
I DV

LS
SI

IL
 -
68
14

INASA I INASA I

Igisst*isiggi**Igist****tsst****************Itsis****sst

USL / DBMS NASA / RECON

WORKING PAPER SERIES

Report Number

DBMS.NASA/RECON-9

Itticiiitgltit********Atitif*tii***siiiit***********iti*Itt#WY

The USL/DBMIS NASA/RECO/4 Working Paper Series contains a
collection of reports representing results of activities being
conducted by the Computer Science Department of the University of
Southwestern Louisiana pursuant to the specifications of National
Aeronautics and Space Administration Contract Number NASW-3846.
The work on this contract is being performed jointly by the
University of Southwestern Louisiana and Southern University.

For more information, contact:

Wayne D. Dominick

Editor
USL/DBMS NASA/RECON Working Paper Series

Computer Science Department
University of Southwestern Louisiana

P. O. Box 44330
Lafayette, Louisiana 70504

(318) 231-6308

I DBMS.NASA/RECON-9 I I WORKING PAPER SER I ES I

KNOWLEDGE BASED SYSTEMS:

A CRITICAL SURVEY OF MAJOR CONCEPTS, ISSUES, AND TECHNIQUES

A Thesis

Presented to

The Graduate Faculty of

The University of Southwestern Louisiana

In Partial Fulfillment of the

Requirements for the Degree

Master of Science

Srinu Kavi

December 1984

KNOWLEDGE BASED SYSTEMS:

A CRITICAL SURVEY OF NMJCM CONCEPTS, ISSUES, AND TECHNIQUES

Srinu Kavi

APPROVED:

Wayne D. Dominick, Chairman
Associate Professor
of Compter Science

Thomas R. Cousins
Assistant Professor
of Computer Science

Willimm R. Edwards, Jr.
Associate Professor
of Camputer Science

Joan T. Cain
Dean
Graduate School

ACKNOWLEDGMENTS

.
I wlsh to express my gratitude to Dr. Wayne Dominick, for

his invaluable time and camments.

I would like to thank Dr. William Edwards and Dr. Thomas

Cousins for serving on my committee.

I would also like to express my deepest gratitude to my

parents, Mr. and Mrs. Kousalya Ranga Rao, and to my brother, Dr.

Krishna M. Kavi, for their constant encouragement and support.

Lastly, I would like to thank my special friend, Lin Yan,

for her time and emotional support.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES xiii

LIST OF FIGURES xiv

Chapter

1. INTRODUCTION

2. KNOWLEDGE—BASED SYSTEMS (KBSs)

1

4

2.1 Introduction 4

2.1.1 Characteristics of KBSs 5

2.1.1.1 Organization of Knowledge • • 5

2.1.1.2 Performance 5

2.1.1.3 Utility 6

2.1.1.4 Transparancy 6

2.1.1.5 Heuristics 7

2.1.1.6 Flexibility 7

2.1.1.7 Modularity 8

2.1.1.8 Uncertainty 8

2.1.2 Types of KBSs 9

2.1.2.1 Interpretation Systems 12

2.1.2.2 Prediction Systems 13

2.1.2.3 Diagnosis Systems 13

2.1.2.4 Design Systems 14

2.1.2.5 Planning Systems 14

2.1.2.6 Mbnitoring Systems 15

iv

2.1.2.7 Debugging Systems 16

2.1.2.8 Repair Systems 16

2.1.2.9 Instructional Systems 16

2.1.2.10 Control Systems 17

2.1.2.11 Knowledge Acquisition Systems • • 17

2.1.2.12 Expert System Construction Systems 18

2.1.2.13 Image Understanding Systems . . . 18

2.1.2.14 Concept Formation Systems 19

2.1.3 Knowledge and Data 19

2.1.4 Knowledge and Skill 20

2.1.5 Expert and Novice 20

2.1.6 KBSs and Expert Systema 21

2.2 A Hypothetical KBS 23

2.3 KBS Components 28

2.4 Knowledge Base 29

2.4.1 Knowledge Sources 29

2.4.2 Fact Files 31

2.4.3 Types of Knowledge 31

2.5 Inference Engine 34

2.5.1 Knowledge Use and Control 34

2.5.2 Knowledge Acquisition 35

2.5.3 Explanation 35

2.6 Interface 36

2.6.1 User Interface 37

2.6.2 Expert Interface 37

2.6.3 Data Interface 38

v

3.

2.7 Workspace Representation 39

2.7.1 Plan 39

2.7.2 Agenda 39

2.7.3 History 39

2.7.4 Solution Set 40

2.8 Separation of KBS Elements 40

2.9 Summary 41

TECHNIQUES USED TO CONSTRUCT KBSs 42

3.1 Introduction 42

3.1.1 Origins of KBS Techniques 42

3.1.2 Choices and Restrictions 44

3.1.3 Knowledge Representation Problems • • • 46

3.1.4 Knowledge Representation Forms 47

3.1.5 Knowledge Representation Unit 49

3.1.6 Credibility Factors 51

3.1.7 Procedural Versus Declarative
Representation 54

3.2 Methods of Representing KS 57

3.2.1 Introduction 57

3.2.2 Finite-State Machine 61

3.2.2.1 Introduction 61

—3.2.2.2 Example 1 62

3.2.2.3 Example 2 63

3.2.2.4 Control Mechanism 65

3.2.2.5 Characteristics of FSM 69

3.2.3 Programs 70

3.2.3.1 An Example 70

vi

3.2.3.2 Invocation Methods

3.2.3.3 Control Structures

- 3.2.3.4 Advantages and Disadvantages .

3.2.4 Predicate Calculus

73

74

75

75

3.2.4.1 Introduction 75

3.2.4.2 Predicate Calculus Definition 76

3.2.4.3 Some Definitions 84

3.2.4.4 An Example 85

3.2.4.5 Characteristics of PC 88

3.2.4.6 Advantages and Disadvantages 90

3.2.4.7 Systems That Use PC 91

3.2.5 Production Rules 92

3.2.5.1 Introduction 92

3.2.6.2 Production System Types 92

3.2.6.3 Production System Camponents • • 94

3.2.6.4 Conflict Resolution Strategies 95

3.2.6.5 Example 1 96

3.2.6.6 Example 2 99

3.2.6.7 Characteristics of PSs 110

3.2.6 Semantic Networks 117

3.2.6.1 Introduction 117

3.2.6.2 Definition 117

3.2.6.3 Example 1 118

3.2.6.4 Example 2 119

3.2.6.5 General Versus Specific Knowledge 124

3.2.6.6 Advantages and Disadvantages . 125

vii

3.2.6.7 Status of Semantic Networks • • . 127

3.2.7 Frames 127

3.2.7.1 Introduction 127

3.2.7.2 Frame Characteristics 129

3.2.7.3 Example 1: Frame Representation 132

3.2.7.4 Example 2: A Recognition Scenario 136

3.3 Inference Engine (IE) 139

3.3.1 Primary Functions of IE 139

3.3.2 Somm Definitions 140

3.3.3 IE Strategies 141

3.3.3.1 Forward Chaining 141

3.3.3.2 Backward Chaining 142

3.3.3.3 Chain Both Ways 142

3.3.3.4 Middle Term Chaining 142

3.3.3.5 Directionality of Control Strategy 146

3.3.3.6 Breadth-First Control Strategy • 148

3.3.3.7 Depth-First Control Strategy . • 150

3.3.4 Methods of Implementing the IE 152

3.3.4.1 Search Techniques 154

3.3.4.2 Search System Components 154

3.3.4.3 Evaluation Function 156

3.3.4.4 Ordered Search Algorithm 157

3.3.4.5 A* - An Optimal Search Algorithm 161

3.3.4.6 AND/OR Graph 163

3.3.5 Measures of Performance 169

3.3.5.1 Penetrance 169

viii

3.3.5.2 Branching Factor

3.3.5.3 Examples

3.4 Workspace Representation

170

171

173

3.4.1 Introduction 173

3.4.2 HEARSAY—Blackboard 174

3.4.3 AND/OR Graph 180

3.4.4 Blackboard Versus AND/OR Graph 182

3.5 The Interface 182

3.5.1 Functions of the Interface 182

3.5.2 User Interface 184

3.5.2.1 Introduction 184

3.5.2.2 User Interface Characteristics • • 185

3.5.2.3 The User Input 185

3.5.2.4 Parsing Strategies 186

3.5.2.5 Parsing Systems 188

3.5.2.6 Output to the User 193

3.5.2.7 Methods of Providing Explanations 194

3.5.3 Expert Interface 196

3.5.3.1 Introduction 196

3.5.3.2 Expert Interface Tasks 197

3.5.4 Knowledge Acquisition (KA) Process 198

3.5.4.1 Introduction 198

3.5.4.2 Problem Identification 199

3.5.4.3 Conceptualization Stage 201

3.5.4.4 Formalization Stage 202

3.5.4.5 Implementation Stage 202

ix

4. KBS

4.1

3.5.4.6 Testing Stage

3.5.4.7 Difficulties in KA

BUILDING TOOLS AND LANGUAGES

Introduction

203

203

206

206

4.1.1 General Purpose Programming Languages 207

4.1.2 Skeletal Systems 210

4.1.3 General Purpose Representation Languages 211

4.1.4 Computer-Aided Design Tools 212

4.2 Case Studies 213

4.2.1 EMYCIN 213

4.2.1.1 Overview of EMYCIN 213

4.2.1.2 Knowledge Representation . . 214

4.2.1.3 The EMYCIN Inference Engine 219

4.2.1.4 EMYCIN Facilities 220

4.2.2 HEARSAY-III 220

4.2.2.1 Overview of HEARSAY-III . 220

4.2.2.2 Knowledge Representation . . 222

4.2.2.3 HEARSAY-III Inference Engine 225

4.2.3 AGE 226

4.2.3.1 Overview of AGE 226

—4.2.3.2 Blackboard Framework 227

4.2.3.3 AGE Facilities 231

5. APPLICATION CONSIDERATIONS 233

5.1 Introduction 233

5.2 Initial Considerations 234

5.2.1 Task Suitability 234

6.

5.2.2 Availability of Expert

5.2.3 Knowledge Acquisition Process

5.2.4 Agreement With the Domain Theory

235

236

238

5.2.5 Expert's Model 238

5.2.6 Expert's Principles of Reasoning 238

5.2.7 Intermediate Levels of Ahstraction • . • 239

5.2.8 General Versus Domain Specific Knowledge . 239

5.2.9 End Users 239

5.2.10 Unanticipated Support 240

5.2.11 Cost Versus Benefits 240

5.3 Technology Considerations 241

5.3.1 Building Prototype System 241

5.3.2 Chunk Size 241

5.3.3 Representation of Knowledge 242

5.3.4 Inference Engine 242

5.3.5 Meta Knowledge 243

5.3.6 Procedural Knowledge 243

5.3.7 Addition of Knowledge by the Users • • 243

5.3.8 Extensibility 244

5.3.9 Knowledge Representation Tools 244

5.3.10 Design of Tools for Building KBSs 246

5.4 Environmental Considerations 248

5.4.1 Interactive KBSs 248

5.4.2 Interactive Development Environment • • 248

5.4.3 Local Operating Environment 249

CONCLUSIONS 250

xi

7. POTENTIAL FUTURE RESEARCH AREAS 253

APPENDICIES 260

A. CASE STUDY - MYCIN 260

A.1 /NYCIN's Problem Domain 260

A.2 MYCIN's Knowledge Base 262

A.2.1 Representation of Rules 262

A.2.2 Context Tree 263

A.2.3 Categorization of Rules 266

A.2.4 Clinical Parameters 267

A.2.5 Simple Lists 269

A.2.6 Knowledge Tables 270

A.2.7 Specialized Functions 270

A.3 MYCIN's Inference Engine 270

A.4 Certainty Factors 276

A.5 Context Tree 278

A.6/AYCIN's Explanations 276

A.7 /AYCIN's Interface 278

A.8 Evaluation of MYCIN 278

B. LIST OF KBSs 284

C. FIFTH GENERATION PROJECT 288

REFERENCES 294

ABSTRACT 306

BIOGRAPHICAL SKETCH 307

xi i

LIST OF TABLES

Tables Page

2-1 Some Existing Expert Systems 10

2-2 Generic Categories of Knowledge Engineering
Applications 11

3-1 Origins of KBS Techniques 43

3-2 Definitions of the Logical Connectives 83

A-1 Ratings of Antimicrobial Selection 282

LIST OF FIGURES

Figures Page

2-1 KBS Elements and Their Relationship 30

3-1 Restrictions on Choices of KBS Methodologies • 45

3-2 Knowledge Representation Forms 48

3-3 Finite State Machine Representation
of a Lamp With a Pull Chain 62

3-4 Finite State Representation of a Plan to
Make and Drink Coffee Using MR. COFFEE 64

3-5 Finite State Recognizers 67

3-6 Procedural Knowledge Example 72

3-7 Proof that Jack Lives in Boston 86

3-8 Productions and Interpreter 97

3-9 Production Rules for Automotive System KB . • 101

3-10 Data Gathering Procedure Fact File 103

3-11 Example Flow in Auto Diagnostic System .. • 105

3-12 Back Chaining 107

3-13 Fragment of Graph Structure 109

3-14 Characteristics of Production Systemm 111

3-15 Example Semantic Network 120

3-16 Example Frame Definitions 134

3-17 Inexact Match by a Frame System 137

3-18 Chaining Examples 144

3-19 Diagram for Problem Reduction 145

3-20 8-Puzzle 149

x iv

3-21 The Tree Produced by a Breadth-First Search • 151

3-22 Depth-First Back Chaining 153

3-23 The Tree Produced by a Depth-First Search • 155

3-24 The Tree Produced by an Ordered Search 160

3-25 An AND/OR Tree 164

3-26 Sum Costs 168

3-27 Example Move Graph and Balanced Tree 172

3-28 HEARSAY-II Levels of Represenation and KSs • 177

3-29 Blackboard Example 178

3-30 Example AND/OR Graph 181

3-31 A Finite State Transition Diagram 189

3-32 A Recursive Transition Network 191

3-33 Stages of Knowledge Acquisition 200

4-1 EMYCIN Overview 215

4-2 A Sample Context Tree 217

A-1 A Sample Context Tree 265

A-2 The MONITOR Mkchanism 274

A-3 The FINDOUT Mechanism 275

xv

Chapter 1

INTRODUCTION

After being in a relatively dormant state for many years,

only recently is artificial intelligence (AI) - that branch of

computer science that attempts to have machines emulate

intelligent behavior - accomplishing practical results. Most of

these results can be attributed to the design and use of

Knowledge-Based Systems, KBSs (or expert systems) problem

solving computer programs that can reach a level of performance

comparable to that of a human expert in some specialized probleth

domain [Nau, 83]. These systems can act as a consultant for

various requirements like medical diagnosis, military threat

analysis, project risk assessment, etc. These systems possess

knowledge to enable them to make intelligent decisions. They

are, however, not meant to replace the human specialists in any

particular domain.

This report surveys recent work in interactive KBSs,

explaining KBS concepts, issues, and KBS technology.

Basic concepts of KBSs, including the characteristics and

types of KBSs, and differences between knowledge and data,

knowledge and skill, and difference between an expert and a

novice are presented in Chapter 2. Also in Chapter 2, a brief

description of a hypothetical KBS, and various components in a

KBS are presented.

1

2

In Chapter 3, various techniques used to construct KBSs are

discussed in- detail.

In Section 3.1, an introductory discussion is presented for

origins of KBS techniques, various choices and restrictions,

knowledge representation problems, knowledge representation

forms, knowledge representation units, and credibility factors.

Also in Section 3.1, the differences between procedural and

declarative representations are discussed.

In Section 3.2, various methods for representing knowledge

in KBSs are discussed. Specifically, six representation

techniques - finite-state machines, progrmms, predicate calculus,

production rules, semantic networks, and frames - are discussed

in detail.

In Section 3.3, various issues and techniques related to

the inference engine of a KBS are discussed. Also in Section

3.3, two performance matrics that are useful in evaluating the

performance of an inference engine are described.

In Section 3.4, after providing brief introduction for

workspace representation in KBSs, two techniques

(HEARSAY-Blackboard and AND/OR Graph) are

detail.

In Section 3.5,

discussed in same

various functions and types of interfaces

are discussed. Also in 3.5, the knowledge acquisition process

is described. Specifically the phases involved and problems

associated with the knowledge acquisition process are discussed.

In Chapter 4, various tools and languages to build KBSs are

3

discussed.

In Section 4.1 an introduction to various tools and

languages is presented. In Section 4.2, three case studies

(EMWCIN, HEARSAY-III, and AGE) for KBS building tools are

described.

In Chapter 5, various considerations that should be taken

into account before (and during) building a KBS are presented.

Conclusions are presented in Chapter 6 and, in Chapter 7,

many problems that exist in current KBSs and, hence, future areas

of research are identified.

Three appendicies are provided in this report. In AppendiX

A, a case study of a KBS OWCIN) is described in detail. A list

of existing KBSs and brief description of those systems are

provided in Appendix B. In Appendix C, a brief introduction is

provided for the Japanese Fifth Generation Computer Project.

And, finally, extensive set of references are provided at

the end of this report.

I t

Chapter 2

KNOWLEDGE-BASED SYSTEMS (KBSs)

is necessary to distinguish, at the outset, between

knowledge-based systems and other computer-based systems that

contain or incorporate knowledge. Almost all computer programs

and systems contain knowledge of at least two kinds: knowledge

about things and knowledge about what to do with things - that

is, how to manipulate or transform them. A KBS can be defined in

the following way: "A knowledge-based system is one in whicli

knowledge is collected in one or more compartments (called

knowledge sources) and is of the kind that facilitates problem

solving (reasoning) in a single. wt11-defined problem damain and

whose performance is comparable to that of a human expert in some

specialized problem domain". (This definition is based on the

definitions presented in [Barnett & Bernstein, 77] and [Nau,

83]).

From this definition, however, it is not readily apparent

what distinguishes such a system from an ordinary application

progrmm. Many application programs make use of specialized

problem-solving knowledge and many of them reach high levels of

performance [Nau, 83]. The discussion in the next section should

help make that distinction.

4

5

2.1.1 Charactyristjcs Di. EpSs

Some iinportant characteristics of KBSs (and differences with

other computer-based systems)

sub-sections.

are discussed

2.1.1.1 Organization of Knowledge

in the following

Most computer programs organize knowledge on two levels:

data and program. But most knowledge-based systems organize

knowledge on three levels: data, knowledge, and control.

At the data level is information about the current problem

and the current state of affairs in the attempt to solve the

problem.

At the knowledge base level is general knowledge about the

problem domain the system is designed and built for.

At the control level are the methods (inference engine) of

applying general knowledge to solve the problem.

2.1.1.2 Performance

KBSs handle real-world, complex problems which require an

expert's interpretation (or expertise). The experts produce

consistently high-quality results in minimal time (i.e., they

show "high performance"). High performance requires that the

KBSs have not only general facts and principles but the

specialized ones that separate human experts from novices

[Buchanan, 82]. Accurate and high quality results are shown in

6

many successful KBSs in restricted classes of problems.

However-, currently there are no (known) formal metrics to

evaluate the performance of KBSs (see Chapter 7).

2.1.1.3 Utility .(or Usefulness)

Designers of KBSs are motivated to build these systems

because of the demonstrated need in many application areas, in

addition to constructing programs that serve as vehicles for AI

research. For example, the motivation for developing the MYCIN

system a system which provides consultive advice on diagnosis

of and therapy for infectious diseases, in particular, bacterial

infection in the blood, bacteremia - was the need for more (or

more accessible) consultants to physicians selecting

antimicrobial drugs (see the case study of MYCIN in Appendix A).

On the other hand, solving the Tower of Hanoi puzzle, per

se, is not a critical bottleneck in any scientific or engineering

enterprise. However, in some cases, a task is chosen just

because of its inherent importance. More often than not, a

problem's significance for AI research is also a factor now

because KBSs are still constructed by researchers for research

purposes [Buchanan, 82]. Usefulness also implies competence,

consistently high performance, and ease of use.

2.1.1.4 Transparency (or Understandability or Explainability)

One of the most important characteristics of a KBS is the

ability to conduct an interactive dialog with the user i.e., the

7

user does notvirw KBS as a "black box". This means the system

should be ;able to provide coherent explanations of its line of

reasoning and answers to queries about its knowledge and its

results, rather than simply printing a collection of orders to

the user. It is not necessary that KBSs are psychological models

of the reasoning of the experts. However, they must be

understandable to persons familiar with the problem [Buchanan,

82].

2.1.1.5 Heuristics

Heuristics (or hunches or rules of thumb) are an essential

key to intelligent problem solving because computationally

feasible, mathematically precise methods are known for only a

relatively few classes of problems. A large part of what a KBS

needs to know is the body of heuristics that specialists use in

solving hard problems, i.e., the need to reason with judgemental

knowledge as well as with formal knowledge of established (or

textbook) theories [Buchanan, 82]. With the above heuristic

knowledge, the system provides expert-level analyses of difficult

situations.

..-
2.1.1.6 Flexibility

Another characteristic of a KBS is that it integrates new

knowledge incrementally into its existing store of knowledge,

i.e., a KBS provides incremental development of knowledge over an

extended time by letting the developers refine old rules and add

new ones.

8

2.1.1.7 Mbdularity (or Changeability)

In KB&s, there is a clear separation of the general

knowledge of a problem domain and the reasoning mmchanismwhich

uses this knowledge (as was mentioned in Section 2.1.1.1,

"Organization of Knowledge"). With this separation, the program

can be changed by simple modification of the knowledge base,

i.e., the same general system can be used for a variety of

applications, essentially by "unplugging" one set of rules and

"plugging" in another.

2.1.1.8 Uncertainty

Another very important and distinguishing characteristic of

a KBS is its ability to reason under uncertain or incomplete

information Let us take the example of MYCIN. It takes from 12

to 24 hours to determine whether there is an organism and make a

preliminary identification of its general characteristics.

Another 24 to 48 hours are required to obtain specific

identification and possibly even more time to determine wtich

specific antimicrobial drug is most effective in either

counteracting the organism or arresting its growth. In many

cases, the Infection is serious enough that treatment must be

begun before all of the analyses can be completed. Therefore,

any recomnended therapy must be based on incomplete information.

In building KBSs with the above characteristics, researchers

have found that amassing a large amount of data rather than

9

sophisticatedreasoning techniques is responsible for most of the

power of the- system. Such KBSs, previously limited to acadmic

research projects, are beginning to enter the software market

place [Gevarter, 83]. Same of the application areas where KBSs

are used are:

(1) Medical diagnosis.

(2) Mineral exploration.

(3) Oil-well log interpretation

(4) Chemical and biological synthesis

(5) Military threat assessment.

(6) Planning and scheduling.

(7) Signal interpretation.

(8) Air-traffic control.

(9) VLSI design.

(10) Equipment fault diagnosis.

(11) Speech understanding.

(12) Space defense.

(13) KB access and management

Table 2-1 lists a few of the existing systems developed for

selected problem areas. A more extensive list is provided in

Appendix B.

2 . 1 . 2 Types AIL 'CBS s

Most of the KBS applications fall into a few distinct types

and are summarized in Table 2-2.

10

Table 2-1 SOME EXISTING EXPERT SYSTEMS [Nau, 83]

SYSTEM AREA OF EXPERTISE

AQ1 Diagnosis of Plant Diseases

CASNET Medical Consulting

DENDRAL Hypothesizing Molecular Structure
fromMass Spectrograms

DIPMETER ADVISOR Oil Exploration

EL Analyzing Electrical Circuits

INTERNIST Medical Consulting

KMM Medical Consulting

MACSYMA Mathematical Formula Manipulation

IvIDX Medical Consulting

?AMGEN Planning DNA Experiments

MYCIN Medical Consulting

PROSPECTOR Mineral Exploration

PUFF Medical Consulting

R1 Computer Configuration

11

Table 2-2 GENERIC CATEGORIES OF KNOWLEDGE ENGINEERING

APPLICATIONS

[Hayes-Roth, et al, 83]

CATEGORY PROBLEM ADDRESSED

INTERPRETATION

PREDICTION

DIAGNOSIS

DESIGN

PLANNING

Inferring Situation Descriptions
from Sensor Data

Inferring Likely Consequences of
Given Situations

Inferring System Malfunctions
fram Observables

Configuring Objects Under
Constraints

Designing Actions

MlagITORING Comparing Observations to Plan
Vulnerabilities

DEBUGGING Prescribing Remedies for
Malfunctions

REPAIR Executing a Plan to Administer a
Prescribed Remedy

INSTRUCTION Diagnosing, Debugging, and
Repairing Student Behavior

CONTROL Interpreting, Predicting,
Repairing and Monitoring System
Behaviors

12

2.1.2.1 Interpretation Systems

Interpretation systems analyze the data or observables and

infer their meaning. This category can be further divided into

two: data analysis systems and situation analysis systems.

(a) Dat4 Analysis Systems

This category includes surveillance, speech understanding,

image analysis, chemical structure elucidation, signal

interpretation, and oil—well log interpretation. A key

requirement for these systems is to find consistent and correc4

interpretations of the data. It is often important that analysit

systems be rigorously complete, i.e., they consider the possible

interpretations systematically and discard candidates only when

there is enough evidence to rule them out.

An example of this type is DENDRAL which interprets mass

spectrometer data [Feigenbaum, et al, 71]. The data are

measurements of the mass of molecular fragments and

interpretation is a determination of one or more chemical

structures.

(b) Situatiam Analysis Systems

This category includes analysis of electrical circuits,

digital circuits, mechanics problems, earthquake damage

assessment for structures, and military threat analysis. A key

requirement of these systems, in addition to the requirements of

13

the data analysis systems, is plausible reasoning and its ability

to recover from tentative assumptions.

An example of this type is system EL [Sussman, 77], which

uses forward reasoning with electrical laws to compute

electrical parameters (voltage and current) at one node of a

circuit fram parameters at other nodes.

2.1.2.2 Prediction Systuas

Prediction systems infer likely consequences (i.e.,

forecast the course of the future) from given situations (past

and present). This category includes weather forecasting -,

demographic predictions. traffic predictions, crop estimates,

and military forecasting. A key requirement for these systems is

the ability to refer to things that change over time and to

events that are ordered in time. They must have adequate models

of the ways that various actions change the state of the modeled

environment over time.

Currently there is no known KBS which falls into this

category.

2.1.2.3 Diagnosis Systems

Diagnosis systems infer system malfunctions (or disease

state in a living system) from observables. This category

includes medical, electronic, mechanical and software diagnosis,

and diagnosis of nuclear reactor accidents. Key requirements

include those of interpretation. A diagnostician mmst understand

14

the system organization (i.e., its anatomy) and the relationships

and interactions between subsystems.

An example of this category is INTERNIST-1, an experimental

computer based diagnostic consultant for general internal

medicine. The system can deal with five hundred diseases and it

is able to diagnose multiple and simultaneous diseases [Pople,

77].

2.1.2.4 Design Systmns

Design systems develop specifications (or configurations of

objects) that satisfy particular requirements of the design

problem. They include circuit layout, building design, and

chemical synthesis. Requirements for these systems include

minimization of an objective function that measures costs and

other undesirable properties of potential design, and the ability

to explain and justify the design decisions.

An example of this type is R1, a system for configuring

Digital Equipment Corporation VAX computer systems [McDermott,

80].

2.1.2.5 Planning Systems

Planning systems design actions that can be carried out to

achieve goals. They include automatic programming, robotics,

planetary flybys, mission planning, design of molecular genetics

experiments, and military planning problems. A key requirement

for these systems is that they construct a plan that achieves

15

goals without consmming excessive resources or violating

constraints,- If goals conflict, they establish priorities.

Since planning always involves a certain mmount of prediction,

these planning systems also have certain requirements of

prediction systems.

An example of this type is MDLGEN, a genetic engineering

system to assist geneticists in planning laboratory experimants

concerned with manipulation of DNA with restriction enzymes

[Martin, et al, 77].

2.1.2.6 Monitoring Systems

Monitoring systems continuously observe system behavior,

interpret the signals and set off alarms when intervention is

required. The key requirements for monitoring systems are

similar to those of diagnostic systems with the additional

requirement that the recognition of alarm conditions be carried

out in real time. For credibility, these system should avoid

false alarms. Many computer—aided monitoring systems exist in

nuclear power plants, air traffic control, disease, regulatory,

and fiscal managemant tasks.

An example of this type of system is VM (Ventilator

Monitor), which monitors a patient using a mechanical breathing

device after surgery [Fagan, 80].

16

2.1.2.7 Debugging Systenm

Debugging systems prescribe remedies for malfunctions,

i.e., they create specifications or recommmndations for

correcting a diagnosed problem. The key requirements are similar

to that of planning, design, and prediction systems.

Computer aided debugging systems exist for computer

programming in the form of an intelligent knowledge base and text

editors, but none qualify as an knowledge-based system.

2.1.2.8 Repair Systems

Repair systems create plans (or recmmmendations) and

execute those plans to correct some diagnosed problem. The

requirements for these systems are similar to those of debugging

and planning systems.

Computer-based repair systems exist in automotive, network,

avionic, and computer maintenance. Construction of KBSs of this

type has just begun.

2.1.2.9 Instructional Systems

The computer-aided instruction systems (or, simply,

instruction systems) diagnose and debug student behaviors and

plan a tutorial interaction intended to convey the remedial

knowledge to the student. Because these systems incorporate

diagnosis and debugging subsystems, the requirements for

instructional systems are similar to those of diagnosis and

17

debugging systems. They include electronic trouble shooting,

medical diagnosis, teaching, mathematics, and coaching a game.

An example of this system is SOPHIE, which teaches

problem-solving skills in the context of a simulated electronic

laboratory. SOPHIE allows the student to have a one-to-one

relationship with a computer-based "expert" who helps him come up

with his own ideas, experimmnt with those ideas, and when

necessary, debug them.

2.1.2.10 Control Systems

An expert control system adaptively governs the overal4

behavior of a system which include interpreting, predicting,

repairing, and monitoring system behaviors. The requirements of

these systems include those of interpretation, prediction,

repairing, and mnnitoring systems. This category includes air

traffic control, business management, battle management, and

mission control.

KBSs are just entering this field.

2.1.2.11 Xmawledge Acquisition Systems

These systems assist in the construction of large knowledge

bases and refinement of existing knowledge by helping transfer

expertise from the human expert to the knowledge base. The key

requirements of these systems include organization of knowledge

into mata-level knowledge which helps in the task of assembling

and maintaining large amounts of knowledge and in providing a

18

natural language interface. This category includes maintaining

large medica-1 knowledge bases and geological knowledge bases.

An example of this type is TEIRESIAS [Davis & Lenat, 82], a

systemwhich makes possible the interactive transfer of expertise

from a human expert to the knowledge base of a high performance

progrmm, in a dialog conducted in a restricted subset of natural

language.

2.1.2.12 Expert System Construction Systems

This type of system provides general-purpose programming

systems to build expert systems. The key requirements includt

provision for knowledge representation techniques and intelligent

editing facilities. This category includes medical consultation

systems and electronic system diagnosis systems.

An example of this type is ROSIE [Fain, et al, 81], which

provides a general-purpose programming system for building expert

system. This system also has very sophisticated editing

facilities which check syntax and semantics of the input.

2.1.2.13 Image Understanding Systems

These Aystems attempt to identify and classify instances of

modeled objects and, at the same time, extract three-dimensional

information from a monocular image concerning the shape,

structure, and three-dimensional location and orientation of the

objects. The key requirements for this type of system are

similar to interpretation, prediction, modeling, and description

19

systems. This category includes aerial photography

interpretation and views of automated assembly work-stations.

An example of this type is the VISIONS system, which has

been tested with outdoor scenes [Cohen & Feigenbaum, 82].

2.1.2.14 Concept-Formation Systems

Currently only one system of this type exists: AM. AM

models one aspect of elementary mathematics research: developing

new concepts under the guidance of a large body of heuristic

rules [DaviS & Lenat, 82].

2.1. 3 Knowledge _qua Da t a

The concept of knowledge itself is not simple, in the sense

that it can be rigorously defined or bounded, nor it can be

divorced from the means of acquiring or using it. The latter is

equally true whether we are speaking of human or computer based

knowledge-based sys t ems . However, , s ome s imp 1 e

be made about knowledge and data.

observations can

Widerhold [Niderhold, 84] observes that:

(1) Knowledge considers general aspects of data.

(2) Knowledge is significantly smaller than data.

(3) Knowledge does not vary rapidly (compared to data)

The following simple examples illustrate the difference

between knowledge and data [Widerhold, 84]:

Mr. Lee's age is 43 years - Data

Middle—age is 35-50 - Knowledge

People of middle-age are careful - Knowledge

Mr. Lee has never had a traffic accident - Data

2.1.4 Xnowledge and Skill

one's

20

Webster's dictionary defines skill as "the ability to use

knowledge effectively and readily in execution or

performance". Skills refer to organized modes of operation and

generalized techniques for dealing with problems. The problemm

may be of such nature that little or no specialized and technical

informmtion, thus no special knowledge, is required. Other

problems may require specialized and technical information at a

rather high level such that specific knowledge is required in

dealing with the problem [Barnett & Bernstein, 77].

The main characteristic of a skilled performance include

great speed, or other efficiencies, reduced error, reduced

cognitive load (attentional requirements) and increased

adaptability and robustness [Hayes-Roth, et al, 83].

2.1.5 Expert and Novice

The difference between expert and novice experts solve

complex problems considerably faster and with less errors than

novices - are cammonplace within everyday experience. During the

past decade, substantial progress has been made in exploring and

21

explaining the human information processes that underlie expert

performance.-

The major components of an expert's skill (expertise) which

separates the expert from the novice are: perceptual knowledge,

recognition capabilities, and the way in which information is

represented in long-term nammory.

An expert knows a great many things and can rapidly evoke

particular items relevant to the problem at hand. Although a

sizable body of knowledge is prerequisite to expert skill, that

knowledge must be indexed by a large numbers of patterns that, on

recognition, guide the expert in a fraction of a second to

relevant parts of the knowledge store.

Human memory consists of a complex organization of nodes

connected by links called "list structures". Human long-term

memory can be represented formally by such node-link structures

and almost all computer simulations of cognition use list

structures together with productions that act on these list

structures as their fundamental means for representing memory.

These formalisms capture the associative properties of long-term

ummmry. An excellent discussion on expert and novice (on which

the discussipn above was based) can be found in [Larkin, et al,

80].

2.1.6 KBSs and Expert Systems

KBSs contain large amounts of varied knowledge, which they

22

use during aproblem solving activity. Expert systems (ESs) are

a species of-KBSs, which use large amounts of knowledge and whose

performance is equivalent to that of an expert in a given damain.

Expert performance means, for example, the level of very

experienced engineering or scientific tasks, or very experienced

MD diagnosing and recommmnding therapy. The ES acts as an

intelligent assistant to a human expert.

A system that can understand images, or understand speech,

may rely on a large knowledge base to achieve its perceptions,

but it does not require any human expertise. For instance,

normal human beings are born with eyes, ears, and the equipment

behind them to process the signals those organs receive, and they

quickly acquire the knowledge needed to understand the signals.

But normal humans are not born to knowing, for example, how to

diagnose a disease; that takes expertise, learned over a long

period.

This report will not rely upon the formal distinction

between KBSs and ESs, but will rather use the terms as though

they were synonymous, and, in fact, in most of the literature

these terms are used interchangeably.

23

2.2 A Hypothetical Kaa

The following is a brief description and example of a

simple, hypothetical KBS application that illustrates most of the

capabilities of a KBS. This example and description is based on

[Barnett & Bernstein, 77].

The hypothetical system is an automotivd service consultant

whose primary purpose is to help ensure the best service at the

least cost for automobiles brought to a service agency. Based on

the discussion in Section 2.1.2, this KBS falls into the category

of repair systemm and all repair systems will also have diagnosis

subsystems.

The problem domain for this KBS is well bounded and well

defined. Hence reasoning skills required by such a KBS are

relatively simple. The knawledge required, however, is large

because of the nwmber and variety of automotive subsystems

involved and the high degree of their interdependence. In

addition, the system also contains a data base. The data base of

the system would contain a description of each car serviced at

the agency. The descrption would contain the configuration of

the vehicle's-engine, running gear, and optional and special

equipment as well as the year of manufacture, model, color,

service history, etc.

Like all KBSs, this hypothetical automotive consultant

system contains two kinds of knowledge:

24

(1) Generi.c knawledge about the major elements of the

vehicle

systems).

(such as its cooling, ignition, and fuel

(2) Knowledge about the model and its specific options.

The intent of the system is to recommend:

(1) The least expensive tests that will produce the

greatest &mount of specific information about the

cause of the problem.

(2) The least expensive repairs for the problem.

(3) The best post—repair testing to verify that the

problem is solved.

The following is a hypothetical scenario of such a system in

operation. The users are the service representative and the

mechanic(s) performing the test and repair work. The user

language is a stylized English designed to convey a maximum

amount of information between the user and the system with a

minimum mmount of effort.

System: Tuesday, May 3, 1977, 08:32:44

Service rep: Next custamer

25

System: Enter owner's name or vehicle ID number

Service rep: 1743 HBAQ 8197

System: Owner is S.B. Franklin, car is 1974 Ford Gran

Torino 4—dr sedan with 351-2V engine, A/C, P/S,

P/B and CA smog controls. Last service — April

4, 1977 at 28,412 mi R&R water pump and lower

radiator hose, what is present mdleage?

Service yep: 29285

System: Please inform owner that the following regular

maintenance services are due:

Change oil and filter — last changed on Jan 13,

1977 at 24,842 mi.

May we be of other service?

Service rep: Battery not keeping charge, barely able to

start car this a.m.

System: Any other symptoms or problems?

Service rep: No

System: Check belt tension on alternator — most likely

cause.

Service rep: Why?

26

System: Last service required removal of fan and belts,

very likely that tension was not properly set

on reinstallation.

Service rep: More (mmaning more things to be checked or

tested)

System: Check fluid level in battery - next most likely

cause - overcharged battery. If level is low,

check alternator output and voltage regulator.

Service rep: Replace battery?

System: No, battery is 6 months old and should take

recharge.

Service rep: Thank you. (Signal to system that session is

ended for now)

System: Car assigned number 287 in control system.

First test to be performed by J.K. Uzzi in Bay

17.

