APPLICATION OF LINEAR RESPONSE THEORY TO EXPERIMENTAL DATA OF SIMULTANEOUS RADIATION AND ANNEALING RESPONSE OF A CMOS DEVICE

Dr. V. Litovchenko
The Catholic University of America
Washington, DC 20064

(NASA-CR-183401) APPLICATION OF LINEAR RESPONSE THEORY TO EXPERIMENTAL DATA OF SIMULTANEOUS RADIATION AND ANNEALING RESPONSE OF A CMOS DEVICE Quarterly Report
No. 3, 8 June - 8 Sep. 1988 (Catholic Univ. G3/76 0174538

This report deals with an application of linear response theory to experimental data of simultaneous radiation and annealing response of a CMOS device. In particular, we apply the method we have developed earlier to determine the characteristic time, \(\tau \), as well as the parameters \(A \) and \(C \) in the \(\ln(t) \) dependence of the linear response function \(R(t) \):

\[
R(t) = -C + A \ln(1-t/\tau). \tag{1}
\]

Our method is based on a study of the linear response for \(t < \tau \), when \(R(t) \) can be expanded in a power series of \(t \):

\[
R(t) = R(0) + R'(0)t + 1/2R''(0)t^2 + 1/3R'''(0)t^3 + \ldots \tag{2}
\]

where \(R'(0) \) and \(R''(0) \) are, respectively, the first and second derivatives of \(R \) with respect to \(t \). At the point \(t=0 \), \(R(0) \) is \(R(t=0) \).

To find the linear response, one needs to substitute \(R(t-t') \) in the form of Eq. (2) into our general equation for the shift of the threshold potential:

\[
\delta V(t) = \int_0^t R(t-t')dt', \tag{3}
\]

where \(D \) is the dose rate (here considered to be constant).

Substituting Eq. (2) into Eq. (3), we obtain

\[
\delta V(t) = DR(0)t + DR'(0)t^2 \int_0^t dt' + 1/2DR''(0)t^3 \int_0^t dt' + \ldots \tag{4}
\]

Integrating, we obtain
\[\delta V(t) = D_{\text{tot}} \left[R(0) + 1/2R'(0)t - 1/6R''(0)t^2 - 1/24R'''(0)t^3 \right] , \] (5)

where \(D_{\text{tot}} = D(t) = D_t. \)

In particular, for the \(\ln(t) \) dependence,

\[R(t) \approx -C + A(t/t_0) - 1/2A(t/t_0)^2 \] (6)

or, comparing Eq. (6) and Eq. (3),

\[R(0) = -C, \quad R'(0) = A/t_0, \quad R''(0) = -A/t_0^2 \quad \text{and} \quad R'''(0) = 2A/t_0^3. \] (7)

We obtain the following expression for the shift of threshold potential by substituting Eq. (7) into Eq. (5):

\[\delta V(t) = D_{\text{tot}} \left[-C + 1/2A(t/t_0) - 1/6A(t/t_0)^2 - 1/12A(t/t_0)^3 \right] , \] (8)

where \(t \ll t_0. \)

It is more convenient to deal with the shift per unit dose:

\[\delta V(t)/D_{\text{tot}} = a_0 + a_1 t + a_2 t^2, \] (9)

where the constants are

\[a_0 = -C, \quad a_1 = A/2t_0, \quad a_2 = -A/6t_0^2. \] (10)

For the general case, we have

\[a_0 = R(0), \quad a_1 = 1/2R'(0), \quad a_2 = -1/6R''(0). \] (10a)

To test our method, we planned and participated in irradiation experiments conducted on RCA 10K rad-hard CMOS ICs at the Goddard Space Flight Center Radiation Facility. We chose a dose rate equal to approximately 130 rads/min. An IC was irradiated with \(^{60}\text{Co} \) gamma rays for several hours, taking measurements of the threshold potential (evaluated at a drain current of 300 \(\mu \text{A} \)) for one \(n \)-channel and one \(p \)-channel transistor every ten minutes.

One can expect a linear dependence of \(\delta V(t)/D_{\text{tot}} \) for small times when

\[a_2 t^2/a_1 t = t/2t_0 \ll 1, \] (11)

or

\[t \ll t_0/3. \]

The first three points showed the linear dependence of \(\delta V(t)/D_{\text{tot}} \) (30 min.) in both cases, but the fourth point deviated from that dependence. From this, we could conclude at once that \(t_0 >) 3t = 30 \text{ min.} \) In other words, that \(t_0 \) was between one and two hours. We used the linear part of the curves (the first 3-5 points) to find \(a_0 \) and \(a_1 \), and we then used the next part of the curve to
find \(a_0 \). The constants \(a_1 \) and \(a_2 \) allowed us to calculate \(t_0 \) and \(A \):

\[
t_0 = \frac{-1}{3} a_1 / a_2
\]

\[
A = \frac{-2}{3} a_1^2 / a_2.
\]

(12)

For the p-channel transistor, we found \(t_0 \) to be approximately 110 min. and for the n-channel, \(t_0 \approx 70 \) min.

For the p-channel, the theoretical curve,

\[
\delta V(t)/D_{\text{expt}} = a_0 + a_1 t + a_2 t^2,
\]

deviates from the experimental points only after 70 min., which is \(0.64 t_0 \), and for the n-channel, the deviation takes place after 45 min., which is also \(0.64 t_0 \).

