el R ol
O >»tow
£ bt b D
poe o (L R
71} 3 b
[l - Eal
V.- Nl No!
o oottt
oW i
[[N 7, I
oo
[[-
o Lo oain
P ek N D0 b
[PN [
L.] S
LE- e
- beinm
[B e
oo w o
s M A
nels
[M a X ol
Ot oim
0O~ M
-] hOo
* O o m
o Mm ot
(] o m
A o B
O et tn
Ae D R
™~ et e
- o
> £ W
2855E
<
o o WLk
SooCm
nnnan
o e n
(=1 « % 4
ey]
G
(Y%
N
®©
[8
(>N] o
- 23 2]
w O %]
[y])
e :
"nn
(%,] (¥)
wn
~J

I E R E R EE R R R 2 AR R R R R R R R R R R R R R R R R R RS RS S R R R R RS R R 2RSS S

USL / DBMS NASA / RECON

WORKING PAPER SERTIES

Report Number

DBMS .NASA/RECON-9

¥ x
x %
E 3
x *
* %*
% *
x x
t 3 t 3
%x x
x x
x E
* x
x x
E 3 x
* x
x *
zx J

I EEEEEE R R R R ERE RS R R R E R RS 2R R SRR S22 R E R RS S R RS R R R R R 2 2

The USL/DBMS NASA/RECON Working Paper Series contains a
collection of reports representing results of activities being
conducted by the Computer Science Department of the University of
Southwestern Louisiana pursuant to the specifications of National
Aeronautics and Space Administration Contract Number NASW-3846.
The work on this contract is being performed jointly by the
University of Southwestern Louisiana and Southern University.

For more information, contact:

-~ Wayne D. Dominick

Editor
USL/DBMS NASA/RECON Working Paper Series
Computer Science Department
University of Southwestern Louisiana
P. O. Box 44330
Lafayette, Louisiana 70504
(318) 231-6308

R T e T T R e D T T T T T T N e

B e T T T T .

KNOWLEDGE BASED SYSTEMS:

A CRITICAL SURVEY OF MAJOR CONCEPTS, ISSUES, AND TECHNIQUES

A Thesis
Presented to
The Graduate Faculty of
The University of Southwestern Louisiana
In Partial Fulfillment of the
Requirements for the Degree

Master of Science

Srinu Kavi

December 1984

KNOWLEDGE BASED SYSTEMS:

A CRITICAL SURVEY OF MAJOR CONCEPTS, ISSUES, AND TECHNIQUES

Srinu Kavi

APPROVED:

Wayne D. Dominick, Chairman William R. Edwards, Jr.
Associate Professor Associate Professor

of Compter Science of Computer Science
Thomas R. Cousins Joan T. Cain

Assistant Professor Dean

of Computer Science Graduate School

ACKNOWLEDGEMENTS

I wish--to express my gratitude to Dr. Wayne Dominick, for
his invaluable time and comments.

I would 1like to thank Dr. William Edwards and Dr. Thomas
Cousins for serving on my committee.

I would also like to express my deepest gratitude to my
parents, Mr. and Mrs. Kousalya Ranga Rao, and to my brother, Dr.
Krishna M. Kavi, for their constant encouragement and support.

Lastly, I would like to thank my special friend, Lin Yan,

for her time and emotional support. s

iii

TABLE OF CONTENTS

Page
LIST OF TABLES « v ¢ v o v v o v « « o xiii
LIST OF FIGURES + « o v v v v o o o xiv
Chapter
1. INTRODUCTION + v s v e v e v v o o o 1
2. KNOWLEDGE-BASED SYSTEMS (KBSs) 4
2.1 Introduction v . e . e 4
2.1.1 Characteristics of KBSs S
2.1.1.1 Organization of Knowledge S
2.1.1.2 Performance « . .« . s
2.1.1.3 Utility «+ o . . 6
2.1.1.4 Transparancy . . - . . . « « « « = 6
2.1.1.5 Heuristics« . 7
2.1.1.6 Flexibility 7
2.1.1.7 Modularity < . g
2.1.1.8 Uncertainty+ « .« « 8
2.1.2 Types of KBSs« « « « « « « o . 9
2.1.2.1 Interpretation Systems 12
2.1.2.2 Prediction Systems 13
2.1.2.3 Diagnosis Systems 13
2.1.2.4 Design Systems 14
2.1.2.5 Planning Systems 14

2.1.2.6 Monitoring Systems 15

iv

2.1.2.7 Debugging Systems
5.1.2.8 Repair Systems
2.1.2.9 Instructional Systems
2.1.2.10 Control Systems
2.1.2.11 Knowledge Acquisition Systems
2.1.2.12 Expert System Construction Systems
2.1.2.13 Image Understanding Systems .
2.1.2.14 Concept Formation Systems

2.1.3 Knowledge and Data

2.1.4 Knowledge and Skill

2.1.5 Expert and Novice

2.1.6 KBSs and Expert Systems . .

A Hypothetical KBS« « . .
KBS Components+ .+ « « « ¢« « « o o
Knowledge Base ¢ . ¢ ¢ . o+ . . .
2.4.1 Knowledge Sources
2.4.2 Fact Files

2.4.3 Types of Knowledge
Inference Engine
©2.5.1 Knowledge Use and Control
2.5.2 Knowledge Acquisition

2.5.3“fxplanation e e e e e e
Interface « < « + & & & . .
2.6.1 User Interface

2.6.2 Expert Interface

2.6.3 Data Interface « ¢ « « + « + o « .

16
16
16
17

17

18
19
19
20
20
21
23
28
29
29
31
31
34
34
3s5
35
36
37
37

38

2.7 Workspace Representation
2.7.1 Plan .
2.7.2 Agenda
2.7.3 History
2.7.4 Solution Set

2.8 Separation of KBS Elements

2.9 Summary

TECHNIQUES USED TO CONSTRUCT KBSs

3.1 Introduction
3.1.1 Origins of KBS Techniques
3.1.2 Choices and Restrictions .
3.1.3 Knowledge Representation Problems
3.1.4 Knowledge Representation Forms
3.1.5 Knowledge Representation Unit
3.1.6 Credibility Factors . . .

3.1.7 Procedural Versus Declarative
Representation

3.2 Methods of Representing KS . . .
3.2.1 Introduction
3.2.2 Finite-State Machine
3.2.2.1 Introduction
.-3.2.2.2 Example 1
3.2.2.3 Example 2
3.2.2.4 Control Mechanism . .
3.2.2.5 Characteristics of FSM .
3.2.3 Programs« . . =
3.2.3.1 An Example

vi

39

39

39

39

40

40

41

42

42

42

44

46

47

49

51

54

57

57

61

61

62

63

65

69

70

70

3.2.3.2 Invocation Methods

3.2.3.3 Control Structures

3.2.3.4 Advantages and Disadvantages

3.2.4 Predicate Calculus .

3.

3

3

2

.2

.2

.2

.2

.2

.2

.4.1 Introduction

.4.2 Predicate Calculus Definition
.4.3 Some Definitions

.4.4 An Example

.4.5 Characteristics of PC . .
.4.6 Advantages and Disadvantages

.4.7 Systems That Use PC . . .

3.2.5 Production Rules . .

3

3

.2.

.2

.5.1 Introduction
.6.2 Production System Types

.6.3 Production System Components
.6.4 Conflict Resolution Strategies
.6.5 Example 1
6.6 Example 2

.6.7 Characteristics of PSs

3.2.6 Semantic Networks

3.2.6.1 Introduction

"3.2.6.2 Definition

3

.2

.2

.2

.2

.6.3 Example 1
.6.4 Example 2
.6.5 General Versus Specific Knowledge

.6.6 Advantages and Disadvantages

vii

73

74

75

75

75

76

84

8s

90

91

92

92

92

94

95

96

99

110

117

117

117

118

119

124

125

3.2.6.7
3.2.1 frmmes
T 3.2.7.1
3.2.7.2
3.2.7.3

3.2.7.4

Status of Semantic Networks
Introduction

Frame Characteristics

Example 1: Frame Representation

Example 2: A Recognition Scenario

3.3 Inference Engine (IE)

3.3.1 Primary

Functions of IE

3.3.2 Some Definitions
3.3.3 IE Strategies
3.3.3.1 Forward Chaining
3.3.3.2 Backward Chaining
3.3.3.3 Chain Both Ways C e e e e e e e
3.3.3.4 Middle Term Chaining

3.3.3.6

3.3.3.7

3.3.4 Methods

Directionality of Control Strategy
Breadth-First Control Strategy
Depth-First Control Strategy

of Implementing the IE

3.3.4.1 Search Techniques

3.3.4.2 Search System Components

3.3.4.3 Evaluation Function

"3.3.4.4 Ordered Search Algorithm .
3.3.4.5 A* - An Optimal Search Algorithm .
3.3.4.6 AND/OR Graph
3.3.5 Measures of Performance . .
3.3.5.1 Penetrance+ « « « + + .

viii

127

127

127

129

132

136

139

139

140

141

141

142

142

142

146

148

150

152

154

154

156

157

161

163

169

169

3.3.5.2 Branching Factor
3.3.5.3 Examples .
3.4 WMrk;pace Representation
3.4.1 Introduction
3.4.2 HEARSAY-Blackboard
3.4.3 AND/OR Graph
3.4.4 Blackboard Versus AND/OR Graph
3.5 The Interface
3.5.1 Functions of the Interface
3.5.2 User Interface

3.5.2.1 Introduction

3.5.2.2 User Interface Characteristics

3.5.2.3 The User Input
3.5.2.4 Parsing Strategies
3.5.2.5 Parsing Systems

3.5.2.6 Output to the User

3.5.2.7 Methods of Providing Explanations

3.5.3 Expert Interface .
3.5.3.1 Introduction

3.5.3.2 Expert Interface Tasks

3.5.4 Knowledge Acquisition (KA) Process

3:5.4.1 Introduction

3.5.4.2 Problem Identification
3.5;4.3 Conceptualization Stage
3.5.4.4 Formalization Stage

3.5.4.5 Implementation Stage

ix

170
171
173
173
174
180
182
182
182
184
184
185
185
186
188
193
194
196
196

197
198
198
199
201
202

202

3.5.4.6 Testing Stage

_3.5.4.7 Difficulties in KA

4. KBS BUILDING TOOLS AND LANGUAGES

S.

4.1 Introduction« .+ < « & .« . .
4.1.1 General Purpose Programming Languages
4.1.2 Skeletal Systems+ « « « o« o« .
4.1.3 General Purpose Representation Languages
4.1.4 Computer-Aided Design Tools

4.2 Case Studies
4.2.1 BMYCIN + . .+ . . .

4.2.1.1 Overview of EMYCIN
4.2.1.2 Knowledge Representation
4.2.1.3 The EMYCIN Inference Engine . .

4.2.1.4 EMYCIN Facilities e e e e .

4.2.2 HEARSAY-I11
4.2.2.1 Overview of HEARSAY-III . .
4.2.2.2 Knowledge Representation
4.2.2.3 HEARSAY-I11I1 Inference Engine
4.2.3 AGE
4.2.3.1 Overview of AGE
-4.2.3.2 Blackboard Framework
4.2.3.3 AGE Facilities
APPLICATION CONSIDERATIONS
5.1 Introduction
5.2 Initial Considerations

§.2.1 Task Suitability

203

203

206

206

207

210

211

212

213

213

213

214

219

220

220

220

222

225

226

226

227

231

233

233

234

234

5.2.2 Availability of Expert

5.2.3 knowledge Acquisition Process

.4

.5

.8

.9

Agreement With the Domain Theory
Expert’s Model

Expert’s Principles of Reasoning
Intermediate Levels of Abstraction
General Versus Domain Specific Knowledge

End Users . e

.10 Unanticipated Support

.11 Cost Versus Bemnefits

5.3 Technology Considerations

5.

5.

3.

3

.1

.2

8

.9

Building Prototype System
Chunk Size« . .
Representation of Knowledge

Inference Engine

Meta Knowledge

Procedural Knowledge

Addition of Knowledge by the Users . . .
Extensibility

Knowledge Representation Tools

5.3.10 Design of Tools for Building KBSs

5.4 Environmental Considerations

5.4.1 Interactive KBSs

5.4.2 Interactive Development Environment

5.4.3 Local Operating Environment

6. CONCLUSIONS « . « . .

xi

235
236
238
238
238
239
239
239
240
240
241
241
241
242
242
243
243
243
244
244
246
248
248
248
249

250

7. POTENTIAL FUTURE RESEARCH AREAS

APPENDICIES . .

A. CASE STUDY - MYCIN . . « v v e e v v .

A.1 MYCIN’s Problem Domain e e e e e e e e

A.2 MYCIN’s Knowledge Base

A.2.1

A.2.2

A.2.3

A.2.4

A.2.5

A.2.6

A.2.7

.3 MYCIN’

Representation of Rules

Context Tree e e e e e e e e e e
Categorization of Rules
Clinical Parameters

Simple Lists
Knowledge Tables
Specialized Functions

s Inference Engine

.4 Certainty Factors

.5 Context Tree e e e e e e e e e e

.7 MYCIN’

s Explanations

s Interface

.8 Evaluation of MYCIN

B.

A
A
A
A.6 MYCIN’
A
A
L

IST OF KBSs

C. FIFTH GENERATION PROJECT

REFERENCES

ABSTRACT

BIOGRAPHICAL SKETCH

xii

253

260

260

260

262

262

263

266

267

269

270

270

270

276

278

276

278

278

284

288

294

306

307

LIST OF TABLES

Tables
2-1 Some Existing Expert Systems - .

2-2 Generic Categories of Knowledge Engineering
Applications e

3-1 Origins of KBS Techniques
3-2 Definitions of the Logical Connectives

A-1 Ratings of Antimicrobial Selection

xiiti

Page

10

11
43
83

282

Figures
2-1 KBS Elements and Their Relationship
3-1 Restrictions on Choices of KBS Methodologies
3-2 Knowledge Representation Forms
3-3 Finite State Machine Representation
of a Lamp With a Pull Chain
3-4 Finite State Representation of a Plan to
Make and Drink Coffee Using MR. COFFEE
3-5 Finite State Recognizers
3-6 Procedural Knowledge Example
3-7 Proof that Jack Lives in Boston . .
3-8 Productions and Interpreter
3-9 Production Rules for Automotive System KB
3-10 Data Gathering Procedure Fact File
3-11 Example Flow in Auto Diagnostic System
3-12 Back Chaining
3-13 Fragment of Graph Structure
3-14 Characteristics of Production Systems
3-15 Example Semantic Network
3-16 Example Frame Definitions
3-17 Inexact Match by a Frame System
3-18 Chaining Examples
3-19 Diagram for Problem Reduction
3-20 8-Puzzle o o . .

LIST OF FIGURES

xiv

Page
30
45

48

62

64
67

72

36

97

101
103
105
107
109
111
120
134
137
144
145

149

The Tree Produced by a Breadth-First Search
Depth-First Back Chaining
The Ttee Produced by a Depth-First Search
The Tree Produced by an Ordered Search . .
An AND/OR Tree

Sum Costs 4 v e v v 0.
Example Move Graph and Balanced Tree . . .
HEARSAY-I1 Levels of Represenation and KSs
Blackboard Example

Example AND/OR Graph
A Finite State Transition Diagram
A Recursive Transition Network

Stages of Knowledge Acquisition

EMYCIN Overview
A Sample Context Tree
A Sample Context Tree

The MONITOR Mechanism
The FINDOUT Mechanism

Xv

151

153

155

160

164

168

172

177

178

181

189

191

200

215

217

265

274

275

Chapter 1

- INTRODUCTION

After being in

only recently is artificial

computer science that attempts
intelligent behavior - accomplishing
these results can be attributed

Knowledge-Based Systems, KBSs (or

solving computer programs that can

comparable to that of a human expert

domain [Nau, 83]. These systems
various requirements 1like medical
analysis, project risk assessment,

knowledge to enable them to make

are, however, not meant to replace

particular domain.

This report surveys recent

explaining KBS concepts, issues,

Basic <concepts of KBSs,
types of KBSs, and differences
knowledge and skill, and difference
novice are presented in Chapter 2.

description of a

KBS are presented.

intelligence (AI) -

intelligent

work

between

Also

hypothetical KBS,

a relatively dormant state for many years,

that branch of

to have machines emulate

practical results. Most of

to the design and wuse of

expert systems) - problem

reach a level of performance
in some specialized proble;
can act as a consultant for
threat

diagnosis, military

etc. These systems possess

decisions. They

the human specialists in any
KBSs,

in interactive

and KBS technology.

including the characteristics and

knowledge and data,

between an expert and a

in Chapter 2, a brief

and various components in a

In Chapter 3, various techniques used to construct KBSs are
discussed in detail.

In Section 3.1, an introductory discussion is presented for
origins of KBS techniques, various <choices and restrictions,
knowledge representation problems, knowledge representation
forms, knowledge representation units, and credibility factors.
Also in Section 3.1, the differences between procedural and
declarative representations are discussed.