After the car is moved to the mechanic's work area and the

prescribed tests are performed, the following interchange

takes place between the mechanic and the system:

Mechanic: JKU 17, 287 (indicating mechanic, bay and car

being serviced)

27

System: 1974 Gran Torino, test results please.

Ukchanic: Belt tension OK, battery level OK, charge low,

alternator, VR output OK. Problem not found.

System: Test for above—normal current flow with

ignition off. (Mechanic attaches mnneter and

takes reading).

Mechanic: Reading above normal.

System: Check for faulty switch in hood light, trunk

light, and courtesy lights.

Mechanic finds faulty switch in trunk light such that light

never turns off.

Mechanic: Fault trunk light switch R&R. Current reading

normal. Thank You.

System: You are welcome. Bye.

Some of the salient features of this hypothetical KBS are:

(1) Sb-paration of generic

knawledge.

knowledge frmn specific

(2) The dialog between the system and the user (mechanic

or service representative) has the flavor of

naturalness.

28

(3) Expertise.

For a system to have suggested checking the belt tension of

the alternator, it would have to know that the earlier removal of

the belt could be related to the present problem, that the

severity of the problemwould depend on how poorly the tension

was adjusted, and that the one month and about 900 miles before

appearance of symptoms (battery failure) is not unreasonable.

Since it is a highly probable cause and the easiest to test, it

ranks as the first suggestion. By requesting more information,

the service representative can tell the owner what else may be

required and what will not likely be required such as a new

battery.

2.3 KBS Components

Figure 2-1, based on [Barnett & Bernstein, 77] and

[Hayes-Roth, et al, 83], shows an idealized representation of an

KBS. A KBS is composed of four components (or modules):

(1) A Knowledge Base

(2) Am Inference Engine

(3) An Interface

(4) A Workspace

The knowledge base contains the knowledge sources (rules

29

and information about the current problem, etc.) and fact files.

The inference engine (also called cognitive engine)

performs the system's problem solving (inference-making or

reasoning) operations. It contains procedures that manipulate

knowledge contained in the knowledge base.

The interface provides problem-oriented, interactive

communications between the user and the KBS. This interaction

is usually in some restricted variant of English and in some

cases via means of a graphics or intelligent editor.

A workspace (also called blackboard) records intermediate

hypotheses, decisions, and results that a KBS manipulates during

a problem-solving activity.

2 . 4 Kn owl edge Base

The knowledge base (KB) of a KBS contains knowledge sources

(KSs) and fact files.

2.4.1 Knowledge Sources

A knowledge source contains rules, stipulations of the

existence or_non-existence of certain things, simple equivalence

relationships, relationships between the concrete and abstract,

knowledge of conventions about the domain, methods of the domain,

etc. In other words, the breadth of knowledge acquired by one

who has become expert in solving problems in the domain for which

the KBS is designed [Barnett & Bernstein, 77].

(USER)4

(DATA)4

(EXPERT)

COMPUTER SYSTEM

INTERFACE

LANGUAGE
FACILITY

DATA
ACQUISITION

rnNTR(t.

KNOWLEDGE-BASED SYSTEM

INFERENCE
ENGINE

KNOWLEDGE
CONTROL
& IJSF

KNOWLEDGE
ACQUISITION

EXPLANATION

KNOWLEDGE
BASE

KNOWLEDGE
SOURCES(S)

FACT
FILES

PLAN

BLACKBOARD

AGENDA HISTORY
SOLUTION
SET

FIGURE 2-1. KBS ELEMENTS AND THEIR RELATIONSHIP

BASED ON [HAYES-ROTH, ET AL, '83] AND [BARNETT & BERSTEIN, '77]

31

In a KBS, it is logical to separate knowledge into different

knowledge sn-urces because :

(1) In any problem domain, each expert acquires different

problem-solving knowledge and there is no efficient

single method for representing all of the knowledge.

(2) In any problem-solving activity, two types (or levels)

of knowledge is involved: problem-specific knowledge

and haw to use this knowledge. The latter is usually

called "meta knawledge".

2.4.2 Fact Files

Fact files contain "hard" data such as values, attributes,

etc. (for example, the contents of an engineering handbook) and,

in this sense, it is equivalent to a data base. Fact files are

required for the complete solution of a problem. A collection of

fact files without a knowledge source is not a knowledge base. A

MIS constructed from a conventional data management system is not

a KBS [Barnett & Bernstein, 77], because it does not have

reasoning or inferencing capability.

2.4.3 Types DI. Knowledge

Even though KBSs were and are being developed for a variety

32

of applications (see Section 2.1.2, "Types of KBSs"), the

knowledge in-KSs in those systems generally falls into the

following five types [Barnett & Bernstein, 77]:

(1) Nkthods specifying cause-effect relationships,

implications, or inferences depending on the richness

of the relationship to be represented. Production

rules, predicate calculus expressions, and other

logical methods were used for representation of this

type. Diagnosis systems typically use this type of

knowledge. For example, MYCIN uses simple IF-TEW

form of rules.

(2) Plans of action for how one would achieve an end

result in the world external to the mmdel that the

system represents. For instance, in a robotic system

a procedure may describe how to assemble parts of an

automobile engine or, simply, how to put a block on

top of another.

Models of agent behavior to infer the effects of the

planning agent activities are used for representation

of this type. Planning systems typically use this

type of knowledge.

NOAH, a robot planning system is an example of this

type and is described in [Sacerdoti, 75].

33

(3) Declaratives that identify objects within the modeled

doma in and distinguish them from objects that are not

within the domain. These declaratives may describe

properties of objects, relationships mmong objects,

definitions of terms or constructs, schemata that

identify the legal relationships or transformations

applicable to the domain.

Semantic networks are used for representation of this

type of knowledge. Interpretation and diagnostic

systems typically employ this type of knowledge.

For example, CADUCEUS consists of an extremmly large

semantic network of relationships (approximately

100,000 associations) between diseases and symptams in

internal medicine [Pople, 81].

(4) Meta properties, which are a higher level of

abstraction about the domain and the solution space

and methods. Meta

provide means

properties (or meta knowledge)

for determining and assuring the

consistency, coherency, and reliability of

intermediate results and steps as well as the final

solution and answers.

Production rules of the IF-THEN type use this type of

knowledge as well as knowledge acquisition systems.

An example of latter type is TEIRESIAS. TEIRESIAS

uses meta knowledge to transfer expertise from a human

34

expert to the knawledge base of a high—performance

program (MYCIN) in a dialog conducted in a restricted

subset of English [Davis & Lenat, 82).

(5) Advice (sometimes called heuristics) that is similar

to meta properties in intent, but that does not carry

the same strength of influence. This is the "soft"

knowledge that experts acquire from experience in

working in the domain and is rarely contained in

textbooks and papers [Barnett & Bernstein, 77].

The techniques used to construct these types of knowledge

are discussed in Chapter 3, "Techniques Used to Construct KESs".

2.5 Inference Engine

The inference engine (IE) provides central control of the

KBS and thus affects both the performance and power of the

system. The functions of an IE can be broadly divided into three

categories: knowledge use and control knowledge acquisition, and

explanation._

2.5.1 Knowledge Use and Control

An IE performs the system's problem solving operations.

This includes inference making or reasoning, and searching. An

35

IE contains procedures that combine and organize (i.e.,

manipulate).- the contents of a knowledge base. Thus, an IE acts

as a manager of a knowledge base.

A small portion of knowledge in a KBS usually resides in the

IE (for reasons of efficiency). The knowledge contained in the

IE may be general knowledge or meta knowledge (knowledge about a

knawledge base).

2.5.2 Knowledge Acquisition

Another function of the IE is to provide the mechanisms that

facilitate the acquisition of new knowledge, the modification or

refinement of existing knowledge, and deleting erroneous or

useless knowledge, and maintaining consistent representation

all of which are done in cooperation with the expert.

2.5.3 Explanation

Another important function of the IE is to provide an

explanation for its actions and its reasoning process with

respect to an interaction with the user or to a solution it

produces. In_ general, it answers questions about why some

conclusion was reached or why somm alternative was rejected.

This explanation capability of the IE depends on the contents of

the KB, information about the current problem, and prior

interactions with the user.

The explanation of the IE is related only to its past

36

activity; the system cannot explain how it might deal with a

hypothetical- case or how it will continue in solving a present

problem [Barnett & Bernstein, 77].

A KBS's ability to solve a particular problem depends on:

(1) How many paths there are to a solution.

(2) The ability of the IE to reduce the nmmber to a

minimum.

(3) The knowledge in the KB.

(4) What information is available within the problem

statemmnt.

Therefore, although the IE is in command and acts as the

driving element, the path to a solution, and the criteria for

when to accept a solution or abort a particular path are highly

dependent on the content of the KB and the problem data. That is

why researchers have found that "amassing a large amount of data

rather than sophisticated reasoning techniques is responsible for

the power of the system" [Gevarter, 83].

2.6 Interface

The interface is the cammunication port between the system

and the outside world. Based on the functions provided, the

interface of a KBS can be viewed as three different interfaces:

37

user interface, knowledge acquisition (expert) interface, and

data interface.

sub—sections.

Each one is discussed in the following

2.6.1 User Interface

The user interface provides the necessary facilities for the

user as a poser of problems and consumer of results (answers and

justifications or explanations). The user interacts with the

interface in a jargon specific to the domain of the KBS and

usually in some restricted variant of English (and sometimes via

means of a graphics or intelligent editor). Thus, the user

interface acts as a language processor. Typically, the language

processor parses and interprets user questions, commands, and

volunteered information. Conversely, the language processor

formats information generated by the system, including answers to

questions, explanations and justifications for it's behavior, and

requests for data.

Existing KBSs generally employ natural language parsers

written in INTERLISP to interpret user inputs, and use less

sophisticated techniques exploiting canned text to generate

messages to the user [Hayes—Roth, et al, 83].

2.6.2 lb& Knowledge Acquisition Interface

The knowledge acquisition (KA) interface (also known as

38

expert interface) is used by a domain expert (who has gained some

feeling for_the system) as the provider of knowledge for the KSs.

Associated with the KA interface is some means of verifying the

incoming knowledge, sometimes lindted to syntax checking, but

often including tests for coherence and consistency with prior

knowledge both in the KSs and the IE.

The knowledge acquisition process is discussed in more

detail in Section 3.5.4, "Knowledge Acquisition Process".

2.6.3 Data Interface

The data interface is simdlar to that of most other

interactive computer systems in that it incorporates:

(1) Facilities for user input of parameters, data, and

responses to the system's queries.

(2) The mechanism for locating and accessing files or data

bases.

Many of the functions necessary to provide the data

interface may be drawn directly from the computer system

enviromment within which the KBS functions.

39

2.7 Workspice Itmresen_t_ation

Workspace (also known as "blackboard") records intermediate

hypotheses, decisions, and results that a KBS manipulates during

a problem—solving activity, i.e., it is the encapsulation of the

system's current state in a problem solving activity. It

includes plan, agenda, history, and solution set.

2.7.1 Plan

A plan describes the overall or general attack the system

will pursue against the current problem, including current plans,

goals, problem states, and contexts.

2.7.2 Agenda

An agenda is a list of activities that can be done next

which generally correspond to knowledge base rules that are

relevant to some decision taken previously.

2.7.3 Histoiy

History records what has been done (and why) to bring the

system to its current state, which is used to provide

explanations.

2.7.4 Solution Sal

A solution

decisions

40

set represents the candidate hypotheses and

the system has generated thus far, along with the

dependencies that relate decisions to one another.

2.8 Separation of Jaa Components

The separation of the elements of a KBS is a necessary

condition for including a system in that category, since it

permits the changing of the domain of application by extending.,

expanding, or substituting another KB independently of the

inference engine [Barnett & Bernstein, 77].

Several researchers have illustrated the generality of their

systems by showing that they can be applied to another damain

merely by removing the rules for a given domain (i.e., knowledge

base) and substituting rules for the new one [Van Melle, 79],

[Goldberg &Weiss, 80].

For example EMYCIN is the inference engine of MYCIN, to

which several different knowledge bases have been experimentally

attached for solving different classes of problems.

Every domain, however, has its own peculiarities. Despite

the good intentions of system builders, these peculiarities

inevitably influence the design of a system. As a result, a

serious attempt to build a KBS almost always changes in all parts

of the system [Duda & Gashing, 81]. Recognizing this, many

41

researchers have recently begun developing tools or languages for

constructing- KBSs. They are discussed in Chapter 4, "KBS

Building Tools and Languages".

2.9 Summary

In sumnary, to qualify as a KBS, a system must [Barnett &

Bernstein, 77] :

(1) Be externally invoked by an expert in the domain of

applicability.

(2) Have an identifiable IE that reasons plausibly using

the KB and whose solution path is controlled by the

content of the KB and problem data.

(3) Have the potential for explaining its behavior.

(4) Have an identifiable KB that contains expert

doinain—specific

aspect of a KBS).

knowledge (this is the most critical

(5) Be organized and structured so that its KB can be

expanded and extended and the system's performance

improved.

Chapter 3

TECHNIQUES USED TO CONSTRUCT KBS s

3.1 Introduction

3.1.1 Origins mlAaS. Techniques

Since the mid-60's, there has been a major shift in AI

research. The shift was from a search for broad, general laws of

thinking toward an appreciation of specific knowledge - facts,

experiential knowledge, and how to use knowledge - as the central

issues in intelligent behavior [Feigenbaum8eIVIcCorduck, 83]. A

direct result of this shift (called "applied AI") is construction

of KBSs or expert systems. Thus, AI techniques are widely used

in KBS construction. In addition to AI, several other computer

science areas have developed techniques that are used in the

construction of KBSs. A summary of contributors and techniques

is shown in Table 3-1.

For example, language processing techniques - specifically,

parsing and understanding, question and response generation,

knowledge representation and acquisition are used for the

interface component of KBSs.

42

43

- Table 3-1 ORIGINS OF KBS TECHNIQUES

(Based on [Barnett & Bernstein, 77])

ARTIFICIAL INTELLIGENCE (AI)

Heuristic Search
Inference and Deduction
Pattern Matching
Knawledge Representation and Acquisition
System Organization

LANGUAGE PROCESSING

Parsing and Understanding
Question and Response Generation
Knowledge Representation and Acquisition

THEORY OF PROGRAMMING LANGUAGES

Formal Theory of Computational Power
Control Structures
Data Structures
System Organization
Parsing

MODELING AND SIMULATION

Representation of Knowledge
Control Structures
Calculation of Approximations

DATA BASE MANAGEMENT

Information Retrieval
Updating
File Organization

SOFTWARE ENGINEERING

System Organization
Documentation
Iterative System Development

APPLICATION AREAS

Domain-Specific Algorithms
Human Engineering

Similarly, data base mmnagemgnt techniques

44

specifically,

information_Tetrieval, updating, file organization - are used for

the knowledge base component of KBSs.

3.1.2 Choices and Restrictions

Figure 3-1 (a modification of [Barnett & Bernstein, 77] p.

4.3) illustrates the relationships between choices and

restrictions in building KBSs. The left hand side (lhs) of the

dotted line in Figure 3-1 shows domain specific items (or

choices) and the right hand side (rhs) shows available techniques

(or restrictions).

For example, in any problem domain, the expert's available

knowledge model necessarily limits (or restricts) the choices for

representing knowledge in a KB. Similarly, the expert's

reasoning principles and methods directly affect (or restrict)

methods that can be used to build an IE in a KBS.

Likewise user expectations dictate (or at least influence)

explanation facilities.

Figure 3-1 also illustrates another interesting point:

relative importance of choices in a KBS. According to Barnett &

Bernstein [Barnett & Bernstein, 77], domain considerations are

most important followed by choices of KB representation.

Everything else is of less importance. Whether this is a fact or

a practice is not certain. However, many existing KBSs confinm

this view [Hayes-Roth, et al, 83].

45

I

DOMAIN I
SPECIFIC --).1 AVAILABLE
ITEMS I TECHNIQUES

EXPERT'S
KNOWLEDGE
MODEL

EXPERT'S
REASONING
PRINCIPLES

 I'

USER
EXPECTATIONS

I

KB
REPRESENTATION

INFERENCE
ENGINE

 3* EXPLANATION
SYSTEM

WORKSPACE
REPRESENTATION

FIGURE 3-1. RESTRICTIONS ON CHOICES OF KBS METHODOLOGIES

BASED ON [BARNETT & BERSTEIN, '777

46

3.1.3 Knowledge Representation Problems

In contrast to conventional data base systems, KBSs require

a knowledge base with diverse kinds of knowledge - knowledge

about objects, about processes, and hard-to-represent common

sense knowledge about goals, motivation, causality, time,

actions, etc. Attempts to represent this breadth of knowledge

raise many questions [McCalla, 83]:

(1) How do we structure the explicit knowledge in a

knowledge base?

(2) How do we encode rules for manipulating a knowledge

base's explicit knowledge to infer knowledge contained

implicitly within the knowledge base?

(3) When do we undertake and how do we control such

inferences?

(4) How do we formally specify the semantics of a

knowledge base?

(5) Hgw do we deal with incomplete knowledge?

(6) How do we extract the knowledge of an expert to

initially "stock" the knowledge base?

47

(7) How do we automatically acquire new knowledge as time

goes on so that the knowledge base can be kept

current?

In Section 3.2, some knowledge representation techniques are

discussed, which answer somm of the abovementioned problems.

3.1.4 Kilowledge ReprYsentation Forms,

Knowledge of a domain takes many forms through a KBS (Figure

3-2). A domain expert acquires knowledge through textbooks,

journals, experience, etc. The expert's knowledge (or expertise)

will be transformed to a knowledge acquisition (KA) facility in

external form. The KA facility transforms the external

representation into physical form (data structures, etc.) and

stored in a knowledge base. This process is termed knowledge

acquisition. It involves problem definition, implementation,

refinement, and representation of facts and relations acquired

from an expert. The KA process is discussed in detail in Section

3.5.4.

When an inference engine accesses the KB, the logical form

(usually in the form of questions) is used at the interface. For

example, during a problem solving activity, the IE could ask the

KB whether a particular hypothesis is true or not.

From the IE, knowledge is transformed to advice or

explanation when it reaches the user interface.

TEXTBOOKS

JOUR

EXPERI

EXTERNAL

KNONLEDGE ACQUISITION PROCESS

EXTERNAL

(STYLIZED NATURAL
LANG1)

so,

ADVICE

EXPLANATION

FIGURE 3-2, KNOWLEDGE REPRESENTATION FORMS

BASED ON CBARNETT & BERNSTEIN, '77]

KS

4 8

49

Finally, knowledge is transformed back into external form

(in stylized- English) to the user.

Figure 3-2 summarizes the transformations of knowledge

representations throughout a KBS.

3.1.5 Knowledge Representation Unit

Selection of a representation scheme for building a KBS is

influenced by answers to questions of following type [Barr &

Feigenbaum, 81]:

(1) In what detail are objects and events of the

world represented in a system?

external

(2) And how—much of this detail is actually needed by the

reasoning mechanism (or IE)?

The answer to these questions depends on the size of a

knowledge chunk (also called grain size). A knowledge chunk is

described as "a primitive unit in the knowledge representation,

i.e., in a KB that contains the definitions of several

interrelated terms, the definition of a single term is a 'chunk'"

[Barnett & Bernstein, 77].

For example, in MYCIN, each rule of the type shown below is

considered as a modular chunk of knowledge.

IF

THEN

50

1) The infection is primmry bacteremia, and

2) The site of the culture is one of the
sterilesites, and

3) The suspected portal of entry of the organism is
the gastrointestinal tract

There is suggestive evidence (.7) that the identity of
the organism is bacteriods.

There is no formal metric to define the "right" chunk size,

yet it is a important consideration to KBS technology for three

reasons:

(I) It determines the level at which the expert can

instruct the system. If the correct chunk size is

chosen, the expert could add and modify the knowledge

base in a natural way. If, on the other hand, the

chunk size is too big or too small, the expert is

forced into an unnatural mode of expressing his

knawledge.

(2) It influences the capability of an explanation

facility, and user acceptance of a KBS, in part,

depends on its explanation facility.

(3) It determines the kinds and efficiency of reasoning

techniques to be used in the KBS. Larger chunk sizes

51

generally permit shorter lines of reasoning. For that

reason, they are more likely to lead to a correct

conclusion when inexact but plausible inference

techniques are used [Barnett & Bernstein 77].

3.1.6 Credibility Factors

Expert systems are built to deal with real world problems in

which reasoning is often judgemental and inexact or uncertain,

i.e., axiomatic knowledge is not always available. There are two

reasons for uncertainty :

(1) The expert who helps build the KBS may not be

absolutely certain about a particular aspect of the

problem domain.

(2) User may not be able to provide the necessary input

data to the system or it may not be possible to obtain

data within the time and other constraints.

In the former case, experts rate knowledge chunks as to

their credibility or uncertainty when they enter them into the

KB. In the latter case, relevant hypotheses or rules are

combined with each other and with problem—specific parameters.

The inference engine has the major responsibility in both cases.

52

Consider the following rule in MYCIN:

IF

THEN

1) The infection is primary—bacteremia, and

2) The site of the culture is one of the
sterilesites, and the

3) The suspected portal of entry of the organ is the
gastro—intestinal tract,

There is suggestive evidence (.7) that the identity of
the organism is bacteroids.

The numbers used to indicate the strength of the rule (for

example, .7 above) are called credibility factors (certainty

factors, CFs, in MWCIN terminology).

The interpretation of CFs in the above example is that the

evidence is strongly suggestive, (.7 out of 1) but not absolutely

certain.

MYCIN evaluates its rules in three steps [Nau, 83] :

(1) The CF of a conjunction of several facts is taken to

be the miniznum of the CFs of the individual facts.

(2) The CF for the conclusion produced by a rule is the CF

of its premise multiplied by the CF of the rule.

(3) The CF for a fact produced as the conclusion of one or

more rules is the maximum of the CFs produced by the

rules yielding that conclusion.

53

The following illustrates the above process.

Suppose fvfirCIN is trying to establish fact F1 and the only

rules concluding anything about F1 are :

IF C1 and C2 and C3 THEN conclude F1 (CF = .6)

IF C4 and C5 THEN conclude F1 (CF - .8)

Further suppose that conditions C1, C2, C3, C4, and C5 are

known with CFs .4, .8, .6, .7, .9, respectively. Then the

following computation produces a CF of .56 for F1.

IF C1 and C2 and C3, 1
THEN Fl (CF = .6)

CF(C1) = .4 I 1-> .6 x .4 = .24
CF(C2) = .8 1-> mdn = .4 1
CF(C3) = .6 I

-> max = .56

IF C4 and C5,
THEN F1 (CF = .8) 1

1-> .8 x .7 = .56
CF(C4) = .7 1
CF(C5) = .9 1-> min = .7 1

In the above example, we assumed that the conditions C1, C2,

C3, C4, and C5 were established by other rules.

There are at least three other meanings or interpretations

of credibility factors [Barnett & Bernstein, 77] :

(1) A Probability: the fraction of the time the chunk is

true.

54

(2) Relevance: what is the probability that use of this

chunk will ultimately lead to a completed chain of

reasoning that solves the problem at hand?

(3) Acceptability: is this a preferred method or fact to

workers in the field?

Because the mathematics for combining and evaluating eachof

the four interpretations is different, there should be an

agreement between the knowledge engineer (who builds the KBS) and

the expert (who instructs the system) as to the kind of

credibility factors to be used.

A different approach, called "fuzzy logic", in dealing with

uncertainity is described in [Zadeh, 75].

3.1.7 Procedural Versus Declarative Representation

In the area of AI, there had been a "battle" between

proponents of procedural representation of knowledge

(proceduralists) and advocates of declarative representation of

knowledge (declarativists) much similar to the battle in the area

of computer architecture between stack architecture advocates and

register architecture advocates.

In the case of AI, at least, the issue is dissolved, rather

than being resolved and one may argue that (1) there is no

strictly formal difference in the power of the two - they are

55

both "universal" - and that (2) both are necessary [Barr &

Feigenbaum,; 81]. The major issue is management of complexity.

KBSs seem to have done well in this aspect by selecting narrow

and specific problem domains.

Declarativists argue that, using reasonably modular and

independent knowledge chunks that are combined by a general

purpose reasoning mechanism, a system can produce results that

can be used for multiple purposes. The other qualities of

declarative representation clainmd by declarativists are:

flexibility, economy, completeness, certainty, and modifiability.

Proceduralists, on the other hand, argue that some human

knowledge (or intelligent behavior):

(1) Seems inherently non-modular.

(2) Is difficult to express as independent rules or facts.

(3) Has the ability to apply specialized rules to exploit

situation-dependent

chunks.

relationships among knowledge

Hence a proceduralist believes that many ad hoc

interrelationships should be made explicit and that procedures

are the best way to do this [Barnett & Bernstein, 77]. The other

qualities claimed by proceduralists are: directness, ease of

coding, and understandab lity of the reasoning process itself.

56

The following example illustrates some of the issues

involved.

A declarative representation of the statement, "All computer

science (CMPS) majors at USL are smart" could be

For all x, [USLStudent(x) & CMPSMIajor(x) --> Smart(x)]

A simple reasoning mechanism could use this single statement

for many purposes. For instance, to answer the question, "Is Lin

smart?", it would check to see whether Lin is a USL student and a

CMPS Major. The answer is "yes".

could

The same statemmnt (or fact)

be used to infer that "Joe is not a CMPS NWjor" given the

fact that "Joe is a stupid student". This example illustrates

that an explicit representation of knowledge or a fact can be

used for multiple purposes.

In a strictly procedural representation, the statement needs

to be represented differently for each usage. Each would demand

a specific form of the type "If you find a USL student, check to

see whether he/she is a CMPS Major, and if so, assert he/she is

clever".

An example to illustrate the advantages of procedural

representatibi is provided below. The example is taken from

[Kuipers, 75].

Consider a robot wtich manipulates a simple world such as a

table top of toy blocks. This can be done most naturally by

describing its manipulations as programs. The knowledge about

57

building stacks is in the form of a program to do it. Since we

specify in detail just what part will be called when, we are free

to build in assumptions about how different facts interrelate.

For example, we know that calling a program to lift a block

will not cause any changes in the relative positions of other

blocks (making the assumption that we will only call the lift

program for unencumbered blocks). In a declarative

representation, this fact must be stated in the form something

equivalent to

"If you lift a block X, and block Y is on block Z before you
start, and if X is not Y and X is not Z and X is
unencumbered, then Y is on Z when you are done".

This fact mmst be used each time we ask about Y and Z in

order to check that the relation still holds. This knowledge is

taken care of "autamatically" in the procedural representation

because we have control over when particular knowledge will be

used, and deal explicitly with the interactions between the

different operations.

3.2 Methods of Representing Knowledge Sources

3.2.1 Introduction

"Knowledge differs from information in that it is a property

of the knower, interpreted by him through an internal

58

representation system, preparing him for action" [Kochen, 74].

This highlights the importance of efficient modes of

representation. The underlying problem of understanding

knowledge is the question of how to represent large amounts of

knowledge in a fashion that permits their effective use and not

that of finding some powerful techniques of implementing

intelligent systemm [Goldstein, 77].

The two major approaches are:

(I) Pawer—based strategy.

(2) Knawledge—based strategy.

In the first approach, we try to increase the computational

power of the machine to be able to perform an efficient search

and matching process. Many researchers have realized that this

is not a constructive idea as these methods get overwhelmed by

cmmbinatorial explosion.

Instead, it would be useful to find better ways to express,

recognize and use various forms of knowledge. A person is termed

superior in intelligence because of his efficient and structured

form of representing knowledge and associating it with different

situations rather than the crude power called "thinking".

Having realized the importance of knowledge representation

for efficient KBSs, we have to choose an appropriate form.

59

Different mmthods of representing knowledge are:

1. Finite state machines.

2. Programs.

3. Predicate calculus.

4. Production rules.

5. Semantic networks.

6. Frames.

Feigenbaum [Feigenbaum, 81] has very beautifully stated that

an encyclopedia cannot be terined knowledgeable (or containing

knowledge) unless one knows how to extract useful information out

of it. The above mentioned methods are supposed to achieve the

same goal. The intelligence of any KBS will depend on how

efficiently these methods will help programs to extract and

interpret knowledge contained in the knowledge base. The

representations are broadly classified into

(1) Declarative

(2) Procedural

The names themselves suggest their meaning (see Section

3.1.7). In the first one, we "declare" bits of knowledge which

will be used by the system to "deduce" certain results. It is

highly mmchanical and helps to derive concrete results. Its main

disadvantage is that it may get drowned in a combinatorial

explosion created by itself. The other method involves

procedures for accomplishing certain tasks. Thus, depending on

60

the set of rules followed, certain conclusions can be derived

from the procedures. The problem lies in the fact that the

procedures might be unable to conclude for many instances.

Thus, if we could overcome the limdtation of declarative

methods by combining them with procedural methods,

possible to

representation.

it might be

evolve a more efficient method of knowledge

This way we could have the advantage of ease in

modification provided by declarative representation along with

the directedness of procedural representation.

It has been very rightly said by Newtll [Newell, 82] that,

Representation — Knowledge + Access.

This mmans that we should represent knowledge such that we

have a system to provide access to it, such that it helps us to

select a certain action for reaching our goal. The

representation is the structure which realizes knowledge and

reduces it to the next lower level.

At times, it has been found advantageous to combine

knowledge representations of different types [Aikins, 83]. It

should also be possible to use the same knowledge base for

multiple uses. Thus, the topic of knawledge representation

demands thorough understanding for developing efficient

intelligent systems.

Knowledge representation forms the heart of KBSs (or Expert

Systems). The strength of the system lies in the depth as wtll

as the breadth of knowledge represented in the system. Thus, it

61

is quite desirable at the time of designing a new system to

decide on -the knowledge representation technique to be adopted.

There are a few generalized techniques of knowledge

representation which could be used. Many systems designers

prefer to design their own knowledge representation technique

which might be a slight modification of one of the major

representation techniques.

It is virtually impossible to get information on all the

knowledge representation techniques. As quite a few of them are

application dependent, they may not be useful to other systems.

Thus, this discussion will concentrate on a few generalizia

knowledge representation techniques. Wherever possible, examples

are provided to help the reader in understanding these

techniques.

According to Feigenbaum [Feigenbaum, 81], at present, there

is no theory of knowledge representation. We are also not in a

position to prove that one system represents human memory better

than any other. The objective of this section is to highlight

why certain systems work efficiently for certain knowledge

representations.

3.2.2 Finit-e--State Machine

3.2.2.1 Introduction

A finite state machine (FSM) is a knowledge representation

technique of procedural type.

62

The FSM, as the name suggests, is a collection of a finite

number of states. Each state specifies actions (or computations)

that shourd be taken to reach the next state. There are two

special states in a FSM. A start state is the initial state and

an end state is where action or computation terminates.

FSMs are widely used in planning strategies, in designing

digital electrical circuits (adders, flip—flops, multipliers,

etc.), and to represent grammars tWoods, 733.

3.2.2.2 Example 1

A simple example of a finite state machine is a lamp with a

pull—chain (Figure 3-3). Pulling the chain turns the light on if

it is off and off if it is on.

Figure 3-3. Finite State Machine Representation
of a Lamp with a Pull Chain.

63

Figure 3-3 is a state-transition diagrmm of a pull-chain

lamp. Circles represent states. Transitions are represented by

arcs (or arrows). The actions (or inputs) are represented on the

arcs and reactions (or outputs) are on the right side of the

input separated with a slash. State S1 is the "lights on" state

and, by pulling the chain, a transition is made to state S2,

"lights off". Likewise, from state S2 ("off"), by pulling the

chain, transition is made to state S1 ("on").

The power, size, and reversibility (the ability to reach an

initial state from a final state) of a FSM depend on the

following four issues [Barnett & Bernstein, 77] :

(1) The set of allowable computations in a state.

(2) The set of decision rules (or predicates) that take a

FSM from one state to another state.

(3) Parameterization.

(4) The control mechanism.

3.2.2.3 Example

The Figure 3-4 illustrates some of the issues involved in a

finite state- machine representation of knowledge. The circles

represent states. Arrows (or arcs) represent transitions.

Actions are represented inside the circles. Decision rules or

predicates are represented on the arcs. Decision rules mmst be

satisfied in order to go from one state to another.

6 4

LEVEL (NUMBER} TSP.

READY LIGHT OFF

11111111111r

(1:if1:\LIGHT ON
READY

A
CUP

WAIT

FILL
FILTER
WITH

\Q2FFEE

THIRSTY

DRINK
ANOTHER

LAZY/
SATISFIED

TURN
MR.

COFFEE
ON

PUTLEVEL'
INUMBERITSP

Jo
FILTER
INSIDE

.1q2?FhE

SWITCH

COFFEE

MIRSTY REPLACE
FILTER

SELECT
DARKNESS

FIGURE 3-4, FINITE STATE REPRESENTATION OF A PLAN

TO MAKE AND DRINK COFFEE USING "MR. COFFEE"

65

For example, in Figure 3-4, the state marked "Wait" has two arcs

leaving itf One is labeled "Ready Light Off". FSMwill be in

this "Wait" state - then a FSM is said to be blocked - until the

ready light turns on. When this happens, the FSM goes to its

next state, "Drink a Cup" in our example.

We can also use parameters in a FSM. In our example, the

number of table spoons of coffee that are to be used in filling

the filter is passed as an argmment (NLMBER) on the arcs leaving

the state "Fill Filter with Coffee".

3.2.2.4 Control Mechanism

The power of a FSM, as mentioned earlier, also depends on

its control mechanism. There are two types of control:

deterministic and non-deterministic.

(a) Deterministic

In a deterministic FSM, one arc predicate controls the

transition from one state to another. This is accomplished

either by requiring that at most one arc predicate be true, or by

having a rule that selects one arc out of the set that qualifies.

In our example, the state "Drink Another Cup" has three arcs

leaving it: "Thirsty", "Empty", and "Satisfied". One cannot

drink coffee from an empty MR. COFFEE even if he is thirsty. So

there should be a selection rule which gives priority for the arc

"Empty".

66

(b) Non-Deterministic

In a nOn-deterministic FSM, it is possible for several

different arcs leaving the same state to be satisfied

simultaneously. Thus, in a non-deterministic FSM, the next state

is not completely determined by the current state and its input.

Instead, a set of next possible states is to be determined. If

any arc reaches the end state, the FSN1 will terminate normally.

An example wtich illustrates the differences between

deterministic FSIVI and non-deterministic FSM is presented below.

Figure 3-5 shows both a deterministic and non-deterministic

FW1 that recongnize symbol strings that start with one or more

"01" and ends with two consecutive ls and does not contain two

consecutive Os.

In Figure 3-5 circles represent states and the letters

inside the circles represent the state names. Thus "A" is the

start state and "E" is the final state. Arcs represent state

transitions and symbols on the arc represent the inputs (the

symbol that is scanned) that cause those transitions.

6 7

START

END

A. DETERMINISTIC

START

END

B. NON DETERMINISTIC

FIGURE 3-5, FINITE STATE RECOGNIZERS FOR {0,1}* ENDING
WITH 2 CONSECUTIVE 1S AND DOES NOT CONTAIN
TWO CONSECUTIVE US,

68

(a) Deterministic .EQ0

Supposb the input string is "010111". Starting in the state

"A", the successive states into which it is thereafter driven are

(in order) B, C, B, C, E, E. Since E is the final state, the

deterministic FSM correctly recognizes the input string "010111".

If the input is "10011", beginning in state "A", the successive

states into which it is thereafter driven are (in order) C, B, D,

D, D. Since D is not a final state, the deterministic FSM

(correctly) fails to recognize "10011".

(b) Non-Deterministic ISM

Again suppose the input string is "010111". Starting in the

state "A", one possible sequence of states into which it can be

thereafter driven are (in order) B, E, B, E, E, E. Since E is

the final state, it correctly recognizes the input string

"010111". Another possible sequence of states is B, E, E, E, E,

E, which correctly recognizes the input string.

Now suppose the input is "10011". Starting from state A,

one possible sequence of states it thereafter driven is E, E, E,

E, E. Since E is a final state, the non-deterministic FSM

incorrectly —recognizes the input string "10011". Another

possible sequence of states is E, B, D, D. Since D is not a

final state, the non-deterministic FSM (correctly) does not

recognize the input string.

In the above example, the deterministic FSM has one more

69

state than the non-deterministic FSM. There are some cases where

this facton makes a critical difference in implementing

non-deterministic control over deterministic control. However,

interpretation of a non-deterministic FSM (by an inference engine

in a KBS) is more complex.

This section on FSM is concluded by discussing the desirable

and undesirable characteristics of a FSM.

based on [Barnett & Bernstein, 77].

The discussion is

3.2.2.5 Characteristics of ESM

The desirable characteristics are:

(1) The ability to easily implement nondeterministic

control.

(2) The ability to represent and model plans of action for

which "procedural" execution inside a computer is

maaningless.

(3) Reversibility, i.e., an FSN1 may be examined to answer

such questions as what needs to occur to allow it to

end up in a particular state.

(4) New plans of action may be constructed dynamically

because an FSIIVI representation is easily manipulated.

(5) Many disciplines, both scientific and nonscientific,

represent part of their published expert knowledge in

70

a form similar to that of an FSM.

The undesirable characteristics of FSMs are:

(1) The loss of efficiency compared to compiled

procedures.

(2) The enforcement of low—level uniformity in the

representation, which can make the FSM hard to

understand (in a sense, FSMs are better at

representing strategies than tactics).

(3) The external format of an FSM representation can lose

clarity unless there is a graphic medium available for

computer input and display.

3.2.3 Using Programs to Represent Knowledge

3.2.3.1 An. Example

Procedural knowledge can be represented by programs. Figure

3-6 depicts a program representation of knowledge necessary to

adjust the volume of a stereo set. The example has two

arguments: a human agent who will perform the task, and the

desired volume of the stereo set. Much world knowledge (common

sense knowledge) is embedded in this program. For example,

71

(1) Stereos are in houses, cars, etc.

(2) You need to be close to the stereo to control the

volume

(3) Turning the knob clockwise increases the volmme

(rightmost highest or loudest) and turning counter

clockwise reduces the volume (leftmost - lowest) and

volmme can be adjusted by adjusting the knob.

(4) Before the volume can be adjusted, the stereo set must

be switched on.

(5) Relative values of loudness such as high, low, medium,

etc. are used and compared.

