ICASE REPORT NO. 88-71

ICASE

ON HILBERT-SCHMIDT NORM CONVERGENCE OF GALERKIN APPROXIMATION FOR OPERATOR RICCATI EQUATIONS

I. G. Rosen

Contract Nos. NAS1-18107 and NAS1-18605
November 1988

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NASA
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665
ON HILBERT-SCHMIDT NORM CONVERGENCE OF
GALERKIN APPROXIMATION FOR OPERATOR
RICCATI EQUATIONS

I. G. Rosen
Department of Mathematics
University of Southern California
Los Angeles, CA 90089

ABSTRACT

An abstract approximation framework for the solution of operator algebraic Riccati
equations is developed. The approach taken is based upon a formulation of the Riccati
equation as an abstract nonlinear operator equation on the space of Hilbert-Schmidt ope-

tors. Hilbert-Schmidt norm convergence of solutions to generic finite dimensional Galerkin
approximations to the Riccati equation to the solution of the original infinite dimensional
problem is argued. The application of the general theory is illustrated via an operator Ric-
cati equation arising in the linear-quadratic design of an optimal feedback control law for a
one dimensional heat/diffusion equation. Numerical results demonstrating the convergence
of the associated Hilbert-Schmidt kernels are included.

\footnote{This research was supported in part by the United States Air Force of Scientific Research under Grant
No. AFOSR-87-0356. Additional support was provided under the National Aeronautics and Space Admin-
istration under NASA Contract Nos. NAS1-18107 and NAS1-18605 while the author was in residence at the
Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,
Hampton, VA 23665.}
ON HILBERT-SCHMIDT NORM CONVERGENCE OF
GALERKIN APPROXIMATION FOR OPERATOR
RICCATI EQUATIONS

I.G. Rosen

Abstract. An abstract approximation framework for the solution of operator algebraic
Riccati equations is developed. The approach taken is based upon a formulation of the
Riccati equation as an abstract nonlinear operator equation on the space of Hilbert-
Schmidt operators. Hilbert-Schmidt norm convergence of solutions to generic finite
dimensional Galerkin approximations to the Riccati equation to the solution of the
original infinite dimensional problem is argued. The application of the general theory
is illustrated via an operator Riccati equation arising in the linear-quadratic design
of an optimal feedback control law for a one dimensional heat/diffusion equation.
Numerical results demonstrating the convergence of the associated Hilbert-Schmidt
kernels are included.

1. INTRODUCTION

In this paper we develop an abstract approximation theory for algebraic Riccati
equations on spaces of Hilbert-Schmidt operators. Our approach is based upon
Barbu's [1] formulation of a class of Riccati equations as abstract nonlinear operator
equations on a space of Hilbert-Schmidt operators. We argue that solutions to
generic finite dimensional Galerkin approximations to the Riccati equation converge
in Hilbert-Schmidt norm to the solution of the original infinite dimensional equation.

Our effort here is closely related to results in one of our earlier papers [6] wherein
we developed an approximation theory for operator Riccati differential equations
using techniques similar to those which will be employed below. Our treatments
here and in [6] differ from the standard approach to the analysis of operator Ric-
cati equation approximation in that we consider the nonlinear operator equations
directly in the space of Hilbert-Schmidt operators rather than integral equation
equivalents and their limiting properties as the time horizon tends to infinity (see,
for example, [3]). While we do in fact obtain a stronger convergence result than the
We seek a solution $\Pi \in C$ to (2.3). We note that for $n$ a positive integer, the operator $B$ given by $B(\Phi) = \Phi^n$, $\Phi \in C$ (i.e. $f(z) = z^n$) can be shown to satisfy the conditions above. Indeed, boundedness follows from the estimate $|\Phi^n|_H \leq |\Phi|^n_H$, while monotonicity can be established via

$$[\Phi^n - \Psi^n, \Phi - \Psi]_H = \sum_{j=1}^{n} [\Phi^{n-j} \{\Phi - \Psi\} \Psi^{j-1}, \Phi - \Psi]_H \geq 0,$$

for $\Phi, \Psi \in C$ (see [9]). Finally, for $\Psi \in C$ and $\lambda > 0$ let $\{\psi_i\}_{i=1}^{\infty}$ be the orthonormal set of eigenvectors of $\Psi$ with corresponding eigenvalues $\{\alpha_i\}_{i=1}^{\infty}$. (The fact that $\Psi \in C$ implies $\alpha_i \geq 0$, $i = 1, 2, \ldots$). Then, if we let $\gamma_i$ denote a nonnegative solution to the equation $\gamma_i + \lambda \gamma_i^n - \alpha_i = 0$ (the intermediate value theorem guarantees that such a $\gamma_i$ exists with $0 \leq \gamma_i \leq \alpha_i$) and set $\Phi \varphi = \sum_{i=1}^{\infty} \gamma_i(\varphi, \psi_i)\psi_i$, $\varphi \in H$, it follows that $\Phi \in C$ and $\Phi + \lambda \Phi^n = \Psi$. This establishes (2.2). When $n = 2$, (2.3) becomes the familiar quadratic Riccati equation.