In Section 3.2, various methods for representing knowledge

in KBSs are discussed. Specifically, six representation
techniques - finite-state machines, programs, predicate calculus,
production rules, semantic networks, and frames — are discussed

in detail.

In Section 3.3, various issues and techniques related to
the inference engine of a KBS are discussed. Also in Section
3.3, two performance metrics that are useful in evaluating the
performance of an inference engine are described.

In Section 3.4, after providing brief introduction for
workspace representation in KBSs, two techniques
(HEARSAY-Blackboard and AND/OR Graph) are discussed in some
detail. -

In Section 3.5, various functions and types of interfaces
are discussed. Also in 3.5, the knowledge acquisition process
is described. Specifically the phases involved and problems

associated with the knowledge acquisition process are discussed.

In Chapter 4, various tools and languages to build KBSs are

discussed.

In Section 4.1 an introduction to various tools and
languages is presented. In Section 4.2, three case studies
(EMYCIN, HEARSAY-III, and AGE) for KBS building tools are
described.

In Chapter §, various considerations that should be taken
into account before (and during) building a KBS are presented.

Conclusions are presented in Chapter 6 and, in Chapter 7,
many problems that exist in current KBSs and, hence, future areas
of research are identified.

Three appendicies are provided in this report. In Appendi;
A, a case study of a KBS (MYCIN) is described in detail. A lisf
of existing KBSs and brief description of those systems are
provided in Appendix B. In Appendix C, a brief introduction is
provided for the Japanese Fifth Generation Computer Project.

And, finally, extensive set of references are provided at

the end of this report.

Chapter 2

KNOWLEDGE-BASED SYSTEMS (KBSs)

It is mnecessary to distinguish, at the outset, between

knowledge-based systems and other computer—based systems that

contain or incorporate knowledge. Almost all computer programs
and systems contain knowledge of at least two kinds: knowledge
about things and knowledge about what to do with things - that

is, how to manipulate or transform them. A KBS can be defined in
the following way: ”A knowledge-based system is one in which
knowledge is collected in one or more compartments (called

knowledge sources) and is of the kind that facilitates problem

solving (reasoning) in a single, well-defined problem domain and
whose performance is comparable to that of a human expert in some
specialized problem domain”. (This definition is based on the
definitions presented in [Barnett & Bernstein, 77] and [Nau,
83]).

From this definition, however, it is mnot readily apparent
what distinguishes such a system from an ordinary application
program. Many application programs make use of specialized
problemrsolvi;g knowledge and many of them reach high levels of

performance [Nau, 83]. The discussion in the next section should

help make that distinction.

2.1.1 Characteristics of KBSs

Some important characteristics of KBSs (and differences with
other computer-based systems) are discussed in the following

sub-sections.

2.1.1.1 QOrganization of Knowledge

Most computer programs organize knowledge on two levels:
data and program. But most Kknowledge-based systems organize
knowledge on three levels: data, knowledge, and control.

At the data level is information about the current problqn
and the current state of affairs in the attempt to solve the
problem.

At the knowledge base level is general knowledge about the
problem domain the system is designed and built for.

At the control level are the methods (inference engine) of

applying general knowledge to solve the problem.

2.1.1.2 Performance

KBSs handle real-world, complex problems which require an
expert’s interpretation (or expertise). The experts produce
consistently-—high—quality results in minimal time (i.e., they
show "high performance”). High performance requires that the
KBSs have not only general facts and principles but the
specialized ones that separate human experts from novices

[Buchanan, 82]. Accurate and high quality results are shown in

many successfyl KBSs in restricted classes of problems.
However,, currently there are no (known) formal metrics to

evaluate the performance of KBSs (see Chapter 7).

2.1.1.3 Utility (or Usefulness)

Designers of KBSs are motivated to build these systems
because of the demonstrated need in many application areas, in
addition to constructing programs that serve as vehicles for Al
research. For example, the motivation for developing the MYCIN
system - a system which provides consultive advice on diagnosis
of and therapy for infectious diseases, in particular, bacteriaz
infection in the blood, bacteremia - was the need for more f(or
more accessible) consultants to physicians selecting
antimicrobial drugs (see the case study of MYCIN in Appendix A).

On the other hand, solving the Tower of Hanoi puzzle, per
se, is not a critical bottleneck in any scientific or engineering
enterprise. However, in some cases, a task is chosen just
because of its inherent importance. More often than not, a
problem’s significance for AI research 1is also a factor now
because KBSs are still constructed by researchers for research
purposes [Buchanan, 82]. Usefulness also implies competence,

consistently high performance, and ease of use.

2.1.1.4 Transparency (or Understandability or Explainability)

One of the most important characteristics of a KBS is the

ability to conduct an interactive dialog with the user i.e., the

user does not view KBS as a "black box”. This means the system
should be -able to provide coherent explanations of its line of
reasoning and answers to queries about its knowledge and its
results, rather than simply printing a collection of orders to
the user. It is not mnecessary that KBSs are psychological models
of the reasoning of the experts. However, they must be
understandable to persons familiar with the problem [Buchanan,

82].

2.1.1.5 Heurijstics

Heuristics (or hunches or rules of thumb) are an essential
key to intelligent problem solving because computationally
feasible, mathematically precise methods are known for only a
relatively few classes of problems. A large part of what a KBS
needs to know is the body of heuristics that specialists use in
solving hard problems, i.e., the need to reason with judgemental
knowledge as well as with formal knowledge of established (or
textbook) theories [Buchanan, 82]. With the above heuristic

knowledge, the system provides expert-level analyses of difficult

situations.

2.1.1.6 Flexibility

Another <characteristic of a KBS is that it integrates new
knowledge incrementally into its existing store of knowledge,
i.e., a KBS provides incremental development of knowledge over an
extended time by letting the developers refine old rules and add

new ones.

2.1.1.7 Modularity (or Changeability)

In KBSs, there is a clear separation of the general
knowledge of a problem domain and the reasoning mechanism which
uses this knowledge (as was mentioned in Section 2.1.1.1,
"Organization of Knowledge”). With this separation, the program
can be changed by simple modification of the knowledge base,
i.e., the same general system can be used for a variety of
applications, essentially by "unplugging” one set of rules and

"plugging” in another.

2.1.1.8 Uncertainty

Another very important and distinguishing characteristic of
a KBS 1is its ability to reason under uncertain or incomplete
information. Let us take the example of MYCIN. It takes from 12
to 24 hours to determine whether there is an organism and make a
preliminary identification of its gemneral <characteristics.

Another 24 to 48 hours are required to obtain specific

identification and possibly even more time to determine which
specific antimicrobial drug is most effective in either
counteracting the organism or arresting its growth. In many
cases, the infection is serious enough that treatment must be
begun before all of the analyses can be completed. Therefore,
any recommended therapy must be based on incomplete information.

In building KBSs with the above characteristics, researchers

have found that amassing a large amount of data rather than

sophisticated reasoning techniques is responsible for most of the
power of the system. Such KBSs, previously limited to academic
research projects, are beginning to enter the software market
place [Gevarter, 83]. Some of the application areas where KBSs

are used are:

(1) Medical diagnosis.

(2) Mineral exploration.

(3) Oil-well log interpretation

(4) Chemical and biological synthesis.
(5) Military threat assessment. ,
(6) Planning and scheduling.

(7) Signal interpretation.

(8) Air-traffic control.

(9) VLSI design.

(10) Equipment fault diagnosis.

(11) Speech understanding.

(12) Space defense.

(13) KB access and management.

Table 2-1 lists a few of the existing systems developed for
selected problem areas. A more extensive list is provided in

Appendix B.

2.1.2 Types of KBSs

Most of the KBS applications fall into a few distinct types

and are summarized in Table 2-2.

10

Table 2-1 SOME EXISTING EXPERT SYSTEMS [Nau, 83]

SYSTEM AREA OF EXPERTISE

AQ1 Diagnosis of Plant Diseases

CASNET Medical Consulting

DENDRAL Hypothesizing Molecular Structure
from Mass Spectrograms

DIPMETER ADVISOR 0il Exploration .

EL Analyzing Electrical Circuits

INTERNIST Medical Consulting

KMS Medical Consulting

MACSYMA Mathematical Formula Manipulation

MDX Medical Consulting

MOLGEN Planning DNA Experiments

MYCIN Medical Consulting

PROSPECTOR Mineral Exploration

PUFF Medical Consulting

R1 Computer Configuration

11

Table 2-2 GENERIC CATEGORIES OF KNOWLEDGE ENGINEERING
APPLICATIONS

[Hayes-Roth, et al, 83]

CATEGORY PROBLEM ADDRESSED

INTERPRETATION Inferring Situation Descriptions
from Sensor Data

PREDICTION Inferring Likely Consequences of -
Given Situations

DIAGNOSIS Inferring System Malfunctions
from Observables

DES IGN Configuring Objects Under
Constraints

PLANNING Designing Actions

MONITOR ING Comparing Observations to Plan

Vulnerabilities

DEBUGG ING Prescribing Remedies for
Malfunctions

REPAIR Executing a Plan to Administer a
Prescribed Remedy

INSTRUCTION Diagnosing, Debugging, and
- Repairing Student Behavior

CONTROL Interpreting, Predicting,
Repairing and Monitoring System
Behaviors

12

2.1.2.1 Interpretation Systems

Interpretation systems analyze the data or observables and
infer their meaning. This category can be further divided into

two: data analysis systems and situation analysis systems.

(a) Data Apalysis Systems

This category includes surveillance, speech wunderstanding,
image analysis, chemical structure elucidation, signal
interpretation, and oil-well log interpretation. A key
requirement for these systems is to find consistent and correcx
interpretations of the data. It is often important that analysis
systems be rigorously complete, i.e., they consider the possible
interpretations systematically and discard candidates only when
there is enough evidence to rule them out.

An example of this type is DENDRAL which interprets mass
spectrometer data [Feigenbaum, et al, 71]. The data are
measurements of the mass of molecular fragments and
interpretation is a determination of one or more chemical

structures.

(b) Situation Analysis Systems

This category includes analysis of <electrical «circuits,
digital circuits, mechanics problems, earthquake damage
assessment for structures, and military threat analysis. A key

requirement of these systems, in addition to the requirements of

13

the data analysis systems, is plausible reasoning and its ability
to recover from tentative assumptions.

An example of this type is system EL [Sussman, 77], which
uses forward reasoning with electrical laws to compute
electrical parameters (voltage and current) at one node of a

circuit from parameters at other nodes.

2.1.2.2 Prediction Systems

Prediction systems infer likely consequences (i.e.,
forecast the course of the future) from given situations (past
and present). This <category includes weather forecastingi
demographic predictions. traffic predictions, crop estimates;
and military forecasting. A key requirement for these systems is
the ability to refer to things that change over time and to
events that are ordered in time. They must have adequate models
of the ways that various actions change the state of the modeled
environment over time.

Currently there is no known KBS which falls into this

category.

2.1.2.3 Diagnosis Systems

Diagnosis systems infer system malfunctions (or disease
state in a living system) from observables. This category
includes medical, electronic, mechanical and software diagnosis,
and diagnosis of nuclear reactor accidents. Key requirements

include those of interpretation. A diagnostician must understand

14

the system organization (i.e., its anatomy) and the relationships
and interactions between subsystems.

An example of this category is INTERNIST-1, an experimental
computer based diagnostic consultant for general intermnal
medicine. The system can deal with five hundred diseases and it
is able to diagnose multiple and simultaneous diseases [Pople,

77].

2.1.2.4 Design Systems

Design systems develop specifications (or configurations of
objects) that satisfy particular requirements of the desig;
problem. They include <circuit layout, building design, and
chemical synthesis. Requirements for these systems include
minimization of an objective function that measures costs and
other undesirable properties of potential design, and the ability
to explain and justify the design decisions.

An example of this type is Rl1, a system for configuring

Digital Equipment Corporation VAX computer systems [McDermott,

80].

2.1.2.5 Planning Systems

Planning systems design actions that can be carried out to
achieve goals. They include automatic programming, robotics,
planetary flybys, mission planning, design of molecular genetics
experiments, and military planning problems. A key requirement

for these systems is that they construct a plan that achieves

15

goals without consuming excessive resources or violating
constraints.- If goals <conflict, they establish priorities.
Since planning always involves a certain amount of prediction,
these planning systems also have «certain requirements of
prediction systems.

An example of this type is MOLGEN, a genetic engineering
system to assist geneticists in planning laboratory experiments
concerned with manipulation of DNA with restriction enzymes

[Martin, et al, 77].

2.1.2.6 Monitoring Systems <

Monitoring systems continuously observe system behavior,
interpret the signals and set off alarms when intervention is
required. The key requirements for monitoring systems are
similar to those of diagnostic systems with the additional
requirement that the recognition of alarm conditions be <carried
out in real time. For credibility, these system should avoid
false alarms. Many computer—aided monitoring systems exist in
nuclear power plants, air traffic control, disease, regulatory,
and fiscal management tasks.

An example of this type of system is VM (Ventilator
Monitor), which monitors a patient using a mechanical breathing

device after surgery [Fagan, 80].

16

2.1.2.7 Decbugging Systems

Debugging systems prescribe remedies for malfunctions,
i.e., they create specifications or recommendations for
correcting a diagnosed problem. The key requirements are similar
to that of planning, design, and prediction systems.

Computer aided debugging systems exist for computer
programming in the form of an intelligent knowledge base and text
editors, but none qualify as an knowledge-based system.

2.1.2.8 Repair Systems

Repair systems create plans (or recommendations) and
execute those plans to correct some diagnosed problem. The
requirements for these systems are similar to those of debugging

and planning systems.

Computer—~based repair systems exist in automotive, network,
avionic, and computer maintenance. Construction of KBSs of this

type has just begun.

2.1.2.9 Jnstructional Systems

The computer-aided instruction systems (or, simply,
instruction systems) diagnose and debug student behaviors and
Plan a tutorial interaction intended to convey the remedial
knowledge to the student. Because these systems incorporate
diagnosis and debugging subsystems, the requirements for

instructional systems are similar to those of diagnosis and

17

debugging systems. They include electronic trouble shooting,
medical diagnosis, teaching, mathematics, and coaching a game.
An example of this system is SOPHIE, which teaches
problem-solving skills in the context of a simulated electronic
laboratory. SOPHIE allows the student to have a one-to-one
relationship with a computer-based "expert” who helps him come up
with his own ideas, experiment with those ideas, and when

necessary, debug them.

2.1.2.10 Contrxol Systems

-

An expert control system adaptively governs the overall
behavior of a system which include interpreting, predicting,
repairing, and monitoring system behaviors. The requirements of
these systems include those of interpretation, prediction,
repairing, and monitoring systems. This <category includes air
traffic control, business management, battle management, and
mission control.

KBSs are just entering this field.

2.1.2.11 Knowledge Acquisition Systems

These systems assist iﬁ the construction of large knowledge
bases and refinement of existing knowledge by helping transfer
expertise from the human expert to the knowledge base. The key
requirements of these systems include organization of knowledge
into meta-level knowledge which helps in the task of assembling

and maintaining large amounts of knowledge and in providing a

18

natural language interface. This category includes maintaining
large medical knowledge bases and geological knowledge bases.

An example of this type is TEIRESIAS [Davis & Lenat, 82], a
system which makes possible the interactive transfer of expertise
from a human expert to the knowledge base of a high performance
program, in a dialog conducted in a restricted subset of natural

language.

2.1.2.12 Expert System Construction Systems

This type of system provides general-purpose programming
systems to build expert systems. The key requirements inclnd;
provision for knowledge representation techniques and intelligenf
editing facilities. This category includes medical consultation
systems and electronic system diagnosis systems.

An example of this type is ROSIE [Fain, et al, 81], which
provides a general-purpose programming system for building expert
system. This system also has very sophisticated editing

facilities which check syntax and semantics of the input.

2.1.2.13 1Image Understanding Systems

These systems attempt to identify and classify instances of
modeled objects and, at the same time, extract three-dimensional
information from a monocular image <concerning the shape,
structure, and three-dimensional location and orientation of the
objects. The key requirements for this type of system are

similar to interpretation, prediction, modeling, and description

19

systems. This category includes aerial pPhotography
interpretation and views of automated assembly work-stations.
An example of this type is the VISIONS system, which has

been tested with outdoor scenes [Cohen & Feigenbaum, 82].

2.1.2.14 Concept-Formation Systems

Currently only one system of this type exists: AM. AM
models one aspect of elementary mathematics research: developing
new concepts under the guidance of a large body of heuristic

rules [DaviS & Lenat, 82].

2.1.3 Knowledge and Data

The concept of knowledge itself is not simple, in the sense
that it <can be rigorously defined or bounded, nor it cam be
divorced from the means of acquiring or using it. The latter is
equally true whether we are speaking of human or computer based
knowledge-based systems. However, some simple observations can

be made about knowledge and data.
Widerhold [Widerhold, 84] observes that:

(1) Knbgvledge considers general aspects of data.
(2) Knowledge is significantly smaller than data.