Besides this world knowledge, the program contains knowledge

about itself - for example,

(1) The progrmnwill not go into an infinite loop while

trying to adjust the volume, because only approximate

equality is necessary to terminate.

(2) Program "MOVE" will effectively move the agent to the

desired location, room, in our example.

(3) Program "ROTATE-KNOB" expects the agent to be in

proximity of the stereo set.

72

PROCEDURE ADJUST THE_STEREO (AGENT hunmn, DES I RED VOLUME volmme)

MOVE tAGENT, "roam");
I F DESIREDLVOLUME
THEN Knob_direction
ELSE Knob_direction
ROTATELKNOB (AGENT,
IF Knob_direction
IHEN LKLL

x <- "Half turn";

"High" or "Loud"
(- "Right";
<- "Left";
"Right", "Full_turn");
= "Left"

WHILE (CURRENT2i7OLUM M> DESIREDLVOLUE) DO
IF CUR ENT_ OLUME > DESIRED_VOLUME
THEN ROTATE_KNOB (AGENT, "Left", x);
ELSE ROTATE_KNOB (AGENT, "Right", x);
x <- x/2;

END /* WHILE */;
END /* THEN */;

Ian /* ADJUST_THE_STEREO */;

Figure 3-6. Procedural Knowledge Example

The advantage of the program representation is that all of

the knowledge is represented in a natural manner. The

disadvantages become apparent if one tries to extend this example

to stereo sets where sliding a indicator up and down adjusts the

volume.

When programs are used to represent knowledge, two options

are available : invocation mathods and control structures.

73

3.2.3.2 Invocation Wthods

The four methods of program invocation are: direct,

procedural attachment, demon, and pattern directed.

(a) Direct

Direct invocation occurs when the user (using program) knows

precisely which program is to be used and some identification

(for example, name) is used to reference that program through a

mechanism such as a subroutine call.

(b) Procedural Attachment

The basic concept of procedural attachment (PA) is that most

knowledge should be expressed declaratively (as data structures

or items) and should permit optional association of programs with

the knowledge chunks and/or the data items within the chunks.

Whenever these knowledge chunks are referenced, the program(s)

associated with them will be executed. The invoker of the

program may be unaware both what program is invoked and what

functions the invoked program is to perform. Usually, only the

program that makes the attachment has that knowledge.

(c) Demo n s

A demon is like an interrupt handler in an operating system.

They perform no action unless and until a specific situation is

encountered. They allow knowledge that pertains to highly

74

specialized or unusual situations to be left out of the main

stream, mak-ing programs more readable and easier to organize.

(d) fattern-Directed

In a system using the pattern directed (also known as

goal-directed) method, each program is named by a pattern that

describes the kind of tasks it performs.

An example of a pattern for the lADVE" goal (Figure 3-6) is

NDVE(human, object). This states that the program can plan the

sequence of actions necessary to move a human into proximity to

an object.

pattern

Another program in the same system could have

such as NOVE(objectl, object2). To move either objectl

or object2, an external agent may be required. Thus, the second

program performs a different task from that of the first program.

3.2.3.3 Control Structures

Control structures in programs can be sequential or parallel

or non-deterministic.

(a) Sequential

In a sequential method, the program itself explicitly makes

the choice of what to do next.

(b) Parallel

In a parallel method, nany subprograms can operate

simultaneously

75

and programs themselves are responsible for

synchronization mechanisms.

(c) Non—Deterministic

In a non-deterministic method, each program, when operating,

will have the same environment, and many branches will be

followed during execution.

3.2.3.4 Advantages and Disadvantages

See Section 3.1.7,

Representation"

3.2.4 Predicate Calculus

3.2.4.1 Introduction

"Procedural vs. Declarative

The predicate calculus is a formal notation system (i.e.,

formal language) that can be used to represent knowledge in AI

systems.

In the next section, a predicate calculus definition is

presented. Section 3.2.4.4, an example to illustrate the

concepts is presented and in Section 3.2.4.6, the advantages and

disadvantages of using predicate calculus to represent knowledge

in AI systems will be discussed. The definition and discussion

of the predicate calculus are based on an excellent book by

Nilsson [Nilsson, 71], and [Barnett & Bernstein, 77] (p. 76-88).

76

3.2.4.2 Predicate Calculus Definition

There are three parts to the definition of PC.

(a) Syntax specification - the grammar that defines legal

expressions in the language.

(b) Semantic specification - the rules that relate the

symbols in the language to objects in the domain.

(c) Legal operations - rules of inference that create

legal expressions from other legal expressions.

The syntactically legal expressions in the predicate

calculus are called "Well-Formed Formulae" (WFF). Through the

semantic specification rules, a AFF mmkes an assertion about the

domain. The WFF are said to have the value T or F, depending on

whether the assertions are true or false on the domain. The

legal operations are constrained in such a way that the value (T

or F) of a WFF output by a transformation can be directly

determined from the values of the WFFs input to the

transformation.

(a) Syntax

The syntax specification of the first-order predicate

calculus (higher orders will be discussed later) has two parts:

77

(1) The specification of an alphabet of symbols.

(2) the method by which legal expressions are constructed

from these symbols.

The alphabet consists of the following set of symbols:

(1) Punctuation marks: , ()

(2) Logical symbols: - => v

(3) Quantifier symbols: V 3 (The symbol V, is called the

universal quantifier and is read IALAII; the symbol3

is called the existential quantifier and is read as

there exists.)

n
(4) n—adic function letters: f (i) (i >= 1, n >= 0)

0
(The f (i) are called constant letters.

n
(5) n—adic predicate letters: p (i) (i >= 1, n

0
(The p (i) are called proposition letters.)

(6) Variables: x(i)

>. 43)

From these symbols, the definition of a WFF can be

recursively expressed:

1. Terms

a. Each constant letter is a term.

b. Each variable letter is a term.

n
c. If f (i) is a function letter and t(1) t(2)

n
t(n) (n >= 1) are terms, then f (i) (t(1), t(2), .

t(n)) is a term.

d. No other expressions are terms.

2. Atomic formulae

expressions)

(Domain-specific Boolean-valued

a. The propositional letters are atamic fonmulae.
n

b. If t(1) t(2) t(n) (n >a 1) are terms and p (i)

is a predicate letter, the expression
n

p (i) (t(1), t(2) t(n)) is an atomic formula.

c. No other expression is an atomic formula.

3. WFFs

a. An atomic formula is a WFF.

b. If A and B are WFFs, then so are

i (-A) (Read as not A)

ii (A => B) (Read as A implies B)

iii (A V B) (Read A or B (or both))

iv (A B) (Read as A and B)

c. If A is a WFF and x is a variable, then the

following are WFFs:

i (V x)A (Read as for all x, A)

ii (3 x)A (Read as, there exists x such that A)

d. No other expressions are WFF.

79

The parentheses shown in 3b and 3c are usually omitted where

no confusion will result. Some of WFFs, using abbreviated

notation, are:

-P (a,g(a,b,a))

P(a,b) -> (gy) (3 x) (Q(a,y) v S(x,y,a))
(LESS(a,b) (b,c)) -> LESS(a,c)

Some examples of expressions that are not WFFs are:

-f(a)

h(P(a))

Q(f(a), (P(b) => Q(c)))

(b) Semantics

The semantic specification rules for the predicate calculus

give a "meaning" to the WFFs by making a correspondance between

symbols in the calculus and objects in the domain. The domain,

D, is a nonempty set of objects.

are [Barnett & Bernstein, 77]:

The necessary correspondances

(1) Associated with every constant symbol in the WFF is

some particular element of D.

(2) Associated with every function letter in the WFF is an

n-adic function over (and into) D.

(3) Associated with every predicate letter in the WFF is

80

some particular n-place relation among the elements of

D. (A relation may be considered as a function whose

only values are T and F.)

(c) Interpretation (or Lnference)

The specification of domain and the above semantic

associations constitute an interpretation or a model of the WFFs.

Given a WFF and an interpretation, we can assign a value, T or F.

to each atomic formula in the WFF. These values can be used in

turn to assign a value, T or F, to the entire WFF. The process

by which a value is assigned to an atamic formula is

straightforward: If the terms of the predicate letter correspond

to elements of D that satisfy the associated relation, the value

of the atomic formula is T; otherwise, the value is F. For

example, consider the atomic formula:

P(a, f(b,c))

and the interpretation

D is the set of integers

a is the integer 2

b is the integer 4

c is the integer 6

f is the (two-argument) addition function

P is the relation greater-than

With this interpretation, the above atomic formula asserts

81

that "2 is greater than the smm of 4 and 6". In this case, the

assertion is- false and P(a, f(b,c)) has the value F. If the

interpretation is changed so that a is the integer 11, then the

value is T.

The method of assigning a value to an atamic formula

containing variables is not so simple. For example, the atomic

formula:

(Vx) P(f(x,a), x)

with the interpretation

D is the set of integers

a is the integer 1

f is the (two-argument) addition function

P is the relation greater-than

makes the assertion, "for all x in D (x any integer), x plus one

is greater than x". Hence, the atomic formula has a value only

under the "influence" of the quantifier. When more than one

quantifier is used, then the operation of each may depend upon

those further to the left. Let the interpretation be

D is the set of integers

P is the relation greater-than

Then, the WFF,

(Vx) (3y) P(y,x)

82

asserts that for all x (integer) there exists a y (integer),

which may _depend upon the chosen x, such that y is greater than

x. The value of this WFF is T. However, the WFF

(3Y) (Vx) P(y,x)

asserts that there exists a (integer) such that y is greater

than any (integer) x. The value of this WFF is F.

The values of WFFs composed using logical symbols are

derived by a set of rules that are independent of the

interpretation. If X is any WFF, then (-X) has the value T when

X has the value F, and (-X) has the value F when X has the value

T. Table 3-2 shows how the values of WFFs composed by the other

logical cOnnectives are determined from the values of the WFFs

X(1) and X(2).

Given these definitions of the logical and quantifier

symbols, it is easy to show that the symbols V, A and 3 are

redundant because they can be expressed in terms of the symbols

=> and

X(1) x(2) = -(x(1) => -x(2))

X(1) v X(2) = (-X(1) => X(2)

83

Table 3-2. DEFINITION OF THE LOGICAL CONNECTIVES

+ + + + + +

I I I I I I
1 X1 I X2 I X1 V X2 I X1 X2 I X1 -> X2 I
I I I I 1 1
+ + + + + +

I I I I I I
I T I T I T I T I T I
I I I I I I
1 F I T I T I F I T I
I I I I I 1
I T I F I T I F I F I
I I I I I I
I F I F I F I F I T I
I I I I I I
+ + + + + +

84

3.2.4.3 Some Definitions

Several terms are used to describe properties of WFFs and

the calculus itself:

Valid. AAFF that has the value of T for all interpretations is

called valid.

Decidable. A calculus is called decidable if there exists a

general mmthod for determining, for any ATF in that calculus,

whether it is valid.

Undecidable. If a calculus is not decidable, then it is

undecidable.

Satisfy. If the same interpretation makes each WFF in a set of

WFFs have the value T, then this interpretation is said to

satisfy the set of WFFs.

Unsatisfiable. If no interpretation exists such that each ATP'

simultaneously has the value T, then the set of WFFs is said to

be unsatisfiable.

Yrove. To prove W given S maans to show that W logically follows

from S.

Propositional Calculus. If the use of quantifiers and variables

is prohibited, the result is called the propositional calculus, a

decidable subset of the first—order predicate calculus.

8 5

Second-order Calculus. A second-order predicate calculus comes

about by a-llowing quantification of propositional letters in

addition to the quantifications allowed in the first-order

theory.

Omega-order Calculus. The second-order calculus can be extended

by allowing quantification of the higher-order predicate letters.

Such a calculus is called omega ordered predicate calculus.

The predicate calculus provides a natural way of expressing

declarative knowledge. A knowledge source is a collection of

WFFs and the semantic rules that relate them to the domain of

application. The included WFFs all have the value T and are

called axioms. The semantic rules are usually straightforward

and implicit, i.e., the abbreviated names used for the f(i) and

p(i) are chosen in such a way that the correspondance to the

domain is intuitive.

3.2.4.4 Am Example

The following example illustrates many of the concepts

involved in predicate calculus. This example (Figure 3-7) is

taken from [klahr, 78]. There are four axioms:

(1) Jack is the husband of Jill.

(2) Jill lives in Boston.

(3) If xl is the husband of x2, then xl and x2 are married.

(4) A married couple lives in the same place.

86

AXIGNS: (1) HUSBAND(Jack,Jill)
(2) LIVES . IN(J i 11 ,Bos ton)
(3) (Vxl) (Vx2)(HUSBAND(xl , x2)- >MARRIED(x 1 , x2))
(4) (Vx3) (Vx4)(Vx5) ((MARRIED(x3 , x4)VES . IN(, x5))- >

LIVES.IN(x3,x5))

HUSBAND(Jack,Jill) LIVES.IN(Jill,Boston)

I U1
V

HUSBAlsLD(xl ,x2)=>MARRIED(xl , x2) / U3

I U2
V V

MIARRIED(x3,x4)VES.IN(x4,x5)-LIVES.IN(x3,x5)

/
U4 /

V
LIVES.IN(Jack,Boston)

U1 U2 U4
Variable chains: Jack-->xl-->x3-->Jack

U1 U2
Ji11-->x2-->x4

U3 1
Jill

U3 U4
Boston-->x5-->Boston

Theorem: LIVES . IN(Jack,Bos ton)

Figure 3-7. Proof that Jack Lives in Boston
[Barnett & Bernstein, 77]

87

The assertion derived is "Jack lives in Boston". The proof

is shown schematically with the reasoning chain depicted by the

single arrows. Thus, the proof consists of the above axioms as

steps(1) through (4) followed by:

(5) Jack is married to Jill - because of (I) and (3).

(6) Jack lives in Boston - because of (2), (4), and (5).

When passing along the arrows, an association is established

between the variables and/or the terms on each side of the arrow.

For example, along the arrow labeled U1, xl, and x2 are

respectively associated with Jack and Jill, and along the arrow

labeled U2, xl, and x2 are respectively associated with x3 and

x4. Each such association is called a unification. The set of

all such unifications are summarized, under the heading 'Variable

chains", at the bottom of the Figure 3-7 There are three chains

in the example: (Jack xl x3), (Jill x2 x4), and (Boston x5).

The chains are formed as equivalence classes of terms and

variables so that each variable is in one and only one chain, no

variable in one chain unifies with a variable in another chain,

if the chain contains more than one element then each element

unifies with at least one other element in the chain, and the

number of chains is maximal.

In order to prove an assertion three rules must be followed:

(I) At most one term can occur in an equivalence class

all variables in the class then have this value.

88

(2) If no terms occur in a class, then there must exist an

sybject in the domain such that all variables in the

chain mmy legally assume that value.

(3) Either rule (1) or (2) must apply simultaneously to

every chain.

The exmmple shows a method of determining a value (in this

case T) of the assertion, "Jack lives in Boston." This raises

the natural question of how to deal with the problem, "4/here does

Jack live?" The method described in [Nilsson, 71] for solving

this kind of problem is based on the resolution technique for

generating proofs in the first-order predicate calculus. The

method consists of two parts:

(1) Use resolution to generate a proof for a related

problem - for example, (Vx) LIVES.AT(Jack,x); and

(2) Use the generated proof to find an appropriate

to the problem - in this case, x - Boston.

3.2.4.5 Characteristics of Predicate Calculus

answmr

One of the features of the predicate calculus is the ability

to derive new facts and beliefs using some existing INFFs. This

is a good idea, but it falls short as a means of representing

knowledge in KBSs and other AI applications. One of the

difficulties is that it is not enough simply to have the "facts

89

at hand"; one must know how to use them. Consider for example,

the inference rule OR-introduction

A => A V B

OR-introduction captures the idea that we can infer "A or B"

either by proving A or by proving B. Given constants D, E, and

F, we an use this rule to infer

D V E

D V F

as well as wonders as

D V D

D VEVE

D VEVDVE

D VEVEVEVEVE

and so on without limit.

This example (based on [Hayes-Roth, et al, 83]) shows that

the unguided application of inference rules can be explosive.

The inferences are perfectly correct; they are just not

particularly interesting. And this contributes to what is called

combinatorial explosion in large search problems (see Section

3.3.4).

Mich work has been directed toward controlling combinatorial

explosion. For example, some mechanical theorem-proving

techniques avoid nonsense applications of OR-introduction.

Methods that use many rules of inference need to incorporate

knowledge to control their use [Hayes-Roth, et al, 83]. Some

90

alternative but equally troublesome methods are suggested (see

[Nilsson, 8(1]) for example, resolution and resolution strategies.

Another characteristic of predicate calculus representations

is demonstrated by example of Figure 3-7 namely, there are two

broad categories of axioms [Barnett & Bernstein, 77]:

(1) First, there are specific facts such as "Jack is

Jill's husband" or "Jill lives in Boston".

(2) Second, there are general assertions such as 1MArried

couples live at the same place." In any actual

application domain, the number of facts will be

overwhelming. The result is impractically slow proof

procedures or the use of different methods, in the

inference engine, to handle facts and general

knowledge. More detailed discussion on this problem

can be found in [Kalhr, 78].

3.2.4.6 Advantages and Disadvantages of Predicate Calculus

Advantages:

(1) Predicate calculi are the best theoretically

understood and among the oldest techniques used for

representing knowledge in a computer.

(2) Predicate calculus is modular and reversible.

91

Disadvantages:

(1) Rtpresenting procedural knowledge in the predicate

calculus is difficult.

(2) In predicate calculus, the entire set of axiams must

be consistent. Thus, it makes it impossible to

include heuristic and possibly contradictory rules of

thwmb and other sorts of expert knowledge in the

knowledge base.

3.2.4.7 Systems That Use Predicate Calculus

Some systems that use predicate calculus languages to

represent knowledge:

- QA3 [Green, 69], a general-purpose, question-answering

system that solved simple problems in a number of

domains.

- STRIPS, the Stanford Research Institute Problem

Solver, is designed to solve planning problems faced

by a robot in rearranging objects and navigating in a

cluttered environment [Fikes, 72].

- FOL [Filman & Weyhrauch, 76] is a very flexible proof

checker for proofs stated in first-order predicate

calculus.

92

3.2.5 Production Rules AA, A, Representation of Knowledge

3.2.5.1 Introduction

Many of the highly successful KBSs use production rules as

the representation of knowledge in a knowledge base.

A production rule is a specification of conditional action

and consists of a left hand side (LHS) (also called condition or

antecedent), which describes a situation, and a right hand side

(RHS) (also called action or consequence), which describes

some thing that may legally be done in a situation described by

the LHS [Barnett & Bernstein, 77].

For example, in "If you are outdoors and it is raining, then

open umbrella", the conditions are (1) being outdoors, and (2)

rain. The action is to open an umbrella.

3.2.5.2 Production System Types

There are (at least) three types of application areas where

production rules are used as a knowledge representation mechanism

[Davis & King, 77].

(a) Psycholcilical Modeling

The attempts to simulate (or mimick) human performance

(behavior) on simple tasks are aimed at creation of programs

which embody a theory for that behavior. Using a minhmum set of

competent production rules, some psychological modeling

93

experiments (EPAM, [Barr & Feigenbaum, 81], for example) were

able to reproduce the behavior. Here the "behavior" is meant to

include all aspects of human shortcomings or successes which may

arise out of (and hence may be clues to) the "architecture" of

the human cognitive system [Davis & King, 77]. Some of these

shortcomings like oscillation and forgetting may be considered as

"mistakes" for a system intended for high performance, but are

important in a system meant to model human learning behavior

[Feigenbaum, 63].

A system with the above described behavior is described in

[Newell & Simon, 72].

(b) Formal Language Theory

In some formal language theories, production rules have been

used to write grammars for formal languages [Floyd, 61], [Evans,

64]. The important characteristic of these theories is that they

use non-determinism for control structure and rule selection.

(c) Knowledge Based Systems

These systems use production rules as a representation of

knowledge about a task or domain and attempt to build a program

which displays competent behavior in that domain. In these

(expert) systems, there is no explicit attempt to "simmlate" a

specialist's problem solving behavior; however, the system

derives power from integrating the same heuristic knowledge

94

experts use, with the same informal style of reasoning [Buchanan

& Duda, 83],"

The exmmple and the rest of the discussion in this section

is oriented towards this category.

3.2.5.3 ProductiQn System Components

A production system consists of three parts [Barr

Feigenbaum, 81]:

(a) A rule base - a collection of production rules.

(b) A workspace - a buffer like data structure.

(c) An interpreter or control mechanism - which controls

the system activity.

(a) Production Rules

Production rules are represented by some agreed upon syntax.

A set of primitives and symbols (that correspond to objects and

functions in the domain) are used to construct LHS and RHS of

production rules.

(b) Workspace

Workspace (sometimes called context, or data base or short

term:memory (SIM) buffer) is the focus of attention of production

rules. It contains the total description of the system's current

state or situation. The LHS of a rule is matched against the

contents of the workspace. If there is a match, then RHS is

95

executed ("fired") and RHS action modifies the workspace. Then a

production rule is said to be applied.

(c) Interpreter (or control mechanism)

In a production system, the interpreter has three tasks:

(1) Matching or building a Conflict-Set - the set of all

production rules whose LHSs are satisfied. If the

conflict set is empty, then processing is terminated.

(2) ronflict-Resolution - if the conflict set is not

empty, then one member of the conflict set is

selected.

(3) Action or Execution - the RHS of the above selected

production rule is executed.

The entire cycle is repeated until the termination condition

is reached.

3.2.5.4 Conflict Resolution Strategies

Several conflict resolution strategies have been used or

proposed. Among them are [Barnett & Bernstein, 77]:

(a) Rale Order: There is a complete ordering of all

production rules. The rule in the conflict set that

is highest in ordering is chosen.

(b) Rule Precedence: A precedence network determines an

ordering.

96

(c) Generality Order: The most specific rule is chosen.

(d) bats Order: Elements of the workspace are ordered.

The rule chosen is the one whose LHS references the

highest—ranking workspace element(s).

(e) Regency Order: Execute the rule in the conflict set

that was most (least) recently executed, or the rule

in the conflict set whose LHS references the most

(least) recently referenced element(s).

(f) Non—Detenministic: Execute every rule in the conflict

set as if it were the only member. Computation stops

when any path terminates.

3.2.5.5 Example

The following example (a slight modification of [Barr &

Feigenbaum, 81] page 191] illustrates some of the basics of

production system.

Consider a production system (PS) that might be used to

identify a food item, given a few hints, by a process similar to

that used in the game Twenty Questions. The workspace (or

context) contains a simple list of symbols, called "context list"

(CL). "On—CL X" means that the symbol X is currently in the

context. Figure 3-8 shows the rule base and the interpreter for

our example production system.

97

PRODUCTIONS:

P1. IF ON-CL green THEN Put 0m_CL produce
P2. IF On-CL packed in small container THEN Put-On-CL delicacy
P3. IF On-CL refrigerated OR On-CL produce THEN Put-On-CL

perishable
P4. IF On-CL weighs 15 lbs AND On-CL inexpensive AND NOT On-

CL perishable THEN Put-On-CL staple
P5. IF On-CL perishable AND On-CL weighs 15 lbs THEN Put-On-

CL turkey
P6. IF On-CL weighs 15 lbs AND On-CL produce THEN Put-On-CL

watermelon

INTERPRETER:

1. Find all productions whose condition parts are TRUE and make
them applicable.

2. If more than one production is applicable, then deactivate any
production whose action adds a duplicate symbol to the CL.

3. Execute the action of the lowest numbered (or only) applicable
production. If no productions are applicable, then quit.

4. Reset the applicability of all productions and return to S1.

Figure 3-8. Productions and Interpreter
(Barr & Feigenbaum, 81]

98

The condition part of each of the productions corresponds to

a question; one might ask in the Twenty Questions game. Is the

item green? Does it come in small container? and so on. The

action parts of the productions represent addition to our

knowledge about the unknown item.

Suppose the original knowledge about the mystery food item

is that it is green and weighs 15 lbs. The context list before

the beginning of the first cycle is

CL — (green, weighs 15 lbs.)

The cycle starts with stepl of the interpreter algorithm,

finding all the applicable productions by testing their condition

parts. Since only P1 is applicable, step2 is not necessary, and

step3 causes the action part of P1 to be executed. This adds the

symbol "produce" to the context list, representing a new fact

about the unknown food item:

CL (produce, green, weighs 15 lbs.)

Step4 ends the first cycle and brings us back to stepl —

finding all the applicable productions.

In the second cycle, productions P1, P3, and P5 are all

applicable. So in step2, we must check if any of these three

adds a duplicate symbol to the context list. P1 adds "produce",

which is a duplication, so it is eliminated. Then in step3 we

select P3 to be executed because it has a lower number than P6.

Now the CL looks like

99

CL (perishable, produce, green, weighs 15 lbs.)

In the third cycle, P1, P3, and P5 are applicable.

Checking, in step3, for redundant entries, we eliminate P1 and P3

from consideration. In step3, P5 is executed and watermelon is

added to the context. The resulting CL is

CL (watermelon, perishable, produce, green, weighs 15 lbs.)

In the last cycle, finding no non—redundant productions to

execute, the interpreter finally quits. The system's answer is

watermelon, because it is the first symbol on the context list.

3.2.5.6 Example

The next example is a PS that assists the service

representative and mechanics in an automobile repair agency (see

Section 2.2, "A Hypothetical KBS"). The example is based on

[Barnett & Bernstein, 77].

A customer comes to the agency and reports the problems (and

symptoms) to the Service Representative (SR). The SR enters the

data into the system. The system diagnoses the problem(s) and

suggests appropriate tests and repairs. The mechanic corrects

the problem.

100

The system, as was mentioned in Section 2.2, contains

(1) Knowledge base of production rules that describe

cause-and-effect relationships among the performance

characteristics and measurable attributes of an

automobile.

(2) A data base of past problems, repairs, and service

perforined on the vehicle.

Figure 3-9 shows a smnple of production rules for the

system.

RHS of each production rule has a condition, followed by

decimal number which represents the certainty or probability of

the condition (see Section 3.1.6, "Credibility Factors"). Thus,

rule R1 says that, if the tension of the fan belt is low, then

there are two possible consequences:

(1) That about one-half of the time the output of the

alternator will be low.

(2) About one-fifth of the time the engine will overheat.

The other rules, R2 - R9, are interpreted in a similar

xnanner. .

101

R1 IF fan belt tension is low
THEN alternator output will be low [.5] and engine will

overheat [.2]

R2 IF alternator output is low
THEN battery charge will be low [.7]

R3 IF battery is low
THEN car will be difficult to start [.5]

R4 IF automatic choke malfunctions OR automatic choke
needs adjustment

MEN car will be difficult to start [.8]

R5 IF battery is out of warranty
THEN battery charge may be low [.9]

R6 IF coolant is lost OR coolant system pressure cannot be
maintained

THEN engine will overheat [.7]

R7 IF there is a high resistance short AND fuse is not
blown

THEN battery charge will be low [.8]

R8 IF battery fluid is low
THEN battery will boil off fluid [.3]

R9 IF battery fluid is low
THEN battery charge will be low [.4]

Figure 3-9. PRODUCTION RULES FOR AUTOMOTIVE SYSTEM KS

102

Figure 3-10 shows a fact file, a collection of "hard data".

The information included for each measure or observation is the

agent from whom to gather data and the relative difficulty (or

cost) of gathering the data. There are four possible agents for

gathering:

(1) The custommr (Cust).

(2) The data base.

(3) Inspection by the service representative (SrvR).

(4) Wasuremmnt by the mmchanic (Mech).

The difficulty information will be combined with the CFs in

the production rules to formulate the most cost-effective and

timely plan for the needed diagnostics and repairs.

Now assmme that a customer comes to the agency with a vague

complaint that his car is hard to start. The service

representative enters this information, including appropriate

customer and vehicle identification. The system then grows a

structure similar to that shown in Figure 3-11. The boxes are

labeled with observable or mmasurable symptoms and are connected

by arrows labeled with the names of the production rule they

represent. To the far right of each of the unknown value (e.g.,

the box labels, such as battery fluid level), the associated

agent and relative difficulty are listed.

OBSERVATIONS

103

AGENT DIFFICULTY

Alternate Output Level Mech 4

Battery Charge Level Mech 3

Battery Fluid Level SrvR 2

Choke Adjustment Mech 5

Choke Function Mech 5

Coolant Level SrvR 2

Coolant System Pressure Mech 5

Difficulty to Start Cust 1

Engine Temperature Cust 1

Fan Belt Tension Mech 3

Fuse Condition SrvR 2

Short in Electric System Mech 8

Voltage Regulator Level Mech 4

Warranties Data Base 0

Figure 3-10. DATA GATHERING PROCEDURE FACT FILE

104

At this point, the system would check the data base for

information;about the battery's warranty. If nothing decisive

was found, then the customer would be asked whether the car was

running hot, and the service manager would continue to make

on-the-spot observations. Diagnostic procedures will then be

placed on an ordered schedule for the mechanic. The ordering

would be based upon :

(1) Cost effectiveness - a function of test difficulties,

estimated probability of being necessary, and ability

to eliminate other tests.

(2) Availability of resources - specialty mechanics and

test equipment.

The structure shown in Figure 3-11 was grown by an algorithm

called "back-chaining". A condition - in this case, "difficult

to start" - is taken as a given, and the goal of the system is to

find the cause(s).

The back-chaining algorithm is

(1) Find all rules that have the initial or derived

cnnditions as their consequence (in our example, Rule

R3 and R4).

(2) Call LHS (antecedents) of these rules "derived

conditions".

(3) Repeat steps (1) and (2), and terminate when no more

can be done.

105

DIFFICULT
TO START

R4

JR4

CHOKE
MALFUNCTION

R3

CHOKE OUT
OF ADJUSTMENT

R7 '

BATTERY
CHARGE LOW

R5

FUSES NOT
BLOWN

SHORT HIGH
RESISTANCE

R9

BATTERY OUT
OF WARRANTY

P2

BATTERY 111;
FLUID LOW

R8

ALTERNATOR
OUTPUT LOW

HIGH ENGINE
TEMPERATURE

VOLTAGE
REGULATOR

OUTPUT HIGH

LOW FAN
BELT TENSION

R1

FIGURE 3.11 EXAMPLE FLOW IN AUTO DIAGNOSTIC SYSTEM

AGENTS

MECH (5)-

mm-1(5)

SRVR (2)

MECH (8)
MECH(3)

DB(0)

SRVR (2)

MECH (4)

MECH (4)

MECH (3)

CUST(1)

106

Figure 3-12 shows the kind of structure grown for each kind

of rule format. In each example in the figure, C1 is the initial

or a derived condition.

Rule E1 is the simplest; al is added to the set of derived

conditions. Rule E2 states that if al is the case, then both C1

and C2 ought to follow. Thus, al is a derived condition, and C2

may or may not be considered a derived condition depending upon

the particular strategy used by the system.

Rule E3 can be written as two rules: "IF al THEN cl" and

"IF al THEN c2". Therefore, al is added to the set of derived

conditions, and c2 part is ignored.

Rule E4 states that both al and a2 must occur to support the

conclusion, cl. Therefore, both are derived conditions. If

either al or a2 is found to not hold, then the search for support

for the other can be discontinued.

Rule E5 is equivalent to the separate rules "IF al THEN cl"

and "IF a2 THEN c2". Thus, both al and a2 are added to the set

of derived conditions.

The example and the discussion is somewhat simplistic

because there might be some problems which we did not consider.

For exmmple., suppose that rule R8 (in Figure 3-9) had been

wTitten more accurately as the two rules:

E1 IF A1 THEN Cl

C1

E2 IF A1 THEN Cl AND C2

Cl

E3 IF A1 THEN Cl OR C2

E4 IF A1 AND A2 THEN Cl

A1

Al

C2

Cl A±1

C1

E5 IF A1 OR A2 THEN C1

A1

A2

C1

A1

FIGURE 3.12 BACK CHAINING

A2

107

108

R8(1) IF voltage regulator output is high

THEN the battery will overcharge.

R8(2) IF battery is overcharged

THEN battery will boil off fluid.

With these new rules, a fragment of the structure shown in

Figure 3-11 would be replaced by that shown in Figure 3-13. Now

the interesting conclusion is that a high battery charge implies

a low battery charge. This is an apparent contradiction, since

both conditions cannot hold at the same time. This kind of

situation can often arise in unpredicted ways if the system

contains many rules. The charge of the battery will oscillate

between high and low as the battery fluid is replaced and boils

off, respectively.

So, in a sense, there is a missing rule of the form that

adding fluid to a battery whose charge and fluid levels are law

will probably allow the battery to return to normal conditions.

However, to handle this kind of situation in general, it is

necessary that the control mechanism or inference engine have

some knowledge about how to proceed when faced with apparent

conflicts and contradictions. One advantage of PS is that ad hoc

knowledge may be relatively easily incorporated in the system to

handle this.

BATTERY
CHARGE
LOW

BATTERY
FLUID
LOW

,c113 (2) BATTERY
CHARGE
HIGH

109

VOLTAGE .
4ED REG. OUTPUT

FIGURE 3-13, FRAGMENT OF GRAPH STRUCTURE

HIGH

3.2.5.7 Characteristics Al: Yroduction Systems

This

110

section discussed some of the key features and

characteristics of the production systems. The discussion is

based on [Davis & King, 77] and [Barnett & Bernstein, 77].

Figure 3-14 is a summary of characteristics and

relationships. Each box represents some feature, capability, or

parameter of interest. An arrow labeled with "+" maans that the

source characteristic enhances the destination characteristic;

the opposite is true for arrows labeled with a "—".

(a) Rules as Primdtive Actions

In a production system, individual productions in the rule

base can be added, deleted, or changed independently. Each

production (or production rule) is a knowledge chunk.

(b) Indirect Limdted Interaction Channel

One of the most fundamental characteristics of a production

system is that production rules must interact indirectly through

a single channel (or workspace). Rules are constrained to see

and modify only the workspace. They cannot "call" each other.

Thus, to produce a production system with a specified behavior,

one must use an indirect approach in which each piece of code

(i.e., each rule) leaves behind the proper traces (a unique

message) to trigger the next relevant piece.

NODULARITY

INDIRECT
LIMITED
INTERACTION
CHANNEL

.-....-3,

EXTENSI-

BILITY

+

MODIFI-

ABILITY

OF BEHAVIOR

VISIBILITY

OF

BEHAVIOR

C---.

+

RULES AS

PRIMITIVE

ACTIONS

+
tiljp

111

EXPLANA-

TIONS OF

SOLUTION

mil

iirt--1

CONFLICT -

RESOLUTION

STRATEGY

CONSTRAINED

FORMAT

CONSISTENCY

CHECKING

MACHINE

READ-

ABILITY

FIGURE 3-14, CHARACTERISTICS OF PRODUCTION SYSTEMS

BASED ON [BARNETT & BERNSTEIN, '77]

112

The uniform access to the channel, along with openness of

production systems (i.e., any rule could possibly be the next to

be selected), implies that those traces (or messages) must be

constructed in the light of a potential response from any rule in

the system. This becomes more difficult to do as the number of

rules increases and is a method that quickly destroys the major

benefits of using PSs, such as independence of the knowledge

chunks.

(c) Constrained Format

The syntax of production rules is traditionally quite

restrictive. This means that:

(1) The LHS should be a simple predicate built out of

Boolean combinat ion of c ompu t at i ona 1 ly primi tive

operations.

(2) The RHS should perform conceptually simple operations

Even

on the workspace.

though some systems al low prograniner—suppl ied

predicates and procedures to be invoked by the rule's LHS and

RHS, same reštrictions are obeyed [Davis & King, 77]:

(1) As a predicate, the LHS of the rule should return only

some 'indication of the success or failure of the

match.

113

(2) The operation of LHS must only "observe" the

workspace, and not change it in the operation of

testing it.

(3) The operation of RHS is precluded from using more

complex control structures like iteration or recursion

within the the expression itself (such operations can

be constructed frommultiple rules, however).

These constraints on form make the dissection and

understanding of productions by other parts of the program a more

straightforward task, strongly enhancing the possibility of

having the program itself read, and/or modify its own procedures.

Expressability suffers, however, since the limited syntax may not

be sufficiently powerful to make expressing each piece of

knowledge an easy task. This in turn, both restricts

extensibility (adding something is difficult if it is hard to

express it), and makes modification of the system's behavior more

difficult. For example, it might not be particularly attractive

to implement a desired iteration if it requires several rules

rather than a line or two of code.

(d) Machine -Readability

Constrained format enhances machine readability and allows

the system to examine its own rules. As one example, it becomes

possible to implement automatic consistency checking. Another

capability deals with the MYCIN's approach to examining its

114

rules. This is used in several ways and produces both a more

efficient control structure and precise explanations of system

behavior [Davis, 76].

(e) Modularity

Since direct interaction among rules is constrained, it is

possible to modify rules, delete rules, and add new rules as

necessary because other rules are not directly dependent upon the

rules that are changed or added.

For systems using the goal—directed (e.g., MYCIN) approach,

rule order is usually unimportant. Insertion of a new rule is

thus simple, and can often be totally automated. This is a

distinct advantage where the rule set is large, and the problems

of system complexity are significant.

(f) Extensibility

Extensibility is a corrollary of modularity. The ability to

augment the system to perform in an expanded domain is obviously

enhanced by the modularity and low interaction among the original

rule set. On the otherhand, as was mantioned above under

"Constrained Format", extensibility may be hampered because of

format constraints if the expanded domain necessiates the use of

a more robust set of primitives.

rules. This

114

is used in several ways and produces both a mare

efficient control structure and precise explanations of system

behavior [Davis, 76].

(e) Modularity

Since direct interaction among rules is constrained, it is

possible to modify rules, delete rules, and add new rules as

necessary because other rules are not directly dependent upon the

rules that are changed or added.

For systems using the goal—directed (e.g., MWCIN) approach,

rule order is usually unimportant. Insertion of a new rule is

thus simple, and can often be totally automated. This is a

distinct advantage where the rule set is large, and the problems

of system complexity are significant.

(f) Extensi.bility

Extensibility is a corrollary of modularity. The ability to

augment the system to perform in an expanded domain is obviously

enhanced by the modularity and low interaction among the original

rule set. On the otherhand, as was mentioned above under

"Constrained Format", extensibility may be hampered because of

format constraints if the expanded domain necessiates the use of

a more robust set of primitives.

