SINGLE-GRID SPECTRAL COLLOCATION
FOR THE NAVIER-STOKES EQUATIONS

Christine Bernardi
Claudio Canuto
Yvon Maday
Brigitte Metivet

(Single-grid spectral collocation for the Navier-Stokes equations)

Contract Nos. NAS1-18107 and NAS1-18605
November 1988

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NASA
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665
Single-Grid Spectral
Collocation for the Navier-Stokes Equations

by Christine BERNARDI 1, Claudio CANUTO 2, Yvon MADAY3 & Brigitte MÉTIVET4

Abstract: The aim of the paper is to study a collocation spectral method to approximate the Navier-Stokes equations: only one grid is used, which is built from the nodes of a Gauss-Lobatto quadrature formula, either of Legendre or of Chebyshev type. The convergence is proven for the Stokes problem provided with inhomogeneous Dirichlet conditions, then thoroughly analysed for the Navier-Stokes equations. The practical implementation algorithm is presented, together with numerical results.

1 C.N.R.S. and Analyse Numérique - Université Pierre et Marie Curie - Tour 55-65, 5e étage
4 place Jussieu F-75252 Paris Cedex 05, France.
2 Università di Parma and Istituto di Analisi Numerica del C.N.R.
Corso C. Alberto, 5, I-27100 Pavia, Italia.
3 Université de Paris XII, O.N.E.R.A. and
Analyse Numérique - Université Pierre et Marie Curie - Tour 55-65, 5e étage
4 place Jussieu F-75252 Paris Cedex 05, France.
1 avenue du Général de Gaulle, F-92141 Clamart Cedex, France.

Research was supported in part for the second and third authors by the National Aeronautics and Space Administration under NASA Contract Nos. NAS1-18107 and NAS1-18605 while they were in residence at the Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23665. Numerical experiments were performed by the fourth author while she was at O.N.E.R.A., B.P. 72, 92322 Châtillon Cedex, France.
1. Introduction.

The paper is devoted to the analysis of a spectral collocation method for approximating stationary Navier–Stokes equations, governing the flow of a viscous incompressible fluid in a domain Ω of \mathbb{R}^2 or \mathbb{R}^3

\[(1.1) \begin{align*}
- \nu \Delta u + \text{grad } p + (u \cdot \nabla)u &= f \quad \text{in } \Omega, \\
\text{div } u &= 0 \quad \text{in } \Omega,
\end{align*}\]

provided with Dirichlet boundary conditions

\[(1.2) \quad u = g \quad \text{on } \partial \Omega.
\]

In this system, the data are the density of body forces f, the velocity on the boundary g and the kinematic viscosity $\nu > 0$; the unknowns we want to approximate are the velocity u and the pressure p inside the domain Ω. The discrete solution is sought in a space of polynomials of high degree on Ω, and the equations $(1.1)(1.2)$ are verified in a finite number of points, called collocation nodes. We refer to [VGH] and to [CHQZ] for a detailed bibliography about such methods. As far as the theoretical analysis is concerned, we limit ourselves to the test domain $\Omega = [-1,1]^2$. In this square, the collocation points form a cartesian grid: their coordinates belong to the set of the nodes of a Gauss–Lobatto quadrature formula. However, the numerical results prove that there is no difficulty to extend the method to three-dimensional and/or curved domains.

The method we analyse in this paper has the following features:

1) Only one grid is involved in the algorithm: indeed, all the equations of (1.1) will be satisfied in the same nodes. We refer to [MM0] and [BM12] for other collocation methods for the Navier–Stokes equations, which are called staggered grid methods.

2) Due to this unique grid, the velocity and the pressure are approximated by polynomials of the same degree. Then, it turns out that there exist some spurious modes for the pressure, i.e. some polynomials the gradient of which cancels at the collocation nodes; this fact has first been pointed out in [Mo]. In order to obtain the convergence of the pressure, it is necessary to choose a suitable discrete pressure space which does not contain these modes but retains good approximation properties. We shall use the space already proposed in [BMM][M6] or [BCM].

3) The grid can be built from the Gauss–Lobatto quadrature formula associated with any family of Jacobi polynomials. Here, we shall treat two special cases. The first one is the case of Legendre polynomials; it is the simpler one, since its analysis involves the standard
variational formulation of the Navier–Stokes equations in standard Sobolev spaces. However, we also consider the case of Chebyshev polynomials; indeed, the nodes are then images by the cosine function of equidistant points, so that the use of the Fast Fourier Transform allows for a less expensive computation of the derivatives or of the nonlinear terms. This last method is numerically cheaper, but its analysis involves a non trivial formulation of the equations in appropriate weighted Sobolev spaces with the Chebyshev weight, the properties of which are given in [BM1].

The method we present has already been studied in a simpler case : for the Stokes problem that one obtains by neglecting the nonlinear terms in (1.1)

\[
(1.3) \quad - \nu \Delta u + \text{grad} p = f \quad \text{in } \Omega, \\
\text{div} u = 0 \quad \text{in } \Omega,
\]

when it is provided with homogeneous Dirichlet boundary conditions

\[
(1.4) \quad u = 0 \quad \text{on } \partial \Omega.
\]

We only recall the results of [BMM] in the Legendre case, of [BCM] in the Chebyshev case. Then we extend them to the Stokes problem with non homogeneous boundary conditions, by using the lifting of polynomial boundary data of [BM1]. Finally, the method is applied to the full Navier–Stokes equations : the nonlinear terms are handled in a pseudospectral way. The justification follows from the discrete implicit function theorem of [BRR], in a slightly different form due to [C] (see also [CR]). The error estimates we obtain between the discrete solution and the exact one, when it is assumed to be smooth enough, are the same as for the Stokes problem. This theoretical justification is completed by numerical experiments, achieved in the case of a three-dimensional domain with Chebyshev nodes, and a description of the algorithm involved in the code is given. We refer to [Mé] for more details on the numerical implementation.

An outline of the paper is as follows. Section II is devoted to the definition of the discrete approximation spaces and collocation problems, first in the homogeneous case, then in the inhomogeneous one. In Section III, we recall the convergence results of [BMM] and [BCM] for the Stokes problem in the homogeneous case, then we complete them for inhomogeneous boundary conditions. In Section IV, the analysis is extended to the Navier–Stokes equations, in both cases of homogeneous and inhomogeneous boundary conditions. Finally, in Section V, the techniques required by the numerical implementation of the method are presented and examples of numerical results are given.
Notation

The norm of any Banach space E is denoted by $\|\cdot\|_E$. For any pair (E,F) of Banach spaces, $\mathcal{L}(E,F)$ represents the space of continuous linear mappings from E into F. We mean by $A \circ B$ the tensorial product of any sets A and B in a Banach space, while $A \circ A$ is the tensorial product of A by itself. In all that follows, $c, c' \ldots$ are generic constants, independent of the discretization parameter.

In Sections II to IV, we shall work in the square $\Omega =]-1,1[^2$. Let us precise some notation about this domain. The generic point in Ω will be denoted by $x = (x,y)$ (or sometimes by (x_1, x_2)). We introduce the corners $a_j, j \in \mathbb{Z}/4\mathbb{Z}$, of Γ (where $a_{j,1}$ follows a_j counterclockwise), and call Γ_j the edge with vertices a_{j-1} and a_j; for any edge $\Gamma_j, j \in \mathbb{Z}/4\mathbb{Z}$, n_j is the unit outward normal to Ω on Γ_j and τ_j the unit vector orthogonal to n_j, directed counterclockwise.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Figure 1.1}
\end{figure}

Sobolev spaces

For any domain Ω in \mathbb{R}^d and for any real number $s \geq 0$, we use the standard hilbertian Sobolev spaces $H^s(\Omega)$, the norm of which is denoted by $\|\cdot\|_{s,\Omega}$. On the square Ω, we shall use the scalar product

\begin{align}
(\phi, \psi) = \int_{\Omega} \phi(x) \psi(x) \, dx .
\end{align}

We also recall that, for any integer $m \geq 1$, the semi-norm
is a norm on the space $H^m_0(\Omega)$ of the functions of $H^m(\Omega)$ which vanish on the boundary $\partial\Omega$ together with all their derivatives up to order $m-1$ (the traces being defined in the sense of [LM]). The dual space of $H^m_0(\Omega)$ will be denoted by $H^{-m}(\Omega)$, and it is standard to note that

$$H^{-1}(\Omega) = \{ f + \partial g/\partial x + \partial h/\partial y, (f,g,h) \in L^2(\Omega)^3 \}$$

The space of functions in $L^2(\Omega)$ with a null integral is noted $L^2_0(\Omega)$.

Next, we recall some basic material about weighted spaces of Chebyshev type (for further details, see e.g. [CHQZ], [BM1], [M2]). If $\varrho(\xi) = (1-\xi^2)^{-1/2}$ denotes the Chebyshev weight on the interval $\Lambda = [-1,1]$, let

$$L^2_\varrho(\Lambda) = \{ \varphi : \Lambda \to \mathbb{R} ; \int_{-1}^1 \varphi^2(\xi) \varrho(\xi) \, d\xi < +\infty \}$$

be the Lebesgue space associated with the measure $\varrho(\xi) \, d\xi$, provided with the norm

$$\|\varphi\|_{0,\varrho,\Lambda} = (\int_{-1}^1 \varphi^2(\xi) \varrho(\xi) \, d\xi)^{1/2}.$$

The weighted Sobolev spaces are defined as follows: for any integer $m \geq 0$, $H^m_\varrho(\Lambda)$ is the subspace of $L^2_\varrho(\Lambda)$ of the functions such that their distributional derivatives of order $k \leq m$ belong to $L^2_\varrho(\Lambda)$; it is a Hilbert space for the inner product associated with the norm

$$\|\varphi\|_{m,\varrho,\Lambda} = (\sum_{k=0}^m \|\varphi^{(k)}\|^2_{0,\varrho,\Lambda})^{1/2},$$

where

$$\|\varphi\|_{k,\varrho,\Lambda} = \|d^k\varphi/d\xi^k\|_{0,\varrho,\Lambda}.$$

For a real number $s = m + \sigma$, $m \in \mathbb{N}$, $0 < \sigma < 1$, we define $H^{s}_{\varrho}(\Lambda)$ as the interpolation space between $H^{m+1}_{\varrho}(\Lambda)$ and $H^{m}_{\varrho}(\Lambda)$ of index $1-\sigma$ (cf. [LM]); we denote its norm by $\|\cdot\|_{s,\varrho,\Lambda}.$

Finally, we can apply a rotation and a translation to define similar Sobolev spaces on any segment of length 2 in \mathbb{R}^2. We use the same notation as before to indicate them, as well as their norms.

The Chebyshev weight on the square Ω is defined as $\omega(x) = \varrho(x) \varrho(y)$. Let

$$L^2_\omega(\Omega) = \{ \varphi : \Omega \to \mathbb{R} ; \int_\Omega \varphi^2(x) \omega(x) \, dx < +\infty \}$$

be the Lebesgue space associated with the measure $\omega(x) \, dx$, provided with the inner product

$$\langle \varphi, \psi \rangle_\omega = \int_\Omega \varphi(x) \psi(x) \omega(x) \, dx$$

and the norm $\|\cdot\|_{0,\omega,\Omega} = (\cdot,\cdot)_\omega^{1/2}$. Next, weighted Sobolev spaces are defined as follows: for any integer $m \geq 0$, $H^m_\omega(\Omega)$ is the subspace of $L^2_\omega(\Omega)$ of the functions such that their distributional derivatives of order $k \leq m$ belong to $L^2_\omega(\Omega)$; it is a Hilbert space for the inner product associated with the norm

$$\|\varphi\|_{m,\omega,\Omega} = (\sum_{k=m}^m \|\varphi^{(k)}\|^2_{\omega,\Omega})^{1/2},$$

where
Variational formulations

In order to treat the Legendre and Chebyshev approximations simultaneously, we introduce a letter A which is L in the Legendre case and C in the Chebyshev case, a parameter \(\alpha \) equal to 0 in the Legendre case and to \(-1/2\) in the Chebyshev case (this is the power of \((1-\xi^2) \) involved in the corresponding weight). For instance, the symbol \(H_A^s(\Omega) \) stands for the space \(H^s(\Omega) \) in the Legendre case \((A = L, \alpha = 0) \) and for the space \(H_C^s(\Omega) \) in the Chebyshev case \((A = C, \alpha = -1/2) \).

To write appropriate variational formulations of equations (1.1) and (1.31), we first consider the boundary condition (1.2). Let us assume that the function \(g \) is such that the \(g_J \), \(J \in \mathbb{Z}/4\mathbb{Z} \), satisfy

\[
(1.15) \quad g_J \in H_A^{1-\alpha/2}(\Gamma_J)^2, \quad J \in \mathbb{Z}/4\mathbb{Z} ,
\]

\[
(1.16) \quad \sum_{J \in \mathbb{Z}/4\mathbb{Z}} [g_J \cdot n_J] d\sigma = 0 .
\]

Assume moreover, in the Legendre case,

\[
(1.17)_L \quad \int_0^t [g_J(a_j - t \tau_j) - g_{J+1}(a_j + t \tau_{J+1})]^2 y^{-1} dt < +\infty , \quad J \in \mathbb{Z}/4\mathbb{Z} ,
\]

and, in the Chebyshev case,

\[
(1.17)_C \quad g_J(a_j) = g_{J+1}(a_j) , \quad J \in \mathbb{Z}/4\mathbb{Z} .
\]

Then, there exists [G, Thm 1.5.2.3][BCM, Thm III.1.2] a function \(u_b \) in \(H_A^1(\Omega)^2 \) satisfying

\[
(1.18) \quad \text{div } u_b = 0 \quad \text{in } \Omega ,
\]

\[
(1.19) \quad u_b = g_J \quad \text{on } \Gamma_J , \quad J \in \mathbb{Z}/4\mathbb{Z} .
\]
Next, we define the bilinear form a_A on $H^1_A(\Omega)^2 \times H^1_A(\Omega)^2$ by

\begin{align}
(1.20)_L & \forall \mathbf{u} \in H^1(\Omega)^2, \forall \mathbf{v} \in H^1(\Omega)^2, \quad a_L(\mathbf{u},\mathbf{v}) = \nabla \cdot \mathbf{u} \cdot (\nabla \cdot \mathbf{v}) + \mathbf{u} \cdot \nabla \mathbf{v} \cdot \mathbf{u} + \frac{1}{2} \nabla \cdot \mathbf{u} \cdot \nabla \cdot \mathbf{v}, \\
(1.20)_C & \forall \mathbf{u} \in H^1(\Omega)^2, \forall \mathbf{v} \in H^1(\Omega)^2, \quad a_C(\mathbf{u},\mathbf{v}) = \int_{\Omega} \nabla \cdot \mathbf{u} \cdot (\nabla \cdot \mathbf{v}) \, \nabla \cdot \mathbf{v} \, \mathbf{u}(x) \, \mathbf{v}(x) \, dx.
\end{align}

Clearly, for any \(f \) in \(H^{-1}(\Omega)^2 \) and any \(g \) satisfying (1.15), (1.16) and (1.17), problem (1.3) is equivalent to the following variational one: \textit{Find a pair} \((\mathbf{u},p)\) \textit{in} \(H^1_A(\Omega)^2 \times L^2_A(\Omega) \), \textit{with} \(\mathbf{u}-\mathbf{u}_b \) \textit{in} \(H^1_{A,0}(\Omega)^2 \), \textit{such that}

\begin{align}
(1.21)_A & \forall \mathbf{v} \in H^1_{A,0}(\Omega)^2, \quad a_A(\mathbf{u},\mathbf{v}) + (\nabla \cdot \mathbf{u},\mathbf{v})_A = (f,\mathbf{v})_A, \\
& \forall q \in L^2(\Omega), \quad (\nabla \cdot \mathbf{u},q)_A = 0.
\end{align}

In the Legendre case, it is well-known that problem (1.21)_L admits a unique solution. In the Chebyshev case, it is also known [BCM, Thm III.2] (but may be not so well) that problem (1.21)_C admits a unique solution. In both cases, the solution satisfies the stability estimate

\begin{align}
(1.22) & \|\mathbf{u}\|_{A,0}^2 + \|p\|_{A,0}^2 \leq C (\|f\|^2_{H^{-1}} + \sum_{j \in Z/2^M} g_j \|g_j\|_{L^2}^2 (1-\kappa)^{2A,\kappa_j}).
\end{align}

Of course, if the solution \((\mathbf{u},p)\) of (1.21)_L belongs to \(H^1(\Omega)^2 \times L^2(\Omega) \), then the pair \((\mathbf{u},p - (1/3) \int_{\Omega} p(x) \cdot \mathbf{v}(x) \, dx)\) is the solution of problem (1.21)_C.

As far as the Navier–Stokes equations (1.1)-(1.2) are concerned, for any \(f \) in \(H^{-1}(\Omega)^2 \) and any \(g \) satisfying (1.15), (1.16) and (1.17), they admit the following variational formulation: \textit{Find a pair} \((\mathbf{u},p)\) \textit{in} \(H^1_A(\Omega)^2 \times L^2_A(\Omega) \), \textit{with} \(\mathbf{u}-\mathbf{u}_b \) \textit{in} \(H^1_{A,0}(\Omega)^2 \), \textit{such that}

\begin{align}
(1.23)_A & \forall \mathbf{v} \in H^1_{A,0}(\Omega)^2, \quad a_A(\mathbf{u},\mathbf{v}) + (\nabla \cdot \mathbf{u},\mathbf{v})_A + ((\nabla \cdot \mathbf{u}) \cdot \mathbf{v},\mathbf{v})_A = (f,\mathbf{v})_A, \\
& \forall q \in L^2(\Omega), \quad (\nabla \cdot \mathbf{u},q)_A = 0.
\end{align}

In the Legendre case, this problem admits at least one solution. If this solution belongs to \(H^1(\Omega)^2 \times L^2(\Omega) \), it is also a solution of (1.23)_C, up to an additive constant on the pressure. More details will be given in Section IV.
11. The collocation problems.

We begin by introducing the collocation framework, especially the collocation grid. Then, we present the collocation discretization of the Stokes and Navier-Stokes equations provided with homogeneous boundary conditions. That leads us to define suitable discrete spaces of pressures. Finally, we can extend the collocation problems to the case of inhomogeneous boundary conditions.