Define the operator $A \in \mathcal{L}(V, V^*)$ by

$$A\Phi = A^*\Phi + \Phi A, \quad \Phi \in V.$$

It can be argued (see [1]) that $A$ is strongly $V$-elliptic - that is there exists a constant $\omega > 0$ for which

$$[A\Phi, \Phi]_H \geq \omega\|\Phi\|_V^2, \quad \Phi \in V.$$

If we define the subspace $\text{Dom}(A) = \{\Phi \in V : A\Phi \in \mathcal{H}\}$ then it follows (see [8]) that the operator $A : \text{Dom}(A) \subset \mathcal{H} \to \mathcal{H}$ is densely defined and $m$-accretive in $\mathcal{H}$. With the above definitions the problem of finding a solution to the operator algebraic Riccati equation (2.3) becomes one of finding a solution $\Pi \in \text{Dom}(F)$ to the abstract nonlinear operator equation in $\mathcal{H}$ given by

$$F(\Pi) = \Theta$$

where $\Theta \in C$ is given and $F : \text{Dom}(F) \subset \mathcal{H} \to \mathcal{H}$ is the operator defined by $F(\Phi) = A\Phi + B(\Phi)$ for $\Phi \in \text{Dom}(F) = C \cap \text{Dom}(A)$.

Using a standard fixed point argument on the closed convex subset $C$, Barbu [1] argues that the equation

$$F_{\lambda}(\Phi_{\lambda}) = \Theta$$

has a unique solution $\Phi_{\lambda} \in \text{Dom}(F)$ for each $\lambda > 0$ where $F_{\lambda} : \text{Dom}(F) \subset \mathcal{H} \to \mathcal{H}$ is the Yosida-like approximation to $F$ given by $F_{\lambda} = A + \lambda^{-1}\{I - (I + \lambda B)^{-1}\}$. Then using the boundedness and monotonicity of $B$, Barbu argues further that the $\Pi_{\lambda}$ converge in $\mathcal{H}$ as $\lambda \to 0$ to an operator $\Pi \in \text{Dom}(F)$ which is a solution to (2.5) (or, equivalently, (2.3)). The strong $V$-ellipticity of $A$ (i.e. (2.4)), and the monotonicity
of $B$ (i.e. (2.1)) are then used in the usual way to establish the uniqueness of $\Pi$. Note that $\Pi \in \text{Dom}(\mathcal{F})$ implies that $\Pi \in \mathcal{C}$, i.e. that it is a nonnegative, self-adjoint operator in $\mathcal{H}$, and that $\Pi \in \mathcal{V}$ with $A\Pi = A^*\Pi + \Pi A \in \mathcal{H}$.

3. GALERKIN APPROXIMATION AND CONVERGENCE THEORY

For each $n = 1, 2, \ldots$ let $H_n$ be a finite dimensional subspace of $H$ with $H_n \subset V$, $n = 1, 2, \ldots$. Let $P_n : H \to H_n$ be the orthogonal projection of $H$ onto $H_n$ with respect to the $(\cdot, \cdot)$ inner product on $H$. We assume

(3.1) $\lim_{n \to \infty} \|P_n \varphi - \varphi\| = 0, \quad \varphi \in \mathcal{V}$.

Note that assumption (3.1) implies that $\lim_{n \to \infty} |P_n \varphi - \varphi| = 0$, $\varphi \in H$, and that the $P_n$ are uniformly bounded in the uniform operator topologies on $\mathcal{L}(H)$ and $\mathcal{L}(V)$.

Lemma 3.1 The operators $P_n$ admit extensions, which we shall again call $P_n$, to idempotent, uniformly bounded operators in $\mathcal{L}(V^*)$. Moreover, $\lim_{n \to \infty} \|P_n \varphi - \varphi\|_* = 0$, $\varphi \in V^*$, the $V^*$-adjoint (i.e. the operator $P_n^*$ satisfying $<P_n \varphi, \psi>_* = <\varphi, P_n^* \psi>_*$, $\varphi, \psi \in V^*$) is given by $P_n^* = \gamma P_n \gamma^{-1}$, and $\lim_{n \to \infty} \|P_n^* \varphi - \varphi\|_* = 0$, $\varphi \in V^*$.

Proof For $\varphi \in V^*$ set $P_n \varphi = \varphi_n$ where $\varphi_n$ is the representor of the functional on $H_n$ which is the restriction of $\varphi$ to $H_n$. That is $(\varphi_n, \psi_n) = (P_n \varphi, \psi_n) = (\varphi, \psi_n)$, $\psi_n \in H_n$. It is clear that $P_n$ as given above is a well defined extension of the orthogonal projection of $H$ onto $H_n$, and that it is idempotent. Moreover, since $H_n \subset V \subset V^*$, for $\varphi \in V^*$ we may consider $P_n \varphi = \varphi_n \in H_n$ an element in $V^*$ via the duality pairing $(P_n \varphi, \psi) = (\varphi_n, \psi)$, $\psi \in V$. Then for $\varphi \in V^*$, $\psi \in V$, and $\varphi_n = P_n \varphi$ we have $(P_n \varphi, \psi) = (\varphi_n, \psi) = (\varphi_n, P_n \psi) = (\varphi, P_n \psi)$. Consequently for $\varphi \in V^*$ we have

$$\|P_n \varphi\|_* = \sup_{\psi \in V} |(P_n \varphi, \psi)| = \sup_{\|\psi\| \leq 1} |(\varphi, P_n \psi)| \leq \|\varphi\|_* \|P_n\|,$$

or $\|P_n\|_* \leq \|P_n\|$. Thus assumption (3.1) implies that the $P_n$ are uniformly bounded in $\mathcal{L}(V^*)$. (We note that alternatively the same extension of the projections $P_n$ to operators on $V^*$ could have been obtained by using the standard approach based upon the density of $H$ in $V^*$ and the usual extension construction in terms of limits.) Now for $\varphi \in H$ we have

