Determination of Soil Moisture Beneath a Stalk or Trunk Dominated Canopy

K. C. McDonald, M. C. Dobson and F. T. Ulaby
Radiation Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan

This work was supported by the National Aeronautics and Space Administration under Contract NAG5-480.
OVERVIEW

1. Radiative transfer model
 - Simplified L-Band MIMICS model
 - $\sigma^{0}_{HH}, \sigma^{0}_{VV}$ and $\Delta \phi_{HH-VV}$

2. Example model computations
 - Dominant backscatter contributions

3. Application of the model to determining soil moisture
 - Inversion of backscatter data
\[\sigma^0_t = \sigma^0_c + \sigma^0_g + \sigma^0_{gt} + \sigma^0_{gc} + \sigma^0_{gcg} \]
Direct Crown Backscatter

\[\sigma_c^0 = \frac{\sigma_v \cos \theta}{2\kappa_e} \left[1 - \exp \left(-\frac{2\kappa_e H_c}{\cos \theta} \right) \right] \]

\[\sigma_v = \frac{3}{2} \omega \approx \frac{3}{2} (0.1) \]

\[\kappa_e^p = \kappa_l + \kappa_t^p \]

\[
\kappa_l = \text{Im} \left[\frac{4\pi}{\lambda} \sqrt{1 + \frac{v_l}{3} (\epsilon_l - 1) \left(2 + \frac{1}{\epsilon_l} \right)} \right]
\]

\[
\kappa_t^p = -N \frac{2\lambda}{\pi} \text{Re} \left[\sum_{n=-\infty}^{\infty} C_n^p (\theta_0) \right]
\]

\[p = v \text{ or } h \]
- Direct Ground Backscatter

- Small Perturbation Model

\[\sigma_g^0 = \sigma_{s,p}^0 \exp \left(-2 \kappa_e^p \sec \theta \right) \]

\[\sigma_{s,p}^0 = 4 (k_s)^2 (k l)^2 \cos^4 \theta |\alpha_{pp}|^2 e^{-(k l \sin \theta)^2} \]

\[\alpha_{hh} = \frac{\cos \theta - \sqrt{\epsilon_s - \sin^2 \theta}}{\cos \theta + \sqrt{\epsilon_s - \sin^2 \theta}} \]

\[\alpha_{vv} = (\epsilon_s - 1) \frac{\sin^2 \theta - \epsilon_s (1 + \sin^2 \theta)}{\left[\epsilon_s \cos \theta + \sqrt{\epsilon_s - \sin^2 \theta} \right]^2} \]

<table>
<thead>
<tr>
<th>Validity Conditions</th>
<th>Recommended Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s \leq 0.05 \lambda)</td>
<td>(l \leq 0.25 \lambda)</td>
</tr>
<tr>
<td>(m = \sqrt{2 \frac{s}{l}} \leq 0.3)</td>
<td>(s \leq 0.05 \lambda)</td>
</tr>
<tr>
<td>(l \leq 0.5 \lambda)</td>
<td></td>
</tr>
</tbody>
</table>
• **Ground-Trunk (Stalk) Interaction**

\[
\sigma^0_{gt,pp} = 4N e^{-2\kappa_e H_c \sec \theta |R_p(\theta)|^2} \sigma_p^t
\]

\[
\sigma_p^t(\theta) = \frac{16H_t^2}{\pi} \left| \sum_{n=-\infty}^{\infty} (-1)^n C_n^p \right|^2
\]

\[
p = v \text{ or } h
\]

Validity Conditions:

- \(H_t \gg \lambda \)

- Specular forward scatter from soil
Backscatter Contributions, $\theta = 50$ Degrees

Soil Volumetric Moisture

σ_{HH} (dB)

σ_{VV} (dB)

- Total Backscatter
- Stalk Moisture = 0.5
- Direct Crown
- Direct Ground
- Ground-Stalk

7
Backscatter Contributions, $\theta = 30$ Degrees

σ_{HH} (dB)

σ_{VV} (dB)

Soil Volumetric Moisture

- Total Backscatter
- Stalk Moisture = 0.2
- Direct Crown
- Direct Ground
- Ground-Stalk
Polarization Phase Difference

\[\Delta \phi_{(HH-VV)g_{s}} = 2\Delta \phi_{p} + \Delta \phi_{g,s} + \Delta \phi_{tr} \]
\[\Delta \phi_{(HH-VV)g} = 2\Delta \phi_{p} + \Delta \phi_{g,b} \]

- Propagation Phase Difference

\[\Delta \phi_{p} = \frac{2NH_{t}}{k} \tan \theta \left[\text{Im} \{ A_{h}(\theta, \pi) \} - \text{Im} \{ A_{v}(\theta, \pi) \} \right] \]

\[A_{p}(\theta, \pi) = \sum_{n=-\infty}^{\infty} C_{n}^{p}(\theta), \quad p = v \text{ or } h \]

