
tecture (NICE). As a minimum you should: read [1] Appendices C & D — make sure you
understand the use of the CLIP entry points, which may require a reading of [1]; and read
(2] - at least be familiar with the ideas for nominal datasets.

The example Processor presented here is still quite simple as production Processors
go, but is no longer trivial. It requires one to two weeks to put together. The Processor
solves a two-dimensional elastostatic problem by a directly-formulated* Boundary Element
Method (BEM), and is named. appropriately, DBEM2.

The “kernel” of the Processor is a BEM-program adapted from the book Boundary
Element Methods in Solid Mechanics by S. L. Crouch and A. M. Starfield |4]. The program
s called TWOBI and is presented in Appendix C of the book; it is based on the boundary-
integral theory covered in Section 6 therein.

The program is appropriate as an example of the use of interactive techniques because
the input data are fairly simple but the commands are of multiple-item type and thus
serve to illustrate things like phrases, item lists, qualifiers, and defaults. The program is
somewhat weak for illustrating the true use of a database. However, it is relatively simple,
so we can concentrate on the mechanics of using GAL. Ways to extend DBEM2 and use
G AL for more complex problem solving are discussed as we proceed through this example
Processor.

To prepare the reader for subsequent sections we need to cover some background
material on the GAL-DBM [21.

The two-level conceptual model of GAL must be understood; see [2], §2.2. The two-
levels of data in nominal GAL are named datasets and named records. The GAL database
file is usually called a Library. In this Library are books (datasets) and in the books
are chapters (records). In this tutorial example we will only consider one active Library;
however, complex Processors can have several active GAL-DBM Libraries. We will have
several datasets and several associated records in our one Library.

+ Numbers in brackets refer to references at end of report.

* The term direct formulation refers to the technique used in deriving the governing boundary-
integral equations. Direct methods are formulated from the start in terms of physical quan-
tities such as displacement and stress fluxes. On the other hand, indirect methods are
formulated in terms of source strength distributions, which have no direct physical meaning
and are eventually eliminated following spatial discretization.

Revised 10/271/717988 Developeﬂr’s7'I‘utoria| for the CSM Testbed Architecture 1-1

Introduction

The two-level conceptual model of GAL must be understood; see (2], §2.2. The two-
levels of data in nominal GAL are named datascts and named records. The GAL database
file is usually called a Library. In this Library are books (datasets) and in the books
are chapters (records). In this tutorial example we will only consider one active Library;
however, complex Processors can have several active GAL-DBM Libraries. We will have
several datasets and several associated records in our one Library.

Datasets are usually chosen as functional groups of data records. If you are famil-
iar with the programming language C, a dataset is analogous to a structure and GAL
records are just like member definitions within a structure. In the boundary element
method and in other discrete element methods, such as finite element methods, typical
functional groups of data are geometry, material, boundary conditions, loadings, elements,
system matrices (coefficient or stiffness), system vectors (right-hand-side(s), solution(s),
etc.), stress/strain/resultants, etc.

For example, we may decide to have a dataset named GEOMETRY and in this dataset
there may be records named NUMBER_NODES, NODES, COORDS (or X-COORDS, Y-COORDS,
..), etc. For this tutorial the geometry data is stored in a dataset named SEGMENT; see

§3.1.

In this tutorial, we will use fixed or “hardwired” names for the datasets and records.
This simplifies the Processor and lets us get on with how to use GAL, without getting into
the complex issues of tables and their management to relate Library dataset names and
record names to the names used internally in the Processor. In addition, the command
set would have to be expanded to include commands to bind the external database names
with the internal Processor names. In general fixed names work well with tightly coupled
Processors, because they don’t interact much with other Processors. The fixed names also
make the Processor much easier for the user to run. The user doesn’t have to remember
as many commands or keep track of where the data really are. Loosely coupled networks
of Processors may need the capability to use datasets and records of any given name.
However, even fixed dataset and record names can be changed by using the *rename
dataset and/or the *rename record directives; sec [3], §53.1 & §53.2.

Another GAL-DBM feature is word addressability. With this feature a particular
entry in a dataset-record can be extracted or stored [2], §5.1. For example, the i-th entry
for the geometry nodes, X-COORDS & Y-COORDS, can easily be extracted. This feature can
be used for out-of-core techniques. In actual practice experienced Processor developers
use a local dynamic memory manager for out-of-core methods, because they are usually
more eflicient than GAL. GAL was designed for eflicient use of archival data. These are
advanced concepts. They are not covered in this tutorial, but the developer should be
aware of these issues - especially for large problems.

Revised 10/13/1988

1-2 | Deveiop(:r’s Tutorial for the CSM Testbed Architecture

The Data Structures

3. The Data Structures

Following sound practice, we begin by designing the data structures. The task is more
complicated for DBEM2 than for the simple program in |1] Appendix C. We will retain
DBEM?2 as a single Processor, but add a global database that corresponds to the data
structures and functions in DBEM2. Possible avenues to explore in separating DBEM2
into several Processors are presented, but not pursued in depth. The main use of the
database in this example is to archive problem data for a restart, archive problem data to
document what was done, and archive problem data so that some old data can be used with
new input to solve a slightly different problem. Our main goal, to illustrate the mechanics
of using GAL, is well served by this approach.

The task is simplified by the following considerations:

1. The Processor presented here is isolated from others. There is no need to transact
business with a global database gencrated by other Processors.

2 DBEM?2 makes use of only one matrix, which is generally unsymmetric and full. There

being no need to make use of sparse storage formats, an ordinary FORTRAN array

suffices.

Everything is assumed to fit in core at one time. Not having to deal with auxiliary

storage avoids many complications.

4. The internal data structures and the GAL dataset-record structures are the same.

w

All data that have to be shared among many parts of DBEM?2 are accommodated in
labelled common blocks. The first author is not in favor of using labelled common blocks
for moving data from one subroutine to another, but it is retained here for expediency.
Thus in the present Processor several blocks are used to group data according to function.
Furthermore, the blocks are declared in separate files whose extension is inc. These files
are inserted where they are needed via INCLUDE statements. The use of INCLUDE enforces
consistency (everything is declared only once) and makes maintenance and modification

much easier.

Remember that in §1.0 we said we would use fixed dataset names and record natnes.
Thus, here we will use, wherever possible. the labelled common block name for the dataset
name and the variable names in the labelled common block will be the same as the record
names. In a few cases we will have to break one labelled common block into two or three
separate datasets to achieve a realistic functional group for the data. In these cases we
create new, but hopefully meaningful, names.

Revised 10/20/1988 Developer's Tutorial for the CSM Testbed Architecture 3-1

'The Segment Data The Data Structures

3.1 The Segment Data

We begin by setting np the data for boundary segments, which is placed in file seg-
ment.inc. The maximum number of segments is parameterized to be MAXSEG, which is set
to 20 in the version listed below.

The DBEM2 user will be allowed to define segments in any order and give them
arbitrary numbers from 1 through MAXSEG. so we need a “marker” array that tells which
segments have been defined. We also need a counter of how many boundary elements are
in each defined segment. Then there are the geometric arrays: the r and y coordinates of
the end points. Finally, there are the boundary condition arrays: one integer code (related
to that used by reference 4) and two floating-point arrays of prescribed shear and normal
values. Here is a list of the file that groups this information:

* This is the file segment.inc
*
common /SEGMENT DATA/
$ segdef, numel, xbeg, ybeg, xend, yend, kode, bvs, bvn
integer MAXSEG
parameter (MAXSEG=20)
integer segdef (MAXSEG)
integer numel(MAXSEG)

! Maximum no. of boundary segments
! Segment definition tag

! llumber of BE divisions of segment
real xbeg (MAXSEG) ! X-coord of starting segment point
real ybeg (MAXSEG) ! Y-coord of starting segment point
real xend (MAXSEG) ! X-coord of ending segment point
real yend (MAXSEG) ! Y-coord of ending segment point
integer kode (MAXSEG) ! Segment BC code
real bvs (MAXSEG) ! Prescribed shear value
real bvn(MAXSEG) ! Prescribed normal value

The style used in this INCLUDE file will be followed for all others. There is a COMMON
declaration that lists the shared variables. Then each variable is declared on a separate
line. The variable name is followed by an inline comment that provides a short description
of the function of each variable. This brief documentation should be entered at the time
you prepare or update the INCLUDE file; if you leave it for later, it’ll never be done.

When you get farther into this tutorial you will see that the segment data described
here is generated in at least two subroutines and possibly three, if you define non-default
data for the number of BE divisions of a segment. Thus to maintain a functional breakdown
of data in the database, these data are divided into two datasets: 1) SEGMENT with records
named SEGDEF, NUMEL, XBEG, YBEG, XEND, and YEND that hold segdef, numel, xbeg,
ybeg, xend, and yend one-dimensional array data: and 2) BCVALUES with records named
KODE, BVS, and BVN that hold the kode, bvs, and bvn one-dimensional data. The default
value for numel is 1, however you may enter other values by using the DEFINE ELEMENTS
command. Data generated by this command are written over the default data created in
the DEFINE SEGMENTS code.

Revised 10/13/1988

‘3:42 Developer’s Tutorial for the CSM Testbed Architecture

The Data Structures The Segment Data

Although this simple structure for the datasets and records may seem trivial, it is
quite common even in a complex Processor. That is, the data in the database are often
structured just as the data are used in the code. Also, note that, the two level structure
of GAL, named datasets with named records, lends itself to a functional grouping of the
data with names that are easy to relate to the data generated and used by the Processor.
This simple structure for the datasets and the records will be used throughout the DBEM?2
Processor.

In summary, we have defined two datasets with their associated records as:

Dataset - SEGMENT
Records - SEGDEF
NUMEL
XBEG
YBEG
XEND
YEND

and

Dataset - BCVALUES
Records - KODE
BVS
BVN

Revised 10/13/1988 Developer’s Tutorial for the CSM Testbed Architecture 3-3

The Material Data ' The Data Structures

3.2 The Material Data

Since we are dealing with a homogeneous elastic isotropic material and we ignore
thermal effects, the material is fully characterized by two properties: the elastic modulus
E and the Poisson’s ratio v. These two are collected in file material . inc

<

This is the file material.inc

common /MATERIAL/ em, pr
real em ! Elastic modulus
real pr ! Poisson's ratio

Here the entry for the database is very simple to design. We use a dataset named
MATERIAL with two records named EM and PR to store the values for em and pr. Thus, this
dataset has the following two level structure:

Dataset - MATERIAL
Records - EM
PR

3.4 Developer’s Tutorial for the CSM Testbed Architecture Revised 10/13/1988

The Data Structures The Symmetry Data

3.3 The Symmetry Data

The program allows one or two lines parallel to the coordinate axes to be specified
as axes of symmetry. For example, x = 2.5 or y = - 1.50, or both. Three pieces of data
accommodate this information: one symmetry tag (0=none, 1=symmetry about = = a,
2 = symmetry about y == b, 3 = double symmetry), and the values of a and b as appropriate.
The necessary declarations are placed in the file symmetry.inc:

*
* This is the file symmetry.inc

common /SYMMETRY DATA/

$ ksym, xsym, ysym

integer ksym ! symmetry tag

real xsym, ysym ! symmetry about x=a & y=b values

These data are very similar to the MATERIAL dataset above, so we choose a similar
design for the SYMMETRY dataset and records. Here it is:

Dataset - SYMMETRY
Records - KSYM
XSYM
YSYM

Revised 10/20/1988 Devel;;er’s Tutorial for the CSM Testbed Architecture 3-5

The Prestress Data The Data Structures

3.4 The Prestress Data

The program allows a constant initial-stress ficld to exist in the undeformed medinm,
This prestress tensor field is defined by the three components ol 03,/ and Uru If un-
defined, these three values are assumed to be zero. File prestress.inc contains the

appropriate declarations:

¥

¥ This is the file prestress.inc

B

common /PRESTRESS/ sxx0, syy0, sxyO

real 8xx0 ! Prestress (initial field stress) sigma xx
real syyO ! Ibid., for sigma.yy
real sxy0 ! Ib1d for mgmaxy

l’reqtrms data are especially unpmtant for dnalysxq of unbounded domams for which
they assutne the role of conditions at infinity. For example, suppose that we want to
analyze the eﬁect of a hole in an infinite region under uniform uniaxial stress, say .,
}

Then we set o = O0rz, o;y = o - 0 in the input data.

Again very similar to MATERIAL and SYMMETRY, so we have:

Dataset - PRESTRESS
Records - SXX0
SYYO
SXYO

3-6 Developerq “Tutorial for the CSM Testbed Al(lnlvcturv Revnbed 10/13/1988

The Data Structures The Element Data

3.5 The Element Data

The most voluminous data are that pertaining to the boundary elements, since typ-
ically there will be many elements per segment. The information is collected in file ele-
ment .inc , which reads

*

* This is the file element.inc
#

common /ELEMENT DATA/
$ numbe, xme, yme, hleng, sinbet, cosbet, kod, ¢, b, r, x
integer MAXELM, MAXEQS

parameter (MAXELM=100) ! Maximum no. of boundary elements
parameter (MAXEQS=2+¢ MAXELM) ! Maximum no. of discrete equations
integer numbe Total number of boundary elements
real xme (MAXELM) ! X-coor of element midpoint

real yme (MAXELM) ! Y-coor of element midpoint

real hleng(MAXELM) ! Half length of element

real sinbet (MAXELM) ! Sine of (element,x) angle

real cosbet (MAXELM) ! Cosine ibid.

integer kod(MAXELM) ! Elem BC code (copies seg code)
real b(MAXEQS) ! Prescribed boundary values

real c (MAXEQS,MAXEQS) ! Influence coefficient matrix
real r (MAXEQS) ! Forcing (RHS) vector

real x(MAXEQS) ! Solution vector

The elements arrays such as xme, yme, etc are parametrized in terms of the maximum
number of elements MAXELM.

This block also contains arrays used to set up and solve the BEM equation system,
namely ¢, r, b and x. These are paramecterized in terms of the total number of equations
MAXEQS, which of course is twice MAXELM.

Now things get a little more complicated. All these data could be stored in one dataset,
with several records. but it is betler to use a more functional design as in §3.1. So, the data
in the database are organized according to where it is generated. All the actual element
data are computed in the BUILD subroutine, so the first dataset of this group is named
ELEMENT with records named NUMBE, XME, YME, HLENG, SINBET, COSBET, KOD, and B
that hold the integer number numbe, and the one-dimensional arrays xme, yme, hleng,
sinbet, cosbet, kod, and b. These data are analogous to the element stiffness data in
a typical finite element code. However, for boundary elements there are no individual
element stiffnesses, only a global system coefficient matrix. The element data just contain
the information needed to compute the global coefficient matrix.

The data for the arrays ¢ and r are created in the GENERATE subroutine. However, in
general the system matrix, analogous to a global stiffness matrix in a finite element code,
is computed in one subroutine, such as an assembler, and the right-hand-side, the forcing
function, is computed in another subroutine. Thus, two datasets are added to the database
for these data. The first dataset is named COEFF with a record named C that contains the
data for the coefficient mairix, ¢. The second dataset is named RHS with a record named
R that contains the one-dimensional array r

Revised 1()/I 1/1988 I)vvelnper s Tutorial for the CSM Testbed Architecture 3- 7

The Element Data The Data Structures

The final dataset for this group of data is for the solution vector, x. This one-
dimensional array is computed by SOLVE, very similarly to a typical finite element code.
So, we name the dataset SOLUTION with a named record X to archive the solution vector
X.

In summary, we have defined four datasets with their associated records as:

Dataset - ELEMENT
Records - NUMBE

XME
YME
HLENG
SINBET
COSBET
KOD
B
Dataset - COEFF
Record - C
Dataset - RHS
Record - R
and
Dataset - SOLUTION
Record - X

3-8 Developer’s Tutorial for the CSM Testbed Architecture Revised 10/13/1988

The Data Structures The Field Location Data

3.6 The Field Location Data

This block of data pertains to the location of field points at which stresses and dis-
placements are to be calculated once the boundary solution is obtained. The program
allows these locations to be specified as equally spaced points along straight lines defined
by the user. Up to MAXLIN (-- 100 in the version below) lines can be defined. The locations
are specified by giving the z and y coordinates of the first and last points on the line,
and the number of intermediate points (>0) to be “collocated” between the first and last
points. An isolated point may be specified by making the first and last point coincide.

All of this information is gathered in the file output.inc:

*
* This is the file output.inc
common /OUTPUT DATA/
$ lindef, nintop, xfirst, yfirst, xlast, ylast
integer MAXLIN
parameter (MAXLIN=100)
integer lindef (MAXLIN) ! Line definition tag
integer nintop(MAXLIN) ! No. of intermediate points on line
real xfirst (MAXLIN) ! X-coor of first point on line
real yfirst (MAXLINI) ! Y-coor of first point on line
real xlast (MAXLIN) ! X-coor of last point on line
ylast (MAXLIN) ! Y-coor of last point on line

real

This group of data are similar to other groups of one-dimensional arrays, such as the
segment data in §3.1. So, we use a dataset named FIELD with named records LINDEF,
NINTOP, XFIRST, YFIRST, XLAST, and YLAST to store the one-dimensional arrays lin-
def, nintop, xfirst, yfirst, xlast, and ylast. In outline forin this database data

structure is:

Dataset - FIELD
Records - LIUDEF
HINTOP
XFIRST
YFIRST
XLAST
YLAST

Revised 10/13/1988 Developer’s Tutorial for the CSM Testbed Architecture 3-9

The Database Data The Data Structures

3.7 The Database Data

The DBTM2 Processor subroutines that communicate with the GAL-DBM need to
know the logical device index (1di) of the library (database) being used; see [2] §2.4 and
the description of the DB_OPElN subroutine in §6. So, this globally used information is kept
in the labelled common block DATABASE. There is no dataset and record associated with
these data because it is not archival data; it is temporary -— only used for the run at hand.

This information is gathered in the file database.inc:

This is the file database.inc

common /DATABASE/ 1di
integer 1di ! GAL Library logical device index

This concludes the design of the important data structures for the internal data repre-
sentation and the global database. Next we pass to the design of a command set to control
logic of DBEM2.

3-10 Ni)eve!oper’s Tutorial for the CSM Testbed Architecture Revised 10/13/1988

The Commands

4. The Commands

Having described the data and the datasets for the database, we have now to design
an appropriate set of commands to perform operations on the data and the database. The
writers found it convenient to choose commands headed by the following action verbs:

CLEAR
OPEN
DEFINE
BUILD
GENERATE
SOLVE
PRINT
CLOSE
STOP

Why these particular commands? Partly from a preliminary study of the problem, partly
from wishes to get several command formats so that the use of many of the entry points
described in [1| would be illustrated.

It turns out that the last wish (of illustrating various command formats) makes the
command set a bit inconsistent, but that should not cause a great deal of concern. After

all, it’s only an example.

Another Processor developer faced with the same problem (even a simple problem like
this one) may in fact come up with a radically diflerent set of commands that accomplishes

virtually the same thing.

We next describe briefly what the commands do.

CLEAR

OPEN

DEFINE

BUILD

GENERATE

SOLVE
PRINT

CLOSE
STOP

Initializes all Tables maintained by the Processor and sets some default
values.

Opens a GAL-DBM Library to store problemn data and/or load previ-
ously stored problem data.

Fnters data that are used in the definition of the problem to be solved.
The DEFINE verb will be followed by another keyword that makes the
data more specific.

Indicates that the problem-definition phase is complete, and calls for
the generation of the discrete governing equations.

Triggers the assembly of the influence caefficient matrix and forcing
vector.

Triggers the solution for the unknown boundary variables.

Prints displacements and stresses at boundary points and at specified
field points.

Closes the open GAL-DBM Library.

Closes all open GAL-DBM Libraries and terminates execution of the
processor.

Revised 710/174/19887' V‘I)Vew\rfrél;)per;sr Tutorial for the CSM Testbed Architecture 4-1

1-2

The Commands

THIS PAGE LEFT BLANK INTENTIONALLY.

Developer’s Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Starting at the Top

5. Starting at the Top

We are going to build the Processor Executive “lop down”. For this relatively small
Processor it probably doesn’t make much difference whether we do it top-down, bottom-up
or inside-out. But adhering to this approach makes life easier for bigger Processors.