11.1. The collocation framework.

Let us introduce some monodimensional notation. For any nonnegative integer \(n \), \(P_n(\Omega) \) denotes the space of restrictions to \(\Omega = [-1,1[\) of polynomials of degree \(\leq n \). We shall use two families of orthogonal polynomials on \(\Omega \):

1) the Legendre polynomials \(L_n^{\alpha} \), which are orthogonal for the measure \(dt \), normalized by the following condition: the Legendre polynomial \(L_n^{\alpha} \) of degree \(n \) and satisfies \(L_n^{\alpha}(\pm 1) = (\pm 1)^n \);
2) the Chebyshev polynomials \(T_n^{\alpha} = \cos(n \arccos \zeta) \), which are orthogonal for the measure \(q(\zeta) \, d\zeta \); of course, the Chebyshev polynomial \(T_n^{\alpha} \) of degree \(n \) and satisfies \(T_n^{\alpha}(\pm 1) = (\pm 1)^n \).

In order to have a unique notation in the Legendre and Chebyshev cases, we introduce, for each real number \(\alpha > -1 \), the Jacobi polynomials \(J_n^{\alpha} \) which are orthogonal for the measure \((1-\zeta^2)^\alpha \, d\zeta \). Since \(J_n^{\alpha} \) is of degree \(n \) and such that
\[
J_n^{\alpha}(\pm 1) = (\pm 1)^n \frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1)},
\]
where \(\Gamma \) denotes the Euler's gamma-function, the Legendre polynomial \(L_n^{\alpha} \) coincides with \(J_n^{0} \), while the Chebyshev polynomial \(T_n^{\alpha} \) is equal to \(4^n \frac{[(n!)^2}{(2n)!}] J_n^{\alpha} \). Finally, we recall that the \(J_n^{\alpha} \), \(n \geq 0 \), are the eigenfunctions of a Sturm-Liouville operator, more precisely they satisfy
\[
(1-\zeta^2) J_n^{\alpha} = n(n+2\alpha+1)(1-\zeta^2)^\alpha J_n^{\alpha} = 0.
\]
We refer to [DR, § 1.13] for the properties of these orthogonal polynomials.

Next, let \(N \) be a fixed integer \(\geq 3 \). We denote by \(\zeta_j^A \), \(0 \leq j \leq N \), the zeros of the polynomial \((1-\zeta^2) J_N^{\alpha} \), with \(-1 = \zeta_0^A < \zeta_1^A < ... < \zeta_N^A = 1 \). There exist weights \(q_j^A \), \(0 \leq j \leq N \), such that the Gauss-Lobatto quadrature formula
\[
(11.2) \quad \int_{-1}^{1} \phi(\zeta) (1-\zeta^2)^\alpha \, d\zeta = \sum_{j=0}^{N} \phi(\zeta_j^A) q_j^A.
\]
is exact for any polynomial in \(P_{2N-1}(\Lambda) \). We shall need the interpolation operator \(i^A_N \) associated with these nodes: for any function \(\varphi \) in \(C^0(\Lambda) \), \(i^A_N \varphi \) belongs to \(P_N(\Lambda) \) and satisfies
\[
(11.3) \quad i^A_N \varphi(\zeta^A_j) = \varphi(\zeta^A_j), \quad 0 \leq j \leq N.
\]

Remark 11.1: It is well-known that the zeros \(\zeta^C_j \) and the weights \(\varphi^C_j \) satisfy
\[
(11.4) \quad \left\{ \begin{array}{l}
\zeta^C_j = \cos((N-j)\pi/N), \quad 0 \leq j \leq N, \\
\varphi^C_j = \pi/N, \quad 1 \leq j \leq N-1, \quad \text{and} \quad \varphi^C_0 = \varphi^C_N = \pi/2N.
\end{array} \right.
\]

Note that, although the \(\arccos \) of the \(\zeta^C_j \), \(0 \leq j \leq N \), are not strictly equidistant, their distribution is coarsely the same.

Example 11.1: For \(N = 15 \), we give the values of \(- \zeta^A_j = \zeta^A_{N-j} \), \(1 \leq j \leq 7 \).

<table>
<thead>
<tr>
<th>Legendre case</th>
<th>Chebyshev case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j = 1)</td>
<td>0.9695680462702179</td>
</tr>
<tr>
<td>(j = 2)</td>
<td>0.8992005330934721</td>
</tr>
<tr>
<td>(j = 3)</td>
<td>0.7920082918618152</td>
</tr>
<tr>
<td>(j = 4)</td>
<td>0.6523887028824931</td>
</tr>
<tr>
<td>(j = 5)</td>
<td>0.4660594218871376</td>
</tr>
<tr>
<td>(j = 6)</td>
<td>0.2998304689007632</td>
</tr>
<tr>
<td>(j = 7)</td>
<td>0.1013262735219494</td>
</tr>
</tbody>
</table>

Now, let us consider the two-dimensional domain \(\Omega = [-1,1]^2 \). For any nonnegative integer \(n \), we denote by \(P_n(\Omega) \) the space of restrictions to \(\Omega \) of polynomials of degree \(\leq n \) with respect to each variable, i.e. the space \(P_{2n}(\Lambda) \cap P_n(\Lambda) \); we also introduce the space \(P_0(\Omega) \) of polynomials of \(P_n(\Omega) \) which are equal to 0 on the boundary \(\partial \Omega \).

For the fixed integer \(N \), we define the grid \(z^A_N \) by
\[
(11.5) \quad z^A_N = \{ x^A_{jk}=\left(\zeta^A_j, \zeta^A_k\right); 0 \leq j, k \leq N \}.
\]
The idea of defining the grid from the nodes of a Gauss type quadrature formula was first presented in [Go].

To each point \(x^A_{jk} \) in \(z^A_N \), we associate the weight \(\varphi^A_{jk} = \varphi^A_j \varphi^A_k \). That allows us to define the following bilinear form on \(C^0(\Omega) \times C^0(\Omega) \)
\[
(11.6) \quad (\varphi, \psi)_A = \sum_{j=0}^N \sum_{k=0}^N \varphi(x^A_{jk}) \psi(x^A_{jk}) \varphi^A_{jk}.
\]
Since the quadrature formula (11.2) is exact on \(P_{2N-1}(\Lambda) \), it coincides with the scalar product \((.,.)_A \) on \(P_{N-1}(\Omega) \); it is known [CQ1, §3] that, on \(P_n(\Omega) \), it is still a scalar product, and the norm \(\| \varphi \|_A = (\varphi, \varphi)_A^{1/2} \) is equivalent on \(P_n(\Omega) \) to the norm \(\| \varphi \|_{0,A,\Omega} \), with equivalence constants independent of \(N \). Finally, we define the interpolation operator
\[J_N^A \text{ on the grid } \Xi_N^A \text{ in the following way: for any function } \phi \text{ in } \mathcal{C}^0(\bar{\Omega}), J_N^A \phi \text{ belongs to } P_N(\Omega) \text{ and satisfies} \]
\[(11.7) \quad J_N^A \phi(x) = \phi(x), \quad x \in \Xi_N^A. \]

11.2. The collocation problem for homogeneous boundary conditions.

We choose the space \(X_N \) of discrete velocities equal to \(P_N(\Omega)^2 \) and the space \(M_N \) of discrete pressures equal to a subspace of \(P_N(\Omega) \) which we will precise later.

Let us assume that the data \(f \) belong to \(\mathcal{C}^0(\Omega)^2 \). The collocation approximation of the homogeneous Stokes problem (1.3)(1.4) is the following: Find a pair \((u_n, p_n) \) in \(X_N \times M_N \) satisfying
\[(11.8)_A \quad \begin{cases} (-\nabla \Delta u_n + \text{grad } p_n)(x) = f(x), & x \in \Xi_N^A \cap \Omega, \\ (\text{div } u_n)(x) = 0, & x \in \Xi_N^A, \end{cases} \]
together with the boundary conditions
\[(11.9)_A \quad u_n(x) = 0, \quad x \in \Xi_N^A \cap \partial \Omega. \]

In order to state a variational formulation of problem \((11.8)_A (11.9)_A\), we define three bilinear forms respectively on \(\mathcal{C}^2(\bar{\Omega})^2 \times \mathcal{C}^0(\bar{\Omega})^2 \), on \(\mathcal{C}^0(\bar{\Omega})^2 \times \mathcal{C}^1(\bar{\Omega}) \) and on \(\mathcal{C}^1(\bar{\Omega}) \times \mathcal{C}^0(\bar{\Omega}) \) by
\[(11.10) \quad \forall \ u \in \mathcal{C}^2(\bar{\Omega})^2, \forall \ v \in \mathcal{C}^0(\bar{\Omega})^2, \quad a_{AN}(u,v) = -\nabla (\Delta u,v)_{AN}, \]
\[(11.11) \quad \forall \ v \in \mathcal{C}^0(\bar{\Omega})^2, \forall \ q \in \mathcal{C}^1(\bar{\Omega}), \quad b_{1AN}(v,q) = (v, \text{grad } q)_{AN}, \]
\[(11.12) \quad \forall \ v \in \mathcal{C}^1(\bar{\Omega})^2, \forall \ q \in \mathcal{C}^0(\bar{\Omega}), \quad b_{2AN}(v,q) = -\left(\text{div } v, q\right)_{AN}. \]

Since the quadrature formula (11.2) is exact on polynomials of degree \(\leq 2N-1 \), we have
\[(11.13)_L \quad \forall \ u \in P_N(\Omega)^2, \forall \ v \in P_N^*(\Omega)^2, \quad a_{LN}(u,v) = (\text{grad } u, \text{grad } v)_{LN}, \]
\[(11.13)_C \quad \forall \ u \in P_N(\Omega)^2, \forall \ v \in P_N^*(\Omega)^2, \quad a_{CN}(u,v) = (\text{grad } u, \text{grad } (v \omega) \omega^{-1})_{AN}. \]

Moreover, we note that, in the Legendre case, the two forms \(b_{1L,N} \) and \(b_{2L,N} \) coincide on \(P_N^*(\Omega)^2 \times P_N(\Omega) \) while, in the Chebyshev case, one has
\[(11.14) \quad \forall \ v \in P_N^*(\Omega)^2, \forall \ q \in P_N(\Omega), \quad b_{1CN}(v,q) = -\left(\text{div } (v \omega) \omega^{-1}, q\right)_{CN}. \]

Now, it is clear that problem \((11.8)_A (11.9)_A\) is equivalent to the following variational one: Find a pair \((u_n, p_n) \) in \(P_N^*(\Omega)^2 \times M_N \) such that
\[(11.15)_A \quad \begin{cases} \forall \ v_n \in P_N^*(\Omega)^2, \quad a_{AN}(u_n, v_n) + b_{1AN}(v_n, p_n) = (f,v_n)_{AN}, \\ \forall q_n \in P_N(\Omega), \quad b_{2AN}(u_n, q_n) = 0. \end{cases} \]

Finally, to discretize the Navier–Stokes equations (1.1)(1.4), let us consider the
nonlinear term. Since the solution \(u \) of (1.1) is divergence-free, the quantity \((u, \nabla)u \) is equal to \(\sum_{i=1}^{2} \partial (u_{i} u)/\partial x_{i} \), where \(u_{1} \) and \(u_{2} \) are the components of the velocity \(u \). Though this property is no longer true for the discrete problem in the general case, it seems more convenient to choose the second form, for reasons of numerical stability. Moreover, if \(u \) is known by its values at the nodes \(x \) of \(\Xi_{N}^{A} \), it is easy to derive the values of \(u_{i} u \) at the same nodes, hence to compute \(J_{N}^{A}(u_{i} u) \). The pseudo-spectral approximation, as suggested in [01], consists in differentiating this interpolant i.e., in replacing \(\partial (u_{i} u)/\partial x_{i} \) by \(\partial J_{N}^{A}(u_{i} u)/\partial x_{i} \).

These two arguments lead us to the following discretization of the Navier-Stokes equations: \textit{Find a pair} \((u_{N}, p_{N})\) \textit{in} \(X_{N} \times M_{N} \) \textit{satisfying}
\[
(\text{II.16})_{A} \quad \begin{bmatrix}
-\nabla \Delta u_{N} + \text{grad} p_{N} + \sum_{i=1}^{2} \partial J_{N}^{A}(u_{N} u_{i}/\partial x_{i})(x) = f(x), \\
(\text{div} u_{N})(x) = 0,
\end{bmatrix}
\]
\(x \in \Xi_{N}^{A} \cap \Omega \),
\(\text{together with the boundary conditions (II.9)}_{A} \).

Of course, this system is equivalent to the variational problem: \textit{Find a pair} \((u_{N}, p_{N})\)
\textit{in} \(P_{N}(\Omega)^{2} \times M_{N} \) \textit{such that}
\[
(\text{II.17})_{A} \quad \begin{bmatrix}
\forall \nu_{N} \in P_{N}(\Omega)^{2}, \quad a_{A,N}(u_{N}, \nu_{N}) + b_{1A,N}(\nu_{N}, p_{N}) \\
+ \sum_{i=1}^{2} \partial J_{N}^{A}(u_{N} u_{i}/\partial x_{i}, \nu_{N})_{A,N} = (f, \nu_{N})_{A,N},
\end{bmatrix}
\ \forall q_{N} \in P_{N}(\Omega), \quad b_{2A,N}(u_{N}, q_{N}) = 0.
\]

Our purpose is to choose appropriate discrete pressure spaces \(M_{N} \), such that problems (II.8) \((\text{II.9})_{A} \) \text{and (II.16) \((\text{II.9})_{A} \) are well-posed.}

\section{1.3. The discrete pressure spaces.}

It is known [Mo][Mé][BMM][BCM] that the space \(P_{N}(\Omega) \) contains "spurious" modes for the pressure, i.e., polynomials the gradient of which vanishes at the collocation nodes of \(\Xi_{N}^{A} \cap \Omega \); of course, even if they can be solved numerically (see Section V), the collocation problems cannot be well-posed if any of these modes belongs to \(M_{N} \), hence we have to characterize them. More precisely, for \(i = 1 \) or \(2 \), we define the subspaces
\[
(\text{II.18}) \quad Z_{iA,N} = \{ q_{N} \in P_{N}(\Omega); \forall \nu_{N} \in P_{N}(\Omega)^{2}, b_{iA,N}(\nu_{N}, q_{N}) = 0 \}.
\]
Let us also introduce, in the Chebyshev case, the polynomial \(s_{N} \) of \(P_{N}(\Lambda) \) which satisfies
\[
(\text{II.19}) \quad \forall \phi_{N} \in P_{N}(\Lambda), \quad \sum_{j=0}^{N} s_{N}(\zeta_{j}^{c}) \phi_{N}(\zeta_{j}^{c}) \theta_{j}^{c} = \int_{-1}^{1} \phi_{N}(\zeta) \text{d}\zeta.
\]
Finally, we need the Lagrange polynomial \(r_{j}^{A} \) associated with each node \(\zeta_{j}^{A} \), \(0 \leq j \leq N \): \(r_{j}^{A} \) belongs to \(P_{N}(\Lambda) \), is equal to \(1 \) in \(\zeta_{j}^{A} \) and to \(0 \) in any other node \(\zeta_{k}^{A} \), \(0 \leq k \leq N, k \neq j \).
We have [BMM, Lemma V.1][BCM, Prop. V.2 and V.3]

Lemma 11.1: The subspace $Z_{iA,N}$, $i = 1$ or 2, is of dimension 8. It is spanned

1) in the Legendre case, for $i = 1$ or 2, by $\{L_0, L_N\} \otimes^2$ and $\{r_0^C, r_N^C\} \otimes^2$;
2) in the Chebyshev case, for $i = 1$, by $\{T_0, T_N\} \otimes^2$ and $\{r_0^C, r_N^C\} \otimes^2$, for $i = 2$, by $\{s_N, T_N\} \otimes^2$ and $\{r_0^C, r_N^C\} \otimes^2$.

Let $M_{1A,N}$ denote the orthogonal subspace of $Z_{iA,N}$ in $P_N(\Omega)$ with respect to the scalar product $(\cdot, \cdot)_{A,N}$. In the sequel, we shall always choose the space of discrete pressures M_N such that the orthogonal projection operator $\pi_N : M_N \to M_{1A,N}$ with respect to the scalar product $(\cdot, \cdot)_{A,N}$ satisfies

\[(11.20) \quad \forall \, q_N \in M_N, \quad \|q_N\|_{0,A,\Omega} \leq c \|\pi_N q_N\|_{0,A,\Omega} .\]

Remark 11.2: Of course, the choice $M_N = M_{1A,N}$ is the most natural one. However, this space has not good approximation properties since it can be checked that all its elements vanish in the corners of the domain Ω (which is a priori not the case for the exact pressure). On the opposite, for any real number λ, $0 < \lambda < 1$, it is possible to build subspaces M_N which satisfy (11.20) and such that the following inclusion holds

\[(11.21) \quad P_{[\lambda N]}(\Omega) \subset M_N \quad ([\lambda N]$ denotes the integral part of λN),\]

which implies that these M_N have good approximation properties. Examples of such spaces are given in [BMM, Prop. V.3] in the Legendre case and in [BCM, (IV.61) and (IV.49)] in the Chebyshev case.