(3) Knowledge does not vary rapidly (compared to data)

The following simple examples illustrate the difference

between knowledge and data [Widerhold, 84]:

20

Mr. Lee’s age is 43 years - Data
Middle—age is 35-50 - Knowledge
People of middle-age are careful - Knowledge
Mr. Lee has never had a traffic accident - Data

2.1.4 Knowledge and Skill

Webster’s dictionary defines skill as “"the ability to use
one’s knowledge effectively and readily in execution or
performance”. Skills refer to organized modes of operation and
generalized techniques for dealing with problems. The problemp
may be of such nature that little or no specialized and technical
information, thus no special knowledge, 1is required. Other
problems may require specialized and technical information at a
rather high level such that specific Xknowledge is required in
dealing with the problem.[Barnett & Bernstein, 77].

The main characteristic of a skilled performance include
great speed, or other efficiencies, reduced error, reduced
cognitive load (attentional requirements) and increased

adaptability and robustness [Hayes-Roth, et al, 83].

2.1.5 Expert and Novice

The difference between expert and novice -~ experts solve
complex problems considerably faster and with less errors than
novices - are commonplace within everyday experience. During the

past decade, substantial progress has been made in exploring and

21

explaining the human information processes that underlie expert
performance .-

The major components of an expert’'s skill (expertise) which
separates the expert from the novice are: perceptual knowledge,
recognition capabilities, and the way in which information is
represented in long-term memory.

An expert knows a great many things and can rapidly evoke
particular items relevant to the problem at hand. Although a
sizable body of knowledge is prerequisite to expert skill, that
knowledge must be indexed by a large numbers of patterms that, on
recognition, guide the expert in a fraction of a second t;
relevant parts of the knowledge store.

Human memory consists of a complex organization of nodes

)

connected by links called "list structures”. Human long-term
memory can be represented formally by such node-link structures
and almost all computer simulations of <cognition use list
structures together with productions that act on these list
structures as their fundamental means for representing memory.
These formalisms capture the associative properties of long-term
memory. An excellent discussion on expert and novice (on which

the discussion above was based) can be found in [Larkin, et al,

80].

2.1.6 KBSs and Expert Systems

KBSs contain large amounts of varied knowledge, which they

22

use during a problem solving activity. Expert systems (ESs) are
a species of- KBSs, which use large amounts of knowledge and whose
performance is equivalent to that of an expert in a given domain.

Expert performance means, for example, the 1level of very
experienced engineering or scientific tasks, or very experienced
MD diagnosing and recommending therapy. The ES acts as an
intelligent assistant to a human expert.

A system that can understand images, or understand speech,
may rely on a large knowledge base to achieve 1its perceptions,
but it does not require any human expertise. For instance,
normal human beings are born with eyes, ears, and the equipmen;'
behind them to process the signals those organs receive, and thej

quickly acquire the knowledge needed to understand the signals.

But normal humans are not born to knowing, for example, how to
diagnose a disease; that takes expertise, learned over a long
period.

This report will not rely wupon the formal distinction
between KBSs and ESs, but will rather use the terms as though
they were synonymous, and, in fact, in most of the literature

these terms are used interchangeably.

23

2.2 A Hypothetical KBS

The following is a brief description and example of a
simple, hypothetical KBS application that illustrates most of the
capabilities of a KBS. This example and description is based on
[Barnett & Bermnstein, 77].

The hypothetical system is an automotivé service consultant
whose primary purpose is to help ensure the best service at the
least cost for automobiles brought to a service agency. Based on
the discussion in Section 2.1.2, this KBS falls into the category
of repair systems and all repair systems will also have diagnosi;.
subsystems.

The problem domain for this KBS is well bounded and well
defined. Hence reasoning skills required by such a KBS are
relatively simple. The knowledge required, however, is large
because of the number and variety of automotive subsystems
involved and the high degree of their interdependence. In
addition, the system also contains a data base. The data base of
the system would contain a description of each <car serviced at
the agency. The descrption would contain the configuration of
the vehicle’s-engine, running gear, and optional and special
equipment as well as the year of manufacture, model, color,
service history, etc.

Like all KBSs, this hypothetical automotive <consultant

system contains two kinds of knowledge:

24

(1) Generic knowledge about the major elements of the
vehicle (such as its cooling, ignition, and fuel

systems) .

(2) Knowledge about the model and its specific options.

The intent of the system is to recommend:

(1) The least expensive tests that will produce the
greatest amount of specific information about the

cause of the problem. o -
(2) The least expensive repairs for the problem.

(3) The best post-repair testing to verify that the

problem is solved.

The following is a hypothetical scenario of such a system in
operation. The users are the service representative and the
mechanic(s) performing the test and repair work. The wuser
language is a stylized English designed to convey a maximum
amount of information between the user and the system with a

minimum amount of effort.

System: Tuesday, May 3, 1977, 08:32:44

Service rep: Next customer

System: Enter owner's name or vehicle ID number

Service rep: 1743 HBAQ 8197

System: Owner is S.B. Franklin, car is 1974 Ford Gran
Torino 4-dr sedan with 351-2V engine, A/C, P/S,
P/B and CA smog controls. Last service — April
4, 1977 at 28,412 mi R&R water pump and lower
radiator hose, what is present mileage?

Service rep: 29285

System: Please inform owner that the following regulai
maintenance services are due:
Change oil and filter - last changed on Jan 13,
1977 at 24,842 mi.
May we be of other service?

Service rep: Battery not keeping charge, barely able to
start car this a.m.

System: Any other symptoms or problems?

Service rep: No

System: Check belt tension on alternator — most likely
cause.

Service rep: Why?

25

26

System: Last service required removal of fan and belts,
- very likely that tension was not properly set

on reinstallation.

Service rep: More (meaning more things to be checked or

tested)
System: Check fluid level in battery - next most likely
cause - overcharged battery. If level is low,

check alternator output and voltage regulator.

Service rep: Replace battery? .

System: No, battery is 6 months old and should take

recharge.

Service rep: Thank you. (Signal to system that session is

ended for now)

System: Car assigned number 287 in <control system.

First test to be performed by J.K. Uzzi in Bay

17.

After the car is moved to the mechanic’s work area and the

prescriied tests are performed, the following interchange

takes place between the mechanic and the system:

Mechanic: JKU 17, 287 (indicating mechanic, bay and car

being serviced)

27

System: 1974 Gran Torino, test results please.

Mechanic: Belt tension OK, battery level OK, charge low,

alternator, VR output OK. Problem not found.

System: Test for above-normal current flow with
ignition off. (Mechanic attaches ammeter and

takes reading).

Mechanic: Reading above normal.

System: Check for faulty switch in hood 1light, trunk
- X

light, and courtesy lights.

Mechanic finds faulty switch in trunk light such that light

never turns off.

Mechanmnic: Fault trunk light switch R&R. Current reading

normal. Thank You.

System: You are welcome. Bye.

Some of the salient features of this hypothetical KBS are:

(1) Separation of generic knowledge from specific

knowledge.

(2) The dialog between the system and the user (mechanic

or service representative) has the flavor of

naturalness.

28

(3) Expertise.

For a system to have suggested checking the belt temsion of
the alternator, it would have to know that the earlier removal of
the belt could be related to the present problem, that the
severity of the problem would depend on how poorly the tension
was adjusted, and that the one month and about 900 miles before
appearance of symptoms (battery failure) 1is not wunreasonable.
Since it is a highly probable cause and the easiest to test, it
ranks as the first suggestion. By requesting more information,
the service representative can tell the owner what else may bz‘

required and what will not likely be required such as a new

battery.

2.3 KBS Components

Figure 2-1, based on [Barnett & Bernstein, 77] and

[Hayes-Roth, et al, 83], shows an idealized representation of an

KBS. A KBS is composed of four components (or modules):

(1) A Knowledge Base
(2) An Inference Engine
(3) An Interface

(4) A Workspace

The knowledge base contains the knowledge sources (rules

29

and information about the current problem, etc.) and fact files.

The _inference engine (also called cognitive engine)
performs the system’s problem solving (inference-making or
reasoning) operations. It contains procedures that manipulate

knowledge contained in the knowledge base.

The interface provides problem-oriented, interactive
communications between the user and the KBS. This interaction
is usually in some restricted variant of English and in some
cases via means of a graphics or intelligent editor.

A workspace (also <called blackboard) records intermediate
hypotheses, decisions, and results that a KBS manipulates durinE‘

a problem-solving activity.

2.4 Knowledge Base

The knowledge base (KB) of a KBS contains knowledge sources

(KSs) and fact files.

2.4.1 Knowledge Sources

A knowledge source contains rules, stipulations of the
existence or_non-existence of certain things, simple equivalence
relationships, relationships between the concrete and abstract,
knowledge of conventions about the domain, methods of the domain,
etc. In other words, the breadth of knowledge acquired by one
who has become expert in solving problems in the domain for which

the KBS is designed [Barnett & Bernstein, 77].

COMPUTER SYSTEM

KNOWLEDGE-BASED SYSTEM

INTERFACE INFERENCE KNOWLEDGE
' ENGINE BASE
(usER)=
LANGUAGE KNOWLEDGE KNOWLEDGE
FACILITY CONTROL SOURCES(S)
& USF
DATA
KNOWLEDGE
DATA ACQUISITION FACT
CQUISITION FILES
(EXPERT)e % CONTROL
EXPLANATION
| I
I3LACKBOARD
PLAN AGENDA HisToRy | [SOLUTION
S
”
FIGURE 2-1. KBS ELEMENTS 0

BASED ON [HAYES-ROTH, ET AL, ‘831 AND [BARNETT & BERSTEIN, '//)

0¢

31

In a KBS, it is logical to separate knowledge into different

knowledge sources because

(1) In any problem domain, each expert acquires different
problem-solving knowledge and there is no efficient

single method for representing all of the knowledge.

(2) In any problem-solving activity, two types (or levels)
of knowledge is involved: problem-specific knowledge
and how to use this knowledge. The latter is wusually

called "meta knowledge”. su

2.4.2 Fact Files

Fact files <contain "hard” data such as values, attributes,
etc. (for example, the contents of an engineering handbook) and,
in this sense, it is equivalent to a data base. Fact files are
required for the complete solution of a problem. A collection of
fact files without a knowledge source is not a knowledge base. A
MIS constructed from a conventional data management system is not

a KBS [Barnett & Bernstein, 1771, because it does not have

reasoning or inferencing capability.

2.4.3 Types of Knowledge

Even though KBSs were and are being developed for a variety

32

of applications (see Section 2.1.2, "Types of KBSs”), the

knowledge in-.KSs in those systems generally falls into the

following five types [Barnett & Bernstein, 77]:

(1)

(2)

Methods specifying cause-effect relationships,
implications, or inferences depending on the richness
of the relationship to be represented. Production
rules, predicate calculus expressions, and other
logical methods were used for representation of this
type. Diagnosis systems typically use this type of
knowledge. For example, MYCIN uses simple Il"-'l'l-l:['fNF

form of rules.

Plans of action for — how one would achieve an end
result in the world external to the model that the
system represents. For instance, in a robotic system
a procedure may describe how to assemble parts of an
automobile engine or, simply, how to put a block on
top of another.

Models of agent behavior to infer the effects of the
planning agent activities are used for representation
of this type. Planning systems typically use this
type of knowledge.

NOAH, a robot planning system is an example of this

type and is described in [Sacerdoti, 75].

(3)

(4)

33

Declaratives that identify objects within the modeled
domain and distinguish them from objects that are not
within the domain. These declaratives may describe
properties of objects, relationships among objects,
definitions of terms or constructs, schemata that
identify the 1legal relationships or transformations
applicable to the domain.

Semantic networks are used for representation of this
type of knowledge. Interpretation and diagnostic
systems typically employ this type of knowledge.

For example, CADUCEUS consists of an extremely larg;5
semantic network of relationships (approximatel&
100,000 associations) between diseases and symptoms in

internal medicine [Pople, 81].

Meta properties, which are a higher level of
abstraction about the domain and the solution space
and methods. Meta properties (or meta knowledge)
provide means for determining and assuring the
consistency, coherency, and reliability of
intermediate results and steps as well as the final
solution and answers.

Production rules of the IF-THEN type use this type of
knowledge as well as knowledge acquisition systems.

An example of latter type is TEIRESIAS. TEIRESIAS

uses meta knowledge to transfer expertise from a human

34

expert to the knowledge base of a high-performance
program (MYCIN) in a dialog conducted in a restricted

subset of English [Davis & Lenat, 82].

(5) Advice (sometimes called heuristics) that 1is similar
to meta properties in intent, but that does not carry
the same strength of influence. This is the “soft”
knowledge that experts acquire from experience in
working in the domain and 1is rarely contained in

textbooks and papers [Barnett & Bernstein, 77]}.

The techniques used to construct these types of knowledge

are discussed in Chapter 3, "Techniques Used to Construct KBSs”.
2.5 Inference Engine

The inference engine (IE) provides central control of the
KBS and thus affects both the performance and power of the
system. The functions of an IE can be broadly divided into three

categories: knowledge use and control knowledge acquisition, and

explanation. .

2.5.1 Knowledge Use and Control

An IE performs the system’s problem solving operations.

This includes inference making or reasoning, and searching. An

35

IE contains procedures that combine and organize (i.e.,
manipulate) . the contents of a knowledge base. Thus, an IE acts
as a manager of a knowledge base.

A small portion of knowledge in a KBS usually resides in the
IE (for reasons of efficiency). The knowledge contained in the
IE may be general knowledge or meta knowledge (knowledge about a

knowledge base).

2.5.2 Knowledge Acquisition

Another function of the IE is to provide the mechanisms thag
facilitate the acquisition of new knowledge, the modification or
refinement of existing Kknowledge, and deleting erromneous or
useless knowledge, and maintaining consistent representation -

all of which are done in cooperation with the expert.

2.5.3 Explanation

Another important function of the IE is to provide an
explanation for its actions and its reasoning process with
respect to an interaction with the wuser or to a solution it
produces. In. general, it answers questions about why some
conclusion was reached or why some alternative was rejected.
This explanation capability of the IE depends on the contents of
the KB, information about the <current problem, and prior
interactions with the user.

The explanation of the IE is related only to its past

36

activity; the system cannot explain how it might deal with a
hypothetical case or how it will continue in solving a present

problem [Barnett & Bernstein, 77].

A KBS’s ability to solve a particular problem depends on:

(1) How many paths there are to a solution.

(2) The ability of the IE to reduce the number to a
minimum.

(3) The knowledge in the KB.

(4) What information is available within the problem

statement.

Therefore, although the IE 1is in command and acts as the
driving element, the path to a solution, and the criteria for
when to accept a solution or abort a particular path are highly
dependent on the content of the KB and the problem data. That is
why researchers have found that "amassing a large amount of data
rather than sophisticated reasoning techniques is responsible for

the power of the system” [Gevarter, 83].

The interface is the communication port between the system
and the outside world. Based on the functions provided, the

interface of a KBS can be viewed as three different interfaces:

37

user interface, knowledge acquisition (expert) interface, and

data interface. Each one 1is discussed in the following

sub-sections.

2.6.1 User Interface

The user interface provides the necessary facilities for the
user as a poser of problems and consumer of results (answers and
justifications or explanations). The wuser interacts with the
interface in a jargon specific to the domain of the KBS and
usually in some restricted variant of English (and sometimes via
means of a graphics or intelligent editor). Thus, the user
interface acts as a language processor. Typically, the language
processor parses and interprets user gquestions, commands, and
volunteered information. Conversely, the language processor
formats information generated by the system, including answers to
questions, explanations and justifications for it’s behavior, and
requests for data.

Existing KBSs generally employ mnatural language parsers
written in INTERLISP to interpret wuser inputs, and use less
sophisticated techniques exploiting canned text to generate

messages to the user [Hayes-Roth, et al, 83].

2.6.2 The Knowledge Acquisition Interface

The knowledge acquisition (KA) interface (also known as

38

expert interface) is used by a domain expert (who has gained some
feeling for_the system) as the provider of knowledge for the KSs.
Associated with the KA interface is some means of verifying the
incoming knowledge, sometimes limited to syntax checking, but
often including tests for coherence and consistency with prior
knowledge both in the KSs and the IE.

The knowledge acquisition process is discussed in more

detail in Section 3.5.4, "Knowledge Acquisition Process”.

2.6.3 Data Interface

The data interface is similar to that of most other

interactive computer systems in that it incorporates:

(1) Facilities for user input of parameters, data, and

responses to the system’s queries.

(2) The mechanism for locating and accessing files or data

bases.
Many of the functions mnecessary to provide the data
interface may be drawn directly from the computer system

environment within which the KBS functions.

39

2.7ww

Workspace (also known as "blackboard”) records intermediate
hypotheses, decisions, and results that a KBS manipulates during
a problem-solving activity, i.e., it is the encapsulation of the
system’s current state in a problem solving activity. It

includes plan, agenda, history, and solution set.