$$<P_n \varphi, \psi>_* = (P_n \varphi, \gamma^{-1} \psi) = (\varphi, P_n \gamma^{-1} \psi) = (\varphi, \gamma^{-1} \gamma P_n \gamma^{-1} \psi) = <\varphi, \gamma P_n \gamma^{-1} \psi>_*,$$

and consequently that the $V^*$-adjoint of $P_n, P_n^*$, is given by $P_n^* = \gamma P_n \gamma^{-1}$. Finally, assumption (3.1) yields

$$\lim_{n \to \infty} \|P_n^* \varphi - \varphi\|_* = \lim_{n \to \infty} \|\gamma^{-1} P_n^* \varphi - \gamma^{-1} \varphi\|.$$
for each \( \varphi \in V^* \) and the lemma is proved.

Define the sequence of finite dimensional subspaces \( \mathcal{H}_n, n = 1, 2, \ldots \) of \( \mathcal{H} \) by

\[
\mathcal{H}_n = \{ \Phi_n P_n : \Phi_n \in \mathcal{L}(H_n) \}.
\]

Clearly \( H_n \) finite dimensional implies that all operators in \( \mathcal{H}_n \) are of finite rank and thus that \( \mathcal{H}_n \) is a subspace of both \( \mathcal{H} \) and \( V \). For each \( n = 1, 2, \ldots \) let \( \mathcal{C}_n \subset \mathcal{H}_n \) be the closed convex cone given by \( \mathcal{C}_n = \{ \Phi_n P_n \in \mathcal{H}_n : \Phi_n = \Phi_n^*, \Phi_n \geq 0 \} \). Note that \( \mathcal{C}_n \subset \mathcal{C}_{n=1,2,\ldots} \). We define Galerkin approximations to the operator \( \mathcal{F}, \mathcal{F}_n : \text{Dom}(\mathcal{F}_n) \subset \mathcal{H}_n \rightarrow \mathcal{H}_n \), as follows:

\[
(3.2) \quad \mathcal{F}_n(\Phi_n P_n) = \{ A \Phi_n P_n + B(\Phi_n P_n) \} |_{\mathcal{H}_n}, \quad \text{for } \Phi_n P_n \in \text{Dom}(\mathcal{F}_n) = \mathcal{C}_n.
\]

That is, for \( \Phi_n P_n \in \mathcal{C}_n \), \( \mathcal{F}_n(\Phi_n P_n) = \Psi_n P_n \in \mathcal{H}_n \) where \( \Psi_n P_n \) is that element in \( \mathcal{H}_n \) (guaranteed to exist and be unique by the Riesz Representation Theorem applied to the functional \( A \Phi_n P_n + B(\Phi_n P_n) \in V^* \) restricted to a functional on the finite dimensional Hilbert space \( \mathcal{H}_n \) which satisfies \( [A \Phi_n P_n + B(\Phi_n P_n), \chi_n P_n]_{\mathcal{H}} = [\Psi_n P_n, \chi_n P_n]_{\mathcal{H}}, \chi_n P_n \in \mathcal{H}_n \).

It is of some value to note that the approximations to \( \mathcal{F} \) given in (3.2) are the same ones that would be obtained via the standard approach which is based upon the replacement of the operators \( A \) and \( B \) in (2.3) by their respective Galerkin approximations on \( H_n \) and \( \mathcal{H}_n \). Indeed, for each \( n = 1, 2, \ldots \) define the operators \( A_n \in \mathcal{L}(H_n) \) and \( B_n : \mathcal{C}_n \subset \mathcal{H}_n \rightarrow \mathcal{H}_n \) by \( A_n \varphi_n = \psi_n \), where for \( \varphi_n \in \mathcal{H}_n \), \( \psi_n \) is that element in \( \mathcal{H}_n \) which satisfies \( (A \varphi_n, \chi_n) = (\psi_n, \chi_n), \chi_n \in \mathcal{H}_n \), and \( B_n(\Phi_n P_n) = P_n B(\Phi_n P_n) P_n \). From the fact that \( P_n \) is the orthogonal projection of \( \mathcal{H} \) onto \( H_n \) it follows that \( [\Phi_n P_n, \Psi_n]_{\mathcal{H}} = [\Phi, \Psi_n]_{\mathcal{H}} \) for every \( \Phi \in V^* \) and \( \Psi_n \in \mathcal{H}_n \). Then, for \( \Phi_n P_n, \Psi_n P_n \in \mathcal{H}_n \) we have

\[
[\mathcal{F}_n(\Phi_n P_n), \Psi_n P_n]_{\mathcal{H}} = [A \Phi_n P_n + B(\Phi_n P_n), \Psi_n P_n]_{\mathcal{H}}
\]

\[
= \{ [A \Phi_n P_n + B(\Phi_n P_n)] P_n, \Psi_n P_n \} \mathcal{H}
\]

\[
= \{ [A \Phi_n P_n + \Phi_n P_n A_n P_n + B(\Phi_n P_n) P_n, \Psi_n P_n] \mathcal{H}
\]

\[
= \sum_{k=1}^{\infty} \{ (A \Phi_n P_n e_k, \Psi_n P_n e_k) + (\Phi_n P_n A_n e_k, \Psi_n P_n e_k)
\]