115

(g) Visibility Af. Behavior

Visibility of behavior is the ease with which the overall

behavior of a production system can be understood, either by

observing the system, or by reviewing its rule base. Even for

conceptually simple tasks, the stepwise behavior of a production

system is often rather opaque. The main factor responsible for

this is the reevaluation of the workspace at every cycle.

Because of these, any attempt to "read" a production system

requires keeping in mdnd the entire contents of the workspace,

and scanning the entire rule set at every cycle. Another factor

is the limit on rule-to-rule cammunication which inhibits the

system from focusing attention.

One method of increasing goal directed behavior in a

production system is the use of high level, strategic and

tactical rules to guide the conflict resolution strategy [Davis,

76]. An interesting discussion relating to this section can be

found in [Englemore & Nii, 77].

(h) Modifiability of Behavior

This is similar to extensibility. However, the issue is the

ability to inodify the rules so that the system focuses attention

better or more quickly. This is aided by modularity of the rule

set and hindered by the problems that arise when explicit control

and sequencing are desired in a production system.

116

(i) Explanation ALL Solution

A production system can (and usually does) explain and

validate its solutions to problems by displaying the rules it

used to derive the solutions. Because the rules are of a

situation/conclusion form and are of reasonable chunk size, all

necessary contextual information can be included in the rule

itself. Modularity of the rules also contributes to the

acceptability of the explanation because each rule is reasonably

well self—contained.

(j) Conflict Resolution Strategy

Conflict resolution strategy has an effect on the ability to

extend the system and/or modify its behavior. A RHS scan with

backward chaining seems to be the easiest to follow since it

mimics part of human reasoning behavior, while a LHS scan with a

complex conflict resolution strategy makes the system generally

more difficult to understand.

controlling

As a result, predicting and

the effects of changes in or additions to, the rule

base are directly influenced in either direction by the choice of

rule selection method.

(k) Consistency Checking

If the rule set generates inconsistent results, the control

mechanism may fail. Machine processing and simplicity of format

help implemmnt automatic consistency checking.

117

The best example of a KBS which uses production systems for

representing_knowledge is MWCIN.

3.2.6 Semant ic kle_tworks

3.2.6.1 Introduction

Semant ic networks are used in many areas: psychological

modeling of human memory, programming languages, natural language

understanding, data base management systems, etc. And as such

there is no simple set of unifying principles to apply across all

semantic network systems.

This section presents some general characteristics of

semantic networks and illustrates some basic concepts with an

example.

3.2.6.2 Definition

A semantic zetwork (or net) consists of nodes and links (or

arcs) and is a method of representing declarative knowledge. The

nodes represent entities or objects, concepts or situations in

the domain and the arcs represent the relations between them.

Semantic netWorks, because of their inherent generality and

naturalness, can be used to represent highly interrelated

information that cannot be properly represented by, for instance,

standard data (base) management techniques.

118

3.2.6.3 Examnle

Suppose we want to represent a simple sentence like "Clyde

is an elephant" in a semantic network (example is taken from

[Barr & Feigenbaum, 81]). We can represent this by creating two

nodes Clyde and Elephant and connecting them with a link, as

shown below.

+ + ISA + +
I Clyde i > I Elephant 1
+ + + +

This can also be written as

ISA(Clyde, Elephant)

It means that (Clyde, Elephant) is a member of the relation

ISA. ISA (also known as "IS", "SUPERC", "SUPERSET") is

conventionally taken to be the relation,

more-specific-example-of. Thus the above example is the

representation of the fact that Clyde is a specific example of

Elephant.

Brachman [Brachman, 83] catalogs many other interpretations

of ISA and differences between systems that, on the surface,

appear very similar.

119

3.2.6.4 faiLin910

Figure- 3-15 shows another semantic network. In Figure

3-15(a) instances of various relations using the relation names

TEMP, LOC, COLOR, SIZE, ISA, and BETWEEN are shown. The meaning

of the relations is as follows:

TEMP(a,b) means a is the temperature of b.

LOC(a,b) means a is located at b.

COLOR(a,b) means that a is the color of b.

SIZE(a,b) means a is the size of b.

BETWEEN(b,a,c) means b is between a and c.

120
RELATIONS

TEMP(WARM-BLOODED MAMMAL)

ISA(DOG,MAMMAL) ISA(CAT,MAMMAL)

ISA(FLDO,DOG) ISA(BOWSER,DOG) ISA(PUFF,CAT)

LOC(MARY'S,FIDO) LOC(FIREHOUSE,BOWSER) LOC(BOB'S,PUFF)

COLOR(TAN,FIDO) COLOR(TAN,BOWSER) COLOR(BLACK,PUFF)

SIZE(40LB,FIDO) SIZE(14LB,BOWSER) SIZE(4LB,PUFF)

BETWEEN(MARY'S,FIREHOUSE,BOB'S)

SEMANTIC NETWORK

ISA

DOG

IS/

FIDO BOWSER

MARY'S 40LB

MAMMAL

TEMP

WARM-BLOODED

TAN 14LB
FIREHOUSE 4 LB

ISA

SIZE

RULES OF INFERENCE

CAT

ISA

PUFF
/1\

BLACK

ISA(X,Y) A ISA(Y,Z) => ISA(X,Z)

SIZE(X,Y) A SIZE(U,V) A x<1.1 => SMALLER(Y,V)

ISA(X,Y) A R(U,Y) => R(U,X)

F I GURE 3,15 EOPPLE SEMANTIC NETICRK

121

The knowledge in a semantic net is given mmaning, as

demonstrate& here, by defining the relation names and other

symbols used in the instances of relations, in terms of external

entities.

Figure 3-15(b) shows a graph which represents the same

knowledge that is in the set of instances shown in Figure

3-15(a). The object names are connected by arrows labeled with

appropriate relation names. For example the instance

I SA (DOG , MAWMAL

produces the graph fragment

 + ISA +
I DOG I ----> I MAMMAL I

Representation of graph fragments for other than binary

relations is more difficult but still straightforward, for

instance, BETWEEN in Figure 3-15(b).

The internal storage representation of semantic network is

very similar to the graphical representation shown and is built

using pointers and list structures. The explicit connections

among the entities enhances the efficiency of programs that

search through the semantic network [Barnett & Bernstein, 77].

Figure 3-15(c) shows some examples of inference rules for

the semantic network. The format of the rules is well formed

formulae from the predicate calculus (see Section 3.2.4).

Inference rules can also be represented as production rules in a

122

production system. Production systems can be used to represent

some procedural knowledge that can be used to test for complex

enabling conditions. This may be difficult to express as WFFs.

In Figure 3-15(c), variables, written as small letters, are

assumed to be universally quantified.

The first rule says that (for all X, Y, and Z) if X is a Y

and Y is a Z, then X is also a Z. An example of this is: PUFF

is a CAT and CAT is a MIANMIAL; therefore, PUFF is a MAMvIAL. Thus

first rule says that ISA is transitive.

The second inference rule says that if Y and V are two

objects that "have" SIZE, and the size of Y is less than the size

of V, then Y is SMALLER than V. For example,

SIZE(4,PUFF) & SIZE(14,BOWNER) & 4 < 14 =) TMALLER(PUFF,BOWSER).

Thus second rule defines a new relation SMALLER, whose

instances do not appear explicitly in the semantic network

(Figure 3-15(b)).

The third inference rule says that, if X is a Y, and U is

R-related to Y, then U is also R-related to X. For example,

ISA(FIDO, DOG) & ISA(DO(', /MAMMAL) => ISA(FIDO, MAMMAL)

I SA (F I DO , MANMAL & TEMP (WARM_BLOODED , MAMvIAL .>

TEMP (WARMLBLOODED , F I DO)

Now let us consider the following example:

ISA(DO(', MAMvIAL) & ISA(CAT, MAMMAL) => ISA(CAT, DOG).

123

This is a valid (by the application of inference rule 3) but

erroneous inference. To avoid this kind of problem, it is

necessary to have some non-syntactic (e.g., semantic) knowledge

about the relations to which inference rules can be applied.

One solution is to einbed the inference rules in the

inference engine along with the necessary ad hoc knowledge to

avoid problems.

Another solution is to have a rule, like the third one in

the Figure 3-15(c), for each relation that is inheritable.

However, both these solutions will cause problems, if the number

of relations occurring in the semantic network is large or if the

relation set can be modified or expanded.

A more general approach, originally proposed by Simmons and

Slocum [Sinmons & Slocum, 72], is to treat relation names and

object names more uniformly. With this approach, relations can

be arguments to relations, and hence have the same properties as

other objects. For example, temperature is defined as an

inheritable property by an instance like

INHER1TABLE(TEMP)

The third inference rule in the Figure 3-15(c) can then be

rewritten as

ISA(x, y) & r(u, y) & INHERITABLE(r) => r(u, x)

One advantage of this approach is that it provides a natural

method of delineating legal values in a relation and, therefore,

124

it enhances error detection and consistency checking. Another

advantage is- improved flexibility and expandability. The major

disadvantage of this approach is its loss in run-time efficiency.

Another choice and tradeoff in a semantic network is storage

space and computation time. This arises from the decision about

which relations and which instances in the relations should be

stored explicitly and wlich should be computed via the inference

rules. The number of instances of relations can grow in a highly

non-linear way; for the example in Figure 3-15(b), the number of

instances of the relation, WALLER, grows as a quadratic function

of the number of DOGs and CATs.

3.2.6.5 General Knowledge Versus Specific Nnowledge

A technique often used with semantic networks is to make a

distinction between general knowledge and specific knowledge and

to store the two in a different manner. Referring to Figure

3-15(b) one can observe that specific knowledge lies at a low

level in the tree. This means [Barnett & Bernstein, 77]:

(1) There are few, if any, chains below it.

(2) Properties have simple values.

(3) Most objects in the same general classification have

all and only a known set of properties.

(4) There are large number of objects in a general class.

The specific knowledge in our example can be displayed as

125

ENTITY I SA S I ZE COLOR LOC

FIDO DOG 40 lb Tan Mary's
BOWSER DOG 14 lb Tan Firehouse
PUFF CAT 4 lb Black Bob's

The advantage of dividing knowledge into general and

specific is that:

(1) The specific knowledge can be gathered into a tabular

form, as shown above, by simple mechanical means.

(2) The specific knowledge (which is usually most of the

semantic net) can be kept in relatively inexpensive

secondary storage and even accessed through an

efficient, existing data management system.

(3) The general knowledge can be kept in primary memory

and, because most processing by the inference rules

occurs on other than "bottom" of the network,

efficiency can be maintained.

3.2.6.6 Advantages and Disadvantages

Advantages:

(1) Semantic nets can be used to represent definitional

and relational knowledge that is too complex for

ordinary data management techniques.

(2) Semantic networks allows inclusion of ad hoc

information.

126

Disadvantages:

(1) The main disadvantage of using semantic networks to

represent knowledge in KBSs is that the chunk size is

fairly small. This causes two problems:

(a) Instances of relations do not lend

themselves to being used in explanations of

chains of reasoning developed by the inference

rules - chains can be quite lengthy and tedious.

(b) Processing a semantic net can assume large

amounts of computer time.

(2) Another disadvantage is that many kinds of knowledge

(e.g., procedural knowledge, relative knowledge, etc.)

cannot be expressed as instances of relations in a

natural manner.

An example of KBS which uses semantic nets to represent

knowledge is PROSPECTOR [Duda, et al, 78].

127

3.2.6.7 Status AL Semantic Network Represemtation

Semantic nets are very popular knowledge representation

methods in AI applications. Object-and-link structures capture

some thing essential about symbols and pointers in symbolic

computation [Barr & Feigenbaum, 81].

But processing non trivial nets can consume large amounts of

computer timm. Besides these problems, there are more subtle

problems involving semantics of the network structures [Barr &

Feigenbaum, 81]:

- What does a node (object) really maan?

- Is there a unique way to represent an idea?

- How is the passage of time to be represented?

- How does one represent things that are not facts about

the world but rather ideas or beliefs?

- What are the rules about inheritance of properties in

networks?

Current research on network representation schemes attempts

to deal with these and similar concerns.

3.2.7 Frame's

3.2.7.1 Introduction

There is abundant psychological evidence that people use a

large, well coordinated body of knowledge from previous

128

experiences to interpret new situations in their everyday

cognitive activity [Barr & Feigenbaum, 81]. How can we represent

this type of knowledge in a computer system (program)? Many of

the techniques of AI applications (programs) are not powerful

enough to approach human performance in relation to vision,

language, and common sense.

Minsky [Minsky, 75] first proposed a theory of "frmmes" as a

nmchanism for representing knowledge in the computer. His paper

has evoked a great deal of discussion and interest in exploring

further about frames and its theory. Some comnon motivating

issues for this interest in frames are:

(1) Accommodation of both declarative and procedural

knowledge in the same representational formalism.

(2) Accommodation of mundane, ad hoc, and idiosyncratic

knowledge along with that which is more uniform and

repetitive in nature.

(3) Accommodation of partial and somewhat contradictory or

inconsistent knowledge.

(4) Ability to plausibly reason from a knowledge base with

features like the above.

Two major issues not yet dealt with within the emerging

theory of frames are explanation of system behavior and

naturalness of the knowledge—acquisition interface.

129

3.2.7.2 Frame Characteristics

Some of the desirable features of frames are given below

(Kuipers [Kuipers, 77] calls them a "wish list"). No single

frame based system has all the desirable properties and it may be

many years before the technical problems implied by such a frame

theory (like the development of large-scale organization of

knowledge, and the ability of these structures to provide

direction for active cognitive processing [Barr & Feigenbamm,

81]) can be precisely stated and solved. The following

discussion is based on [Kuipers, 77].

(a) Description

A frame provides an elaborate structure for creating and

maintaining a description of an object in a domain. And as such

a frame can be viewed as a single knowledge chunk. The

description of an object includes a number of features of that

object and the relations which hold among those features.

A frame has named slots corresponding to those definitional

characteristics (i.e., features, relations, etc.). A primdtive

element in a frame may be expanded to another frame and/or

procedural knowledge may be attached to an element when it's

internal description becomes of interest.

(b) Instantiation

This is the process by which the frame creates a description

130

from observation of an object in its domain. Features whose real

properties have not been observed are represented by default (or

assumed) values. These default values can be static or computed

in terms of the values in other slots.

(c) Yrediction ski_ ;Expectation

A frame's predicted (or expected) description can be used to

guide the collection of observations for instantiation. It also

produces the defaults which substitute for unobserved features.

(d) Justification

Different features of the frame description have different

amounts of confidence. Some are clear observations, others are

choices among a few alternatives, and others are default

assignments.

(e) Variation

A frame represents a certain (limited) domain, and hence a

range of variation for objects which belong to that domain is

limited and specified. When a feature (or set of features) of a

frame is outside the permissible range of variation in a frame,

it may cast doubt on the applicability of this frame and may

indicate to the correction mechanism that another mechanism is

called for.

131

(f) Correction

In most common cases of recognition, the identity of the

object being described is not initially known. So selecting the

proper frame to instantiate is part of the problem. The current

"best guess" frame attempts to create a correspondence between

what it expects to see and the observations actually available.

Anomalies may indicate that the current frame is not

correct, and that a different point of view is called for. The

frame can analyze the anomoly to select a more appropriate

replacement. The procedures that test and deal with unusual

conditions are called monitors.

(g) Perturbation

For mmall changes in the observer or the observed,

perturbation procedures correct the description without complete

recomputation.

(h) Transformation

In case of more significant changes, transformation

procedures propose frames suitable for the new situation. Those

experiences 1- the experiences that lead to those significant

changes are saved (by complaint procedures) and incorporated

into newer versions of the "faulty" frames when structural

revisions become possible.

132

3.2.7.3 Example 1_;_ Frame Representation

It is not possible to give a simple example that has all the

above properties of a frame. The following example (Figure 3-16,

based on [Barnett & Bernstein, 77]) is provided to illustrate

some of the concepts involved in frame based systems.

The top of the Figure 3-16(a) provides a description about a

dog. Explanation for each line is provided below (line numbers

are not part of frame definition; they are provided for

explanation purposes only).

Line 1:

Line 2:

Line 3:

Line 4:

The first line states that a dog is a mammal.

Line 2 means that there is a slot named "kind" (of

dog), that may be filled with a type of "breed".

"Breed" is itself a frame.

The color of the dog is limited to one or a combination

of the colors selected by the SUBSET.OF operator.

The FRCIVI operator is used to pick out values from other

frames and default values are indicated by underlining.

Thus the combined effect of the phrase ERCEel Color OF

Kind is to make the default value for the color of a

dog the default for his breed.

Line 5: Line 5 means that there is a slot for the number of

legs and the range is 0 to 4 with a default of four.

Line 6: Line 6 represents a slot for weight, which is a

positive integer with a default that is determined by

133

the typical size of members of the same breed.

Line 7: Tbe state of the dog is either "adult", the default, or

"puppy", if age is known to be less than one year.

Line 8: The age of dog is restricted to be a positive number

and its default value can be calculated procedurally by

"now birthday".

Line 9: The birth date of the dog is represented as a date in

this slot.

Line 10: The name of the dog is represented as a string in this

slot.

Line 11: The end of description of dog frame.

Figure 3-16(b) shows a frame for "boxer".

134

1
2
3

4

dog FRAME I SA mammal
kind breed
color SUBSET.OF {tan brown black white rust}

Egau color QE kind

5 leggedness O. . .A.
6 weight) 0 , BIM size QE kind
7 state adult OR puppy if age < 1
8 age)0, now birthday
9 birthday date
10 name string

11 END dog

(a)

1 boxer FRAME ISA breed OF dog
2 color ONE.OF {AAA brown brindle}

3 size 40...60
4 tail bobbed OR long
5 ears bobbed OR floppy

playful6 temperment
7 CQVIPLAINTS I F weight , 100 THEN ASSUME

(great dane)
8 END boxer

(b)

Figure 3-16. EXAMPLE FRAME DEFINITIONS
[Barnett & Bernstein, 77]

135

Line 1: Line 1 declares that boxer is a breed and it is a dog.

Line 2: The color of a boxer is restricted to one of the colors

tan, brown, and brindle, with a default of tan. It is

legal for this to conflict with the dog frame (Figure

3-16(a)); i.e., brindle is not mentioned in that frame.

If this breed did not have a color restriction, then

this slot would be omitted; this would have the effect

of not giving a default assignment for color in the dog

frame (in Figure 3-16(a)).

Line 3: This slot says that the size of a boxer is between 40

and 60 pounds. No default is specified. Thus when the

dog frame is applied to boxer, this default range will

be used for weight (rather than an exact value).

Line 4: This slot says that tail can be "bobbed" or "long" with

"bobbed" being the default.

Line 5: The ears can be either "bobbed" or "floppy" with

"bobbed" being the default.

Line 6: Line 6 says that tempermment is always playful.

Line 7: This is an example of a complaint and ad hoc knowledge

used to make a recommendation, namely, if you see a

giant boxer (> 1001bs.), then assmme that it might be a

Great Dane instead.

Line 8: End of description of boxer frame.

136

3.2.7.4 Example "LA Recognition Scenario

Procedures can be attached to slots to recognize (or reason)

a task. In some frame based systems, attached procedures are the

principal mechanisms for directing the reasoning process, being

activated to fill in slots or being triggered when a slot is

filled [Bobrow, 79].

Filling Slots

After a particular frame has been selected to represent the

current context or situation, the primary process in a frame

based system is often just filling in the details called for by

its slots.

Figure 3-17 shows an example use of frame in a recognition

task. The top of the figure (Figure 3-17(a)) shows some feature

values that have been detected for an object, here identified as

654.

A general matching procedure would attempt to instantiate

all frames in the system until a reasonable fit was found; in

our example, "boxer" is a reasonable match. Then the slots in

the boxer frame will be filled with the observed data. If data

is not available, default values will be used. If there is no

contradiction, procedural attachments will be used to decide the

values for the slots.

LOW-LEVEL INFORMATION

OBJECT 654

color = tan
ears = bobbed
leggedness = 4
size = 40 - 45
temperment = mean

TRIAL IDENTIFICATION

[OBJECT 654 ISA dog

kind boxer WITH [color
size
tail
ears
tempenment

color tan
leggedness 4
weight 40 - 45
state ASSUMED adult]

137

tan
40 - 45
ASSUMED bobbed
bobbed
EXCEPTIONAL
nman]

Figure 3-17. INEXACT MATCH BY A FRAME SYSTEM
[Barnett & Bernstein, 77]

138

Default values are relatively inexpensive method of filling

slots; they do not require powerful reasoning process. These

methods account for a large part of the power of frames - any new

frames interpreting the situation can make use of values

determined by prior experience, without having to recompute them.

When the needed information mmst be derived, attached procedures

can take advantage of the current context, namely, slot-specific

heuristics. In other words, general problem-solving methods can

be augmented by domain-specific knowledge about how to accomplish

specific, slot-sized goals.

In our example, after filling the color and size slots, as

information for the tail slot is not available, a bobbed tail

will be assumed (assuming there was a frame for tails).

Similarly, when it tries to fill the temperment slot, it

notes the observed feature, "mean", which is a contradiction to

the expected value "playful". Thus, it activates the complaint

mechanism which notes that this particular boxer (object 654) is

mean and it is exceptional.

If the weight of the boxer was too large, the complaint

me chani sm could (tentatively) change the identification of the

instantiation of the boxer into the one for a Great Dane. There

are two advantages to this:

(1) Rather than returning to a very general

pattern-matching activity, a candidate that is highly

likely to be right is selected next.

139

(2) The slot values for this frame can be transferred to

the new frame with little additional work.

If the match is good enough, then the frame can become more

informative. In our example, the transformation is from boxer to

boxer dog, where more information is observed, e.g., leggedness.

Also, the dog is assumed to be adult.

The above steps (prediction, correction, and gathering of

more information) continue until all of the low level information

is consumed. The belief is that the style of recognition will be

more goal directed and hence more accurate and efficient than

general techniques that depend upon regularity and uniformity of

structure.

3.3. Inference Engine

3.3.1 Primary Functions of Inference Engine

The IE provides central control of the KBS and thus affects

both the performance and power of the system. The functions of

the IE are: knowledge use and control, knowledge acquisition, and

explanation._ To do these, the IE must:

(1) Control and coordinate system activities and

resources.

(2) Plausibly reason about domain specific problems by

having access to and using the contents of the

140

knowledge base, the contents of workspace, and

knowledge and procedures embedded in the IE.

(3) Link the KB with the inference module(s).

As was mentioned in Section 2.5.1, in a KBS, the ability to

solve a problem depends on:

(1) How many paths there are to a solution.

(2) The ability of the IE to reduce the number to a

minimum.

(3) The knowledge in the KB.

(4) What information is available within the problem

statement.

Therefore, although the IE is in command and acts as the

driving element, the path to a solution and the criteria for

which to accept a solution or abort a particular path are highly

dependent on the content of the KB and the problem data.

In the next section, some terminology (definitions) to

describe inference engines is presented. This terminology is

based on [Nilsson, 81].

3.3.2 Definitions

Sound IE: A IE is sound if it produces only correct or don't

know" solutions, i.e., it does not produce incorrect solutions.

Complete A IE is complete if it can always produce a

141

solution to a posed problem when a solution exists.

Admissible IE: A IE is admissible if it always finds a

minimal-cost solution when a solution exists. The cost is taken

to mean the cost of using the solution, not necessarily the cost

of finding it.

3.3.3. Inference Engine Control Strategies

In this section, some control strategies used by IEs are

presented.

The input to an IE is usually a set of initial conditions

(or states) and goals. The IE uses the KB and one of the control

strategies to obtain the goal(s), operating within the

constraints imposed by the initial conditions.

Some of the control methods are discussed below:

3.3.3.1 Forward Chaining

This method involves applying the KB to the given conditions

to infer new conditions; continue in this manner until the goal

is satisfied.

event-driven,

This strategy is also called data-driven,

and bottom-up (see the example in Section 3.2.5).

The rules applied to a state to produce new states are called

F -rules.

3.3.3.2 2ackward

This method

142

involves applying the KB to the goal (or goal

description) to produce new subgoals; continue this manner until

constraints or primdtive conditions (known to be solvable) are

reached. Backward chaining is also known as goal-driven,

expectation driven, and top-down. The rules applied to produce

goals to produce subgoals are called B-rules.

3.3.3.3 Chain kcal Ways

This mtthod involves forward chaining from the initial

conditions and backward chaining from the goal until a common

middle term is produced, i.e., F-rules are applied to initial

state and B-rules are applied to goal states. The control

mechanism mmst, at every state, decide whether to apply an

applicable F-rule or an applicable B-rule.

3.3.3.4 Middle Term Chaining

This mtthod involves using the KB, guessing a middle term

and solving separately the problem of getting from the initial

conditions to the middle term and from the middle term to the

original goal. Continue in this manner until a solution in terms

of primitives is generated. This method is also called problem

reduction.

Figure 3-18 shows an example of first three techniques. The

problem is to transfer 4 to 20. The KB contains three rules:

143

(1) Any integer, X, can be replaced by 2X (X -> 2X).

(2) Any even integer, 2X can be replaced by X (2X -> X).

(3) Any integer, X can be replaced by 3X + 1 (X -> 3X +

Figure 3-18 shows the use of forward chaining. Start with 4

and apply the operators until 20 is produced.

Figure 3-18 shows the use of back chaining. Start with the

goal, 20, and use the inverse of the above rules and continue

until 4 is produced.

Figure 3-18 shows the use of the chain both ways technique.

First, one step of back chaining produces the nodes labeled 10

and 40. Then one step of forward chaining produces the nodes

labeled 8, 2, and 13. Finally, one more step of back chaining is

done to produce the nodes labeled 5, 3, 13, and 80. Since 13 is

in both the forward and backward grown "wave fronts", the process

can terminate; otherwise, the steps of forward and backward

chaining would continue until either a solution was found or the

system gave up because of violation of some constraints (like

computation time, for instance).

g! \\I
16 25

32 49 90 76

10

/
5 3

6

2

\\14
1 7 26

\
14 22 52 79

20 v_

810 r‘ 13

144

FORWARD CHAINING

20 80 121

I
160 26 4

40

13 30

7 13

FIGURE 3.18 fHAINING EXAMPLES

BACKARD CHAINING

CHAIN BOTH WAYS

143

Figure 3-19 shows an example of problem reduction approach.

The problem is to show that AD equals CD. To show this, the

problem can be reduced to the following subproblems CNilsson,

71]:

(1) In order to show that two line segments are equal,

show that they are corresponding elements of congruent

triangles.

(2) In order to show that two triangles are congruent,

show the equality of a side and two triangles in

corresponding positions or of an angle and two sides.

(3) In order to show that two angles are equal, show that

they are both right angles.

Of course, these problems could be further divided into

primitive form. The actual proof of this problem can be found in

[Nilsson, 713.

An example system, Gelernter's Geometry Theorem—Proving

Machine CNewell & Simon, 72], uses this technique to solve a

given problem.

GIVEN: ABD = CBD
ND IPA

MAE: ND=CD

B C

Figure 3-19. Diagram for Problem Reduction

[Nilsson, 71]

146

3.3.3.5 Directionality ILL Control Strategy

Anothei wmy of classifying IE control strategies is by its

directionality. This type of classification is typically used in

speech understanding systems where the input (waveform) is

linearly ordered. The two major types are: fixed directionality

and variable directionality.

(a) Fixed Directionality

This type of control strategy is typically described as

left-to-right or right-to-left. In the fixed directionality type

of control strategies, the input is processed in a predetermined

direction until either:

(1) A11 data have been consumed and the problem is

successfully solved or

(2) A block is reached and no further progress can be

made.

In the latter case the system reacts in a predetermined

fashion, typically backing up to a point before the block

occurred at which point an alternative option was available. At

this point, an alternative path is assumed, and processing of the

input is continued in the original direction. This technique is

iterated until either the problem is solved or no more

alternatives exist.

147

(b) Variable 'Directionality

The first problem in speech understanding systems is, given

a sentence to understand wtere to start, starting with the first

word in a sentence is not necessarily the most efficient strategy

[Barr & Feigenbamm, 81]. The fixed-direction type of strategies

work well with the precompiled network representation. The

disadvantage of this strategy is that if the first word is not

identified correctly, or is not identifiable, understanding the

rest of the sentence is retarded. In such cases variable

direction control strategy can be used.

A completely variable directionality in a system is often

called island driving. The idea is to start processing the input

at the point or points deemed to be least ambiguous or contain

the most robust clues as to their identity. The points (also

called anchor points or islands) are then grown, middle outward

until they collide or a block occurs. If a block occurs, another

set of points are determined in the unprocessed areas. Thus, by

starting in areas containing the more certain information (more

certain hypotheses), part of combinatorial explosion of

fixed-directionality strategies will be avoided because back up

will rarely occur across the islands, but only between them. A

problem with the island driving strategy, however, is that there

can be many islands and, hence, many hypotheses most of which may

not be reliable and soon have to be abondoned.

This type of strategy is used in HEARSAY, and in the SRI

148

Speech Understanding System.

(c) HybridStratezy

Another strategy, explored in HWIM ("Hear What I Mean",

developed by BBN) [Wolf 8E, Woods, 80], is a hybrid between island

driving and the left to right strategy. The problem of not being

able to understand the first word in the sentence is overcome by

trying to understand any of the first three or four words. Then

the expansion of this word is in one direction at a time: first

back to the beginning of the sentence, and then to the end. This

dramatically reduces the number of extension hypotheses that must

be considered at one time [Barr & Feigenbaum, 81].

Another way of differentiating IE strategies is via

breadth-first vs. depth-first.

3.3.3.6 Breadth-First Control Strategy

In a breadth-first system, all possible methods of

continuing are attempted in parallel. This is shown in Figure

3-18, where each (horizontal) level of the graph was generated by

a single cycle of the system. The breadth-first strategy is

described bythe following algorithm (from [Nilsson, 7I]):

(1) Put the start node on a list called OPEN. If the

start node is a goal node, a solution has been found.

(2) If OPEN is empty, exit with failure; otherwise

continue.

149

(3) Remove the first node on OPEN and put it on a list

called CLOSED; call this node n.

(4) Expand node n, generating all of its successors. If

there are no successors, go immadiately to (2).

(5) Put the successors at the end of OPEN and provide

pointers from these successors back to n.

(6) If any of the successors are goal nodes, exit with the

solution obtained by tracing back through the

pointers; otherwise go to (2).

An. Example: 8-Puzzje.

An 8-puzzle is a square tray containing eight square tiles

of equal size numbered 1 to 8. The space for the ninth tile is

vacant. A tile may be moved by sliding it vertically or

horizontally in to the empty square. The problem is to transform

one particular configuration say, that of Figure 3-20(a), into

another given tile configuration say, that of Figure 3-20(b).

+---+---+---+

1218131 1112131
+---+---+---+

I 1 1 6 1 4 I 181-141

I 7 I - I 5 1 1 7 1 6 1 5 1
+---+---+---+

a. b.

Figure 3-20. 8-Puzzle

Figure 3-21 (taken from [Nilsson, 811) shows the

breadth-first strategy applied to an 8-puzzle. The nodes are

labeled by their corresponding state description and are numbered

150

in the order in which they were expanded. The dark branches show

a solution of five moves.

3.3.3.7 Depth-First Control Strategy

In a depth first system, some path (node, state, etc.) is

selected and a single continuation is attempted, i.e., the node

is not fully expanded all at once. This path continues growing

until either the path reaches a solution or some path-length

constraint is violated. In the latter case, the path is backed

up to the deepest node at which an alternative expansion exists.

At that point, another path is generated. This process continues

until either a solution is

exhausted (Figure 3-22).

The depth _o_f_ node is defined as follows [Nilsson, 71]:

produced or the alternatives are

(1) The depth of the root node is zero.

(2) The depth of any node descendent of the root is one

plus the depth of its parent.

The following algorithm describes the depth-first control

strategy (taken fram [Nilsson, 71]):

(i) Put the start node on a list called OPEN. If it is a

goal node, a solution has been found.

(2) If OPEN is empty, exit with failure; otherwise

continue.

1

START NODE

2 8 3
1 6 4
7 - 5

2 8 3 2 8 3 2 8 31 6 4 1 - 4 1 6 4 5 7 fi 7

10 11 12

2 8 3
- 6 4
1 7 5

2 8 3
- 1 4
7 6 5

- 8 3 2 8 3 - 8 3 2 82 6 4 6 - 4 2 1 4 7 11 7 5 1 7 5 7 6 5 - 6

21 212 24 258 - 3 2 - 3 2 8 3 2 8 3 8 "3 2 82 6 4 6 8 4 6 4 - 6 4 2 1 4 7 11 7 5 1 7 5 7 5 1 - 5 5

2 - 3
1 8 4
7 6 5

13 14
3 -23
4 184
5 765

3
4

123
-84
765

2 8
1 4
7 •

15 6
23- 28-
184 143
765 765

234
18-
765

83- 863 -23 23- 28- 283, 283 283 83- 813 28 283 123 123264 2-4 684 684 643 645 674 674 214 2-4 7- 714 8-4 784175 175 175 175 175 17- -15 15- 765 765 61 65- 765 -65,

GOAL
NODE

FIGURE 3-21. THE TREE PRODUCED BY A BMADTH-FIRST SEARCH
BASED ON [NILSSON, '711

8

r- rn
•"1

(i)

3
-
5

2 8 3
1 6 -
7

1 1 1
283 2 8 3 2 8 -
145 1 - 6 1 6 3
76- 7 5 4 7 5 4

283
-16

2-3
186

283
156 21-8637 6 754 754 7-4 754

152

(3) Remove the first node fram OPEN and put it on a list

called CLOSED. Call this node n.

(4) If the depth of n equals the depth bound (maximum

depth), go to (2); otherwise continue.

(5) Expand node n generating all successors of n. Put

these (in arbitrary order) at the beginning of OPEN

and provide pointers back to n.

(6) If any of the successors are goal nodes, exit with the

solution obtained by tracing back through . the

pointers; otherwise go to (2).

An. Example: 8-Puzzle

Figure 3-23 shows the tree generated by using depth-first

strategy. The problem, like before, was to transform the

configuration shown in Figure 3-20(a) into the configuration

3-20(b).

Figure 3-23 (taken from [Nilsson, 71]) shows depth-first

control strategy applied to an 8-puzzle.

3.3.4 Methods of Implementing the Inference Engine

Most methods and techniques used to implement inference

engines are restricted by the choice of a representation

technique for the knowledge base (see Section 3.1.2, "Choices and

Restrictions"). However, a few methods (e.g., search methods)

are general enough to be used with a variety of knowledge base

representations. In this section, some search techniques are

discussed.

153

201

3209 53
13

5213

FIGURE 3-22. DEPTH-FIRST BACK CHAINING

154

3.3.4.1 Search Techniques

Search techniques used in KB and AI systems refer to a large

body of core ideas that deal with deduction, inference, planning,

common sense, and related processes. The real problemwith

search technology (or techniques) is:

(1) To find an algorithm with a specified set of

characteristics, and

(2) To ensure that that algorithm is efficient and does-

not suffer from combinatorics when handling problems

in the intended area of application. To accomplish

this, it is necessary to incorporate domain-specific

knowledge.

3.3.4.2 Search System Components

A search system consists of five major components:

(1) Select - pick the next activity to be performed from

agenda of possible next activities.

(2) Expand - perform the selected activity, which often

means enumeration of some or all of the predecessor

activities.

- 8 3
2 6 4
1 7 5

8 - 3
2 6 4
1 7 5

83- 863
264 2-4
175 175

2 8 3
1 6 4 START NODE
7 - 5

2 10

2 8 3 2 8 3 2 8 3
1 6 4 1 - 4 1 6 4
- 7 5 7 6 5 7 5 -

2 8
- 6
1 7

3
4
5

2
-
7

3
4
5

6 12

2 8 3 - 3
6 - 4 2 4
1 7 5 7 6 5

13
2 - 3 2 8 3 2 8 3 8 - 3
6 8 4 6 4 - 6 7 4 2 1 4
1 7 5 1 7 5 1 - 5 7 6 5

-23 23- 28- 283 283 283 83- 813
684 684 643 645 674 674 214 2-4
175 175 175 17- .-15, 15-,.765, 765

2 - 3
1 8 4
7 6 5

14

2 8 3
7 1 4
- 6 5

15
2 8 3
7 1 4
6 - 5

17

- 2 3
184
6 5

JL_I___
123
8 4

765

123
8-4
765,
GOAL
NODE

FIGURE 3-23. THE TREE PRODUCED BY...A DEPTH-FIRST SENRCH.

BASED ON [NILSSON) 171]

2 8 3
1 4 -
7 6 5

123
784
-65

2 3 -
1 8 4
7 6 5

(3) Evaluate

156

compute merit scores for activities

created by the expansion process.

(4) Prune - discard hopeless cases or those that appear

to have little pramise.

(5) Terminate - determine whether to continue processing

and whether the problem has been sufficiently solved.

From the above five components, it is easy to realize the

importance of knowledge base in providing accurate guidance for

each component (by incorporating domain-specific knowledge).

This could improve the system performance by orders of magnitude.

In many search methods, the selection, evaluation, and

pruning (if any) are combined into a uniform numerical technique.

The function used for this purpose is called an evaluation

function.

3.3.4.3 Evaluation Function (f)

The purpose of an evaluation function is to provide a means

for ranking those nodes (activities) that are candidates for

expansion to determine which one is most likely to be on the best

path to the goal [Nilsson, 71].

Suppose some function, f, could be used to order nodes for

expansion, then f(n) denotes the value of this function. The

evaluation function f is defined so that the more promising a

node is, the smaller is the value of f. The node selected for

expansion is one at which f is minimum.

157

Conventionally, the nodes are ordered in increasing order of

their f values. An algorithm which selects a node (from a list

of nodes called OPEN) having the smallest f value (for next

expansion) is called an ordered-search algorithm i.e., an

ordered-search algorithm selects a node for expansion at which f

is ininimum.

3.3.4.4 Ordered Search ,Algorithm

The ordered search algorithm (taken from [Barr & Feigenbaum,

81]) is given below.

(1) Put the start node s on a list, called OPEN, of

unexpanded nodes. Calculate f(s) and associate its

value with node s.

(2) If OPEN is empty, exit with failure; no solution

exists.