Following the top-down approach we must do the main program first. Here it is:

* Computer Program for the Two-Dimensional Direct
* Boundary Element Method (DBEM2)
*
* Adapted from program TWOBI in the book Boundary Element Methods
* Methods in Solid Mechanics by S. L. Crouch and A. M. Starfield,
* G. Allen & Unwin, London, 1983, by Philip Underwood and
* C. A. Felippa to exemplify conversion to interactive operation
* via CLIP and the use of a global database GAL-DBM.
*
program DBEM2
*
implicit none
character*8 CCLVAL, verb
integer ICLTYP
¥ .
1000 call CLREAD (' DBEM2> *,
$ ' CLEAR, OPEN, DEFINE, BUILD[/LOAD | STORE]&& '//
$ "GENERATE([/LOAD | STORE], SOLVE[/LOAD | STORE]&& '//
$ "PRINT, CLOSE, STOP')

if (ICLTYP(1) .le. 0) then
print ¥, 's¥+ Commands must begin with keyword’

else
verb = CCLVAL(1)
call DO_COMMAND (verb)
end if '
go to 1000
_end

In DBENM?2 the top-level command must start with an action verb, hence the error
check. The prompt is the name of the Processor: this is a convention followed in the NICE
system.

The top level of all Processors looks very much the same, regardliess of the complexity
of what lies underneath. This is not surprising if you note that all Processors fit the “do
forever” model illustrated in [1] §C.2.

The next level is DO _COMMAND, which is again a “case” statement that branches on the
action verb:

Revised 170/14/—19878ww Vl)evel(;b;érr’s Tutorial for the CSM Testbed Architecture 51

2

Top level command interpreter for DBEM2

subroutine DO_COMMAND (verb)
implicit none
character key*8, qual*8, verbx(*)
integer nq
logical CMATCH
key = verb
if (CMATCH (key, 'B-UILD')) then
qual = '
call ~ CLOADQ (' ', -1, qual, O, nq)

if (nq .eq. 1) then
call UPCASE (qual)

if (qual(1:1) .eq. 'L’) then
qual = 'LOAD’
else if (qual(1:1) .eq. 'S’) then

qual = °STORE'

else
print+, * Illegal qualifier: '
print*, ' BUILD not performed."’
return
end if
end if
call BUILD (qual)
else if (CMATCH (key, 'CLE"AR’)) then
call CLEAR
else if (CMATCH (key, 'CLO"SE')) then
call DB_CLOSE
else if (CMATCH (key, 'D"EFINE’)) then
call DEFIHE
else if (CMATCH (key, 'G"ENERATE')) then
qual = ' '
call CLOADQ (' ', -1, qual, O, nq)

if (nq .eq. 1) then
call UPCASE (qual)

if (qual(1:1) .eq. 'L’) then
qual = 'LOAD’

else if (qual(1:1) .eq. 'S’) then
qual = 'STORE’

else
print*, ' Illegal qualifier: ', qual,

print*,
return
end if

" GEWERATE not performed.’

. qual,

for BUILD.®

for GENERATE.'

D;zvclopve-rr’rs7'1‘7;1t,07ri7al”for th;‘.;CS"l\'I Testbed Archlte(tnr(A V—Rié\—/iASed 10/14/1988

Starting at the Top

end if
call GENERATE (qual)

else if (CMATCH (key, 'HELP')) then
call HELP

else if (CMATCH (key, 'O°PEN’)) then

call DB_OPEN
else if (CMATCH (key, 'P"RINT')) then

call PRINT
else if (CMATCH (key, 'SO°LVE')) then
qual = ' °’

call CLOADQ (' °, -1, qual, O, nq)
if (nq .eq. 1) then
call UPCASE (qual)
if (qual(1:1) .eq. 'L’) then
qual = 'LOAD’
else if (qual(1:1) .eq. 'S’) then
qual = 'STORE’
else
print#, ’ Illegal qualifier: ', qual, ' for SOLVE.’
print*, ' SOLVE not performed.’
return
end if
end if
call SOLVE (qual)
else if (CMATCH (key, 'ST"OP')) then
call STOP
else
print *, '=%x Illegal or ambiguous verb:
end if
return
end

. key

Note that the tests are ordered so that keywords are alphabetically sorted. This makes
it easier to insert new keywords without forgetting to expand roots of existing ones. For
example, suppose you want to insert a PLOT command for vour favorite graphic device;
inserting it just before the test for PRINT makes it easy to spot that the root for the latter
has to be expanded to PR.

For the keywords, BUILD, GENERATE, and SOLVE we are also looking for a possible
qualifier. The existence of this qualifier is determined by a call to CLOADQ; sec [1] §R.3.
If a qualifier is found, then we check to sec if the value is either LOAD or STORE. The
LOAD qualifier signifies that the data are to be loaded from the database instead of heing
computed. The STORE qualifier signifies that the data are to be stored in the database
after it has been computed.

UPCASE is a CSM Testbed (NICE) architectural utility that converts its argument to
uppercase.

Revised 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture 5-3

h-d

Starting at the Top

THIS PAGE LEFT BLANK INTENTIONALLY.

rDér\-rreilo‘p—eAr’s Tutorial for the CSM Testbed Architecture Revised 1(1/14/1988

Starting and Stopping

6. Starting and Stopping

The CLEAR subroutine is quile simple, as it only has to zero out the model definition

Initialize tables, set default values

subroutine CLEAR

C
implicit none
include "segment.inc’
include "element.inc’
include 'material.inc’
include "symmetry.inc’
include ‘prestress.inc’
include ‘output.inc’
integer i

do 1600 i = 1,MAXSEG
segdef(i) = 0

xbeg(i) = 0.0
xend(i) = 0.0
ybeg(i) = 0.0
yend(i) = 0.0
numel(i) = O
kode(i) = O
bvs(i) = 0.0
bvn(i) = 0.0
1600 continue
do 2000 i = 1,MAXLIN

: lindef (i) = 0O
2000 continue
numbe = Q

ksym
em =
T.pr =
sxx0 =
syy0 =
sxyO .0
print -, °'Tables initialized'
return ' '

coo0Oo~O
oocoo -

it

The function of the arrays is explained in §3.

Revised 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture

6-1

Starting and Stopping

Next, you may wish to OPEN a GAL Library (database) to use for loading previously
computed data and/or to store data computed during a run. (CLEAR does not have to be
used before OPEN and vice versa.) The OPEN command has the form

OPEN/[Qualifier] LIB = library name

The brackets, [], around the Qualifier signify that the Qualifier is optional. The
Qualifier is to describe the characteristics of the Library to be opened. The accepted
values are NEW, OLD, ROLD, and SCR. If no qualifier is given the value defaults to COLD.
The meaning of these values is given in [2], Table 6.5. Most applications may ignore the
qualifier.

The name of the file that is the GAL Library (library . name) must be entered. This
is a valid file name for the computer system you are using. On a UNIX system if you
use a pathname that contains /’s the file name must be enclosed in single quotes (e.g.,
"/usr/king/kong/new /york’). Otherwise CLIP will try to interpret the directories and files
as qualifiers.

Experienced NICE users pick file names for GAL Libraries that are descriptive of the
problem and usually use the file extension gal. This way you can easily find the database
files and the name should remind you of the problem.

The OPEN command produces a call to the DB_OPEN subroutine:

*

Open GAL Library (Database)
subroutine DB_OPEN
implicit none
include ‘database.inc’

character*80 CCLVAL
character*81 libnam
character+11 key

characterx*4 qual
integer ICLHIT, ICLSEK, ICLTYP, LENETB, LMOPEN
integer nq

if (ICLNIT () .1t. 3) then
call CLREAD (' OPEN: Enter [/QUAL] LIB = LIB_NAME > ',

$)

end if

libnam = ' °

key = 'COLD/GAL82

call CLOADQ (* °, -1, qual, 0, nq)

if (nq .eq. 1) then
call UPCASE (qual)

6-2 Developer’s Tutorial for the CSM Testhed Architecture Revised 10/14/1988

Starting and Stopping

"NEW/GAL82 *
'OLD/GAL82
"ROLD/GAL82 °
"SCR/GAL82 '

if (qual(1:1) .eq. 'N') key
if (qual(i:1) .eq. '0') key
if (qual(i:1) .eq. 'R') key
if (qual(1:1) .eq. 'S’') key
end if
if (ICLSEK (0, 'L"IB') .ne. O) then
if (ICLTYP (0) .gt. O) libnam = CCLVAL(0)//'
if (libnam .eq. ' ') then
printx,
$ * Cannot find LIB_NAME. Format is LIB = LIB_NAME.'
print*, ° No library opened.’
return
end if
else
print#, ' Cannot find keyword LIB; llo library opened.’
return
end if

1di = LMOPEN (key, O, libnam, O, BOO)
if (1di .eq. O) then
print*, ' Unable to open library: °, libnam(1:LENETB(libnam))
else
call GMSIGH (°'DBEM2’)
end if

return
end

The call to CLREAD, [1], §2.7, at the beginning of DB.OPEN prompts the user for needed
data if the minimum number of items (i.e., the function ICLNIT, [1], §9.5) needed to carry
out the OPEN command is not found.

In DB OPE! the call LMOPEN is used to open the GAL Library for reading (loading)
and/or writing (storing) data. The subroutine GMOPEN can also be used, but for this
beginning example it is a little complex. The use of LMOPEN here easily lets us use one
database for one problem. If multiple databases are required then GMOPEN is the one to
use. A description of GMOPEN and LMOPEN can be found in {2], §6.4.

If the Library is successfully opened (a non-zero 1di is obtained) we call GMSIGHN with
the name of the Processor as the argument. This places the Processor name in the Table
of Contents (TOC) data for the database. This is a recommended procedure; see (2], §10.8.

The DB_CLOSE subroutine carries out the action requested by the CLOSE command.
This command is used to close the currently active GAL Library. This command is used
if yvou were finished with some problem then wished to work on another problem that
required another GAL Library. So you CLOSE the old one before OPENing the new file
containing the other GAL Library

The DB.CLOSE subroutine is quite simple

Revised lb/lﬁ/iQSSv De§ﬂopef% Tutorial for the CSM Testbed Architecture 6- 3

Starting and Stopping

Close GAL Libraries (Databases)

subroutine DB_CLOSE
implicit none
include ‘database.inc’

call GMCLOS (1di, O, 100)

return
end

The only call is to GMCLOS |2/, §6.2, which closes the active library associated with
1di. For more advanced applications with multiple libraries in use, a specific Idi may also
be an input item. So a specific library could be closed after it is no longer needed.

Relatively simple is the STOP subroutine:

Terminate the run

subroutine STOP

call GMCLOS (O, O, 100)

print*, ' Hope you enjoyed the ride!’
call CLPUT ('*stop ')

end

The call to GMCLOS insures that any GAL Libraries that may be open are properly
closed, so that no database data are lost. The call to CLPUT sends the *stop directive to
CLIP. This is the preferred way to exit a NICE Processor, because it allows you to run the
Processor in network mode. However, if the network mode (SuperCLIP) is not available
on your computer, replace this line with the FORTRAN stop statement.

A description of GMCLOS can be found in {21, §6.2. A description of CLPUT can be found
in [11, 62.4. And a description of #stop can be found in 3], §59.1.

Now on to DEFINE - to define the problem to solve.

6-4 ri)eveloper’s'Futorialfor the CSN Testhed Architecture Revised 10/14/1988

Defining the Problem

7. Defining the Problem

The DEFIIE command introduces problem-definition data. Tt is convenient to break

up the definition into several types of data, which correspond closely to the data-structure
grouping discussed in §3. Each type is identified by a keyword that immediately follows
DEFINE. The keywords are:

SEGMENTS

ELEMENTS

BOUNDARY CONDITIONS

SYMMETRY COHDITIONS

MATERIAL
PRESTRESS
FIELD

Specifies the straight-line segments that make up the boundary
of the problem to be solved.

Specifies into how many boundary elements each segment will
be divided.

Specifies the boundary conditions that apply to each boundary
seginent,

Specifies the syminetry conditions. if any, that apply to the
problem to be solved.

Specifies constitutive properties of the material.

Specifies prestress data in the form of initial stress components.
Specifies the location of field points at which displacement and
stresses are to be evaluated and printed later.

Subroutine DEFINE, unlike CLEAR, OPElN, CLOSE or STOP, branches as per the second key-

word:

Revised 10,14 /1988

Interpret DEFINE command

subroutine DEFINE

implicit none

character key+8, CCLVAL+8

integer ICLTYP

logical CMATCH

if (ICLTYP(2) .le. O) then
print ¥, "-=: llo keyword after DEFIIE’
return

end if

key = CCLVAL(2)

if (CMATCH (key, 'B70UND")) then

call DEFINE_BQUNDARY_CONUDITIONS

else if (CMATCH (key, 'E"LEMENTS')) then
call DEFIUE_ELEMENTS

else if (CMATCH (key, 'F"IELD’)) then
call DEFINE_FIELD_LOCATIOUS

else if (CMATCH (key, 'MTATERIAL')) then
call DEFINE_MATERIAL

else if (CMATCH (key, 'P"RESTRESS')) then

Developer’s Tutorial for the CSM Testbed Architecture

~I

Defining the Problem

call DEFINE_PRESTRESS

else if (CMATCH (key, 'SE"GMENTS')) then
call DEFINE_SEGMENTS

else if (CMATCH (key, 'SY"MMETRY')) then
call DEFINE_SYMMETRY_CONDITIONS

else
print *, "xx* Illegal or ambiguous keyword ', key,
$ " after DEFINE’
end if
return
end

The program begins checking whether a keyword actually follows DEFINE. If so it
compares them in the usual matter and calls appropriate input subroutines. These are
described next.

7-2 Devél(;pef;s 'i‘utoriai_f;r“t.lile CSMTestbed Arc}:lte_(tu_re

Revised 10/14/1988

Defining the Problem A Digression: The Basics of Using GAL-DBM

7.1 A Digression: The Basics of Using GAL-DBM

Because the basic mechanics of writing (storing) and reading (loading) data are very
similar throughout all the subroutines that load and store data, these basics are presented
before we present the details of each subroutine. Thus, in the discussion we can focus on
the important details within the basic outline presented here.

7.1.1 Storing GAL Data

The first step is to OPEN the GAL Library that is to contain the data to be stored; see
§6. If the Library is already open, nothing needs to be done.

Next. each dataset needs to be installed in the Library. This is easily done with a call
to GMPUN'T, |2], §7.11. In this tutorial example the datasct is always installed (even if
it already exists). So, if you store the same named data more than once during the same
run, the old dataset will be marked as deleted and a new dataset of the same name will
appear in the Library. In general this is a safe practice, because old data are still there
until the Library is packed. Thus, old data can be retrieved by enabling a deleted dataset.
(See *pack [3'. §48.1 and *enable 3|, §24.1.)

Then for each record of data we wish Lo store we must construct the record name,
followed by writing the data. The record name (rname is used in the code) is constructed
by subroutine GMCORN [2], §10.6. The data are written with a call to GMPUTN [2], §9.9.

In this tutorial example we have chosen the record key (name) and its associated
record cvcles (record group). 2], §5.1, to correspond to the array name and array indices
used in the dimensioned arrays in the code. For example, if we have a one-dimensional
array named number and we have used number (1) through number(12), we construct the
record name to be number.1:12. Thus, number(3) in the code equals number.3 in the
database. Here we have constructed a record group containing 12 records with each record
containing one number. If you look at the record attributes (use the *rat directive [3],
§49.4), you will see the record number has a low cycle = 1, a high cycle == 12, and a logical
size .= 1 (1 number).

Somewhat more complex is a two-dimensional array (a matrix). In this tutorial there
is only one matrix, c, the system coeflicient matrix. This matrix is square, n by n, so
we choose the record name to be c.1:n. We have as many records as we have columns
in the matrix. Thus, each record has a logical size equal to n, i.e., each record contains
the n numbers for the column it represents. For example, ¢ .5 contains the n numbers for
column 5 of the matrix, c. See §8.0 for the implementation details.

The simpliest case is the record that contains only one value. For this case the record
name does not have to contain any group cvele numbers; see [2], §5.1.

Revised 10/14/1988 Developer's Tutorial for the CSM Testbed Architecture 7-3

A Digression: The Basics of Using GAL-DBM

Defining the Problem

Finally, after the data for a dataset are stored in the GAL Library, the GAL-DBM
huffers should be flushed. This insures that all the data are actually written to the GAL
Library (file). Thus, if the next thing that happens causes your run to fail, you still have
all the data properly stored up to that point.

In summary, to store data in an open GAL Library the following steps are needed:

1} Install the dataset —- GMPUNT

2) Then for each record repeat these steps
a) Construct the record name GMCORH
b) Store the data GMPUTHI

3) Finish with a buffer flush - GMFLUB

7.1.2 Loading GAL Data

Again, the first step is to OPEN the GAL Library that contains the data to be read;
see §6. If the Library is already open, nothing needs to be done.

Next, for each dataset to be loaded the dataset sequence number must be determined
for use in subsequent calls to other GAL subroutines. (iiven the dataset name the integer
function LMFIND returns the dataset sequence number (2], §7.5.

Then for each record name in the dataset we must determine the record group cycles,
so all the data in the records can be loaded. The low and high record group cycles (ilow
and ihigh, respectively) are returned by the subroutine GMCEGY |2], §9.3.

Next, the record name is constructed so that all the records are loaded in one read
operation. The record name is constructed by a call to GMCORN |2}, §10.6.

Finally, the data are loaded from the GAL Library into a single variable or an array.
The call to GMGETN loads numeric data 2], §9.5.

In summary, we have the following siinple outline for loading data:

1) Find dataset sequence number -~ LMFIND

2) Then for each record repeat these steps
a) Get record cycle information — GMGECY
b) Construct record name - GMCORN
c) Load the data - - GMGETU

This is about as simple as it can be done for arrays. llowever, if only a single value
record has been stored, it can be loaded with only steps | and 2¢. The record name does
not need to contain the cycle number(s) (2}, §5.1.

7.4 Developer-’lsr'rl‘;t;)i;i;lr,rl for the CSM Testbed Architecture Revised 10/14/1988

Defining the Problem A Digression: The Basics of Using GAL-DBM

A sophisticated Processor should do some more error checking. The sophisticated
reader should be aware of the test for an error condition, LMERCD [2], §14.5. Calls to
LMERCD are typically made after all reads (GMGETx [2], §9.5) and many times after all
writes (GMPUTx (2], §9.9). Also, the subroutine GMGETx returns two arguments, n and m,
that contain information about how much data have been read. These arguments can also

be used for error checking.

In the code that follows in §7.2, the LOAD and STORE operations are code inline in
the applicable subroutine. A higher level of abstraction can be used by writing cover
subroutines that load and store data. These subroutines then call the appropriate GAL
subroutines to load and store. This results in cleaner code, i.e., all database I/O is done
in two subroutines; so a change of databases is easily accommodated. However, you do
pay the price of a modest loss of efficiency because of the additional subroutine calls. T'he
inline code is used here for tutorial purposes. Also for a small Processor, the additional
abstraction is not really needed.

Now, lets look at the CLIP and GAL calls required to define the problem, either by
interactively entering the data through commands then storing it, or by loading previously
stored data.

Revised -177()/"14/1988 N f)(:\;é10[)¢~r's Tutorial for the CSM Testbed Architecture 7-5

Defining Segments Defining the Problem

7.2 Defining Segments

The DEFINE SEGMENT command introduces a series of scgment-definition commands
which are expected to have the form

SEGMENT = ; BEGIN = =Y, y’™ END = gond yond
[LOAD | STORE]

where r:'eg,yfeg are the r,y coordinates of the starting point of the ** segment, and

:rf"d, yf"d are the z,y coordinates of the ending point. The segment list is terminated by an
END command that takes the control back to the main program. In listing the coordinates,
the following boundary traversal convention must be observed: a closed contour is traversed
in the counterclockwise sense if the region of interest is outside the contour (a cavity
problem), and in the clockwise sense if the region of interest is inside the contour (a finite
body problem); see Figure 2-1, §2.

In the CLAMP metalanguage, the | says that one may specify either LOAD or STORE,
but not both simultaneously. The specifications are shown in brackets, meaning that they
may be omitted.