\[
+ (\Phi_n P_n e_k, \Psi_n P_n e_k) \}
\]

\[
= \sum_{k=1}^{\infty} \{ (A \Phi_n P_n e_k, \Psi_n P_n e_k) + (A_n P_n e_k, \Phi_n^* \Psi_n P_n e_k)
\]

\[
+ (P_n B(\Phi_n P_n) P_n e_k, \Psi_n P_n e_k) \}
\]

\[
= \sum_{k=1}^{\infty} \{ (A \Phi_n P_n e_k + A_n P_n e_k + B_n(\Phi_n P_n)) P_n e_k, \Psi_n P_n e_k \},
\]

\[
= \lim_{n \to \infty} \| \gamma^{-1} \gamma P_n \gamma^{-1} \varphi - \gamma^{-1} \varphi \|
\]

\[
= \lim_{n \to \infty} \| P_n \gamma^{-1} \varphi - \gamma^{-1} \varphi \| = 0
\]

for each \( \varphi \in V^* \) and the lemma is proved.
or,

\[ \mathcal{F}_n(\Phi_n P_n) = \{A_n^* \Phi_n + \Phi_n A_n + B_n(\Phi_n P_n)\} P_n. \]

In the particular case when \( B(\Phi) = \Phi^2 \), for example, the operators \( \mathcal{F}_n \) take the form \( \mathcal{F}_n(\Phi_n P_n) = \{A_n^* \Phi_n + \Phi_n A_n + \Phi_n^2\} P_n. \)

Set \( \Theta_n = P_n \Theta P_n \in \mathcal{C}_n \) and consider the problem of finding a solution \( \Pi_n \in \mathcal{C}_n \) to the nonlinear operator equation

\[ \mathcal{F}_n(\Pi_n) = \Theta_n \]

in \( \mathcal{H}_n \). Arguments similar to those described in section 2 above yield that for each \( n = 1,2,\ldots \), the equation (3.3) admits a unique solution \( \Pi_n \in \mathcal{C}_n \). We shall argue that \( \lim_{n \to \infty} \|\Pi_n - \Pi\|_\mathcal{V} = 0 \); that is, that the \( \Pi_n \) converge in the \( \mathcal{V} \)-Hilbert-Schmidt norm to the solution \( \Pi \) to the equation (2.5) (or equivalently (2.3)). In order to do this we shall require the following lemmas.

**Lemma 3.2** If \( \{a_i\}_{i=1}^\infty \) is an absolutely summable sequence of real numbers, then there exist sequences \( \{b_i\}_{i=1}^\infty \) and \( \{c_i\}_{i=1}^\infty \) for which \( \lim_{i \to \infty} b_i = 0 \), \( \{c_i\}_{i=1}^\infty \) is absolutely summable, and \( a_i = b_i c_i \), \( i = 1,2,\ldots \).

**Proof** Set \( \alpha = \sum_{i=1}^\infty |a_i| \) and, for \( j = 0,1,2,\ldots \) define the nonnegative integers \( k_j \) by \( k_0 = 0 \) and for \( j = 1,2,\ldots \) let \( k_j \) be the first index for which

\[ \sum_{i=1}^{k_j} |a_i| > \alpha - \frac{1}{j^3}. \]

Then setting \( b_i = 1/j \) and \( c_i = j a_i \), for \( i = k_{j-1} + 1,\ldots,k_j \), \( j = 1,2,\ldots \), we have \( b_i c_i = a_i \), \( i = 1,2,\ldots \), \( \lim_{i \to \infty} b_i = 0 \), and

\[ \sum_{i=1}^{\infty} |c_i| = \sum_{j=1}^{\infty} j \sum_{k=k_{j-1}+1}^{k_j} a_k = \sum_{j=1}^{\infty} j \left\{ \sum_{k=1}^{k_j} a_k - \sum_{k=1}^{k_{j-1}} a_k \right\} \leq \sum_{k=1}^{k_1} a_k + \sum_{j=2}^{\infty} j \left\{ \alpha - (\alpha - \frac{1}{(j-1)^3}) \right\} \]

\[ = \alpha + \sum_{j=1}^{\infty} \frac{1}{j^2} + \sum_{j=1}^{\infty} \frac{1}{j^3} < \infty \]

**Lemma 3.3** Let \( X \) and \( Y \) be real separable Hilbert spaces with inner products denoted by \( \langle \cdot, \cdot \rangle_X \) and \( \langle \cdot, \cdot \rangle_Y \) respectively. Then every \( \Phi \in HS(X,Y) \) can be written in factored form as \( \Phi = \Phi^1 \Phi^2 \) with \( \Phi^1 \in \mathcal{L}(Y) \) compact and \( \Phi^2 \in HS(X,Y) \).