Now, problem (11.8) \(A\) (11.9) \(A\) seems overspecified, since there are eight equations more than unknowns. Due to the definition (11.16) of $Z_{2A,N}$, it turns out that problem (11.15) \(A\) is equivalent to: **Find a pair** (u_N, p_N) in $P_N(\Omega)^2 \times M_N$ such that

\[(11.22) \quad \forall \, \nu_N \in P_N(\Omega)^2, \, \quad a_{A,N}(u_N, \nu_N) + b_{1A,N}(\nu_N, p_N) = (f, \nu_N)_{A,N} , \quad \forall \, q_N \in M_{2A,N}, \quad b_{2A,N}(u_N, q_N) = 0 .\]

Clearly, the continuity equation in (11.8) \(A\) is redundant. However, let us denote by S_c the set of the four corners of the square Ω, and introduce a set S^A of four collocation points in $\Xi_N \setminus S_c$ satisfying the following property:

\[(11.23) \quad \det (q_K(x_J)) \neq 0 , \quad 1 \leq J, K \leq 4 ,\]

where x_J runs through S^A and q_K runs through $\{L_0, L_N\} \otimes^2$ in the Legendre case and through $\{s_N, T_N\} \otimes^2$ in the Chebyshev case. The following result is proven in [BMM, Prop. V.1] and [BCM, Prop. V.7].
Proposition 11.1: Assume that hypothesis (11.23) holds. Problem (11.8) \(A \) (11.9) \(A \) is equivalent to the following one: Find \((u_N, p_N)\) in \(X_N \times M_N\) satisfying
\[
(11.24)_A \begin{cases}
(- \nu \Delta u_N + \text{grad} p_N)(x) = f(x), & x \in \Omega \cap \Omega, \\
(\text{div} u_N)(x) = 0, & x \in \Omega \setminus (S \cup S^A).
\end{cases}
\]

Together with the boundary conditions (11.9) \(A \).

In the same way, we have

Proposition 11.2: Assume that hypothesis (11.23) holds. Problem (11.16) \(A \) (11.9) \(A \) is equivalent to the following one: Find \((u_N, p_N)\) in \(X_N \times M_N\) satisfying
\[
(11.25)_A \begin{cases}
[- \nu \Delta u_N + \text{grad} p_N + \sum_{j=1}^{2} \partial_j^{\Omega} (u_N, u_N) / \partial x_j](x) = f(x), & x \in \Omega \cap \Omega, \\
(\text{div} u_N)(x) = 0, & x \in \Omega \setminus (S \cup S^A).
\end{cases}
\]

Together with the boundary conditions (11.9) \(A \).

In Section V, the reader will find practical ideas for solving this system, in particular how to choose a convenient set of degrees of freedom for the pressure.

11.4. The collocation problem for inhomogeneous boundary conditions.

In this paragraph we assume that \(f \) belongs to \(C^0(\Omega) \) and that the boundary data \(g \) are such that the \(g_J = g_{\mid \Gamma_J} \) \(J \in \mathbb{Z} / 4 \mathbb{N} \), satisfy (1.15) and (1.16) but also belong to \(C^0(\bar{\Gamma}_J)^2 \) and satisfy
\[
(11.26) \quad g_J(a_J) = g_{J+1}(a_J) \quad J \in \mathbb{Z} / 4 \mathbb{N}.
\]

We are now interested in the approximation of problem (1.3)(1.2). The first idea is to use the same discrete problem (11.8) \(A \) as in the homogeneous case and simply replace the boundary equation (11.9) \(A \) by
\[
(11.27)_A \quad u_N(x) = g_J(x), \quad x \in \Omega \cap \bar{\Gamma}_J, \quad J \in \mathbb{Z} / 4 \mathbb{N}.
\]

But it turns out that this problem has no solution in the general case. Indeed, if the equation \(\text{div} u_N \) was satisfied in any point of \(\Omega^A \), we would derive \(\text{div} u_N = 0 \) exactly. In particular this would imply five conditions for \(u_N \) at the boundary:
\[
(11.28) \quad (\text{div} u_N)(a_J) = 0, \quad J \in \mathbb{Z} / 4 \mathbb{N},
\]
\[
(11.29) \quad \sum_{J \in \mathbb{Z} / 4 \mathbb{N}} \int_{\Gamma_J} u_N \cdot n_J \, d\sigma = 0.
\]

These equations solely depend upon the values of \(u_N \) at the boundary, hence upon the \(t_A^J g_J \), \(J \in \mathbb{Z} / 4 \mathbb{N} \). In general they are not verified, even if (1.16) holds (examples of functions \(g_J \) satisfying our assumptions but violating (11.28) and (11.29) are given in [BCM, (V.6)]) and
That is why we propose the following discrete problem: \(\text{Find } (u_n, p_n) \text{ in } X_N \times M_N \) satisfying (11.22) together with the boundary conditions (11.27).

Note however that this last problem is not so far from a collocation one, as the following proposition states it.

Proposition 11.3: Any solution \((u_n, p_n) \) of problem (11.22) (11.27) in \(X_N \times M_N \) satisfies the collocation equation
\[
(11.30)_A \quad (-\nabla \Delta u_n + \text{grad } p_n)(x) = f(x), \quad x \in \Xi^A \cap \Omega.
\]

Remark 11.3: By noting that the space \(M_{2A,N}^1 \) is exactly the image of \(P^*_N(\Omega)^2 \) by the divergence operator, it can be seen that solving the equation
\[
\forall q \in M_{2A,N}^1, \quad b_{2A,N}(u_n, q) = 0
\]
in (11.22) is actually equivalent to the minimization of \(\| \text{div } u_n \|_{A,N} \); this condition is implemented in practice, as will be seen in Section V (cf. also [Mé]).

In the same way, we define the approximation of the inhomogeneous Navier–Stokes equations (1.1)(1.2) as: \(\text{Find } (u_n, p_n) \text{ in } X_N \times M_N \) such that
\[
(11.31)_A \quad \begin{cases}
\forall v_n \in P^*_N(\Omega)^2, \quad a_{A,N}(u_n, v_n) + b_{1A,N}(v_n, p_n) \\
+ \sum_{i=1}^2 (\partial^A_N(u_n u_n) / \partial x_i, v_n)_{A,N} = (f, v_n)_{A,N} \\
\forall q_n \in M_{2A,N}^1, \quad b_{2A,N}(u_n, q_n) = 0
\end{cases}
\]
together with the boundary conditions (11.27). We also have the

Proposition 11.4: Any solution \((u_n, p_n) \) of problem (11.31) (11.27) in \(X_N \times M_N \) satisfies the collocation equation
\[
(11.32)_A \quad [-\nabla u_n + \text{grad } p_n + \sum_{i=1}^2 (\partial^A_N(u_n u_n) / \partial x_i)](x) = f(x), \quad x \in \Xi^A \cap \Omega.
\]

In the following sections, it will be proven that the four discrete problems are well-posed.
III. Convergence results for the Stokes problem.

The convergence of the method in the case of homogeneous boundary conditions has already been thoroughly analysed [BMM][BCM], hence we only recall the results. Then, we extend them to the nonhomogeneous case.

III.1. The case of homogeneous boundary conditions.

Problem (11.8)_{A} (11.9)_{A} is actually analysed through its variational formulation (11.22)_{A}. We recall the main properties of the bilinear forms involved in this formulation, which are the cornerstone of the study. For i = 1 or 2, let us define the kernels

\[K_{iN}^{A} = \{ \mathbf{v}_N \in P_{n}^{*}(\Omega)^2 ; \forall q_N \in P_{n}(\Omega), b_{iN}^{A}(\mathbf{v}_N, q_N) = 0 \} . \]

Clearly, \(K_{1N}^{A} \) in the Legendre case and \(K_{2N}^{A} \) in both cases coincide with the subspace of divergence-free polynomials in \(P_{n}^{*}(\Omega)^2 \), while \(K_{1N}^{A} \) in the Chebyshev case is the subspace of polynomials \(\mathbf{v}_N \) in \(P_{n}^{*}(\Omega)^2 \) such that \(\text{div} \left(\mathbf{v}_N \omega \right) \) is equal to 0.

Proposition III.1: There exist constants \(\gamma \), \(\delta_1 \), and \(\delta_2 \), independent of \(N \) such that the forms \(a_{iN}^{A} \), \(b_{1N}^{A} \), and \(b_{2N}^{A} \) satisfy the following continuity properties

\[
\begin{align*}
\forall u_N \in P_{n}^{*}(\Omega)^2, \forall v_N \in P_{n}^{*}(\Omega)^2, \quad | a_{iN}^{A}(u_N, v_N) | &\leq \gamma \| u_N \|_{1,i,A} \| v_N \|_{1,i,A} , \\
\forall v_N \in P_{n}^{*}(\Omega)^2, \forall q_N \in P_{n}(\Omega), \quad | b_{1N}^{A}(v_N, q_N) | &\leq \delta_1 \| v_N \|_{1,i,A} \| q_N \|_{0,i,A} , \\
\forall v_N \in P_{n}(\Omega)^2, \forall q_N \in P_{n}(\Omega), \quad | b_{2N}^{A}(v_N, q_N) | &\leq \delta_2 \| v_N \|_{1,i,A} \| q_N \|_{0,i,A} .
\end{align*}
\]

In the Legendre case, there exists a constant \(\alpha_L > 0 \) independent of \(N \) such that

\[
\forall w_N \in P_{n}^{*}(\Omega)^2, \quad a_{L,N}(w_N, w_N) \geq \alpha_L \| w_N \|_{1,i,L}^2 ;
\]

in the Chebyshev case, there exists a constant \(\alpha_C > 0 \) independent of \(N \) such that

\[
\forall w_N \in K_{2N}^{A}, \exists v_N \in K_{1N}^{A}, v_N \neq 0 / a_{C,N}(w_N, v_N) \geq \alpha_C \| w_N \|_{1,i,U} \| v_N \|_{1,i,U} ;
\]

There exists a constant \(\delta_1 > 0 \) independent of \(N \) such that

\[
\forall q_N \in M_{iA}^{1}, \exists v_N \in P_{n}(\Omega)^2, v_N \neq 0 / b_{iN}^{A}(v_N, q_N) \geq \delta_1 N^{-2} \| v_N \|_{1,i,A} \| q_N \|_{0,i,A} ;
\]

if hypothesis (11.20) holds, there exists a constant \(\delta_1 \) independent of \(N \) such that

\[
\forall q_N \in M_{N}, \exists v_N \in P_{n}(\Omega)^2, v_N \neq 0 / b_{1N}^{A}(v_N, q_N) \geq \delta_1 N^{-2} \| v_N \|_{1,i,A} \| q_N \|_{0,i,A} .
\]

Using a well-known theorem for saddle-point problems [B][GR, Chapter 1, Corollary 4.1][T, Chap. 1, Th. 2.1] in the Legendre case and its generalization to nonsymmetric
problems [N][BCM, Corollary 11.2], we derive from this proposition the following theorems [BMM, Thm V.1][BCM, Thm V.1].

Theorem III.1: Assume that hypothesis (11.20) holds. For any function \(f \) in \(\mathcal{O}^0(\Omega)^2 \), the collocation approximation (11.8) to the Stokes problem (1.3)(1.4) has a unique solution \((u_N, p_N)\) in \(P_N^*(\Omega)^2 \times M_N \).

The error estimates have been proven respectively in [BMM, Thm V.1 and V.2] in the Legendre case and in [BCM, Thm V.2 and V.3] in the Chebyshev case. Note that the main arguments of the proofs will be recalled in the following subsection, in order to study the inhomogeneous case.

Theorem III.2: Assume that hypothesis (11.20) holds, that the solution \((u, p)\) of the Stokes problem (1.3)(1.4) is such that \(u \) belongs to \(H^s_A(\Omega)^2 \) for a real number \(s \geq 1 \), and the data \(f \) belong to \(H^s_A(\Omega)^2 \) for a real number \(s > 1 \). Then the solution \((u_N, p_N)\) of problem (11.8) satisfies

\[
\|u-u_N\|_{1,A,\Omega} + \|p-p_N\|_{0,A,\Omega} \leq c(N^{-s} + \|u\|_{s,A,\Omega} + \|f\|_{s,A,\Omega})
\]

for a constant \(c \) independent of \(N \).

Theorem III.3: Assume that hypotheses (11.20) and (11.21) hold and that the solution \((u, p)\) of the Stokes problem (1.3)(1.4) belongs to \(H^s_A(\Omega)^2 \times H^{s-1}_A(\Omega) \) for a real number \(s \geq 1 \), and the data \(f \) belong to \(H^s_A(\Omega)^2 \) for a real number \(s > 1 \). Then the solution \((u_N, p_N)\) of problem (11.8) satisfies

\[
\|p-p_N\|_{0,A,\Omega} \leq c(N^{-s} + \|u\|_{s,A,\Omega} + \|f\|_{s,A,\Omega})
\]

for a constant \(c \) independent of \(N \).

Remark III.1: Let us consider for a while the problem: Find \((u_N, p_N)\) in \(P_N^*(\Omega)^2 \times M_N \) such that

\[
\begin{align*}
\forall \ n \in P_N^*(\Omega)^2, \quad & a_{AN}(u_N, v_N) + b_{1AN}(v_N, p_N) = (f, v_N)_A, \\
\forall \ n \in P_N(\Omega), \quad & b_{2AN}(u_N, q_N) = 0,
\end{align*}
\]

which is problem (11.15) with \((f, v_N)_{AN}\) replaced by \((f, v_N)_A\). Then, Theorems III.1 to III.3 are still valid. Furthermore, by reading the proof of [BMM][BCM], it is easy to see that the estimates (III.6) and (III.7) can be replaced respectively by

\[
\|u-u_N\|_{1,A,\Omega} \leq c N^{-s} \|u\|_{s,A,\Omega}
\]

and

\[
\|p-p_N\|_{0,A,\Omega} \leq c N^{-s} \|u\|_{s,A,\Omega} + \|p\|_{s-1,A,\Omega}
\]
This will be used in the following section.

11.2. The case of inhomogeneous boundary conditions.

Our purpose is now to study the discrete problem (11.22) \(_A\) (11.27) \(_A\). Since we need an element in the space of trial functions \(X_N\) that satisfies, in a discrete sense, the boundary condition (1.2), we state the following lifting result that can be derived from [BM1, Prop. V.1].

Lemma 11.1: There exists an operator \(Q^A_N\) from the subspace of all polynomials \(P_N = (\phi_{N,J})_{J \in \mathbb{Z}/4\mathbb{Z}}\) in \(P_N(\Omega)\) such that, for any such polynomial \(\Phi_N\),

\[
\begin{align*}
(11.11) & & \phi_{N,J}(a_j) = \phi_{N,J+1}(a_j) \quad J \in \mathbb{Z}/4\mathbb{Z}, \\
& & \text{into} \ P_N(\Omega) \text{ such that, for any such polynomial} \ \Phi_N, \\
(11.12) & & Q^A_N(\Phi_N) = \phi_{N,J} \quad \text{on} \ G_j, \ J \in \mathbb{Z}/4\mathbb{Z}.
\end{align*}
\]

Moreover the following estimate is satisfied

\[
(11.13) \quad \|Q^A_N(\Phi_N)\|_{1,1,\Omega} \leq c N^{1-\alpha} \sum_{J \in \mathbb{Z}/4\mathbb{Z}} \|\psi_{N,J}\|_{0,A,G_j}.
\]

Sketch of proof: From [BM1, Prop. V.1], we derive that there exists an operator \(Q^A_N\) which satisfies (11.12) and such that one has

\[
\|Q^A_N(\Phi_N)\|_{1,1,\Omega} \leq c N^{1-\alpha} \sum_{J \in \mathbb{Z}/4\mathbb{Z}} \|\psi_{N,J}\|_{0,A,G_j} + N^{-2\alpha} \sum_{J \in \mathbb{Z}/4\mathbb{Z}} |\phi_{N,J}(a_j)|.
\]

Then, estimate (11.13) follows from the previous line and the inverse inequality [Q, (2.4) and (3.2)], valid for any polynomial \(\phi_N\) in \(P_N(\Lambda)\),

\[
\|\phi_N\|_{L^\infty(\Lambda)} \leq c N^{1+\alpha} \|\phi_N\|_{0,1,\Lambda}.
\]

The previous result allows us to check that the discrete problem (11.22) \(_A\) (11.27) \(_A\) is well-posed.

Theorem 11.4: Assume that hypothesis (11.20) holds. For any function \(f\) in \(C^0(\Omega)^2\), the collocation approximation (11.22) \(_A\) (11.27) \(_A\) of the Stokes problem (1.3)(1.2) has a unique solution \((u_N, p_N)\) in \(X_N \times M_N\).