For example, to define and store a 4-segment houndary that encloses a square region
whose corner points are (0,0). (4,0). (4,4) and (0,4). and which constitutes the region
of interest, you say

DEFINE SEGMENTS
SEG=1 BEGIN=0,0 END=0,4
SEG=2 BEGIN=0,4 END=4,4
SEG=3 BEGIN=4,4 END=4,0
SEG=4 BEGIlN=4,0 END=0,0
STORE
END

(Segments may be actually defined in any order; there is also no need to number them
sequentially.)

The commands that enter the segment data, plus the LOAD, STORE and END command,
are call subordinate cornmands, because they can appear if and only if the command DE-
FINE SEGMENT has been entered. The DEFINE SEGMENT command, which introduces the
subordinate commands, is said to be the header command (it also goes by the names master
command, parent command, etc.).

The STORE command is optional; you don’t have to store the data in the GAL Library,
unless vou wish to keep it for later use.

If you have already defined the segments and stored the data. vou can use the following
command sequence to load the segment data from the database,

7-6 Developer’s Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Defining the Problem

Defining Segments

DEFINE SEGMENTS
LOAD
END

The processing of the segment-definition commands is carried out within subroutine

DEFINE SEGMENTS:

* Read segment-definition data
subroutine DEFINE_SEGMENTS
implicit none
include "database.inc’
include 'segment.inc’
character*8 key. CCLVAL
character+*20 rname
integer iseg, n, mseg, ICLTYP, ICLVAL, ICLSEK
integer idsn, LMFIND, ilow, ihigh, nrec
real xy(2)
logical CMATCH
1000 call CLREAD (' Segment data> '

$ ' Enter SEG=iseg BEG=xbeg,ybeg EliD=xend,yend&&’//

$ ' or LOAD or STORE&&'//

$ "Terminate with END')

if (ICLTYP(1) .le. 0) then

out of range’

print %, ’'#*¥* Command must begin with SEG or END’
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"ND')) then
return
else if (CMATCH (key, 'S"EGMENT')) then -~
iseg = ICLVAL(2)
if (iseg .le. O .or. iseg .gt. MAXSEG) then
print %, '¥¥* Segment number', iseg, ’
go to 1000
end if

segdef (iseg) = 1

if (numel(iseg) .le. O) numel(iseg) =
if (ICLSEK(3, 'B"EGIN’) .ne. 0) then
call CLVALF (* ', 2, xy., n)
if (n .ge. 1) xbeg(iseg) = xy(1)
if (n .ge. 2) ybeg(iseg) = x=y(2)
end if
if (ICLSEK(3, 'E"NID’') .ne. 0) then
call CLVALF (' ', 2, %y, n)

Revised 10/ 14/ 1988 Developer’s Tutorial for the CSM Testbed Architecture

Defining Segments

Defining the Problem

if (n .ge. 1) xend(iseg) = xy(1)
if (n .ge. 2) yend(iseg) = xy(2)
end if
else if (CMATCH (key, 'L~0DAD')) then
C --- find dataset

idsn = LMFIND (1di, ’'SEGMENT ', 100)
if (idsn .eq. 0) then
print*, *' Cannot find SEGMENT dataset: nothing LOADed.'’

go to 1000
end if
C “-- get record name cycles, construct record name & read data
n = MAXSEG
call GMGECY (' *, 1di, idsn, 'SEGDEF ', nrec, ilow,
$ ihigh, 220)

call GMCORN (rname, 'SEGDEF ', ilow, ihigh)

call GMGETN ('R/L', 1di, idsn, rname, 'I’, segdef,
$ n, 0, 0, 0, 200)

n = MAXSEG

call GMGECY (' ', 1di, idsn, 'NUMEL ', nrec, ilow,
$ ihigh, 220)

call GMCORN (rname, 'NUMEL ', ilow, ihigh)

call GMGETN ('R/L', 1di, idsn, rname, 'I', numel,
$ n, 0, 0, 0, 300)

n = MAXSEG

call GMGECY (* ', 1di, idsn, 'XBEG ', nrec, ilow,
$ ihigh, 220)

call GMCORN (rname, 'XBEG ', ilow, ihigh)

call GMGETW ('R/L’, 1di, idsn, rname, 'S’, xbeg,
$ n, 0, 0, 0, 400)

n = MAXSEG

call GMGECY (* ', 1di, idsn, 'YBEG ', nrec, ilow,
$ ihigh, 220)

call GMCORN (rname, 'YBEG ', ilow, ihigh)

call GMGETN ('R/L’, 1di, idsn, rname, 'S’, ybeg,
$ n, 0, 0, 0, 500)

n = MAXSEG

call GMGECY (' ', 1di, idsn, 'XEND ', nrec, ilow,
$ ihigh, 220)

call GMCORN (rname, 'XEND ', ilow, ihigh)

call GMGETH ('R/L’, 1di, idsn, rname, °'S’, xend,
$ n, 0, 0, 0, 600)

n = MAXSEG

call GMGECY (' ', 1di, idsn, 'YEND ', nrec, ilow,
$ ihigh, 220)

call GMCORHN (rname, 'YEND ', ilow, ihigh)

call GMGETHN (°'R/L’, 1ldi, idsn, rname, 'S’, yend,
$ n, 0, 0, 0, 700)

else if (CMATCH (key, 'S"TORE’)) then

7-8 Developer’s Tutorial for the CSM Testbed Architecture Revised ik;/l4/1988

Defining the Problem Defining Segments

C --- install dataset
call GMPUNT (1di, 'SEGMENT ', idsn, 16, 1000)
C --- determine largest value of segdef

do 100 n=MAXSEG,1,-1
if (segdef(n) .ne. O) then

mseg = n
go to 200
end if
100 continue
200 continue
C --- construct record name & write data

call GCMCORN (rname, 'SEGDEF ', 1, mseg)

call GMPUTN ('W', 1di, idsn, rname, 'I', segdef, mseg,
$ 0, 0, 0, 1100)

call GMCORN (rname, 'HUMEL ', 1, mseg)

call GMPUTH ('W', 1di, idsn, rname, 'I°, numel, mseg,
$ 0, 0, 0, 1200)

call GMCORN (rname, 'XBEG ', 1, mseg)

call GMPUTN ("', 1di, idsn, rname, 'S’', xbeg, mseg,
$ 0, 0, 0, 1300)

call GMCORN (rname, 'YBEG ', 1, mseg)

call GMPUTH ('w', 1di, idsn, rname, 'S’, ybeg, mseg,
$ 0, 0, 0, 1400)

call GMCORN (rname, 'XEND ', 1, mseg)

call GMPUTN ('W', 1di, idsn, rname, 'S’, xend, mseg,
$ 0, 0, 0, 1600)

call GMCORH (rname, 'YEND °, 1, mseg)

call GMPUTH ('W', 1di, idsn, rname, 'S’, yend, mseg,

$ 0, 0, 0, 1600)
call GMFLUB (1di, 0, 2000)
else
print =, "#¥# Illegal keyword ', key,' in segment data’
end if
go to 1000
end

'Fhvstnu%urc(ﬂtlnssubrouﬁnoisLypkml0fthomrﬂunlunuﬂesubonﬁnateconunands
A “do forever” construction is headed bszCLREADcaH,andtheloopiS(mcapcd<nﬂy\vhen
an END command is detected. Notice the different prompt and verbose prompt input
arguments.

This subroutine provides an example of the use of the “search for keyword” function

ICLSEK(kmcﬁhedin[H,§52.;\keyuvrdlnak11blb“owedinravahu:pahxftﬁevalthrough
the1Bt40adingsubrouthn‘CLVALF(kﬁcﬁbedin (1], §7.2.

Revised 10/21/1988 Dovdopoﬁs'Fukwhﬂfbrthe(JSNlTbsﬁxxlArchnechne 7-9

Defining Segments Defining the Problem

Note the careful handling of the case in which less than two values appear after either
BEGIN or END. This facilitates table editing. For example, the command

S=3 B=45.2
resets XBEG(3) to 45.2; nothing else changes.

To load the data the outline presented in §7.1.2 is followed exactly. Note that, the
variable n is set to MAXSEG before every call to GMGETN. This insures that no more than
MAXSEG values are read into the arrays that are dimensioned to MAXSEG. The value of n
is reset after each call to GMGETN because n returns the actual number of values read. A
real production Processor would perform some data checking to make sure the number of
values read for each record are the same. Also, real professionals would use LMERCD (2],
§14.5, to check for various errors that may have occurred during the read.

To store the data that has been entered the outline presented in §7.1.1 is followed
exactly. Note that, the high cycle for the records is determined by computing the largest
index of segdef that contains a non-zero value. Thus, when this data is read later the
number of segments defined is known from the high cycle number for the SEGMENT dataset
records.

7.2.1 Digression on Subordinate Commands

Why have we used subordinate commands rather than making the user type the
segmient in the DEFINE command itself? Well, contrast the above definition of the <quare
region with the following one:

DEFINE SEGMENT=1 BEGIN=0,0 END=4,0
DEFINE SEGMENT=2 BEGIN=4,0 END=4,4
DEFINE SEGMENT=3 BEGIN=4,4 END=0,4
DEFINE SEGMENT=4 BEGIN=0,4 END=0,0
This is not too different in terms of typing effort, so the decision for adopting a one-
level and a two-level structure in terms of number of keystrokes is marginal. But note that
by going to a two-level scheme we have effectively separated the action of selecting what
to define, namely segments, from the actual definition by entering coordinate values. This
is a key aspect of object-oriented programming: first select, then operate. Let us make this
a command design principle:

I’Try to separate selection from operation]

If you are entering commands from a keyboard perhaps the advantages are not immediately
apparent. But if you go to some form of interactive graphics input the advantages will be
evident when you try to “cover” the commands through message-sending techniques. The
user of such graphic system will then see SEGMENTS in a “model definition” menu, and by
pointing to it he or she is transported to another screen or window in which the process
of entering the seginents is actually carried out.

7- 10 Dévél;};;r’s Tutorial for the CSM Testbed Architecture Revised 10/21/1988

Defining the Problem Defining Elements

7.3 Defining Elements

By default, each segment contains only one boundary element (see logic of DE-
FINE SEGMENT). To put more eletnents per segment you use the DEFINE ELEMENTS comn-
mand. This introduces subordinate comunands of the form

SEGMENT = : ELEMEHTS = n
[LOAD | STORE]

where n is the number of boundary elements in the ith segment. The data is terminated
by an END command. For the square region used as an cxample, let’s say we want 10 BEs
on segments 1 and 3, 15 BEs on segments 2 and 4, and store this data:

DEFINE ELEMENTS
SEG=1 EL=10 : SEG=3 EL=10 ; SEG=2 EL=15 ; SEG=4 EL=15
STORE ; EID

which illustrates the fact that data may be entered in any order. The implementation
shown below actually allows a more general command form:

SEGMENTS = iy.....ix ELEMENTS = ny,....nk

so that segment 1) gets n elements. segment 75 gets ny. and so on. The example above
can be abbreviated to
DEFINE ELEMENTS
SEG=1:4 EL=10,15,10,156
STORE ; EIND

For this simple Processor, using a command like this is probably overkill. It is implemented
in that fashion only to illustrate the processing of variable length integer lists via CLVALI
11, §7.2:

-

Define number of (equally spaced) boundary elements per segment

subroutine DEFINE_ELEMENTS

implicit none
include 'database.inc’
include 'segment .inc’

charactersd key, CCLVAL
character+20 rname

integer i, iseg, n, nseg

integer iseglist(MAXSEG) ., numelist(MAXSEG)
integer ICLTYP, ICLSEK

integer idsn, LMFIND, ilow, ihigh, nrec
real FCLVAL

logical CMATCH

Developer’s Tutorial for the CSM Testbed Architecture 7-11

Revised 10/14,1988

Defining Elements A - o Defining the Problem

1000 call CLREAD (' Element data> ',
$ ' Enter SEG = i1 ... ik EL = nel, ... nek&&'//
$ " or LOAD or STORE&&'//
$ "Terminate with END')
if (ICLTYP(1) .le. 0) then
print *, "**x Command must begin with keyword'
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"ND')) then
return
else if (CMATCH (key, 'S"EG')) then
call CLVALI (' ', -MAXSEG, iseglist, nseg)

if (ICLSEK(O,'E"LEM’') .eq. 0O) then
print x, ‘#xx Keyword ELEMENTS is missing’

go to 1000
end if
call CLVALI (' ', -MAXSEG, numelist, n)
do 2600 i = 1,nseg
iseg = iseglist(i)
if (iseg .le. O .or. iseg .gt. MAXSEG) then
print +, ’'+++ Segment number’,iseg,’' out of range’
else
numel(iseg) = max(numelist(i), 1)
end if
2600 continue
else if (CMATCH (key, 'L"0AD')) then
C --- find dataset

idsn = LMFIND (1di, ‘'SEGMENT ', 100)

if (idsn .eq. O) then
print+, ° Cannot find SEGMENT dataset: nothing LOADed.’
go to 1000

end if

C “~- get record name cycles, construct record name & read data
n = MAXSEG
call GMGECY (* ', 1di, idsn, 'NUMEL ', nrec, ilow,
$ ihigh, 200)
call GMCORN (rname, 'NUMEL ', ilow, ihigh)
call GMGETHN ('R/L', 1di, idsn, rname, 'I’', nunmel,

$ n, 0, 0, 0, 300)
else if (CMATCH (key, 'S"TORE')) then
C --- find dataset because this is an update of SEGMENT_NUMEL

idsn = LMFIND (1di, °'SEGMEHT ', 500)

if (idsn .eq. 0) then
print*, ' Cannot find SEGMENT dataset; nothing STOREQ.’
print*, ' Must DEFINE SEGMENTs before DEFINing ELEMENTs.'

7-12 fjevdoper% TﬁtoﬂalfbrfhewCSh;TR%tbedefchMe;;uﬁ;A»WR;;E;d i0/14/1988

Defining the Problem Defining Elements

go to 1000
end if
C --- construct record name & write data
call CMGECY (' ', 1di, idsn, 'NUMEL ', nrec, ilow,
$ ihigh, 200)

call GMCORN (rname, 'NUMEL ', 1, nrec)
call GMPUTN ('W/U', 1di, idsn, rname, *1’', numel, nrec,

$ 0, 0, 0, 1200)
call GMFLUB (1di, O, 2000)
else
print *, '+ Illegal keyword ', key,' in element data’
end if
go to 1000
end

Here the data are loaded following the outline given in §7.1.2. However, note that,
the NUMEL data are also loaded under DEFINE SEGMENTS. so it is not necessary to reload
the data here. As stated above the DEFINE ELEMENTS command is an overkill, so we end
up with this strange construction. The first author recommends including the number
of element definitions under DEFINE SEGMENTS as a subordinate command that calls DE-
FINE ELEMENTS, then all segment data operations are encapsulated in the same place. See
§7.3.1 below for the second author’s opinion.

Thus, to store the data here we must be sure the SEGMENT dataset exists instead of
the usual install operation (the dataset is installed in the DEFINE SEGMENTS code, §7.2). If
the dataset is found we proceed, but not along the standard path. First, since the SEGMENT
dataset and the NUMEL record already exist we retrieve the record cycles by calling GMGECY
(2], §9.3. Then, the record name is constructed with a call to GMCORN (2], §10.6. Finally,
note that, the op_code, the first argument, in GMPUTH is set to write/update. That is, we
write over the existing data. See [2], §9.9 for more information on the op_codes.

If you can't follow the code, don’t worry. It is more advanced than the typical input
routine in DBEM2. so you can study it later.

7.3.1 Digression: Simplifying Commands

Why didn't we allow clement data to be specified in the same commands that define
the segment geometry? For example, we might have allowed commands such as

SEG = 13 BEG = -1.50,3.563 END = 14.81,6.22 ELEM =5

The answer fits within another design principle:

Keep commands simple

Simplicity is an admirable general principle. but for our case something more specific

applies:

Revised 10/14)1988 | l)vvdoperb'rntnﬁalforthe(YSN4TXthed Architecture 7- 13

Defining Elements Defining the Problem

Don't mix persistent and volatile data in the same command

The terms “persistent” and “volatile” are used in a relative sense to denote degrees of
“changeability” of the data. For example, segment data are more persistent than element
data, since presumably you want to solve a problem whose geometry is dictated by external
requirements; typically by engineering considerations. On the other hand, the number of
clements per segment is a judgement decision: the program user attempts to get satisfac-
tory accuracy (more elements, more accuracy) with reasonable cost (more elements, more

computer time).

Frequently the number of elements is varied while keeping the segment data fixed;
this is called a convergence study. So there are good reasons to separate the commands

that define these two aspects.

To14 Dévégpgr’sﬁ'ﬁlt;riz;l—‘fgr the CSM Testbed Architecture Revised 10714/1988

Defining the Problem Defining Boundary Conditions

7.4 Defining Boundary Conditions

Each segment may be given a different boundary condition (BC) that involves any of
the following stress/displacement combinations:

BC Code Prescribed boundary values

0 Shear stress o, and normal stress o,

1 Shear displacement u, and normal displacement u,
2 Shear displacement u, and normal stress o,

3 Shear stress o, and normal displacement up

These values are constant along the segment, so they can be read on a segment-by-seginent
basis. The stress values are understood to be resultants over the segment.

(The “BC codes” are related to those used by Crouch and Starfield [4]. Using integer
codes is far from the best way to implement readable software, but we shall follow their
convention.)

The BC data commands are introduced by a DEFINE BOUNDARY _CONDITIONS header
command (which may be abbreviated to just D B), and have the form

SEG = ¢ {SS =0, |SD = u,} {88 =0, |ND= Up}
[LOAD | STORE 1

terminated by an END cominand. Keyword SS means shear stress, SD shear displacement,

and so on.

In the CLAMP metalanguage, the | indicates that one may specify either og or ug,
but not both simultaneously, and similarly for 0, and u,. The specifications are shown in
braces, meaning that they may not be omitted.

If no BC is ever specified for segment 1, that segment is assumed stress free (code O
with ¢, = 0, = 0). If only a normal value is prescribed, a zero shear stress is assumed,

and so on.

The implementation of DEFINE_BOUNDARY follows.