**Proof** Let \( \{x_i\}_{i=1}^\infty \) be an orthonormal basis for \( X \) and let \( \{y_i\}_{i=1}^\infty \) be an orthonormal basis for \( Y \). If \( \Phi \in HS(X,Y) \) then it has a representation in the form of an infinite
matrix $\Phi \leftrightarrow [\varphi_{ij}]$ where $\varphi_{ij} = < y_i, \Phi x_j >_Y$, and $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \varphi_{ij}^2 < \infty$. Now for $i = 1, 2, \ldots$ set $a_i = \sum_{j=1}^{\infty} \varphi_{ij}^2$. The sequence $\{a_i\}_{i=1}^{\infty}$ is absolutely summable, so applying Lemma 3.2 we obtain sequences $\{b_i\}_{i=1}^{\infty}$ and $\{c_i\}_{i=1}^{\infty}$ for which $a_i = b_i c_i$, $i = 1, 2, \ldots$, $\lim_{i \to \infty} b_i = 0$, and $\sum_{i=1}^{\infty} |c_i| = \sum_{i=1}^{\infty} c_i < \infty$. Define $\Phi^1 \in \mathcal{L}(Y)$ by $\Phi^1 y = \sum_{i=1}^{\infty} \sqrt{b_i} y_i, y_i >_Y y_i, y \in Y$, and $\Phi^2 \in \mathcal{L}(X, Y)$ by $\Phi^2 x = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{\varphi_{ij}}{\sqrt{b_i}} x_j x_j >_X y_i, x \in X$. Then $\Phi^1 \Phi^2 = \Phi$, and, since $\lim_{i \to \infty} \sqrt{b_i} = 0$ and $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \left( \frac{\varphi_{ij}}{\sqrt{b_i}} \right)^2 = \sum_{i=1}^{\infty} \frac{1}{b_i} \sum_{j=1}^{\infty} \varphi_{ij}^2 = \sum_{i=1}^{\infty} \frac{a_i}{b_i} = \sum_{i=1}^{\infty} c_i < \infty$, it follows that $\Phi^1$ is compact and $\Phi^2 \in HS(X, Y)$.

**Lemma 3.4**

(a) For every $\Phi \in \mathcal{H}$, $\lim_{n \to \infty} |P_n \Phi P_n - \Phi|_{\mathcal{H}} = 0$.

(b) For every $\Phi \in \mathcal{V}$, $\lim_{n \to \infty} \|P_n \Phi P_n - \Phi\|_\mathcal{V} = 0$.

**Proof (a).** For $\Phi \in \mathcal{H}$ we have

$$|P_n \Phi P_n - \Phi|_{\mathcal{H}} \leq |P_n \Phi P_n - P_n \Phi|_{\mathcal{H}} H + |P_n \Phi - \Phi|_{\mathcal{H}},$$

where in the above estimate we have used the fact that $P_n \in \mathcal{L}(H)$ with $|P_n| \leq 1$ and that $|P_n \Psi|_{\mathcal{H}} \leq |P_n| |\Psi|_{\mathcal{H}} \leq |\Psi|_{\mathcal{H}}$ for every $\Psi \in \mathcal{H}$. If we apply Lemma 3.3 with $X = Y = H$ to $\Phi, \Phi^* \in \mathcal{H} = HS(H, H)$, then we obtain $\Phi = \Phi^1 \Phi^2$, $\Phi^* = (\Phi^*)^1 (\Phi^*)^2$ with $\Phi^1, (\Phi^*)^1 \in L(H)$ compact and $(\Phi^*)^2 \in HS(H, H)$. It follows that

$$|P_n \Phi^* - \Phi^*|_{\mathcal{H}} = |(P_n - I)(\Phi^*)^1(\Phi^*)^2|_{\mathcal{H}} \leq |(P_n - I)(\Phi^*)^1| |(\Phi^*)^2|_{\mathcal{H}},$$

and

$$|P_n \Phi - \Phi|_{\mathcal{H}} \leq |(P_n - I)\Phi^1| |\Phi^2|_{\mathcal{H}},$$

which together with assumption (3.1) and the fact that $\Phi^1$ and $(\Phi^*)^1$ are compact yield the desired result.

(b). For $\Phi \in \mathcal{V} = HS(V^*, H) \cap HS(H, V)$ we have

$$|P_n \Phi P_n - \Phi|_{HS(V^*, H)} \leq |P_n \Phi P_n - P_n \Phi|_{HS(V^*, H)} + |P_n \Phi - \Phi|_{HS(V^*, H)} \leq |P_n| |\Phi P_n - \Phi|_{HS(V^*, H)} + |P_n \Phi - \Phi|_{HS(V^*, H)} \leq |\Phi P_n - \Phi|_{HS(V^*, H)} + |P_n \Phi - \Phi|_{HS(V^*, H)}.$$
Now $\Phi \in HS(V^*, H)$ implies that $\Phi^* \in HS(H, V^*)$ and that $(\Phi P_n)^* = P_n^* \Phi^* \in HS(H, V^*)$ where, recalling Lemma 3.1, $P_n^* = \gamma P_n \gamma^{-1}$ is the adjoint of the operator $P_n$ considered as an element of $\mathcal{L}(V^*)$. It follows that

$$
(3.4) \quad |P_n \Phi P_n - \Phi|_{HS(V^*, H)} \leq |P_n^* \Phi^* - \Phi^*|_{HS(H, V^*)} + |P_n \Phi - \Phi|_{HS(V^*, H)}
$$

Lemma 3.3 with $X = H$ and $Y = V^*$ together with Lemma 3.1 imply that the first term on the right hand side of the estimate (3.4) tends to zero as $n \to \infty$. Similarly, Lemma 3.3 with $X = V^*$ and $Y = H$ together with assumption (3.1) imply that the second term tends to zero as $n \to \infty$ as well. A similar argument to the one given above can be used to show that $\lim_{n \to 0} |P_n \Phi P_n - \Phi|_{HS(H, V)} = 0$ and the lemma is proved.

The primary result of this paper is given in the following theorem.