A plan describes the overall or general attack the system
will pursue against the current problem, including current plans,

goals, problem states, and contexts.

2.7.2 Agenda

An agenda is a list of activities that can be done mnext

which generally correspond to knowledge base rules that are

relevant to some decision taken previously.

2.7.3 History

History records what has been done (and why) to bring the
system to its current state, which is wused to provide

explanations.

40

2.7.4 Solution Set

A solution set represents the candidate hypotheses and
decisions the system has generated thus far, along with the

dependencies that relate decisions to one another.

2.8 Separation of KBS Compopents

The separation of the elements of a KBS is a necessary
condition for including a system in that category, since it
permits the changing of the domain of application by extending,
expanding, or substituting another KB independently of the
inference engine [Barnett & Bernstein, 77].

Several researchers have illustrated the generality of their
systems by showing that they can be applied to another domain
merely by removing the rules for a given domain (i.e., knowledge
base) and substituting rules for the new one [Van Melle, 79],
[Goldberg & Weiss, 80].

For example EMYCIN 1is the inference engine of MYCIN, to
which several different knowledge bases have been experimentally
attached for solving different classes of problems.

Every hhmain, however, has its own peculiarities. Despite
the good intentions of system builders, these peculiarities
inevitably influence the design of a system. As a result, a
serious attempt to build a KBS almost always changes in all parts

of the system [Duda & Gashing, 81]. Recognizing this, many

41

researchers have recently begun developing tools or languages for

constructing- KBSs. They are discussed in Chapter 4, 7"KBS

Building Tools and Languages”.

In summary, to qualify as a KBS, a system must [Barnett &

Bernstein,

(1)

(2)

(3)

(4)

(5)

771

Be externally invoked by an expert in the domain of

applicability. .

Have an identifiable IE that reasons plausibly wusing
the KB and whose solution path is controlled by the

content of the KB and problem data.
Have the potential for explaining its behavior.

Have an identifiable KB that contains expert
domain-specific knowledge (this is the most critical

aspect of a KBS).

Be organized and structured so that its KB <can be
eipanded and extended and the system’s performance

improved.

Chapter 3

TECHNIQUES USED TO CONSTRUCT KBSs

3.1 Introduction

3.1.1 Origins of KBS Techniques

Since the mid-60’'s, there has been a major shift in AI
research. The shift was from a search for broad, general laws of
thinking toward an appreciation of specific knowledge - facts,
experiential knowledge, and how to use knowledge - as the central
issues in intelligent behavior [Feigenbaum & McCorduck, 83]. A
direct result of this shift (called "applied AI”) is construction
of KBSs or expert systems. Thus, AI techniques are widely used
in KBS construction. In addition to AI, several other computer
science areas have developed techniques that are used in the
construction of KBSs. A summary of contributors and techniques
is shown in Table 3-1.

For example, language processing techniques - specifically,
parsing and understanding, question and response generation,
knowledge r;presentation and acquisition - are wused for the

interface component of KBSs.

42

43

Table 3-1 ORIGINS OF KBS TECHNIQUES
(Based on [Barnett & Bernstein, 771])

ARTIFICIAL INTELLIGENCE (AI)

Heuristic Search

Inference and Deduction

Pattern Matching

Knowledge Representation and Acquisition
System Organization

LANGUAGE PROCESS ING

Parsing and Understanding
Question and Response Generation
Knowledge Representation and Acquisition

THEORY OF PROGRAMMING LANGUAGES

Formal Theory of Computational Power
Control Structures

Data Structures

System Organization

Parsing

MODELING AND SIMULATION

Representation of Knowledge
Control Structures
Calculation of Approximations

DATA BASE MANAGEMENT

Information Retrieval
Updating
File Organization

SOFTWARE ENGINEERING

System Organization
Documentation
Iterative System Development

APPLICATION AREAS

Domain-Specific Algorithms
Human Engineering

44

Similarly, data base¢e management techniques - specifically,
information retrieval, updating, file organization - are used for

the knowledge base component of KBSs.

Figure 3-1 (a modification of [Barnett & Bernstein, 77] p.
4.3) illustrates the relationships between choices and
restrictions in building KBSs. The left hand side (lhs) of the
dotted line in Figure 3-1 shows domain specific items (or
choices) and the right hand side (rhs) shows available techniqne;
(or restrictions).

For example, in any problem domain, the expert’s available
knowledge model necessarily limits (or restricts) the choices for
representing knowledge in a KB. Similarly, the expert’s
reasoning principles and methods directly affect (or restrict)
methods that can be used to build an IE in a KBS.

Likewise user expectations dictate (or at least influence)
explanation facilities.

Figure 3-1 also illustrates another interesting point:
relative importance of choices in a KBS. According to Barnett &
Bernstein [Barnett & Bernstein, 77], domain considerations are
most important followed by choices of KB representation.
Everything else is of less importance. Whether this is a fact or

a practice 1is not certain. However, many existing KBSs confirm

this view [Hayes—-Roth, et al, 83].

IMPORTANCE

I
!
[

45

WORKSPACE
REPRESENTATION

DOMAIN
SPECIFIC — > AVAILABLE
ITEMS | TECHNIQUES
|
, |
EXPERT'S |
KNOWLEDGE o KB
MODEL | | REPRESENTATION
|
1
l
|
EXPERT'S |
REASONING INFERENCE
PRINCIPLES | | ENGINE
|
|
|
|
USER ' | ExPLANATION
EXPECTATIONS | | | SYSTEM
|
!
|
FIGURE 3-1,

R TIONS ON
BASED ON [BARNETT & BERSTEIN, '771

46

3.1.3 Knowledge Representation Problems

In contrast to conventional data base systems, KBSs require

a knowledge base with diverse kinds of knowledge - knowledge
about objects, about processes, and hard-to-represent common
sense knowledge about goals, motivation, causality, time,

actions, etc. Attempts to represent this breadth of knowledge

raise many questions [McCalla, 83]:

(1) How do we structure the explicit knowledge in a
knowledge base?
(2) How do we encode rules for manipulating a knowledge

base’s explicit knowledge to infer knowledge contained

implicitly within the knowledge base?

(3) When do we undertake and how do we control such

inferences?

(4) How do we formally specify the semantics of a

knowledge base?

(5) How do we deal with incomplete knowledge?

(6) How do we extract the knowledge of an expert to

initially ”stock” the knowledge base?

47

(7) How do we automatically acquire new knowledge as time
goes on so that the knowledge base <can be kept

current?

In Section 3.2, some knowledge representation techniques are

discussed, which answer some of the abovementioned problems.

3.1.4 Knowledge Representation Forms

Knowledge of a domain takes many forms through a KBS (Figure
3-2). A domain expert acquires knowledge through textbooks:
journals, experience, etc. The expert’s knowledge (or expertise)
will be transformed to a knowledge acquisition (KA) facility in
external form. The KA facility transforms the external
representation into physical form (data structures, etc.) and
stored in a knowledge base. This process is termed knowledge
acquisition. It involves ©problem definition, implementation,
refinement, and representation of facts and relations acquired
from an expert. The KA process is discussed in detail in Section
3.5.4.

When an inference engine accesses the KB, the logical form
(usually in the form of questions) is used at the interface. For
example, during a problem solving activity, the IE could ask the
KB whether a particular hypothesis is true or not.

From the IE, knowledge 1is transformed to advice or

explanation when it reaches the user interface.

USER
INTERFACE

EXTERNAL

(STYLIZED NATURAL
LANG,)

EXPLANATION

FIGURE 3-2. REPR TION
BASED ON [BARNETT & BERNSTEIN, 771

48

49

Finally, knowledge is transformed back into external form
(in stylized English) to the user.
Figure 3-2 summarizes the transformations of knowledge

representations throughout a KBS.

3.1.5 Knowledge Representation Unit

Selection of a representation scheme for building a KBS is
influenced by answers to questions of following type [Barr &

Feigenbaum, 81]:

(1) In what detail are objects and events of the external

world represented in a system?

(2) And how much of this detail is actually needed by the

reasoning mechanism (or IE)?

The answer to these questions depends on the size of a
knowledge chunk (also called grain size). A knowledge chunk is
described as ”"a primitive unit in the knowledge representation,
i.e., in a KB that contains the definitions of several
interrelated“terms, the definition of a single term is a 'chunk’”
[Barnett & Bernstein, 77].

For example, in MYCIN, each rule of the type shown below is

considered as a modular chunk of knowledge.

IF

There

yet it is a

reasons:

(1)

(2)

(3)

50

1) The infection is primary bacteremia, and

2) The site of the culture is one of the
sterilesites, and

3) The suspected portal of entry of the organism is
the gastrointestinal tract

There is suggestive evidence (.7) that the identity of
the organism is bacteriods.

is no formal metric to define the ”"right” chunk size,

important consideration to KBS technology for three

It determines the level at which the expert can
instruct the system. If the correct chunk size is
chosen, the expert could add and modify the knowledge
base in a mnatural way. If, on the other hand, the
chunk size is too big or too small, the expert is
forced into an unnatural mode of expressing his

knowledge .

It 1influences the capability of an explanation
facility, and wuser acceptance of a KBS, in part,

depends on its explanation facility.

It determines the kinds and efficiency of reasoning

techniques to be used in the KBS. Larger chunk sizes

51

generally permit shorter lines of reasoning. For that
reason, they are more likely to lead to a correct
conclusion when inexact but plausible inference

techniques are used [Barnett & Bernstein 77].

3.1.6 Credibility Factors

Expert systems are built to deal with real world problems in
which reasoning is often judgemental and inexact or wuncertain,
i.e., axiomatic knowledge is not always available. There are two

reasons for uncertainty

(1) The expert who helps build the KBS may not be
absolutely <certain about a particular aspect of the

problem domain.

(2) User may not be able to provide the necessary input
data to the system or it may not be possible to obtain

data within the time and other constraints.

In the former case, experts rate knowledge chunks as to
their credibility or uncertainty when they enter them into the
KB. In the latter case, relevant hypotheses or rules are
combined with each other and with problem—-specific parameters.

The inference engine has the major responsibility in both cases.

52

Consider the following rule in MYCIN:

IF

The
example,
factors,

The
evidence

certain.

1) The infection is primary-bacteremia, and

2) The site of the «culture is one of the
sterilesites, and the

3) The suspected portal of entry of the orgam is the
gastro-intestinal tract,

There is suggestive evidence (.7) that the identity of
the organism is bacteroids.

numbers used to indicate the strength of the rule (for

7 above) are <called <credibility factors (certainty

CFs, in MYCIN terminology).

interpretation of CFs in the above example is that the

is strongly suggestive, (.7 out of 1) but not absolutely

MYCIN evaluates its rules in three steps [Nau, 83]

(1)

(2)

(3)

The CF of a conjunction of several facts is taken to

be the minimum of the CFs of the individual facts.

The CF for the conclusion produced by a rule is the CF

of its premise multiplied by the CF of the rule.

The CF for a fact produced as the conclusion of one or
more rules is the maximum of the CFs produced by the

rules yielding that conclusion.

The following illustrates the above process.

53

Suppose MYCIN is trying to establish fact F1 and the only

rules concluding anything about F1 are

IF C1 and C2 and C3 THEN conclude

IF C4 and C5 THEN conclude F1 (CF

Further suppose that conditions
known with CFs .4, .8, .6, .7, .9,

following computation produces a CF of

IF C1 and C2 and C3,

|
THEN F1 (CF = .6) 1
|
CF(C1) = .4 | i-> .6 x
CF(C2) = .8 |I-> min = .4 |
CF(C3) = .6 | |
IF C4 and CS§, I
THEN F1 (CF = .8) |
i-> .8 x
CF(C4) = .7 | [
CF(Cs5) = .9 f=> min = .7 |

F1 (CF =

= .8)

.6)

Cl, C2, C3, C4, and CS are

respectively. Then the

.56 for F1.

-> max = .56

In the above example, we assumed that the conditions Cl1, C2,

C3, C4, and CS were established by other rules.

There are at least three other meanings or

of credibility factors [Barnett & Bernstein,

7171

interpretations

(1) A Probability: the fraction of the time the chunk is

true.

54

(2) Relevance: what is the probability that use of this
chunk will wultimately lead to a completed chain of

reasoning that solves the problem at hand?

(3) Acceptability: is this a preferred method or fact to

workers in the field?

Because the mathematics for combining and evaluating each of
the four interpretations is different, there should be an
agreement between the knowledge engineer (who builds the KBS) and
the expert (who instructs the system) as to the kind of
credibility factors to be used.

A different approach, called "fuzzy logic”, in dealing with

uncertainity is described in [Zadeh, 75].

In the area of AlI, there had been a ”"battle” between
proponents of procedural representation of knowledge
(proceduralists) and advocates of declarative representation of
knowledge (declarativists) much similar to the battle in the area
of computer architecture between stack architecture advocates and
register architecture advocates.

In the case of AI, at least, the issue is dissolved, rather
than being resolved and one may argue that (1) there is no

strictly formal difference in the power of the two - they are

55

both "universal” - and that (2) both are necessary [Barr &
Feigenbaum, . 81]. The major issue is management of complexity.
KBSs seem to have done well in this aspect by selecting mnarrow
and specific problem domains.

Declarativists argue that, using reasonably modular and
independent knowledge chunks that are combined by a general
purpose reasoning mechanism, a system can produce results that
can be used for multiple purposes. The other qualities of
declarative representation claimed by declarativists are:
flexibility, economy, completeness, certainty, and modifiability.

Proceduralists, on the other hand, argue that some human

knowledge (or intelligent behavior):

(1) Seems inherently non-modular.
(2) Is difficult to express as independent rules or facts.

(3) Has the ability to apply specialized rules to exploit

situation-dependent relationships among knowledge
chunks.
Hence a proceduralist believes that many ad hoc

interrelationships should be made explicit and that procedures
are the best way to do this [Barnett & Bernstein, 77]. The other
qualities claimed by proceduralists are: directness, ease of

coding, and understandab lity of the reasoning process itself.

56

The following example illustrates some of the issues

involved.

A declarative representation of the statement, “"All computer

science (OMPS) majors at USL are smart” could be
For all x, [USLStudent(x) & OMPSMa jor(x) --> Smart(x)]

A simple reasoning mechanism could use this single statement
for many purposes. For instance, to answer the question, "Is Lin
smart?”, it would check to see whether Lin is a USL student and a
QMPS Major. The answer is "yes”. The same statement (or fact)
could be wused to infer that "Joe is not a OMPS Major” given the
fact that "Joe is a stupid student”,. This example illustrates
that an explicit representation of knowledge or a fact can be
used for multiple purposes.

In a strictly procedural representation, the statement needs
to be represented differently for each usage. Each would demand
a specific form of the type ”"If you find a USL student, check to
see whether he/she is a OQMPS Major, and if so, assert he/she is
clever”.

An example to illustrate the advantages of procedural
representation is provided below. The example is taken from
[Kuipers, 75].

Consider a robot which manipulates a simple world such as a
table top of toy blocks. This can be done most naturally by

describing its manipulations as programs. The knowledge about

57

building stacks is in the form of a program to do it. Since we
specify in detail just what part will be called when, we are free
to build in assumptions about how different facts interrelate.

For example, we know that calling a program to lift a block
will not cause any changes in the relative positions of other
blocks (making the assumption that we will only call the 1lift
program for unencumbered blocks). In a declarative
representation, this fact must be stated in the form something
equivalent to

"If you 1lift a block X, and block Y is on block Z before you

start, and if X is not Y and X is not Z and X s
unencumbered, then Y is on Z when you are done™.

This fact must be used each time we ask about Y and Z in
order to check that the relation still holds. This knowledge is
taken <care of “automatically” in the procedural representation
because we have control over when particular knowledge will be
used, and deal explicitly with the interactions between the

different operations.

3.2 Methods of Representing Knowledge Sources

"Knowledge differs from information in that it is a property

of the knower, interpreted by him through an internal

58

representation system, preparing him for action” [Kochen, 74]}.

This highlights the importance of efficient modes of
representat;on. The underlying problem of understanding
knowledge is the question of how to represent large amounts of
knowledge in a fashion that permits their effective use and not
that of finding some powerful techniques of implementing
intelligent systems [Goldstein, 77].

The two major approaches are:

(1) Power-based strategy.

(2) Knowledge-based strategy. _

In the first approach, we try to increase the computationai
power of the machine to be able to perform an efficient search
and matching process. Many researchers have realized that this
is not a <constructive idea as these methods get overwhelmed by
combinatorial explosion.

Instead, it would be useful to find better ways to express,
recognize and use various forms of knowledge. A person is termed
superior in intelligence because of his efficient and structured
form of representing knowledge and associating it with different
situations rather than the crude power called "thinking”.

Having realized the importance of knowledge representation

for efficient KBSs, we have to choose an appropriate form.