Proof: If we choose \(u_{N,b}\) equal to the image of \((\psi_{N,J}^A g_j)_{J \in \mathbb{Z}/4\mathbb{Z}}\) by the operator \(Q^A_N\), the polynomial \(\tilde{u}_N = u_N - u_{N,b}\) belongs to \(P^+_N(\Omega)^2\). Then the pair \((u_N, p_N)\) is a solution of (11.22) \(_A\) (11.27) \(_A\) if and only if the pair \((\tilde{u}_N, p_N)\) satisfies:
Next, we will study the approximation of divergence-free functions by divergence-free polynomials, thus generalizing the result of [SY] to the case of non-homogeneous boundary conditions. Let us set

\[K_A(\Omega) = \{ w \in H^3_A(\Omega)^2 : \text{div } w = 0 \text{ in } \Omega \} . \]

Lemma 11.2: There exists an operator \(R_N^A \) from \(K_A(\Omega) \) into \(P_N(\Omega)^2 \cap K_A(\Omega) \) such that the following estimate is satisfied for any real number \(s \geq 3 \): for any function \(w \) in \(K_A(\Omega) \cap H^s_A(\Omega)^2 \),

\[\| w - R_N^A w \|_{1,A,0} \leq c N^{1-s} \| w \|_{s,A,0} . \]

Proof: Let us recall [M1, Remark 11.3 and Lemma IV.2] that there exists an operator \(\pi_N^{A,2} \) from \(H^2_A(\Lambda) \) into \(P_N(\Lambda) \) which satisfies for any function \(\varphi \) in \(H^2_A(\Lambda) \)

\[\pi_N^{A,2} \varphi(-1) = \varphi(-1) \text{ and } \pi_N^{A,2} \varphi(+1) = \varphi(+1) , \]

\[(d\pi_N^{A,2} \varphi/dc)(-1) = (d\varphi/dc)(-1) \text{ and } (d\pi_N^{A,2} \varphi/dc)(+1) = (d\varphi/dc)(+1) . \]

Moreover, we have for any function \(\varphi \) in \(H^s_A(\Lambda) \), \(s \geq 2 \),

\[\| \varphi - \pi_N^{A,2} \varphi \|_{2,A,\Lambda} + N \| \varphi - \pi_N^{A,2} \varphi \|_{1,A,\Lambda} + N^2 \| \varphi - \pi_N^{A,2} \varphi \|_{0,A,\Lambda} \leq c N^{2-s} \| \varphi \|_{s,A,\Lambda} . \]

Next, for any function \(w \) in \(K_A(\Omega) \), there exists a unique function \(\psi \) in \(H^s_A(\Omega) \cap L^2_{A,0}(\Omega) \) such that \(w \) is equal to \(\text{curl } \psi \) in \(\Omega \); moreover, if \(w \) belongs to \(H^2_A(\Omega)^2 \), \(s \geq 3 \), it satisfies

\[\| \psi \|_{s+1,A,\Omega} \leq c \| w \|_{s,A,\Omega} . \]

Setting \(\psi_N = (\pi_N^{A,2} \otimes \pi_N^{A,2}) \psi \), we define \(R_N^A w \) as being equal to \(\text{curl } \psi_N \). It remains to estimate

\[\| w - R_N^A w \|_{1,A,\Omega} \leq c \| \psi - \psi_N \|_{2,A,\Omega} \]

\[\leq c (\| \psi - \psi_N \|_{H^2_A(\Lambda), L^2_A(\Lambda)} + \| \psi - \psi_N \|_{H^1_A(\Lambda), H^1_A(\Lambda)} + \| \psi - \psi_N \|_{L^2_A(\Lambda), H^1_A(\Lambda)}) . \]

From (11.18), we infer

\[\| \psi - (\pi_N^{A,2} \otimes \pi_N^{A,2}) \psi \|_{H^2_A(\Lambda), L^2_A(\Lambda)} \]

\[\leq \| \psi - (\pi_N^{A,2} \otimes \text{id}) \psi \|_{H^2_A(\Lambda), L^2_A(\Lambda)} + \| \pi_N^{A,2} \otimes (\text{id} - \pi_N^{A,2}) \psi \|_{H^2_A(\Lambda), L^2_A(\Lambda)} \]

\[\leq c N^{1-s} \| \psi \|_{H^2_A(\Lambda), L^2_A(\Lambda)} + \| \text{id} \otimes (\text{id} - \pi_N^{A,2}) \psi \|_{H^2_A(\Lambda), L^2_A(\Lambda)} \]

\[\leq c N^{1-s} (\| \psi \|_{H^2_A(\Lambda), L^2_A(\Lambda)} + \| \psi \|_{H^1_A(\Lambda), H^1_A(\Lambda)}) . \]
Of course, other divergence-free polynomials approximations of divergence-free functions in $H_A^2(\Omega)^2$ can be built. However, note that, for any function w in $K_A(\Omega)$, the operator R_w satisfies

$$ (111.20) \quad (R_w^A)(a_j) = w(a_j) \quad J \in \mathbb{Z}/4\mathbb{Z} . $$

Moreover, it has the following useful property.

Corollary III.1: The operator R_w^A satisfies the following estimate for any real number $\tau > 2$: for any function w in $K_A(\Omega)$ such that the trace $w_{|\Gamma_J}$ belongs to $H^3_A(\Gamma_J)^2$,

$$ (111.21) \quad \| w_{|\Gamma_J} - R_w^A w_{|\Gamma_J} \|_{0,A,\Gamma_J} \leq c N^{-\tau} \| w_{|\Gamma_J} \|_{1,A,\Gamma_J} . $$

Proof: We write

$$ \| w_{|\Gamma_J} - R_w^A w_{|\Gamma_J} \|_{0,A,\Gamma_J} \leq c \left(\| \partial \psi / \partial x \partial \psi_N / \partial x \|_{0,A,\Gamma_J} + \| \partial \psi / \partial y \partial \psi_N / \partial y \|_{0,A,\Gamma_J} \right) . $$

In the case $J = 1$ or III for instance, using (111.17) and noting that the operators $\partial / \partial x$ and $i \partial / \partial n$ commute, we have

$$ (\partial (\pi^A_0 \partial_0 \pi^A_0) \psi / \partial x)(\pm 1,y) = (\partial (i \partial_0 \pi^A_0) \psi / \partial x)(\pm 1,y) = (i \partial_0 \pi^A_0 \partial \psi / \partial x)(\pm 1,y) \quad \text{and, similarly,} $$

$$ (\partial (\pi^A_0 \partial_0 \pi^A_0) \psi / \partial y)(\pm 1,y) = (\partial (i \partial_0 \pi^A_0) \psi / \partial y)(\pm 1,y) , $$

so that, by (111.18),

$$ \| w_{|\Gamma_J} - R_w^A w_{|\Gamma_J} \|_{0,A,\Gamma_J} \leq c \left(\| \partial \psi / \partial x \|_{0,A,\Gamma_J} + \| \partial \psi / \partial y \|_{0,A,\Gamma_J} \right) + \| \psi - (i \partial_0 \pi^A_0 \psi) \|_{1,A,\Gamma_J} \right) $$

$$ \leq c N^{-\tau} \left(\| \partial \psi / \partial x \|_{1,A,\Gamma_J} + \| \psi \|_{1,A,\Gamma_J} \right) \leq c N^{-\tau} \| w_{|\Gamma_J} \|_{1,A,\Gamma_J} . $$

The cases $J = II$ and IV are studied in the same way by exchanging the variables x and y.

We are going to introduce a slightly different approximation to the Stokes problem (1.3)(1.2), that satisfies conditions (1.16) and (1.26). In all that follows, we assume that, if (u,p) is the solution of (1.3)(1.2), the function u belongs to $H^3_A(\Omega)^2$; then, we set

$$ (111.22) \quad z_{n-1} = R_w^A u . $$
Let us remark that the data $z_{N-1} I_{J}, J \in \mathbb{Z}/4\mathbb{Z}$, define a boundary condition that satisfies (1.16) and (11.26). Hence we can define two auxiliary problems

a) Find (\hat{u}, \hat{p}) in $H_{A}^{1}(\Omega)^{2} \times L_{A}^{2}(\Omega)$ such that

$$\begin{aligned}
(11.23)_{A} \quad & \forall \mathbf{v} \in H_{A}^{1}(\Omega)^{2}, \quad a_{A}(\hat{u}, \mathbf{v}) + (v, \text{grad } \hat{p})_{A} = (f, \mathbf{v})_{A}, \\
& \forall q \in L_{A}^{2}(\Omega), \quad (\text{div } \hat{u}, q)_{A} = 0,
\end{aligned}$$

and satisfying the boundary conditions

$$\begin{aligned}
(11.24)_{A} \quad & \hat{u} = z_{N-1} I_{J} \quad \text{on } \Gamma_{J}, J \in \mathbb{Z}/4\mathbb{Z};
\end{aligned}$$

b) Find $(\hat{u}_{N}, \hat{p}_{N})$ in $P_{N}(\Omega)^{2} \times M_{N}$ such that

$$\begin{aligned}
(11.25)_{A} \quad & \forall \mathbf{v}_{N} \in P_{N}^{*}(\Omega)^{2}, \quad a_{A,N}(\hat{u}_{N}, \mathbf{v}_{N}) + b_{1A,N}(\mathbf{v}_{N}, \hat{p}_{N}) = (f, \mathbf{v}_{N})_{A,N}, \\
& \forall q_{N} \in M_{2A,N}, \quad b_{2A,N}(\hat{u}_{N}, q_{N}) = 0,
\end{aligned}$$

and satisfying the boundary conditions

$$\begin{aligned}
(11.26)_{A} \quad & \hat{u}_{N}(x) = z_{N-1} I_{J}(x), x \in \mathcal{D}_{N} \cap \Gamma_{J}, \quad J \in \mathbb{Z}/4\mathbb{Z}.
\end{aligned}$$

The error bound between the solutions u and u_{N} of problem (1.3)(1.2) and (11.22) (11.27) will be obtained by studying the differences between u and \hat{u}, \hat{u} and \hat{u}_{N}, \hat{u}_{N} and u_{N}.

Lemma III.3: Assume that the solution (u, p) of the Stokes problem (1.3)(1.2) is such that u belongs to $H_{A}^{s}(\Omega)^{2}$ for a real number $s > 3$. The following estimate is satisfied

$$\begin{aligned}
(11.27) \quad & \|u - \hat{u}\|_{1,A,\Omega} \leq c N^{1+s} \|u\|_{s,A,\Omega}
\end{aligned}$$

for a constant $c > 0$ independent of N.

Proof: Since the pair $u - \hat{u}$ is the solution of a Stokes problem with null body forces and boundary data equal to $u_{I_{J}} - z_{N-1} I_{J}$, $J \in \mathbb{Z}/4\mathbb{Z}$, it follows from the stability estimate (1.22) that

$$\begin{aligned}
\|u - \hat{u}\|_{1,A,\Omega} \leq c \sum_{J \in \mathbb{Z}/4\mathbb{Z}} \|u_{I_{J}} - z_{N-1} I_{J}\|_{1-\alpha}/2,A,\Gamma_{J}.
\end{aligned}$$

Due to the trace theorem [LM, Chap. 1, Th. 8.3][BM, Thm II.2], that implies

$$\begin{aligned}
\|u - \hat{u}\|_{1,A,\Omega} \leq c \|u - z_{N-1}\|_{1,A,\Omega}.
\end{aligned}$$

Then, we deduce the lemma from Lemma III.2.

Similarly we can obtain an error bound between u_{N} and \hat{u}_{N}.

Lemma III.4: Assume that the boundary data $g_{J}, J \in \mathbb{Z}/4\mathbb{Z}$, belong to $H_{0}^{s}(\Gamma_{J})^{2}$ for a real number $\tau > 2$. The following estimate is satisfied

$$\begin{aligned}
(11.28) \quad & \|u_{N} - \hat{u}_{N}\|_{1,A,\Omega} \leq c N^{7/2-\tau} \sum_{J \in \mathbb{Z}/4\mathbb{Z}} \|g_{I_{J}}\|_{\tau,A,\Gamma_{J}}
\end{aligned}$$

for a constant $c > 0$ independent of N.
Proof: It follows from problems (11.22) and (11.27) and (11.25) and (11.26) that the polynomial \(u_N - \hat{u}_N \) is the collocation approximation of a Stokes problem with null body forces and boundary data equal to \(i_N \mathbf{g}_J - z_{N-1} \mathbf{f}_J \), \(J \in \mathbb{Z}/4\mathbb{Z} \). Let \(w_{N,b} \) denote the image of \(\{ i_N \mathbf{g}_J - z_{N-1} \mathbf{f}_J \}, J \in \mathbb{Z}/4\mathbb{Z} \) by the operator \(Q^A_N \). Setting \(w_N = u_N - \hat{u}_N - w_{N,b} \) and \(r_N = p_N - \hat{p}_N \), we see that the pair \((w_N, r_N) \) is the only solution in \(P_N^* (\Omega)^2 \times M_N \) of

\[
(11.29)_A \quad \forall \mathbf{v}_N \in P_N^* (\Omega)^2, \quad a_{A,N}(w_N, \mathbf{v}_N) + b_{1A,N}(\mathbf{v}_N, r_N) = - a_{A,N}(w_{N,b}, \mathbf{v}_N),
\]

\[
\forall q_N \in M_{2A,N}, \quad b_{2A,N}(w_N, q_N) = - b_{2A,N}(w_{N,b}, q_N).
\]

Using [BCM, Corollary 1.2] together with Proposition III.1, we obtain

\[
\| w_N \|_{1,A,\Omega} \leq c N^2 \| w_{N,b} \|_{1,A,\Omega},
\]

so that, using Lemma III.1,

\[
\| u_N - \hat{u}_N \|_{1,A,\Omega} \leq c N^2 \| \sum_{J \in \mathbb{Z}/4\mathbb{Z}} (\| g_J - i_N \mathbf{g}_J \|_{0,A,f_J} + \| u_{f_J} - z_{N-1} \mathbf{f}_J \|_{0,A,f_J}) \|.
\]

The lemma follows from Corollary III.1 and from the following estimate for the interpolation error [CQ1 Thms 3.1 and 3.2], valid for any real number \(s > 1/2 \):

\[
(11.30) \quad \| \psi - i_N \psi \|_{0,A,\lambda} \leq c N^{1/2 + \alpha - s} \| \psi \|_{s, A, \lambda},
\]

Finally, in order to get now an error bound between \(\hat{u} \) and \(\hat{u}_N \), we note that problem (11.25) and (11.26) is a discrete approximation of problem (11.23) and (11.24). That allows us to derive the following estimate.

Lemma III.5: Assume that the solution \((u, p)\) of the Stokes problem (1.3)(1.2) belongs to \(H_A^2(\Omega)^2 \times H_A^{s-1}(\Omega) \) for a real number \(s \geq 3 \), that the data \(f \) belong to \(H_A^2(\Omega)^2 \) for a real number \(s > 1 \) and that the boundary data \(g_J, J \in \mathbb{Z}/4\mathbb{Z} \), belong to \(H_A^2(\Gamma_J)^2 \) for a real number \(\tau > 2 \). The following estimate is satisfied

\[
(11.31) \quad \| \hat{u} - \hat{u}_N \|_{1,A,\Omega} \leq c \left(N^{-s} \| u \|_{s,A,\Omega} + N^{1+\alpha-\tau} \| f \|_{s,A,\Omega} + N^{-\tau} \| g_J \|_{s,A,\Omega} \right)
\]

for a constant \(c > 0 \) independent of \(N \).

Proof: Let us set \(u^* = \hat{u} - z_{N-1} \) and \(u^*_N = \hat{u}_N - z_{N-1} \). Thus, \((u^*, \hat{p})\) is the solution in \(H_{A,0}^1(\Omega)^2 \times L_{A,0}^2(\Omega) \) of

\[
(11.32)_A \quad \forall \mathbf{v} \in H_{A,0}^1(\Omega)^2, \quad a_A(u^*, \mathbf{v}) + (\mathbf{v}, \nabla \hat{p})_A = (f, \mathbf{v})_A - a_A(z_{N-1}, \mathbf{v}),
\]

\[
\forall q \in L_{A,0}^2(\Omega), \quad (\text{div} \ u^*, q)_A = 0,
\]

and \((u^*_N, \hat{p}_N)\) is the solution in \(P_N^* (\Omega)^2 \times M_N \) of
The more convenient here is to choose \(v_{N-1} = w = 0 \). So it remains to estimate \(\|u^*\|_{1,A,\Omega} \) and the last term.

1) We have

\[
\|u^*\|_{1,A,\Omega} \leq \|u - \hat{u}\|_{1,A,\Omega} + \|u - z_{N-1}\|_{1,A,\Omega},
\]

so that, by Lemmas 11.2 and 11.3,

\[
\|u^*\|_{1,A,\Omega} \leq c\left(N^{-\alpha} \|u\|_s_{A,\Omega} + N^{-\alpha} \sum_{j \in Z/4} \|g_j\|_{s,A,j} \right),
\]

2) We recall [CO1, §3] that the scalar product \((.,.)_A \) induces a norm on \(P_N(\Omega) \) which is equivalent to \(\|\cdot\|_{0,A,\Omega} \). Hence, choosing \(f_{N-1} \) in \(P_{N-1}(\Omega)^2 \), we obtain for any \(z_N \) in \(P_N(\Omega)^2 \)

\[
(f, z_N)_A - (f, z_{N-1})_A = (f - f_{N-1}, z_N)_A - (0^A, z_N)_A,
\]

\[
\leq c \left(\|f - f_{N-1}\|_{0,A,\Omega} + \|f - 0^A\|_{0,A,\Omega} \right) \|z_N\|_{0,A,\Omega}.
\]

Let us recall that the orthogonal projection \(\Pi_N^A \) from \(L^2(\Omega) \) onto \(P_N(\Omega) \) satisfies the following estimate for any \(\phi \) in \(H^s_A(\Omega) \), \(s \geq 0 \),

\[
\|\phi - \Pi_N^A \phi\|_{s,A,\Omega} \leq c N^{-s} \|\phi\|_{s,A,\Omega}.
\]

Taking for instance \(f_{N-1} = \Pi_N^A f \) and noting that \(0^A = \iota_N^A \) is equal to \(\iota_N^A \), we derive from

(III.30) and (III.36)

\[
(\phi, z_N)_A - (\phi, z_{N-1})_A \leq c N^{1+2s-a} \|\phi\|_{s,A,\Omega} \|z_N\|_{0,A,\Omega}.
\]

Finally, estimate (III.31) follows from (III.34), (III.35) and (III.37).

From Lemmas 11.3 to 11.5, we derive the main error estimate.

Theorem 11.3.5: Assume that hypothesis (11.20) holds and that the solution \((u,p) \) of the Stokes problem (1.3)(1.2) is such that \(u \) belongs to \(H^s_A(\Omega)^2 \) for a real number \(s \geq 3 \), that the data \(f \) belong to \(H^s_A(\Omega)^2 \) for a real number \(a > 1 \) and that the boundary data \(g_j \),
J ∈ ℤ / 4ℤ , belong to $H^s_0(\Gamma_J)^2$ for a real number $\tau \geq 2$. Then, the solution (u_N, p_N) of problem (11.22)$_A$ (11.27)$_A$ satisfies

\[(\text{11.38}) \quad \|u - u_N\|_{1,A,\Omega} \leq c \left(N^{1-s} \left\|u\right\|_{s,A,\Omega} + N^{1+2s-\tau} \left\|u\right\|_{s,A,\Omega} + N^{7/2 - \tau} \sum_{J \in \mathbb{Z}/4\mathbb{Z}} \|g_J\|_{r,A,F_J} \right) \]

for a constant $c > 0$ independent of N.

We conclude with an estimate for the pressure.

Theorem III.6: Assume that hypotheses (11.20) and (11.21) hold and that the solution (u, p) of the Stokes problem (1.3)(1.2) belongs to $H^s_A(\Omega)^2 \times H^{s-1}_A(\Omega)$ for a real number $s \geq 3$, that the data f belong to $H^s_A(\Omega)^2$ for a real number $s > 1$ and that the boundary data g_J, $J \in \mathbb{Z}/4\mathbb{Z}$, belong to $H^s_A(\Gamma_J)^2$ for a real number $\tau \geq 2$. Then, the solution (u_N, p_N) of problem (11.22)$_A$ (11.27)$_A$ satisfies

\[(\text{11.39}) \quad \|p - p_N\|_{0,A,\Omega} \leq c \left(N^{3-s} \left(\left\|u\right\|_{s,A,\Omega} + \left\|p\right\|_{s-1,A,\Omega} \right) + N^{1/2 - \tau} \sum_{J \in \mathbb{Z}/4\mathbb{Z}} \|g_J\|_{r,A,F_J} \right) \]

for a constant $c > 0$ independent of N.