**Theorem 3.1** Let $\Pi \in V$ be the unique solution to the equation (2.5) (equivalently (2.3)) and for each $n = 1, 2, \ldots$ let $\Pi_n \in \mathcal{H}_n$ be the unique solution to the approximating operator equation (3.3). Then $\lim_{n \to \infty} ||\Pi_n - \Pi||_V = 0$.

**Proof** From the triangle inequality we obtain

$$
||\Pi_n - \Pi||_V \leq ||\Pi_n - P_n \Pi P_n||_V + ||P_n \Pi P_n - \Pi||_V.
$$

An application of Lemma 3.4(b) yields that the second term on the right and side of the above estimate tends to zero as $n \to \infty$. As for the first term, we recall (2.4) and consider the estimate

$$
\omega ||\Pi_n - P_n \Pi P_n||_V^2 \leq [A(\Pi_n - P_n \Pi P_n), \Pi_n - P_n \Pi P_n]_{\mathcal{H}}
$$

$$
= [A(P_n - \Theta, \Pi_n - P_n \Pi P_n)]_{\mathcal{H}}
$$

$$
+ [B(\Pi_n - P_n \Pi P_n), \Pi_n - P_n \Pi P_n]_{\mathcal{H}}
$$

$$
- [P_n B(\Pi_n) P_n - B(P_n \Pi P_n), \Pi_n - P_n \Pi P_n]_{\mathcal{H}}
$$

$$
= [P_n \Theta P_n - \Theta, \Pi_n - P_n \Pi P_n]_{\mathcal{H}}
$$

$$
+ [A(\Pi - P_n \Pi P_n), \Pi_n - P_n \Pi P_n]_{\mathcal{H}}
$$

$$
+ [B(\Pi_n - P_n \Pi P_n), \Pi_n - P_n \Pi P_n]_{\mathcal{H}}
$$

$$
- [B(\Pi_n) P_n - B(P_n \Pi P_n), \Pi_n - P_n \Pi P_n]_{\mathcal{H}}
$$

$$
\leq [P_n \Theta P_n - \Theta, \Pi_n - P_n \Pi P_n]_{\mathcal{H}}
$$

$$
+ [A(\Pi - P_n \Pi P_n), \Pi_n - P_n \Pi P_n]_{\mathcal{H}}
$$
and the theorem is established.

4. AN EXAMPLE

In order to illustrate the application of our theory we consider an operator algebraic Riccati equation arising in the design of an optimal feedback control law for a one dimensional heat/diffusion equation. Let $H, U = \mathcal{L}(0, 1)$, both endowed with the usual inner product, $\langle \phi, \psi \rangle = \int_0^1 \phi(\eta) \psi(\eta) d\eta$, and consider the linear-quadratic optimal control problem of finding $u \in L^2[0, \infty; U]$ which minimizes the quadratic performance index

$$J(u) = \int_0^\infty (Q x(t, \cdot), x(t, \cdot)) + r(u(t, \cdot), u(t, \cdot)) dt$$

subject to the linear dynamical system

(4.1) $\frac{\partial x}{\partial t}(t, \eta) - \frac{\partial}{\partial \eta} a(\eta) \frac{\partial x}{\partial \eta}(t, \eta) = b u(t, \eta)$, $t > 0, 0 < \eta < 1$,

(4.2) $x(t, 0) = 0$, $x(t, 1) = 0$, $t > 0$

(4.3) $x(0, \eta) = x^0(\eta)$, $0 < \eta < 1$,

where $Q$ is a self-adjoint, nonnegative, and Hilbert-Schmidt operator from $L_2(0, 1)$ into $L_2(0, 1)$, $a \in L_{\infty}(0, 1), a(\eta) \geq \alpha > 0$, a.e. $\eta \in (0, 1)$, $b \in \mathbb{R}$, and $x^0 \in L_2(0, 1)$.

If we define $C = \{ \Phi \in \mathcal{H} S(L_2(0, 1), L_2(0, 1)), \Phi = \Phi^*, \Phi \geq 0 \}$, then $Q \in C$ and $(Q\varphi)(\eta) = \int_0^1 q(\eta, \zeta) \varphi(\zeta) d\zeta$ with $q \in L_2((0, 1) \times (0, 1))$, $q(\eta, \zeta) = q(\zeta, \eta)$, $q(\eta, \zeta) \geq 0$, a.e. $(\eta, \zeta) \in (0, 1) \times (0, 1)$.

Define $V = H_0^d(0, 1)$ endowed with the standard inner product, $\langle \varphi, \psi \rangle = \int_0^1 D\varphi(\eta) D\psi(\eta) d\eta$ and corresponding norm, $\| \cdot \|$. It follows that $V$ is densely, continuously, and compactly embedded in $H$, that $V^* = H^{-1}(0, 1)$, and that $H$ is
densely and continuously embedded in $V^*$. Define the operator $A \in \mathcal{L}(V, V^*)$ by $(A\varphi, \psi) = (aD\varphi, D\psi)$, for $\varphi, \psi \in V$. It follows that $(A\varphi, \varphi) \geq \alpha \|\varphi\|^2$, $\varphi \in V$, and that the restriction $-A$ of the operator $-A$ to the set $\text{Dom}(A) = \{\varphi \in V : A\varphi \in H\}$ ($= H^2(0,1) \cap H^1_0(0,1)$ when $a$ is sufficiently smooth) is densely defined in $H$, negative, self-adjoint, and it is the infinitesimal generator of a uniformly exponentially stable analytic semigroup, $\{T(t) : t \geq 0\}$ of bounded, self-adjoint linear operators on $H$. The solution to the initial-boundary value problem (4.1)-(4.3) is given by

$$x(t) = T(t)x^0 + \int_0^t T(t-s)bu(s)ds, \quad t > 0$$

where for each $t > 0$ $x(t) = x(t, \cdot) \in H = L_2(0,1)$ and $u(t) = u(t, \cdot) \in U = L_2(0,1)$ for almost every $t > 0$.