59

Different methods of representing knowledge are:

1. Finite state machines.
2. Programs.

3. Predicate calculus.

4. Production rules.

S. Semantic networks.

6. Frames.

Feigenbaum [Feigenbaum, 81] has very beautifully stated that
an encyclopedia cannot be termed knowledgeable (or containing
knowledge) unless one knows how to extract useful information oux
of it. The above mentioned methods are supposed to achieve thé
same goal. The intelligence of any KBS will depend on how
efficiently these methods will help programs to extract and
interpret knowledge contained in the knowledge base. The

representations are broadly classified into

(1) Declarative

(2) Procedural

The names themselves suggest their meaning (see Section
3.1.7). In the first one, we “declare” bits of knowledge which
will be wused by the system to "deduce” certain results. It is
highly mechanical and helps to derive concrete results. Its main
disadvantage is that it may get drowned in a combinatorial
explosion created by itself. The other method involves

procedures for accomplishing certain tasks. Thus, depending on

60

the set of rules followed, certain conclusions can be derived
from the procedures. The problem 1lies in the fact that the
procedures might be unable to conclude for many instances.

Thus, if we could overcome the limitation of declarative
methods by combining them with procedural methods, it might be
possible to evolve a more efficient method of knowledge
representation. This way we could have the advantage of ease in
modification provided by declarative representation along with
the directedness of procedural representation.

It has been very rightly said by Newell [Newell, 82] that,
Representation = Knowledge + Access.

This means that we should represent knowledge such that we
have a system to provide access to it, such that it helps us to
select a certain action for reaching our goal. The
representation is the structure which realizes knowledge and
reduces it to the next lower level.

At times, it has been found advantageous to combine
knowledge representations of different types [Aikins, 83]. It
should also be possible to wuse the same knowledge base for
multiple uses. Thus, the topic of knowledge representation
demands thorough understanding for developing efficient
intelligent systems.

Knowledge representation forms the heart of KBSs (or Expert
Systems). The strength of the system lies in the depth as well

as the breadth of knowledge represented in the system. Thus, it

61

is quite desirable at the time of designing a new system to
decide on _xhe knowledge representation technique to be adopted.
There are a few gcneralized techniques of knowledge
representation which <could be wused. Many systems designers
prefer to design their own knowledge representation technique
which might be a slight modification of one of the major
representation techniques.

It is virtually impossible to get information on all the
knowledge representation techniques. As quite a few of them are
application dependent, they may not be useful to other systems.
Thus, this discussion will concentrate on a few generalizeh
knowledge representation techniques. Wherever possible, exunple§
are provided to help the reader in understanding these
techniques. |

According to Feigenbaum [Feigenbaum, 81], at present, there
is no theory of knowledge representation. We are also not in a
position to prove that one system represents human memory better
than any other. The objective of this section is to highlight
why <certain systems work efficiently for <certain knowledge

representations.

3.2.2 Finite-State Machine

3.2.2.1 JIntroduction

A finite state machine (FSM) is a knowledge representation

technique of procedural type.

62

The FSM, as the name suggests, is a collection of a finite
number of states. Each state specifies actions (or computations)
that shouli be taken to reach the next state. There are two
special states in a FSM. A start state is the initial state and
an end state is where action or computation terminates.

FSMs are widely used in planning strategies, in designing
digital electrical circuits (adders, flip—~flops, multipliers,

etc.), and to represent grammars [Woods, 731.

3.2.2.2 Example 1

A simple example of a finite state machine is a lamp with a
pull-chain (Figure 3-3). Pulling the chain turns the light on i¢

it is off and off if it is on.

TAR STATEL Y STATE?
() m— e W

Figure 3-3. Finite State Machine Representation
of a Lamp with a Pull Chain.

63

Figure 3-3 is a state-transition diagram of a pull-chain
lamp. Circ!es represent states. Transitions are represented by
arcs (or arrows). The actions (or inputs) are represented on the
arcs and reactions (or outputs) are on the right side of the
input separated with a slash. State S1 is the "lights on” state
and, by pulling the <chain, a transition is made to state S2,
"lights off”. Likewise, from state S2 ("off”), by pulling the
chain, transition is made to state S1 (”on”). |

The power, size, and reversibility (the ability to reach an
initial state from a final state) of a FSM depend on the

-

following four issues [Barnett & Bernstein, 77] :

(1) The set of allowable computations in a state.

(2) The set of decision rules (or predicates) that take a
FSM from one state to another state.

(3) Parameterization.

(4) The control mechanism.

3.2.2.3 Example 2

The Figure 3-4 illustrates some of the issues involved in a

finite state machine representation of knowledge. The «circles
represent states. Arrows f(or arcs) represent transitions.
Actions are represented inside the circles. Decision rules or

predicates are represented on the arcs. Decision rules must be

satisfied in order to go from one state to another.

64

LEVEL <{ NUMBER } TSP,
LEVEL> PUT
FILTER
{
L_, NUMBER}TSR/ o i ot
MR,
READY LIGHT OFF
CRINK READY
! LIGHT ON [,ay7 , |
CUP ,
%
),
&
o THIRSTY
[}
wl
™ | ANOTHER
£
[
S
FILTER

END

THIRSTYﬁ=<:fffi3§%i>

FIGURE 3-4, FINITE STATE REPRESENTATION OF A PLAN
TO _MAKE AND DRINK_COFFEE USING "MR. COFFEE”

65

For example, in Figure 3-4, the state marked "Wait” has two arcs
leaving it.- One 1is labeled "Ready Light Off”. FSM will be in
this "Wait” state — then a FSM is said to be blocked - until the
ready light turns on. When this happens, the FSM goes to its
next state, "Drink a Cup” in our example.

We can also use parameters in a FSM. In our example, the
number of table spoons of coffee that are to be used in filling
the filter is passed as an argument (NUMBER) on the arcs leaving

the state ”"Fill Filter with Coffee™.

3.2.2.4 Contrgl Mechanism

The power of a FSM, as mentioned earlier, also depends on
its control mechanism. There are two types of control:

deterministic and non-deterministic.

(a) Deterministic

In a deterministic FSM, one arc predicate controls the
transition from one state to another. This is accomplished
either by requiring that at most one arc predicate be true, or by
having a rule that selects one arc out of the set that qualifies.
In our example, the state "Drink Another Cup” has three arcs
leaving it: “"Thirsty”, “"Empty”, and ”Satisfied”. One cannot
drink coffee from an empty MR. COFFEE even if he is thirsty. So
there should be a selection rule which gives priority for the arc

"Empty”.

66

(b) - inj

In a non-deterministic FSM, it is possible for several
different arcs leaving the same state to be satisfied
simultaneously. Thus, in a non-deterministic FSM, the next state
is not completely determined by the current state and its input.
Instead, a set of next possible states 1is to be determined. If
any arc reaches the end state, the FSM will terminate mnormally.

An example which illustrates the differences between
deterministic FSM and non-deterministic FSM is presented below.

Figure 3-5 shows both a deterministic and non-deterministic
FSM that recongnize symbol strings that start with one or more
"01” and ends with two consecutive 1s and does not contain two
consecutive Os.

In Figure 3-5 <circles represent states and the letters
inside the <circles represent the state names. Thus ”"A” is the
start state and "E” is the final state. Arcs represent state
transitions and symbols on the arc represent the inputs (the

symbol that is scanned) that cause those transitions.

FIGURE 3-5,

B, NON DETERMINISTIC

FINITE STATE RECOGNIZERS FOR {0,1*
WITH 2 C IV N S NOT CONT,
TWO_CONSECUTIVE (s,

N

67

68

(a) Deterministic FSM

Supposé the input string is 7010111”. Starting in the state
"A”, the successive states into which it is thereafter driven are
(in order) B, C, B, C, E, E. Since E is the final state, the
deterministic FSM correctly recognizes the input string ”"010111".
If the input is "10011", beginning in state "A”, the successive
states into which it is thereafter driven are (in order) C, B, D,
D, D. Since D is not a final state, the deterministic FSM

(correctly) fails to recognize ”10011”.

(b) Non-Deterministic FSM

Again suppose the input string is 7"010111”. Starting in the
state “A”, one possible sequence of states into which it can be
thereafter driven are (in order) B, E, B, E, E, E. Since E is
the final state, it «correctly recognizes the input string
”010111”. Another possible sequence of states is B, E, E, E, E,
E, which correctly recognizes the input string.

Now suppose the input is "10011”. Starting from state A,
one possible sequence of states it thereafter driven is E, E, E,
E, E. Since E is a final state, the non-deterministic FSM
incorrectly "~ recognizes the input string ”10011”. Another
possible sequence of states is E, B, D, D. Since D is not a
final state, the non-deterministic FSM (correctly) does mnot
recognize the input string.

In the above example, the deterministic FSM has one more

69

state than the non-deterministic FSM. There are some cases where
this factor. makes a <critical difference in implementing
non-deterministic control over deterministic control. However,
interpretation of a non-deterministic FSM (by an inference engine
in a KBS) is more complex.

This section on FSM is concluded by discussing the desirable

and undesirable characteristics of a FSM. The discussion 1is

based on [Barnett & Bernstein, 77].

3.2.2.5 Characteristics of FSM
The desirable characteristics are:

(1) The ability to easily implement nondeterministic

control.

(2) The ability to represent and model plans of action for
which "procedural” execution inside a computer is

meaningless.

(3) Reversibility, i.e., an FSM may be examined to answer
such questions as what needs to occur to allow it to

end up in a particular state.

(4) New plans of action may be constructed dynamically

because an FSM representation is easily manipulated.

(5) Many disciplines, both scientific and nonscientific,

represent part of their published expert knowledge in

70
a form similar to that of an FSM.
The undesirable characteristics of FSMs are:

(1) The 1loss of efficiency compared to compiled

procedures.

(2) The enforcement of low-level uniformity in the
representation, which can make the FSM hard to
understand (in a sense, F SMs are better at

representing strategies than tactics).

(3) The external format of an FSM representation can lose

clarity unless there is a graphic medium available for

computer input and display.

3.2.3 Using Programs to Represent Knowledge

3.2.3.1 An Example

Procedural knowledge can be represented by programs. Figure

3-6 depicts a program representation of knowledge necessary to

adjust the volume of a stereo set. The example has two
arguments: a human agent who will perform the task, and the
desired volume of the stereo set. Much world knowledge (common

sense knowledge) is embedded in this program. For example,

(1)

(2)

(3)

(4)

(5)

71

Stereos are in houses, cars, etc.

You need to be close to the stereo to control the

volume

Turning the knob <clockwise increases the volume
(rightmost - highest or loudest) and turning counter
clockwise reduces the volume (leftmost - lowest) and

volume can be adjusted by adjusting the knob.

Before the volume can be adjusted, the stereo set must

be switched on. s

Relative values of loudness such as high, low, medium,

etc. are used and compared.

Besides this world knowledge, the program contains knowledge

about itself - for example,

(1)

(2)

(3)

The program will not go into an infinite loop while
trying to adjust the volume, because only approximate

equality is necessary to terminate.

Program "MDVE” will effectively move the agent to the

desired location, room, in our example.

Program "ROTATE-KNOB” expects the agent to be in

proximity of the stereo set.

72
PROCEDURE ADJUST_THE_STEREO (AGENT human, DESIRED_VOLUME volume)

MOVE (AGENT, "room”);
IE DESIRED_VOLUME = "High” or ”"Loud”
THEN Knob_direction <- "Right”;
ELSE Knob_direction <- ”"Left™;
ROTATE_KNOB (AGENT, "Right”, "Full_turn”);
1E Knob_direction = "Left”
THEN DO:
X <- "Half_turn”™;
WHILE (CURRENT_VOLUME > DESIRED_VOLUWE) DO
IFE CURRENT_VOLWME > DESIRED_VOLWE
THEN ROTATE_KNOB (AGENT, "Left”, x);
ELSE ROTATE_KNOB (AGENT, "Right”, x);
X <- Xx/2;
END /* WHILE */;
END /* THEN 3*/;

END /* ADJUST_THE_STEREO */:

Figure 3-6. Procedural Knowledge Example

The advantage of the program representation is that all of
the knowledge is represented in a natural manner. The
disadvantages become apparent if one tries to extend this example
to stereo sets where sliding a indicator up and down adjusts the
vo lume.

When programs are used to represent knowledge, two options

are available : invocation methods and control structures.

73

3.2.3.2 Invocation Methods

The four methods of program invocation are: direct,

procedural attachment, demon, and pattern directed.

(a) Direct

Direct invocation occurs when the user (using program) knows
precisely which program is to be used and some identification
(for example, name) is used to reference that program through a

mechanism such as a subroutine call.

(b) Procedural Attachment :

The basic concept of procedural attachment (PA) is that most
knowledge should be expressed declaratively (as data structures
or items) and should permit optional association of programs with
the knowledge chunks and/or the data items within the chunks.
Whenever these knowledge chunks are referenced, the program(s)
associated with them will be executed. The invoker of the
program may be unaware both what program is invoked and what
functions the invoked program is to perform. Usually, only the

program that makes the attachment has that knowledge.

(c¢) Demons

A demon is like an interrupt handler in an operating system.
They perform no action unless and until a specific situation 1is

encountered. They allow knowledge that pertains to highly

74

specialized or unusual situations to be left out of the main

stream, making programs more readable and easier to organize.

(d) Pattern-Directed

In a system using the pattern directed (also known as
goal-directed) method, each program is named by a pattern that
describes the kind of tasks it performs.

An example of a pattern for the "MOVE” goal (Figure 3-6) is
MOVE (human, object). This states that the program can plan the
sequence of actions necessary to move a human into proximity to
an object. Another program in the same system could have a
pattern such as MOVE(objectl, object2). To move either objecti
or object2, an external agent may be required. Thus, the second

program performs a different task from that of the first program.

3.2.3.3 Control Structures

Control structures in programs can be sequential or parallel

or non-deterministic.

(a) Sequential

In a sequential method, the program itself explicitly makes

the choice of what to do mnext.

(b) Parallel

In a parallel method, many subprograms can operate

758

simultaneously and programs themselves are responsible for

synchronization mechanisms.

(c) Non-Deterministic

In a non-deterministic method, each program, when operating,
will have the same environment, and many branches will be

followed during execution.

3.2.3.4 Advantages and Disadvantages

See Section 3.1.7, "Procedural vs. Declarative

Representation”

3.2.4 Predicate Calculus

3.2.4.1 JIntroduction

The predicate calculus is a formal notation system (i.e.,

formal language) that «can be used to represent knowledge in Al

systems.
In the next section, a predicate <calculus definition 1is
presented. In Section 3.2.4.4, an example to illustrate the

concepts is presented and in Section 3.2.4.6, the advantages and
disadvantages of using predicate calculus to represent knowledge
in AI systems will be discussed. The definition and discussion
of the predicate calculus are based on an excellent book by

Nilsson [Nilsson, 71], and [Barnett & Bernstein, 77)] (p. 76-88).

76
3.2.4.2 Predicate Calculus Definition

There are three parts to the definition of PC.

(a) Syntax specification - the grammar that defines legal

expressions in the language.

(b) Semantic specification — the rules that relate the

symbols in the language to objects in the domain.

(c) Legal operations - rules of inference that «create

legal expressions from other legal expressions.

The syntactically legal expressions in the predicaté
calculus are called "Well-Formed Formulae” (WFF). Through the
semantic specification rules, 5 WFF makes an assertion about the
domain. The WFF are said to have the value T or F, depending on
whether the assertion§ are true or false on the domain. The
legal operations are constrained in such a way that the value (T
or F) of a WFF output by a transformation can be directly
determined from the values of the WFFs input to the

transformation.

(a) Syntax

The syntax specification of the first-order predicate

calculus (higher orders will be discussed later) has two parts:

77
(1) The specification of an alphabet of symbols.

(2) The method by which legal expressions are constructed

from these symbols.

The alphabet consists of the following set of symbols:
(1) Punctuation marks: , ()

(2) Logical symbols: - => v
(3) Quantifier symbols: ¥V 3 (The symbol ¥, is <called the
universal gquantifier and is read for all; the symbol3d
is called the existential quantifier and is read as
there exists.)
n
(4) n-adic function letters: f (i) (i >= 1, n >= 0)
(The fo(i) are called constant letters.
n
(5) n-adic predicate letters: p (i) (i >= 1, n >= 0)

0
(The p (i) are called proposition letters.)

(6) Variables: x(i)

From these symbols, the definition of a WFF can be

recursively expressed:

1. Terms
a. Each constant letter is a term.

b. Each variable letter is a term.

78
n
c. If £ (i) is a function letter and t(1) t(2)
n
t(n) (n >= 1) are terms, then f (i) (t(1), t(2),
t(n)) is a3 term.

d. No other expressions are terms.

2. Atomic formulae (Domain-specific Boolean-valued
expressions)
a. The propositional letters are atomic formulae.
b. If t(1) t(2) .. t(n) (n >= 1) are terms and pn(i)
is a predicate letter, the expression

n
p (i) (t(1), t(2) .. t(n)) is an atomic formula.

c. No other expression is an atomic formula.