Proof: Using the Inf-Sup condition of Lemma III.1, we derive from (11.21)$_A$ and (11.22)$_A$ that, for any q_N in M_N,

\[\|p - p_N\|_{0,A,\Omega} \leq c N^2 \left(\|u - u_N\|_{1,A,\Omega} + \|p - p_N\|_{0,A,\Omega} \right) \]

\[+ \sup_{z_N \in P^*_N(\Omega)^2} \left(\frac{(z_N, \text{grad } q_N)_A - b_{1A,N}(z_N, q_N)}{\|z_N\|_{1,A,\Omega}} \right) \left(\frac{(f, z_N)_A - (f, z_N)_{A,\Omega}}{\|Z_N\|_{1,A,\Omega}} \right) \].

Owing to (11.21), taking for instance $q_N = \Pi_A^P \lambda_N f$ and using (11.36), (11.38) and (11.37), we obtain easily (11.39).

Remark III.3: As in the case of homogeneous boundary conditions, if we consider the problem: Find (u_N, p_N) in $X_N \times M_N$ such that

\[(\text{11.40})_A \quad \forall v_N \in P^*_N(\Omega)^2, \quad a_{AN}(u_N, v_N) + b_{1A,N}(v_N, p_N) = (f, v_N)_A \]

\[\forall q_N \in M_{2A,N}^1, \quad b_{2A,N}(u_N, q_N) = 0 \]

and satisfying the boundary conditions (11.27)$_A$, Theorems III.4 to III.6 are still valid, and it is easy to see that the estimates (11.38) and (11.39) can be replaced respectively by

\[(\text{11.41}) \quad \|u - u_N\|_{1,A,\Omega} \leq c \left(N^{1-s} \left\|u\right\|_{s,A,\Omega} + N^{7/2 - \tau} \sum_{J \in \mathbb{Z}/4\mathbb{Z}} \|g_J\|_{r,A,F_J} \right) \]

and

\[(\text{11.42}) \quad \|p - p_N\|_{0,A,\Omega} \leq c \left(N^{3-s} \left(\left\|u\right\|_{s,A,\Omega} + \left\|p\right\|_{s-1,A,\Omega} \right) + N^{1/2 - \tau} \sum_{J \in \mathbb{Z}/4\mathbb{Z}} \|g_J\|_{r,A,F_J} \right) \].
IV. Convergence analysis for the Navier–Stokes equations.

The aim of this section is to obtain, for the discrete problems (11.16)\(_A\) (11.9)\(_A\) and (11.31)\(_A\) (11.27)\(_A\), convergence results similar to those which were proven in the linear case. We begin by describing the main tools of the analysis, together with some properties of the exact equations. Then we establish some technical lemmas. This allows us to prove the convergence and to give error estimates for the velocity in both the homogeneous and inhomogeneous cases. Finally, error bounds are also derived for the pressure.

IV.1. The main tools.

To study the discrete problems, we shall use a fixed point theorem due to M. CROUZEIX [C, Th. 2.2], which is a refined form of the discrete implicit function theorem of [BRR]. For the reader’s convenience, let us recall this theorem: we consider a \(\mathcal{C}^1\)-mapping \(F_N\) from a Banach space \(Z_N\) into itself and we assume that \(u_N^*\) is a point in \(Z_N\) such that \(DF_N(u_N^*)\) is an isomorphism of \(Z_N\). We denote by \(\varepsilon_N, \gamma_N\) and \(\lambda_N(\gamma), \gamma \geq 0\), the quantities

\[
\varepsilon_N = \|F_N(u_N^*)\|_{Z_N} \quad \gamma_N = \|(DF_N(u_N^*))^{-1}\|_{Z_N(Z_N)}
\]

\[
\lambda_N(\gamma) = \sup \left\{ \|DF_N(w_N) - DF_N(u_N^*)\|_{Z_N(Z_N)} : w_N \in Z_N \text{ and } \|w_N - u_N^*\|_{Z_N} \leq \gamma \right\}.
\]

Theorem IV.1: Let us assume that \(2\gamma_N \lambda_N(2\gamma_N \varepsilon_N) < 1\), then for each \(\eta > 2\gamma_N \varepsilon_N\) such that \(\gamma_N \lambda_N(\gamma) < 1\), there exists a unique solution \(u_N\) of the equation \(F_N(u_N) = 0\) in the ball \(S_N = \{ w_N \in Z_N : \|w_N - u_N^*\|_{Z_N} \leq \eta \}\). This solution satisfies

\[
\forall w_N \in S_N, \quad \|u_N - w_N\|_{Z_N} \leq [\gamma_N/(1 - \gamma_N \lambda_N(\gamma))] \cdot \|F_N(w_N)\|_{Z_N}.
\]

Let us precise in what framework we shall apply this theorem to the Navier–Stokes equations. We begin with the continuous problem. Let \(B_A\) denote the subspace of all functions \(g\) in \(H_A^{1-n/2}(\partial \Omega)^2\) satisfying (1.16) and (11.26). With the Stokes problem, we associate the operators \(T_A\) and \(\tilde{T}_A\) respectively from \(H_A^{1/2}(\Omega)^2\) into \(H_A^{1/2}(\Omega)^2\) and from \(H_A^{1/2}(\Omega)^2 \times B_A\) into \(H_A^{1/2}(\Omega)^2\) for any \(f\) in \(H_A^{-1/2}(\Omega)^2\), \(T_A f\) is equal to the function \(u\), where \((u,p)\) is the solution of (1.3)(1.4) in \(H_A^{1/2}(\Omega)^2 \times L^2_{A,0}(\Omega)\); for any \((f,g)\) in \(H_A^{1/2}(\Omega)^2 \times B_A\), \(\tilde{T}_A(f,g)\) is equal to the function \(u\), where \((u,p)\) is the solution of (1.3)(1.2) in \(H_A^{1/2}(\Omega)^2 \times L^2_{A,0}(\Omega)\). Of course, for any \(f\) in \(H_A^{1/2}(\Omega)^2\), \(\tilde{T}_A(f,0)\) coincides with \(T_A f\).

Next, we consider the nonlinear term. We fix a function \(f\) in \(H_A^{1/2}(\Omega)^2\) and a function \(g\) in \(B_A\), and we define the following mappings

\[
G(w) = \sum_{i=1}^{2} \partial_i (w_i) w_i / \partial x_i - f \quad \text{and} \quad \tilde{G}(w) = (G(w), -g).
\]
Clearly, the Navier–Stokes equations (1.1)(1.4) have the following equivalent formulation:

Find a function \(u \) in \(H^1_{\lambda,0}(\Omega)^2 \) such that

\[
(I.4)_A \quad u + T_A G(u) = 0.
\]

The Navier–Stokes equations (1.1)(1.2) have the following equivalent formulation:

Find a function \(u \) in \(H^1_A(\Omega)^2 \) such that

\[
(I.5)_A \quad u + \bar{T}_A G(u) = 0.
\]

To check that these problems are well-posed, we need the

Lemma IV.1: For any \(f \) in \(H^{-1}_A(\Omega)^2 \), the mapping \(G \) is of class \(C^\infty \) from \(H^1(\Omega)^2 \) into \(H^{-1}_A(\Omega)^2 \) and from \(H^1(\Omega)^2 \) into \(H^{-1}_A(\Omega)^2 \). Furthermore, for any \(w \) in \(H^1_A(\Omega)^2 \), the operator \(DG(w) \) is compact from \(H^1(\Omega)^2 \) into \(H^{-1}_A(\Omega)^2 \).

Proof: Since the space \(H^1(\Omega) \) is contained in \(H^{-1}_A(\Omega) \), due to (1.7) and (1.14), it suffices to prove that the mapping \(G \) is of class \(C^\infty \) from \(H^1(\Omega)^2 \) into \(H^{-1}_A(\Omega)^2 \). For any \(u \) and \(w \) in \(H^1(\Omega)^2 \), we have

\[
\forall v \in H^1_{\omega,0}(\Omega)^2, \quad |\sum_{i=1}^2 \int_\Omega (\partial(uw)/\partial x_i) v \omega \, dx| = \sum_{i=1}^2 \int_\Omega (uw) (\partial(\omega)/\partial x_i) \, dx.
\]

Since the mapping \(\psi \rightarrow (\int_\Omega \|\text{grad} \ (\psi \omega)\|^2 \omega^{-1} \, dx)^{1/2} \) is a norm on \(H^1_{\omega,0}(\Omega)^2 \) equivalent to the usual one [BM1, Lemma III.2], we derive

\[
(I.6) \quad \forall v \in H^1_{\omega,0}(\Omega)^2, \quad |\sum_{i=1}^2 \int_\Omega (\partial(uw)/\partial x_i) v \omega \, dx| \leq c \sum_{i=1}^2 \|u_i w_j\|_{0,\omega,0} \|v\|_{1,\omega,0}.
\]

We recall [LM, Thm 4.1][BM1, Lemma III.1] the imbedding of \(H^{1/2}(\Omega) \) into \(L^2_0(\Omega) \). Moreover, using the Calderón extension theorem [A, Thm 4.32] together with [G, Thm 1.4.4.2], we know that the mapping \((\psi,\psi) \rightarrow \psi \psi \) is bilinear continuous from \(H^1(\Omega) \times H^1(\Omega) \) into \(H^{-1-\epsilon}(\Omega) \) for any \(\epsilon > 0 \). Hence we have for \(0 < \epsilon < 1/2 \)

\[
(I.7) \quad \|u_i w_j\|_{0,\omega,0} \leq c \|u_i w_j\|_{1,2,0} \leq c' \|u_i w_j\|_{1-\epsilon,0} \leq c'' \|u_i\|_{1,0} \|w_j\|_{1,0}.
\]

From (IV.6) and (IV.7), we obtain

\[
\forall v \in H^1_{\omega,0}(\Omega)^2, \quad |\sum_{i=1}^2 \int_\Omega (\partial(uw)/\partial x_i) v \omega \, dx| \leq c \|u\|_{1,0} \|w\|_{1,0} \|v\|_{1,\omega,0}.
\]

Then, it is an easy matter to derive from (IV.3) that \(G \) is of class \(C^\infty \) from \(H^1(\Omega)^2 \) into \(H^{-1}_A(\Omega)^2 \). The compactness of \(DG(w) \) from \(H^1(\Omega)^2 \) into \(H^{-1}_A(\Omega)^2 \), follows from the previous lines and from the compactness of the imbedding \(H^{1-\epsilon}(\Omega) \subset H^{1/2}(\Omega), 0 < \epsilon < 1/2 \).

Corollary IV.1: For any \(f \) in \(H^{-1}_A(\Omega)^2 \), problem (1.1)(1.4) has at least a solution \((u,p) \) in \(H^1_{\lambda,0}(\Omega)^2 \times L^2_{\lambda,0}(\Omega) \). For any \((f,g) \) in \(H^{-1}_A(\Omega)^2 \times B_A \), problem (1.1)(1.2) has at least a solution \((u,p) \) in \(H^1_A(\Omega)^2 \times L^2_{A,0}(\Omega) \).
Proof: In the Legendre case, the corollary states a well-known result [GR, Chapter IV, Thms 2.1 and 2.3]. Next, in the Chebyshev case, since the space $H^{-1}_0(\Omega)$ is contained in $H^{-1}_0(\Omega)$ and the space B_∞ is contained in B_L, there exists at least a pair (u,p) in $H^1(\Omega)^2 \times L^2_\infty(\Omega)$ solution of problem (1.1)(1.4) (resp. (1.1)(1.2)). From Lemma IV.1, $\mathcal{G}(u)$ is an element of $H^{-1}_0(\Omega)^2$. Let (u',p') be the solution in $H^1_\omega(\Omega)^2 \times L^2_\omega(\Omega)$ of the Stokes problem with data $-\mathcal{G}(u)$. Then, both (u,p) and (u',p') are solutions in $H^1_\omega(\Omega)^2 \times L^2(\Omega)$ of the Stokes problem with data $-\mathcal{G}(u)$; the uniqueness of the solution of the Stokes problem implies that u and u' coincide, and that $p-p'$ is constant, equal to $(\frac{1}{n}) \int_\Omega p(x) \omega(x) \, dx$. We see that (u,p') belongs in fact to $H^1_\omega(\Omega)^2 \times L^2_\omega(\Omega)$ and is a solution of (1.1)(1.4) (resp. (1.1)(1.2)).

We state a last property of the continuous problem. It is interesting here to note that, since the second argument in \mathcal{G} is constant, the operators $1 + T_A DG(u)$ and $1 + \tilde{T}_A D\tilde{G}(u)$ coincide on $H^1_\omega(\Omega)^2$.

Lemma IV.2: For any real number $q > 2$, there exists a constant $c(q,v)$ such that, if a solution (u,p) of problem (1.1)(1.4) (resp. (1.1)(1.2)) satisfies

\[
\|u\|_{L^q(\Omega)} \leq c(q,v),
\]

the operator $1 + T_A DG(u)$ is an isomorphism of $H^1_\omega(\Omega)^2$ (resp. the operator $1 + \tilde{T}_A D\tilde{G}(u)$ is an isomorphism of $H^1_\omega(\Omega)^2$).

Proof: By the compactness result of Lemma IV.1, the operator $1 + T_A DG(u)$ is an isomorphism of $H^1_\omega(\Omega)^2$ and the operator $1 + \tilde{T}_A D\tilde{G}(u)$ is an isomorphism of $H^1_\omega(\Omega)^2$ if and only if they are injective, i.e. the only solution (w,r) in $H^1_\omega(\Omega)^2 \times L^2_\omega(\Omega)$ of the following linearized Stokes problem

\[
\begin{align*}
\forall \, \nu & \in H^1_\omega(\Omega)^2, \quad a_\omega(w,\nu) + (\nu, \text{grad} \, r)_A + (DG(u), w)_A = 0, \\
\forall \, \theta & \in L^2_\omega(\Omega), \quad (\text{div} \, w, \theta)_A = 0,
\end{align*}
\]

is $(0,0)$. In the Legendre case, the form a_ω is clearly elliptic on $H^1_\omega(\Omega)^2$; in the Chebyshev case, it is proven [BCM, Prop. III.2] that, for any divergence-free function w in $H^1_\omega(\Omega)^2$, there exists v in $H^1_\omega(\Omega)^2$, satisfying $\text{div} \, (v \omega) = 0$, such that

\[
a_\omega(w,v) \geq c \|w\|_{1,\omega,0} \|v\|_{1,\omega,0},
\]

These properties, together with (IV.6) in the Chebyshev case, give

\[
\|w\|_{1,\omega,0} \leq c \sum_{i=1}^2 \|u_i w_j\|_{0,A} - c(1-q_n) \|w\|_{1,\omega,0},
\]

Next, in the Legendre case, using the imbedding of $H^1(\Omega)$ into any $L^s(\Omega)$, $s < +\infty$, we have at once
In the sequel, we shall always assume that the data \(f \) belong to a space \(H^s(\Omega)^2 \) for a real number \(s > 1 \) and that the boundary data \(g_J \), \(J \in \mathbb{Z}/4\mathbb{Z} \), belong to a space \(H^s(\Gamma_J)^2 \) for a real number \(s \geq 2 \) and satisfy (1.16) and (11.26). We consider a solution \(u \) of the Navier-Stokes equations (I.1)(I.4) (resp. (I.1)(I.2)) which is nonsingular in the following sense: the operator \(1 + T_{\mathcal{A}}D\vec{G}(u) \) is an isomorphism of \(H^s(\Omega)^2 \) (resp. the operator \(1 + \tilde{T}_{\mathcal{A}}D\tilde{G}(u) \) is an isomorphism of \(H^s(\Omega)^2 \)); by virtue of Lemma IV.2, such solutions exist for \(f \) and \(g \) small enough! Even in the standard Sobolev spaces, regularity results of the solution \((u,p) \) as a consequence of the regularity of \(f \) are not easy to derive [G, §7.3], whence we shall assume in the sequel that there exists a real number \(s \geq 1 \) (\(s \geq 3 \) in the case of non-homogeneous boundary conditions) such that the velocity \(u \) belongs to \(H^s(\Omega)^2 \).

We turn now to the discrete problems (11.16) (11.9) and (11.31) (11.27). As for the exact Navier-Stokes equations, we must define the operators \(T_{\mathcal{A}} \) and \(\tilde{T}_{\mathcal{A}} \) respectively from \(H^s(\Omega)^2 \) into \(P_N(\Omega)^2 \) and from \(H^s(\Omega)^2 \times B_A \) into \(P_N(\Omega)^2 \). For any \(f \) in \(H^s(\Omega)^2 \), \(T_{\mathcal{A}}f \) is equal to the function \(u_N \), where \((u_N, p_N) \) is the solution of problem (11.8) in \(P_N(\Omega)^2 \times M_N \); for any \((f, g) \) in \(H^s(\Omega)^2 \times B_A \), \(\tilde{T}_{\mathcal{A}}(f, g) \) is equal to the function \(u_N \), where \((u_N, p_N) \) is the solution of problem (11.40) in \(P_N(\Omega)^2 \times M_N \). As in the continuous case, for \(f \) in \(H^s(\Omega)^2 \), \(T_{\mathcal{A}}f \) and \(\tilde{T}_{\mathcal{A}}(f, 0) \) coincide.

Next, we consider the nonlinear term. Due to (11.17), we need the following operator \(S^A_N \), defined from \(C^{0}(\overline{\Omega}) \) into \(P_N(\Omega) \) by: for any function \(f \) in \(C^{0}(\overline{\Omega}) \), \(S^A_N f \) satisfies (IV.9) \(\forall \varphi \in P_N(\Omega), \quad \langle S^A_N f, \varphi \rangle = \langle f, \varphi \rangle_{A_N} \).