The solution to the optimal control problem (see [5]) is given in closed-loop linear state feedback form by

$$\tilde{u}(t) = -(b/r)\Pi x(t), \quad \text{a.e. } t > 0$$

where $\Pi$ is the unique nonnegative self-adjoint solution to the algebraic Riccati equation

$$(4.4) \quad A^*\Pi + \Pi A + (b^2/r)\Pi^2 = Q.$$ 

It is clear that the existence-uniqueness and approximation theories presented above apply with $\Theta = Q \in C$ and $B(\Phi) = (b^2/r)\Phi^2$ for $\Phi \in C$. It follows that there exists a unique solution $\Pi \in HS(L_2(0,1), L_2(0,1))$ to the nonlinear operator equation (4.4) with $\Pi = \Pi^*, \Pi \geq 0$, and $\Pi \in HS(L_2(0,1), H^1_0(0,1)) \cap HS(H^{-1}(0,1), L_2(0,1))$. Recalling that $HS(L_2(0,1), L_2(0,1))$ is isometrically isomorphic to $L_2((0,1) \times (0,1))$, $\Pi \in C$ implies that there exists $\pi \in L_2((0,1) \times (0,1))$ with $\pi(\eta, \zeta) = \pi(\zeta, \eta)$ and $\pi(\eta, \zeta) \geq 0$ for almost every $(\eta, \zeta) \in (0,1) \times (0,1)$ for which

$$\tilde{u}(t, \eta) = -(b/r)\int_0^1 \pi(\eta, \zeta)x(t, \zeta)d\zeta,$$

for almost every $\eta \in (0,1)$ and $t > 0$.

We introduce linear spline based approximation. For each $n=2,3,\ldots$ let $H_n = \text{span} \{\varphi_n^j\}_{j=1}^{n-1}$ where for $j=1,2,\ldots,n-1$, $\varphi_n^j$ denotes the $j$th standard linear spline function defined on the interval $[0,1]$ with respect to the uniform mesh $\{0, 1/n, 2/n, \ldots, 1\}$. More precisely,

$$\varphi_n^j(\eta) = \begin{cases} 0 & 0 \leq \eta \leq j^{-1}/n \\ n\eta - j + 1 & j^{-1} \leq \eta \leq j/n \\ j + 1 - n\eta & j/n \leq \eta \leq j + 1/n \\ 0 & j + 1/n \leq \eta \leq 1, \end{cases}$$
j = 1, 2, ..., n - 1. Let $P_n : H \to H_n$ denote the orthogonal projection of $H$ onto $H_n$ with respect to the usual inner product on $H = L_2(0, 1)$ and define Galerkin approximations $A_n \in \mathcal{L}(H_n)$ to $A$ in the usual way. That is let $A_n \varphi_n = \psi_n$ where for $\varphi_n \in H_n$, $\psi_n$ is the unique element in $H_n$ which satisfies $(A \varphi_n, \chi_n) = (\psi_n, \chi_n)$, $\chi_n \in H_n$. Set $Q_n = P_n Q \in \mathcal{L}(H_n)$.

Using well known approximation properties of linear interpolatory splines (see [7]) it is not difficult to argue that $\lim_{n \to \infty} \|P_n \varphi - \varphi\| = 0$, $\varphi \in H_0^1(0, 1)$ and consequently that assumption (3.1) is satisfied. It follows therefore, from the theory presented in section 3 above, that there exists a unique nonnegative self-adjoint operator $\Pi_n \in \mathcal{L}(H_n)$ satisfying the algebraic Riccati equation in $H_n$ given by

\begin{equation}
A^* \Pi_n + \Pi_n A + (b^2 / r) \Pi_n^2 = Q_n.
\end{equation}

Moreover, we have the Hilbert-Schmidt norm convergence of $\Pi_n P_n$ to $\Pi$ as $n \to \infty$. That is

\begin{equation}
\lim_{n \to \infty} \|\Pi_n P_n - \Pi\|_{HS(H, H)} = 0.
\end{equation}

We in fact also obtain that $\lim_{n \to \infty} \|\Pi_n P_n - \Pi\|_{HS(H, V)} = 0$ and that $\lim_{n \to \infty} \|\Pi_n P_n - \Pi\|_{HS(V^*, H)} = 0$.