(3) Select from OPEN a node i at which f is minimum. If

several nodes qualify, choose a goal node if there is

one, and otherwise choose among them arbitrarily.

(4) Remove node i from OPEN and place it on a list, called

CLOSED, of expanded nodes.

(5) If i is a goal node, exit with success; a solution has

been found.

158

(6) Expand node i, creating nodes for all its successors.

For every successor node j of i:

a. Calculate f(j).

b. If j is neither in list OPEN nor in list CLOSED,

then add it to OPEN, with its f value. Attach a

pointer from j back to its predecessor i (in

order to trace back a solution path once a goal

node is found).

c. If j was already on either OPEN or CLOSED,

compare the f value just calculated for j with

the value previously associated with the node.

If the new value is lower, then:

i. Substitute it for the old value.

ii. Point j back to i instead of to its

previously found predessor.

iii. If node j was on the CLOSED list, move it

back to OPEN.

(7) Go to (2).

The way in which the algorithm works is illustrated by

considering the same 8-puzzle example.

159

AA_Example: 8-puzzle

Considbr the simple evaluation function

f(n) = g(n) + w(n)

where g(n) is the length of the path in the search tree from the

start node to node n, and w(n) counts the number of misplaced

tiles in the state description with node n. Thus the start node

I 2 1 8 1 4 1

I 1 1 6 1 4 1

I 7 1 - 1 5 1

has an f value equal to 0 + 4 = 4.

The results of applying the ordered-search algorithm to the

8-puzzle and using this evaluation function are summarized in

Figure 3-24. The value of each node is circled. The uncircled

numbers show the order in which nodes are expanded. It is

interesting to note that the same path is found here as was found

by other search methods, although the use of evaluation function

has resulted" in substantially fewer nodes being expanded.

The search results are critically dependent on the choice of

the evaluation function, f, which should discriminate sharply

between promising and unpromising nodes. If the discrimdnation

is inaccurate, however, the ordered search may miss an optimal

(6)

(5)

(6)

3

27. i

7 6 5

2 8 3
1 6 4
- 7 5

(4)

(4)

(5)

2 8 3
1 6 4
7 - 5

2 8 3
1 -
7 6 5

4

2 - 3
1 8 4
7 6 5

, _ _Z _ _ _ I
2 1 4 (7) 7 1 4 (5) 1 8 4
7 6 5 b 5 i 6 5

GOAL NODE (5)

(5)
1 2 3
- 8 4
7 6 5

1 2
8 -
7 6

(7)

START NODE

__

2 8 3
(6) 1

7
6 4
5 -

2 8 3
(6) 1

7
4 -
6 5

_
(7) 1 8 4

i 6 5

1 2 3
7 8 4
- 6 5

FIGURE 3-24, THE TREE PRODUCED BY AN ORDERED SEARCH
BASED ON CNILSSON, '71]

160

161

solution or a11 solutions. It can be proved [as in Nilsson, 71]

that the ordered search algorithm is "sound" no matter how bad

the evaluation function is.

In the next section one particular evaluation method which

can produce an optimal (mdnimum cost) solution is described. It

is called the A* algorithm.

3.3.4.5 A* = An Optimal Search Algorithm

The A* algorithm being described was proposed by Barr &

Feigenbaum [Barr & Feigenbaum, 81]. Historically, the

predecessors of A* include Dijkstra's [Dijkstra, 59] and Mbore's

[Moore, 59] algorithms. A class of algorithms similar to A*, is

used in operations research under the name of branch-and-bound

algorithms.

In As, the evaluation function, f'(x) is the cost of a

solution path constrained to go through node x; hence, its value

is to be podnimized. Further, f' is assumed to be additive in the

cost of going from one node in a path to another. Thus, if n(1)

• n(m)

path, then

(n(1) • start, n(m) = goal) is an optimal solution

m-1
f'(n(i)) = E lan(j), n(j+1)) 1(=i<=m

j=1

where K(x,y) is the cost of going from state x to state y in one

step. For any node, n, f' can be expressed as

162

f"(n) = C(start, n) + f'(n, goal)

where f'(x,y) is the minimal cost of a path (of perhaps many

steps) from x to y. Normally, the above is written as

where

f'(n) = g(n) + h(n)

g(n) = U(start, n) and

h(n) = f'(n, goal).

We desire our evaluation function f to be an estimate of f'.

Thus f can be approximated as

f(n) = g'(n) + h'(n).

Where g' is the estimation of g, and h' is the estimation of

h.

The A* algorithm is given below [Hart, et al, 68]:

(I) Mark s "open" and calculate f(s).

(2) Select the open node n whose value of f is smallest.

Resolve ties arbitrarily, but always in favor of any

node n belonging to T (T is the set of goal nodes).

(3) If n belongs to T, mark n "closed" and terminate the

algorithm.

(4) Otherwise, mark n closed and apply the successor

operator S to n. Calculate f for each successor of n

163

and mark as "open" each successor not already marked

closed. Remark as open any closed node n(i) which is

the successor of n and for which f(n(i)) is smaller

now than it was when n(i) was marked closed. Go to

(2).

It can be shown that A* is admissible and optimal [as in

Nilsson, 71]. To guarantee admissibility, a necessary condition

is that

This

h'(n) <= h(n) for all n.

A necessary condition for being optimal is that

h'(x) - h'(y) (= K(x,y).

is called the consistency condition. Without this

constraint, A* will be still be admissible but no longer optimal

[Nilsson, 71].

3.3.4.6 AND/OR Graph

The discussion in the previous sections (including

breadth-first and depth-first strategies) is related to what is

generally known as state space search. The 8-puzzle is a simple

example of state-space representation. This section discusses

search methods in relation to problem-reduction.

A generalized notation for problem reduction is called the

AND/OR graph. According to Nilsson [Nilsson, 71], an AND/OR

164

graph is constructed according to the following rules:

(1) -Each node represents either a single problem or a set

of problems to be solved. The graph contains a start

node corresponding to the original problem.

(2) A node representing a primitive problem, called a

terminal node, has no descendants.

(3) For each possible application of an operator to

problem P, transforming it to a set of subproblems,

there is a directed arc from P to a node representing

the resulting subproblem set. For example, Figur*

3-25 illustrates the reduction of P to three

different problem sets: A, B, and C.

/
/
A B C

/

D EF G H

P

G H

a. b.

Figure 3-25. An AND/OR Tree

[Barr & Feigenbaum, 813

165

(4) For each node representing a set of two or more

subproblems, there are directed arcs from the node for

the set to individual nodes for each subproblem.

Since a set of subproblems can be solved only if its

members can all be solved, the subproblem nodes are

called AND nodes. To distinguish them from OR nodes,

the arcs leading to AND-node successors of a common

parent are joined by a horizontal line.

(5) A simplification of the graph produced by rules 3 and

4 may be made in the special case where only one

application of an operator is possible for problem P

and where this operator produces a set of more than

one subproblem. As Figure 3-25 illustrates, the

intermediate OR node representing the subproblem set

may then be omitted.

A node or problem is said to be solved if one of the

following conditions holds:

(1) The node is in the set of terminal nodes (primitive

problems).

(2) The node has AND nodes as successors and all these

successors are solved.

(3) The node has OR nodes as successors and any one of

these successors is solved.

166

A node or problem is said to be unsolvable if:

(1) The node has no successors and is not in the set of

terminal nodes. That is, it is a nonprimitive problem

to which no operator can be applied.

(2) The node has AND nodes as successors and one or more

of these successors are unsolvable.

(3) The node has OR nodes as successors and all of these

successors are unsolvable.

The difference in searching an AND/OR graph and an ordinary.

state-space graph is the presence of AND. This causes many

conceptual complications to the search problem.

Definition of an Optimal Solution

A solution of an AND/OR graph is a subgraph demonstrating

that the start node is solved. The cost of a solution tree can

be defined in either of two ways [Barr & Feigenbaum, 81]:

(1) The _s_um cost of a solution tree is the sum of all arc

costs in the tree.

(2) The max cost of a solution tree is the sum of arc

costs along the most expensive path from the root to a

terminal node.

For example, if every arc in the solution tree has cost 1,

167

then the sum cost is the number of arcs in the tree; and the

maximum cost is the depth of the deepest node.

Let C(n,m) be the cost of the arc from node n to a

successor node m. Define a function h(n) by:

(1) If n is a terminal node (a primitive problem), then

h(n) = O.

(2) If n has OR successors, then h(n) is the minimum, over

all its successors m, of c(n,m) + h(m).

(3) If n has AND successors and sum costs are used, then

h(n) is the summation, over all successors m, of

c (n ,m) + h(rn) .

(4) If n has AND successors and max costs are used, then

h(n) is the maximu.m, over all successors in, of c(n,m)

+ h(m).

(5) If n is a nonterminal node with no successors, then

h(n) is infinite.

According to this definition, h(n) is finite if and only if

the problem represented by node n is solvable. For each solvable

node n, h(n) gives the cost of an optimal solution tree for the

problem represented by node n. If s is the node, then h(s) is

the cost of an optimal solution to the initial problem.

An example AND/OR tree is shown in Figure 3-26.

168

h=g

/\
A B

h g h=7

/

tl t2 t3 C
h=0 h=0 h=0 h=inf h=4

/ \
U1 t4 U2

h=inf h=0 h=inf h=2

t5
h=0

FIGURE 3-26, SUM COSTS

BASED ON [BARR FEIGENBAUM, 'SD

t6
h=0

169

3.3.5 Measures al_ Performance

Section 3.3 is concluded by briefly discussing two measures

of performance. The definitions and discussion are based on

[Nilsson, 71] and [Barr & Feigenbaum, 81].

Performance measurement for KBSs is not easy as it is for

many other types of computer systems, because run time and

dynamic memory consumption of KBSs are often highly non—linear

functions of some problem parameters. As a result it is very

difficult to determine the heuristic power of a search technique

in KBSs. However, certain measures of performance can be used in

comparing various techniques. They are: penetrance and branching

factor.

3.3.5.1 Penetrance

The penetrance, P, is defined as

P = L/T

where L is the length of the derived path from the initial state

(or node) to the goal, and T is the total number of states (or

nodes) generated while searching for a solution.

If the 4E proceeds directly to a solution without generating

any false paths or unused states, the penetrance achieves its

maximum value 1. Blind search is characterized by small values

of P. Since performance is usually nonlinear with L, the value

of P generally decreases with increasing L, and the value of P(L)

170

is estimated to characterize performance.

3.3.5.2 Branching Factor

Branching factor is more nearly independent of the length of

the optimal solution path. Its definition is based on the

assumption of a tree with the same total number of nodes, T, as

states produced by the system in solving a problem. The tree is

further assumed to be one in which:

(1) Every expanded node has B descendants, and

(2) The tree has paths of length, L, the number of

operators

problem.

Therefore,

in the solution path of the original

2 L L i
T = B + B + + B = E B

i-0

This can be written as

L+1
T = (B - 1)/(B-1)

and solved for B, the branching factor, by iteration.

By definition, B can never be less than 1. A value of B

near unity (i.e., small) corresponds to a search that is highly

focused toward the goal with very little branching in other

directions, while large values of B indicate that the system has

wasted time expanding nodes not used in the final solution or has

171

included states that have not been further expanded.

3.3.5.3 Examples

Figure 3-27 shows a graph with T = 15 nodes and a solution

path (shown by the darkened line) of length L - 3. Therefore,

the penetrance

P = L/T = 1/5.

To the right is shown a balanced tree with T= 15 and L - 3.

As can be seen fram Figure 3-27, B = 2 and one can verify that

4
T = (2 - 1)/(2-1) = 15.

This measure is useful in applications where computation

timm is a function of input length; for example, the number of

words in a sentence or input to a natural language understanding

system.

172

a .

T = 15

L = 3

P = 1/5

B = 2

b.

FIGURE 3-27. EXAMPLE MOVE GRAPH AND BALANCED TREE

173

3.4 Workspace lepresentation (or Blackboard)

3.4.1 Introduction

One of the major component in a KBS is the workspace

representation (or blackboard). A blackboard records

intermediate hypotheses, decisions, and results that a KBS

manipulates during a problem solving activity i.e., it is the

encapsulation of the system's current state in a problem solving

activity. It includes:

(1) Plan - the plan describes the overall or general-

attack the system will pursue against the current

problem (including current plans, goals, problem

states, contexts, etc).

(2) Agenda - the agenda is a list of activities that can

be done next (which generally correspond to knowledge

base rules that are relevant to some decisions taken

previously).

(3) History - the history records what has been performed

(and why) to bring the system to its current state,

which is used to provide explanations.

(4) Solution Set - a solution set represents the candidate

hypotheses and decisions the system has generated thus

far (along with the dependencies that relate decisions

174

to one another).

A simple example of a workspace representation in a

programming language system (like LISP) is a push-down stack.

The stack contains the bindings of global variables, temporary

values, and return addresses. In this type of system, the

program counter (which identifies the instruction to be executed

next) acts as the agenda mechanism. These systems, however, do

not have any explanation mechanism, which is essential to a KBS.

Every KBS uses some type of workspace for intermediate

decision representation, but only a few explicitly employ a

blackboard for the various types of functions described above.

The following subsections briefly discuss two techniques

used to represent workspaces : HEARSAY Blackboard (also known as

CMU Blackboard) and Move Graphs (or AND/OR graphs).

3.4.2 HEARSAY Blackboard

The designers of HEARSAY-II within the Carnegie-Mellon

University Speech Understanding Systems, employed a novel and

interesting way to represent a workspace called a "blackboard"

[Erman, et a1, 80]. The same technique has been used in KBSs

built for various tasks such as:

X-ray crystallography [Feigenbaum, et al, 77].

Signal interpretation [Nii & Feigenbaum, 78].

Vision [Hanson & Riseman, 78].

175

Psychological modeling [Rumelhart, 76].

The blackboard is a data structure:

(1) On which the hypotheses and their support criteria can

be stored, and

(2) Which acts as an intermediary among mmltiple knowledge

sources and the system's inference engine.

Knowledge in HEARSAY-II is organized into various knowledge

sources. The board is subdivided into 8 information levels

corresponding to intermediate representation levels of the

decoding process (phrases, words, syllables, etc.). The primary

relationships between levels is compositional: word sequences

are composed of words, words are composed of syllables, and so

on. Each hypothesis resides on the blackboard at one of the

levels and bears a defining label chosen from a set appropriate

to that level. When KSs are activated, they create and modify

these hypotheses on the blackboard, record evidential support

between levels (usually adjacent), and assign credibility

ratings.

Figure 3-28 shows levels and KSs in the HEARSAY-II system.

Arrows, labeled with KS names, show input (circled ends) and

output (pointed ends) levels.

176

Figure 3-29 shows a fragmmnt of a blackboard (a very

simplified version of one presented in [Erman, et al, 80]). As

depicted, the support is ambiguous. For example, the word ARE at

the lexical level could be supported by the existence of the

phonemes AW, ER at the phonetic level. Or the word ARE could

have been predicted from higher level considerations and then

caused the phoneme predictions. The Figure 3-29 also shows

another competing word OR. This could have resulted if the

phonemes AW, ER were ambiguously recognized as either ARE or OR.

Then, the "ARE ANY" would be in competition with "OR ANY".

Thus, the blackboard serves as an ideal structure for

representing competing hypotheses. HEARSAY-II copes with this by

getting the KSs at different levels to cooperate in the solution

process. In doing this, HEARSAY-II combines both top-down and

bottom-up processing and reasons about resource allocation with a

process called oppurtunistic scheduling. A more detailed

description of this concept can be found in [Hayes-Roth, et al,

83].

177

-LEVELS-

CONCEPMAL

PHRASAL

LEXICAL

SYLLABIC

SURFACE
PHONEMIC

PHONETIC

SEGMENTAL

PARAMETRIC

-KNOWLEDGE SOURCES -

SEMANTIC WORD HYPOTHESIZER

SYNTACTIC PARSER

SYNTACTIC WORD HYPOTHESIZER

PHONEME HYPOTHESIZER

WORD CANDIDATE GENERATOR -

PHONOLOGICAL RULE APPLIER

PHONE -PHONOME SYNCHRONIZER

PHONE SYNTHESIZER

- SEGMENT PHONE SYNCHRONIZER

PARAMETER SEGMENT SYNCHRONIZER

- SEGMENTER CLASSIFIER

FIGURE 3-28, HEARSAY II LEVELS OF REPRESENTATION

AND KNOWLEDGE SOURCE$ BASED ON [ERMAN, ET AL, V]

TIME

PHRASAL

178

 >

PHRASE

LEXICAL ARE ANY

PHONEMIC AW ER AY

FIGURE 3-29, BLACKBOARD EXAMPLE

BASED ON EERMAN, ET AL, '81]

NI

179

To summarize, a blackboard fills all the roles of a

workspace representation: agenda, plan, history, and solution

set.

(1) Plan - The blackboard is the globally visible data

structure and mmltiple levels provide the necessary

abstractions for searching a large space.

(2) AXLAgenda - When an hypothesis is placed in the

blackboard, it is to be presented to the KSs that have

the hypothesis level as their input level, and the set

of all such presentations that have not yet been

performed on the agenda.

(3) A_History - The support represented explicitly in the

blackboard is a trace of the evolution of the system's

state.

(4) Solution Set - The candidate hypotheses reside at each

level in the blackboard along with a label chosen from

a set appropriate to that level.

180

3.4.3 ASOLDI fixAmk

Figure 3-30 shows an example of an AND/OR graph. The

example is a formation of a plan to go to New York City. Each

node in the graph is subgoal of its parent node (since this is a

graph, a node may have more than one parent). The goal "go to

New York" can be satisfied by satisfying either the subgoal

"Drive a Car" or the subgoal "Fly by Plane", and is, thus, called

an OR node. The subgoal "Buy a Plane Ticket" is satisfied by

satisfying both the subgoals "Get Money", and "Select an

Airline", and, thus, is called an AND node. AND nodes in Figure.

3-30 are shown by connecting emanating edges with an mmpersand

(&). A workspace representation such as this is called an AND/OR

graph and is used in mmny systems with production rule knowledge

sources.

As shown in Figure 3-30, the node expansion (for a goal

directed graph) continues until a satisfying set of nodes have

been generated, all of which are primitive. A primitive node is

one that poses a problem that is known to be solvable without a

search by the system.

To summarize, AND/OR graphs fill the requirements for a

workspace representation:

(1) Plan: The graph presents the global data structure

and includes goals and subgoals.

GO TO NEW YORK

✓
DRIVE
A CAR

USE
YOUR CAR

US
FRIEND S CAR

PLAN
THE TRIP

GET
A MAP

BUY
GASOLINE

FLY
BY PLANE

1
BUY

PLANE TICKET

-&

181

GET MONEY SELECT AIRLINE

/
BEG BORROW

ti
STEAL

FIGURE 3-30. EXAMPLE AND/OR GRAPH

182

(2) An Agenda: The agenda is the set of expanded nodes.

(3) Ailistory: The labeled links (not shown in the Figure

3-30) give a reason for the existence of each entity.

(4) Solutign Set: Each candidate hypothesis or goal could

be represented with an AND/OR graph.

3.4.4 Blackboard Versus AND/OR Graph

By comparing the AND/OR graph with the HEARSAY—Blackboard,

one can recognize that:

(1) AND/OR graphs have a more uniform structure that can

sometimes be exploited for efficiency.

(2) The HEARSAY—Blackboard has a better structure if the

problem decomposes into levels of representation and

the system has many knowledge sources.

3.5 The Interface

3.5.1 Functions _of the Interface

The interface is the cmmmunication port between the KBS and

the outside world. Based on the functions provided, the

interface of a KBS can be viewed as three different interfaces:

183

(1) User Interface

(2) Knowledge Acquisition (Expert) Interface

(3) Data Interface.

The user interface provides the necessary facilities for the

user as a poser of problem and a consumer of results (answers and

justifications or explanations).

The expert interface is the system's port of knowledge

acquisition and is used by a domain expert as the provider of

knowledge for the knowledge sources (KSs).

The external data interface is simdlar to that of mast other

interactive computer systems, in that it incorporates:

(1) Facilities for user input of parameter, data and

responses to the system's queries.

(2) The mechanism for locating and accessing files or data

bases.

Many of the functions necessary to provide the data

interface may be drawn directly from the computer system

enviromment within wtich the KBS functions, and, thus, they are

not discussed here.

In the remainder of this section, User Interface, Expert

Interface, and Knowledge Acquisition process are discussed in

detail.

184

3.5.2 User Interface

3.5.2.1 Introduction

The user interface critically affects the acceptance of a

KBS by users of the intended domain. The users are (typically)

neither computer scientists, nor programmers. A well designed

and properly functioning user interface not only minimizes the

problems associated with learning any new system, but also, in

the long run, improves system productivity by making it possible

for the users to be more cooperative in problem solving

activities [Barnett & Bernstein, 77]. In short, a good interface-

could make the difference between a successful KBS and

unsuccessful one.

The user interacts with the interface interactively in a

jargon specific to the domain of the KBS. The advantage of

interactive usage is that the user provides only the necessary

information and could request explanations of system behavior and

results during problem solving activity.

Besides interacting with a KBS in domain specific jargon,

the user inputs the information (and the system outputs results,

explanations, etc.) in some restricted variant of English-like

natural language. Thus, the user interface acts as a natural

language processor. Since handling natural language and all of

its complexities is equivalent to solving the entire problem of

machine understanding and natural language simulation, only a

brief discussion of some techniques will be presented here.

185

3.5.2.2 User Interface Characteristias

Beside§ domain specific jargon and English-like natural

language, the user interface should possess two additional

characteristics: saft-failure and self-knowledge.

(1) Soft-Failure: A KBS should tolerate mnall or simple

errors in a user's input. For instance, if the user's

input consists of spelling mistakes, a KBS should not

only inform the user, but also guide him as to what

are acceptable responses, if not correct the errors

itself. An example of this type of spelling corrector.

is described in [Teitleman, 72].

(2) Self-Knowledge: A KBS system should be able to know

what it can and it cannot do. For example, it should

be able to answer user's questions like "Can you

handle problems about X ?" or "'What do you know about

Y?" A system with self-knowledge available has the

potential to accomodate new users in a reasonable

manner [Barnett & Bernstein, 77].

3.5.2.3 The - User Input

There are many techniques to implement the input side of the

user interface. Parsing is one of the widely used techniques.

Parsing is the process of "picking apart" the sentences that

were input to the system and determine their meaning, thus

186

providing the foundation for providing an appropriate response.

There are at least seven different strategies.

3.5.2.4 Parsing Strategies

(a) Backtracking Versus Parallel Processing

Some elemants in a natural language do not always have

unique meanings. Ambiguities like these force the parser to make

choices between nmltiple alternatives as it proceeds through a

sentence. Alternatives may be dealt with all at the same time

(called parallel processing), or one at time using a form of

backtracking — backing upto a previous choice—point in the

computation and trying again. Both these strategies require a

significant amount of bookkeeping to keep track of multiple

possibilities.

(b) Top Down Versus Bottom Up Trocessing

This is similar to forward chaining vs. backward chaining as

discussed in Section 3.3.4. A parser can operate from the set of

possible sentence structures (top down), or from the words

actually in the sentence (bottom up).

In a strictly top down approach, a parser begins by looking

at the rules for the top level goal structure (sentence, clause,

etc.); it then look up rules for the constituents of the top

level structure and progresses until a complete sentence

structure is built up.

187

In a strictly bottom up approach, a parser first looks at

the rules in the grammar to combine the words of the input

sentence into constituents of larger structures (phrases and

clauses). These structures will be recombined to show that all

input words form a legal sentence in the grammar.

(c) Choosing Bow 12_ Expand or Combine

In both strategies discussed above, it is necessary to

decide how words and constituents will be combined (bottom up) or

expanded (top down). There are two basic methods: fixed

directionality and variable directionality.

In fixed directionality, the system proceeds systematically

in one direction (normally left to right). In variable

directionality (also called island driving), the system starts

anywhere and systematically looks at neighboring chunks of

increasing size (see the discussion in Section 3.3.3.5,

"Directionality of Control Strategies").

(d) Multiple Knowledge Sources

In natural language processing systems, particularly in

speech understanding systems, another strategy is to arrange

knowledge into various levels (phonemic, lexical, syntactic,

semantic, etc.), so that the parser can use relevant sets of

facts fram a variety of knowledge sources (see Section 3.4.2).

3.5.2.5 Parsing Systems

Various

188

natural language processing systems deal with the

above seven design issues in different ways. A few selected

systems are discussed within this section.

(a) Template Matching

ELIZA [Weizenbaum, 66] is a system of this type. ELIZA

(humorously) simulates a Rogerian psychiatrist. Inputs are

processed against a series of predefined templates binding the

variables of the template to corresponding pieces of the input

string. Inputs are matched to patterns like

$1 x(i) IIS/ARE] NOT $2

where $1 matches any string of words and x(i) matches any single

word. Responses are built up by giving corresponding output

patterns such as

WIAT IF x(i) WERE $(2) ?

Given the input "Today's temperature is not hot", the system

could produce the response, "What if temperature were hot?" This

is accomplished by matching $1 to "Today's", x(1) to

"temperature", and $2 to "hot".

ELIZA and other systenm (like SIR and STUDENT) using this

kind of matching techniques were successful as long as the domain

and style of dialog is sufficiently constrained and the system's

lsq

designer could incorporate appropriate templates. However, the

method was inextensible, and template matching was soon abandoned

in favor of more sophisticated techniques [Barr & Feigenbaum,

81].

(b) Transition Networks

Perhaps the best known and widely used technique for parsing

is the augmented transition network (ATN). ATNs were first

developed by Woods [Woods, 73]. The concept of an ATN evolved

from that of a finite state transition diagram, with the addition

of tests and "side effect" actions to each arc.

Figure 3-31 shows a finite state transition diagram (FSTD).

Boxes with S and E represent the initial and final states,

respectively. The FSTD accepts any phrase that begins with

"the", and ends with a noun and has an arbitrary number of

adjectives in between. For example the FSTD shown in the Figure

3-31 accepts the input phrase "the pretty picture".

<ADJECTIVE'

<NOUN'

//'

Figure 3-31. A Finite State Transition Diagram

190

(i) Recursive Transition Networks

Grammars like the ones shown in the Figure 3-31 are

inadequate for dealing with the complexity of natural language

representation. To increase the power of recognition, FSTD can

be extended in a natural way to include recursion mechanisms.

These extended FSTDs are called recursive transition networks

(RTNS).

Figure 3-32 shows an RTN (taken from [Barr & Feigenbaum,

81]). In this figure, NP denotes a noun phrase; PP a

prepositional phrase; det, a determiner; prep, a preposition;

and adj, an adjective. If the input string is "The little boy in

the swimsuit kicked the red ball", the above network would parse

it into the following phrases:

NP: The little boy in the swimsuit

PP: in the swimsuit

NP: the swlmsuit

Verb: kicked

NP: the red ball

In Figure 3-32, one can notice that any subnetwork of an RTN

may call any other subnetwork, including itself.

notice

One can also

that an RTN may be non-deterministic in nature; that is,

there may be more than one possible arc to be followed at a given

point in a parse. These alternatives can be handled either by

parallel processing or by backtracking, as discussed in Section

3.5.2.3.

S:

NP:

PP:

c NP s'\\ <VERB> NP

FIGURE 3-32, A RECURSIVE TRANSITION NETWORK

BASED ON [BARR & FEIGENBAUM, '81]

PP

191

192

(ii) Amgmented Transition Networks

An ATN is an RTN that has been extended in three ways:

(1) A set of registers has been added; these can be used

to store information, such as partially formed

derivation trees (like the two shown in the Figure

3-32), between jumps to different networks.

(2) Arcs, aside from being labeled by word classes or

syntactic constructs, can have arbitrary tests

associated with them that mmst be satisfied before the

arc is taken. This makes it possible to enforce such

constraints as verb agreement with the subject: for

example, accept "he goes" but not "he go".

(3) Certain actions may be "attached" to an arc, to be

executed whenever it is taken (usually to modify the

data structure returned).

ATNs have been successfully used in question answering

systems (LUNAR) [Woods, 73b], text generation systems (SHRDLU)

[Winograd, 72], and speech understanding systems (HWIM) [Wolf &

Woods, 80].

One limitation of the ATN approach is that the heavy

dependence on syntax restricts the ability to handle

ungrammatical (although meaningful) utterences.

193

(c) Semantic Grammar Parsers

There - is another class of methods for understanding natural

language which do not use any explicit syntax, but rather depend

on a semantic abstraction of the problem domain. For instance,

such a semantic grammar for a system that talks about airline

reservations could have grammatical classes like (DESTINATION>,

<FLIGHT>, (FLIGHT-TEME>, and so on. This abstraction of concepts

along with knowledge of English key words (e.g., of) forms a

parser. This kind of technology has the advantage of being

efficient and easy to use in a variety of domains. It works well

as long as the domain is reasonably bounded (like a front end to

a KBS) but would not be extensible to nwre unrestricted areas.

The LIFER [Hendrix, 77] and SOPHIE [Brown, et al, 83]

systems use semantic grammar based parsers.

3.5.2.6 Output _Lull& User

The other half of the user interface is responsible for

output generation. This part is responsible for (a) accepting

the input from the user, (b) providing explanations and results

during a problem solving activity, and (c) answering questions

about the system itself. Of all these tasks, providing

explanations is the most difficult. This is because:

(1) The explanation must be in terms of the knowledge

chunks, problem parameters, and inference rules that

194

were used to derive the results;

(2) The internal representation mmst be translated to a

format suited for human understanding.

As was discussed in Section 3.1.5, the ability of a KBS to

provide good explanations depend on the chunk size. If the

knowledge chunks used are too small, the explanation is laborious

and mmy not be satisfactory; on the other hand, if the chunks are

too large the explanation mechanism mmy be unnatural to the user.

Similarly, the ability to provide good explanations depends on

the selection of relevant or crucial inference rules for solving

the problem at hand (unless asked for additional details, in

which case the system should respond appropriately).

3.5.2.7 Methods of Providing Explanations

(a) Workspace Representation

As was discussed in Section 3.4, a workspace representation

offers a straightforward method for providing explanation. A

workspace representation stores the history of the problem

solving activity. The elements in a workspace representation are

associated with the rule of inference and what rule was applied

on other workspace elements, knowledge chunks, confidence

factors, etc.

The explanation mechanism can start from the element(s) of

the workspace representing the problem solution and pick out the

195

sequence of events that moved the system from problem definition

to solution. The advantage of this approach is that the

explanation mechanism could use all the useful information stored

in a workspace including why a particular solution was selected

and why others were rejected. The disadvantage is that most of

the information nay never be used.

(b) Using Knowledge Source(s)

In this method, the KS determines the most relevant

information for an explanation and a knowledge chunk can

optionally have an explanation scheme. During a problem solving.

activity, if a knowledge chunk is used, the scheme (associated

with that chunk) is instantiated in its local environment to

produce an explanation. The advantages of this approach are:

(1) High-quality explanations can be produced because it

is possible

account.

to take idiosyncratic situations into

(2) The explanation mechanism can be used for other

purposes, for example, part of the complaint

department for a frame (see Section 3.2.7 "Frmmes").

The disadvantage of this method is that the expert who

provides knawledge to the system most consider the method and

necessity of explaining each knowledge chunk.

196

(c) Re-solve the Piroblem

In this method, a problem is solved without keeping a

history in the workspace. If the user asks for an explanation,

the method must re-solve the problem in a careful mode i.e., the

explanation mechanism carefully watches the inference engine

during its re-solving activity and selects the events that are of

likely interest. This is done by attaching a set of special

demons (see Section 3.2.3) that are triggered when special

situations occur. At these points, the explanation mechanism can

interrupt normal processing to perform the necessary data

collection.

The advantage of this method is a possible gain of

efficiency if explanations are rarely requested. The

disadvantage of this method is the inefficiency introduced into

the inference engine so that demon-like execution could occur.

3.5.3 Expert Interface

3.5.3.1 Introduction

Expert interface is used by a domain expert, the provider of

knowledge for a knowledge base and the system implementors (or

knowledge engineers) who are responsible for building the initial

knowledge base (this interface is also called the knowledge

acquisition interface). Because of this, one can assume that the

user of the expert interface has some knowledge and awareness of

the structure and functions of the KBS. This, of course, does

197

not imply that the expert is a programmer; rather it means that

he basically knows how knowledge is represented (for example, by

IF—THEN production rules) or how uncertainty of knowledge is

handled (for example, by certainty factors).

3.5.3.2 Exvert Interface Tasks

The expert interface (or knowledge acquisition interface)

has three major tasks [Barnett & Bernstein, 77]:

(1) Accepting knowledge in external format and translating

it into internal format.

(2) Validating the consistency of new and old knowledge.

(3) Storing the knowledge into the KB.

This three step process is called compilation.

The first task is usually handled by using a part of the

input mechanism from the user interface which can handle

restricted natural language.

The second task is a more difficult one. This involves

validation of consistency, and checking for redundancy, a task

complicated by the presence of confidence (or credibility)

factors.

Redundancy can be checked by proving that new knowledge can

be derived from the existing knowledge base. Inconsistency can

be checked by adding the new knowledge to the old knowledge and

proving something that is patently false, say A & -A; if there is

198

no inconsistency, the proof will fail; otherwise, the proof will

succeed. For more detailed accounts of the problems of

maintaining consistency, see [McDermott, 74].

The third task, storing the new knowledge into the KB is

called accommodation. This task becomes more difficult if a

system has several knowledge sources and fact files in the KB.

Storing is a very complex process. This is because the

internal (physical) representation is usually a structure with

links between chunks, and the acquisition mmchanimm mmst insert

the new chunk into this complex network.

For example, in MYCIN, each production rule that concludes-

something about feature F is linked to every rule that tests F in

its antecedent (left hand side). Thus, the insertion (as well as

deletion and modification) of knowledge chunks is a complex

operation that involves many things such as confidence factors,

conflict resolution strategies, existing knowledge base contents,

etc.

In the next section, the knowledge acquistion process, which

is a major bottleneck in developing KBSs, is described.

3.5.4 Enawipdge Acquisition (KA) frocess

3.5.4.1 Introduction

The stages involved in the KA process can be characterized

as problem identification, conceptualization, formalization,

199

implementation, and testing, as shown in Figure 3-33. In

reality, KA may not be as neat and well defined as the figure

suggests.

3.5.4.2 Yroblem Identification

This stage is further divided and discussed below.

(a) Participant Identification And Roles

The first thing that should be done before the KA process

can begin is the selection of participants, and definition of

their roles. This could mean the selection of a domain expert

and a single knowledge engineer. The KA process can also include

other participants: multiple domain experts, multiple knowledge

engineers, and even interdisciplinary experts.

(b) Problem Identification

The objective during this phase is to characterize the

problem and its supporting knowledge structures so that the

development of the KB can begin. Many iterations may be needed

during this phase because a knowledge engineer and/or domain

expert may find that the initial problem considered is too large

or unwieldy for the resources available. At the end of this

phase, both the knowledge engineer and the domain expert must

arrive at a final, informal description they can agree on for the

problem identification.

REFORMULAT I ONS

REDES I GNS

REF I NEMENTS

I DENT I FY F I ND DES I GN FORMULATE VAL I DME

PROBLEM CONCEPTS TO STRUCTURE RULES TO RULES THAT

CFIARACTER - REQU I RE): REPRESENT CON- TO ORGAN I ZE STRUC- EMBODY RULES ORGAN I ZE

ISTICS
MENTS KNCWLEDGE CEPTS KNOWLEDGE

TURE KNOWLEDGE KNOWLEDGE

I DENT I F I CAT I ON CONCEPTUALI ZAT ION FORMALI ZAT I ON IMPLEMENTAT I ON TEST I NG

F I GURE 3-33. STAGES OF KNCWLEDGE ACQUISITIOK

BASED ON [HAYES-ROTH, ET AL, '831

201

(c) Resource Idemtification

During this phase, the knowledge engineer and domain expert

must use various sources to obtain knowledge relevant to building

the KBS. For the domain expert, these include textbooks,

journals, past problem solving experience, etc. For the

knowledge engineer the sources include experience on analogous

problems and knowledge about methods, representations, and tools

for building KBSs.

3.5.4.3 Conceptualization Stage

During this stage, key concepts and relations (that were

mentioned during the identification stage) are made explicit.

The knowledge engineer represents these concepts and relations in

a diagram that serves as a base for the prototype system. Some

of the questions that need to be answered before proceeding with

the conceptualization process are:

(1) What data types are available?

(2) What is given and what is inferred?

(3) How are the objects in the domain related?

(4) Can you diagram a hierarchy and label causal

relations, set inclusion, part or whole relations,

etc.? What does it look like?

(5) Can you identify and separate the knowledge needed for

solving a problem from the knowledge used to justify a

solution?

202

This stage also involves repeated interactions between the

knowledge engineer and the damain expert.

3.5.4.4 Formalization Stage

This stage involves mapping the key concepts, subproblems,

and information flow characteristics isolated during

conceptualization into more formal representations based on

various knowledge engineering tools and languages.

During this phase, the knowledge engineer takes an active

role, telling the domain expert about the existing tools,

representations, and problem types that seem to match the problem

at hand. During this phase, the knowledge engineer must evaluate

the disadvantages of mismatches that will occur when a single

tool is chosen and select the one with the least overall

disadvantages. At the end of this phase, a set of partial

specifications describing how the problem can be represented

within the chosen tool or framework should be completed.

3.5.4.5 Implementation Stage

The domain knowledge made explicit during the formalization

stage specifies the contents of the data structures, the

inference rules, and the control strategies. The tool or

representation framework chosen specifies their form Thus the

implementation phase involves mapping this formalized knowledge

into the representational framework associated with the tool

203

chosen, i.e., the hnplementation phase involves the development

of a prototype KBS.

The prototype KBS is implemented by using whatever knowledge

engineering aids are available for the chosen representation (for

example, a knowledge base editor). If the existing tools are

inadequate and/or inappropriate, it may be necessary to develop

new tools.

3.5.4.6 Testing Stage

This stage involves evaluating the prototype system and the

representational forms used to implement it. Once the system

performs well with two or three examples, it should be tested

with a variety of complex examples to determine the weaknesses in

the knowledge base and inference structure. These weaknesses

should be corrected, and a revised prototype should be developed.

This may involve repeating one or more of the phases discussed

above.

For a more detailed discussion on the knowledge acquistion

process, see [Hayes-Roth, et al, 83], on which the above

discussion is based.