- Trunk Scatter Phase Difference

\[\Delta \phi_{t} = \tan^{-1} \left\{ \frac{\text{Im} [A_{h}/A_{v}]}{\text{Re} [A_{h}/A_{v}]} \right\} \]

\[A_{p}(\theta, 0^o) = \sum_{n=-\infty}^{\infty} (-1)^{n} C_{n}^{p}(\theta) \]

\[p = v \text{ or } h \]
• Ground Scatter Phase Difference

 - Specular Scatter

\[\Delta \phi_{g,s} = \tan^{-1} \left(\frac{\text{Im} \left(\frac{R_h}{R_v} \right)}{\text{Re} \left(\frac{R_h}{R_v} \right)} \right) - 180^\circ \]

 - Backscatter

\[\Delta \phi_{g,b} = \tan^{-1} \left(\frac{\text{Im} \left(\frac{\alpha_{hh}}{\alpha_{vv}} \right)}{\text{Re} \left(\frac{\alpha_{hh}}{\alpha_{vv}} \right)} \right) \]
Total Phase Difference

\[
\begin{bmatrix}
|S_{VV}|^2 & 0 & 0 & 0 \\
0 & |S_{HH}|^2 & 0 & 0 \\
0 & 0 & \text{Re}(S_{VV}S_{HH}^*) & -\text{Im}(S_{VV}S_{HH}^*) \\
0 & 0 & \text{Im}(S_{VV}S_{HH}^*) & \text{Re}(S_{VV}S_{HH}^*)
\end{bmatrix}
\]

where:

\[
|S_{VV}|^2 = \sigma_{gt,VV}^0 + \sigma_{g,VV}^0
\]

\[
|S_{HH}|^2 = \sigma_{gt,HH}^0 + \sigma_{g,HH}^0
\]

\[
\text{Re}(S_{VV}S_{HH}^*) = \text{Re} \left[\sqrt{\sigma_{gt,VV}} \sqrt{\sigma_{gt,HH}} e^{i \Delta \phi_{gs}} \right] + \text{Re} \left[\sqrt{\sigma_{g,VV}} \sqrt{\sigma_{g,HH}} e^{i \Delta \phi_g} \right]
\]

\[
\text{Im}(S_{VV}S_{HH}^*) = \text{Im} \left[\sqrt{\sigma_{gt,VV}} \sqrt{\sigma_{gt,HH}} e^{i \Delta \phi_{gs}} \right] + \text{Im} \left[\sqrt{\sigma_{g,VV}} \sqrt{\sigma_{g,HH}} e^{i \Delta \phi_g} \right]
\]
Dielectric Behavior of Constituents

* Vegetation - Ulaby and El-Rayes (1987)

\[\varepsilon_{mg} = A + B \left(4.9 + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + j \frac{f(Hz)}{f_o}} - \frac{22.74}{f(GHz)} \right) \]
\[+ C \left(2.9 + \frac{55}{1 + \sqrt{j \frac{f(GHz)}{0.18}}} \right) \]

* Soil - Hallikainen et al. (1985)

\[\varepsilon_{mv} = \varepsilon'_s - j \varepsilon''_s \]

\[\varepsilon = (a_0 + a_1 S + a_2 C') \]
\[+ (b_0 + b_1 S + b_2 C') m_v \]
\[+ (c_0 + c_1 S + c_2 C') m_v^2 \]

\[\varepsilon = \varepsilon'_s \text{ or } \varepsilon''_s \]
Canopy Backscatter, $\theta=50^\circ$, HH Pol.

Canopy Backscatter, $\theta=50^\circ$, VV Pol.
Polarization Phase Difference, $\theta = 50^\circ$
Polarization Phase Difference, $\theta = 30^\circ$
Canopy Backscatter, \(\theta=30^\circ \), HH Pol.

Canopy Backscatter, \(\theta=30^\circ \), VV Pol.
Moisture Parameters, $\theta = 30$ Degrees

Dry Conditions

- -10.2 dB
- -5.6 dB
- -44 Deg.

Wet Conditions

- -88 Deg.
- 0.3 dB
- 0.4 dB

Legend:
- σ_{HH}
- σ_{VV}
- $\Delta \phi_{HH-VV}$
Aspen Canopy, $\theta = 30$ Degrees

Soil Volumetric Moisture

σ_{HH} (dB)

σ_{VV} (dB)

- Total Backscatter
- Direct Crown
- Direct Ground
- Ground-Trunk
Backscatter Contours, $\theta = 30$ Degrees

\(\sigma_{HH} \) Families (dB)

\(\sigma_{VV} \) Families (dB)
Phase Difference Contours, $\theta = 30$ Degrees

\begin{align*}
\Delta \phi &= -80^\circ \\
\Delta \phi &= -60^\circ \\
\Delta \phi &= -40^\circ
\end{align*}
Conclusions

- Technique applies to canopies with large enough trunk/stalk biomass.

- Steep incidence angles are most effective.

- Polarization phase difference determines the trunk/stalk moisture.

- Polarization magnitudes determine soil moisture.

- VV polarization magnitude is more effective than HH.