For the n-channel, we then plotted a more precise theoretical curve, adding one more term, \(a_3 t^3 \):

\[
\delta V(t)/D_{\text{expt}} = a_0 + a_1 t + a_2 t^2 + a_3 t^3.
\]

The value of \(a_3 \) was found from Eq. (10) and (10a):

\[
a_3 = \frac{3}{2} a_1^2 / a_1 = 0.00196 \approx 0.002.
\]

(13)

We plotted this improved curve to \(t = \) one hour, which gives \(t_0 / t \approx 0.86 \). There is no point in continuing the curve further, since the condition \(t_0 / t \leq 1 \) must hold and the expansion (Eq. (6)) is definitely not valid beyond this point. In any event, our purpose was to analyze the region \(t_0 / t \leq 1 \).

It is worth noting that our lack of data on the dependence of \(R(t) \) on dose rate and temperature at this point prevents development of the microscopic (quantum) theory of annealing.

If we find that, in some cases, \(R(t) \) does not possess a \(\ln(t) \) dependence (Eq. (1)), our method still allows us to find the value of \(R(t) \) and its derivatives at \(t = 0 \) through Eq. (5). Again, by conducting experiments for different dose rates (or temperatures), one can obtain the dependence of \(R(0) \), \(R'(0) \) and \(R''(0) \) on these variables. Since \(R'(0) \) is proportional to \(1/t_0 \) and \(R''(0) \) is proportional to \(1/t_0^2 \), we can determine the dependence of \(t_0 \) on temperature or dose rate.

The case of pure annealing can be treated in the same way. Instead of Eq. (3), we will use our general equation:

\[
\delta V(t) = D \int R(t-t') dt'.
\]

(14)

Substituting Eq. (2) in Eq. (14), we obtain
\[\delta V = D_{tot} [R(0) + R'(0)(t - 1/2t_\tau) + \\
+ 1/2R''(0)(t^2 - t_\tau - 1/3t_\tau^2) + \\
+ 1/3R'''(0)(t^3 - 3t^2t_\tau + t_\tau^3 - 1/4t_\tau^4)] \]

(15)

or

\[\frac{\delta V(t)}{D_{tot}} = R(0) - 1/2R'(0)t - 1/6R''(0)t^2 - 1/12R'''(0)t^3 + \\
(R'(0) - 1/2R''(0)t_\tau + R'''(0)t_\tau^2)t + \\
(1/2R''(0) - 1/2R'''(0)t_\tau)t^2 + \\
1/2R'''(0)t_\tau^3. \]

(16)

Since we are concerned with the case \(t_\tau/t_\tau \ll 1 \), Eq. (16) can be simplified:

\[\frac{\delta V(t)}{D_{tot}} = R(0) + R'(0)t + 1/2R''(0)t^2 + 1/3R'''(0)t^3. \]

(17)

In particular, for the \(\ln(t) \) dependence, we substitute Eq. (7) into Eq. (17) and obtain

\[\frac{\delta V(t)}{D_{tot}} = -C + A(t/t_\tau) - 1/2A(t/t_\tau)^2 + 2/3A(t/t_\tau)^3 \]

(18)

Then, as in the case of simultaneous irradiation and annealing, we can, in principle, determine \(a_\circ, a, \) and \(a_e \) from experimental data. We can then calculate \(t_\tau \) and \(A \):

\[t_\tau = -1/2 a_\circ/a_\circ \]

\[A = -1/2 a_\circ^2/a_\circ \]

\[C = -a_\circ. \]

(19)
N channel

\[\delta = 145 \% \text{ min} \]

\[\Delta V / D_t = a_0 + a_1 t + a_2 t^2 \]

\[\frac{T_{unit}}{1.45 \times R} = 0.7 \text{ mV} \]

\[t_0 \approx 70 \text{ min} \]

\[c = -a_0 = 6.6 \frac{mV}{1.45 \times R} \]

\[a_1 = \frac{1}{2} \frac{A}{t_0} = 0.1 \frac{0.6 \text{ mV}}{1.45 \times R \times 10 \text{ min}} \]

\[a_2 = -\frac{1}{6} \frac{A}{t_0^2} = 0.002 \frac{mV}{1.45 \times R \times (10 \text{ min})^2} \]

\[a_3 = -\frac{1}{3} \frac{A}{t_0^3} = 0.002 \frac{mV}{1.45 \times R \times (10 \text{ min})^3} \]

\[\times \text{ Experimental points} \]

\[\text{Theoretical curves} \]

1. \(\Delta V / D = a_0 + a_1 t + a_2 t^2 \)

2. \(\Delta V / D = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \)

\(t_0 \) 1h 2h 26h

\(\text{Time} \)
\[\frac{\Delta V}{D_{tot}} = a_0 + a_1 t + a_2 t^2 \]

\[a_0 =\frac{7.5 \text{ mV}}{1.45 \text{ kR}} \]

\[a_1 = \frac{1}{2} \frac{A}{t_0} = 0.1 \frac{0.5 \text{ mV}}{1.45 \text{ kR} \text{ min}} \]

\[a_2 = -\frac{1}{6} \frac{A}{t_0^2} = \frac{0.015 \text{ mV}}{1.45 \text{ kR} (110 \text{ min})^2} \]

\[t_0 = -\frac{1}{3} \frac{a_1}{a_2} = 11.11 \times 10^3 \text{ min} \approx 110 \text{ min} \]

\[A = \frac{2}{3} \frac{a_1}{a_2} = 11.11 \frac{\text{mV}}{\text{kR} \times 10^3} t_0 \approx 2 \text{ h} \]

\[A = 1.7 m \times 10^3 \frac{\text{mV}}{4.5 \text{kR}} \]