¥ Read boundary condition data for segments

subroutine DEFINE_BOUNDARY_CONDITIONS

C
implicit none
include 'database.inc’
include - segment.inc’

characterxd key, CCLVAL, word(2)
character*20 rname

integer iseg, n, nw, iloc(2)
integer ICLVAL, ICLSEK, ICLTYP
integer jdsn, LMFIND, ilow, ihigh, nrec, mseg

Revised 10/20/1988 _Ij‘;\rfeloper's Tutorial for the CSM Testbed Architecture 7- 15

Defining Boundary Conditions Defining the Problem

logical CMATCH
1000 call CLREAD (' Bound_cond data> °,
$ " Enter SEG=iseg {SS=8ig_s | SD=u_s} {NS=sig_n | WD=u_n}'//
$ " or LOAD or STORE&&'//
$ '4&Terminate with END')
if (ICLTYP(1) .le. 0) then
print *, 'xxx Command must begin with keyword’
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E~ND')) then
return
else if (CMATCH (key, 'S"EG')) then
iseg = ICLVAL(2)
if (iseg .le. O .or. iseg .gt. MAXSEG) then
print *, "#+: Segment number', iseg, ' is out of range’
go to 1000
end if

call CLOADK ('L', -2, word, iloc, nw)
call BCVALUES (iseg, nw, word, iloc)
else if (CMATCH (key, 'L-0AD')) then
C --- find dataset
idsn = LMFIND (1di, 'BCVALUES ", 100)
if (idsn .eq. 0) then
print*, ' Cannot find BCVALUES dataset: nothing LOADed.’

go to 1000
end if
C "7 get record name cycles, construct record name & read data
n = MAXSEG
call GMGECY (' ', 1di, idsn, 'KODE ", nrec, ilow,
$ ihigh, 220)

call GMCORN (rname, 'KODE ', ilow, ihigh)
call GMGETH ('R/L', 1ldi, idsn, rname, 'I°', kode,

$ n, 0, 0, 0, 200)

n = MAXSEG

call GMGECY (' ', 1di, idsn. 'BVN ', nrec, ilow,
3 ihigh, 220)

call GMCORN (rname, 'BVN ', ilow, ihigh)

call GMGETN ('R/L’, 1di, idsn, rname, 'S’', bvn,
$ n, 0, 0, 0, 300)

n = MAXSEG

.call GMGECY (' ', 1di, idsn, °'BVS ', nrec, ilow,
$ ihigh, 220)

call GMCORN (rname, 'BVS ', ilow, ihigh)
call GMGETN ('R/L', 1di, idsn, rname, 'S’, bvs,
$ n, 0, 0, 0, 400)

7-16 Developer’s Tutorial for the CSM Testbed Architecture Rovised 10/14/1988

Defining the Problem

Defining Boundary Conditions

else if (CMATCH (key, 'S"TORE’)) then

C --- install dataset
call GMPUNT (1di, °'BCVALUES ', idsn, 16, 1000)
C --- determine largest index of data stored
do 100 n=MAXSEG,1,-1
if ((kode(n) .ne. 0) .or. (bvn(n) .ne. 0.0)
$.or. (bvs(n) .ne. 0.0)) then
mseg = n
go to 200
end if
100 continue
200 continue
C --- construct record name & write data
call GMCORN (rname, 'KODE ', 1, mseg)

call GMPUTN ('W', 1di, idsn, rname,
$ 0, 0, 0, 1100)

call GMCORN (rname, 'BVN ', 1, mseg

call GMPUTH ('W', 1di, idsn, rname,
$ 0, 0, 0, 1200)

call GMCORN (rname, 'BVS ', 1, mseg

call GMPUTN ('W’, 1di, idsn, rname,
$ 0, 0, 0, 1300)

call GMFLUB (1di, 0, 2000)
else
print ¥, '*+¥ Illegal keyword ', key,
end if
go to 1000
end

"I, kode, mseg,

)

'S’', bvn, mseg,

)

'S*, bvs, mseg,

' in BC data’

This subroutine follows the outline for LOAD and STORE given in §7.1.2 and §7.1.1.
This also illustrates the use of the “load keyword” entry points of [1], §8.2. These calls
search for keywords such as SS and move themn to the subroutine work area. This simplifies
keyword legality tests such as “SS and SD cannot appear in the same command.” To do

these chores DEFINE BOUNDARY calls subroutine BCVALUES:

b

* Store boundary condition values in tables
subroutine BCVALUES
$ (iseg, nw, word, iloc).
*
implicit none
include ‘segment.inc’
character#(*) word(2)
real FCLVAL
integer iseg, nw, iloc(2)
integer code, i, isd, iloads, iloadn
logical CMATCH

Dl{é;‘isﬁed 10/14/19_88” Developer’s 'i'uit,orial for ﬂle CSvMﬁ:[‘éstbed Architécture

, ks, kd, kn

Defining Boundary Conditions

Defining the Problem

2000

7-18

ks =
kn
kd =
isd =
iloadn
iloads

it
nwon
[eNeoNoNe
(e e

do 2000 i = 1,nw
if (CMATCH (word(i), ’'SS’')) then
ks = ks + 1
iloads = iloc(i)
else if (CMATCH (word{(i), *SD’')) then

ks = ks + 1
kd = kd + 1
isd = 1

iloads = iloc(i)
else if (CMATCH (word(i), 'NS')) then
kn = kn + 1
iloadn = iloc(i)
else if (CMATCH (word(i), 'ND')) then
kn = kn + 1
kd kd + 1
iloadn = iloc(i)
else
print ¥, 'xxx Tllegal BC keyword ', word(i).' segment’, iseg
return
end if
if (kn .gt. 1 .or. ks .gt. 1) then
print +, "#+x Jllegal BC combination for segment', iseg
return
end if
continue

FCLVAL(iloadn+1)
FCLVAL(iloads+1)

if (iloadn .gt. 0) bvn(iseg)
if (iloads .gt. 0) bvs (iseg)

if (kd .eq. 0) then
code = 1

else if (kd .eq. 1) then
code = 3
if (isd .eq. 0) code = 4

else
code = 2

end if

kode(iseg) = code-1

return

7 lr)e;;él'(r)per’s Tutorial for the CSM Testbed Architecture MRievised lAO/:1‘4 /1988

Defining the Problem Defining Boundary Conditions

which embodies the logic for eventually storing the user-supplied values into appropriate

spots in arrays BVS and BVN.

Revised 10/1471988 Developef’s 'I‘ut.ori;ril”forr the CSM 'l‘;es;ib'e(i Architecturé 7-19

Defining Symmetry Conditions

Defining the Problem

7.5 Defining Symmetry Conditions

If the problem exhibits symmetry conditions, commands to specify symmetry axes
are introduced by the header command DEFINE SYMMETRY CONDITIONS (which may be
abbreviated to just D S) and have the form

XSYM = 7.,
YSYM = yaym
[LOAD | STORE]

terminated by an END command. The XSYM command specifies that z -= Taysn is a line of
symmetry parallel to the z axis. The YSYM command specifies that y “ Yaym is a line of
symmetry parallel to the y axis. One or two specifications may be given. The Processor
logic does not allow “skew” symmetry conditions.

The implementation of the DEFINE.SYMMETRY routine is straightforward:

¥ Read symmetry condition data

subroutine DEFINE_SYMMETRY_CONDITIONS

implicit none
include ‘database.inc’
include "symmetry.inc’
character*4 key, CCLVAL
integer ixsym, iysym, ICLTYP, idsn, LMFIND, n
real FCLVAL
logical CMATCH
%
ixsym = mod(ksym,2)
iysym = ksym/2
1000 call CLREAD (' Symmetry data> ',
$ " Enter XSYM=xsym or YSYM=ysym or LOAD or STORE '//
$ "4&Terminate with ENID')
if (ICLTYP(1) .le. 0) then
print *, '#xx Command must begin with keyword'
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"ND')) then
return
else if (CMATCH (key, 'X"SYM')) then
xsym = FCLVAL(2)
ixsym = 1

ksym = 2¢iysym + ixsym
else if (CMATCH (key, 'Y"SYM')) then

7-20 Developer’s Tutorial for the CSM Testhed Architecture Revised 10/14/1988

Defining the Problem Defining Symmetry Conditions

ysym = FCLVAL(2)
iysym = 1
ksym = 2xiysym + ixsym
else if (CMATCH (key, 'L"0AD’)) then
C --- find dataset
idsn = LMFIND (1di, 'SYMMETRY ', 100)
if (idsn .eq. O) then
print*, ' Cannot find SYMMETRY dataset; nothing LOADed.’

go to 1000
end if
C --- read data
n=1
call GMGETN ('R/L’, 1di, idsn, 'KSYM *, 'I', ksym,
$ n, 0, 0, 0, 200)
n =1
call GMGETN ('R/L', 1di, idsn, 'XSYM °, 'I', xsym,
$ n, 0, 0, 0, 300)
n=1
call GMGETH ('R/L', 1di, idsn, 'YSYM °, 'I’', ysym,
$ n, 0, 0, 0, 400)
else if (CMATCH (key, 'S"TORE')) then
C --- install dataset
call GMPUNT (1di, 'SYMMETRY ', idsn, 16, 500)
c --- write data
call GMPUTH (°'W', 1di, idsn, 'KSYM ', 'I', ksym, 1,
$ 0, 0, 0, 600)
call GMPUTN ('W', 1di, idsn, 'XSYM ', 'I', xsym, 1,
$ 0, 0, 0, 700)
call GMPUTH ('W', 1di, idsn, 'YSYM ', 'I', ysym, 1,
$ 0, 0, 0, 800)
call GMFLUB (1di, O, 2000)
else
print ¥, ‘"xx* Illegal keyword ’, key,’ in symmetry data’
end if
go to 1000

end o

(Here KSYM is an integer “symmetry f
program.)

lag” related to that used in the original TWOBI

I'he LOAD and STORE commands are implemented following the outline given in §7.1.2
and §7.1.1. However, here cach record is just one number, so we do not have to construct
21, §5.1 for the details of record naming.

the record name. For more information see

‘Revised 10/14,1988 Developerr’s‘ Tutorial for the CSM Testbed Architecture 7-21

Defining Material Properties Defining the Problem

7.6 Defining Material Properties

Material properties are introduced by a DEFINE MATERIAL header command (which
can be abbreviated to just D M). The commands have a simple form:

EM = F
PR = v
[LOAD | STORE]

terminated by an END command. The EM command specifies the elastic modulus and the PR
command specifies Poisson’s ratio. Since DBEM2 is restricted to elastic isotropic materials
and does not consider thermal effects, these two material properties suffice.

The default values for E and v set by CLEAR are 1.0 and 0.0, respectively.

The implementation of DEFINE MATERIALS is straightforward and does not involve
any fancy new construct:

¥ Read material property data

subroutine DEFINE_MATERIAL

implicit none
include 'database.inc’
include 'material.inc’
character*4 key, CCLVAL
integer ICLTYP, idsn, LMFIND, n
real FCLVAL
logical CMATCH
1000 call CLREAD (' Material data> °',
$ " Enter EM=em or PR=pr or LOAD or STORE&&'//
$ "Terminate with END')
if (ICLTYP(1) .le. 0) then
print %, '#++ Command must begin with keyword’
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"ND')) then
return
else if (CMATCH (key, 'EM')) then
em = FCLVAL (0)
else if (CMATCH (key, 'P°R')) then
pr = FCLVAL(0)
else if (CMATCH (key, 'L"0AD')) then
C --- find dataset

idsn = LMFIND (1di, °'MATERIAL ', 100)
if (idsn .eq. 0) then

7-22 ‘-Avt)veveloper’s Tutorial for the CSM Testhed Architecture Revised 10/14/1988

Defining the Problem Defining Material Properties

print*, ' Cannot find MATERIAL dataset; nothing LOADed’

go to 1000
end if
--- read data

n=1

call GMGETH (°'R/L', 1di, idsn, 'EM ’, 'S’, em, n, 0,
$ 0, 0, 200)

n=1

call GMGETN (°'R/L', 1di, idsn, 'PR ', 'S’, pr, n, o,
$ 0, 0, 300)

else if (CMATCH (key. 'S"TORE')) then
--- install dataset
call CMPUNT (1di, °'MATERIAL ', idsn, 16, 500)

--- write data
call GCMPUTHN (‘W', 1di, idsn, 'EM ", 'S*, em, 1, 0, O,

$ 0, 600)
call GMPUTN ('W', 1di, idsn, 'PR ', 'S’, pr, 1, 0, O,
$ 0, 700)
call GMFLUB (1di, 0, 2000)
else
print *, ’x++ Illegal keyword ', key,' in material data’
end if
go to 1000
end

Here the LOAD and STORE are identical to the previous implementation.

Revised 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture — 7- 23

Defining Prestress Data Defining the Problem

7.7 Defining Prestress Data

If the initial stress state has nonzero components, prestress data have te he introduced
by a DEFINE PRESTRESS header. The prestress-definition commands have a very simple
form:

0

SXX0 = Ugr
SYYO = OV”
SXYO = o

Ty
[LOAD | STORE]
As usual, these commands are terminated by an END command. Undefined prestress com-
ponents are assumed zero.

The implementation of DEFINE PRESTRESS is quite similar to that of DEFINE _MATERIAL

*

Read prestress (initial field stresses) data

subroutine DEFINE_PRESTRESS

implicit none
include 'database.inc’
include ‘prestress.inc’
character*4 key, CCLVAL
integer ICLTYP, idsn, LMFIIID, n
real FCLVAL
logical CMATCH
1000 call CLREAD (' Prestress data> ',
$ " Enter SXXO=sxx0, SYYO=syyO or SXYO=sxyO&&'//
$ " or LOAD or STORE&%'//
$ 'Terminate with END’)
if (ICLTYP(1) .le. 0) then
print *, "*+x Command must begin with keyword’
go to 1000 '
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"HD')) then
return
else if (CMATCH (key, 'SX"X0')) then

sxx0 = FCLVAL(0)

else if (CMATCH (key, 'SY"Y0*)) then
syyO = FCLVAL(0)

else if (CMATCH (key, 'SX"Y0')) then
sxy0 = FCLVAL(0)

else if (CMATCH (key, 'L"0AD')) then

C --- find dataset

idsn = LMFIND (1di, 'PRESTRESS ', 100)

7:244V*DéQQOpéHSil&éﬁﬁfﬂﬁjﬂﬁ;Céhl1hsﬂﬂﬂ Afchnééanvrﬂhﬂevmed10/14/1988

Defining the Problem 7 Defining Prestress Data

if (idsn .eq. 0) then
print+, ' Cannot find PRESTRESS dataset; nothing LOADed.’

go to 1000
end if
C --- read data
n =1
call GMGETH (°'R/L', 1di, idsn, °'SXX0 ', 'S’, sxxO,
$ n, 0, 0, 0, 200)
n-=1
call GMGETHW ('R/L', 1di, idsn, 'SYYO *, 'S’, s8yyO,
$ n, 0, 0, 0, 300)
n=1
call GMGETN ('R/L’', 1di, idsn, °'SXYO ', 'S', sxyO,
$ n, 0, 0, 0, 400)
else if (CMATCH (key, "S"TORE')) then
C --~- install dataset
call GMPUNT (1di, 'PRESTRESS ', idsn, 16, 500)
C --- write data
call GMPUTH ('W', 1di, idsn, 'SXX0 ', 'S’, sxx0, 1,
$ 0, 0, 0, 600)
call GMPUTN ('W', 1di, idsn, 'SYYO ', 'S’, syyO, 1,
$ 0, 0, 0, 700)
call GMPUTH ('W', 1di, idsn, 'SXYO0 ', 'S’, 8xy0, 1,
$ 0, 0, 0, 800)
call GMFLUB (1ldi, O, 2000)
else
print s, 'x** Illegal keyword ', key,' in prestress data’
end if
go to 1000
end

Vlieivﬁised l()/14/19878ﬂ rrl)evoloper’s”Tuforial for thérCSVI;T Testbed Architeciture 7-25

Defining Output Field Locations Defining the Problem

7.8 Defining Output Field Locations

The last piece of input data is not related to the problem definition. but te the
specification of the field points at which the program user would like to get computed
results, viz., displacements and stresses.

(This set of information is characteristic of boundary element methods, in which all
basic givens and unknowns are at the boundary. If you want information at field points
not on the boundary, you have to ask for it and specify where.)

For convenience the output locations are not specified point by point, but as equally
spaced points on line segments. You specify the location of the first and last point on the
line, and the number of points, if any, to be “collocated” between the first and last one.

The output field location specification commands are introduced by a DEFINE FIELD-
LOCATIONS header command (which may be abbreviated to D F) and have a form remi-
niscent of the segment-definition commands:

LINE = ¢ FIRST = /'™ /'t ppsT = £t ylett [POINTS=n,,,]
[LOAD | STORE]

terminated by an END command. Here nint is the number of intermediate points to be
inserted (equally spaced) between the first and last point. If this phrase is omitted, n;p,; = 0
is assumed so only the first and last points will be output points. If the first and last points
coincide, output will be at only one point.

For example:

DEF 0UT
LINE=1 F=200.2 L=203.8 P=9
LINE=2 F=3.8,0.2 L=0.2,3.8 P=9
STORE
END

specifies two output lines running at 45° and 1357, respectively, with 11 output points
(first t last +-9) in each, and the data are stored.

Here is the implementation of the DEFINE OUTPUT LOCATIONS routine:

Read location of output field points

subroutine DEFINE_FIELD_LOCATIOlS

implicit none
include 'database.inc’
include "output.inc’

character*8 key, CCLVAL

character*20 rname

real FCLVAL

integer ilin, n, mark, ICLVAL, ICLSEK, ICLTYP

7-26 _Developer—;s Tutorial for theCSM Testbed /.\rchitecture“ Revised 10/14/19_848

Defining the Problem Defining Output Field Locations

integer idsn, LMFIND, ilow, ihigh, nrec, mlin
real xy(2)
logical onepoint, CMATCH

.

1000 call CLREAD (' Field location data> ',

$ * Enter LIN=ilin FIRST=xfirst,yfirst LAST=xlast,ylast'//
$ '[P=ninter]&& or LOAD or STORE&&Terminate with END')

if (ICLTYP(1) .le. 0) then
print *, '*x* Command must begin with keyword’
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"ND’)) then
return
else if (CMATCH (key, 'LI"HE')) then
ilin = ICLVAL(2)

if (ilin .le. O .or. ilin .gt. MAXLIN) then
print ¥, '##+ Field line number’,ilin,’ is out of range'

go to 1000

end if

lindef (ilin) = 1

nintop(ilin) = 0

onepoint = .true.

if (ICLSEK(3, 'F"IRST') .ne. 0) then
call CLVALF (' ', 2, xy. n)

if (n .ge. 1) xfirst(ilin) = xy(1)
if (n .ge. 2) yfirst(ilin) = xy(2)

end if
if (ICLSEK(3, 'L"AST') .ne. 0) then
call CLVALF (' ', 2, xy, n)

if (n .ge. 1) xlast(ilin) = xy(1)
if (n .ge. 2) ylast(ilin) = xy(2)

onepoint = .false.

end if

if (onepoint) then
xlast(ilin) = xfirst(ilin)
ylast(ilin) = yfirst(ilin)

end if

if (ICLSEK(3, 'P"OINTS’) .ne. 0) then
nintop(ilin) = max(ICLVAL(0),0)
end if
else if (CMATCH (key, 'LO"AD')) then
C --- find dataset
idsn = LMFIND (1di, 'FIELD ', 100)
if (idsn .eq. O) then
print¢, ' Cannot find FIELD dataset:; nothing LOADed."’
go to 1000

Revised 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture

-~I

_ 27

Defining Output Field Locations

Defining the Problem

end if
C --- get record name cycles, construct record name & read data
n = MAXLIN
call GMGECY (* ', 1di, idsn, 'LINDEF ', nrec, ilow,
$ ihigh, 220)

call GMCORIl (rname, 'LINDEF ', ilow, ihigh)

call GMGETN ('R/L’, 1di, idsn, rname, 'I', lindef,
$ n, 0, 0, 0, 200)

n = MAXLIN

call GMGECY (' ', 1di, idsn, 'NINTOP ', nrec, ilow,
$ ihigh, 220)

call GMCORI (rname, 'NINTOP ', ilow, ihigh)

call GMGETH (°'R/L', 1di, idsn, rname, 'I’, nintop,
$ n, 0, 0, 0, 300)

n = MAXLIH

call GMGECY (* *, 1di, idsn, 'XFIRST ', nrec, ilow,
$ ihigh, 220)

call GMCORI (rname, 'XFIRST *, ilow, ihigh)

call GMGETH ('R/L’, 1di, idsn, rname, °'S’, xfirst,
$ n, 0, 0, 0, 400)

n = MAXLIN

call GMGECY (' ', 1di, idsn, 'YFIRST ', nrec, ilow,
$ ihigh, 220)

call GMCORN (rname, 'YFIRST ', ilow, ihigh)

call GMGETH ('R/L’, 1di, idsn, rname, 'S', yfirst,
$ n, 0, 0, 0, 500)

n = MAXLIN

call GMGECY (' *, 1di, idsn, 'XLAST ', nrec, ilow,
$ ihigh, 220)

call GMCORN (rname, 'XLAST ', ilow, ihigh)

call GMGETN ('R/L', 1di, idsn, rname, 'S’, xlast,
$ n, 0, 0, 0, 600)

n = MAXLIN

call GMGECY (' ', 1di, idsn, 'YLAST ', nrec, ilow,
$ ihigh, 220)

call GMCORI (rname, 'YLAST ', ilow, ihigh)

call GMGETH (°'R/L’, 1ldi, idsn, rname, 'S’, ylast,

$ n, 0, 0, 0, 700)
else if (CMATCH (key, 'S"TORE')) then
C --- install dataset
call GMPUNT (1di, 'FIELD ', idsn, 16, 1000)
C --- determine largest value of lindef

do 100 n=MAXLIN,1,-1
if (lindef(n) .ne. O) then

mlin = n
go to 200
end if
100 continue

7-28 “D;;eloper's Tutorial for the CSM Testbed Architecture Revised -1_0/14/1988

Defining the Problem

Defining Output Field Locations

200 continue
C --- construct record name & write data

call GMCORN (rname, °‘LINDEF *, 1, mlin)

call GMPUTH ('W', 1di, idsn, rname, 'I', lindef, mlin,
$ 0, 0, 0, 1100)

call GMCORN (rname, "NINTOP ', 1, mlin)

call GMPUTN ('W', 1di, idsn, rname, 'I', nintop, mlin,
$ 0, 0, 0, 1200)

call GMCORN (rname, 'XFIRST ', 1, mlin)

call GMPUTN ('W', 1di, idsn, rname, 'S’', xfirst, mlin,
$ 0, 0, 0, 1300)

call GMCORN (rname, 'YFIRST ', 1, mlin)

call GMPUTN ('W’, 1di, idsn, rname, 'S’', yfirst, mlin,
$ 0, 0, 0, 1400)

call GMCORN (rname, 'XLAST °, 1, mlin)

call GMPUTN ('W', 1di, idsn, rname, 'S’, xlast, mlin,
$ 0, 0, 0, 1500)

call GMCORN (rname, 'YLAST ', 1, mlin)

call GMPUTHN ('W', 1di, idsn, rname, 'S’', ylast, mlin,

$ 0, 0, 0, 1600)
call GMFLUB (1di, 0, 2000)
else
print ¥, '"++% Illegal keyword ', key,' in field loc data’
end if
go to 1000
end

Once again, the LOAD and STORE command implementations follow the outline given

in §7.1.2 and §7.1.1.