3. WFFs

a. An atomic formula is a WFF.

b. If A and B are WFFs, then so are
i (~A) (Read as mnot A)
ii (A => B) (Read as A implies B)
iii (A V B) (Read A or B (or both))
iv (A B) (Read as A and B)

c. If A is a WFF and x is a variable, then the

following are WFFs:

i (V x)A (Read as for all x, A)
ii (3 x)A (Read as, there exists x such that A)

d. No other expressions are WFF.

79

The parentheses shown in 3b and 3¢ are usually omitted where
no confusion will result. Some of WFFs, wusing abbreviated

notation, are:

~-P (a,g(a,b,a))
P(a,b) => (Jy) (Fx) (Qla,y) v S(x,y,a))

(LESS(a,b) (b,c)) => LESS(a,c)

Some examples of expressions that are not WFFs are:

-f(a)
h(P(a))
Q(f(a), (P(b) => Q(c)))

(b) Semantics

The semantic specification rules for the predicate calculus
give a “"meaning” to the WFFs by making a correspondance between
symbols in the calculus and objects in the domain. The domain,
D, is a nonempty set of objects. The necessary correspondances

are [Barnett & Bernstein, 77]:

(1) Associated with every constant symbol in the WFF is

some particular element of D.

(2) Associated with every function letter in the WFF is an

n-adic function over (and into) D.

(3) Associated with every predicate letter in the WFF is

80

some particular n-place relation among the elements of
D. (A relation may be considered as a function whose

only values are T and F.)

(c) Interpretation (or Inference)

The specification of domain and the above semantic
associations constitute an interpretation or a model of the WFFs.

Given a WFF and an interpretation, we can assign a value, T or F,

to each atomic formula in the WFF. These values can be used in
turn to assign a value, T or F, to the entire WFF. The process
by which a value is assigned to an atomic formula is

straightforward: 1If the terms of the predicate letter correspond
to elements of D that satisfy the associated relation, the value
of the atomic formula 1is T; otherwise, the value is F. For

example, consider the atomic formula:

P(a, f(b,c))
and the interpretation
D is the set of integers
a is the integer 2
b is the integer 4
¢ is the integer 6
f is the (two-argument) addition function

P is the relation greater—than

With this interpretation, the above atomic formula asserts

81

that "2 is greater than the sum of 4 and 6”. In this case, the
assertion is false and P(a, f(b,c)) has the value F. If the
interpretation is changed so that a is the integer 11, then the
value is T.

The method of assigning a value to an atomic formula
containing variables 1is not so simple. For example, the atomic

formula:

(vx) P(f(x,a), x)
with the interpretation
D is the set of integers
a is the integer 1
f is the (two-argument) addition function

P is the relation greater—than

makes the assertion, "for all x in D (x any integer), x plus one
is greater than x”. Hence, the atomic formula has a value only
under the "influence” of the quantifier. When more than one
quantifier is used, then the operation of each may depend upon

those further to the left. Let the interpretation be

D is the set of integers

P is the relation greater—than
Then, the WFF,

(vx) (Jy) P(y,x)

82

asserts that for all x (integer) there exists a y (integer),
which may depend upon the chosen x, such that y is greater than

Xx. The value of this WFF is T. However, the WFF

(3y) (vx) P(y,x)

asserts that there exists a y (integer) such that y 1is greater
than any (integer) x. The value of this WFF is F.

The values of WFFs composed using logical symbols are
derived by a set of rules that are independent of the
interpretation. If X is any WFF, then (~X) has the value T when
X has the value F, and (~X) has the value F when X has the value
T. Table 3-2 shows how the values of WFFs composed by the other
logical connectives are determined from the values of the WFFs
X(1) and X(2).

Given these definitions of the logical and quantifier
symbols, it is easy to show that the symbols V, A , and 3J are
redundant because they can be expressed in terms of the symbols

~, => and

X(1) X(2) = ~-(X(1) => -X(2))

X(1) v X(2) = (-X(1) => X(2)

83

Table 3-2.

DEFINITION OF THE LOGICAL CONNECTIVES

X2

X2 | X1

X1

!
vV X2 |
I

X1

!
!
I

X2

X1

84

3.2.4.3 Some Definitions

Several terms are used to describe properties of WFFs and

the calculus itself:

Yalid. A WFF that has the value of T for all interpretations is

called valid.

Decjidable. A calculus is called decidable if there exists a
general method for determining, for any WFF in that calculus,

whether it is valid.

Undecidable. If a calculus is not decidable, then it is

undecidable.

Satisfy. If the same interpretation makes each WFF in a set of
WFFs have the value T, then this interpretation is said to

satisfy the set of WFFs.

Unsatisfiable. If no interpretation exists such that each WFF
simultaneously has the value T, then the set of WFFs is said to

be unsatisfiable.

Prove. To prove W given S means to show that W logically follows

from S.

Propositional Calculus. If the use of quantifiers and variables

is prohibited, the result is called the propositional calculus, a

decidable subset of the first—-order predicate calculus.

8s

Second-grder Calculus. A second-order predicate calculus comes
about by allowing quantification of propositional letters in
addition to the quantifications allowed in the first-order

theory.

Omega-order Calculus. The second-order calculus can be extended
by allowing quantification of the higher-order predicate letters.

Such a calculus is called omega ordered predicate calculus.

The predicate calculus provides a natural way of expressing
declarative knowledge. A knowledge source is a collection of
WFFs and the semantic rules that relate them to the domain of
application. The included WFFs all have the value T and are
called axioms. The semantic rules are wusually straightforward
and implicit, i.e., the abbreviated names used for the f(i) and
p(i) are chosen in such a way that the <correspondance to the

domain is intuitive.

3.2.4.4 An Example

The following example illustrates many of the concepts
involved in predicate calculus. This example (Figure 3-7) is

taken from.[klahr, 78]. There are four axioms:

(1) Jack is the husband of Jill.
(2) Jill lives in Boston.
(3) If x1 is the husband of x2, then x1 and x2 are married.

(4) A married couple lives in the same place.

AXIQMS: (1) HUSBAND(Jack,Jill)
(2) LIVES.IN(Jill,Boston)
(3) (¥vx1)(v¥x2)(HUSBAND(x1,x2)=>MARRIED(x1,x2))
(4) " (vx3)(vx4)(¥x5)((MARRIED(x3,x4)VES.IN(x4,x5))=>

LIVES.IN(x3,x5))

HUSBAND(Jack,Jill) LIVES.IN(Jill,Boston)
| /
U1 /
v /
HUSBAND(x1,x2)=>MARRIED(x1,x2) / U3
[/
I U2 /
\% A%

MARRIED(x3,x4)VES.IN(x4,x5)=LIVES.IN(x3,x5)

/

U4 /

A\
LIVES.IN(Jack,Boston)

U1l U2 U4

Variable chains: Jack-->x1-->x3-->Jack
U1 U2
Jill-—>x2-->x4
|
U3 |
Jill-—~—-=—-- +
U3 U4

Boston——->x5-->Boston

Theorem: LIVES.IN(Jack,Boston)

Figure 3-7. Proof that Jack Lives in Boston
[Barnett & Bernstein, 77]

86

87

The assertion derived is "Jack lives in Boston”™. The proof
is shown schematically with the reasoning chain depicted by the
single arrows. Thus, the proof consists of the above axioms as

steps(1) through (4) followed by:

(5) Jack is married to Jill - because of (1) and (3).

(6) Jack lives in Boston - because of (2), (4), and (5).

When passing along the arrows, an association is established
between the variables and/or the terms on each side of the arrow.
For example, along the arrow labeled Ul, x1, and x2 are
respectively associated with Jack and Jill, and along the arrow
labeled U2, x1, and x2 are respectively associated with x3 and
x4. Each such association is called a unification. The set of
all such unifications are summarized, under the heading ”"Variable
chains”, at the bottom of the Figure 3-7 There are three chains
in the example: (Jack x1 x3), (Jill x2 x4), and (Boston x5).
The chains are formed as equivalence classes of terms and
variables so that each variable is in one and only one chain, no
variable in one chain unifies with a variable in another chain,
if the chain contains more than one element then each element
unifies with at least one other element in the chain, and the

number of chains is maximal.
In order to prove an assertion three rules must be followed:

(1) At most one term can occur in an equivalence class -

all variables in the class then have this value.

(2) If no terms occur in a class, then there must exist an
object in the domain such that all variables in the

chain may legally assume that value.

(3) Either rule (1) or (2) must apply simultaneously to

every chain.

The example shows a method of determining a value (in this
case T) of the assertion, "Jack lives in Boston.” This raises
the natural question of how to deal with the problem, "Where does
Jack live?” The method described in [Nilsson, 71] for solving
this kind of problem is based on the resolution technique for
generating proofs in the first-order predicate calculus. The

method consists of two parts:

(1) Use resolution to generateA a proof for a related

problem - for example, (% x) LIVES.AT(Jack,x); and

(2) Use the generated proof to find an appropriate answer

to the problem - in this case, x = Boston.

3.2.4.5 Characteristics of Predicate Calculus

One of the features of the predicate calculus is the ability
to derive mnew facts and beliefs using some existing WFFs. This
is a good idea, but it falls short as a means of representing
knowledge in KBSs and other Al applications. One of the

difficulties is that it is not enough simply to have the “facts

89

at hand”; one must know how to use them. Consider for example,
the inference rule OR-introduction

A= AVB

OR-introduction captures the idea that we can infer "A or B~
either by proving A or by proving B. Given constants D, E, and
F, we an use this rule to infer

D V E

DV F
as well as wonders as

DVD

DVEVE

DVEVDVE

DVEVEVEYVEVE

and so on without limit.

This example (based on [Hayes-Roth, et al, 83]) shows that
the unguided application of inference rules can be explosive.
The inferences are perfectly correct; they are just not

particularly interesting. And this contributes to what is called
combinatorial explosion in large search problems (see Section
3.3.4).

Much work has been directed toward controlling combinatorial
explosion. For example, some mechanical theorem-proving
techniques avoid nonsense applications of OR-introduction.
Methods that use many rules of inference need to incorporate

knowledge to control their wuse [Hayes-Roth, et al, 83]. Some

90

alternative but equally troublesome methods are suggested (see

[Nilsson, 80]) for example, resolution and resolution strategies.

Another characteristic of predicate calculus representations
is demonstrated by example of Figure 3-7 namely, there are two

broad categories of axioms [Barnett & Bernstein, 77]:

(1) First, there are specific facts such as ™Jack is

Jill’s husband”™ or ”Jill lives in Boston™.

(2) Second, there are general assertions such as “Married

couples live at the same place.” In any actual
application domain, the number of facts will be
overwhelming. The result is impractically slow proof

procedures or the use of different methods, in the
inference engine, to handle facts and general
knowledge. More detailed discussion on this problem

can be found in [Kalhr, 78].

3.2.4.6 Advantages and Disadvantages of Predicate Calculus

Advantages:
(1) Predicate calculi are the best theoretically

understood and among the oldest techniques used for

representing knowledge in a computer.

(2) Predicate calculus is modular and reversible.

91

Disadvantages:
(1) Representing procedural knowledge in the predicate

calculus is difficult.

(2) In predicate calculus, the entire set of axioms must
be consistent. Thus, it makes it impossible to
include heuristic and possibly contradictory rules of
thumb and other sorts of expert knowledge in the

knowledge base.

3.2.4.7 Systems That Use Predicate Calculus

Some systems that wuse predicate calculus languages to

represent knowledge:

- QA3 [Green, 69], a general-purpose, question-answering
system that solved simple problems in a number of

domains.

— STRIPS, the Stanford Research Institute Problem
Solver, 1is designed to solve planning problems faced
by a robot in rearranging objects and navigating in a

cluttered environment [Fikes, 72].

— FOL [Filman & Weyhrauch, 76] is a very flexible proof
checker for proofs stated in first-order predicate

calculus.

92

3.2.5 Production Rules as a Represcntation of Knowledge

3.2.5.1 Introduction

Many of the highly successful KBSs use production rules as

the representation of knowledge in a knowledge base.

A production »rule is a specification of conditional action
and consists of a left hand side (LHS) (also called condition or
antecedent), which describes a situation, and a right hand side
(RHS) (also <called action or consequence), which describes
something that may legally be done in a situation described by
the LHS [Barnett & Bernstein, 77]. |

For example, in "If you are outdoors and it is raining, then
open umbrella”, the conditions are (1) being outdoors, and (2)

rain. The action is to open an umbrella.

3.2.5.2 Production System Types

There are (at least) three types of application areas where
production rules are used as a knowledge representation mechanism

[Davis & King, 77].

(a) Psychological Modeling

The attempts to simulate (or mimick) human performance
(behavior) on simple tasks are aimed at creation of programs
which embody a theory for that behavior. Using a minimum set of

competent production rules, s ome psychological modeling

93

experiments (EPAM, [Barr & Feigenbaum, 81], for example) were
able to reproduce the behavior. Here the ”"behavior” is meant to
include all aspects of human shortcomings or successes which may
arise out of (and hence may be clues to) the "architecture” of
the human cognitive system [Davis & King, 77]. Some of these
shortcomings like oscillation and forgetting may be considered as
"mistakes” for a system intended for high performance, but are
important in a system meant to model human learning behavior
[Feigenbaum, 63].

A system with the above described behavior is described in

{Newell & Simon, 72].

(b) Formal Language Theory

In some formal language theories, production rules have been
used to write grammars for formal languages [Floyd, 61], [Evans,
64]. The important characteristic of these theories is that they

use non-determinism for control structure and rule selection.

(c)KnQﬂl_Qig_c_B_&S_e_d_.Sli_t&ms.

These systems use production rules as a representation of
knowledge about a task or domain and attempt to build a program
which displays competent behavior in that domain. In these
(expert) systems, there is no explicit attempt to “simulate” a
specialist’s problem solving ©behavior; however, the system

derives power from integrating the same heuristic knowledge

94

experts use, with the same informal style of reasoning [Buchanan
& Duda, 83].°
The example and the rest of the discussion in this section

is oriented towards this category.

3.2.5.3 Production System Components

A production system consists of three parts [Barr &

Feigenbaum, 81]:

(a) A rule base - a collection of production rules.
(b) A workspace - a buffer like data structure.
(c) An interpreter or control mechanism - which controls

the system activity.

(a) Production Rules

Production rules are represented by some agreed upon syntax.
A set of primitives and symbols (that correspond to objects and
functions in the domain) are used to construct LHS and RHS of

production rules.

(b) Workspace

Workspace (sometimes called context, or data base or short
term memory (STM) buffer) is the focus of attention of production
rules. It contains the total description of the system’s current
state or situation. The LHS of a rule is matched against the

contents of the workspace. If there is a match, then RHS is

95

executed (”fired”) and RHS action modifies the workspace. Then a

production rule is said to be applied.

(c¢) Interpreter (or control mechanism)

In a production system, the interpreter has three tasks:

(1) Matching or building a Conflict-Set - the set of all
production rules whose LHSs are satisfied. If the
conflict set is empty, then processing is terminated.

(2) Conflict-Resolutijon - if the conflict set is not
empty, then one member of the conflict set is

selected.

(3) Action or Execution - the RHS of the above selected

production rule is executed.

The entire cycle is repeated until the termination condition

is reached.

3.2.5.4 Conflict Resolution Strategies

Several <conflict resolution strategies have been used or

proposed. Among them are [Barnett & Bernstein, 77]:

(a) Rule Order: There 1is a complete ordering of all
production rules. The rule in the conflict set that

is highest in ordering is chosen.

(b) Rule Precedence: A precedence network determines an

ordering.

96
(c¢) Generality Order: The most specific rule is chosen.

(d) Data Order: Elements of the workspace are ordered.
The rule chosen 1is the one whose LHS references the

highest-ranking workspace element(s).

(e) Regency Order: Execute the rule in the conflict set
that was most (least) recently executed, or the rule
in the conflict set whose LHS references the most

(least) recently referenced element(s).

(f) Non-Deterministic: Execute every rule in the conflict

set as if it were the only member. Computation stops

when any path terminates.

3.2.5.5 Example 1

The following example (a slight modification of [Barr &
Feigenbaum, 81)] page 191] illustrates some of the basics of

production system.

Consider a production system (PS) that might be used to
identify a food item, given a few hints, by a process similar to
that used in the game Twenty Questions. The workspace (or
context) contains a simple list of symbols, called "context list”
(cL). "On-CL X" means that the symbol X is currently in the
context. Figure 3-8 shows the rule base and the interpreter for

our example production system.

917

PRODUCTIONS :

P1.