3.5.4.7 Difficulties in Knowledge Acquisition

There are many major difficulties in acquiring knowledge for

a KBS:

204

(I) One of the most outstanding problems is the

representational mismatch, the difference between the

way a human expert expresses knowledge and the way it

must be represented in the KBS environment. In recent

years, researchers have focussed on developing KA

tools that could decrease the representational

mismatch. One method used in some systems (example:

ROSIE [Fain, et al, 81]) to decrease this mismatch is

to allow the expert to converse with the system in

natural language.

(2) Another major difficulty in KA is verbalization by the

expert. It is almost always difficult for the human

expert to describe the knowledge in a formal way.

Therefore, in order to build a KBS it is necessary for

the expert to rethink his methods and procedures. One

method for starting this process is the protocol

study.

(A protocol study is a process in which an expert is

given a problem to solve, and the knowledge engineer

observes and/or records the expert's behavior or asks

for explanations of various steps. The knowledge

engineer then analyzes the collected information and

tries to determine general patterns, knowledge used,

and principles of reasoning.)

205

(3) Other major difficulties in the KA process result

because of limitations on current technology.

Representation languages and tools used by current

systems are limited in their expressive capabilities.

Similarly, techniques to allow systems

gracefully extended are very limited.

to be

The above mentioned problems mismatch, formalization,

expression, and extendability - all contribute to what is known

as the knowledge acquisition bottleneck. Currently, this is one

of the very active areas of research in building expert systems.

Chapter 4

KBS BUILDING TOOLS AND LANGUAGES

4.1 Introduction

them

At the moment, construction of KBSs and experimentation with

are both very expensive and time consuming. Recognizing

this, researchers have recently begun developing programming

languages and tools for building KBSs. While these tools and

languages are just caming into use and are certain to undergo

further development, they promise to reduce significantly the.

programming effort needed to develop a new system as well as

modify it [Duda & Gashing, 81].

These languages and tools can be categorized into four

different groups (based on [Hayes-Roth, et al, 83]):

(1) General purpose programming languages.

(2) Skeletal systems.

(3) General purpose representation languages.

(4) Computer-aided design tools for KBSs.

The discussion in this chapter is generally based on

[Hayes-Roth, et al, 83].

206

207

4.1.1 General Purpose Programming Languages

Somm AI programming languages have very powerful features

and can be used to implement a system from "scratch". LISP,

developed by McCarthy in 1958, is chosen for much work in AI.

LISP has some advanced features like: symbol manipulation, list

processing, and recursion. These features provide a high level

conception of data and control. In addition, the programmer can

be freed from certain burdens (like how to manage memory) that

could slow down the experimental process.

There are at least six other AI languages, that have been

developed during the past two decades:

PLANNER [Hewitt, 71]

CONNIVER [Sussman, et al, 72]

QLISP [Green, 69]

SAIL [Feldman, et al, 72]

POP-2 [Popplestone, 67]

FUZZY [Le Faivre, 77]

Except for LISP, none of these languages are in widespread

use. There are two commonly used LISP dialects, INTERLISP,

developed at BBN and XEROX [Teitelman, 78], and MACLISP,

developed at MIT. The choice of one of them "is probably more a

matter of personal preference and availability than of clear

technical superiority", although advocates of MACLISP and

INTERLISP often seem to be claiming that superiority [Hayes—Roth,

208

et al, 83].

As was discussed earlier, the two most important components

in a KBS are the inference engine and the knowledge base (or a

set of rules). Any language which is chosen for construction of

a KBS should provide facilities for both.

Let us first consider the representation of a knowledge base

(a body of rules). Depending on the general framework, each rule

should satisfy a set of conditions (which are relevant) and

perform a set of actions (when invoked). For example, consider

the following statement or informal rule (refer the example in

Section 3.2.5)

"Low fan belt tension causes alternator output to be law."

This statement can be represented as

(IF (CAUSE BELT_TENSION LOW)

THEN (CONSEQUENCE ALTERNATOR OUTPUT LON)

)

The above rule can be represented more generally and

formally in a Backus—Naur form (BNF) as follows:

<rule> !:= (IF {<antecedent>) THEN {<consequent>})

<antecedent> ::= <associative triple>

<consequent> ::= <associative triple>

<associative triple> ::= (<attribute> <object> <value>)

209

where <attribute>, <object>, and <value> would be damain specific

tenms. Using this type of formal rule language, a knowledge base

(or body of rules) can be constructed.

Now let us consider the second aspect: the inference engine.

Ideally the same IE could be used for various domains, by just

changing the rule set. For example, the following is a simple

backward chaining inference engine (discussed

Section 3.3.3) for the rule language given above.

To test whether hypothesis X is true:

in detail in

if X is stored in the global data base

then X is true

else if there are any rules whose consequents

include X

then for each such rule:

if all antecedents are true

then add all consequents to the global data base

and X is true

else if the user says that X is true

then X is true

else X is false.

Note how back-chaining is implemented above. Checking the

antecedents of a rule causes the inference engine to be invoked

recursively.

The above example and discussion is provided to give a

210

flavor of AI languages and no attempt is made to describe them in

detail. A thorough introduction to some AI programning language

features can be found in the excellent book "Artificial

Intelligence Progrmmming" by Chairniak, Riesbeck, and McDermott

[Chairniak, et al, 79].

4.1.2 Skeletal Systems

these

EMYCIN, EXPERT, and KAS are examples of this category. In

systems, domain specific knowledge is explicitly

represented as rules in a KB, rather than coding in an inference

engine. This clear separation of the KB and the IE permits the

KB (or domain specific rules in the KB) to be replaced with

another KB (with different domain specific rules).

For example, EMYCIN (for Essential MYCIN) is the MYCIN

system without the medical knowledge (specialized knowledge of

meningitis as well as some general knowledge about medicine).

Using EMYCIN, two experimental systems were developed: PUFF

[Fagan, et al„ 79] and SACON [Bennet & Englemore, 79].

PUFF was built by replacing MWCIN's infectious disease rules

by rules for pulmonary function diagnosis and SACON was built for

psycho-pharmAcology.

Even though the above mentioned systems are reported to be

successful, building "general systems" systems that can be

applied to another damain merely by removing the rules for a

given domain and substituting rules for the new one - is, in

211

practice, not that simple. The following are among the problems

that may occur [Hayes-Roth, et al, 83]:

(1) The old framework may be inappropriate to the new

task. This is both the most likely and most serious

problem.

(2) The control structure embodied in the IE may not

sufficiently notch the new expert's way of solving

problems.

(3) The old rule language may be inappropriate to the new

task.

(4) There may be task specific knowledge hidden in the old

system in unrecognized ways.

4.1.3 General Purpose Representation Languages

OPS5, HEARSAY-III, RLL, and ROSIE fall into this category.

These tools (or languages) are less constrained than skeletal

systems, since they are not as closely tied to a particular

framework. Thus, they allow for a wider variety of control

structures and can be applied to a broader range of tasks, though

the process of applying them may be more difficult than with

skeletal systems.

For exmnple, OPS5 [Forgy, 80], incorporates a general

control and representation mechanism and it is not biased towards

212

a particular problem solving strategies or representation

schemes. OPS5 has been used for a variety of applications in the

area of AI and cognitive psychology, as well as building R1, the

expert system for configuring VAX computers [McDermott, 80].

In addition, OPS5 provides other facilities: the OPS5

interpreter provides the programmer with a conventional

interactive programning enviromment much like that of a typical

LISP interpreter — to trace and break runs, to examine the state

of the system, to change the system in the middle of a run, and

so on.

4.1.4 Computer Aided Design Tools for Building KBSs

AGE [Nii & Aiello, 79] falls into this category.

Specifically designed to allow the implementation of broader

spectrum of KBs, AGE gives the designer (user) a set of a

separate, interconnectable preprogrammed modules for selecting a

framework, implementing the KB, IE, and the data base. Thus AGE

differs fram other skeletal systems in one important dimension:

it provides an environment in which the designer can choose or

specify a variety of knowledge representations and processing

methods. Foi example, an AGE user is able to build and run a

program that behaves in ways simdlar to a program built using

EMYCIN or one built using HEARSAY—III. AGE also contains

knowledge about its own facilities, procedures, a tutor subset

(that lets the user browse online manual), and a design subset

(that provides online advise on the AGE itself).

4.2 Case Studies

This

213

section presents detailed description of three tools

(or languages) mentioned in the previous section. They are:

EMYCIN (skeletal system)

HEARSAY-III (general purpose representation language)

AGE (computer aided design tool)

The discussion is primarily based on [Hayes-Roth, et al,

83], and the references identified with the respective systems.

4.2.1 EMYCIN

4.2.1.1 Overview of EMYCIN

EMYCIN is basically a domain-independent version of MYCIN

i.e., a MYCIN system without the medical knowledge. EMYCIN is a

skeletal system for developing a consultation program that can

request data about a case and provide an interpretation or

analysis. It is particularly well suited to deductive problems

such as fault diagnosis, in which a large body of potentially

unreliable input data (symptoms, laboratory tests) is available

and the solution space of possible diagnoses can be enmmerated.

DMYCIN helps a designer build a new KB, and thus a new KBS.

The problem specific knowledge can be represented in MYCIN-like

rule language and EMYCIN allows the MYCIN inference engine to be

214

applied to a new KBS. This provides the new KBS with MarCIN's

versatile explanation facility.

In addition to these, the EMYCIN system contains a KB editor

to aid in debugging an emerging KB. A11 of the components are

shown schematically in Figure 4-1 (from [Buchanan & Duda, 83]).

4.2.1.2 Knowledge Representation in EMYCIN

(see

The knowledge in EMYCIN is represented as production rules

Section 3.2.5, "Production Rules") in the following rule

language:

rule ::- (IF <antecedent> THEN <action> (ELSE <action>))

<antecedent> ::= (AND f<condition0)

<condition> ::= (OR {<condition>}) I

(<predicate> <associative-triple>)

<associative-triple> ::= ((attribute> <object> <value>)

<action> ::= (f<consequent0 I {<procedure>}

<consequent> ::= {<associative-triple> <certainty-factor>}

A rule links an antecedent to one action if the antecedent

is true, and (optionally) to another, if the antecedent is false.

The antecedent is always the conjunction of one or more

conditions. A condition is either

(1) The disjunction of one or more conditions or

(2) A predicate applied to an attribute-object-value

triple (predicate can include negation).

EXPERT''S
RULES

USER'S -"
DESCRIPTION
OF THE CASE

USER'S -->
QUESTIONS

KB EDITOR &

DEBUGGING AIDS

INTERACTION
HANDLER

AND

QUESTION-ANSWERING
ROUTINES

CUSTOMIZED
KNOWLEDGE
BASE

PROBLEM
SOLVER

DB OF FACTS
ABOUT THIS
CASE

I
EXPLANATION
SUBSYSTEM

FIGURE 4-1. EMYCIN SYSTEM

BASED ON [BUCHANAN & DUDA) '83]

ADVICE FOR
THIS CASE

EXPLANATIONS

216

Thus, the antecedent is an arbitrary Boolean combination of

predicates of associative triples.

For example, one of the MNCIN's bacterial infection rule is:

I F (SAND (SAME (CNTXT INFECT PRIMARY-BACTEREMUA)

(BEMBF (CNTXT SITE STERILE-SITES)

(SAME (CNTXT PORTAL GI)))

THEN (CONCLUDE (CNTXT I DENT BACTERO I DS TALLY . 7))

In English, the antecedent of the rule (everything between

IF and THEN) is true if and only if:

(1) The infection is primary-bacteremia, and

(2) The site of culture is one of the sterile sites, and

(3) The suspected portal of entry of the organism is the

gastrointestinal (GI) tract.

The objects in the associative triples (called "context" in

the EMYCIN terminology) are variables corresponding to domain

entities. They are organized into a simple hierarchy called a

context tree (Figure 4-2). This serves several purposes:

(1) Binding of free variables in a rule are established by

the context in which the rule is invoked with the

standard access to contexts which are its ancestors.

PATIENT-1

INFECTION-1

CULTURE-1

ORGANISM-1

INFECTION-2

/
CULTURE-2 CULTURE-3

ORGAN SM-2 ORGANISM-3 ORGANISM-4

FIGURE 4-2, A SAMPLE CONTEXT TREE

BASED ON [DAVIS, ET AL, '81]

217

218

(2) Since this tree is intended to reflect the

relationships of objects in the domain, it helps

structure the consultation in ways familiar to the

user.

For example, in the MYCIN domain, objects mdght be

patient-1, infection-1, infection-2, culture-1, culture-2,

culture-3, organism-1, organism-2, etc. The context tree (Figure

4-2) would indicate that ORGANISMS belong to CULTURES, CULTURES

belong to INFECTIONS, and INFECTIONS belong to PATIENTS. Thus a

context tree provides some of the inheritance mechanisms of a

frame representation.

To accommodate uncertainty, EMYCIN associates a certainty

factor (see Section 3.1.6) with every attribute-object-value

triple. This number ranges from -1 (when the triple represents a

false assertion) through 0 (no opinion) to (the assertion is

known to be true). Predicate such as SAME can either evaluate to

T (true) or some certainty interval (such as 0.2 to 1) or can be

fuzzy-set functions that indicate a degree of truth. As in

fuzzy-set theory, AND returns the minimum and OR returns the

maximum of the certainty values to its arguments [Zadeh, 75]. A

rule is considered "true" only when the final certainty is

greater than some threshold (typically 0.2), and will be treated

as "false" if its final certainty is less than another threshold

(typically -0.2).

The action part of a rule either updates (mmdifies) the

219

certainty of the specified consequents or evaluates a set of

attached procedures. In modifying the certainty, the system

combines:

(1) The certainty of the antecedent.

(2) The present certainty of consequent.

(3) The certainty factor associated with the rule

according to the CF formulas of Shortliffe and

Buchanan [Shortliffe & Buchanan, 75].

4.2.1.3 The EMWCIN Inference Engine

EMYCIN uses backward chaining as a control strategy. Its

initial goal is to determine the value of a top level goal

attribute. Subsequently, EMYCIN works on the goal of

establishing the value of the attribute of some object. This

process continues with a precomputed rule set (whose consequents

are known to bear on that goal) until either the value is

established with complete certainty or exhausts the rule set. If

no value can be deduced, it resorts to asking the user for the

value.

To apply (or execute) a rule, EMYCIN most first establish

the truth of- its antecedent, which requires determining the

certainty of each of its conditions. To determine the certainty

of each of its conditions, the system (typically) has to

establish the value of other attributes of objects. This means

that the system sets up subgoals that are addressed by using the

220

same mechanism recursively.

4.2.1.4 EMWCIN Facilities

One of the major benefits of using EMYCIN to build other

MYCIN-like systems is its (EMYCIN's) explanation facilities. It

allows a user to examine both the reasons for the conclusions

reached in a particular session, and its rule set in the

knowledge base. This can be done by simple commands like "WRY"

and "HOW".

In addition, as already mentioned, EVINTIN has a knowledge
ti

base editor. The KB editor checks syntactic correctness of the

new rules entered and sees that they do not contradict or subsume

existing rules. A contradiction occurs when two rules with the

same antecedents have conflicting consequents; subsumption occurs

when the antecedent of one rule is a subset of that of another

and their consequents are the same [Hayes-Roth, et al, 83].

EMYCIN also provides valuable tracing and debugging

facilities. And, finally, libraries of test cases can also be

maintained.

4.2.2 flEARSAY-III

4.2.2.1 Overview of HEARSAY-III

HEARSAY-III is a general purpose knowledge representation

tool. It also provides a domain-independent framework for

221

building KBSs. The architecture of HEARSAY-III is based on the

architecture of HEARSAY-I [Reddy, et al, 73], and HEARSAY-II

[Erman, et al, 80], which are speech understanding systems

developed at Carnegie-Mellon University under a DARPA project.

Specifically, HEARSAY-III uses HEARSAY-II's concepts of modular

knowledge sources and "blackboard" (which provides systemwide

communication, see Section 3.4.2). However, HEARSAY-III is

specifically not a speech understanding system.

The design goals for HEARSAY-III were to develop

representation and control facilities with which a user could

construct and experiment with a KBS for a chosen domain. Some_

salient features of HEARSAY-II are:

(1) It supports codification of diverse sources of

knowledge. HEARSAY-III is not restricted to any

particular class of application domains, and in fact,

supports various types of knowledge from various

application domains.

(2) It supports application of these diverse sources of

knowledge. HEARSAY-III allows flexible coordination

of knowledge sources during a problem solving

activity.

(3) It represents and manipulates competing solutions that

could be constructed incrementally.

222

(4) It reasons about partial solutions, i.e., HEARSAY-III

supports the ability to reason and manipulate the

solutions during various stages of their construction.

(5) It applies domain dependent consistency constraints to

the competing partial solutions, which results in

reducing the search space.

(6) It supports long-term, large-system development. In

particular, HEARSAY-III supports experimentation with

varying knowledge for the application domain and

varying schemes for applying that knowledge.

4.2.2.2 Knowledge Representation in HEARSAY-III

(a) The Underlying Relational Data Base

HEARSAY-III consists of a relational data base system and

its corresponding control facilities. The data base language is

called AP3 [Goldman, 78], and is embedded in INTERLISP. An AP3

data base provides strong typing on assertion, retrieval, and

parmmeter passing in function calls which can be used by a user

of HEARSAY-III for modeling in a specific domain. The HEARSAY

blackboard and all publicly accessible HEARSAY-III data

structures are represented in the AP3 data base.

AP3 also makes available to HEARSAY-III applications a

context mechanism. This context mechanism allows reasoning along

independent paths, which may arise both from a choice among

223

several competing KSs and fram a choice among several competing

partial solutions.

Finally, AP3 also provides facilities for a constraint

mechanism. Any reasoning machanism that produces a constraint

violation results in marking the context (in which the reasoning

was performed) as poisoned.

(b) Blackboard Structure

The central conmunication madiwm in HEARSAY-III is the

"blackboard". An application program uses the blackboard as a

repository for a domain model, for representation of partial,

solutions, and for representation of pending activities. The

blackboard is segmented into two parts:

(1) Domain blackboard

(2) Scheduling blackboard

The domain blackboard is intended as the site of competence

reasoning (i.e., for reasoning within the task domain), and the

scheduling blackboard is intended as the site for performance

reasoning (i.e., for reasoning about scheduling). The user can

further subdivide each of these blackboards.

Blackboard units are fundamental components of the

representations built by application programs in HEARSAY-III.

Every unit has a structure. The structures of units are used to

represent unresolved decisions explicitly and such sets are

called choice sets.

224

HEARSAY-III provides two mechanisms for resolving the

ambiguity by a choice set:

(1) Deduce-mode choose.

(2) Assume-mode choose.

An application program may perform a deduce-mode choose when

it has conclusive evidence that one alternative is the correct

solution for the problem represented by the choice set and that

there will be no desire to retract that choice based on further

evidence. In this case the choice set is replaced by the

alternative (their properties are merged) in the context in which,

the choice is made. In deduce mode, the blackboard appears as if

this choice set never existed before.

An assume-mode choose also replaces the choice set with a

unit that represents a merge of properties of the choice set and

the chosen alternative. The difference is that an assume mode

choice makes these changes in a newly created context from the

one in which the choice is made. The blackboard structure in the

new context is identical to that resulting from a deduce-mode

choice. The choice still exists in the earlier context with its

structure modified only to eliminate the alternative just chosen.

In this way, if subsequent reasoning indicates that this

alternative may not be best, it is possible to return to the

original context and select a different alternative.

225

4.2.2.3 HEARSAY-III Inference Engine

The key functions of generating, combining, and evaluating

hypothetical interpretations are performed by independent

programs called "knowledge sources" (KSs). Each KS can be

schematized as a condition-action type production rule; it

reacts to blackboard changes produced by other KS executions and

in turn produces new changes.

To define a KS, the user provides a triggering pattern,

immediate code, and a =At. Whenever the pattern is matchable on

the blackboard, HEARSAY-III creates an activation record for the

KS. At the point the activation record is created, the

immediate code of the KS is executed. At some subsequent time,

the system's base schedule (see below) may call the HEARSAY-III

Execute action on the activation record. The result of this is

that the body of KS is run (executed) in the triggering context

and with the pattern variables instantiated.

Each KS execution is indivisible; it runs to completion and

is not interrupted for the execution of any other KS activation.

This insulates the KS execution and simplifies the coding of the

body; there need be no concern that during a KS execution

anything on the blackboard will be modified except as effected by

the KS itself.

Scheduling

Frequently, many KS activation records vie for execution and

226

HEARSAY—III is intended for use in domains in which KS scheduling

schemes are likely to be complex and in which one might need to

experiment freely with various schemes.

The scheduling blackboard at the end of each KS execution,

detenmines which KS activation to execute next. Some KSs (known

as scheduling KSs), may make changes on the scheduling blackboard

to facilitate the selection of activation records. Scheduling

KSs may respond to changes both on the domain blackboard and on

the scheduling blackboard, including creation of activation

records. The scheduling blackboard is the data base for solving

the scheduling problem.

4.2.3 AGE (Attempt to Generalize)

4.2.3.1 Overview _01: AGE

The following discussion is a simplified version of one

presented in [Hayes—Roth, et al, 83].

AGE is a software tool specifically designed to allow the

implementation of a broader spectrum of KBSs. AGE gives the

designer a set of separate, interconnetable, preprogrammed

modules (also known as components or building blocks) for

selecting a framework, implementing the knowledge base, inference

engine, and the data base.

A component is a collection of LISP functions and variables

that support conceptual, as well as concrete, entities. For

example, the production—rule component consists of:

227

(1) A rule interpreter that supports syntactic and

semantic description of production rule

representation, and

(2) Strategies for rule selection and execution.

The components have been preprogrammed, but the designer of

the KBS (or user of AGE) could modify or replace them as long as

the changes conform to the definitional constraints.

The components in AGE have been carefully selected, defined,

and modularly programmed to be usable in various combinations.

And using different combinations makes it possible to construct,

programs that display different problem solving behaviors.

One particular combination (or framework) is blackboard

framework. The other is backchain framework.

4.2.3.2 Blackboard Framework

A blackboard-based program written in AGE consists of three

major components:

(1) The blackboard.

(2) The knowledge base.

(3) The control.

a) Blackboard

The blackboard concept is originated from the design of

HEARSAY-II, a speech understanding system [Erman, et al, 80], and

228

it is designed to hold input data, intermediate results and

solutions. It is augmented with a variety of control and

representation concepts. Some of these augmentations include

production rules and object-oriented representations of

knowledge, an extended blackboard, and a scheme for generating

and processing expectations and goals.

(b) The Nnowl edge Base

The knowledge of the problem domain can be represented in

two different ways:

(I) The description of the objects, both conceptual and

actual.

(2) The relationships among the objects.

The knowledge to use these facts and the information on the

blackboard is represented as a set of production rules. A set of

related rules is called (in AGE terminology) knowledge sources

(KSs).

Each production rule consists of a left-hand side (LHS) and

a right-hand-side (RHS). The LHS specifies a set of conditions

or patterns for the applicability of the rule. The applicability

of a rule here means that either all of the specified conditions

must be true, or only that some need to be true. Because of the

wide range of possibilities of defining applicability, AGE asks

the user to define it in the form of a function to serve as the

229

LHS Evaluator. An example of LHS Evaluator is

all-conditions-mast-be-true.

The RHS represents the implication to be drawn, under the

situation specified in the LHS. These implications are

represented in the form of changes to be made to the hypothesis

structure (a data structure that holds input data, intermediate

results, and final results), or to the knowledge base.

(c) Control Structure

In AGE several components are grouped under the heading of

control. They are as follows:

(i) The Input Component: The user has to specify the

format and the names of the input data, and the manner

in which the data are to be acquired through this

input component.

(ii) The Initialization Component: This component

processes the input data and returns the name of the

first KS to be invoked.

(iii) The Kernel Control Component: This component

specifies the inference mechanisms to be used

(discussed below).

(iv) The. Termination Component: This component specifies

the condition under which the program will terminate;

for example, the occurrence of some specified event.

230

(v) The Post-Processing Component: This component is for

processing after the termination of rule execution;

for example, printing an hypothesis or printing an

explanation.

(d) Kernel Control Component

The primary functions of kernel control are:

(1) To select an item on the blackboard to be processed

next (done by inference generation subcomponent), and

(2) To invoke KSs appropriate to that item and consistent.

with the goal of the program (by focus of attention

subcomponent).

A more detailed description of inference generation and

focus of attention subcomponents can be found in [Hayes-Roth, et

al, 83].

Because the control mechanisms have many details that are

potentially confusing to novice user, AGE provides two rather

simple, prepackaged control structures called control macros.

They are useful for event driven macro and expectation driven

macro control.

(e) Event-Driven Control

Event-driven control is a two step process:

231

(1) A rule modifies the hypothesis elements or UNITS data

base and causes an event, with associated event token

(which summarizes the actions to be taken by the

rules).

(2) If the focused event name (assigned by the user)

matches a precondition of a KS, then invoke that KS.

Loop back to (1).

(f) Expectation—Driven Control

Expectation driven control is a three step process:

(1) A rule generates expectation(s).

(2) If an expectation is met, the hypothesis elements or

UNITS are modified as specified. This action

generates an event with an associated event token.

(3) If the focused event name matches a pre—condition of a

KS, that KS is invoked. Else loop back to (1).

A more detailed description of event driven and expectation

driven macros is presented in [Hayes—Roth, et al, 83].

4.2.3.3 AGE Facilities

Currently AGE is designed to be usable by persons

knowledgeable in the appropriate uses of various AI problem

solving methods. The user has to translate a problem into an

232

appropriate framework. Once a framework has been chosen, AGE

provides a detailed specification of each of the components.

The AGE systein consists of four major subsystems:

(a) Design Subsystem: The design subsystem guides the

user in the design and construction of a application

program that fits a predefined framework.

(b) KB Editor: The knowledge base editor help the user

enter detailed domain specific information as well as

control information for each of the components.

(c) Interpreter Subsystem: The interpreter subsystem

executes the user program and provides a variety of

debugging aids.

(d) Explainer Subsystem: The explainer subsystem provides

a complete trace of the execution of the user program.

Chapter 5

APPLICATION CONSIDERATIONS

5.1 Introduction

Though there exists a large amount of literature about

existing and developing KBS applications, the selection process

for each new application requires consideration of a variety of

reasons. Over the years, the knowledge engineers have developed

many heuristics or intuitions. In many ways, these are similar

to guidelines for building other types of software systems. They,

have been divided here into three major groups. First, a set of

considerations that address the issues of the problem domain and

the experts and users of the system that is developed for that

problem domain. Next, are the technology considerations that

focus on the availability of technology for implementing a KBS.

Finally, are the considerations that determine whether or not the

development environment and user environment are properly

supportive.

The discussion is based on [Buchanan, 75], [Barnett &

Bernstein, 77], and [Hayes-Roth, et al, 83].

233

234

5.2 Initial Considerations

In this section some major considerations that should be

taken into account - before a decision to build KBS for a

particular application is made - are discussed.

5.2.1 Task Suitability

(a) Closed Form Solution

Does the problem have a closed form solution? If a closed

form solution exists and that can be implemented using other

computer techniques, then KBS technology is probably not

suitable. On the other hand, those other techniques may be

computationally very inefficient because the nuinber of steps

involved or because of the number of possibilties (combinatorial

explosion) are very high. In such a case, KBS technology can be

considered.

(b) Complexity &IL _tilt Problem

Is the problem too difficult or too easy? A task can be

said to be "too easy", if it "takes only few minutes" and "too

hard" if it requires "few months" [Hayes-Roth, et al, 83).

Though the tools and techniques to build expert systems will

improve, presently it is wiser to build a system that is an

expert in performing a task T in a domain D, than building a

system that is an expert in domain D.

235

(c) Cnninan Sense Reasoning

Does the task require considerable common sense knowledge?

KBS are not general purpose problem solvers and no current system

is adept at common sense reasoning. As such, it is extremely

difficult to build a system that has expertise in several

domains.

5.2.2 Availability of Expert

(a) Is there an expert (recognized _a_s_ such in his domain)

available?

One of the preconditions for building a KBS is the existence

of an expert (or group of experts) in the domain being

considered. If there is no expert or no one who is recognized as

outstanding performer for the type of problems involved, building

KBS in that domain is probably not worth considering.

(b) Can the expert be motivated to work on the development ..Q.L

KBS?

The expert should be willing to give long term commitment

and should become an integral part of the developing team. At

the same time, he should not be expected to become an expert in

computer science and KBS technology. Knowledge engineer should

be willing to meet the expert at least half way.

(c) iat. the knowledge engineer familiar with the problem?

The knowledge engineer should read relevent reports and talk

236

to other experts to learn as much about the problem domain as

possible. This not only establishes a good communication between

expert and knowledge engineer, but also simplifies the task of

identifying the problem and expressing key concepts and relations

explicitly.

5.2.3 Knowledge Acquisition Process

There are several ways of imparting domain specific

knowledge to the KBS. A few them are discussed below:

(a) Interaction between knowledge engineer and expert:

The knowledge engineer should have extensive discussions

with the expert in identifying the roles of participants in the

knowledge acquisition process, define the problem to be attacked,

and characterize goals and objectives of building a KBS. He

should also watch (record) the expert's method(s) of problem

solving; application(s) of formulas, heuristics, and the

reduction process. This is known as a protocol study. One

advantage of this approach is the ability to separate knowledge

from the reasoning mechanism.

(b) Expert directly imparting knowledge into knowledge base:

With this apporach, the expert can directly interact with

the KBS through a knowledge base editor, and impart knowledge

directly into the KB without intervention from any one else. The

assmmptions are that the:

237

(1) Expert is familiar with the KB editor, and

(2) Expert is able to translate his expertise into the

(usually) restricted syntax statements, and the expert

has some

specifications.

knowledge about specific design

The above process may require, initially, interaction with

the knowledge engineer.

TEIRESIAS is the best example for this type of approach.

TEIRESIAS is a program that assists the expert to transfer his

expertise to the KB. The expert carries a dialog with TEIRESIAS-

in a subset of natural language [Davis & Lenat, 82].

(c) Acquire knowledge directly.from the data:

With this approach a separate system could be built to

abstract the knowledge from the observed data and experimental

results. This approach is similar to one taken in META—DENDRAL,

which could infer rules about domain from the data.

The major problem with this approach is providing the

necessary constraints that would limit the system to generating

only rules (or knowledge) that is plausible within theory of the

domain instead of all possible ones. Those rules should, of

course, be consistent.

(d) Acquire knowledge directly frmn text books:

With this approch (described in [Badre, 73]), the knowledge

acquisition mechanism should be able to read textbooks, journals,

238

etc. and extract the useful knowledge and transfer it into the

KB. This approach may become feasible in the future.

5.2.4 Agreement With the Domain Theory

Another important factor that should be taken into

consideration is whether or not there exists an underlying theory

that is agreed upon by many professionals in that domain, and

whether there is general agreement on what is a correct result or

answer.

It is highly unlikely that a KBS will be successful if

there exists many competing or even conflicting theories for a

particular problem domain.

5.2.5 Expert's Model

In relation to some of the knowledge acquisition methods

discussed above, one has to determine whether the expert has a

model in his mind to solve the problem(s). When the expert is

solving a problem, he should be able to express the steps,

processes, rationale, heuristics, etc. in a reasonably orderly

manner.

5.2.6 Expert's Principles of Reasoning

One has to observe whether or not the expert approaches each

problem in an ad hoc manner, or applies a set of rules,

heuristics and problem reduction processes that rapidly focus his

attention on the key subproblems. For a KBS to be successful, it

239

is necessary that the expert should follow sorom orderly reasoning

process when solving the problems.

5.2.7 Intermediate Levels of Abstraction

Many times the expert may not be expressing explicitly (or

may not be even aware of) many intermediate level concepts during

a problem solving activity. It is necessary that these concepts

be identified. This helps organizing the KB in more efficient

manner both conceptually and computationally.

5.2.8 General Vs. Domain Specific Knowledge

It is necessary to separate general knowledge from domain

specific knowledge. This supports transparency and the

incremental development of the system.

5.2.9 End Users

(a) Alia are the end users?

None of the existing KBSs are intended for non-professionals

of the domain the system was developed for. It is unlikely in

the near future that systems will be developed that could be used

by non-profdssionals and still have high performance. Therefore

it is necessary for the user of the KBS to be proficient in the

field, understand the underlying theory, be able to converse with

the expert in the jargon of the field, and confront significant

problems within the domain in his daily activities.

240

(b) ILA_ reasonable solution acceptable to the intended users?

As was mentioned few tiines in this report, the power of a

KBS derives from its ability to reason plausibly under uncertain

conditions (incomplete or inexact data) and there is no guarantee

that the system will always produce a "correct" solution under

those conditions. It could produce only a reasonable or

plausible result. For a KBS to be successful, it is necessary

that the intended users could accept such reasonable or plausible

results along with their explanations.

5.2.10 Unanticipated Support

Is the domain dynamic? By this, it is meant whether the

problems that users try to solve, though within the domain, are

constantly shifting in unpredictable ways. Any KBS should be

built with the provision for expanding its KB, but to accommodate

drastic shifts may be quite difficult.

5.2.11 Cost versus Benefits

Building a KBS is expensive and time consuming. The

problems that are solved by KBSs must be useful, and solutions

should be reliable to the users. The time spent by the user

(professional in the domain) to solve a problem using a KBS must

be worth the effort.

Another aspect of usefulness of a KBS is related to data

gathering and recammended actions. A KBS that can help reduce

241

the cost of the information gathering process and that can

provide solutions with less (or low quality) input will be very

useful to the users.

5.3 Technology Considerations

This section discusses some of the issues that relate to the

design and implementation from a technological view point.

5.3.1 Building the Prototype System

Development of a prototype system is a very important step

in construction of a KBS. The main intent of this exercise is to

test whether the proposed method will work. If not, it may

indicate a re-examiniation of the design or the basic underlying

ideas. The prototype KB can be implemented by using whatever

knowledge engineering aids are available for the chosen

representation (intelligent editors, etc).

Even if the prototype system works from the beginning to the

end, it does not guarantee that the final KBS will do as well

across the spectrum of problems it was designed for, but it will

indicate that the approach is reasonable.

5.3.2 Chunk Size

The design of the data structures and procedures should

reflect as accurately as possible the expert's conceptualization

of the problem domain. This not only minimizes the effort needed

242

for the translation, but also helps in removing errors and

improving the system. This is not to suggest that the KBS should

mimick (or simulate) the expert's problem solving approach;

however, that the expert should be a part of the process and the

system should benefit from expert's heuristic knowledge and the

informal style of reasoning the expert uses.

5.3.3 Representation of Knowledge

The method for representing knowledge should be chosen

carefully. Many of the successful KBSs use simple production

rule representation. Inventing new representational techniques.

for a new application area may increase the risk of failure,

unless, of course, the technique is an clear extension of a well

known one. This is not to suggest that new representational

techniques should not be explored, but to warn that such

techniques should be rigorously tested first before they can be

considered to build a large scale KBSs.

5.3.4 Inference Engine

In the beginning, at least, a simple inference engine should

be built. This not only permits experimentation with the

knowledge representation methods sooner, but also makes knowledge

much more accessible. Some of the better known problem solving

methods include heuristic search, deductive inference fram rules,

pattern matching.

For a very complex system with multiple levels of

243

abstractions and mmltiple representations of knowledge (like

speech understanding systems, e.g., HEARSAY-II), different

methods may be required to solve the problem at different levels.

5.3.5 Meta Knowledge

If the domain is very large and complex, it is increasingly

difficult for anyone to stay "on top" of everything. Therefore,

if the reasoning process and control can be incorporated in the

inference engine, then the system will be relatively simple and

easy to implement.

5.3.6 Procedural Knowledge

It is important to ensure that knowledge is not embedded in

code (procedures) in the inference engine. A11 the knowledge

should be incorporated in the system's knowledge base. This type

of error in the design will reduce the flexibility of the system

or force major modifications as the system grows.

5.3.7 Addition of Knowledge by the Users

If the users of a KBS add knowledge, in contrast to data (as

may be necessary for solving certain problems), to knowledge

base, the KBS will be difficult to design and implement -

particularly the knowledge acquisition interface and associated

facilities for validating the consistency of the added knowledge

as well as the control mechanism in the inference engine.

244

5.3.8 Extensibility

A KBS should be designed to grow in various ways from its

initial conception and implementation. The areas for improvement

include:

(1) Increasing knowledge base.

(2) Increasing inferential capabilities.

(3) Improving the flexibility of user interface.

(4) Increasing the overall reliability and performance of

the system by refining the inferential capability and

learning from errors of the past.

5.3.9 Ynawledge Representation Tools

(a) Generality of the tool

A tool for building a KBS should be as specialized as

possible. This is because the more general the representation

and control, the more difficult and inefficient is the

representation of any particular chunk of knowledge.

(b) Appropriateness of the Tool

The appropriateness of a tool can be tested by building a

small prototype system. Even though the actual development of

the KBS may take many months of effort, it may be possible to

test the effectiveness of a particular tool through the intensive

efforts of the expert and knowledge engineer in a much shorter

245

period of time.

(c) Accessibility

A tool that is still mmintaned by the developer and is

proven to be robust should be selected. The selection of an old

tool that is not currently mainatined by the developer may prove

to be difficult to get running initially.

(d) Explanation/Interaction Facilities

If the tool selected has very good explanation and

interaction facilities, it not only improves the speed of the KBS.

development, but also results in a more intelligible system.

(e) lmdatm Characteristics vs. Tool Features

The selection of a tool is directly influenced by the

problem characteristics, which include size of search space, the

form of data (continuous, time-varying, uncertain, inconsistent,

etc.), and the structure of the problem (incomplete knowledge,

interacting subproblems, etc.).

The tool selection also depends on the solution

characteristics, which include the type of search (exhaustive,

heuristic search, etc.), the representation of knowledge

(production rules, frames, etc.), and the form of control

(parallel processing of subproblems, top down refinement, etc.).

246

5.3.10 Design _of_ Tools fam Building KBSs

If theexisting tools or aids are inadequate to build KBSs,

the knowledge engineer must develop new ones. The design of such

a tool involves many considerations including generality,

campleteness, language features, data base structure, and control

methods.