The input data section is complete.

Revised 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture

7-929

Defining Output Field Locations

Defining the Problem

THIS PAGE LEFT BLANK INTENTIONALLY.

7-30 I)evelci)ry;e}’s Tutorial for the CSM Testhed Architecture Revised 10/14/1988

Solving the Problem

8. Solving the Problem

Having finished input data preparation, the three steps involved in solving the elasto-
static problem are as follows.

Building the Boundary Element Model. The input data have defined the geometry of the
problem in terms of segments. Segments are broken down into equally spaced boundary
elements. The first step consists of building element-by-element data, and is carried out
when you enter the command BUILD.

Assembling the Discrete Equations. This step generates a matrix C of “influence coefli-
cients” and a vector r of “forcing functions.” These arrays have dimensions equal to twice
the total number of boundary elements. The construction of the elements of C and r fol-
lows the direct formulation of boundary-integral methods and is not explained here. This
step is triggered by the command GENERATE and is carried out by subroutine GENERATE
and subordinate routines.

Solving for the unknowns. The linear equation system Cx - r is solved (by a Gauss
elimination method) for vector x, which contains the boundary unknowns. This step is
triggered by command SOLVE and is carried out by subroutine SOLVE and a subordinate
routine.

For each of these commands, BUILD, GENERATE, and SOLVE the qualifiers LOAD and
STORE can be used. If the qualifier is LOAD then the data are loaded from the open GAL
Library without computing the data. If the qualifier is STORE the data are computed, then
stored in the GAL Library. The presence of the qualifier is determined in the subroutine
DO_COMMAND: see §5. The value of the qualifier is passed to BUILD, GENERATE, and SOLVE
as the argument op, a blank value is the default.

All of the GAL entry points and methods for loading and storing data have been
illustrated previously in §7.0, and since we are not going to explain the theory behind these
tasks, the BUILD, GENERATE and SOLVE subroutines are listed next without commentary.

x

* Build detailed boundary element data

subroutine BUILD (op)

implicit none

include 'database.inc’
include 'segment.inc’
include ‘element.inc’
include 'material.inc’
include 'prestress.inc’

characters(*) op
character+20 rname

integer iseg, k, ne, num
integer idsn, LMFIND, ilow, ihigh, nrec, n
real xd, yd, side

nR,ov’iS(:d 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture 8-1

Solving the Problem

if (op .eq. 'LOAD') go to 5000

k = 0

do 2000 iseg = 1,MAXSEG
if (segdef(iseg) .eq. 0) go to 2000
num = numel(iseg)

xd = (xend(iseg)-xbeg(iseg))/num
yd = (yend(iseg)-ybeg(iseg))/num
side = sqrt(xdx*2+yd*+2)
if (side .eq. 0.0) go to 2000
do 1600 ne = {,num
k= k+1
if (k .gt. MAXELM) then
print *, 'x++ Boundary element count exceeds ' ,MAXELM
print *, ' Excess elements ignored’
return
end if
xme(k) = xbeg(iseg) + 0.5%(2.+ne-1)#*xd
yme (k) = ybeg(iseg) + 0.5+(2.*ne-1)*yd

hleng(k) = 0.5xside
sinbet (k) = yd/side
cosbet(k) = xd/side
b(2xk-1) = bvs(iseg)
b(2+#k) = bvn(iseg)
kod(k) = kode(iseg)

1600 continue
2000 continue
numbe = k
print '(’'’ Discrete model building completed:'’,
$ 16,’’ boundary elements’'/)’, numbe
if (op .eq. 'STORE') then

--- STORE data
--- install dataset
call GMPUNT (1di, 'ELEMENT ', idsn, 16, 1000)

--- construct record name & write data
call GMPUTH ('W', 1di, idsn, 'HUMBE ', 'I’', numbe,
$ 1, 0, 0, 0, 1050)

call GMCORN (rname, 'XME ', 1, numbe)

call GMPUTN ('¥', 1di, idsn, rname, 'S', xme, numbe,
$ 0, 0, 0, 1100)

call GMCORN (rname, 'YME ', 1, numbe)

call GMPUTN ('W', 1di, idsn, rname, 'S’, yme, numbe,
$ 0, 0, 0, 1200)

call GMCORN (rname, 'HLENG ', 1, numbe)

call GMPUTH (‘W', 1di, idsn, rname, 'S’', hleng, numbe,
$ 0, 0, 0, 1300)

call GMCORN (rname, 'SINBET ', 1, numbe)

call GMPUTH ('W', 1di, idsn, rname, °'S', sinbet, numbe,
$ 0, 0, 0, 1400)

eloper’s Tutorial fo ~ Revised 10/14/1988

R-2 Developer’s Tutorial for the CSM Testbed Architecture

Solving the Problem

call GMCORN (rname, 'COSBET ', 1, numbe)

call GMPUTHN ('W’, 1di, idsn, rname, 'S’', cosbet, numbe,
$ 0, 0, 0, 1500)

call GMCORN (rname, 'KOD ', 1, numbe)

call GMPUTHN ('W’, 1di, idsn, rname, 'I’', kod, numbe,
$ 0, 0, 0, 1600)

call GMCORN (rname, 'B ', 1, 2*numbe)

call GMPUTN ('W', 1di, idsn, rname, 'S’, b, 2*numbe,
$ 0, 0, 0, 1500)

call GMFLUB (1di, 0, 2000)
end if
return

5000 continue
C --- LOAD data
C --- find dataset
idsn = LMFIND (1di, 'ELEMENT °,
if (idsn .eq. O) then

100)

print*, ' Cannot find ELEMENT dataset; nothing LOADed.’
return
end if
C --- get record name cycles, construct record name & read data

n=1

call GMGETH ('R/L’, 1di, idsn, 'NUMBE ", 'I’, numbe,
$ n, 0, 0, 0, 160)

n = MAXELM

call GMGECY (1di, idsn, 'XME ', nrec, ilow,
$ ihigh, 180)

call GMCORN (rname, 'XME ', ilow, ihigh)

call GMGETH ('R/L', 1di, idsn, rname, 'S’', xme,

$ n, 0, 0, 0, 200)

n = MAXELM

call GMGECY (' ', 1di, idsn, 'YME ', nrec, ilow,

$ ihigh, 280)

call GMCORN (rname, 'YME ', ilow, ihigh)

call GMGETH ('R/L', 1di, idsn, rname, 'S’, yme,

$ n, 0, 0, 0, 300)

n = MAXELM

call GMGECY (' ', 1di, idsn, 'HLENG ’, nrec, ilow,

$ ihigh, 380)

call GMCORN (rname, 'HLENG ', ilow, ihigh)

call GMGETH ('R/L’, 1di, idsn, rname, 'S’, hleng,

$ n, 0, 0, 0, 400)

n = MAXELM

call GMGECY (' ', 1di, idsn, 'SINBET ', nrec, ilow,
$ ihigh, 480)

call GMCORN (rname, 'SINBET ', ilow, ihigh)

call GMGETW ('R/L’, 1ldi, idsn, rname, 'S’', sinbet,

Revised 10/14/1988 Developer's Tutorial for the CSM Testbed Architecture

Solving the Problem

8-4

$

$

$

$

$

$

$

n, 0, 0, 0, 60O)

n = MAXELM

call GMGECY (* ', 1di, idsn, °'COSBET ', nrec, ilow,
ihigh, 580)

call GMCORN (rname, 'COSBET ', ilow, ihigh)

call GMGETN ('R/L’, 1di, idsn, rname, 'S’, cosbet,
n, 0, 0, 0, 600)

n = MAXELM

call GMGECY (" *, 1di, idsn, 'KOD ', nrec, ilow,
ihigh, 680)

call GMCORN (rname, 'KOD ', ilow, ihigh)

call GMGETN ('R/L', 1di, idsen, rname, 'I’', kod,
n, 0, 0, 0, 700)

n = MAXEQS

call GMGECY (' ', 1di, idsn, 'B ", nrec, ilow,
ihigh, 780)

call GMCORN (rname, 'B ', ilow, ihigh)

call GMGETN ('R/L’, 1di, idsn, rname, °'S’, b,
n, 0, 0, 0, 800)

return
end

Calculate influence coefficient matrix and RHS vector

subroutine GENERATE (op)

implicit none

include 'database.inc’
include 'material.inc’
include 'element.inc’
include 'prestress.inc’
include ‘symmetry.inc’

characterx(*) op
character*20 rname

integer i, j. n, nrec, ilow, ihigh, LMFIND, idsn, igap
real sinbi, cosbi, sinbj, cosbj, ss0, sn0, g

real xi, xj., yi, yj. sj

real ass, asn, ans, ann, bss, bsn, bns, bnn

if (op .eq. "LOAD’) go to 4000

g = 0.5+em/(1.+pr)
do 3000 i = 1,numbe
r(2*i-1) = 0.
r(2xi) = 0.
xi = xme(i)
yi = yme(i)
cosbi = cosbet(i)

Dé\'elopef’é‘Tutorial_for the CSM Testbed Architecture Revised]0/14/198“8

Solving the Problem

©“ &6

© H

© &

$

$
2500

sinbi = sinbet(i)
do 2500 j = 1,numbe
ass = 0.0
asn = 0.0
ans = 0.0
ann = 0.0
bss = 0.0
bsn = 0.0
bns = 0.0
bnn = 0.0
xj = xme(j)
yj = yme())
cosbj = cosbet(j)
sinbj = sinbet(j)
8j = hleng(j)

s80 = (syyO-sxxO)*sinbj*cosbj + sxy0* (cosbj**2-sinbj**2)
sn0 = sxx0*sinbj**2 - 2.%gxyO*sinbj*cosbj + syyO*cosbj**2
call COEFF (xi, vi, xj. yj. sj.
1, em, pr, cosbi, sinbi, cosbj, sinbj,
ass, asn, ans, ann, bss, bsn, bns, bnn)
if (ksym .eq. 1 .or. ksym .eq. 3) then
call COEFF (xi, yi, 2.*xsym-xme(j)., yj. 8j,
-1, em, pr, cosbi, sinbi, cosbj, -sinbj,.
ass, asn, ans, ann, bss, bsn, bns, bnn)
end if
if (ksym .eq. 2 .or. ksym .eq. 3) then
call COEFF (xi, yi, xj., 2.+ysym-yme(j). sj,
-1, em, pr, cosbi, sinbi, -cosbj, sinbj,
ass, asn, ans, ann, bss, bsn, bns, bnn)
end if
if (ksym .eq. 3) then

call COEFF (xi, yi, 2.*xsym-xme(j), 2. +ysym-yme(j), 8j,

1, em, pr, cosbi, sinbi, -cosbj, -sinbj,
ass, asn, ans, ann, bss, bsn, bns, bnn)
end if
call SETUP (i, j. kod(j), g. ssO, snO,
ass, asn, ans, ann, bss, bsn, bns, bnn,
b, ¢, r, 2*numbe, MAXEQS)
continue

3000 continue

print x,

if (op .eq. 'STORE’) then

@]

Revised 10/14/1988

STORE data

install dataset

call GMPUNT (1di, 'COEFF ', idsn, 16, 100)
construct record name & write data

n = 2*numbe

igap = MAXEQS - n

*Influence coefficient matrix & RHS vector generated’

Developer’s Tutorial for the CSM Testbed Architecture

Solving the Problem

call GMCORN (rname, 'C ', 1, n)
call GMPUTN ('W', 1di, idsn, rname, °'S', ¢, -n,

$ 0, igap. 0, 200)
C --- install dataset
call GMPUNT (1di, 'RHS ', idsn, 16, 500)
C --- construct record name & write data

n = 2*numbe

call GMCORN (rname, 'R ', 1, n)

call GMPUTN ('W', 1di, idsn, rname, 'S’, r, n,
$ 0, 0, 0, 600)

call GMFLUB (1di, 0, 2000)

return
end if

C --- LOAD data
4000 continue
C --- find dataset
idsn = LMFIND (1di, °'COEFF ', 1000)
if (idsn .eq. O) then
printx, ' Cannot find COEFF dataset; nothing LOADed.’

else
C --- get record name cycles, construct record name & read data
n = MAXEQS+*+2
call GMGECY (' ', 1di, idsn, 'C ', nrec, ilow,
$ ihigh, 1100)

igap = MAXEQS - nrec
call GMCORN (rname, 'C ', ilow, ihigh)
call GMGETN ('R/L’', 1di, idsn, rname, 'S’', c,

$ n, 0, igap, 0, 1200)

end if

C --- find dataset
idsn = LMFIND (1di, ‘RHS *, 1500)
if (idsn .eq. O) then

print*, ' Cannot find RHS dataset. nothing LOADed.’

else
C ~-- get record name cycles, construct record name & read data
n = MAXEQS
call GMGECY (' ', 1di, idsn, 'R ', nrec, ilow,
$ ihigh, 1600)

call GMCORN (rname, 'R ', ilow, ihigh)

call GMGETN ('R/L', 1di, idsn, rname, 'S’, r,
$ n, 0, 0, 0, 1700)
end if

return
end

Solve for unknown boundary values

8 6])everlorli)re;'r‘s Tutorial for the CSM Testhed Architecture Revised 10/14/1988

Solving

the Problem

c
C
c
$
C - -
1000
C --
C -
$
$

Revised 10/ 14/1988

subroutine SOLVE (op)

implicit none
include 'database.inc’
include ‘element.inc’

characterx () op

character*20 rname

integer ising

integer n, nrec, ilow, ihigh, LMFIND, idsn

if (op .eq. 'LOAD') go to 1000
call GAUSSER (¢, r, x, 2+numbe, MAXEQS, ising)
if (ising .eq. 0) then
print *, 'Discrete equations solved’
if (op .eq. 'STORE’) then
--- STORE data
--- install dataset
call GMPUNT (1ldi, 'SOLUTION ', idsn, 16, 500)
--- construct record name & write data
n = 2*numbe
call GMCORN (rname, 'X ', 1, n)
call GMPUTN ('W', 1di, idsn, rname, 'S', x, n,
0, 0, 0, 600)
call GMFLUB (ldi, 0O, 2000)
end if
else
print *, ‘Singularity detected at BE equation’,hising
end if ‘
return

LOAD data
continue
find dataset
iden = LMFIND (1di, °SOLUTION ', 1500)
if (idsn .eq. O) then
print+, ° Cannot £ind SOLUTION dataset: nothing LOADed.’
else
- get record name cycles, construct record name & read data
n = MAXEQS
call GMGECY (' ', 1ldi, idsn, 'X ', nrec, ilow,

ihigh, 1600)
call GMCORN (rname, 'X ', ilow, ihigh)
call GCMGETN ('R/L’, 1di, idsn, rname, 'St X,
n, 0, 0, 0, 1700)
end if
return

Developer's Tutorial for the (SM Testbed Architecture

8-17

_ Solving the Problem

SuhrouﬁneGENERATEcaHsCOEFF(wﬂﬁchisemwnﬁa”ythesanu‘msaTWOBIsuhronﬁne

“end

with the same name) and SETUP. which fills the entries of the influence coefficient matrix
and right-hand-side vector:

*

8- 8

Calculate source/receiver coefficients

subroutine COEFF

$ (xi, yi. xj. yj. aj,
$ msym, em, pr, cosbi, sinbi, cosb, sinb,
$ ass, asn, ans, ann, bss, bsn, bns, bnn)
implicit none

real xi, yi, xj, yj. aj

real ‘em, pr, cosbi, sinbi, cosb, sinb
real ass, asn, ans, ann, bss, bsn, bns, bnn
real pi, con, pri, pr2, pr3

integer msym

real cma, cpa, cxb, cyb, cosg, sing
real ris, r2s, f11, f12

real tbi, tb2, tb3, tb4, tbs

real asst, asnt, anst, annt

real bsst, bsnt, bnst, bnnt

pi = 4.%atan2(1.,1.)

con = 1.0/(4.*pi*(1.-pr))

prli = 1.-2¢pr

pr2 = 2.+(1.-pr)

pr3 = 3.-4.*pr

cxb = (xi-xj)*cosb + (yi-yj)*sinb

cyb = -(xi-xj)*sinb + (yi-yj)*cosb

cosg = cosbi*cosb + sinbi*sinb

sing = sinbi*cosb - cosbis*sinb

cma = ¢xb - aj

cpa = cxb + aj

ris = cma+*2 + cyb*+2

r2s = cpa**2 + cyb#%2

fl1 = 0.5%log(ris)

f12 = 0.5+xlog(r2s)

tb2 = -con#(f11-f12)

tb3 = con*(atan2(cpa,cyb)-atan2(cma,cyb))

tbl = -cyb#tb3 + con*(cma*fll-cpa+f12)

tbd = con*(cyb/ris-cyb/r2s)

tbdb = cont(cma/ris-cpa/r2s)

asst = pr2*cosgtb3 + pri*singitb2 + cyb*(sing*tbd+cosg*tbs)

Developer’s Tutorial for the CSM Testbed Architecture

Revised 10/14/1988

Solving the Problem

%
*

*

asnt
anst
annt

bsst
bsnt =
bnst
bnnt

ass =
asn =
ansg =
ann =

bss
bsn
bns =
bnn =
return
end

-prisc
-prats
prixs

pr3*c
pr3*s
-pr3#s
pr3*c

ass +
asn +
ans +
ann +

bss
bsn
bns
bnn

+ o+ o+ o+

osg*tb2 + pr2+sing*tb3 + cyb*(cosg*tb4-sing*tbb)
ing*tb3 + pri*cosgttb2 + cyb*(cosg*tbd-sing+*tbb)
ing*tb2 + pr2*cosg*tb3 - cyb*(sing+*tb4+cosg*tbb)
osg*tbl + cyb*(sing*tb2-cosg*tb3)

ing*tbl + cyb+*(cosg*tb2+sing*tb3)
ing*tbi + cyb*(cosg*tb2+sing*tb3)
osgttbl - cyb+(sing*tb2-cosg*tb3)

msym*asst
asnt
msym*anst
annt

msym*bsst
bsnt
msym*bnst
bnnt

Set up influence coeff matrix and RHS of discrete system

subroutine SE

@ P H &

implicit
integer
real
real
real

(i
a
b
b

if (bckodj .eq
c(2%i-1,2%j-1) = ass

TUP

. j. bckodj, g. ssO, snoO,
ss, asn, ans, ann,

ss, bsn, bns, bnn,

, C, r, n, nc)

none
i, j, n, nc, bckodj
8s0, snO, g, bs, bn
ass, asn, ans, ann, bss, bsn, bns,
b(+), clnc,*), r(*)

. 0) then

c(2%i-1,2+#j) = asn

c(2«i ,2+j-1) = ans

c(2¥i ,2*j) = ann

bs = 0.5%(b(2+j-1)-8s0)/g

bn = 0.5x(b(2+j)-sn0)/g

r(2«i-1) = r(2*i-1) + bss¥*bs + bsn*bn

r(2xi) = r(2#*1) + bns¥bs + bnnibn
else if (bckodj .eq. 1) then

c(2%i-1,2%j-1) = ~-bss

c(2+i-1,2%xj) = -bsn

c(2+¥i ,2%j-1) = -bns

Revised VI()/ lﬂfi/1988mWDevelbper's Tutorial for the CSM Testbed Architecture

bnn

8-9

Solving the Problem

c(2+*i ,2%j) = ~-bnn
r(2+i-1) = r(2+i-1) - ass+b(2+j-1) - asn*b(2*j)
r(2xi) = r(2ti) - ans*b(2+j-1) - anntb(2%*j)

else if (bckodj .eq. 2) then

c(2%i-1,2%j-1) = ~-bss
c(2*i-1,2*j) = asn
c(2+«i ,2¢+j-1) = -bns
c(2xi ,2%¥j) = ann

bn = 0.5%(b(2¢j)-sn0)/g

r(2+i-1) = r(2+i-1) - ass*b(2xj-1) + bsn¥bn
r(2*i) = r(2+«*i) - ansxb(2¢j-1) + bnn*bn
else
c(2%i-1,2%j-1) = ass
c(2%i-1,2%§) = ~-bsn
c(2*¥i ,2%j-1) = ans
c(2¥i ,2¢j) = -bnn
bs = 0.5%x(b(2¢j-1)-8s0)/g
r(2+i-1) = r(2+i-1) + bss*bs - asn*b(2%j)
r(2«i) = r(2:i) + bns*bs - anntb(2+j)
end if
return
end

Subroutine SOLVE calls GAUSSER, which is a naive implementation of unsymmetric Gauss
elimination without pivoting:

b4

Solve algebraic equation system A x = b by Gauss elimination

subroutine GAUSSER

$ (a, b, x, n, na, ising)
implicit none
integer n, na, ising
real a(na,+), b(:), x(*), c, sum
integer i, j. k

ising = O
do 2000 j = 1,n-1
if (a(j.j) .eq. 0.0) then

ising = j
return

end if

do 1500 k = j+i,n -
c = a(k,j)/a(j.j)

do 1400 i = j,n
a(k,i) = a(k,i) - cxa(j.i)
1400 continue
b(k) = b(k) - c*b(j)

8- 10 ‘I)e;ziel>oper’§"rl’utorrial for the CSM Testbed Architecture Revisedwlw()w/Zl,/-179%-8

Solving the Problem

1600 continue

2000 continue

*
x(n) = b(n)/a(n,n)
do 3000 j =n-1,1,-1

sum = 0.0
do 2500 i = j+1,n
sum = sum + a(j,i)+x(i)
2600 continue

x(j) = (b(j)-sum)/a(j,j)
3000 continue
return

(The only redeeming quali

Revised 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture

8

ty about GAUSSER is that the code is quite short; in fact, it’s

about the shortest possible implementation of a linear equation solver.)