Then, we set for any function \(w \) in \(C^{0}(\overline{\Omega})^2 \)

\[
(IV.10) \quad G_N^A(w) = \sum_{i=1}^{2} S^A_N \left(\partial (J^A_N(w)w) / \partial x_i - f \right) \quad \text{and} \quad \bar{G}_N^A(w) = (G_N^A(w), -g) .
\]

This definition is equivalent to

\[
(IV.11) \quad \forall v_N \in X_N, \quad \langle G_N^A(w), v_N \rangle = \langle \sum_{i=1}^{2} \partial (J^A_N(w)w) / \partial x_i, v_N \rangle_{A_N} - \langle f, v_N \rangle_{A_N} .
\]

Finally, problem (11.16) (11.9) has the following equivalent formulation: Find a polynomial \(u_N \) in \(P_N^*(\Omega)^2 \) such that

\[
\|u_N w_j\|_0,\Omega \leq c(q) \|u_j\|_{L^q(\Omega)} \|w_j\|_{1,\Omega} ,
\]

in the Chebyshev case, a similar argument leads to

\[
\|u_N w_j\|_{0,\Omega,\Omega} = c(q) \|u_j\|_{L^q(\Omega)} \|w_j\|_{1,\Omega} ,
\]

in both cases, we obtain

\[
\|w\|_{1,\Omega,\Omega} \leq c(q) \|u\|_{L^q(\Omega)} \|w\|_{1,\Omega,\Omega} ,
\]

and the lemma is proven for an appropriate constant \(c(q, \nu) \).
We begin by stating some results about the linear operators $T_{A,N}$ and $\bar{T}_{A,N}$.

Proposition IV.1: For any f in $H^{-1}(\Omega)^2$, the operator $T_{A,N}$ satisfies

$$\|T_{A,N} f\|_{1,A,\Omega} \leq c \|f\|_{H^{-1}(\Omega)} \quad \text{(IV.17)}$$

and

$$\lim_{N \to \infty} \|T_{A,N} f - T_{A,N}^\perp f\|_{1,A,\Omega} = 0 \quad \text{(IV.18)}$$

Moreover, if the solution $T_{A} f$ belongs to $H^s_A(\Omega)^2$ for a real number $s \geq 1$, it satisfies the estimate
Proof: By Proposition III.1, we obtain at once

\[\|T_{A} - T_{AN}\|_{1,A,\Omega} \leq C N^{1-s} \|T_{A}\|_{s,A,\Omega} \]

If the boundary data \(g_{j} \), \(j \in \mathbb{Z} / 4 \mathbb{Z} \), belong to \(H^{s}_{R}(\Omega)^{2} \) for a real number \(s \geq 2 \) and if the solution \(\tilde{T}_{A}(f,g) \) belongs to \(H^{s}_{R}(\Omega)^{2} \) for a real number \(s \geq 3 \), it satisfies the estimate

\[\|\tilde{T}_{A} - \tilde{T}_{AN}\|_{1,A,\Omega} \leq C N^{1-s} \|\tilde{T}_{AN}\|_{s,A,\Omega} + C N \sum_{j \in \mathbb{Z} / 4 \mathbb{Z}} \|g_{j}\|_{1,A,\Omega}. \]

which is \((IV.17) \). Next, due to the definition of the operators \(T_{AN} \) and \(\tilde{T}_{AN} \), the estimates (IV.19) and (IV.20) have already been stated in (III.9) and (III.41) respectively. Finally, (IV.18) holds by classical arguments using (IV.19) and the density of \(\mathcal{D}(\Omega) \) into \(H^{1}_{A,\Omega}(\Omega) \).

In order to estimate the nonlinear term, we need the following lemma.

Lemma IV.3: For any real number \(\varepsilon > 0 \), there exists a constant \(C \) such that, for any \(\varphi_{N} \) and \(\psi_{N} \) in \(P_{N}(\Omega) \), the following inequality is satisfied

\[\| (1 - J_{N}^{\varepsilon}) \varphi_{N} \psi_{N} \|_{0, A, \Omega} \leq C N^{1-s} \| \varphi_{N} \|_{1, A, \Omega} \| \psi_{N} \|_{1, A, \Omega} . \]

Proof: Recalling that \(N' \) stands for the integer part of \((N-1)/2 \), we write

\[(1 - J_{N}^{\varepsilon}) \varphi_{N} \psi_{N} = (1 - J_{N}^{\varepsilon}) \left[(\varphi_{N} - \tilde{T}_{N,1}^{\varepsilon} \varphi_{N}) (\psi_{N} - \tilde{T}_{N,1}^{\varepsilon} \psi_{N}) + \tilde{T}_{N,1}^{\varepsilon} \varphi_{N} (\psi_{N} - \tilde{T}_{N,1}^{\varepsilon} \psi_{N}) + (\varphi_{N} - \tilde{T}_{N,1}^{\varepsilon} \varphi_{N}) \tilde{T}_{N,1}^{\varepsilon} \psi_{N} \right] , \]

so that

\[\| (1 - J_{N}^{\varepsilon}) \varphi_{N} \psi_{N} \|_{0, A, \Omega} \leq C \left(\| \varphi_{N} - \tilde{T}_{N,1}^{\varepsilon} \varphi_{N} \|_{0, A, \Omega} \right) \]

\[+ \left(\| \psi_{N} - \tilde{T}_{N,1}^{\varepsilon} \psi_{N} \|_{0, A, \Omega} \right) \]

\[+ \| \varphi_{N} - \psi_{N} - \tilde{T}_{N,1}^{\varepsilon} \varphi_{N} \|_{0, A, \Omega} \]

\[+ \| \psi_{N} - \psi_{N} - \tilde{T}_{N,1}^{\varepsilon} \psi_{N} \|_{0, A, \Omega} \]

This implies

\[\| (1 - J_{N}^{\varepsilon}) \varphi_{N} \psi_{N} \|_{0, A, \Omega} \leq C \left(\| \varphi_{N} - \tilde{T}_{N,1}^{\varepsilon} \varphi_{N} \|_{L_{\infty}(\Omega)} \right) \]

\[+ \left(\| \psi_{N} - \tilde{T}_{N,1}^{\varepsilon} \psi_{N} \|_{L_{\infty}(\Omega)} \right) \]

\[+ \| \varphi_{N} - \tilde{T}_{N,1}^{\varepsilon} \varphi_{N} \|_{L_{\infty}(\Omega)} \]

\[+ \| \psi_{N} - \tilde{T}_{N,1}^{\varepsilon} \psi_{N} \|_{L_{\infty}(\Omega)} . \]

Using the imbedding of \(H^{s_{0}+\varepsilon/2}(\Omega) \) into \(L_{\infty}(\Omega) \) for any \(\varepsilon > 0 \) and (IV.14), we obtain for any \(s \geq 1 \)

\[\| (1 - J_{N}^{\varepsilon}) \varphi_{N} \psi_{N} \|_{0, A, \Omega} \leq C N^{1-s} \left(\| \varphi_{N} \|_{1+s/2, A, \Omega} + \| \psi_{N} \|_{1+s/2, A, \Omega} \right) \]

\[\| \varphi_{N} \|_{s, A, \Omega} \]

\[\| \psi_{N} \|_{s, A, \Omega} . \]
Consequently, we derive the estimate of \(\|(\text{id} - \hat{T}_N^\Lambda) (\varphi_N \psi_N)\|_{0,A,\Omega}\) as an easy consequence of the inverse inequality [CQ1, Lemmas 2.1 and 2.4], valid for any integer \(m\) and any real number \(r, 0 \leq m \leq r\).

\[
\forall \varphi_N \in P_N(\Omega), \quad \|\varphi_N\|_{r,A,\Omega} \leq c N^{2(r-m)} \|\varphi_N\|_{m,A,\Omega}.
\]

The term \(\|(\text{id} - \hat{T}_N^\Lambda) (\varphi_N \psi_N)\|_{0,A,\Omega}\) is estimated exactly in the same way.

We can now state the following result.

Proposition IV.2: For \(N\) large enough, the operator \(D_{F_N}(u_N^*) = 1 + T_{A,N}DG_{A_N}(u_N^*)\) is an isomorphism of \(P_N(\Omega)^2\), and \(y_N\) is bounded by a constant \(\gamma\) independent of \(N\). For \(N\) large enough, the operator \(D_{F_N}(u_N^*) = 1 + \bar{T}_{A,N}DG_{A_N}(u_N^*)\) is an isomorphism of \(P_N(\Omega)^2\), and \(\bar{y}_N\) is bounded by a constant \(\bar{\gamma}\) independent of \(N\).

Proof: We write \(D_{F_N}(u_N^*)\) and \(D_{F_N}(u_N^*)\) in the form

\[
(IV.24) \quad D_{F_N}(u_N^*) = [1 + T_A DG(u)] - (T_A - T_{A,N})DG(u) - T_{A,N}(DG(u) - DG(u_N^*))
\]

and (since the second arguments in \(\bar{G}\) and \(\bar{G}_{A_N}\) are constant)

\[
(IV.25) \quad D_{F_N}(u_N^*) = [1 + \bar{T}_A DG(u)] - (T_A - T_{A,N})DG(u) - T_{A,N}(DG(u) - DG(u_N^*))
\]

Since the operator \(1 + T_A DG(u)\) is an isomorphism of \(H_{A,\Omega}^1(\Omega)^2\) and the operator \(1 + \bar{T}_A DG(u)\) is an isomorphism of \(H_{A,\Omega}^1(\Omega)^2\), there exists a constant \(c_0\) independent of \(N\) such that, for any \(w_N\) in \(P_N(\Omega)^2\),

\[
(IV.26) \quad \|\{1 + T_A DG(u)\}w_N\|_{1,A,\Omega} \geq c_0 \|w_N\|_{1,A,\Omega},
\]

and, for any \(w_N\) in \(P_N(\Omega)^2\),

\[
(IV.27) \quad \|\{1 + \bar{T}_A DG(u)\}w_N\|_{1,A,\Omega} \geq c_0 \|w_N\|_{1,A,\Omega}.
\]

It remains to bound the three other terms in (IV.24) and (IV.25). Let \(w_N\) be any polynomial in \(X_N\).

1) It follows from (IV.18) and from the compactness of the operator \(DG(u)\) (see Lemma IV.1) that

\[
\lim_{N \to \infty} \|(T_A - T_{A,N})DG(u)\|_{L_2(H_{A,\Omega}^1(\Omega)^2, H_{A,\Omega}^1(\Omega)^2)} = 0.
\]

Hence, for \(N\) large enough, one has

\[
(IV.28) \quad \|(T_A - T_{A,N})DG(u)w_N\|_{1,A,\Omega} \leq (c_0/4) \|w_N\|_{1,A,\Omega}.
\]

2) It follows from (IV.17) and from the continuity of the operator \(DG\) (see Lemma IV.1)
Proof: Let w_N be any element in X_N. We have
\[
\|T_{A,N}(DG(u) - DG(u^*_N))\|_{L^2(A,\Omega)^2, L^2(A,\Omega)^2} \leq c \|DG(u) - DG(u^*_N)\|_{L^2(A,\Omega)^2, L^2(A,\Omega)^2} \leq c' \|u - u^*_N\|_{1,A,\Omega}.
\]
From (IV.16) together with a density argument, we infer the convergence of u^*_N to u, whence for N large enough,
\[
(IV.29) \quad \|T_{A,N}(DG(u) - DG(u^*_N))\|_{L^2(A,\Omega)^2} \leq (c_k/4) \|w_N\|_{1,A,\Omega}.
\]
3) We recall that Π^A_N denotes the orthogonal projection operator from $L^2_A(\Omega)$ onto $P_N(\Omega)$ and we note that, for any φ_N in $P_{N-1}(\Omega)$, $S^A_N \varphi_N$ is equal to φ_N (see (IV.9)). Thus, by (IV.3) and (IV.10), we know that for any v_N in $P_N(\Omega)^2$,
\[
\langle (DG - DG_{A,N})(u^*_N, w_N), v_N \rangle
\]
\[
= \sum_{i=1}^2 \langle (\partial/\partial x_i)(\Pi^A_{N-1})(w_Nu^*_N + u^*_N w_N), v_N \rangle
\]
\[
- \sum_{i=1}^2 \langle (\partial/\partial x_i)(\Pi^A_{N-1})(w_N^* u_N^* + u^*_N w_N), v_N \rangle_{A,\Omega},
\]
whence, by (IV.17),
\[
\|T_{A,N}(DG - DG_{A,N})(u^*_N, w_N)\|_{L^2(A,\Omega)^2} \leq c \sum_{i=1}^2 \langle \|\Pi^A_{N-1}(w_Nu^*_N + u^*_N w_N)\|_{0,A,\Omega} + \|\Pi^A_{N-1}(w_N^* u_N^* + u^*_N w_N)\|_{0,A,\Omega}\rangle.
\]
From this estimate together with Lemma IV.3, we derive
\[
\|T_{A,N}(DG - DG_{A,N})(u^*_N, w_N)\|_{L^2(A,\Omega)^2} \leq c N^{-1} \|w_N\|_{1,A,\Omega} \|u^*_N\|_{1,A,\Omega},
\]
whence
\[
(IV.30) \quad \|T_{A,N}(DG - DG_{A,N})(u^*_N, w_N)\|_{L^2(A,\Omega)^2} \leq c N^{-1} \|u\|_{1,A,\Omega} \|w_N\|_{1,A,\Omega}.
\]
Finally, we conclude from (IV.24) to (IV.30) that, for N large enough,
\[
\forall w_N \in P_N(\Omega)^2, \quad \|DF_N(u^*_N) w_N\|_{1,A,\Omega} \geq (c_0/4) \|w_N\|_{1,A,\Omega},
\]
and
\[
\forall w_N \in P_N(\Omega)^2, \quad \|DF_N(u^*_N) w_N\|_{1,A,\Omega} \geq (c_0/4) \|w_N\|_{1,A,\Omega},
\]
which proves the proposition.

\textbf{Lemma IV.4:} The constants $\Lambda_N(\eta)$ and $\bar{\Lambda}_N(\eta)$ satisfy
\[
(IV.31) \quad \Lambda_N(\eta) \leq c \eta \quad \text{and} \quad \bar{\Lambda}_N(\eta) \leq c \eta.
\]

Proof: Let w_N be any element in X_N. We have
\[
\|T_{A,N}(DG_{A,N}(w_N - u^*_N))\|_{L^2(A,\Omega)^2} \leq \|T_{A,N}(DG(w_N - u^*_N))\|_{L^2(A,\Omega)^2} + \|T_{A,N}(DG - DG_{A,N})(w_N - u^*_N)\|_{L^2(A,\Omega)^2}.
\]
Using (IV.17) and the continuity of the operator DG (see Lemma IV.1) yields that
The constants c_N and Z_N satisfy

\[(IV.32) \quad \epsilon_N \leq c(u) N^{1-s} + c(f) N^{1+2\varepsilon-s} \quad \text{and} \quad \bar{\epsilon}_N \leq c(u) N^{1-s} + c(f) N^{1+2\varepsilon-s} + c(g) N^{7/2-\tau} \]

Proof: Using \(IV.4 \), we write $F_N(u^*_N)$ in the form

\[F_N(u^*_N) = u^*_n + T_{A,N} G_{A,N}(u^*_N) - u - T_A G(u) \]

which gives

\[(IV.33) \quad \epsilon_N \leq \|u - u^*_N\|_{1,A,\Omega} + \|T_{A,N} - T_{A} G(u)\|_{1,A,\Omega} + \|T_{A,N} (G(u) - G(u^*_N))\|_{1,A,\Omega} + \|T_{A,N} (G(u^*_N) - G(u^*_N))\|_{1,A,\Omega} \]

It remains to estimate these four terms.

1) Using \(IV.16 \) yields

\[(IV.34) \quad \|u - u^*_N\|_{1,A,\Omega} \leq c N^{1-s} \|u\|_{s,A,\Omega} \]

2) It follows from \(IV.19 \) that

\[\|T_{A,N} - T_{A} G(u)\|_{1,A,\Omega} \leq c N^{1-s} \|T_{A} G(u)\|_{s,A,\Omega} \]

whence, thanks to \(IV.4 \),

\[(IV.35) \quad \|T_{A,N} - T_{A} G(u)\|_{1,A,\Omega} \leq c N^{1-s} \|u\|_{s,A,\Omega} \]

3) Due to \(IV.17 \) and to the continuity of G (see Lemma IV.1), we have

\[\|T_{A,N} (G(u) - G(u^*_N))\|_{1,A,\Omega} \leq c \|u - u^*_N\|_{1,A,\Omega} \]

so that

\[(IV.36) \quad \|T_{A,N} (G(u) - G(u^*_N))\|_{1,A,\Omega} \leq c N^{1-s} \|u\|_{s,A,\Omega} \]

4) From \(IV.17 \), we derive...
Theorem IV.3: Assume that hypothesis (11.20) holds and that there exists a solution (u, p) of the Navier-Stokes equations (1.1)(1.4) such that the operator $1 + T_A DG(u)$ is an isomorphism of $H^1_A(\Omega)^2$; assume moreover that u belongs to $H^s(\Omega)^2$ for a real number $s > 1$ and that the data f belong to $H^s(\Omega)^2$ for a real number $\sigma > 1$. For N large enough, problem (11.16)$_A$ (11.9)$_A$ admits a solution (u_N, p_N) in $P^*_{N}(\Omega)^2 \times M_N$. Moreover, it satisfies

$$
\|u - u_N\|_{1, A, \Omega} \leq c(u) N^{1-s} + c(f) N^{1+2s-\sigma}
$$

for constants $c(u)$ and $c(f)$ independent of N.

Theorem IV.4: Assume that hypothesis (11.20) holds and that there exists a solution (u, p) of the Navier-Stokes equations (1.1)(1.2) such that the operator $1 + T_A DG(u)$ is an isomorphism of $H^1_A(\Omega)^2$; assume moreover that u belongs to $H^s(\Omega)^2$ for a real number...
s ≥ 3, that the data \(f \) belong to \(H^s_\Omega(\Omega)^2 \) for a real number \(s > 1 \) and that the boundary data \(g_j, \, j \in \mathbb{Z}/4\mathbb{Z} \), belong to \(H^s_\Omega(\Gamma_j)^2 \) for a real number \(\tau > 7/2 \). For \(N \) large enough, problem (11.31)\(_A\) (11.27)\(_A\) admits a solution \((u_N, p_N)\) in \(P_N(\Omega)^2 \times M_N \). Moreover, it satisfies

\[
\|u-u_N\|_{1,A,\Omega} \leq c(u) N^{1-s} + c(f) N^{1 + 2s - s} + c(g) N^{7/2 - s}.
\]

for constants \(c(u), c(f) \) and \(c(g) \) independent of \(N \).