(a) Generality

Generality depends on the range of application areas for

which the tool is appropriate. The designers would like to

develop a general purpose tool that could be used for a wide

range of problems, but the tradeoff here is efficiency of design

and development versus power of the tool for each application.

(b) Completeness

The completeness of the tool depends on the number and

usefulness of the features included in the tool. For example,

systems like EMYCIN, EXPERT, and KAS provide the largest number

of special support features. These features contribute to the

power and efficiency of the system within the restricted

application domain.

(c) High-Level Representation Language

Providing high-level language facilities for the tool speeds

up the development process and contributes to extensibility of

247

the system. The language should be both readable to the experts

(i.e., the experts should be able to read and understand without

any previous training) and manageable by the knowledge engineers

(i.e., the knowledge engineer should be able to modify or augment

the rules with only modest training).

(d) Explanation and Interaction Facilities

Other useful features to incorporate into tools are

facilities for explanation and user interaction facilities.

These facilities speed up the prototype system development.

(e) Data Representation

Another important feature of the tool is the control

structure of the data base. The tool should have basic data

representation schemes that is as general as possible keeping the

representation task reasonably easy (constrained). If it is too

restrictive, even simple problemm will be unsolvable. On the

other hand, if it provides too much freedom and very little

guidance, complex problems will seem overly complex.

(f) Control Structure

The power, generality, and accessibility of the control

mechanism are important aspects of any KBS building tool. The

representation of the procedural knowledge is directly affected

by the control structure. For example, the use of iteration,

recursion, backward chaining, etc. affects decisions regarding

248

representation of procedural knowledge. A rigid and constrained

control structure simplifies and speeds up the development of

interaction and explanation facilities in the KBS. It also

contributes to incremental development of the system, providing a

higher degree of modularity than could be achieved from a more

general control mmchanism.

5.4 Environmental Considerations

In the last two sections, initial considerations and

technology considerations were discussed. In this section, the

operational and developmental environments for KBSs are

discussed.

5.4.1 Interactive KBS

To be most useful to its users, a KBS is necessary that it

is interactive. Even though it is possible to build a KBS that

runs in a batch processing enviromment, it is unlikely that it

will be successful; "a batch system just cannot provide helpful,

rapid feedback and immmdiate error recovery, for example, from a

simple typing error" [Buchanan, 75]. So, the basic design

philosophy for a KBS should be that of a user oriented,

interactive system.

5.4.2 Interactive Develoynent Environment

An interactive development environment will speed up the

249

implemmntation process - particularly when acquiring knowledge

fram the expert and transferring it into knowledge base, and

validating the new knowledge. Thus, it is necessary that the

development environment for the KBS be an interactive one.

5.4.3 Local Operating Environment

A KBS should be able to access the local operating system

and various builtin explanation and interaction facilities of the

external computer environment. This fact was particularly

illustrated during the development of RITA and ROSIE. Such an

interaction with the external environment extends the power and_

generality of a KBS, since it enables the system to control other

jobs in parallel, and accessing them like subroutines. For

instance, this KBS can perform complex mathematical calculation

in FORTRAN or access external data bases via computer networks

[Hayes-Roth, et al, 831.

Chapter 6

CONCLUSIONS

The technology of KBSs has emerged fram AI research. Many

KBSs have been built in the past decade in a wide spectrum of

application areas, from medicine and chemistry to geology and

business to computer configuration and project risk assessmmnt.

The DENDRAL system has been in regular use by university and

industrial chemists throughout this country. The PROSPECTOR

system has been applied to many practical problems of the US

Geological Survey and US Department of Energy. Digital Equipment

Corporation is using the R1 system to configure their computers.

Still, KBSs have not achieved the status of being comnonly

known or commonly understood like many other computer—based

systems.

There appears to be, as noted by Buchanan and Duda, at least

three main motivations for building KBSs, apart from research

purposes [Buchanan & Duda, 83]:

(a) Replication and Distribution of Expertise

An expert becomes one only after years of education,

training, and experience. By building KBSs, one can provide

many (electronic) copies of an expert's knowledge (or expertise),

so it can be consulted even if the expert is not personally

available because of geographical location,

retirement, or for whatever reason.

250 A

because of

ORIGINAL PAGE IS
OE IVOR QUALITY

(b) Union of Expertise

250B

In some domains, there may be no singie speci.alist whose

expertise spans the entire problem domain. KBSs can provide, in

one piace, the union of the expertise of several sb ,ecialists.

For instance, PRAS (Project Risk Assessment System), being

developed by Hitachi, is an expert system that can be used for

planning, construction, and maintenance of 1a7je scale

construction projects. It uses expertise from engineering,

design, and construction specialists CFeigenbaum & McCorduck,

e3 .

(c) Doclimentation

KBSs can be used to provide a clear record of the best

knowledge available for handling a specific problem and this

record can be used for training.

Building KBSs is very expensive and time consuming.

Construction sometimes takes as much as 10 to 25 person—years and

costs as much as 51 to 52 millicn. But the general level of

accomplishment is high encugh to make it worthwhile. For

instance, SRI International (with the US Geological Survey) built

an expert system, PROSPECTOR, for advising during the process of

field exploration for minerals. In 1982, the expert systern was

used by a company exploring for mining molybdenum in the

Washington State Cascade Mountains, and a find was made. The

value of it has been variously estimated at several million to

ORIGINAL PAGE IS 251OF POOR
QUALITY

c;s100 million! CFeigenbaum & McCorduck, S.

Still there remain a number ot= unresr_11•, d 7.,sues that

increase the difficulties and potential ris di= ;isind KBS

technology in new applications. Many of the prociems J.27!d hence)

potential research areas are discussed in ChantPr 7

ORIGINAL PAGE Is
OF POOR QUALITY

Chapter 7

POTENTIAL FUTURE RESEARCH ,‘;REA7-i

(a) Knowledge Acquisition

Knowledge acquisition () is one of the most olioult and

time consuming process in building KBSs. The 1(nowledia in

DENDRAL, for instance, uas oriqinally "custom crafted and large

parts of the system were rewritten a few times as knowledge base

changed. Later on, highly stylized procdures that were

dependent only on giobal parameters were attempted. etill the

programmers were required to write new procedures. Yi.ars later,

finally, the knowledge of mass spectrometry was codified in

production rules.

In later systems, a framework in whjch the vocabulary and

syntax for the knowledge base are fixed is initially teveloped.

New knowledge is filled (sometimes forr".d) into this framework

thus speeding up the KA process considerablu. The 'xnowledge

engineer is still required to interact and explain the program's

framework to the expert. He is still responsible for translating

the expert's problem solving knowledge into the framewrk. Thus,

despite several concentrated efforts, the KA process still

remains a bottleneck.

252

ORIGINAL P;V72EOF PO OR QUALITY

There have been sorne prototype dialocue systems wnich

the expert can interact and provide knowledge dirP,t to the

system withcut any intermediary. TEIRESIAS is one :1-1.e mast

successful in this respect, but evPn it is liited a hel:!ing

debug and fill out a knowledge base that has a ,ready iaroely

codified.

An expert builds thP knowledge base partly 7:rom past

experience and textbook cases. So, it is reasonable te hope that

an induction program could build a knowledae base for expert

system in a similar way. An induction program which finds

meaninaful, casual associations in a large data baee. requires

considerable basic knouledge of the domain. In 7=act, some

prctotype machine learning programs already exist but none of

them can be used for automatic knowledge acquisition in building

IABSs. However, many prototype systems point to future research

in this direction.

Ultimately, it would be desirable to have a program which

can acquire knowledge directly from textbooks, journels, etc.

C3adre, 737. This process requires much more sophistication than

language understanding programs posses today, including the

ability to view and understand diaorams.

(b) KBE, 3uildi.nq Tools

Thouah it is reasonably clear where RES technolo ,ly can be

and cannot be used, there is no oeneral theory or f ,-emework to

guarantee that a selected application will be sucoese,ful. Hcw to

ORIGINAL PAGE IS
OF POOR QUALITY

254

seclect a kncwledge representation mschanis,1;, tc sel],,ct a

control mechanism, how to select a RES building tool, ard i= no

tool exists,how to build one, arm open questions. They

impact not only epecific design choices, but the Per" oF

the system as a whcle.

Some KES building tools such as AGE, HEARSAY—II:, '171— 1-,ave

already been developed (see Sertion 5.). Though tr: 7.1 not

enough experience with such systems to assess their 'fislue, one

can expect

developments.

them to play a significant rola :n future

(c) Explanation

The success of a KBE depends, partially, on their

acceptability by the users, which in turn will be influenced by

the KBS's explanation facilities. The users are (typically) not

computer professionals and hence cannot be expected ro kncw the

entire system. The users use a KBS as an intelligent assistant

and take advise for their problems. They will makm some

decisions based on that advise. In many cases, they will be held

responsible for their actions. Naturally, they want kncw and

understand the rational basis Cor the system's decisions

CBuchanan, 82-3.

One kind of interactive explanation is simple question

answering as described in CEcott, et ai, 773. But just answering

questions about a knowiedge base (known as RE stati query is

not enough in giving the users the information they need. In

ORIGINri PAGE r;
OF POOR QUALITY

many complicated cases, may be MOrE, tO s

system uses what it knows than to wh.,;t it '/.170WS 7Ewartout,

771. Thus, the user needs T;,--1 be able to understand .7e. line of

reasoning (known as dynam ic query reasoning:.

MYCIN is the first K.Bc' to provice elabmr3te planation

facilities. But it does not take into acoount dlfrences in

Pr S levei (or qualification) nor the difforent prposee for

asking a question. Thus, it is desirable to buil smarter

systems that can determine and exploit those diff'i-rences and

provide more helpful explanations.

(d) Evaluation

them

In the past decade, many KBEs have been built and some of

are moving from a comfortable research and development

environment into the marketplace. DENDRAL, MACSYMA, and MOLGEN

a11 are routinely used by users who are not connected to the

designers of the system. Therefore, the developers ars expected

to provide some objective demonstration that the system performs

as well as they claim.

Existing techniques for evaluating the KBEs are few and

primitive. Much more effort has been devoted to designing and

constructina KBEs than to measuring their resulting performance.

There is no consensus about how to evaluate KBEs (cr when or

why).

The criteria like correctness, efficiency, or friendliness

that are used to evaluate other computer—based systems can be

ORTTAL FACE IS
Of POOk QUALITY

06'

used to evaluate KBEs. Eoit thPu are not usct

human expertise and ars usuall compared with 'euman peeformance.

But this raises an important ,ssue: whether A rorre , solution

(For an KBS) is one that a human expert woul..1 0 1-1 that a

group of expert-4 would agree upon, or one that repreeents the

ideal solution (after testing and analyzing EHayes—Roe, et al,

833.

No one has developed a method to evaluate humae expertise

objectively ard adequately. Though there are many kine of tests

for humar experts, few of these methods seem to apply 71.rectly to

the issues faced in evaluating a KEE.

It is hoped that, in the future, more attention wiil be

directed towards the issues of evaluation.

(e) Parallel Processing

As KBEs become more complex and their knowledge bases grow

in size, one needs to find rnethods for increasing efficiency.

One way to improve efficiency is to solve subp7cblems in

parallel. Some problems require distributed control to improve

the reliability of the overall system. Very little experience

exists in this direction.

(f) Learning from Experience

learn

One way to improve the performance of a KBE is fer it to

from its past experience, the way human experts do. Any

PA 2.317 mum= rams

kind of learning still requires special systems. It is desirable

for every KBS to benefit from its past experience.

(g) Management .of_ Knowledge

258

Maintaining a large knowledge base is as difficult as

building one. In some domains where no closed form solution

exists, the knowledge of an expert (along with techniques) may

change. In madicine, for instance, new microbiological agents

are discovered continually as wtll as new drugs to treat them.

New techniques need to be developed to ease the maintenance of

knowledge bases.

(h) Abstractions and Hierarchies

Many KBSs represent and use abstractions and hierarchies.

But there is no mechanism to compare the various techniques to

understand their strengths and weaknesses.

(i) Technological Innovations

With the constant innovations and improvements in computer

hardware that have been taking place in the past two decades, one

can expect to see "portable" expert systems, PC-based expert

systems, etc. in not too distant future.

PRECEDING PAGE BLANK NOT FILMED

APPENDICIES

i

Appendix A

A CASE STUDY- MYCIN

MYCIN is medical consulting system that was developed at

Stanford in 1976. A brief overview of MYCIN is presented in this

appendix. The material covered here is a condensation of

[Shortliffe, 76] and [Buchanan & Shortliffe, 84].

A.1 MYCIN' s Problem Domain Anil the Users

MYCIN is a knowledge based interactive computer system to

assist physicians who are not experts in prescribing

antimicrobial infections of the blood (bacteremia).

An antimicrobial agent is any drug designed to kill bacteria

or to arrest their growth. Thus, MYCIN assists in the selection

of an agent (or combination of agents) for use in treating a

patient with a bacterial infection.

The name MYCIN is taken from the common suffix shared by

several of the antimicrobial agents like clindanwcin,

erythromycin, gentamycin, kanamycin, and vancomycin. It reflects

the central concern of the program, namely the selection of an

appropriate therapeutic regimen for a patient with a bacterial

infection.

260

261

The problem of therapy selection and recommmndation for an

infectious disease is difficult and complex. First, the

physician must decide whether the patient has a significant

bacterial infection requiring treatment. If there is significant

disease, the organism mmst be identified. To do this, one must

obtain a specimen of the infection for culturing, analysis, and

identification by a laboratory. This is a time consuming

process. And, in many cases, the infection is serious enough

that treatment must be begun before all of the analyses can be

completed. Therefore, any recammended therapy must be based on

incomplete information. To further complicate natters, the mosti

effective drug (or a set of drugs) against the suspected or-

identified organism may be totally inapporpriate for the specific

patient because of age or medical conditions and problems. Thus,

any system or consulting physician must be aware of all of these

complexities if proper advice is to be rendered in each specific

case. MYCIN has been designed to cope with just such

complexities and interrelationships mnong the many variables and

to provide a physician with advise that is proper for each

individual patient.

Though the problem is quite complex, the damain is well

bounded. MYCIN requires knowledge related only to infectious

diseases, and knowledge related to experience with various

infectious organisms in terms of resistance to specific drugs,

and knowledge of symptoms related to specific infections.

MYCIN is intended to be used by physicians. The dialog that

262

it carries on with the user is in the jargon of mmdicine and

specifically that of infectious diseases, laboratory procedures,

infectious organisms, drugs, etc. Thus, a user of MYCIN is

expected to be a competent mmdical practitioner.

A.2 MYCIN' s Knowledge Base

ANCIN's knowledge base contains several knowledge sources

production rules, clinical parameters, special functions,

procedures for therapy selection and patient data base.

A.2.1 Xepresentation of Rules

The 200 (production) rules currently in the MYCIN system

consist of a PREMISE, ACTION, and sometimes an ELSE clause.

Every rule has a naine of the form "RULE ###", where "###" is a

three digit number. The rules are stored as LISP data structures

in accordance with the following Backus-Naur Form (BNF)

description (only a partial description is given here; a camplete

description can be found in [Shortliffe, 76]):

<rule> <premise><action> I <premise><action><else>

<premise> ::= (SAND<condition>...<condition>)

<condition> ::= (<func1><context><parameter>) I

(<func2><context><parameter><value>) I

(<special_func><arguments>) I

(SOR<condition>...<condition>)

263

The PREMISE of a rule consists of a conjunction of

conditions,_ each of which must hold for the indicated ACTION to

be taken. Negations of conditions are handled by the individual

predicates (<funcl> and <func2>) and therefore do not require a

SNOT function to complement the Boolean function SAND and SOR.

If the PREMISE of a rule is known to be false, the conclusion or

action indicated by the ELSE clause is taken. If the truth of

the PREMISE cannot be ascertained, or the PREMISE is false but no

ELSE condition exists, the rule is simply ignored. In addition,

the strength of each rule's inference is specified by certainty

factor (CF) in

next section.

the range —1 to +1. CF's are discussed in the/

A.2.2 Context Tree

Although it is common to describe a diagnosis as an

inference based on attributes of the patient, MYCIN's decisions

must necessarily involve not only the patient but also the

cultures that have been grown, organisms isolated, and drugs that

have been administered. Each of these is termed a "context" of

the program's reasoning.

MYCIN currently knows about 10 different context types:

CURCULS - a current culture from which organisms were

isolated

CURDRUGS an antimicrobial agent currently being
administered to a patient

CURORGS - an organism isolated fram a current culture

more

264

OPDRGS - an antimicrobial agent administered to the
patient during a recent operative procedure

OPERS - an operative procedure which the patient
has undergone

PERSON the patient himself

POSSTHER a therapy being considered for
recommendation

PRIORCULS a culture obtained in the past

PRIORDRGS - an antimicrobial agent administered to
the patient previously

PRIORORGS - an organism isolated from a prior culture

These context types (except for PERSON) may be instantiated/

than once during any given run of the consultation program.-

Same may not be created at all if they do not apply to the given

patient. However, each time a context tree is instantiated, it

is given a unique name. For example, CULTURE-1 is the first

CURCUL and ORGANISM-1 is the first CURORG. Subsequent CURCLS or

PRIORCULS are called CULTURE-2, CULTURE-3, etc.

The context types instantiated during a run of the

consultation program are arranged hierarchically in a data

structure termed the "context tree". One such tree is shown in

Figure A-1. The context types of each instantiated context is

shown in parentheses besides its names. Each node in the context

tree is called context and is created as an instantiation of a

context type.

265

CULTURE-1
(CURCUL)

ORGANISM-1 ORGANISM-2
(cuRoRG) (cuRoRG)

PATIENT-1 (PERSON)

CULTURE- CULTURE-3
(cuRcuL ODRIORcuLs)

OPcRATION-1
(OPERS)

ORGANISM-3
(PRIORORGS) ORGANISM-4

DRUG-4N

(PRIORORGS) (OPORGS)

,
7

DRUG-1 DRUG-2 DRUG-3
(CURDRUGS) (CURDRUGS) (CURDRUGS)

FIGURE A-1, SAMPLE CONTEXT TREE

BASED ON [BUCHANAN & SHORTLIFFE, '84]

1

266

This sample context tree corresponds to a patient from wham

two current_cultures and one prior culture were obtained. One

organism was isolated from each of the current cultures, but the

patient is being treated (with two drugs) for only one of the

current organimms. Furthermore, two organisms were grown from

the prior culture but therapy has included a recent operative

procedure during which the patient was treated with an

antimicrobial agent.

A.2.3 Cate4orization of Rules

The 200 rules currently used by MYCIN are not explicitly

linked in a decision tree or reasoning network. This feature

adheres to the designer's decision to keep the system knowledge

modular and manipulable. However, rules are subject to

categorization in accordance with the context — types for which

they are appropriately invoked. For example, some rules deal

with organisms, some with cultures, and still others deal solely

with the patient himself. MDCIN's current rule categories are as

follows:

(1) CULRULES - Rules that may be applied to any culture.

(2) CURCULRULES — Rules that may only be applied to current
cultures.

(3) CURORGRULES — Rules that may be applied only to current
organisms.

(4) DRGRULES - Rules that may be applied to any
antimdcrobial agent that has been
administered to combat a specific
organism.

(5) OPRULES

267

- Rules that may be applied to operative
procedures.

(6) ORDERRULES - Rules that are used to order the list of
possible therapeutic recommendations.

(7) ORGRULES - Rules that may be applied to any organism.

(8) PATRULES - Rules that may be applied to the patient.

(9) PDRGRULES - Rules that may be applied to drugs given
to combat prior organisms.

(10) PRCULRUES - Rules that may be applied only to prior
cultures.

(11) PRORGRUES - Rules that may be applied only to
isolated organisms from prior cultures.

(12) THERULES - Rules that store information regarding I
drugs of choice.

Every rule in the MYCIN system belongs to one, and only one,

of these categories.

A.2.4 Clinical Parameters

The system also contains a collection of clinical

parameters, represented as <attribute, object, value, triples. A

clinical parameter is a characteristic of one of the contexts in

the context tree, i.e., the name of the patient, the site of a

culture, the morphology of an organism, the dose of the drug,

etc. A11 such attributes are termed as "clinical parameters".

The clinical parameters known to MYCIN are categorized in

accordance with

categories include:

the context to which they apply. These

268

(1) PROP-CUL - Those clinical parameters that are
attributes (e.g., site of the
culture, mmthod of collection).

(2) PROP-DRG - Those clinical parameters that are
attributes of administered drugs
(e.g., name of the drug, duration
of administration)

(3) PROP-OP Those clinical parameters that are
attributes of operative procedures
(e.g., the cavity, if any, opened
during the procedure)

(4) PROP-ORG - Those clinical parameters that are
attributes of organismm (e.g.,
identity, gram stain, morphology)

(5) PROP-PT Those clinical parameters that are
attributes of the patient (e.g.,
name, sex, age, allergies,
diagnoses)

(6) PROP-THER- Those clinical parameters that are
attributes of therapies being
considered for recommendation
(e.g., recommended dosage, pre-
scribing name)

Currently there are 65 clinical parameters known to MYCIN.

Each of the parameters has a certainty factor reflecting the

system's "belief" that the value is correct (an associated set of

properties that is used during consideration of the parameter for

a given context). This formalism is necessary because, unlike

domains in which objects either have or do not have some

attribute, in medical diagnosis and treatment there is often

uncertainty regarding attributes such as the significance of the

disease, the efficacy of a treatment or the diagnosis itself.

269

In addition to certainty factor, each parameter is

associated with a set of properties that is used during

consideration of that parameter for a given context. These

properties specify such things as the:

Range of expected values a property nay have.

The sentence to transmit to the user when requesting

data from him.

- The list of rules whose PREMISEs reference the

parameter.

- The list of rules whose ACTION or ELSE clauses permit

a conclusion to be made regarding the parameter, etc.

Only those properties that are relevant

1

to each parameter

are associated with it. However, properly specifying how the

parameter is to be represented in English is mandatory for all.

A.2.5 Simple Lists

Additional information is contained in simple lists that

simplify references to variables and optimize knowledge storage

by avoiding unnecessary duplication. These lists contain such

things as the names of organisms known to the system and the

names of normally sterile and non-sterile sites (called

STERILESITES and NONSTERILESITES, respectively) from which

organisms are isolated.

270

A.2.6 Kaawledge Tables

In conjunction with a set of four special functions, MYCIN

uses knowledge tables to permit a single rule to accamplish a

task that would otherwise require several rules. A knowledge

table contains a comprehensive record of certain clinical

parameters plus the values they take on under various

circmmstances. For example, one of MYCIN's knowledge tables

itemizes the gramstain, morphology, and aerobicity for every

bacterial genus known to the system.

A.2.7 Specialized Functions

The efficient use of knowledge tables requires the existence

of four specialized functions. These functions help to recommend

the apparent first choice drug for the therapy.

This constitutes the majority of MYCIN's knowledge base,

which permits the system to comprehend the nature of an infection

without complete information about the organism involved, and

provide the physician with proper advise regarding treatment

under the circmmstances. This organization and structure, along

with the way the knowledge is used, facilitates the system's

ability to explain its actions and advice.

A.3 1015(CIN's Inference Engine

MYCIN's inference engine is domain independent in the sense

that none of the knowledge required to provide advice about

271

bacteremia is embedded in it. Thus, additional rules concerning

infectious disease may readily be added, or a new knowledge base

could be substituted to provide therapeutic advice about a

different domain of infections. As discssed in Section A.1,

MWCIN's task involves a four stage decision problem:

(1) Decide which organisms, if any, are causing

significant disease.

(2) Determine the likely identity of the significant

organism.

(3) Decide which drugs are potentially useful.

(4) Select the best drug or drugs.

Step 1 and step 2 are closely interrelated, since

determination of an organism's significance may well depend upon

its presumed identity. Furthermore, MYCIN must consider the

possibility that the patient has an infection with an organism

not specifically mentioned by the user (for example, an occult

abscess suggested by historical information or subtle physical

findings). Finally, if MYCIN decides that there is no

significant infection requiring antimicrobial therapy, it should

skip steps 3 and 4, advising the user that no treatment is

thought to be necessary.

A consultation session with MWCIN results fran a simple two

step procedure:

272

(1) Create the patient context as the top node in the

context tree.

(2) Attempt to apply the goal rule to the newly created

patient context.

When MYCIN first tries to evaluate the PREMISE of the goal

rules, the first condition requires that it know whether there is

an organism that requires therapy, MYCIN then reasons backwards

in a manner that may be informally paraphrased as follows:

How do I decide whether there is an organism requiring
therapy? Well, RULE090 tells me that organisms associated
with significant disease require therapy. But I don't even
have any organisms in the context tree yet, so I'd better/
ask first if there are any organisms and if there are I'll
try to apply RULE090 to each of them. However, the PREMISE-
of RULE090 requires that I know whether the organism is
significant. I have a bunch of rules for making this
decision (RULE038 RULE042 RULE044 RULE108 RULE122). For
example, RULE038 tells me that if the organism came from a
sterile site it is probably significant. Unfortunately I
don't have any rules for inferring the site of a culture,
however, so I guess I'll have to ask the user for this
information when I need it...

This goal oriented approach to rule invocation and question

selection is automated via two interrelated procedures, a MONITOR

that analyzes rules, and a FINDOUT mechanism that searches for

data needed by the NIUNITOR. These two procedures or components

constitute IVWCIN's inference engine or control structure.

DADNITOR's function (Figure A-2) is to determine whether the

conditions stated in the PREMISE of a rule are true. To do so,

it considers each condition of the PREMISE at hand, first

determining whether it has all of the necessary information to

273

make the detenmination. If it requires information, it calls

FINDOUT to obtain what is needed. FINDOUT (Figure A-3) first

determines whether the needed information is laboratory data. If

it is, it asks the physician for it. If the physician cannot

provide it, FINDOUT retrieves the list of rules that nay aid in

deducing the information and calls MaNITOR to evaluate the rules.

When the process campletes, control is returned toWNITOR. If

the information needed is not laboratory data, FINDOUT retrieves

the list of rules that may aid in deducing the needed information

and calls PdaNITOR to evaluate the rules. If the deductive

process of applying the rules (backward fram a goal to the dat&/

or information needed) cannot provide the needed information, the-

physician is asked to provide it. In either case, control is

returned to PADNITOR. Given the information that is provided by

FINDOUT or that was already available, 11/IGNITOR determines whether

the entire PREMISE is true. If it is not, and there is no ELSE

clause, the rule is rejected. If the PREMUSE is true or the ELSE

clause is invoked, the conclusion stated in the ACTION of the

rule or in the ELSE clause is added to the ongoing record of the

consultation, and the process completes. Note that there is a

recursive relationship between MDNITOR and FINDOUT, such that, so

long as any information is needed to evaluate a PREMISE, or rules

are required to develop the needed information, the two

components are in a recursively dependent and oscillating

relationship until the very first rule invoked, the "goal—rule",

274

ORIGINAL PAGE IS

OF POOR QUALITY

NO

GATHER THE

NECESSARY INFO

USING THE FIND-

OUT MECHANISM

@TART)

CONSIDER THE

FIRST CONDITION

IN THE PREMISE

OF THE RULE

HAS
ALL NE

ARY INFO BEEN

ATHERED TO DECIDE
F CONDITION IS

TRUE?

IS

THE CONDITIO

TRUE?

NO (OR UNKNOWN)

REJECT THE

RULE

(EXIT)

CONSIDER THE

NEXT CONDITION

IN THE PREMISE

YES

ARE

THERE

MORE CONDITIONS

TO CHECK?

NO

ADD THE CON-

CLUSION OF RULE

TO ONGOING RECORD
OF CURRENT

CONSULTATION

FIGURE A-2. THE MONITOR MECHANISM

BASED ON EBUCHANAN & SHORTLIFFE, 184]

NO

V

ORIGINAL rs
OF POOR QUALITY

(START

S THE

PARAMETER

A PIECE OF

LABORATORY

DATA

RETRIEVE Y=LIST OF RULES
WHICH MAY AID IN DEDUCING
THE VALUE OF THE PARAMETER

APPLY MONITOR TO EACH
RULE IN THE LIST Y

IS
ALUE OF

PARAMETER
KNOWN?

NO

YES

ASK USER FOR THE VALUE

OF THE PARAMETER

RETURN

(RETURN

YES

ASK USER FOR THE VALUE

OF THE PARAMETER

YES
I

ALUE OF
PARAMETER

KNOWN?

NO
RETURN) V

RETRIEVE Y= LIST OF RULES

WHICH MAY AID IN DEDUCING

THE VALUE OF THE PARAMETER

APPLY MONITOR TO EACH RULE

IN THE LIST Y

RETURN

FIGURE A-3, THE FINDOUT MECHANISM

BASED ON [BUCHANAN & SHORTLIFFE, '84]

2 75

-t

276

is satisfied. In the process of evaluating the rules, a great

deal of related and necessary information and data are developed

and retained in various tables and structures in the workspace.

They serve two purposes:

(1) They prevent wasted effort that would be required to

redevelop information that has already been obtained,

and to prevent the system from endlessly chasing its

tail.

(2) They provide the necessary history required for the

explanations that may be requested by the user.

In addition to having certainty factors (CFs) for the rules

and the clinical parameters in the knowledge base, the physician,

when asked for either laboratory data or other information that

the system itself cannot deduce, may attach a CF to his input.

The default, if the physician does not provide a CF, is assmmed

to be +1. The certainty factors are the key to permitting MYCIN

to perform inexact reasoning. The rationale, mathematics, and

applications are thoroughly treated in [Shortliffe, 76]. The

presentation here is very simplified.

A.4 Certainty Factors

A certainty factor (CF) is a number between —1 and +1 that

reflects the degree of belief in a hypothesis. Positive CFs

277

indicate that there is evidence that the hypothesis is valid; the

larger the CF, the greater the degree of belief. A CF = 1

indicates that the hypothesis is known to be correct. A negative

CF indicates that the hypothesis is invalid; CF = —1 means that

the hypothesis has been effectively disproven. A CF 0 means

either that there is no evidence regarding the hypothesis or that

the evidence is equally balanced. The hypotheses in the system

are statements regarding values of clinical parameters for the

nodes in the context tree. To properly perform, MYCIN must deal

with competing hypotheses regarding the value of its clinical

parameters. To do so, it stores the list of competing values andel

their CFs for each node in the context tree. Positive and-

negative CFs are accumulated separately as measures of belief

(MB) and measures of disbelief (MD) and added to form a resultant

CF for a clinical parameter. The CF of a conclusion is the

product of the CF of the rule that generated the conclusion and

the tally of the CFs of the clinical parameters that were used in

substantiating the conclusion. When a second rule supports the

same conclusion, the CFs are cambined by z = x + y(1—x), where x

is the CF of the first supporting rule, y is the CF of the

succeeding rule and z is the resultant CF for the conclusion.

The CFs permit the system to report findings to the physician

with varying degrees of certainty such as, "There is strongly

suggestive evidence that • • • • "There is suggestive evidence

that", "There is weakly suggestive evidence that", etc.

278

A.5 Context Tree.

The topmost tree is always the patient. Branches are added

successively to the existing nodes as FINDOUT discovers a need

for them in attempting to obtain requested information for

MDNITOR. Thus, given only the patient, whenMDNITOR requests

information from FINDOUT about organisms in order to evaluate the

first condition in the Premise of the goal-rule, FINDOUT

discovers that it cannot get organism information without having

informat ion about cultures. Thus, context(s) concerning

cultures(s) are spawmed from the patient node, from which

eventually are spawned contexts for the organisms identified by

the cultures. For those organisms deemed significant, links

attach to context nodes about the relevant drugs for treating

these organisms. Thus, the context tree is tailored for each

patient as the system progresses through its reasoning process.

A.6 MYCIN's Explanations

One of the primary design consideration taken in MYCIN was

the requirement that the system be able to explain its decisions

if physicians were going to accept it. Selecting rules as the

representation of the system's knowledge greatly facilitated the

implemmntation of this capability. The physician using the

system enters the explanation subsystem automatically when the

consultation phase is completed, or he may enter it upon demand

during the consultation session at any point at wtich the system

279

requests input from him. In the latter case, he can input "WHY"

to request a detailed answer about the question just asked of him

or he can input "QA" to enter the general question-answering

explanation subsystem to explore the decisions and other aspects

of the consultation up to the point of divergence.

The explanation provides several options to the physician.

Since the system automatically enters this mode at the end of the

consultation, the physician may simply input "STOP", which

terminates the system. The explanation system offers several

options to the user and are shown below:

Input Question-Answering (OA) Option

HELP Prints this list.

EQ Explain a specific question asked of the
physician during the consultation - each has a
sequence number, which must accompany the EQ
request.

IQ Is a prefix for a question about information
acquired by the system during the consultation.
The question is phrased in the limited English
that MYCIN can handle.

NOPREFIX A general question is assumed being asked about
the content of MYCIN's rules.

PR Requests a particular rule be printed and must be
followed by the rule number.

STOP Exit from explanation system.

RA Permits entry to the rule acquisition module for
recognized experts.

An Example: Suppose a physician wants explanation for question

48. Then he inputs "EQ 48". To which the system would respond:

280

QUESTION 48 WAS ASKED IN ORDER TO FIND OUT THE PATIENT'S DEGREE

OF SICKNESS (ON A SCALE OF 4) IN AN EFFORT TO EXECUTE RULE068.

He may then optionally input "PR68" or "WHAT IS RULE068" to see

what exactly was being sought and why.

A.7 MWCIN's Interfaces

MYCIN has two interfaces. One is for the using physician,

through which he may answer questions posed by the system and ask

questions of it; the other is a knowledge-acquisition interface

accessible only to experts recognized as such by the system.

A11 of the questions asked of the user have been carefully
-1

designed not to require the language-understanding component.

Thus, instead of asking, "What is the infectious disease

diagnosis for the patient?" it asks, "Is there evidence that the

patient has a meningitis?" To which only a simple "yes" or "no"

is required.

The knowledge-acquisition interface, on the other hand,

permits the expert to input a new rule in stylized English, with

prompting to obtain the rule in the proper sequence: Premise

first, condition by condition, followed by the Action, and then

an Else clause if one is required. The system then translates

the rule into internal form, reordering the conditions of the

Premise if necessary, according to a set of criteria developed to

improve the rule-evaluation process. It then retranslates the

rule into English and requests that the expert decide whether the

rewritten

281

version was the one intended. If not, the expert may

modify selected parts and is not required to restate the entire

rule unless there has been a gross misunderstanding.

The same mechanism is used when an expert wants to correct

or modify an existing rule. In all cases, when a new or

corrected rule has been approved by the expert, the system checks

to see whether the rule is consistent with the existing rule set.

If the new or modified rule subsumes or is subsumed by an

existing rule, it is not readily discoverable, and no test is

made for this condition. If a rule is discovered to be in

conflict with an existing rule, it is rejected.

A.8 Evaluation of MYCIN

/AYCIN's performance has been externally evaluated. There

have been different empirical studies of MYCIN's performance,

each simpler than the previous but all of them time consuming.

The last one was reported in [Yu, et al, 79]. The following

discussion is based on [Yu, et al, 79] and [Buchanan, 82].

Ten meningitis cases were selected randomly and their

descriptions were presented to seven Stanford physicians and one

student. They were asked to give their therapy recommendations

for each case. Those recommendations along with MYCIN's

recommendations for each case and actual therapy were collected

in 10 x 10 matrix - ten cases each with ten recommmndations. The

a panel of experts not at Stanford, were asked to give each

282

reconmendation a zero if, in his opinion, it was unacceptable for

the case and one if the recomnendation was acceptable. They did

not know, which, if any, recommendation came from a computer.

The results are shown in the Table A-1.

Table A-1. Ratings of Antimicrobial Selection
by 8 Experts on 10 Meningitis Cases*

[Buchanan & Shortliffe, 84]

Prescribers No (%) Of Items In Which
Therapy Was Rated
Acceptable By An Evaluator

MYCIN
Faculty-1
Faculty-2
Infectious Disease

Fellow
Faculty-3
Actual Therapy
Faculty-4
Resident
Faculty-5
Student

52 (65)
50 (62.5)
48 (60)

48 (60)
46 (57.5)
46 (57.5)
44 (55)
36 (45)
34 (42.5)
24 (30.5)

* Perfect Score = 80; Unacceptable Therapy = 0;
Equivalent or Acceptable Alternate = 1.

As can be seen from the table, the difference between

DADCIN's score and the score of the infectious disease experts at

Stanford is not significant. Thus, the designers of MYCIN claim

to have shown that MYCIN's recommmndations were viewed by outside

experts to be as good as the recammendations of the local

experts, and all of those better than the recommendations of

physicians (and the student) who are not mmningitis experts.

283

Additional useful reference related to MYCIN are:

[Shortliffe, 76], [Yu, et al, 79], [Buchanan, 82], and [Buchanan

& Shortliffe, 84].

Appendix B

LIST OF EXPERT SYSTEMS

The following list of

NAME OF APPLICATION
SYSTEM OR AREA
PROJECT

expert systems is based on

BRIEF
DESCRIPTION

[Michie, 84].

REFERENCES

AGE Knowledge Provides guidance on [Nii
Engineering building expert systems

and a set of tools for
doing so.

Aiello, 79]

AM Knowledge Generates new mathe- [Davis &
Engineering matical formulas, terms,

etc.
Lenat, 82]

AL/X Knowledge
Engineering

A dommin-independent
development of MYCIN
and PROSPECTOR

[Reiter, 81]

CASNET Medicine

CENTAUR Medicine

CRIB Fault
Diagnosis

CRYSALIS Science

DART Engineering

usable for developing
rule-based consultation
programs for many fields.

Long-term management
of glaucoma.

Interprets pulmonary
function test measure-
ments from patients with
lung disorders.

Diagnosis of faults in [Addis, 80]
computer hardware
and software.

[Weiss, 81]

Infers the structure
of a protein from a
map of electron density
derived from x-ray
crystallographic data

Diagnosing hardware
faults in computer
systems.

[Aikins, 80]

[Fe igenbaum &
Engelmore ,

77]

Under
development
at Stanford

284

EXSEL

GA1

GAMMA

GUIDON

285

NAME OF APPLICATION BRIEF
SYSTEM OR AREA DESCRIPTION
PROJECT

REFERENCES

DENDRAL Science

EMYCIN Knowledge
Engineering

EXPERT Knowledge
Engineering

Computing

Science

Science

Knowledge
Engineering
(Education)

HEAEMED Nkdicine

INTERNIST Medicine

MACSYMA Mathematics
Advisor

IvDX Medicine

Identification of
organic compounds by
analysis of mass
spectrogram.