Solving the Problem

THIS PAGE LEFT BLANK INTENTIONALLY'.

8- 12 Devel-oﬂ;-)'er’é”'lr‘uf.ro.rrialvfo;'ithe CSM ToisrtbedrArchitcct.lx-f;%. _Revise(-i. ‘10/A14/1988

Printing Data

9. Printing Data

One area in which interactive operation excels is data display. If you are using an
interactive Processor for a engineering design task, you can selectively trim the otherwise
voluminous output to the important essentials. Conversely, if you are debugging a new
or modified implementation, you may want more output than is normally required; for
example printing the influence coefficient matrix.

What goes for printed output applies with equal force to graphic output. We are not
going to illustrate graphic displays here, however, since the details depend strongly on the
output device and the plotting software you are using.

The PRINT command is similar to the DEFINE command in that it takes a second
keyword that specifies what is to be printed:

SEGMENTS

BOUNDARY _CONDITIONS
SYMMETRY _CONDITIONS
MATERIAL

PRESTRESS

FIELD LOCATIONS
ELEMENTS
COEFFICIENTS

RHS

SOLUTION

RESULTS

Prints segment geometry data and number of elements per seg-
ment.

Prints boundary condition (BC) code and prescribed boundary
values for each segment.

Prints symmetry conditions if any in effect.

Prints material property data.

Prints prestress data.

Prints information about output-location lines if any is defined.
Prints detailed boundary-element data produced by subroutine
BUILD (this is primarily for debugging).

Prints the matrix C of influence coefficients assembled by GEN-
ERATE (this is primarily for debugging).

Prints the right-hand side (forcing) vector r assembled by GEN-
ERATE (this is primarily for debugging).

Prints the solution vector x calculated by SOLVE (this is pri-
marily for debugging).

Print stresses and displacements at boundary-element mid-
points or at output field locations, depending on a command
qualifier.

In this section none of the subroutines load or store data. However, in a real Processor

the results, such as displacements and stresses, which are computed under the PRINT
RESULTS command would he stored. They would be stored because these results are often
plotted or reordered for tabulation. The plots and tables are used to study the results or
for inclusion in a report or as presentation. By now you should be able to modify PRINT
RESULTS, §9.3. to LOAD and STORE data for the post-processing activities described above.
Be brave give it a try.

The PRINT command is processed by subroutine PRINT, which has a “case” structure
similar to that of subroutine DEFINE:

Developer’s Tutorial for the CSM Testbed Architecture 9-1

Revised 10/ 14/1988

Printing Data

* Interpret PRINT command

subroutine PRINT

implicit none

character key*8, CCLVAL+8
integer ICLTYP

logical CMATCH

if (ICLTYP(2) .le. 0) then
call CLREAD (' PRINT what? ',

$ ' BOUNDARY, ELEMENTS, COEFFICIENTS,'//

$ "FIELD, MATERIAL, PRESTRESS&&'//

$ 'RESULTS, RHS, SOLUTION, SYMMETRY')
key = CCLVAL(1)

else
key = CCLVAL(2)

end if

if (CMATCH (key, 'B"OUNDARY')) then
call PRINT_BOUNDARY_CONDITIONS

else if (CMATCH (key, °'C"OEFFICIENTS') .or.

$ CMATCH (key, "I"NFLUENCE')) then
call PRINT_INFLUENCE_COEFFICIENTS

else if (CMATCH (key, 'E"LEMENTS')) then
call PRINT_ELEMENTS

else if (CMATCH (key, 'F"IELD')) then
call PRINT_FIELD_LOCATIONS

else if (CMATCH (key, 'M"ATERIAL’)) then
call PRINT_MATERIAL

else if (CMATCH (key, 'P"RESTRESS')) then
call PRINT_PRESTRESS

else if (CMATCH (key, 'RE"SULTS')) then
call PRINT_RESULTS

else if (CMATCH (key, 'RHS')) then
call PRINT_RHS_VECTOR

else if (CMATCH (key, ‘SE"GMENT')) then
call PRINT_SEGMENTS

else if (CMATCH (key, 'S"OLUTION')) then
call PRINT_SOLUTION_VECTOR

else if (CMATCH (key, 'SY"MMETRY')) then
call PRINT_SYMMETRY_CONDITIONS

else

print *,’'+*% Illegal or ambiguous keyword ',key,' after PRINT’

end if
return
end

9-2 Developer’s Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Printing Data

Subroutine PRINT provides our second example of an implementation that prompts for
missing data. See DB OPEN, §6.0, for another example. If you type only the keyword PRINT
followed by a carriage return, you will see the prompt

Print what?

on the screen. and you are supposed to type the next keyword, ¢.g., SEGMENTS that you for-
got. (Notice that this friendly technique was not used for the DEFINE command explained
in §7.0; instead subroutine DEFINE complains about missing keywords after DEFINE.)

Next we examine the subordinate routines.

7R;e§'rivs‘;d”170/ml4/1988 bevelopvr's Tutorial for the CSM Testbed Architecture 9-3

Printing Input Data

Printing Data

9.1 Printing Input Data

The implementation of the subroutines that print segment, houndary condition. sym-
metry, material, prestress, and field-location data is straightforward and so are simply
listed next as a group:

&
* Print segment data
subroutine PRINT_SEGMENTS
implicit none
include ‘segment.inc’
integer i, k
k = 0
do 2000 i = 1,MAXSEG
if (segdef(i) .gt. 0) then
if (k .eq. 0) then
print '(/A/A6,A9,4A12)",
$ ' Boundary Segment Data’,
$ 'Segm’, 'Elements’, 'Xbeg', 'Ybeg’, ’'Xend', ’'Yend’
end if
k = k + 1
print '(16,19,3X,4G12.4)",
$ i, numel(i), xbeg(i), ybeg(i), xend(i), yend(i)
end if
2000 continue
if (k .eq. 0) then
print *, ’'Segment tables are empty’
end if
print *, ’
return
end

Print boundary data in response to a PRINT BOUNDARY command

subroutine PRINT_BOUNDARY_CONDITIONS

implicit none
include 'segment.inc’
integer i, k

character*9 given(0:3)
data given /'SS and NS', 'SD and ND', 'SD and NS', 'SS and ND*/

k = 0
do 2000 i = 1,MAXSEG
if (segdef(i) .gt. 0) then

9- 4 Aibévdoper%'Tutoﬁéi%érthe(JShiTlﬁthédercﬁMectﬁ;eﬂm‘ Revked.10/14/1988

Printing Data Printing Input Data

if (k .eq. 0) then
print " (/A/A6,A11,2412)",

$ ' Boundary Conditions Data’', ’Segm’,
$ *Given', 'Shear’, 'Normal’

end if

k = k +1

print '(I5,1X,A11,3X,1P2G12.3)",
$ i, given(kode(i)), bvs(i), bvn(i)

end if

2000 continue
*

if (k .eq. O) then
print ¥, ‘Boundary tables are empty’
end if
print *, ' '
return
__end] o -
* Print symmetry data

subroutine PRIUT_SYMMETRY _CONDITIONS

implicit none
include ‘symmetry.inc’

print '(/A)', ' Symmetry Data’

if (ksym .eq. 3) then
print *, ‘'Symmetry about axis X=',xsym
print =, ’ and axis Y=',ysym
else if (ksym .eq. 1) then
print %, 'Symmetry about axis X=',xsym
else if (ksym .eq. 2) then
print #*, 'Symmetry about axis Y=',ysym
else
print #, 'llo symmetry conditions'’
end if
print *, '
return
end
* Print material property data

subroutine PRINT_MATERIAL

implicit none
include ‘material.inc’
print '(/A)', ' Material Property Data’

Revised 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture 9-5

Printing Input Data

Printing Datla

print '(’' Elastic modulus:'’,1PE12.3)", em
print '(’' Poisson'''’s ratio:'’,F12.3)', pr
print *, '

return

end

* Print field location data

subroutine PRINT_FIELD_LOCATIOIIS

implicit none
include "output.inc’
integer i, k
k = 0
do 2000 i = 1,MAXLII
if (lindef(i) .gt. O) then
if (k .eq. 0) then

print ' (/A/A6,A9,A9,3A12)",

$ ' Field Location Data’,
$ 'Line', 'Int.Pts', 'u-first', 'y-first’,
$ 'x-last’', 'y-last’
end if
k = k+1
print ’(I16,19,4G12.4)",
$ i, nintop(i), xfirst(i), yfirst(i), xlast(i), ylast(i)
end if
2000 continue
if (k .eq. 0) then
print *, 'FIELD Location Tables are empty’
end if
print *, '
return
end

9- 6 Vj)evdnperﬁ Tutorial for the CSM Testbed Architecture Revised 10/14/i988

Printing Data Debug-Oriented Print Commands

9.2 Debug-Oriented Print Commands

The PRINUT ELEMENTS., PRIUT COEFFICIENTS, PRINT RHS and PRINT SOLUTINMN are
detailed print commands primarily useful in debug situations. They are implemented in
the following subroutines:

*

* Print detailed boundary element data

*

gsubroutine PRINT_ELEMENTS

implicit none
% include "segment.inc’
include ‘element.inc’
integer m
*
if (numbe .le. 0) then
print *, ’'Boundary element table empty’
return
end if
print "(/A/A5,A8,2A11,A12,A8 A9 ,A12) ",
$ ' Boundary Element Data’,
$ ‘Elem’, 'Xmid', 'Ymid', 'Length’,
$ ‘Orient’, 'BCode’, ‘'Shear’, ‘llormal’

do 2000 m = 1,numbe
print '(15,1P3011.3.0PF10.2.16.1P2012.3)'.

$ m,xme(m) ,yme(m),2.*hleng(m),
$ (180./3‘14159265)*atanZ(sinbet(m),cosbet(m)).
$ kod(m). b(2:m-1),b(2+%m)
2000 continue
print +, '
return
end

Print influence coefficient matrix

subroutine PRINT_INFLUENCE_COEFFICIENTS

implicit none
* include 'segment . inc’
include "element.inc’

print '(/A)', ' Influence Coefficient Matrix'
call PRINT_REAL_MATRIX (c, MAXEQS, 2+numbe, 2*numbe)
print *, '’
return

_end

Revised 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture 9-7

Debug-Oriented Print Commands Printing Data

* Print right hand side vector

subroutine PRINT_RHS_VECTOR

implicit none
* include "segment.inc’
include ‘element.inc’

print '(/A)', ' Right Hand Side (Forcing) Vector’
call PRINT_REAL_MATRIX (r, 1, 1, 2+numbe)
print *, ’
return
_end

Print right hand side vector

subroutine PRINT_SOLUTION_VECTOR

implicit none
include ‘segment.inc’
include ’element.inc’

print '(/A)’, ' Solution Vector’

call PRIUT_REAL_MATRIX (x, 1, 1, 2¥numbe)
print *, '

return

end

The last three subroutines call PRIMATRIX, which is a “no frills” array printer:

Print real matrix (or vector) in 6-column template

subroutine PRINT_REAL_MATRIX

$ (a, na, m, n)
integer na, m, n, i, j, jref
real a(na,+)

do 4000 jref = O0,n-1.,6
print ' (1X,6I12)', (j,j=jref+1 ,min(jref+6,n))
do 3000 i = 1,m
print '(I4,1P6E12.4) "', i,(a(i,j).j=jref+1,min(jref+6,n))

3000 continue
4000 continue

return

end

9- 8 Developer’s Tutorial for the CSM Testbed Architecture Revised 10/14/1988

Printing Data Printing Results

9.3 Printing Results

The PRINT RESULTS command without a qualifier lists stresses and displacements
computed at boundary element midpoints. If qualifier FIELD appears, the command
refers to the field points previously defined. This switch is implemented in subroutine
PRINT RESULTS:

* Process PRINT RESULTS command

subroutine PRINT_RESULTS

implicit none
integer ICLSEQ

if (ICLSEQ(3,'F"IELD') .eq. O) then
call PRINT_BOUNDARY_RESULTS

else
call PRINT_FIELD_RESULTS

end if

return

end

The code above provides an example of the use of ICLSEQ [1], §5.3, to test for the existence
of a specific qualifier, in this case FIELD.

9.3.1 Printing Boundary Results

This is done by subroutine PRINT BOUIIDARY RESULTS, the implementation of which is
straightforward:

b

* Print stresses and displacement @ boundary element midpoints

subroutine PRINT_BOUNDARY_RESULTS

implicit none

include ‘segment.inc’

include ‘element.inc’

include 'material.inc’

include ‘prestress.inc’

integer k

real g. 8s0, sn0, sinbi, cosbi
real us, un, ux, uy, sign, sigs

print ‘(/A)', ' Displacements and Stresses at'//
$ ' Boundary Element Midpoints’
print '(A5,A9,5A11)’, 'Elem’, 'u_s’, ‘u_n’, ‘'u.x’, u_y’,

Revised 10/14/1988 Developer's Tutorial for the CSM Testbed Architecture 9-9

Printing Results Printing Data

$ 'sig_s’', ’'sig_n’
g = 0.5xem/(1.+pr)
*
do 2000 k = 1,numbe
us = x(2*k-1)
un = x(2+k)
sigs = b(2+k-1)
sign = b(2xk)
if (kod(k) .eq. 1) then
un = b(2xk-1)
us = b(2xk)
sigs = x(2x*k-1)
sign = x(2xk)
else if (kod(k) .eq. 2) then
us = b(2xk-1)
sigs = x(2xk-1)
else if (kod(k) .eq. 3) then
un = b(2¥k)
sign = b(2xk)
end if
sinbi = sinbet(k)
cosbi = cosbet (k)
ux = us+*cosbi - un*sinbi
uy = us*sinbi + untcosbi
print °(I5,1P6G11.3)°', k, us,un,ux,uy,sigs,sign
2000 continue
print x, '
return
end

9.3.2 Printing Field Results

Showing displacement and stresses at field points is complicated by the fact that,
unlike finite element progratns, such values are not readily available but must be calculated
as part of the display procedure. This will become evident as one shows the coding of
subroutine PRINT FIELD RESULTS:

ES

¥ Print stresses and displacements Q@ specified field points
subroutine PRINT_FIELD_RESULTS
implicit none
include ‘output . inc’
integer m, p., points
real Xp, Yp, ux, uy, sigxx, sigyy, sigxy, f
logical skip

9- 10 Developer’s Tutorial for the CSN Testbed Architecture Revised 10/14/1988

Printing Data Printing Results

*
print '(/A)', ' Displacements and Stresses at'//
$ ' Specified Field Points’
*
do 3000 m = 1,MAXLIN
if (lindef(m) .eq. 0) go to 3000
print '(A5,2410,A8 ,4A11)", ' Lin*, "x", "y', ‘u.x’, ‘uy’,
$ ‘sig_xx', ‘'sig_yy’., ‘'sig_xy’
points = nintop(m) + 2
if (xfirst(m) .eq. xlast(m) .and.
$ yfirst(m) .eq. ylast(m)) points =1
f = 0.0
do 2000 p = 1,points
if (points .gt. 1) f = real(p-1)/(points-1)
xp = xfirst(m)+(1.0-f) + xlast(m)*f
yp = yfirst(m)+(1.0-f) + ylast(m)+f
call FIELDP (xp, yp. ux, uy, sigxx, sigyy. sigxy, skip)
if (skip) then
print '(I5,2F10.3,6X,A)’, m, xp,yp.
$ 'Point is too close to boundary’
else
print '(I5,2F10.3,1P5G11.3)", m, xp.yp, ux,uy.
$ sigx:x,sigyy,sigxy
end if
2000 continue
print =, '
3000 continue
return
end

Subroutine FIELDP receives the location XP,YP of the field point and returns the displace-
ment components u, and u,,, and the stress components 0., Oyy and ogy:

Compute stresses and displacements at field point

subroutine FIELDP

$ (xp., yp.
$ ux, uy, sigxx, sigyy. sigxy, skip)
implicit none
i include "segment .inc’

include 'element .inc’

include 'material.inc’

include ‘symmetry.inc’

include 'prestress.inc’

real *p, yp. us, un, ux, uy, sigxx, sigyy. sigxy
logical skip

real uxus, uxun, uxss, uxsn

Revised iO*i4/1988 Developer’s Tutorial for the CSM Testbed Architecture — 9- 11

Printing Results

real
real
real
real
real
real
real

integer

skip
ux =
uy =

sigxx
sigyy
sigxy
g =

do 2000

uxu

)

uxun

uxs

)

uxsn

uyu

n

uyun

uys

s

uysn

sxxus =
sxxun
8:XSS
sxxsn
syyus
syyun
syyss
syysn
sXyus
sxyun
sxyss
sxysn

1]
Y]
8]

if ((xp-xj)**2+(yp-yj)++2 .le. 1.01%(8j)#x2)
skip =

.false.

.0
.0

[N e e

sxx0

= syy0
8xy0

uyus, uyun, uyss, uysn
8XXus, SXXun, SxXss, 8XXsn
syyus, syyun, syyss, syysn
sXyus, sXyun, sxyss, sXysn
Xj. yj, 8j, cosbj, sinbj
usj, unj, ssj, snj, ssg, sng
g. 880, sn0

]

0.5%em/(1.+pr)

LI | B T (A T} H
eReReloioleNoleReRoNoNoNoReNoNoRoRoXe
(el e eolelele NeNeNeNeNoNelNoNoNoNo o e e

Hi

0.
xme(j)
yme (j)

j = 1,.numbe

hleng(j)

return
end if
cosbj = cosbet(j)
sinbj = sinbet(j)
880 = (8yyO-sxxO)+sinbj*cosbj + sxyO*(cosbj**2-sinbj*x2)

.true.