IF ON-CL green THEN Put_On_CL produce

P2. IF On-CL packed in small container THEN Put-On-CL delicacy

P3. IF On-CL refrigerated OR On-CL produce THEN Put-On-CL
perishable

P4. IF On-CL weighs 15 lbs AND On-CL inexpensive AND NOT On-
CL perishable THEN Put-On-CL staple

P5. IF On-CL perishable AND On-CL weighs 15 1bs THEN Put-On-
CL turkey

P6. IF On-CL weighs 15 1bs AND On-CL produce THEN Put-On-CL
waterme lon

INTERPRETER:
1. Find all productions whose condition parts are TRUE and make

them applicable.
If more than one production is applicable, then deactivate any

production whose action adds a duplicate symbol to the CL.
Execute the action of the lowest numbered (or only) applicable
production. If no productions are applicable, then quit.
Reset the applicability of all productions and return to Sl1.

Figure 3-8. Productions and Interpreter
[Barr & Feigenbaum, 81]

98

The condition part of each of the productions corresponds to
a question_-one might ask in the Twenty Questions game. Is the
item green? Does it come in small container? and so on. The
action parts of the productions represent addition to our
knowledge about the unknown item.

Suppose the original knowledge about the mystery food item
is that it is green and weighs 15 lbs. The context list before

the beginning of the first cycle is
CL = (green, weighs 15 1lbs.)

The cycle starts with stepl of the interpreter algorithm,
finding all the applicable productions by testing their conditioﬁ
parts. Since only P1 is applicable, step2 is not necessary, and
step3 causes the action part of Pl to be executed. This adds the
symbol ”"produce” to the context list, representing a mnew fact

about the unknown food item:
CL = (produce, green, weighs 15 lbs.)

Step4 ends the first cycle and brings us back to stepl -
finding all the applicable productions.

In the second cycle, productions P1, P3, and PS are all
applicable. So in step2, we must check if any of these three
adds a duplicate symbol to the context list. P1 adds ”"produce”,
which is a duplication, so it is eliminated. Then in step3 we

select P3 to be executed because it has a lower number than Pé6.

Now the CL looks like

99
CL = (perishable, produce, green, weighs 15 lbs.)

In the third cycle, P1, P3, and P5 are applicable.
Checking, in step3, for redundant entries, we eliminate P1 and P3
from consideration. In step3, PS5 is executed and watermelon is

added to the context. The resulting CL is
CL = (watermelon, perishable, produce, green, weighs 15 lbs.)

In the last cycle, finding no non-redundant productions to
execute, the interpreter finally quits. The system’s answer 1is

watermelon, because it is the first symbol on the context list.

3.2.5.6 Example 2

The next example is a' PS that assists the service
representative and mechanics in an automobile repair agency (see
Section 2.2, "A Hypothetical KBS”). The example is based on
[Barnett & Bernstein, 77].

A customer comes to the agency and reports the problems (and
symptoms) to the Service Representative (SR). The SR enters the
data into the system. The system diagnoses the problem(s) and
suggests appropriate tests and repairs. The mechanic <corrects

the problem.

100
The system, as was mentioned in Section 2.2, contains

(1) Knowledge base of production rules that describe
cause-and-effect relationships among the performance
characteristics and measurable attributes of an

automobile.

(2) A data base of past problems, repairs, and service

performed on the vehicle.

Figure 3-9 shows a sample of production rules for the
system.

RHS of each production rule has a condition, followed by
decimal number which represents the certainty or probability of
the condition (see Section 3.1.6, "Credibility Factors”™). Thus,
rule R1 says that, if the tension of the fan belt is low, then

there are two possible consequences:

(1) That about one-half of the time the output of the

alternator will be low.
(2) About one-fifth of the time the engine will overheat.

The other rules, R2 - R9, are interpreted in a similar

manner.

R1

R2

R3

R4

RS

R6

R7

R8

R9

101

IF fan belt tension is low
THEN alternator output will be low [.5] and engine will
overheat [.2]

IF alternator output is low
THEN battery charge will be low [.7]

IF battery is low
THEN car will be difficult to start [.5]

IF automatic choke malfunctions OR automatic choke
needs adjustment
THEN car will be difficult to start [.8]

IF battery is out of warranty
THEN battery charge may be low [.9]

IF coolant is lost OR coolant system pressure cannot be

maintained
THEN engine will overheat [.7]

IF there is a high resistance short AND fuse 1is not

blown
THEN battery charge will be low [.8]

IF battery fluid is low
THEN battery will boil off fluid [.3]

IF battery fluid is low
THEN battery charge will be low [.4]

Figure 3-9. PRODUCTION RULES FOR AUTOMOTIVE SYSTEM KS

102

Figure 3-10 shows a fact file, a collection of "hard data”.
The information 1included for each measure or observation is the
agent from whom to gather data and the relative difficulty (or
cost) of gathering the data. There are four possible agents for

gathering:

(1) The customer (Cust).
(2) The data base.
(3) Inspection by the service representative (SrvR).

(4) Measurement by the mechanic (Mech).

The difficulty information will be combined with the CFs in
the production rules to formulate the most cost-effective and
timely plan for the needed diagnostics and repairs.

Now assume that a customer comes to the agency with a vague
complaint that his car is hard to start. The service
representative enters this information, including appropriate
customer and vehicle identification. The system then grows a
structure similar to that showm in Figure 3-11. The boxes are
labeled with observable or measurable symptoms and are connected
by arrows labeled with the names of the production rule they
represent. To the far right of each of the unknown value (e.g.,
the box labels, such as battery fluid 1level), the associated

agent and relative difficulty are listed.

OBSERVAT IONS

Alternate QOutput Level
Battery Charge Level
Battery Fluid Level
Choke Adjustment

Choke Function

Coolant Level

Coolant System Pressure
Difficulty to Start
Engine Temperature

Fan Belt Tension

Fuse Condition

Short in Electric System
Voltage Regulator Level

Warranties

Figure 3-10. DATA GATHERING PROCEDURE FACT FILE

AGENT

Mech

Mech

SrvR

Mech

Mech

SrvR

Mech

Cust

Cust

Mech

SrvR

Mech

Mech

Data Base

103

DIFFICULTY

104

At this point, the system would check the data base for
information_about the battery’s warranty. If nothing decisive
was found, then the customer would be asked whether the car was
running hot, and the service manager would continue to make
on-the-spot observations. Diagnostic procedures will then be
placed on an ordered schedule for the mechanic. The ordering

would be based upon

(1) Cost effectiveness - a function of test difficulties,
estimated probability of being necessary, and ability

to eliminate other tests.

(2) Availability of resources - specialty mechanics and

test equipment.

The structure shown in Figure 3-11 was grown by an algorithm
called “back-chaining”. A condition - in this case, "difficult
to start” - is taken as a given, and the goal of the system is to
find the cause(s).

The back-chaining algorithm is

(1) Find all rules that have the initial or derived
conditions as their consequence (in our example, Rule
R3 and R4).

(2) Call LHS (antecedents) of these rules - “derived
conditions”.

(3) Repeat steps (1) and (2), and terminate when no more

can be done.

R4| CHOKE
MALFUNCTION
I
DIFFICULT CHOKE OUT
TO START OF ADJUSTMENT
R71, FUSES NOT
: BLOWN
&
R7 : | SHORT HIGH
RES ISTANCE
R3| BATTERY
CHARGE LOW
T | BATTERY OUT
OF WARRANTY
R8
BATTERY
FLUID LOW
VOLTAGE
REGULATOR
OUTPUT HIGH
ALTERNATOR R1
OUTPUT LW |[f]
LOW FAN
BELT TENSION

FIGURE 3.11

HIGH ENGINE -
TEMPERATURE

W

]

105

AGENTS

MECH(5)-
MECH(5)

SRVR(2)

MECH(8)
MECH(3)

pB(Q)

SRVR(2)

MECH (4)

MECH(Y)

MECH(3)

cusT(1)

106

Figure 3-12 shows the kind of structure grown for each kind
of rule format. 1In each example in the figure, Cl1 is the initial
or a derived condition.

Rule E1 is the simplest; al is added to the set of derived
conditions. Rule E2 states that if al is the case, then both C1i
and C2 ought to follow. Thus, al is a derived condition, and C2
may or may not be considered a derived condition depending upon
the particular strategy used by the system.

Rule E3 can be written as two rules: "IF at THEN c¢1” and
"IF a1l THEN ¢2”. Therefore, al is added to the set of derived
conditions, and c2 part is ignored.

Rule E4 states that both al and a2 must occur to support the
conclusion, c1. Therefore, both are derived <conditions. If
either al or a2 is found to not hold, then the search for support
for the other can be discontinued.

Rule ES is equivalent to the separate rules ”"IF al THEN cl”
and "IF a2 THEN c2”. Thus, both a1l and a2 are added to the set
of derived conditions.

The example and the discussion 1is somewhat simplistic
because there might be some problems which we did not consider.
For example, suppose that rule R8 (in Figure 3-9) had been

written more accurately as the two rules:

107

- E1 IF Al THEN C1

OaE

E2 IF Al THEN C1 AND C2

Al

E3 IF AL THEN C1 OR C2

\u\e—— Al

Al

E4 IF A1l AND A2 THEN C1

A2

ES IF Al OR A2 THEN C1

| =

Al

K

Cl

FIGURE 3,12 BACK CHAINING

108

R8(1) [IF voltage regulator output is high
_THEN the battery will overcharge.

R8(2) IF battery is overcharged

THEN battery will boil off fluid.

With these new rules, a fragment of the structure shown in
Figure 3-11 would be replaced by that shown in Figure 3-13. Now
the interesting conclusion is that a high battery charge implies
a low battery charge. This is an apparent contradiction, since
both conditions cannot hold at the same time. This kind of
situation can often arise in unpredicted ways if the system
contains many rules. The charge of the battery will oscillate
between high and low as the battery fluid is replaced and boils
off, respectively.

So, in a sense, there is a missing rule of the form that
adding fluid to a battery whose charge and fluid levels are low
will probably allow the battery to return to normal conditions.
However, to handle this kind of situation in general, it is
necessary that the control mechanism or inference engine have
some knowledge about how to proceed when faced with apparent
conflicts and contradictions. One advantage of PS is that ad hoc
knowledge may be relatively easily incorporated in the system to

handle this.

109

J’ R7

BATTERY

CHARGE e

LOW

R |9
BATTERY BATTERY VOLTAGE
FLUID | CHARGE | REG, OUTPUT

LOW HIGH HIGH

FIGURE 3-13., FRAGMENT OF GRAPH STRUCTURE

110

3.2.5.7 Characteristics of Production Systems

This ';ection discussed some of the key features and
characteristics of the production systems. The discussion is
based on [Davis & King, 77] and [Barnett & Bernstein, 77].

Figure 3-14 is a sumnary of characteristics and
relationships. Each box represents some feature, capability, or
parameter of interest. An arrow labeled with ”+” means that the
source characteristic enhances the destination characteristic;

the opposite is true for arrows labeled with a ”-".

(a) Rules as Primitive Actions

In a production system, individual productions in the rule
base can be added, deleted, or changed independently. Each

production (or production rule) is a knowledge chunk.
(b) Indirect Limited Interaction Channel

One of the most fundamental characteristics of a production
system is that production rules must interact indirectly through
a single channel (or workspace). Rules are constrained to see
and modify only the workspace. They cannot ~“call” each other.
Thus, to pibduce a production system with a specified behavior,
one must use an indirect approach in which each piece of code
(i.e., each rule) leaves behind the proper traces (a unique

message) to trigger the next relevant piece.

111

MODULARITY

INDIRECT
LIMITED
INTERACTION
CHANNEL

VISIBILITY
OF
BEHAVIOR

RULES AS
PRIMITIVE
ACTIONS

by

—

EXPLANA-
TIONS OF
SOLUTION

MODIFI-

ABILITY

OF BEHAVIOR

+

CONFLICT-

EXTENSI-
BILITY

RESOLUTION
STRATEGY

I

CONSISTENCY

CONSTRAINED
FORMAT

CHECKING

MACHINE
READ-
ABILITY

+

FIGURE 3-14,

CHARACT]

ISTIC

PRODUCT ION

BASED ON [BARNETT & BERNSTEIN, '77/1

T

112

The uniform access to the channel, along with openness of
production systems (i.e., any rule could possibly be the next to
be selected), implies that those traces (or messages) must be
constructed in the light of a potential response from any rule in
the system. This becomes more difficult to do as the number of
rules increases and is a method that quickly destroys the major
benefits of wusing PSs, such as independence of the knowledge

chunks.

(¢c) Constrained Format

The syntax of production rules is traditionally quité

restrictive. This means that:

(1) The LHS should be a simple predicate built out of
Boolean combination of computationally primitive

operations.

(2) The RHS should perform conceptually simple operations

on the workspace.

Even though s ome systems allow programmer-supplied
predicates and procedures to be invoked by the rule’s LHS and

RHS, some restrictions are obeyed [Davis & King, 77]:

(1) As a predicate, the LHS of the rule should return only
some indication of the success or failure of the

match.

113

(2) The operation of LHS must only "observe” the
workspace, and not change it in the operation of

testing it.

(3) The operation of RHS 1is precluded from using more
complex control structures like iteration or recursion
within the the expression itself (such operations can

be constructed from multiple rules, however).

These constraints on form make the dissection and
understanding of productions by other parts of the program a more
straightforward task, strongly enhancing the possibility of
having the program itself read, and/or modify its owmn procedures.
Expressability suffers, however, since the limited syntax may not
be sufficiently powerful to make expressing each piece of
knowledge an easy task. This in turn, both restricts
extensibility (adding something is difficult if it is hard to
express it), and makes modification of the system’s behavior more
difficult. For example, it might not be particularly attractive
to implement a desired iteration if it requires several rules

rather than a line or two of code.

(d) Machine Readability

Constrained format enhances machine readability and allows
the system to examine its own rules. As one example, it becomes
possible to implement automatic consistency checking. Another

capability deals with the MYCIN’s approach to examining 1its

114

rules. This is wused in several ways and produces both a more
efficient control structure and precise explanations of system

behavior [Davis, 76].

(e) Modularity

Since direct interaction among rules is constrained, it is
possible to modify rules, delete rules, and add new rules as
necessary because other rules are not directly dependent upon the
rules that are changed or added.

For systems using the goal-directed (e.g., MYCIN) approach,
rule order is usually unimportant. Insertion of a new rule ié
thus simple, and can often be totally automated. This is a
distinct advantage where the rule set is large, and the problems

of system complexity are significant.

(f) E -l-].

Extensibility is a corrollary of modularity. The ability to
augment the system to perform in an expanded domain is obviously
enhanced by the modularity and low interaction among the original
rule set. On the otherhand, as was mentioned above under
"Constrained Format”, extensibility may be hampered because of
format constraints if the expanded domain necessiates the use of

a more robust set of primitives.

114

rules. This is wused in several ways and produces both a more
efficient control structure and precise explanations of system

behavior [Davis, 76].

(e) Modularity

Since direct interaction among rules is comstrained, it is
possible to modify rules, delete rules, and add new rules as
necessary because other rules are not directly dependent upon the
rules that are changed or added.

For systems using the goal-directed (e.g., MYCIN) approach,
rule order is usually unimportant. Insertion of a mnew rule iS
thus simple, and can often be totally automated. This is a
distinct advantage where the rule set is large, and the problems

of system complexity are significant.

(f) E .]-].

Extensibility is a corrollary of modularity. The ability to
augment the system to perform in an expanded domain is obviously
enhanced by the modularity and low interaction among the original
rule set. On the otherhand, as was mentioned above under
"Constrained Format”, extensibility may be hampered because of
format comstraints if the expanded domain necessiates the use of

a more robust set of primitives.

115

(g) Yisibility of Behavior

VisibiI;ty of behavior is the ease with which the overall
behavior of a production system can be wunderstood, either by
observing the system, or by reviewing its rule base. Even for
conceptually simple tasks, the stepwise behavior of a production
system is often rather opaque. The main factor responsible for
this is the reevaluation of the workspace at every cycle.
Because of these, any attempt to “read” a production system
requires keeping in mind the entire contents of the workspace,
and scanning the entire rule set at every cycle. Another factor
is the limit on rule-to-rule communication which inhibits the
system from focusing attention.

One method of increasing goal directed behavior in a
production system 1is the wuse of high level, strategic and
tactical rules to guide the conflict resolution strategy [Davis,
76]. An interesting discussion relating to this section can be

found in [Englemore & Nii, 77].

(h) Modifiabili of Behavi

This is similar to extensibility. However, the issue is the
ability to modify the rules so that the system focuses attention
better or more quickly. This is aided by modularity of the rule
set and hindered by the problems that arise when explicit control

and sequencing are desired in a production system.