From a computational point of view, since the basis elements $\varphi_j^i$ are not mutually orthonormal, simply replacing the operators in the finite dimensional algebraic Riccati equation (4.5) with their corresponding matrix representations will not lead to the usual symmetric matrix Riccati equation for which a variety of computational solution techniques exist. Toward this end, for a linear operator $L_n$ with domain and/or range in $H_n$, we denote its matrix representation with respect to the basis $\{\varphi_j^i\}_{j=1}^{n-1}$ for $H_n$ by $L_n$. Define $\phi_n : [0, 1] \to \mathbb{R}^{n-1}$ by $\phi_n(\eta) = (\varphi_1^i(\eta), \varphi_2^i(\eta), \ldots, \varphi_{n-1}^i(\eta))^T$ and set $M_N = (\phi_n, \phi_n^T) = \int_0^1 \phi_n(\eta) \phi_n^T(\eta) d\eta$. It then follows that $A_N = M_N^{-1}(aD\phi_n, D\phi_n^T)$ with $A_N^* = M_N^{-1} A_N^T M_N$, and $Q_N = M_N^{-1}(Q\phi_n, \phi_n^T)$. If we set $\hat{Q}_N = M_N Q_N$ and $\hat{\Pi}_N = M_N \Pi_N$, then $\hat{\Pi}_N$ is the unique nonnegative self-adjoint solution to the $(n - 1) \times (n - 1)$ matrix algebraic Riccati equation given by

\begin{equation}
A_N^T \hat{\Pi}_N + \hat{\Pi}_N A_N + (b^2 / r) \hat{\Pi}_N M_N^{-1} \hat{\Pi}_N = \hat{Q}_N.
\end{equation}

The approximating optimal control laws take the form

\begin{equation}
\bar{u}_n(t, \eta) = - (b / r) \int_0^1 \pi_n(\eta, \zeta) x(t, \zeta) d\zeta.
\end{equation}
for almost every $\eta \in (0, 1)$ and $t > 0$ where

$$\pi_n(\eta, \zeta) = \phi_n(\eta)^T M_N^{-1} \tilde{\Pi} N M_N^{-1} \phi_n(\zeta),$$

$(\eta, \zeta) \in [0, 1] \times [0, 1]$. It follows from (4.6) that $\lim_{n \to \infty} \pi_n = \pi$ in $L_2((0, 1) \times (0, 1))$ - that is that

$$\lim_{n \to \infty} \int_0^1 \int_0^1 |\pi_n(\eta, \zeta) - \pi(\eta, \zeta)|^2 \, d\zeta \, d\eta.$$

To illustrate we take $a(\eta) = a > 0$, a constant, and let $Q \in HS(L_2(0, 1), L_2(0, 1))$ be the finite rank modal projection operator given by

$$Q \varphi = \sum_{k=1}^\nu q_k(\varphi, \psi_k) \psi_k, \quad \varphi \in L_2(0, 1)$$

where $\nu < \infty$, $\psi_k(\eta) = \sqrt{2} \sin k \pi \eta$, $\eta \in [0, 1]$, $k = 1, 2, \ldots, \nu$, and $q_k \geq 0$, $k = 1, 2, \ldots, \nu$. A somewhat tedious, but rather straightforward computation yields

$$(\hat{Q}_N)_{ij} = \sum_{k=1}^\nu 2 q_k \delta_{k i}^{\nu} \delta_{kj}^{\nu}, \quad i, j = 1, 2, \ldots, n - 1,$$

where

$$\delta_{k \ell}^{\nu} = \frac{-n}{(k \pi)^2} \left\{ \sin k \frac{\pi (\ell + 1)}{n} - 2 \sin k \frac{\pi \ell}{n} + \sin k \frac{\pi (\ell - 1)}{n} \right\}, \quad k = 1, 2, \ldots, \nu, \ell = 1, 2, \ldots, n - 1.$$ Setting $a = .25$, $b = 1.0$, $r = .01$, $\nu = 3$, and $q_1 = q_2 = q_3 = 1.0$, and using Schur-vector decomposition of the associated Hamiltonian matrix (see [4]) to solve the matrix Riccati equation (4.7) for various values of $n$ we obtained the kernels, $\pi_n$, plotted in the figures below. That the convergence given in (4.8) above is achieved is immediately clear.
Figure 4.1a: $\pi_4(\eta, \zeta)$, $(\eta, \zeta) \in [0, 1] \times [0, 1]$.

Figure 4.1b: $\pi_8(\eta, \zeta)$, $(\eta, \zeta) \in [0, 1] \times [0, 1]$. 
Figure 4.1c: \( \pi_{10}(\eta, \zeta), \ (\eta, \zeta) \in [0, 1] \times [0, 1] \).

Figure 4.1d: \( \pi_{32}(\eta, \zeta), \ (\eta, \zeta) \in [0, 1] \times [0, 1] \).
REFERENCES

ON HILBERT–SCHMIDT NORM CONVERGENCE OF
GALEKIN APPROXIMATION FOR OPERATOR RICCATI
EQUATIONS

I. G. Rosen

Institute for Computer Applications in Science
and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

Submitted to the Proc. of the
Fourth International Conference on
the Control and Identification of
Distributed Parameter Systems

An abstract approximation framework for the solution of operator algebraic
Riccati equations is developed. The approach taken is based upon a formulation of
the Riccati equation as an abstract nonlinear operator equation on the space of
Hilbert–Schmidt operators. Hilbert–Schmidt norm convergence of solutions to
generic finite dimensional Galerkin approximations to the Riccati equation to the
solution of the original infinite dimensional problem is argued. The application
of the general theory is illustrated via an operator Riccati equation arising in
the linear-quadratic design of an optimal feedback control law for a one dimen-
sional heat/diffusion equation. Numerical results demonstrating the convergence
of the associated Hilbert–Schmidt kernels are included.

operator algebraic Riccati equation, Hilbert–Schmidt operator, nonlinear
operator equation, Galerkin approximation, linear-quadratic regulator

64 - Numerical Analysis
66 - Systems Analysis
Unclassified - unlimited

Unclassified

Unclassified 18 A02

NASA-Langley, 1988