Printing Data

9-12

Developer;’s Tutorial fokx: the (ﬂ\i'lestbed Architecfure

Revised 10/14/1988

Printing Data Printing Results

P H H P P hH @D P P HBH ©® O P H H P

P P PH P PP

sn0 = sxx0*8inbj**2 - 2.*sxyO*sinbj*cosbj + syyOxcosbj**2
call SOMIGLIANA (xp, yp. xXj. yj. 8j.
1, em, pr, cosbj, sinbj,
uxus, uxun, uxss, uxsn,
uyus, uyun, uyss, uysn,
8Xxus, SXXun, SXXss, 8XXsn,
syyus, syyun, syyss, syysn,
sXyus, sxyun, sxyss, sXysn)
if (ksym .eq. 1 .or. ksym .eq. 3) then
call SOMIGLIANA (xp, yp. 2.*xsym-xme(j). yj. 8j.
-1, em, pr, cosbj, -sinbj,
uxus, uxun, uxss, uxsn,
uyus, uyun, uyss, uysn,
s8XXug, SxXXun, SxXss, SXXsn,
syyus, syyun, syyss, syysn,
sxyus, sxyun, sxyss, 8xysn)
end if
if (ksym .eq. 2 .or. ksym .eq. 3) then
call SOMIGLIANA (xp, yp. xj. 2.*ysym-yme(j), sj,
-1, em, pr, -cosbj, sinbj,
uxus, uxun, uxss, uxsn,
uyus, uyun, uyss, uysn,
8XXUs, SXXun, 8XXss, 8XXsn,
syyus, syyun, syyss, syysn,
sxyus, sxyun, sxyss, sxysn)
end if
if (ksym .eq. 3) then
call SOMIGLIANA (xp. yp., 2.*xsym-xme(j), 2.xysym-yme(j), sj,
1, em, pr, -cosbj, -sinbj,
uxus, uxun, uxss, uxsn,
uyus, uyun, uyss, uysn,
SXXus, SXXun, SXxss, sSxxsn,

syyus, syyun, syyss, syysn,
sxyus, sxyun, SXyss, sxysn)

end if

usj = x(2%j-1)

unj = x(2%j)

ssj = b(2¢j-1) - ss80

snj = b(2*j) - snO
if (kod(j) .eq. 1) then

usj = b(2¢j-1)
unj = b(2+j)
ssj = x(2*¢j-1)

snj = x(2xj)

else if (kod(j) .eq. 2) then
usj = b(2%j-1)
ssj = x(2*j)

else if (kod(j) .eq. 3) then

Revised 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture 9- 13

Printing Results Printing Data

unj = b(2*xj)
snj = x(2%j)
end if
ssg = 0.6xs8j/g
sng = 0.5xsnj/g
ux = ux * uxus*usj + uxunfunj + uxss*ssg + uxsn*sng
uy = uy + uyus*usj + uyun*unj + uyss*ssg + uysn*sng
usj = 2.*g*usj
unj = 2.*g*unj

sigxx = sigxx + sxxus*usj + sxXun*unj + sxxss*ssj + 8xXX8n*snj

sigyy = sigyy + syyus*usj + syyun*unj + syyss*ssj + syysn*snj
sigxy = sigxy + sxyus*usj + sxyun*unj + sxyss*ssj + sxysn*snj
2000 continue
return
end

Finally, FIELDP calls subroutine SOMIGLIANA to evaluate the important boundary-on-field-
point influence coefficients:

w

* Calculate field influence coefficients from Somigliana’s formula

td

subroutine SOMIGLIANA

$ (x, vy, xj, yj. aj, msym, em, pr, cosb, sinb,
$ uxus, uxun, uxss, uxsn,
$ uyus, uyun, uyss, uysn,

$ SXXus, SxXXun, SXXs8s, sxxsn,

$ syyus, syyun, syyss, syysn,

$ sxyus, sSXyun, sxyss, sxysn)

*

implicit none

real X, ¥, Xj., yj. aj., em, pr, cosb, sinb
real uxus, uxun, uxss, uxsn

real uyus, uyun, uyss, uysn

real 8xxXus, sixXun, 8XXSS, S8SXXsn

real syyus, syyun, 8syyss, syysn

real sXyus, syyun, Sxyss, sxysn
integer msym

real pi, con, pri, pr2, pr3

real cxb, cyb, cosg, sing, cpa, cma
real ris, r2s, fl1, fl2

real tbl, tb2, tb3, tbd, tbd, tb6, tb7
real uxust, uxunt, uxsst, uxsnt

real uyust, uyunt, uysst, uysnt

real sxxust, sxxunt, sxxsst, sxxsnt
real syyust, syyunt, syysst, syysnt
real sxyust, sxyunt, sxysst, sxysnt
real cosb2, sinb2, cos2b, sin2b

9- 14 Devddﬁerk'fﬁunhﬂfbrthé()SNl1¥«1b0d Architecture Revised 10/14/IQSé

Printing Data ' Printing Results

pi = 4.*atan2(1.,1.)

con = 1.0/(4.*pi*(1.-pr))
prli = 1.-2*pr

pr2 = 2.%(1.-pr)

pr3 = 3.-4.*pr

cxb = (x-xj)*cosb + (y-yj)+sinb
cyb = -(x-xj)*sinb + (y-yj)+cosb

cma = cxb - aj

cpa = cxb + aj

ris = cma¥*2 + cyb**2

r2s = cpax*2 + cybx2

fl1 = 0.5*log(ris)

f12 = 0.5%log(r2s)

tb2 = -conx(f1l1-f12)

tb3 = con*(atan2(cpa,cyb)-atan2(cma,cyb))
tbl = -cybxtb3 + con*(cma*fli-cpa*fl2)
tb4 = con*(cyb/ris-cyb/r2s)

tbs = conx(cma/ris-cpa/r2s)

tb6 = con¥((cma**2-cyb*%2)/ris+*2-(cpa**2-cyb**2)/r2s**2)
tb7 = -con*2.*cyb*(cma/ris+*2-cpa/r2s**2)

uxust = prilssinb*tb2 - pr2+cosb*tb3 + cyb*(sinb*tb4-cosb*tbb)
uxunt = prl*cosb*tb2 + pr2+sinb*tb3 - cyb*(cosb*tbd+sinb*tbb)
uxsst = pr3scosbxtbl - cyb#(sinb*tb2+cosb*tb3)
uxsnt = -pr3*sinbxtbl + cyb*(cosb*tb2-sinb*tb3)
uyust = -prl*cosb*tb2 - pr2+sinb*tb3 - cyb*(cosb*tbd+sinb*tbb)
uyunt = prl+sinb*tb2 - pr2:cosb*tb3 - cyb*(sinb*tb4-cosb*tbb)
uysst = pr3*sinb*tbl + cyb+(cosb*tb2-sinb*tb3)
uysnt = pr3*cosbrtbl + cyb*(sinb*tb2+cosb*tb3)

cosb2 = cosbxcosb
sinb2 = sinb*sinb
cos2b = cosb2-8inb2
sin2b = 2.*ginb%*cosb

sxxust = 2.*cosb2*tb4 + sin2bxtbb - cyb*(cos2b*tb6-8in2b*tb7)
syyust = 2.*sinb2*tb4 - sin2b*tbb + cyb*(cos2b*tb6-s8in2b*tb7)
sxyust = sin2b¥tb4 - cos2b*tbb - cyb*(sin2b*tb6+cos2b*tb7)
sxxunt = -tb6 - cyb*(sin2b*tb6+cos2b*tb7)

syyunt = -tb5 + cyb*(sin2b*tb6+cos2b*tb7)

sxyunt = cyb*(cos2b*tb6-8in2b*tb7)

sxxsst = -tb2 - pr2+(cos2b*tb2-sin2b*tb3)

$ + cyb*(cos2b*tb4+sin2b*tbb)
syysst = -tb2 - pr2*(cos2b*tb2-sin2b¥tb3)
$ - cyb*(cos2b*tb4+sin2b+tbb)
sxysst = - pr2+(sin2b*tb2+cos2b*tb3)

Revised 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture 9- 15

Printing Results

Printing Data

$ + cyb*(8in2b*tbd-cos2b*tbb)
sxxsnt = -tb3 + pri*(sin2b*tb2+cos2b¥tb3)
$ + cyb*(sin2b*tb4-cos2b*tbb)
syysnt = -tb3 - pri*(sin2b*tb2+cos2b+tb3)
$ - cyb* (sin2b*tb4-cos2b*tbb)
sxysnt = - pri‘(cos2b*tb2-sin2b*tb3)
$ - cyb*(cos2b*tb4+sin2b*tbb)
uxus = uxus + msymiuxust

uxun = uxun + uxunt

uxss = uxss + msym*uxsst

uxsn = uxsn + uxsnt

uyus = uyus + msym*uyust

uyun = uyun + uyunt

uyss = uyss + msym*uysst

uysn = uysn + uysnt

sxxus = sxXxus + msym#sxxust
sxxun = sxxun + sxxunt

8XXxX8s8 = sxxs8s + msym#sxxsst
8xXxsn = sxXsn + sxxsnt

syyus = syyus + msym*syyust

syyun = syyun + syyunt

syyss = syyss + msym*syysst

syysn = syysn + syysnt

sxXyus = sxyus + msym*sxyust

sXyun = sxyun + sxyunt

sxyss = sXyss + msym*sxysst

sxysn = sxysn + sxysnt

return

end

The DBEM2 Processor is complete.

916 Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

DBEM2 Structure

10. DBEM2 Structure

After all the coding details given in §5.0 through §9.0 il is perhaps refreshing to get an
overall picture of the structure of DBEM2. A hierarchical diagram of the module structure

provides a portion of the picture:

DBEM2
DOCOMMAND
BUILD
CLEAR
CLOSE
DEFINE

DEFINE_BOUNDARY_CONDITIONS

BCVALUES

DEFINE ELEMENTS
DEFINE MATERIAL
DEFINE FIELD LOCATIONS
DEFINE PRESTRESS
DEFINE_SEGMENTS
DEFINE SYMMETRY

GENERATE
COEFF
SETUP

OPElN

PRINT

PRINT_BOUNDARY_CONDITIONS

PRINT BOUNIIDARY _RESULTS

PRINT_COEFFICIENTS
PRINT_REAL MATRIX

PRINT_ELEMENTS

PRINT FIELD_LOCATIONS
PRINT FIELD_RESULTS

FIELDP
SOMIGLIANA
PRINT MATERIAL

PRINT PRESTRESS

PRINT RHS

PRINT.REAL MATRIX

PRINT SEGMEITS
PRINT.SOLUTION

PRINT REAL MATRIX

PRINUT SYMMETRY
SOLVE

GAUSSER
STOP

Revised 10/i4/198é - Developer’s Tutorial for the CSM Testbed Architecture 10- 1

DBEM2 Structure

This diagram of course excludes the NICE utilities such as the CLIP and GAL-DBM
systerm. With this omission noted, the deepest module level is five. This is a feature
symptomatic of a fairly simple ’rocessor. (Actual production Processors in the NICE
system reach module levels of order 15-20.)

Another part of the picture is provided by a diagram of the DBEM2 GAL Library
structure of datasets and associated record names:

DBEM2 GAL LIBRARY
BCVALUES
BVN
BVS
KODE

COEFF
c
ELEMENT
B
COSBET
HLENG
KOD
HUMBE
SINBET
XME
YME
FIELD
LINDEF
NINTOP
XFIRST
XLAST
YFIRST
YLAST
MATERIAL
EM
PR
PRESTRESS
SXX0
SXYO
sYYO
RHS
R

10- 2 DeveloperA’As';l‘ﬁt;)l'i-avl for the CSM Testbed Architecture Revised 10/14/19878

DBEM?2 Structure

SEGMENT
NUMEL
SEGDEF
XBEG
XEND
YBEG
YEND

SOLUTION
X

SYMMETRY
KSYM
XSYM
YSYM

Of course not all of the datasets will appear in all Libraries; only the datasets corresponding
to the data that are stored appears.

A diagram that shows the interact. l()ll between the database and the Processor modules
provides a connection between the first two diagrams. In the diagram below the Processor
module commands are shown on the left and the corresponding GAL Library datasets are
shown on the left. The «—-- symbol indicates that the data in the designated dataset is
either loaded or stored within the designated module. The «— symbol indicates that the
corresponding dataset must be loaded before the designated command should be entered.
By searching the diagram for the «—> symbol you can see which command along with a
LOAD sub-command must be entered to load the desired dataset.

-Rr(r;vmiise:i-l()/M/ilQSS [)eveloper s Tutorial for the C'SM Testbed Architecture 10- 3

NDBEM2 Structure

DEFTIHNE
DEFINE.SEGMENTS —— Dataset: SEGMENT

DEFINE_ELEMENTS «—— Updates Record NUMEL in Dataset: SEGMENT

DEFINE_BOUNDARY_CONDITIONS «—» Dataset: BCVALUES

DEFINE MATERIAL + -» Dataset: MATERIAL
DEFINE_SYMMETRY «— Dataset: SYMMETRY
DEFINE PRESTRESS «—— Dataset: PRESTRESS
DEFINE FIELD LOCATIONS <« » Dataset: FIELD
BUILD «- Dataset: SEGMENT
«—- Dataset: BCVALUES
«— Dataset: ELEMENT
GENERATE «— Dataset: ELEMENT
«— Dataset: MATERIAL
«- Dataset: SYMMETRY
«— Dataset: PRESTRESS
«——» Dataset: COEFF
«—-+ Dataset: RHS
SOLVE « - Dataset: COEFF
«— Dataset: RHS
«— Dataset: ELEMENT
— Dataset: SOLUTION
PRINT
PRINT BOUNDARY CONDITIONS « - Dataset: BCVALUES
PRINT BOUNDARY RESULTS «-- Dataset: MATERIAL
‘ Dataset: ELEMENT
« - Dataset: SOLUTION
PRINT_COEFFICIENTS -« Dataset: ELEMENT
«— Dataset: COEFF
PRINT.ELEMENTS «-- Dataset: ELEMENT
PRINT FIELD LOCATIONS « - Dataset: FIELD
PRINT_FIELD RESULTS « - Dataset: FIELD

«— Dataset: PRESTRESS

<« Dataset: MATERIAL

« - Dataset: ELEMENT

« Dataset: SYMMETRY

« - Dataset: SOLUTION
PRINT MATERIAL « Dataset: MATERIAL

PRINT PRESTRESS - -- Dataset: PRESTRESS
PRINT RHS - Dataset: ELEMENT
«—— Dataset: RHS

PRIIT SEGMENTS « - Dataset: SEGMENT
PRINT_SOLUTION «— Dataset: ELEMENT

+—~ Dataset: SOLUTION
PRINT SYMMETRY «—- Dataset: SYMMETRY

10‘-1 -_WI)reveloper's Tutorial for the (‘Jéilwr'il‘es_-ﬂ‘)e}{-ArchitegtAt-lur;mw

Revised 10/14/1988

DBEM?2 Structure

Now we have enough information on how the Processor and the GAL-DBM work
together to discuss some potential extensions o this simmple Processor.

e To make the Processor more “user gentle” you can add some checks to determine if the
data required at this stage have been entered or loaded. If not you can then tell the
user what is missing and what needs to be done to rectify the situation. To implement
this you will need a data structure with flags to indicate whether the data have been
entered or loaded. And you will need a corresponding table that contains the commands
needed to enter or load the data.

You can get very elaborate if you let the user indicate whether the data are to be loaded
or entered at the keyboard. Then based on the user response you can search the open
GAL Library for the proper dataset and load it, or jump to the proper subroutine for
entering the data from the keyboard.

You can even enter the realm of artificial intelligence (Al). You would develop some rules
for what order the data are entered, what data are needed for what command, what
commands perform what tasks. etc. Then with a simple forward chaining inference
engine you can assist the user at any point in the analysis by telling them what usual
comes next, what data are needed, how to get to some point in the analysis from where
the user asks, etc.

e To enter a research mode or maximum flexibility mode you may wish to break the

DBEM2 Processor into several independently executable Processors. A good starting
point would be pre-processing -- all of the DEFINE commands, BUILD, GENERATE, SOLVE,
and post-processing - all of the PRINT commands. Now you could have other bound-
ary elements that would be incorporated in the BUILD process. Or somewhat easier,
you can replace the SOLVE Processor with a new solver, SOLVE_NEW, and compare the
performance of the two solvers. Of course output data generated by the post-processing
Processor can be stored on the database. Then you could develop plot Processors to
display the data.
You can be very ambitious and combine the boundary element method with a finite
element code. Here you would need to develop some special matrix Processors to
properly assemble the system matrix. Or be very brave and try a coupled solution
procedure.

Anyway, I hope you can see the unlimited potential of developing computational
software in this mode. A common command language and a common database manager
to unify the software is a very powerful paradigm.

“From little acorns the mighty oak does grow.”

Dovaloperb Tutorial for the *(‘SM Testbed Architecture 10- 5

Revised 710/ 114/ 1988

10- 6

DBEM2 Structure

THIS PAGE LEFT BLANK INTENTIONALLY.

I)e;élovpér’sr Tutorial for the CSM Testbed Architecture lvie;ri_seawlro/lcl/lgég

An Example Problem

11. An Example Problem

It is convenient to test DBEM2 on the same example problem used by Cronch and
Starfield [4]. The problem concerns a unit-radius circular hole in an infinite body under
uniaxial tension at infinity. The boundary element discretization for one-quarter of the

hole is shown in Figure 11-1.

(@

Oxx = 100

(O
LUy

()

((AY

(19

Figure 11-1. Circular hole in an infinite body:
(a) problem specifications, (b) boundary element model

Both £ = 0 and y — 0 are symmetry lines. The boundary contour is approximated by six

straight-line segments, each of which consists of one boundary element. Two field point
lines are chosen along portions of the z and y axes as shown in Figure 11-1(a).

Revised 10,20, 1988 Developer’s Tutorial for the CSM Testbed Architecture 11-1

An Example Problem

The input for this problem is prepared (with the text editor) in the form of a script
command file:

open lib=circhole.gal

clear

def segments
seg=1 b=1,0 e=.9659, . 2588
seg=2 b=.9659, .2588 e=.8660, .5000
seg=3 b=.8660, .6000 e=.7071,.7071
seg=4 b=.7071,.7071 e=.5000, .8660

seg=b b=.5000, .8660 e=.2588,.9659
seg=6 b=.2588,.9659 e=0,1

store

end

def material

em=7.E4 ; pr=0.2 ; store ; end
def symmetry

xsym=0 ; ysym = O ; store ; end
def prestress

8xx0=100 ; store ; end
def field

end
pri seg ; pri mat ; pri bou ; pri symm ; pri pres ; pri field
build/store ; gen/store ; sol/store
pri res ; pri res/field

Note that there is no need for DEFINE ELEMENT input data because each segment contains
only one boundary element, which is the default assumption.

Upon starting the DBEM2 processor. this file is inserted in the command stream
through an ADD directive (3], §13.1. For example, under UNIX:

> dbem2
DBEM2> +add circhole.add

where circhole.add is the assumed name of the input file. The printed results should
then be compared with those given on Appendix C of Crouch and Starfield [4].

Here is what vou would see on vour screen.

Tables initialized

Boundary Segment Data

Segm Elements Xbeg Ybeg Xend Yend
1 1 1.000 0. 0.9659 0.2688
2 i 0.9659 0.2588 0.8660 0.5000
3 1 0.8660 0.5000 0.7071 0.7071
4 1 0.7071 0.7071 0.5000 0.8660
11- 2 Developer’s Tutorial for the CSM Testbed Architecture Revised 10/20,/1988

An Example Problem

(o4}

1

0.5000
0.2588

Material Property Data
Elastic modulus:
Poisson’'s ratio:

7 .000E+04
0.200

Boundary Conditions Data
Given

Segm

DO W N -

Ss
SS
SS
SS
Ss
SS

and
and
and
and
and
and

Symmetry Data

Symmetry about axis X= O.
and axis Y= O.