Proof: Using Proposition IV.2 and Lemmas IV.4 and IV.5, we notice that \(2 \gamma_N \Lambda_N(2 \gamma_N \varepsilon_N) \) and \(2 \gamma_N \Lambda_N(2 \gamma_N \varepsilon_N) \) are bounded respectively by \(c_1 \varepsilon \) and \(c_2 \varepsilon \); consequently, the assumptions of Theorem IV.1 are satisfied for \(N \) large enough. Hence, there exists a constant \(c > 0 \) independent of \(N \) such that, for each \(\gamma < c \), there is a unique solution \(u_N \) of (IV.12)\(_A\) in the ball \(S_N = \{ w_N \in P_N^*(\Omega)^2 : \|w_N-u_N\|_{1,A,\Omega} < \gamma \} \) (resp. a unique solution \(u_N \) of (IV.13)\(_A\) in the ball \(S_N = \{ w_N \in P_N(\Omega)^2 : \|w_N-u_N\|_{1,A,\Omega} < \gamma \} \)). Next, from (IV.2), we derive the estimate

\[
\|u_N-u_N^*\|_{1,A,\Omega} \leq c \|F_N(u_N^*)\|_{1,A,\Omega} \quad \text{(resp. } \|u_N-u_N^*\|_{1,A,\Omega} \leq c \|F_N(u_N^*)\|_{1,A,\Omega} \text{)}
\]

which, together with Lemma IV.5, yields (IV.38) and (IV.39).

Next, by Proposition III.1, there exists a unique \(p_N \in M_N \) such that

\[
\forall v_N \in P_N(\Omega)^2, \quad b_{1AN}(v_N, p_N) = -a_{AN}(u_N, v_N) - (G_{AN}(u_N), v_N)_{A}
\]

and the pair \((u_N, p_N)\) is a solution of the corresponding problem (11.16)\(_A\) (11.9)\(_A\) or (11.31)\(_A\) (11.27)\(_A\).

Remark IV.1: The error bounds we obtain are exactly the same as for the Stokes problem; in particular, the result is still optimal with respect to the regularity of the solution (and also of the data \(f \) when Chebyshev approximation is used).

IV.4. Error estimates for the pressure.

In order to state an error bound for the pressure, we need a lemma.

Lemma IV.6: The approximate velocity \(u_N \), as defined in Theorem IV.2, satisfies

\[
\sup_{v_N \in P_N^*(\Omega)^2} \frac{(G(u)-G_{AN}(u_N), v_N)_{A}}{\|v_N\|_{1,A,\Omega}} \leq c(u) N^{1-s} + c(f) N^{1 + 2s - s}.
\]

The approximate velocity \(u_N \), as defined in Theorem IV.3, satisfies

\[
\sup_{v_N \in P_N^*(\Omega)^2} \frac{(G(u)-G_{AN}(u_N), v_N)_{A}}{\|v_N\|_{1,A,\Omega}} \leq c(u) N^{1-s} + c(f) N^{1 + 2s - s} + c(g) N^{7/2 - s}.
\]

Proof: Let \(v_N \) be any element in \(P_N^*(\Omega)^2 \). We consider only the case of homogeneous
boundary conditions, since the proof in the general case is strictly the same. We compute
\[(G(u) - G_A(u_N) \cdot v_N)_A = (G(u) - G(u_N) \cdot v_N)_A + (G(u_N) - G_A(u_N) \cdot v_N)_A.\]

Lemma IV.1 and (IV.38) give at once
\[| (G(u) - G(u_N) \cdot v_N)_A | \leq (c(u) N^{1-s} + c(f) N^{1+2s-\sigma}) \| v_N \|_{1,A,0}.\]

From the definitions (IV.3) and (IV.10) of G and G_A, we obtain
\[| (G(u_N) - G_A(u_N) \cdot v_N)_A | \leq c \sum_{i=1}^2 \| ((1-T^A_N)(u_N u_{1})_0 \cdot A_0,0 + \| (1-T^A_N)(u_N u_{1} - u_{1}^* u_{2}) \|_{0,A,0}) \| v_N \|_{1,A,0} \]
\[| (f, v_N)_A - (f, v_N)_{A_N} | .\]

Using Lemma IV.3, we know that, for \(\epsilon > 0 \),
\[| (1-T^A_N)(u_N u_{1})_0 \cdot A_0,0 + \| (1-T^A_N)(u_N u_{1} - u_{1}^* u_{2}) \|_{0,A,0} \]
\[= \| (1-T^A_N)(u_N u_{1} - u_{1}^* u_{2}) \|_{0,A,0} + \| (1-T^A_N)(u_N u_{1} - u_{1}^* u_{2}) \|_{0,A,0} \]
\[\leq c N^{-1} \| u_N \|_{1,A,0} + \| u_{1}^* \|_{1,A,0} \| u_N - u_{1}^* \|_{1,A,0} \]
\[\leq c(u) N^{-1} \| u_N - u_{1}^* \|_{1,A,0}.\]

Then, Theorem IV.2, (IV.16) and (III.17) yield for \(\epsilon > 0 \)
\[| G(u_N) - G_A(u_N) \cdot v_N)_A | \leq (c(u) N^{1-s} + c N^{1+2s-\sigma} \| f \|_{1,A,0} + \| v_N \|_{1,A,0} \].

Finally, these two bounds imply (IV.40).

Theorem IV.4: Assume that hypotheses (II.20) and (II.21) hold and that there exists a solution \((u,p)\) of the Navier–Stokes equations (I.1)(I.4) such that the operator \(1 + TDG(u)\) is an isomorphism of \(H^1_{A,0}(\Omega)^2\); assume moreover that it belongs to \(H^s(\Omega)^2 \times H^{s-1}(\Omega)\) for a real number \(s > 1\) and that the data \(f\) belong to \(H^s(\Omega)^2\) for a real number \(s > 1\). Then, the solution \((u_N, p_N)\) of problem (II.16)_A (II.9)_A satisfies
\[(IV.42) \| p - p_N \|_{0,A,0} \leq c(u,p) N^{3-s} + c N^{1+2s-\sigma} \| f \|_{1,A,0}.\]

for constants \(c(u,p)\) and \(c(f)\) independent of \(N\).

Theorem IV.5: Assume that hypotheses (II.20) and (II.21) hold and that there exists a solution \((u,p)\) of the Navier–Stokes equations (I.1)(I.2) such that the operator \(1 + TDG(u)\) is an isomorphism of \(H^1_{A,0}(\Omega)^2\); assume moreover that it belongs to \(H^s(\Omega)^2 \times H^{s-1}(\Omega)\) for a real number \(s > 3\), that the data \(f\) belong to \(H^s(\Omega)^2\) for a real number \(s > 1\) and that the boundary data \(F_J\), \(J \in Z/4Z\), belong to \(H^s(\Gamma)^2\) for a real number \(s > 7/2\). Then, the solution \((u_N, p_N)\) of problem (II.31)_A (II.27)_A satisfies
\[(IV.43) \| p - p_N \|_{0,A,0} \leq c(u,p) N^{3-s} + c(f) N^{3+2s-\sigma} + c(g) N^{1+2-s}.\]
for constants \(c(u, p), c(f) \) and \(c(g) \) independent of \(N \).

Proof: Let us introduce the solution \((\tilde{u}_N, \tilde{p}_N) \) in \(X_N \times M_N \) of the following problem:

\[
\begin{align*}
(IV.44)_A & \quad \forall \nu_N \in P_N(\Omega)^2, \quad a_{\lambda,N}(\tilde{u}_N, \nu_N) + b_{1\lambda,N}(\nu_N, \tilde{p}_N) + (G(u), \nu_N)_A = 0, \\
& \quad \forall q_N \in M_{2\lambda,N}, \quad b_{2\lambda,N}(\tilde{u}_N, q_N) = 0,
\end{align*}
\]

together with the boundary conditions \((11.9)_A\) (resp. \((11.27)_A\)). Since \(\tilde{u}_N \) is equal to \(-T_{\lambda,N} G(u)\) (resp. \(-\tilde{T}_{\lambda,N} G(u)\)), we deduce from \((IV.19)\) (resp. \((IV.20)\)) that

\[
(IV.45) \quad \|u - \tilde{u}_N\|_{1,A,\Omega} \leq c(u) N^{1-s} \quad \text{(resp.} \|u - \tilde{u}_N\|_{1,A,\Omega} \leq c(u) N^{1-s} + c(g) N^{7/2-s})
\]

moreover, we obtain from \((III.10)\) and \((III.42)\)

\[
(IV.46) \quad \|p - \tilde{p}_N\|_{0,A,\Omega} \leq c(u, p) N^{3-s} \quad \text{(resp.} \|p - \tilde{p}_N\|_{0,A,\Omega} \leq c(u, p) N^{3-s} + c(g) N^{11/2-s})
\]

Next, due to \((IV.44)_A\) and \((11.17)_A\) or \((11.31)_A\), we notice that, for any \(\nu_N \) in \(P_N(\Omega)^2 \),

\[
b_{1\lambda,N}(\nu_N, p_N - \tilde{p}_N) = a_{\lambda,N}(\tilde{u}_N, \nu_N) + (G(u), \nu_N)_A - a_{\lambda,N}(u_N, \nu_N) - (G_{\lambda,N}(u_N), \nu_N)_A,
\]

so that, from Proposition \(III.1\), we deduce

\[
(IV.47) \quad \|p_N - \tilde{p}_N\|_{0,A,\Omega} \leq c N^2 \sup_{\nu_N \in P_N(\Omega)^2} \frac{a_{\lambda,N}(u_N - \tilde{u}_N, \nu_N) + (G(u) - G_{\lambda,N}(u_N), \nu_N)_A}{\|\nu_N\|_{1,A,\Omega}}.
\]

Let \(\nu_N \) be any element in \(P_N(\Omega)^2 \). By the uniform continuity of \(a_{\lambda,N} \), we have

\[
a_{\lambda,N}(u_N - \tilde{u}_N, \nu_N) \leq c \|u_N - \tilde{u}_N\|_{1,A,\Omega} \|\nu_N\|_{1,A,\Omega},
\]

so that one can bound this term from \((IV.38)\) or \((IV.39)\) and \((IV.45)\). Using this estimate and Lemma \(IV.6 \) in \((IV.47)\) yields

\[
(IV.48) \quad \|p_N - \tilde{p}_N\|_{0,A,\Omega} \leq c(u) N^{3-s} + c(t) N^{3+2s-s} \quad \text{(resp.} \|p_N - \tilde{p}_N\|_{0,A,\Omega} \leq c(u) N^{3-s} + c(t) N^{3+2s-s} + c(g) N^{11/2-s})
\]

which, together with \((IV.46)\), gives \((IV.42)\) and \((IV.43)\).

That ends the theoretical results which can be proven for both the Legendre and Chebyshev approximations of the Navier–Stokes equations. It remains to apply this method to real problems, as will be done in the next section.
V. Resolution algorithm and numerical results.

In this section, we describe the resolution algorithm we use for numerical applications. It has been proposed first by Y. Moret [Mo] and is aimed at solving the time-dependent Navier-Stokes equations

\[(V.1) \begin{aligned}
\frac{\partial u}{\partial t} - v \Delta u + \text{grad} p + (u \cdot \nabla)u &= f & &\text{in } \Omega \times (0,T),~T > 0, \\
\text{div } u &= 0 & &\text{in } \Omega \times (0,T),
\end{aligned}
\]

with initial condition \(u(0) = u^0 \in \Omega\). But it can also be used to compute stationary cases as it will be shown in the following. As far as time-dependent problems are concerned, time discretization is achieved with the help of a finite difference scheme. While the convection term is handled explicitly by an Adams-Bashforth approximation, the diffusive term is implicitly treated in order to ensure stability.

Let us introduce a fixed time step \(\delta t > 0\). At each time \((n+1)\delta t, n \geq 0\), we compute an approximation \(u_{n+1}^*\) in \(X_n\) of the velocity \(u((n+1)\delta t)\). Furthermore, in order to make the numerical computation easier, we first compute a scalar quantity \(q_{n+1}^*\) in \(P_n(\Omega)\), that we call the pseudo-pressure, such that \(\text{grad } q_{n+1}^*\) is an approximation of the pressure gradient \((\text{grad } p)((n+1)\delta t)\). When the convergence is reached, the discrete pressure \(p_n\) is then obtained by a post-treatment which is performed by solving a Poisson problem.

Numerical applications (see § V.4) have been made with a Chebyshev spectral discretization. Thanks to this choice, we can employ the Fast Fourier Transform (FFT) in the computation of the derivatives (see [CLW][CT][02]).

V.1. The discrete problem for velocity and pseudo-pressure.

We consider the Navier-Stokes equations (V.1)12 with null right-hand side \(f\). For a given function \(g\) satisfying the assumptions (1.15), (1.16) and (1.26), we introduce the subspace \(X_n(g)\) of all polynomials in \(X_n\) satisfying the boundary conditions (1.27).

Let \((u_n^0, q_n^0)\) be any initial quantities in \(X_n(g) \times P_n(\Omega)\). We assume that \((u_n^0, q_n^0)\) is known in \(X_n(g) \times P_n(\Omega)\), and we seek \((u_{n+1}^*, q_{n+1}^*)\) in \(X_n(g) \times P_n(\Omega)\) such that

\[(V.2) \begin{aligned}
[L \frac{u_{n+1}^* - u_n^0}{\delta t} - v \Delta u_{n+1}^* + \text{grad } q_{n+1}^* + (u_{n+1}^* \cdot \nabla)u_{n+1}^*](x) &= 0, & &x \in \mathbb{R}^A \cap \Omega, \\
\text{(div } u_{n+1}^*, \text{div } u_{n+1}^*)_{A,N} &= \inf_{w_n \in X_n(g)} \text{(div } w_n, \text{div } w_n)_{A,N}.
\end{aligned}
\]

In the equations (V.2), we use the following notation: for any integer \(n \geq 1\),
\[u_n = (3/2) u_n^0 - (1/2) u_{n-1}^0 \]

Moreover, the operator \(L \) is a finite difference approximation of \(\text{Id} - \gamma A \), where \(\gamma \) is a positive parameter. More precisely, we set \(L = L_1 L_2 \), where

\[(V.3) \quad L_i = \text{Id} - \gamma \partial_{x_i}, \quad i = 1 \text{ or } 2,
\]

and \(\partial_{x_i} \) is the second-order finite difference operator: for example, if \(i \) is equal to 1, for any function \(w \) in \(C^0(\Omega) \), we define for any node \(x_{jk}^A = (\xi_j^A, \xi_k^A) \) in \(\Xi_N^A \cap \Omega \)

\[\partial_{x_1} w(x_{jk}^A) = \frac{2}{\xi_{j+1}^A - \xi_j^A} \times \]

\[\left[\frac{w(\xi_{j+1}^A, \xi_k^A) - w(\xi_j^A, \xi_k^A)}{\xi_{j+1}^A - \xi_j^A} - \frac{w(\xi_{j+1}^A, \xi_k^A) - w(\xi_{j-1}^A, \xi_k^A)}{\xi_{j+1}^A - \xi_{j-1}^A} \right]. \]

The parameter \(\gamma \) verifies

\[\gamma = \beta \sqrt{6} + \gamma \sqrt{6} t^2, \]

where \(\beta \) and \(\gamma \) are two nonnegative constants, and \(V \) is an estimate of the velocity norm. Note that, if \(L \) is chosen equal to the identity (i.e., \(\gamma = 0 \)), we have an explicit Adams-Bashforth scheme. In fact, however, we choose \(\beta \) and \(\gamma \) large enough to ensure a good stability of the scheme. Indeed, this scheme, when applied to the one-dimensional Burgers' equation, has been analysed in the periodic case; it has been proven [Me, Chap. 1] that for \(\gamma \) large enough, it is unconditionally stable and has a precision upper-bounded by \(c(\sigma) (\sqrt{6} t + 6 t^2 + N^{-\sigma}) \) for all real numbers \(\sigma > 0 \).

V.2. Velocity and pseudo-pressure computation.

Problem (V.2) is solved in two steps. First, we compute a predictor \(u_{n+1}^0 \) of the velocity in \(\mathbb{X}_N^A(g) \). Then a corrector \(\left(v_n, q_n \right) \) in \(P_N^A(\Omega)^2 \times P_N(\Omega) \) is computed, so that the pair \(\left(u_{n+1}^0, q_n^{n+1} \right) \) defined by

(V.4)

\[u_{n+1}^0 = u_{n+1}^0 + v_n, \]

\[q_n^{n+1} = q_n^0 + q_n \]

verifies the equations (V.2).

(i) Velocity predictor computation.

We first solve the following problem: Find a polynomial \(u_{n+1}^0 \) in \(\mathbb{X}_N^A(g) \) such that

(V.5)

\[\left[L \frac{u_{n+1}^0 - u_n}{6t} - \nu \Delta u_n^0 + \frac{\text{grad } q_n^0 + (u_n^0 \cdot \nabla) u_n^0}{} \right] (x) = 0, \quad x \in \Xi_N^A \cap \Omega. \]

This problem can be handled with standard linear system algorithms. Indeed we can associate with each operator \(L_i, i = 1 \) or \(2 \), the operator \(L_i \) defined from \(\mathbb{C}^0(\overline{\Omega}) \) into \(P_N(\Omega) \).
by: for any function \(w \) in \(C^0(\bar{\Omega}) \), \(\mathcal{I}_i w \) belongs to \(P_N(\Omega) \) and satisfies

\[
\begin{align*}
\mathcal{I}_i w(x) &= L_i w(x) , \quad x \in \Xi^A_N \cap \Omega , \\
\mathcal{I}_i w(x) &= w(x) , \quad x \in \Xi^A_N \cap \partial \Omega .
\end{align*}
\]

From [V, Thm VI.3], we deduce that the operators \(\mathcal{I}_i , i = 1 \) and 2, are (easily) invertible in \(P_N(\Omega) \) for any \(\tau > 0 \). We set \(\mathcal{I} = \mathcal{I}_1 \mathcal{I}_2 \).