116
(i) Explanation of Solution

A prodﬁction system can (and wusually does) explain and
validate its solutions to problems by displaying the rules it
used to derive the solutions. Because the rules are of a
situation/conclusion form and are of reasonable chunk size, all
necessary contextual information can be included in the rul?
itself. Modularity of the rules also contributes to the
acceptability of the explanation because each rule is reasonably

well self-contained.
(j) Conflict Resolution Strategy

Conflict resolution strategy has an effect on the ability to
extend the system and/or modify its behavior. A RHS scan with
backward chaining seems to be the easiest to follow since it
mimics part of human reasoning behavior, while a LHS scan with a
complex conflict resolution strategy makes the system generally
more difficult to wunderstand. As a result, predicting and
controlling the <effects of changes in or additions to, the rule
base are directly influenced in either direction by the choice of

rule selection method.
(k) Consistency Checking

If the rule set generates inconsistent results, the control
mechanism may fail. Machine processing and simplicity of format

help implement automatic consistency checking.

117

The best example of a KBS which uses production systems for

representing. knowledge is MYCIN.

3.2.6 Semantic Networks

3.2.6.1 Introduction

Semantic networks are used in many areas: psychological
modeling of human memory, programming languages, natural language
understanding, data base¢ management systems, etc. And as such
there is no simple set of unifying principles to apply across all
semantic network systems.

This section presents some general <characteristics of
semantic networks and illustrates some basic concepts with an

example.

3.2.6.2 Definitign

A semantic network (or net) consists of nodes and links (or

arcs) and is a method of representing declarative knowledge. The
nodes represent entities or objects, concepts or situatioms in
the domain and the arcs represent the relations between them.
Semantic networks, because of their inherent generality and
naturalness, can be wused to represent highly interrelated
information that cannot be properly represented by, for instance,

standard data (base) management techniques.

118

3.2.6.3 Example 1

Supposé we want to represent a simple sentence like "Clyde
is an elephant” in a semantic network (example is taken from

[Barr & Feigenbaum, 81]}). We can represent this by creating two

nodes Clyde and Elephant and connecting them with a link, as

shown below.

This can also be written as

ISA(Clyde, Elephant)

It means that (Clyde, Elephant) is a member of the relation

ISA. ISA (also Xnown as "IS”, T”SUPERC”, ”SUPERSET”) is
conventionally taken to be the relation,
more—-specific-example-of. Thus the above example is the

representation of the fact that Clyde is a specific example of
Elephant.

Brachman [Brachman, 83] catalogs many other interpretations
of ISA and differences between systems that, on the surface,

appear very similar.

119

3.2.6.4 Example 2

Figure® 3-15 shows another semantic network. In Figure
3-15(a) instances of various relations using the relation names
TEMP, LOC, COLOR, SIZE, ISA, and BETWEEN are shown. The meaning

of the relations is as follows:

TEMP(a,b) means a is the temperature of b.
LOC(a,b) means a is located at b.
COLOR(a,b) means that a is the color of b.
SIZE(a,b) means a is the size of b.

BETWEEN(b,a,c) means b is between a and c.

120
RELATIONS

TEMP (WARM-BLOODED MAMMAL)

1SA(D0G,MAMMAL) 1SA(CAT,MAMMAL)

1SA(F1D0,D0G) 1SA(BOWSER,DOG) ISA(PUFF,CAT)
Loc(MARY'S,FI1D0) LOC(FIREHOUSE,BOWSER) LoC(BOB'S,PUFF)
COLOR(TAN,FI1DO) COLOR(TAN,BOWSER) COLOR(BLACK,PUFF)
s1ze(40LB,F1D0) s1ZE(14LB,BOWSER) S1zE(ULB,PUFF)
BETWEEN(MARY'S, FIREHOUSE,BOB'S)

SEMANTIC NETWORK
MAMMAL

ISA TEMP

WARM BLOODED

N\ “XT

FIDO BOWSER

PUFF
COLOR !
SI1ZE
1z ///// coLorR\-OC
1
MARY's 40LB TAN 1B [oeoiee BLACK BOB'S

"*BETWEEN?T\\\\\‘~———”///////

RULES OF INFERENCE

1SA(X,Y) ~ 135A(y,z) => 1s5A(X,Z2)
SI1ZE(X,Y) ~ s1ze(u,v) ~ x<y => SMALLER(Y,V)
1SA(X,Y) » r{u,Y) => r(u,x)

FIGURE 3,15 EXAMPLE SEMANTIC NETWORK

121

The knowledge in a semantic net is given meaning, as
demonstrated here, by defining the relation names and other
symbols used in the instances of relations, in terms of external
entities.

Figure 3-15(b) shows a graph which represents the same
knowledge that is in the set of instances shown in Figure
3-15(a). The object names are connected by arrows labeled with

appropriate relation names. For example the instance
I1SA(DOG, MAMMAL)

produces the graph fragment

Representation of graph fragments for other than binary
relations is more difficult but still straightforward, for
instance, BETWEEN in Figure 3-15(b).

The internal storage representation of semantic mnetwork s
very similar to the graphical representation shown and is built
using pointers and list structures. The explicit connections
among the &entities enhances the efficiency of programs that
search through the semantic network [Barnett & Bernstein, 77].

Figure 3-15(c) shows some examples of inference rules for
the semantic network. The format of the rules is well formed
formulae from the predicate calculus (see Section 3.2.4).

Inference rules can also be represented as production rules in a

122

production system. Production systems can be used to represent
s ome procec}ural knowledge that can be used to test for complex
enabling conditions. This may be difficult to express as WFFs.
In Figure 3-15(c), variables, written as small letters, are
assumed to be universally quantified.

The first rule says that (for all X, Y, and Z) if X is a Y
and Y is a Z, then X is also a Z. An example of this is: PUFF
is a CAT and CAT is a MAMAL; therefore, PUFF is a MAMMAL. Thus
first rule says that ISA is transitive.

The second inference rule says that if Y and V are two
objects that "have” SIZE, and the size of Y is less than the size

of V, then Y is SMALLER than V. For example,
SIZE(4,PUFF) & SIZE(14,BOWSER) & 4 < 14 => SMALLER(PUFF,BOWSER).

Thus second rule defines a new relation SMALLER, whose
instances do not appear explicitly in the semantic network
(Figure 3-15(b)).

The third inference rule says that, if X is a Y, and U is

R-related to Y, then U is also R-related to X. For example,

ISA(FIDO, DOG) & ISA(DOG, MAMMAL) => ISA(FIDO, MAMMAL)
ISA(FIDO, MAMMAL) & TEMP(WARM_BLOODED, MAMMAL) =>

TEMP (WARM_BLOODED, FIDO)
Now let us consider the following example:

ISA(DOG, MAMMAL) & ISA(CAT, MAMMAL) => ISA(CAT, DOG).

123

This is a valid (by the application of inference rule 3) but
erroneous inference. To avoid this kind of problem, it is
necessary to have some non-syntactic (e.g., semantic) knowledge
about the relations to which inference rules can be applied.

One solution is to embed the inference rules in the
inference engine along with the necessary ad hoc knowledge to
avoid problems.

Another solution is to have a rule, like the third one in
the Figure 3-15(c), for <each relation that is inheritable.
However, both these solutions will cause problems, if the number
of relations occurring in the semantic network is large or if the
relation set can be modified or expanded.

A more general approach, originally proposed by Simmons and
Slocum [Simmons & Slocum, 72], is to treat relation names and
object names more uniformly. With this approach, relations can
be arguments to relations, and hence have the same properties as
other objects. For example, temperature 1is defined as an

inheritable property by an instance like
INHERITABLE (TEMP)

The third inference rule in the Figure 3-15(c) can then be

rewritten as
ISA(x, y) & r(u, y) & INHERITABLE(r) => r(u, x)

One advantage of this approach is that it provides a natural

method of delineating legal values in a relation and, therefore,

124

it enhances error detection and consistency checking. Another
advantage is improved flexibility and expandability. The major
disadvantage of this approach is its loss in run-time efficiency.

Another choice and tradeoff in a semantic network is storage
space and computation time. This arises from the decision about
which relations and which instances in the relations should be
stored explicitly and which should be computed via the inference
rules. The number of instances of relations can grow in a highly
non-linear way; for the example in Figure 3-15(b), the number of
instances of the relation, SMALLER, grows as a quadratic function

of the number of DOGs and CATs.

3.2.6.5 General Knowledge Versus Specific Knowledge

A technique often used with semantic networks is to make a
distinction between general knowledge and specific knowledge and
to store the two in a different manner. Referring to Figure
3-15(b) one can observe that specific knowledge 1lies at a low

level in the tree. This means [Barnett & Bernstein, 77]:

(1) There are few, if any, chains below it.

(2) Properties have simple values.

(3) Most objects in the same general classification have
all and only a known set of properties.

(4) There are large number of objects in a general class.

The specific knowledge in our example can be displayed as

The

125

ENTITY ISA SIZE COLOR LOC

FIDO DOG 40 1b Tan Mary’s

BOWSER DOG 14 1b Tan Firehouse
PUFF CAT 4 1b Black Bob’s

advantage of dividing knowledge into general and

specific is that:

(1)

(2)

(3)

The specific knowledge can be gathered into a tabular

form, as shown above, by simple mechanical means.

The specific knowledge (which is usually most of the
semantic net) can be kept in relatively inexpensive
secondary storage and even accessed through an

efficient, existing data management system.

The general knowledge can be kept in primary memory
and, because most processing by the inference rules
occurs on other than “"bottom” of the network,

efficiency can be maintained.

3.2.6.6 Advantages and Disadvantages

Advantages:

(1)

(2)

Semantic nets can be used to represent definitional
and relational knowledge that is too complex for
ordinary data management techniques.

Semantic networks allows inclusion of ad hoc

information.

126
Disadvantages:

(1) The main disadvantage of using semantic networks to
represent knowledge in KBSs is that the chunk size is

fairly small. This causes two problems:

(a) Instances of relations do not lend
themselves to being used in explanations of
chains of reasoning developed by the inference

rules - chains can be quite lengthy and tedious.

(b) Processing a semantic net can assume large

amounts of computer time.

(2) Another disadvantage is that many kinds of knowledge
(e.g., procedural knowledge, relative knowledge, etc.)
cannot be expressed as instances of relations in a

natural manner.

An example of KBS which wuses semantic nets to represent

knowledge is PROSPECTOR [Duda, et al, 78].

127

3.2.6.7 Status of Semantic Network Representation

Semantfc nets are very popular Kknowledge representation
methods in AI applications. Object-and-link structures capture
something essential about symbols and pointers 1in symbolic
computation [Barr & Feigenbaum, 81].

But processing non trivial nets can consume large amounts of
computer time. Besides these problems, there are more subtle
problems involving semantics of the network structures [Barr &

Feigenbaum, 81]:

- What does a node (object) really mean?

- Is there a unique way to represent an idea?

- How is the passage of time to be represented?

- How does one represent things that are not facts about
the world but rather ideas or beliefs?

— What are the rules about inheritance of properties in

networks?

Current research on network representation schemes attempts

to deal with these and similar concerns.
3.2.7 Frames

3.2.7.1 1Introduction

There is abundant psychological evidence that people wuse a

large, well coordinated body of knowledge from previous

128

experiences to interpret mnew situations in their everyday
cognitive activity [Barr & Feigenbaum, 81]. How can we represent
this type of knowledge in a computer system (program)? Many of
the techniques of Al applications (programs) are not powerful
enough to approach human performance in relation to vision,
language, and common sense.

Minsky [Minsky, 75] first proposed a theory of "frames” as a
mechanism for representing knowledge in the computer. His paper
has evoked a great deal of discussion and interest in exploring
further about frames and its theory. Some common motivating

issues for this interest in frames are:

(1) Accommodation of both declarative and procedural

knowledge in the same representational formalism.

(2) Accommodation of mundane, ad hoc, and idiosyncratic
knowledge along with that which is more uniform and

repetitive in nature.

(3) Accommodation of partial and somewhat contradictory or

inconsistent knowledge.

(4) Ability to plausibly reason from a knowledge base with

features like the above.

Two major issues not yet dealt with within the emerging
theory of frames are explanation of system behavior and

naturalness of the knowledge-acquisition interface.

129

3.2.7.2 Frame Characteristics

Some o}‘the desirable features of frames are given below
(Kuipers [Kuipers, 77] calls them a "wish list”). No single
frame based system has all the desirable properties and it may be
many years before the technical problems implied by such a frame
theory (like the development of large-scale organization of
knowledge, and the ‘ability of these structures to provide
direction for active <cognitive processing [Barr & Feigenbaum,
81]) can be precisely stated and solved. The following

discussion is based on [Kuipers, 77].

(a) Description

A frame provides an elaborate structure for creating and
maintaining a description of an object in a domain. And as such
a frame can be viewed as a single knowledge chunk. The
description of an object includes a number of features of that
object and the relations which hold among those features.

A frame has named gslots corresponding to those definitional
characteristics (i.e., features, relations, etc.). A primitive
element in a frame may be expanded to another frame and/or
procedural knowledge may be attached to an element when it’s

internal description becomes of interest.

(b) Instantiation

This is the process by which the frame creates a description

130

from observation of an object in its domain. Features whose real
properties have not been observed are represented by default (or
assumed) values. These default values can be static or computed

in terms of the values in other slots.

(¢) Prediction or Expectation

A frame's predicted (or expected) description can be used to
guide the collection of observations for instantiation. It also

produces the defaults which substitute for unobserved features.

(d) I -E. .

Different features of the frame description have different
amounts of confidence. Some are clear observations, others are
choices among a few alternatives, and others are default

assignments.

(e) NVariation

A frame represents a certain (limited) domain, and hence a
range of variation for objects which belong to that domain is
limited and specified. When a feature (or set of features) of a
frame is outside the permissible range of variation in a frame,
it may cast doubt on the applicability of this frame and may
indicate to the correction mechanism that another mechanism is

called for.

131

(f) Correction

In mo?t common cases of recognition, the identity of the
object being described is not initially known. So selecting the
proper frame to instantiate is part of the problem. The current
"best guess” frame attempts to create a correspondence between
what it expects to see and the observations actually available.

Anomalies may indicate that the current frame 1is not
correct, and that a different point of view is called for. The
frame can analyze the anomoly to select a more appropriate
replacement. The procedures that test and deal with unusual

conditions are called monitors.
(g) Perturbation

For small changes in the observer or the observed,
perturbation procedures correct the description without complete

recomputation.

(h) Transformation

In case of more significant changes, transformation
procedures propose frames suitable for the new situation. Those
experiences - the experiences that 1lead to those significant
changes - are saved (by complaint procedures) and incorporated
into newer versions of the ”faulty” frames when structural

revisions become possible.

132

3.2.7.3 Example 1: Frame Representation

It is ﬁgt possible to give a simple example that has all the
above properties of a frame. The following example (Figure 3-16,
based on [Barnett & Bermnstein, 77]) is provided to illustrate
some of the concepts involved in frame based systems.

The top of the Figure 3-16(a) provides a description about a
dog. Explanation for each line is provided below (line numbers
are not part of frame definition; they are provided for

explanation purposes only).

Line 1: The first line states that a dog is a mammal.

Line 2: Line 2 means that there is a slot named ”"kind” (of
dog), that may be filled with a type of "breed”.
"Breed” is itself a frame.

Line 3: The color of the dog is limited to one or a combination
of the colors selected by the SUBSET.OF operator.

Line 4: The FROM operator is used to pick out values from other
frames and default values are indicated by underlining.
Thus the combined effect of the phrase FRGM Color OF
Kind is to make the default value for the color of a
dog the default for his breed.

Line 5: Line 5 means that there is a slot for the number of
legs and the range is 0 to 4 with a default of four.

Line 6: Line 6 represents a slot for weight, which 1is a

positive integer with a default that is determined by

Line

Line

Line

Line

Line

10:

11:

133

the typical size of members of the same breed.

The state of the dog is either "adult”, the default, or
"puppy”, if age is known to be less thanm one year.

The age of dog is restricted to be a positive number
and its default value can be calculated procedurally by
"now birthday”.

The birth date of the dog is represented as a date in
this slot.

The name of the dog is represented as a string in this
slot.

The end of description of dog frame.

Figure 3-16(b) shows a frame for “boxer”.

134

dog FRAME ISA
kind breed

mamma !

» W N -

=D 00) O\ W

NN h W -

o0

color

SUBSET.OF {tan brown black white rust}

FRQGM color OF kind

leggedness 0...4
weight >0, FRQM size OF kind
state adult OR puppy if age < 1
age >0, now birthday
birthday date
name string
END dog
(a)
boxer FRAME ISA breed OF dog
color ONE.OF {tan brown brindle}
size 40...60
tail bobbed OR long
ears bobbed OR floppy
temperment playful
COVIPLAINTS IF weight > 100 THEN ASSWME
(great dane)
END boxer
(b)

Figure 3-16. EXAMPLE FRAME DEFINITIONS
[Barnett & Bernstein, 77]

Line

Line

Line

Line

Line

Line

Line

Line

1:

2:

135

Line 1 declares that boxer is a breed and it is a dog.
The color of a boxer is restricted to one of the colors
tan, brown, and brindle, with a default of tan. It is
legal for this to conflict with the dog frame (Figure
3-16(a)); i.e., brindle is not mentioned in that frame.
If +this ©breed did not have a color restrictio