Prestress (Initial Field

Sigma_xx:

Field Location Data

Line
1
2

NS
NS
NS
NS
NS
NS

100

Int .Pts

9
9

Shear

0.

OO OO0

0.8660
0.9659

lfor

. Sigma_yy:
x-first y-first
1.000 0.

0. 1.000

Discrete model building completed:

Influence coefficient matrix & RHS vector generated

Discrete equations solved

Displacements and Stresses

Elem
1

2
3
4
b
6

u_s

.T68E-04
.302E-03
.T78E~-03
.T78E-03
.302E-03
.T67E-04

u_n

.649E-03
.177E-03
.359E-03
.142E-04
.038E-04
.T61E-04

at

W o= = NN

Displacementgs and Stresses at

Lin

X

Revised 10/14/1988

y

u_x

mal
0.

(e el oo e

Stresses) Data

0.25688 0.96569
0. 1.000
Sigma_xy:
x-last y-last
6.000 0.
0. 6.000

6 boundary elements

Boundary Element Midpoints
sig_s

u_Xx

.689E-03
.509E-~03
.161E-03
.663E-03
.048E-03
.b82E-04

Specified Field Points

u_y

u_y

.26TE-0Q4
.697E-04
.836E-04
.639E-04
.7T12E-04
.309E-04

8ig xx

(s NelleoNoNeolNe

sig_yy

sig_n

[eNeoNeoNoNeNe,

sig_xy

Developer—’si;l;ut,oria-l for th_e;CS_M Testbed Architecture

11-3

An Example Problem

1 1.000 0.000 Point is too close to boundary

1 1.500 0.000 2.116E-03 5.483E-11 64.8 -42.0 -3.078E-06
1 2.000 0.000 1.668E-03 1.026E-10 72.3 -18.1 -2.897E-06
1 2.500 0.000 1.36BE-03 1.25BE-10 80.2 -10.2 -3.334E-07
1 3.000 0.000 1.151E-03 2.173E-10 85.5 -6.54 -1.T722E-09
1 3.500 0.000 9.935E-04 2.065E-10 89.0 -4 .87 2.339E-06
1 4.000 0.000 8.733E-04 1.669E-10 91.4 -3.38 1.921E-06
1 4.500 0.000 7.787E-04 3.464E-11 93.1 -2.61 -2.666E-07
1 5.000 0.000 7.024E-04 1.132E-10 94.4 -2.08 1.784E-07
1 5.500 0.000 6.396E-04 4.157E-10 956.3 -1.70 -1.803E-07
1 6.000 0.000 5.870E-04 7.854E-11 96.0 -1.41 2.896E-06

Lin X y u_x u_y sig_xx sig_yy sig_xy

2 0.000 1.000 Point is too close to boundary

2 0.000 1.600 -2.307E-11 -2.615E-03 167. 28.7 -9.66BE-07
2 0.000 2.000 -b6.174E-11 -5.07BE-03 130. 21.4 -7.445E-07
2 0.000 2.500 4.023E-11 -6.942E-03 117. 15.1 6.003E-07
2 0.000 3.000 -6.035E-11 -8.478E-03 111, 11.0 1.762E-07
2 0.000 3.500 2.717E-10 -9.789E-03 108. 8.33 1.71BE-06
2 0.000 4.000 -1.864E-10 -1.094E-02 106. 6.49 -1.311E-06
2 0.000 4.500 -1.627E-10 -1.195E-02 105. 6.19 -1.B560E-06
2 0.000 5.000 -7.970E-11 -1.287E-02 104. 4.24 b.272E-07
2 0.000 5.500 -2.068E-12 -1.371E-02 103. 3.563 4 .85BE-07
2 0.000 6.000 5.21BE-10 -1.447E-02 102. 2.98 6.761E-07

Now lets take a look at the database that was generated during this run. All of the
commands that begin with + are directives. The directives are described in {3].

DBEM2> :toc

AR R R R b b e N S N O U G RPN

+ Library 1 File: circhole.gal +
+ Form: GAL82 File size: 1973 words No. of Datasets: 9 +
A e RS R R R R R R R R R R R L L Y OO OO
Seq# Date Time Lk Records Processor Dataset name

1 06:01:88 20:07:20 © 36 DBEM2 SEGMENT

2 06:01:88 20:07:20 O 2 DBEM2 MATERIAL

3 06:01:88 20:07:20 0 3 DBEM2 SYMMETRY

4 06:01:88 20:07:20 O 3 DBEM2 PRESTRESS

5 06:01:88 20:07:20 O 12 DBEM2 FIELD

6 06:01:88 20:07:20 O 49 DBEM2 ELEMENT

7 06:01:88 20:07:20 O 12 DBEM2 COEFF

8 06:01:88 20:07:20 O 12 DBEM2 RHS

9 06:01:88 20:07:20 O 12 DBEM2 SOLUTION

|
i

Here we see the table of contents (toc) for the GAL Library that was generated during
the run. You can see that the file name is circhole.gal, the size of the file, there are 9
datasets, and other information, like the date and time the data were stored.

K l_-ﬁi o Developer's Tutorial for the CSM Testbed Architecture Revised 10/14/1988

An Example Problem

To see the second level of the database, the records, the *print rat or *rat directive
3], §49.1, can be used. Lets take a look at some of the record structure. You may wish to
compare this output to the second diagram in §10.0 or compare with the discussion in §3.

DBEM2> *rat 1,1

Record Table of dataset SEGMENT

Key L_cyc H_cyc Type Log_size
NUMEL 1 6 I 1
SEGDEF 1 6 I 1
XBEG 1 6 S 1
XEND 1 6 S 1
YBEG 1 6 S 1
YEHD 1 6 S 1

DBEM2> r*rat 1,2

Record Table of dataset MATERIAL

Key L_cyc H_cyc Type Log_size
EM 0 0 S 1
PR 0 0 S 1
DBEM2> x*rat 1,7

Record Table of dataset COEFF

Key L_cyc H_cyc Type Log_size

¢ 1 12 8 12

The first number after the *rat is the GAL Library 1di, which is printed as the
Library in the *toc |3], §49.1, output shown above. The second number is the dataset
sequence number, also shown in the table of contents oulput. The *rat output tells us
the names of the records, the Key; the number of records, from L.cyc to H.cyc; the data
type. I is integer -~ S is floating point; and the logical size of each record. For example,
the record key NUMEL in the dataset SEGMENT has six records containing one integer in each
record. The record keys in the dataset MATERIAL are a bit different in that each record
only has one floating point number, so there are no cycles. The record key C in the dataset
COEFF has 12 records each containing 12 floating point numbers. This is the square system

coeflicient matrix.

We can also look at the data stored within cach record key.

"DBEM2> #print rec 1,1 .NUMEL.1:6
Record NUMEL.1 of dataset SEGMEINT
é;cord NUMEL.210f dataset SEGMEINT
;;cord NUMEL.Slof dataset SEGMENT
;;cord NUMEL.410f dataset SEGMENT

Revised 10/14/1988 Developer’s Tutorial for the CSM Testbed Architecture 11-5

] An Example Problem

1: 1

Record NUMEL.5 of dataset SEGMENT

1: 1

Record NUMEL.6 of dataset SEGMENT

1: 1
DBEM2> +print rec 1,2,EM

Record EM of dataset MATERIAL

1: 7 .0000E+04
DBEM2> x*print rec 1,2,PR

Record PR of dataset MATERIAL

1: 2.0000E-01
DBEM2> +print rec 1,7,C.7

Record C.7 of dataset COEFF

1: 4.6007E-04 -2.4613E-02 2.0957E-03 -3.15B9E-02 1.2208E-02 -6.3592E-02
71.4.§Q21E-01’“4.166§E-03__1.19§§§192<_Z.2579E-92 1.4381E-03 4.3028E-02

Here we have used the *print record directive [3], §49.2 & §49.3, to show: 1) the
values in the six records in the record key NUMEL, 2) the values of the elastic modulus, EM,
and Poisson’s ratio, PR, in the dataset MATERIAL, and 3) the seventh column of the systemn
coeflicient matrix, C, which is stored in the datase! COEFF.,

Now to exit the DBEM2 Processor we type stop to produce the following on our
screen:

DBEM2> stop
<DM> CLOSE, Ldi: 1, File: circhole.gal
Hope you enjoyed the ride!
<CL> PlUS exhausted
ENDRUN called by CLIP

A few days later we decide we would like to solve the same problem, but we wish to
increase the number of elements to 2 for each segment to see how much this improves the
results. So here is what it looks like.

aml_9: 17 > dbem2
DBEM2> clear

Tables initialized
DBEM2> open lib=circhole.gal

<DM> OPEN, Ldi: 1, File: circhole.gal , Attr: old, Block I/0
DBEM2> ttoc

AMAAARALAAA RS AAREASAARERALEEE R S R e NN

+ Library 1 File: circhole.gal +
+ Form: GAL82 File size: 1973 words No. of Datasets: 9 +
+++
Seq# Date Time Lk Records Processor Dataset name

1 06:01:88 20:07:20 O 36 DBEM2 SEGMENT

2 06:01:88 20:07:20 © © 2 DBEM2 MATERIAL

3 06:01:88 20:07:20 O 3 DBEM2 SYMMETRY

-6 l)évoloper'qTlﬁjtonalifor th—(‘(v'q*M Testbed Architecture Revised 10/14/1988

An Example Problem

4 06:01:88 20:07:20 O 3 DBEM2 PRESTRESS
5§ 06:01:88 20:07:20 O 12 DBEM2 FIELD
6 06:01:88 20:07:20 O 49 DBEM2 ELEMENT
7 06:01:88 20:07:20 O 12 DBEM2 COEFF
8 06:01:88 20:07:20 O 12 DBEM2 RHS
9 06:01:88 20:07:20 O 12 DBEM2 SOLUTION
DBEM2> def seg ; load ; end
DBEM2> def mat ; load ; end
DBEM2> def sym ; load ; end
DBEM2> def pres ; load ; end
DBEM2> def field ; load ; end
DBEM2> pri seg
Boundary Segment Data
Segm Elements Xbeg Ybeg Xend Yend
1 1 1.000 0. 0.9659 0.2588
2 1 0.96569 0.2588 0.8660 0.5000
3 1 0.8660 0.5000 0.7071 0.7071
4 1 0.7071 0.7071 0.5000 0.8660
5 1 0.5000 0.8660 0.2588 0.96b69
6 1 0.2588 0.9659 0. 1.000

DBEM2> pri pres

Prestress (Initial Field Stresses) Data
Sigma_xx: 100. Sigma_yy: 0. Sigma_xy: 0.

DBEM2> pri mat

Material Property Data
Elastic modulus: 7 .000E+04
Poisson's ratio: 0.200
DBEM2> help def elem
<DBEM2>
DEFINE
ELEMENTS

The DEFINE ELEMENTS command introduces subordinate commands
that specify into how many boundary elements segments are to
be subdivided. These commands have the form:

SEG = isegl, ... isegk ELEM = mel. ... nek

This specifies that segment isegl is to be subdivided into
nei (ge 1) boundary elements, segment iseg2 into ne2
elements, and so on. Enter the STORE command to store this
data in the NUMEL record in the SEGMENT dataset. Enter the

Revised 10/14/1988 Developef’s Tutorial for the CSM Testbed Architectur(;

ETE

An Example Problem

LOAD command to load previously defined data from the NUMEL
record in the SEGMENT dataset. Terminate these commands
with an END command.

DBEM2> def elem

Element data> seg = 1:6 elem = 2,2,2,2,2,2
Element data> end

DBEM2> pri seg

Boundary Segment Data

Segm Elements Xbeg Ybeg Xend Yend
1 2 1.000 0. 0.9659 0.2688
2 2 0.9659 0.2688 0.8660 0.5000
3 2 0.8660 0.56000 0.7071 0.7071
4 2 0.7071 0.7071 0.5000 0.8660
5 2 0.5000 0.8660 0.2688 0.9689
6 2 0.2588 0.96569 0. 1.000

DBEM2> build
Discrete model building completed: 12 boundary elements

DBEM2> generate

Influence coefficient matrix & RHS vector generated
DBEM2> solve

Discrete equations solved
DBEM2> pri res

Displacements and Stresses at Boundary Element Midpoints
Elem u_s u_n u_x u_y sig_s sig_n

1 -4.791E-04 -2.7BBE-03 2.794E-03 -1.1B52E-04 0 0.
2 -1.288E-03 -2.289E-03 2.438E-03 -9.782E-04 0 0.
3 -1.769E-03 -1.483E-03 2.047E-03 -1.067E-03 0 0.
4 -1.743E-03 -B5.670E-04 1.191E-03 -1.394E-03 0 0.
5 -1.266E-03 1.977E-04 6.131E-04 -1.124E-03 0 0.
6 -3.320E-04 4.904E-04 -1.865E-04 -5.626E-04 0 0.
7 -1.623E-03 -5.829E-04 1.563E-03 -4.646E-04 0 0.
8 -1.513E-03 -2.601E-04 1.359E-03 -7.147E-04 0 0.
9 -1.306E-03 3.710E-04 1.064E-03 -8.424E-04 0 0.
10 -1.107E-03 b5.584E-04 8.093E-04 -9.396E-04 0 0.
11 -5.808E-04 9.193E-04 4.557E-04 -9.873E-04 0 0.
12 -3.178E-04 ©9.85BE-04 1.864E-04 -1.019E-03 0 0.
DBEM2> pri res /field-
Displacements and Stresses at Specified Field Points
Lin X ¥y u_x u_y sig_xx sig_yy sig_xy
1 1.000 0.000 Point is too close to boundary
1 1.600 0.000 1.93BE-03 1.465E-11 55.5 -63.9 -1.108E-06

11-8 Hijévd;bergjfﬁunﬁﬂ};rih;7¢Skf'ﬁm(bcdrAf;thctun;r-“Rév%éd»idyi4/1988

An Example Problem

1 2.000 0.000 1.432E-03 -5.107E-11 70.7 -17.6 -4.039E-06
1 2.500 0.000 1.142E-03 1.263E-10 80.0 -8.46 -3.628E-06
1 3.000 0.000 9.520E-04 2.523E-10 85.6 -4.90 1.794E-06
1 3.500 0.000 8.165E-04 5.708E-10 89.1 -3.20 1.668E-06
1 4.000 0.000 7.150E-04 6.382E-10 91.5 -2.25 2.942E-07
1 4.500 0.000 6.360E-04 4.635E-10 93.2 -1.68 -1.418E-06
1 5.000 0.000 5.727TE-04 b5.684E-10 94.5 -1.30 -4.36BE-07
1 5.500 0.000 5.208E-04 7.305E-10 95.4 -1.04 2.026E-06
1 6.000 0.000 4.T76E-04 5.82B6E-10 96.1 -0.863 2.337E-06
Lin X y u_x u_y sig_xx sig.yy sig.xy

2 0.000 1.000 Point is too close to boundary

2 0.000 1.500 -3.197E-11 -5.243E-03 160. 24.8 4 .456E-07
2 0.000 2.000 7.016E-11 -9.904E-03 126. 18.4 -7.870E-08
2 0.000 2.500 -1.200E-10 -1.347E-02 114. 13.0 -1.185BE-06
2 0.000 3.000 1.169E-10 -1.640E-02 109. 9.48 1.95B6E-06
2 0.000 3.500 ©.394E-11 -1.889E-02 107. 7.17 -7.394E-07
2 0.000 4.000 -3.967E-10 -2.107E-02 106. 65.60 -2.29BE-086
2 0.000 4.500 3.040E-10 -2.301E-02 104. 4.48 3.884E-07
2 0.000 §.000 -2.896E-10 -2.474E-02 103. 3.66 -1.996E-06
2 0.000 §.500 -7.600E-11 -2.632E-02 103. 3.04 -6.769E-07
2 0.000 6.000 5.487E-10 -2.777E-02 102. 2.57 1.360E-06

DBEM2> stop
<DM> CLOSE, Ldi: 1, File: circhole.gal
Hope you enjoyed the ride!
<CL> PHNS exhausted
ENDRUIl called by CLIP

This interactive session starts off with the usual clear and open commands. Then
to make sure that 1 have the correct GALl Library, the *toc [3], §49.1, is used. Every-
thing looks okay. so thel)nﬂﬂenlrk%hﬁtkn1connnandstn define segments, materials,
symmetry, prestress, and field locations are issued with the subcommand load to
load these data from the GAL Library. The print segments command is used to look
at the old segment data that were just loaded —— gives you a warm feeling to see that the
data are really there. Just for insurance 1 check the prestress data and the material data.
Now, | want to enter data to use 2 elements per segment, but] can’t remember the proper
syntax, so 1 use the help define elements command to get the on-line help (see |3|,
Appendix H for a discussion of help files). Now, I enter the data and check it with another
print segments command. Note that, I now have 2 elements for cach segment. Then the
threernnnbercrunchingrnodukm,build,generate,and solve,anzbroughtinh)acﬁon to
obtain the new solution. Finally, the new results are printed. Note that, I did not store
any of the new problem data. Only a simple change was made to compare answers. If big
changes were made, [would have stored the new data.

Experiment with your own changes to this problem. Then try some new problems.

Finjoy!

Revised 10/14/198é »rDev&operE'Fmtoﬁalforthe CSM Testbed Architecture 11-9

An Example Problem

THIS PAGE LEFT BLANK INTENTIONALLY.

11-10 Dcvel-op—vrr’sﬂ'l‘utorial for the CSM Testhbed Architecture Revised 10/14/1988

References

12. References

]

Felippa, Carlos A.. The Computational Structural A fechanies Testhed Architecture:
Volume HI - The Interface, NASA CR-178386 October 1988,

Wright, Mary A., Regelbrugge, Mare .. and Felippa, Carlos A., The Compu tational
Structural Mechanics Testbed Architecture: Volume IV - The Global-Database
Manager GAL-DBM., NASA CR-178387 October 1988.

Felippa. Carlos A. and Underwood, Philip, The Computational Structural Mechan-
ics Testhbed Architecture: Volume II - The Directives, NASA CR-178385 October
1988.

Crouch, S. L. and Starfield, A. M., Boundary Element Methods in Solid Mechanics:
with Applications in Rock Mechanics and Geological Engineering. G. Allen and
Unwin, London, 1983.

Revised 10/20/ 1988 Developer's Tutorial for the CSM Testbed Architecture 12- 1

12-2

References

THIS PAGE LEFT BLANK INTENTIONALLY.

Developer’s ’futvorial for the CSM Testbed Architecture

Revised 10/14/1988

Report Documentation Page

1. Report No.
| NASA CR-181732
4. Title and Subtitle

Application Developer’s Tutorial for the CSM Testbed Architecture

2. Government Accession No.

3. Recipient's Catalog No.

5. Report Date
October 1988

Tv‘Author(s)
Phillip Underwood and Carlos A. Felippa

6. Performing Organiration Code

8. Performing Organization Report No‘

LMSC-D878511

9. Performing Organization Name and Address
Lockheed Missiles and Space Company, Inc.
Research and Development Division
3251 Hanover Street
Palo Alto, California 94304

10. Work Un_it No.
505-63-01-10

11. Contract or Grant No.

NAS1-18444

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

13. Type of Report and Period Covered
Contractor Report

14. Sponsoring Agency Code

E Supplementary Notes
Phillip Underwood, Lockheed Missiles and Space Company, Inc.
Palo Alto, California 94304

Carlos A. Felippa, Center for Space Structures and Controls,
University of Colorado, Boulder, CO 80309-0429

Langley Technical Monitor: W. Jefferson Stroud

16. Abstract

This tutorial serves as an illustration of the use of the programmer interface of the CSM Testbed
Architecture (NICE). It presents a complete, but simple, introduction to using both the GAL-DBM
(Global Access Library-Database Manager) and CLIP (Command Language Interface Program) to write
a NICE processor. Familiarity with the CSM Testbed architecture is required.

17. Key Words (Suggested by Authors(s))
Structural analysis software

Command language interface software
Data management software

18. Distribution Statement
Unclassified- ~-Unlirnited

Subject Category 39

19. Security Classif.(of this report)
Unclassified

20. Security Classif.(of this page)
Unclassified

21. No. of Pages | 22. Price
101 A08

NASA FORM 1616 ocT se

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