Let \(s \) be in \(X_N \), the solution \(w \) in \(X_N \) of the problem \(\mathcal{I} w = s \) is obtained by solving successively the two following problems: find \(w_1 \) in \(X_N \) such that \(\mathcal{I}_1 w_1 = s \) and find \(w_2 \) in \(X_N \) such that \(\mathcal{I}_2 w_2 = w_1 \); thus we have \(w = w_2 \).

(ii) **Velocity corrector and pseudo-pressure computation.**

Thanks to (V.4), the pair \((u^{n+1}_N , q^{n+1}_N) \) is the solution of (V.2) if and only if the pair \((v_N , q_N) \) of \(P^*_N(\Omega) \times P_N(\Omega) \) satisfies

\[
\begin{align*}
(\mathbf{l} \frac{v_N}{\delta t} + \text{grad } q_N)(x) &= 0 , \quad x \in \Xi^A_N \cap \Omega , \\
(\text{div } u^{n+1}_N + \text{div } v_N , \text{div } u^{n+1}_N + \text{div } v_N)_{A,N} &= \inf \limits_{w_N \in X_N(g)} (\text{div } w_N , \text{div } w_N)_{A,N} .
\end{align*}
\]

In order to solve the problem (V.7), we introduce an operator \(\mathcal{A} \) from \(P_N(\Omega) \) into \(P^*_N(\Omega) \) which connects the pseudo-pressure \(q \) to \(\text{div } v \). We first define the operator \(\text{grad} \) in the following way: for any \(r_N \) in \(P_N(\Omega) \), \(\text{grad} r_N \) belongs to \(P^*_N(\Omega) \) and satisfies

\[
\begin{align*}
(\text{grad } r_N)(x) &= (\text{grad } r_N)(x) , \quad x \in \Xi^A_N \cap \Omega , \\
(\text{grad } r_N)(x) &= 0 , \quad x \in \Xi^A_N \cap \partial \Omega .
\end{align*}
\]

Thus, we can consider the two following problems: Find \(q_N \) in \(P_N(\Omega) \) such that

\[
(\mathbf{l} \frac{v_N}{\delta t} + \text{grad } q_N)(x) = 0 , \quad x \in \Xi^A_N \cap \Omega .
\]

In the computations, we handle the resolution of (V.7) by solving the system (V.10)(V.11). Hence, we are going to prove that the equations (V.10) and (V.11) are equivalent to (V.7).

First, we need some results in order to prove that the minimization problem (V.10)
is equivalent to the minimization problem in (V.7).

Lemma V.1: If the parameter \(\eta \) is small enough, the kernel of the operator \(\mathcal{A} \) is equal to \(Z_{1A,N} \) and its range is equal to \(M_{2A,N} \).

Proof: Clearly, \(Z_{1A,N} \) is contained in the kernel of \(\mathcal{A} \) and the range of \(\mathcal{A} \) is contained in the range of the divergence operator, hence in \(M_{2A,N} \). Consequently, it suffices to prove that the kernel of \(\mathcal{A} \) is contained in \(Z_{1A,N} \), since that would imply that it is equal to it and of dimension 8, and that the image of \(\mathcal{A} \) and \(M_{2A,N} \) have the same codimension 8 in \(P^*_N(\Omega)^2 \).

Thus, let \(q_N \) be any polynomial in the kernel of \(\mathcal{A} \). That implies that \(\nabla^{-1} \nabla q_N \) is divergence-free in \(\Omega \); since it belongs to \(P^*_N(\Omega)^2 \), there exists a unique polynomial \(\psi_N \) in \(P_{N+1}(\Omega) \cap H^2_{x,y}(\Omega) \) such that

\[
(V.12) \quad \nabla^{-1} \nabla q_N = \text{curl} \psi_N \text{ in } \Omega .
\]

Writing the expansion of \(\psi_N \) in the form

\[
\psi_N(x) = (1-x^2) \sum_{n=1}^N \hat{\psi}_n(y) (J_n^a)(x) ,
\]

we obtain

\[
(\nabla \psi_N (1-x^2)^{k}(1-y^2)^{k})(1-x^2)^{k}(1-y^2)^{k})_{A,N}
\]

\[
= (\nabla \psi_N (1-x^2)^{k}(1-y^2)^{k})(1-x^2)^{k}(1-y^2)^{k})_{A,N}
\]

\[
= \int_{\Omega} \nabla \psi_N \cdot \text{curl} \psi_N (1-x^2)^{k}(1-y^2)^{k} \, dx = 0 .
\]

That implies by (V.12)

\[
(L(\text{curl} \psi_N), \text{curl} \psi_N (1-x^2)^{k}(1-y^2)^{k})(1-x^2)^{k}(1-y^2)^{k})_{A,N} = 0 \quad \text{or equivalently}
\]

\[
(\text{curl} \psi_N, \text{curl} \psi_N (1-x^2)^{k}(1-y^2)^{k})(1-x^2)^{k}(1-y^2)^{k})_{A,N} = 0 .
\]

1) In the case \(\eta = 0 \), we have proven that

\[
(L(\text{curl} \psi_N), \text{curl} \psi_N (1-x^2)^{k}(1-y^2)^{k})(1-x^2)^{k}(1-y^2)^{k})_{A,N} = 0 .
\]

From the ellipticity of this form on \(P^*_N(\Omega) \), we deduce at once that \(\psi_N \) is equal to 0, hence that \(\nabla \psi_N \) is equal to 0, and \(q_N \) belongs to \(Z_{1A,N} \).

2) In the case \(\eta > 0 \), denoting by \(c(N) \) the norm of the operators \(\partial_1 \) and \(\partial_2 \) on the space \(P_N(\Omega) \) provided with the norm \(\| \cdot \|_{1,A,\Omega} \) and writing \(L = -\text{id} = -\eta \partial_1 - \eta \partial_2 + \eta^2 \partial_1 \partial_2 \), we obtain

\[
0 \geq c \| \psi_N \|_{1,A,\Omega}^2 - \eta \left[2c(N) + \eta c(N)^2 \right] \| \psi_N \|_{1,A,\Omega}^2 ,
\]

whence the result for \(\eta \) small enough.
From the two results of this lemma, we derive respectively the two following propositions.

Proposition V.1: If the parameter \(\eta \) is small enough, the system (V.10)(V.11) is equivalent to problem (V.7).

Proposition V.2: If the parameter \(\eta \) is small enough, the set of values \(\{(\text{grad} \, q_N)(x), x \in \mathbb{Z}_N \cap \Omega\} \), where \(q_N \) is a solution of problem (V.10), is uniquely defined and the solution \(v_N \) of problem (V.11) is uniquely defined.

In both Legendre and Chebyshev cases, the minimization problem (V.10) can be solved thanks to the Axelsson's minimization algorithm, which was aimed to problems associated with symmetrical nonnegative operators or with operators the symmetrical part of which is positive definite [Ax][J][Mé]. In our case, even if the operator does not satisfy these assumptions, the algorithm turns out to be efficient when appropriate re-initializations are used [Mé, Chap. 2, § VII.3 and Chap. 4, § IV.1].

Remark V.1: Note that it is rather standard to set up problems concerning pseudo-pressure, as in (V.10), by eliminating the velocity of the continuity equation. The basic idea of this procedure relies upon the Uzawa's algorithm [Gi], since the pseudo-pressure plays the role of the Lagrange multiplier.

V.3. Pressure post-treatment.

Once we have reached the stationary state, i.e., the time \((n+1) 8t\) when the velocity becomes independent of the integer \(n \), we can compute the pressure.

We set

\[
(V.13) \quad S^{n+1} = L \left(\frac{u_{N}^{n+1} - u_{N}^{n}}{8t} \right) - \nu \Delta u_{N}^{n+1} + (u_{N}^{n+1} \cdot \nabla) u_{N}^{n+1} ,
\]

and we seek the pressure \(p_N \) in \(P_N(\Omega) \) as the solution of

\[
(V.14) \begin{cases}
\Delta p_N(x) = - (\text{div} \, S^{n+1})(x) , & x \in \mathbb{Z}_N \cap \Omega \\
(\partial p_N / \partial n)(x) = - (S^{n+1} \cdot n)(x) , & x \in \mathbb{Z}_N \cap \partial \Omega
\end{cases}
\]

Here, the vector \(n \) denotes the unit outward normal vector to \(\Omega \) on \(\partial \Omega \).

Problem (V.14) is solved through a finite difference preconditioning method which involves the operator \(L \) defined in (V.3). Thus, \(p_N \) is computed as the limit of the following
sequence \((\rho_{N,k})_{k \geq 0} \). We set \(\rho_{N,0} = Q^0 \); then, assuming that \(\rho_{N,k} \) is known, we compute \(\rho_{N,k+1} \) as the solution in \(P_N(\Omega) \) of

\[
(V.15) \quad \begin{cases}
(L(\rho_{N,k+1} - \rho_{N,k}))(x) = \lambda (\Delta \rho_{N,k} + \text{div} S^{n+1})(x), \quad x \in \Xi_N^A \cap \Omega, \\
(\partial(\rho_{N,k+1} - \rho_{N,k})/\partial \eta)_{\text{IDF}}(x) = -\psi (\partial \rho_{N,k} / \partial n + S^{n+1}n)(x), \quad x \in \Xi_N^A \cap \partial \Omega,
\end{cases}
\]

where \(\lambda \) and \(\psi \) are suitable parameters and the operator \(\partial/\partial \eta_{\text{IDF}} \) is defined as follows: for any polynomial \(r \) in \(P_N(\Omega) \), we set for each point \(x \) of \(\Xi_N^A \cap \partial \Omega \),

1) if \(x \) is not a corner, assuming for instance that \(x = x_{ok} = (\zeta^A_0, \zeta^A_k) \) belongs to \(\Gamma_1 \),

\[
(\partial r_N/\partial \eta_{\text{IDF}})(x_{ok}) = \frac{r_N(\zeta^A_0, \zeta^A_k) - r_N(\zeta^A_1, \zeta^A_k)}{\zeta^A_0 - \zeta^A_1},
\]

2) if \(x \) is a corner, assuming for instance that \(x \) is equal to \(a_i = (\zeta^A_0, \zeta^A_0) \),

\[
(\partial r_N/\partial \eta_{\text{IDF}})(a_i) = \frac{2r_N(\zeta^A_0, \zeta^A_1) - r_N(\zeta^A_1, \zeta^A_0) - r_N(\zeta^A_0, \zeta^A_0)}{2(\zeta^A_0 - \zeta^A_1)};
\]

the operator \(\partial/\partial \eta_{\text{IDF}} \) is defined similarly on the three other edges \(\Gamma_II, \Gamma_{III} \) and \(\Gamma_{IV} \) of the square.

The parameters \(\lambda \) and \(\psi \) are chosen experimentally, in order to ensure the convergence of the sequence \((\rho_{N,k})_{k \geq 0} \). In our computation, they are respectively equal to 0.01 and 0.75.

The finite difference preconditioning method is well-known for spectral computations. It allows one to avoid direct inversion of spectral operators (e.g., the operator \(\Delta \) in our case), which is expensive because the corresponding matrices are full (see [02], for instance).

Finally, let us remark that we did not look for the pressure in the space \(M_N \) as is suggested in the theory of § III.3. This approach is now under consideration.

The numerical experiments were performed in domains of \(\mathbb{R}^3 \) with curved geometries, in which we generalized the previous algorithm. Indeed, we can use spectral techniques in a curved connected open set \(\tilde{\Omega} \subset \mathbb{R}^3 \), if there exists a one-to-one function \(\mathcal{F} \) which is sufficiently smooth and maps the reference cube \(\Omega = [-1,1]^3 \) onto \(\tilde{\Omega} \). Thanks to the function \(\mathcal{F} \), a problem initially set in \(\tilde{\Omega} \) is brought back to the cube \(\Omega \).

The set of spurious modes for pressure can be identified for three-dimensional problems [BMM, Lemme V.1][BCM, Remark IV.3], and we can obtain a well-posed problem for the Navier–Stokes equations in a cube as has been done in the two-dimensional case.
Moreover, we refer to [Mé, Chap. 2 and 3] for details about discretization of Navier–Stokes equations in curved geometries.

Let \(\mathbf{x} = (x_1, x_2, x_3) \) and \(\mathbf{\bar{x}} = (\bar{x}_1, \bar{x}_2, \bar{x}_3) \) denote the generic points of \(\Omega \) and \(\bar{\Omega} \), respectively. In our numerical applications, we have considered the set \(\bar{\Omega} \) to be defined as a curved hexahedron of \(\mathbb{R}^3 \), two opposite sides of which are plane and parallel. Without restriction, we assume that these two sides are parallel to the plane \(\bar{x}_2 = 0 \). The nozzle \(\bar{\Omega} \) is then defined from its boundary: let \(\mathcal{B}_i : \bar{\Lambda} = [-1,1]^2 \rightarrow \mathbb{R}^3 \), \(1 \leq i \leq 4 \), be the parametrizations of the four other sides (see Figure V.1).

The function \(\mathbf{F} \) can be defined as follows: for \(\mathbf{x} = (x_1, x_2, x_3) \), we set
\[
\mathbf{F}(\mathbf{x}) = ((1+x_3)/2) \mathcal{B}_3(x_1, x_2) + ((1-x_3)/2) \mathcal{B}_1(x_1, x_2) \\
+ ((1-x_1)/2) \left[\mathcal{B}_4(x_2, x_3) - ((1+x_3)/2) \mathcal{B}_4(x_2, +1) - ((1-x_3)/2) \mathcal{B}_4(x_2, -1) \right] \\
+ ((1-x_1)/2) \left[\mathcal{B}_2(x_2, x_3) - ((1+x_3)/2) \mathcal{B}_2(x_2, +1) - ((1-x_3)/2) \mathcal{B}_2(x_2, -1) \right].
\]

Clearly, we have \(\mathbf{F}(\partial \Omega) = \partial \bar{\Omega} \). Moreover, we assume that the function \(\mathbf{F} \) is one-to-one and that \(\mathbf{F}(\Omega) = \bar{\Omega} \). This last property can be deduced from hypotheses of smoothness concerning the function \(\mathbf{F} \) (see [Mé, Chap. 3, Th. V.1]).

In the example below, the open set \(\bar{\Omega} \) is a nozzle, the cross section of which in any plane \(x_1 = \text{constant} \) is a rectangle. The function \(\mathbf{F} \) is simply defined by...
\[\mathbf{F}(\mathbf{x}) = \begin{cases} \tilde{x}_1 &= \alpha \cdot x_1 + \delta \\ \tilde{x}_2 &= x_2 \\ \tilde{x}_3 &= x_3 \frac{\partial F(x_1)}{\partial x_1} \end{cases} \]

where \(F(x) \) is a fourth-degree polynomial with maxima at \(x_1 = \pm 1 \) and a minimum at a point \(x_1 = x_1^0 \) of \([-1,1] \). The boundary conditions \(g \) are given by

\[g \circ \mathbf{F}(\mathbf{x}) = \begin{cases} 3 (1-x_2^2) / 4 \frac{\partial F(x_1)}{\partial x_1} \\ 0 \\ 0 \end{cases}, \quad x_1 = \pm 1 \]

\[\begin{cases} 3 (1-x_2^2) / 4 \frac{\partial F(x_1)}{\partial x_1} \\ 0 \\ 3 (1-x_2^2) x_3 \frac{\partial F(x_3)}{\partial x_3} / 4 \alpha \frac{\partial F(x_1)}{\partial x_1} \end{cases}, \quad x_2 = \pm 1 \]

\[\begin{cases} 0 \\ 0 \\ x_3 = \pm 1 \end{cases} \]

Note that we can extend the boundary data \(g \) into a divergence-free function \(u_b \) on \(\tilde{\Omega} \), by setting

\[u_b \circ \mathbf{F}(\mathbf{x}) = \begin{cases} 3 (1-x_2^2) / 4 \frac{\partial F(x_1)}{\partial x_1} \\ 0 \\ 3 (1-x_2^2) x_3 \frac{\partial F(x_3)}{\partial x_3} / 4 \alpha \frac{\partial F(x_1)}{\partial x_1} \end{cases} \]

The viscosity coefficient \(\nu \) is equal to \(10^{-2} \). The discretization is performed in the space of polynomials of degree \(\leq N \), with \(N = 16 \). Thus the mesh is made up of \(17^3 \) collocation nodes associated with the Chebyshev polynomials. The time step \(\delta t \) is equal to \(10^{-3} \).

Figure V.2 shows the mesh. In Figure V.3, the velocity iso-norms and the iso-pressure lines are presented in the plane \(x_2 = 0 \), at the time \(10 \delta t \) (when the stationary state is already reached).

Figure V.4 shows the iso-pseudo-pressure lines. The spurious mode \(T_N(x_1) \) (the extrema of which coincide with the vertical lines of the mesh) appears clearly and totally hides the pressure behavior.

Figure V.5 shows the convergence of the algorithm (V.13) for the pressure post-treatment. Due to Neumann boundary conditions, the convergence is rather slow, so that the technique must be improved in order to obtain an efficient pressure solver.

Nevertheless, we obtain good results concerning the velocity. Note that we have

\[((\text{div } u_N^{n+1}) \circ \mathbf{F}, (\text{div } u_N^{n+1}) \circ \mathbf{F})_{C,N}^{1/2} = 6.4 \cdot 10^{-4} \]

This quantity can of course be reduced by increasing the number of collocation points. We refer to [Mé, Chap. 4, § IV.3] for another way to reduce \(((\text{div } u_N^{n+1}) \circ \mathbf{F}, (\text{div } u_N^{n+1}) \circ \mathbf{F})_{C,N} \).
Boundary conditions at the internal nodes

Residual at the internal nodes of the faces

Number of iterations

Figure V.5
References

The aim of the paper is to study a collocation spectral method to approximate the Navier-Stokes equations: only one grid is used, which is built from the nodes of a Gauss-Lobatto quadrature formula, either of Legendre or of Chebyshev type. The convergence is proven for the Stokes problem provided with inhomogeneous Dirichlet conditions, then thoroughly analyzed for the Navier-Stokes equations. The practical implementation algorithm is presented, together with numerical results.