A domain-independent
version of MYCIN,
Usable for developing
rule-based consultation
programs for many fields.

A system for designing
and building models for
consultation.

Configuring the
VAX/780 computer system.

Infers DNA structures
fram pieces (segments)
of structures.

Interpreting gamma ray
activation spectra.

Case-method tutor
designed to improve a
student's ability to
diagnose complex problemm
in medicine and science.

Psychopharmacology
advisor (constructed
using MYCIN).

Diagnosis
medicine.

in internal

An automated consultant
for MACSYMA (an
algebraic manipulation
system).

[Feigenbaum,
et al, 71]

[Van Melle,
et al, 81]

[Weiss &
Kul ikowski ,

79]

[McDermo t t ,
82]

[Stefik, 78]

[Barstow, 79]

[Clancey, 82]

[Heiser,
et al, 78]

[Pople, 77]

[Genesereth,
78]

[Moses, 75]

Performs diagnoses [Chandra-
related to cholestasis. sekaran, 79]

286

NAME OF APPLICATION BRIEF
SYSTEM OR AREA DESCRIPTION
PROJECT

REFERENCES

META -
DENDRAL

MDLGEN

MYCIN

Science

Science

Nkdicine

ONCOCIN Medicine

PROS-
PECTOR

PSYCO

PUFF

R1

Geology

Knowledge
Engineering
(Medicine)

Nkdicine

Knawledge
Engineering

RAFFLES Fault
Diagnosis

Induces rules for
determining mnlecular
structure from mass
spectrometry data.

Provides intelligent
advise to a molecular
geneticist on the planning
of experiments involving
the manipulation of DNA.

Diagnoses certain
infectious diseases and
recommends appropriate
drug treatment.

Assists in the manage-
ment of cancer patients
on chemotherapy protocols
for forms of lymphoma.

Aids geologists in
evaluating mineral
sites for potential
deposits.

Experimental production
system compiler.

Analyses results of
pulmonary function tests
for evidence of possible
pulmonary function
disorder.

A domain independent
system for production

Diagnosis of faults in
computer hardware and
software.

[Buchanan &
Feigenbaum,

78]

[Martin,
et al, 77]

[Shortliffe,
76]

[Shortliffe, -
et al, 81]

[Hart & Duda,
78]

[Fox &
Rector, 82]

[Kunz, et al,
78]

[McDermott,
80]

[Addis, 80]

287

NAME OF APPLICATION BRIEF
SYSTEM OR AREA DESCRIPTION
PROJECT

REFERENCES

RITA

RLL

SACON

SECS

SU/X

Knowledge
Engineering

Provides the user with
a language for defining
intelligent interfaces
to external data systems.

Knowledge Provides the user with
Engineering a flexible set of

facilities as a tool
for building his own
knowledge represen-
tation language.

Engineering

Science

Advises structural
engineers in using the
structural analysis
progrmnMARC.

Proposes schemes for
synthesizing stated
organic compounds.

Engineering Forms and updates
hypotheses about
location, velocity, etc.
of objects from primary
signal data (spectra).

TEIRESIAS Medicine

UNITS

VLSI

VM

Knowledge
Engineering

Engineering

Medicine

Knowledge acquisition
program used with WWCIN.

Interactive language
providing general-
purpose facilities for
knowledge representation
Used for MDLGEN plus
other small applications

Assistance in the design
of very large scale
integrated circuits.

Provides diagnostic

[Anderson &
Gillogly,

76]

[Greiner &
Lenat, 80]

[Bennett &
Eng e lmore ,

79] •••4

[Wipke,
et al, 77]

[Nii &
Feigenbaum,

78]
[Nii, et al,

82]

[Davis &
Lenat, 82]

[Stefik, 80]

Under
development
at Stanford

[Fagan, 80]
and therapeutic suggestions
for critical care of
patients needing mechanical
assistance with breathing.

Appendix C

FIFTH GENERATION PROJECT

As was mentioned in the beginning of this thesis, in the

past decade, there had been a major shift in AI research. It was

from a search for broad, general laws of thinking toward an

appreciation of specific knowledge - facts, experiential

knowledge, and how to use knowledge - as the central issue in

intelligent behavior. In addition to this shift, in recent

years, there has been a great deal of discussion on the growing

need for a new generation of computers. In 1981, a research

project known as "Fifth Generation Computer Systems" was started

in Japan to further the research and development of the next

generation of computers. The Japanese believe that the computers

of the next decade will be used increasingly for non-numeric data

processing such as symbol manipulation and applied AI (KBSs)

[Moto-oka & Stone, 84]. This appendix provides a brief

introduction to the Fifth Generation Project, its organization,

its funding, various phases of the project, and its major goals.

The presentation in this appendix is based on the book "The Fifth

Generation" by Edward Feigenbaum and Pamela McCorduck [Feigenbaum

& McCorduck, 83], and on [McCorduck, 83].

288

289

In October 1981, Japan's Ministry of International Trade and

Industry (MITI) sponsored a conference to announce a new national

project. Alongside national projects in supercomputing and

robotics, there would be an effort to develop a new generation

(the fifth, by their reckoning) of computers.

The Fifth Generation is a consortium of eight firms

(Fujitsu, Hitachi, Nippon Electric Corporation, Mitsubishi,

Matsushita, Oki, Sharp, and Toshiba) and two national

laboratories (the govermment-owmed Nippon Telephone and

Telegraph's Musashino Laboratories, and MITI's own

Electrotechnical Laboratory). Approximately forty hand-picked-4

researchers from each of the firms and laboratories gathered

under one roof in Tokyo in April 1982 at the new Institute for

New Generation Computer Technology (ICOT). Their director is

Kazuhiro Fuchi, who came from the Electrotechnical Laboratory and

was the intellectual spirit behind the Fifth Generation Project.

At the present all funds come from MITI. Although a

national project is normally a partnership of government and

private funds, the firms participating the Fifth Generation

Project argued that they could not afford to support such a

high-risk project and supply top researchers too. MITI agreed,

and is underwriting the project for the first three years.

ICOT's second-year budget is $13.6 imillion, up significantly over

the first year's budget of $2 million. Across the ten-year

period of the project, assuming typical contributions from the

firms, the total budget will probably approach $200 million.

290

The fifth generation of computers will not be traditional

computers. _ Instead, they will be symbolic inference machines,

capable of reasoning their way swiftly through massive amounts of

knowledge and data. They will be computers that can learn,

associate, make inferences, make decisions, and otherwise behave

in ways usually considered the exclusive province of human

reason. Even their name signals the change: knowledge

information processing systenu, or KIPS. KIPS will be the

engines of the information society; mmall, robust and

inexpensive. They will appear as universal appliances, as

commmnplace and easy to use as the telephone.

The project's ten-year plan is divided into three successive-

stages. The first three-year stage is devoted to the development

of a prototype machine, a personal PROLOG workstation that will

have a knowledge base comparable to present-day expert systems

(thousands of rules and thousands of objects) but whose reasoning

powers will be a million logical inferences per second (LIPS), an

order of magnitude imp r ovement over software-based PROLOG

implementations on today's cammnn mainframe computers such as the

DEC 2060. The prototype should be finished sometime this year,

with consilmrcial products due a year or so later. This first

phase is Japan's opportunity to climb the learning curve, and is

explicitly planned for that purpose.

The second four-year stage is for engineering

experimentation, prototyping, continuing experiments at

significant applications, and the initial experiments at systems

291

integration. The first thrust at the major problems of parallel

processing will be done in those years.

The final three-year phase will concentrate on advanced

engineering, building the final major engineering prototypes, and

further systems integration work. The ultimate goal, scheduled

for the early 1990s, is nothing less than an inference

supercomputer, capable of a million to a billion LIPS, with a

knowledge base that can handle tens of thousands of inference

rules and hundreds of millions of objects - about the right size

to encompass the Encyclopedia Britannica. The Japanese will rely

heavily on bootstrapping: the project's earlier work on CAD wilIrq

be used in later hardware design, for example.

Fifth Generation machines will understand spoken, written,

and graphical input. The Japanese are launching intensive

research and development into intelligent interfaces, including

natural language processing, speech understanding, and graphics

and image understanding.

Speech understanding research, for example, will cover

speech wave analysis, semantic analysis, and pragmatic analysis

(which derives understanding by extracting themes in a given

sentence by detecting focus shifts, and so on). Eventually the

machine will be expected to understand continuous human speech

with a vocabulary of 50,000 words and 95 percent accuracy from a

few hundred or more speakers. The speech understanding system is

also expected to be capable of running a voice activated

typewriter, and of conducting a dialogue with users by means of

292

synthesized speech in Japanese or English.

Text analysis is also considered part of natural language

processing by the Japanese, although they are aware that the

techniques used for large-scale text analysis are different from

the techniques needed to smooth the way for an individual user to

talk to a machine. This work also involves a highly mmbitious

machine translation program (initially between English and

Japanese) with a vocabulary of 100,000 words. The goal is 90

percent accuracy (the remaining ten percent to be processed by

humans). Translations will be the product of an integrated

system that takes part in each of the processes from ther4

compilation of the text to printing the translated documents.

Picture and image processing are considered almost as

important as language processing, especially as they contribute

to CAD/CAM and the effective analysis of aerial and satellite

images, medical images, and the like. Eventually the image

understanding system is expected to store about 100,000 images.

In this, as in voice recognition, the Japanese are building on

superb R&D that they did themselves in the 1970s during the

Pattern Information Processing Systems (PIPS) national project.

The Fifth Generation Project has captured the imagination of

computer scientists around the world (almost all major computer

journals carried "special issues" on the Fifth Generation

Project), and even began to attract popular attention (major

articles have recently appeared in NEWSWEEK, TIME, BUSINESSWEEK,

FORTUNE).

293

At the heart of the Fifth Generation Project are KBSs. This

thesis addressed major issues, concepts, and techniques related

to KBSs. As was discussed in Chapter 7, numerous problems exist

in building, maintaining, and modifying large—scale KBSs. In

addition to these, the Fifth Generation Project faces major

challenges in parallel architectures, distributed functions, VLSI

design and fabrication.

REFERENCES

[Addis, 80]. T. Addis, "Towards an Expert Diagnostic System",
ICL Technical Journal, vol. 2, 1980, pp. 79-105.

[Aikins, 80]. "Prototypes and Production Rules: A Knowledge
Representation for Computer Consultations", Ph.D.
Dissertation, Report No. STAN-CS-80-814, Computer Science
Department, Stanford University, Stanford, CA, 1980.

[Anderson & Gillogly, 76]. R. Anderson and J. Gillogly, "The
RAND Intelligent Terminal (RITA) as a Network Access Aid",
Proc. American Federation 9f Information Processing Society
(AFIPS), vol. 45, 1976, pp. 501-509.

[Badre, 73]. N. Badre, "CLET: A Computer Program That Learns
Arithmetic Fram An Elementary Textbook", IBM Research Report,
IRC 4235, 1973.

[Barnett, 75]. J. Barnett, "A Phonological Rules System"eq
Technical Memo, TM-5478/000/00, System Development
Corporation, Santa Monica, CA, 1975.

[Barnett & Bernstein, 77]. J. Barnett and M. Bernstein,
"Knowledge Based Systems: A Tutorial", Technical Report,
TM-(L)-5903/000/000, System Development Corp., Santa Monica,
CA, 1977.

[Barnett, et al, 80]. J. Barnett, M. Bernstein, R. Gillman, and
I. Kameny, "The SDC (System Development Corporation) Speech
Understanding System", in Trends in Speech Recognition, W.
Lea (Ed.), Prentice-Hall, Englewood Cliffs, NJ, 1980, pp.
272-293.

[Barr & Feigenbaum, 81]. A. Barr and E. Feigenbaum, (Eds.), Mt
Handbook of Artificial Intelligence (vols. I and II),
Kaufman, Los Altos, CA, 1981.

[Barstow, 79]. D. Barstow, "Knowledge Engineering in Nuclear
Physics", Proc. Sixth Int'l. Joint Conf. on Artificial
Intelligence (IJCAI-6), 1979, pp. 34-36.

[Bennet & Engelmore, 79]. J. Bennett, and R. Engelmore, "SACON:
A Knowledge-Based Consultant for Structural Analysis", Proc.
Sixth Int'l. Joint Conf. on Artificial Intelligence
(IJCAI-6), 1979, pp. 79-81.

[Bobrow& Winograd, 77]. D. Bobrow and T. Winograd, "An Overview
of KRL, a Knowledge Representation Language", Cognitivp
Science, vol. 1, no. 1, 1977.

294

295

[Brachman & Smith, 80]. R. Brachman and B. Smith, "Special Issue
on Knowledge Representation", SIGART Newsletter, no. 90, Feb.
1980.

[Brachman, 83]. R. Brachman, "What IS-A Is and Isn't: An
Analysis of Taxonomic Links in Semantic Networks", Computer,
vol. 16, no. 10, 1983, pp. 30-36.

[Brown, et al, 83]. J. Brown, R. Burton, and J. de Kleer,
"Knowledge Engineering and Pedagogical Techniques in SOPHIE
(Sophisticated Instructional Environment) I, II, and III", in
Intelligent Tutoring Systems, D. Sleeman, and J. Brown
(Eds.), Academic Press, London, 1983.

[Buchanan, 75]. B. Buchanan, "Applications of Artificial
Intelligence to Scientific Reasoning", Proc. Second USA
Japan Computer Conference, Tokyo, Japan, 1975.

[Buchanan & Feigenbaum, 78]. B. Buchanan and E. Feigenbaum,
"DENDRAL and META-DENDRAL: Their Applications Dimmnsion",
Artificial Intelligence, vol. 11, 1978, pp. 5-24.

[Buchanan & Barstow, 81]. B. Buchanan and D. Barstow, "Maxima
for Knowledge Engineering", Report No. HPP 81-4, Computer
Science Department, Stanford University, Stanford, CA, 1981.

[Buchanan, 82]. B. Buchanan, "New Research on Expert Systems",
in Machine Intelligence (vol 10), J. Hayes, D. Michie, and Y.
Pao (Eds.), Ellis Horwood, Chichester, England, 1982, pp.
269-299.

[Buchanan & Duda, 83]. B. Buchanan and R. Duda, "Principles of
Rule-Based Expert Systems", in Advaces in Computers (vol.
22), M. Yovits (Ed.), Academic Press, New York, NY, 1983.

[Buchanan & Shortliffe, 84]. B. Buchanan and E. Shortliffe

(Eds.), Rule-Based Expert Systems: The MYCIN Experiments of
the Stanford Bturistic frogramming Project, Addison-Wesley,
Reading, MA, 1984.

[Chairniak, et al, 79]. E. Chairniak, C. Riesbeck, and D.

McDermott, Artificial Intelligence Programming, Erlbaum,
Hillsdale, NJ, 1979.

[Chandrasekaran, 79]. B. Chandrasekaran, "Am Approach to Medical
Diagnosis Based on Conceptual Structures", Proc. Sixth
 Joint Conf. Artificial Intelligence (IJCAI-6),
1979.

296

[Chilausky, et al, 76]. R. Chilausky, B. Jacobsen, and R.
Michalski, "Am Application of Variable-Valued Logic to
Inductive Learning of Plant Disease Diagnostic Rules", Proc.
Sixth Annual Int'l. Symp. Multiple-Valued Logic, 1976.

[Clancey, 82]. W. Clancey, "Tutoring Rules For Guiding A Case
Method Dialogue", in Intelligent Tutoring Systems, D. Sleeman
and J. Brown (Eds.), Academic Press, London, 1982.

[Cohen & Feigenbaum, 82]. P. Cohen and E. Feigenbaum, (Eds.),
The handbook of Artificial Intelligence (vol. III), Kaufman,
Los Altos, CA, 1982.

[Davis, et al, 75]. R. Davis, B. Buchanan, and E. Shortliffe,
"Production Rules as Representation for a Knowledge-Based
Consultation Program", Stanford AI Laboratory Memo, AIM-266,
Report No. STAN-CS-75-519, Computer Science Department,
Stanford University, Stanford, CA, 1975.

[Davis, 76]. R. Davis, "Application of Meta Level Knowledge to
the Construction, Maintenance and Use of Large Knawledge!--4
Bases", Ph.D. Dissertation, Stanford AI Laboratory Nkmo,
AIM-283, Computer Science Department, Stanford University,
Stanford, CA, 1976.

[Davis, et al, 77]. R. Davis, B. Buchanan, and E. Shortliffe,
"Production Rules as a Representation for a
Knowledge-Based Consultation Program", Artificial
Intelligence, vol. 8, no. 1, 1977, pp. 15-45.

[Davis & King, 77]. R. Davis and J. King, "An Overview of
Production Systems", in Machine Intelligence (vol. 8), E.
Elock and D. Michie (Eds.), Horwood, Chichester, England,
1977, pp. 300-332.

[Davis, 81]. R. Davis, "The Dipmeter Advisor: Interpretation of
Geological Signals", Proc. Seventh Int'l. Joint Conf. Da
Artificial Intelligence (IJCAI-7), 1981.

[Davis & Lenat, 82]. R. Davis and D. Lenat, Knowledge-Based
Systems in Artificial Intelligence, McGraw—Hill, New York,
NY, 1982.

[Duda & Gashing, 81]. R. Duda and J. Gashing, "Knowledge-Based
Expert Systeum Come of Age", 3YTE, vol. 6, September 1981,
pp. 238-281.

[Englemore & Nii, 77]. R. Englemore and H. Nii, "A
Knowledge-Based System for the Interpretation of Protein
X-ray Crystallographic Data", Report No. STAN-CS-77-589,
Computer Science Department, Stanford University, Stanford,
CA, 1977.

297

[Englemare & Terry, 79]. R. Englemore and A. Terry, "Structure
and Function of the CRYSALIS System", Proc. Sixth Int'l.
Joint Conf. .0ALArtificial Intelligen_ce (IJCAI-6), 1979, pp.
250-256".

[Erman, et al, 80]. L. Erman, F. Hayes-Roth, V. Lesser, and R.
Reddy, "The HEARSAY-II Speech Understanding System:
Integrating Knowledge to Resolve Uncertainty", Camputing
Surveys, vol. 12, no. 2, 1980, pp. 213-253.

[Erman, et al, 81]. L. Erman, P. London, and S. Fickas, "The
Design and an Example Use of HEARSAY-III", Proc. Seventh
Int'l Joint Conf. SulArtificial Intelligence (IJCAI-7), 1981,
pp. 409-415.

[Evans, 64]. A. Evans, "An ALGOL 60 Compiler", in Annual. Review
JILAmtamatic Programming, R. Goodman (Ed.), vol. 4, 1964, pp.
87-124.

[Fagan, et al, 79]. L. Fagan, J. Kunz, E. Feigenbaum, and J.
Osborn, "Representation of Dynamic Clinical Knawledge:,,4
Measurement Interpretation in the Intensive Care Unit", Proc.
Sixth Int'l Joint Conf. anArtificial Intelligence (IJCAI-6),
1979, pp. 260-262.

[Fagan, 80]. L. Fagan, "VM: Representing Timm-Dependent
Relations in a Clinical Setting", Ph.D. Dissertation,
Computer Science Department, Stanford University, Stanford,
CA, 1980.

[Fain, et al, 81]. J. Fain, D. Gorlin, F. Hayes-Roth, S.
Rosenschein, H. Sowizral, and D. Waterman, "The ROSIE
Language Reference Manual", Technical Report No. N-1647-ARPA,
RAND Corporation, Santa Monica, CA, 1981.

[Feigenbaum, 63]. E. Feigenbaum, "Simmlation of Verbal Learning
Behavior", in Computers and Thought, E. Feigenbaum and R.
Feldman (Eds.), McGraw—Hill, San Francisco, CA, 1963, pp.
297-309.

[Feigenbaum, et al, 71]. E. Feigenbaum, B. Buchanan, and J.
Lederberg, "On Generality and Problem Solving: A Case Study
Using the DENDRAL Program", in Machine Intelligence (vol 6),
B. Meltzer and D. Michie (Eds.), Edinburgh University Press,
Edinburgh, 1971, pp. 165-190.

[Feigenbaum, et al, 77]. E. Feigenbaum, R. Englemore, and C.
Johnson, "A Correlation Between Crystallographic Computing
and Artificial Intelligence Research", Acta
Crystallographica, vol. A33, no. 13, 1977.

298

[Feigenbaum &McCorduck, 83]. E. Feigenbaum and P. McCorduck,
The, Fifth Generation: Artificial Intelligence and Japan's
Computer Challenge ID_ the World, Addison-NWsley, Reading, MA,
1983. -

[Feldman, et al, 72]. J. Feldman, J. Low, D. Swinehart, and R.
Taylor, "Recent Developments in SAIL", Report No.
STAN-CS-308, Computer Science Department, and Report No.
AIM-176, AI Laboratory, Stanford University, Stanford, CA,
1972.

[Fikes, et al, 72]. R. Fikes, P. Hart, and N. Nilsson, "Learning
and Executing Generalized Robot Plans", Artificial
Intelligence, vol. 3, 1972, pp. 251-288.

[Filman &HWeyhrauch, 76]. R. Filman and R. Weyhrauch, "Am FOL
Primer", Stanford AI Laboratory Memo AIM-288, AI Laboratory,
Stanford University, Stanford, CA, 1976.

[Floyd, 61]. R. Floyd, "A Descriptive Language for Symbol
Manipulation", Journal of AIM, vol. 8, 1961, pp. 579-584.

[Forgy, 76]. C. Forgy, "A Production SystemMonitor for Parallel
Computers", Computer Science Department, Technical Report,
Carnegie-Mkllon University, Pittsburgh, PA, 1976.

[Forgy & McDermott, 77]. C. Forgy and J. McDermott, "OPS, a
Domain-Independent Production System Language", Proc. Fifth
Int'l. Joint Conf. on Artificial Intelligence (IJCAI-5),
1977, pp 933-939.

[Forgy, 80]. C. Forgy, "The OPS5 User's Manual", Computer
Science Department, Technical Report, Carnegie-Mellon
University, Pittsburgh, PA, 1980.

[Fox & Rector, 82]. J. Fox and A. Rector, "Expert Systems for
Primary Medical Care?", Automedica, vol. 4, no. 2 & 3, 1982,
pp. 123-130.

[Genesereth, 78]. M. Genesereth, "Automated Consultation for
Complex Computer Systems", Ph.D. Dissertation, Harvard
University, Cambridge, MA, 1975.

[Gevarter, 83]. W. Gevarter, "Expert Systems: Limited but
Powerful", Spectrwm, 1983.

[Goldberg & Weiss, 80]. R. Goldberg and S. Weiss, "An
Experimental Transformation of a Large Expert System
Knowledge-Base", Working Paper, Department of Computer
Science, Rutgers University, New Brunswick, NJ, 1980.

[Goldman, 78]
Sciences
Angeles,

[Green, 69].

299

. N. Goldman, "AP3 User's Guide", Information
Institute, University of Southern California, Los

CA, 1978.

C. Green, "The Application of Theorem-Proving to
Question-Answering Systems", Proc. First Int'l Joint Conf.
milArtificial Intelligence (IJCAI-1), 1969, pp. 219-237.

[Greiner & Lenat, 80]. R. Greiner and D. Lenat, "A
Representation Language Language", Proc. American Association
of Artificial Intelligence, (AAAI), vol. 1, 1980, pp.
165-169.

[Hanson & Riseman, 78]. A. Hanson and E. Riseman, "VISIONS: A
Computer System for Interpreting Scenes", in Computer Vision
Systems, A. Hanson and E. Riseman (Eds.), Academic Press, New
York, NY, 1978.

[Hart, et al, 68]. P. Hart, N. Nilsson, and B. Raphael, "A
Formal Basis for the Heuristic Determination of Minimum Cost
Paths", IEEE Transactions on System Science Cybernetics,
4, no. 2, 1968, pp. 100-107.

[Hart, et al,
Computer
Technical

78]. P. Hart, R. Duda, and M. Einaudi, "A
Based Consultation System for Mineral Exploration",
Report, SRI International, Menlo Park, CA, 1978.

[Hayes-Roth, et al, 83]. F. Hayes-Roth, D. Waterman, and D.
Lenat, (Eds.) Building Expert Systems, AddisonWesley,
Reading, MA, 1983.

[Heiser, et al, 78]. J. Heiser, R. Brooks, and J. Ballard,
"Progress Report: A Computerized Psychopharmacology Advisor",
Proc. 111k Collegium Internationale
Neuro-Psychopharmacologicum, Vienna, Austria, 1978.

[Hendrix, 77]. G. Hendrix, "LIFER: A Natural Language Interface
Facility", Proc. Fifth Int'l. Joint Conf. on Artificial
Intelligence (IJCAI-5), 1977, pp. 183-191.

[Hewitt, 71]7 C. Hewitt, "Description and Theoretical Analysis
(Using Schemas) of PLANNER: A Language for Proving Theorems
and Manipulating Models in a Robot", Ph.D. Dissertation, AI
Laboratory, Massachusetts Institute of Technology, Cambridge,
MA, 1971.

[Hewitt, 84]. C. Hewitt, "Design Issues in Parallel
Architectures for Artificial Intelligence", Proc. Seventeenth
Hawaii Int'l. Conf. .0.2.5sAigin Sciences (HICSS-17), vol. 1,
1984, pp. 418-423.

;.;

OF POOR QUALITY 300

[Klahr, 78]. P. Klahr, "Planning Techniques for Rule Acquisition
in Deductive Question Answerings", in Pattern Directed
Inference Systems, D. Waterman and F. Hayes-Roth, (Eds.),
Academic Press. New York, NY, 1978.

[Kuipers, 75]. B. Kuipers, "A Frame for Frames: Representing
Knowledge for Recognition", in Representation
Understandin,': '.S:dies in Coz.nitive Science D. Bobrow and A.
Collins (Eds.). Academic Press, New York, NY, 1975.

[Kunz, et al, 78]. J. Kunz, R. Fallat, D. McClung, J. Osborn, B.
Votteri, H. Nii, J. Aikins, L. Fagan. and E. Feigenbaum. "A
Physiological Rule-Based System for Interpreting Pulmonary
Function Test Results", Report No. HPP-78-19, Computer
Science Department, Stanford University, Stanford, CA, 1978.

[Larkin, et al, 80j. J. Larkin, J. McDermott, D. Simmn, and A.

Simmn, "Expert and Novice Performance in Soiving Physics
Problems", Science, vol. 208, no. 6, 1980, pp. 1335-1342.

[Le Faivre, 77]. R. Le Faivre, "FUZZY Reference Manual",
Computer Science
Brunswick, NJ, 1977.

Departmmnt, Rutgers University, New

[Lowerre & Reddy, 80]. B. Lowerre and R. Reddy, "The HARPY
Speech Understanding System", in Trends IA Speech
Recognition, W. Lea (Ed.), Prentice-Hall, Englewood Cliffs,
NJ, 1980, pp. 340-360.

[Malhotra, 75]. A. Malhotra, "Knowledge-Based English Language
System for Management Support: Analysis of Requirements",
Proc. Fourth Int'l. Joint Conf. _an. Artifisial Intelligence
(IJCAI-4), 1975, pp. 842-847.

[Martin, et al, 77]. N. Martin, P. Friedland, J. King, and M.
Stefik, "Knawledge-Base Management for Experimmnt Planning in
Molecular Genetics", Proc. Fifth Int'l. Joint Conf. jai.

Artificial Intelligence (IJCAI-5), 1977, pp. 882-887.

[McCalla & Cercone, 83]. G. McCalla and N. Cercone, "Approaches
to Knowledge Representation", Computer, vol. 16, no. 10,
1983.

[McDermott, 74]. D. McDermott, "Assimilation of New
Information", MIT AI Laboratory Report No. AI-TR-291,
Massachusetts Institute of Technology, Cambridge, MA, 1974.

[McDermott, 80]. J. McDermott, "RI: An Expert in the Computer
Systems Damain", Proc. American Association al Artificial

Intelligence (ek.A.A1), 1980, pp. 269-271.

301

[McDermott & Steele, 81]. J. McDermott and B. Steele,
"Extending a Knowledge Based System to Deal With Ad hoc
Constraints", Proc. Seventh Int'l. Joint Conf. on.
Artificial Intelligence (IJCAI-7), 1981.

[McDermott, 82]. J. McDermott, "XSEL: A Computer Salesperson's
Assistant", in Machine Intelligence (vol. 10), J. Hayes, D.
Michie, and Y. Pao (Eds.), Ellis Horwood, Chichester,
England, 1982.

[Michie, 82]. D. Michie, "Expert Systems", Computer Journal,
vol. 23, no. 4, 1982, pp. 369-376.

(Michie, 84]. D. Michie (Ed.), Introductory Readings in Expert
Systems, Gordon and Breach, New York, NY, 1984.

[Miller, 73]. P. Miller, "A Locally-Organized Parser for Spoken
Input", Ph.D. Dissertation, Massachusetts Institute of
Technology, Cambridge, MA, 1973.

[Minsky, 75]. M. Minsky, "A Framework for Representing-
Knuwledge", in The Psychology of Computer Vision, P. Winston
(Ed.), McGraw-Hill, New York, NY, 1975, pp. 211-277.

[Moses, 71]. J. Moses, " Symbolic Integration: The Stormy
Decade", Comm..pi MIA, vol. 14, no. 8, 1971.

[Moses, 75]. J. Moses, "A MACSMVIA Primer", Mathlab Nkino No. 2,
Computer Science Laboratory, MIT, Cambridge, MA, 1975.

[Mylopoulos, et al, 75]. J. Mylopoulos, A. Borgida, P. Cohen, and
N. Roussopoulos, "TORUS - A Natural Language Understanding
System for Data Management", Proc. Fourth Int'l Joint Conf.
_am. Artificial Intelligence (IJCAI-4), 1975, pp. 414-421.

[Nau, 83]. D. Nau, "Expert Computer Systems", Computer , vol.
16, no. 2, 1983.

(Newell & Simon, 72]. A. Newell and H. Simon, Human Problem
Solving, Prentice-Hall, Englewood Cliffs, NJ, 1972.

[Nii & Feiginbaum, 78]. H. Nii and E. Feigenbaum, "Rule-Based
Understanding of Signals", in Pattern-Directed Inference
Systems, D. Waterman and F. Hayes-Roth (Eds.), Academic
Press, New York, NY, 1978.

[Nii & Aiello, 79]. H. Nii and N. Aiello, "AGE (Attempt to
Generalize): A Knowledge-Based Program for Building
Knowledge-Based Programs", Proc. Sixth Int'l. Joint Conf. sal
Artificial Intelligence (IJCAI-6), 1979, pp. 645-655.

302

[Nii, et al, 82]. H. Nii, E. Feigenbamm, J. Anton, and A.
Rochmore, "Signal to Symbol Transformation: HASP/SIAP Case
Study", Al_Magazine, vol. 3, no. 2, 1982, pp. 23-35.

[Nilsson, 71], N. Nilsson, Problem Solving Methods la Artificial
Intelligence, McGraw-Hill, San Francisco, CA, 1971.

[Nilsson, 80]. N. Nilsson, Principles of Artificial Intelligence,
Tioga Publishing Co., Palo Alto, CA, 1980.

[Osborn, 79]. J. Osborn, lYlanaging the Data from Respiratory
Measurements", Medical Instrumentation, vol. 13, no. 6, 1979.

[Pople, 77]. H. Pople, "The Formation of Composite Hypotheses
in Diagnostic Problem Solving: An Exercise in Synthetic
Reasoning", Proc. Fifth Int'l. Joint Conf. Artificial
Intelligence (IJCAI-5), 1977.

[Pople, 81]. H. Pople, "Heuristic Methods for Imposing Structure
on I11-structured Problems: The Structuring of Medical
Diagnostics", in Artificial Intelligence in Medicine, P.—
Szolovitz (Ed.), Westview Press, Boulder, Colo., 1981, pp.
119-185.

[Popplestone, 67]. R. Popplestone, "The Design Philosophy of
POP-2", in Machine Intelligence (vol. 3), D. Michie (Ed.),
Edinburgh University Press, Edinburgh, 1967, pp. 393-402.

[Ralston, 76]. A. Ralston (Ed.), Encyclopedia of Computer
Science, Van Nostard, New York, NY, 1976.

[Reddy, et al, 73]. R. Reddy, R. Fennell and R. Neely, "The
HEARSAY Speech Understanding System: An Example of the
Recognition Process", Proc. Third Int'l. Joint Conf. on
Artificial Intelligence (IJCAI-3), 1973, pp. 185-193.

[Reddy, 75]. R. Reddy, (Ed.) Speech Recognition: Invited Papers
ILL IEEE 53=LLiwn, Academic Press, New York, NY, 1975.

[Reiter, 81]. J. Reiter, "AL/X: An Inference System for
Probabilistic Reasoning", Ph.D. Dissertation, Computer
Science Department, University of Illinois, Urbana, IL, 1981.

[Rumelhart, 76]. D. Rumelhart, "Toward an Interactive Model of
Reading", Technical Report No. 56, Center for Human
Information Processing, University of California, San Diego,
CA, 1976.

[Sacerdoti, 75]. E. Sacerdoti, "A Structure for Plans and
Behavior", Technical Note 109, AI Center, SRI International
Inc., Menlo Park, CA, 1975.

303

[Scott, et al, 77]. A. Scott, W. Clancey, R. Davis, and E.
Shortliffe, "Explanation Capabilities of Knowledge-Based
Production Systems", American Journal of Cmmputational
Linguistics, vol. 62, 1977.

[Shortliffe, 76]. E. Shortliffe, Computer-Based Medical
Consultations: MYCIN, American Elsevier, New York, NY, 1976.

[Shortliffe & Buchanan, 75]. E. Shortliffe and B. Buchanan, "A
Model of Inexact Reasoning in Medicine", NWthematical
Biosciences, vol. 23, 1975, pp 351-379.

[Shortliffe, et al, 81]. E. Shortliffe, A. Scott, M. Bischoff,
A. Campbell, W. Van Melle, and C. Jacobs, "ONCOCIN: An Expert
System for Oncology Protocol Management", Proc. Seventh
Int'l. Joint Conf. on Artificial Intelligence (IJCAI-7),
1981, pp. 876-881.

[Stallman & Sussman, 77]. R. Stallman, G. Sussman, "Forward
Reasoning and Dependency-Directed Backtracking in a System.
for Computer-Aided Circuit Analysis", Artificial
Intelligence, vol. 9, 1977, pp. 135-196.

[Stefik &Martin, 77]. M. Stefik and N. Martin, "A Review of
Knowledge-Based Problem Solving as a Basis for a Genetics
Experiment Design System", Computer Science Department,
Heuristic Programming Project Memo HPP-75-5, Stanford
University, Stanford, CA, 1977.

[Stefik, 78]. M. Stefik, "Inferring DNA Structures from
Segmentation Data", Artificial Intelligence, vol. 11, 1978,
pp. 85-114.

[Stefik, 80]. M. Stefik, "Planning with Constraints", Technical
Report No. 784, Computer Science Department, Stanford

University, Stanford, CA, 1980.

[Stefik, et al, 82]. M. Stefik, J. Aikins, R. Blazer, J. Benoit,
L. Birnbaum, F. Hayes-Roth, and E. Sacerdoti, "The

Organization of Expert Systems: A Tutorial", Artificial

Intelligence, vol. 18, 1982, pp. 135-173.

[Sussman &NIcDermott, 72]. G. Sussman and D. McDermott, "From

PLANNER to CONNIVER: A Genetic Approach", American Federation

sa. Information Processing Society (AFIPS), 1972, pp.
1171-1180.

[Sussman, 77]. G. Sussman, "Electrical Design: A Problem for

Artificial Intelligence Research", Proc. Fifth Int'l. Joint

Conf. on Artificial Intelligence (IJCAI-5), 1977, pp.

894-900.

304

[Swartout, 77]. W. Swartout, "A Digitalis Therapy Advisor With
Explanations", Proc. Fifth Int'l. Joint Conf. on Artifici&I
Intelligence (IJCAI-5), 1977, pp. 819-825.

[Teitelman, 72]. W. Teitleman, "Do What I Mean (WHIM): The
Programmer's Assistant", in Computers and Automation, W.
Teitleman (Ed.), Prentice-Hall, Englewood Cliffs, NJ, 1972.

[Teitelman, 78]. W. Teitelman, "INTERLISP Reference Manual",
XEROX PARC, Palo Alto, CA, 1978.

[Tversky, 72]. A. Tversky, "Elinaination by Aspects: a Theory of
Choice", Psychological Review, vol. 79, 1972, pp. 281-299.

[Van Melle, 79]. W. Van Melle, "A Damain-Independent Producton
Rule System for Consultation Programs", Proc. Sixth Int'l.
Joint Conf. nn.Artificial Intelligence (IJCAI-6), 1979, pp.
923-925.

[Van Melle, et al, 81]. W. Van Melle, E. Shortliffe, and B.
Buchanan, "EMYCIN: A Domain-Independent System That Aids In.
Constructing Knowledge Based Consultation Programs", in
Machine Intelligence (vol. 9), Infotech State of the Art
Report 9, no. 3, Pergamon Infotech, Maidenhead, England,
1981.

[Weiss, 78]. S. Weiss, "A Model-Based Method for Computer-Aided
Medical Decision-Making", Artificial Intelligence, vol. 11,
no. 2, 1978.

[Weiss & Kulikowski, 79]. S. Weiss and C. Kulikowski, "EXPERT:
A System for Developing Consultation Models", Proc. Sixth
Int'l. Joint Conf. on Artificial Intelligence (IJCAI-6),
1979, pp. 942-947.

[Weiss, 81]. S. Weiss, "Expert Consultation Systems: The EXPERT
and CASNET Projects", in Machine Intelligence (vol. 9),
Infotech State of the Art Report 9, no. 3, Pergamon Infotech,
Maidenhead, England, 1981.

[Weizenbawm,66]. J. Weizenbaum, "ELIZA: A Computer Program for
the Study of Natural Language Communication Between Man and
Machine", CAM, vol. 9, no. 1, 1966, pp. 36-45.

[Wiederhold, 84]. G. Widerhold, "Knowledge and Database
Management Systems", Software, vol. 1, no. 1, 1984.

[Winograd, 72]. T. Winograd, Understanding Natural LAAgnAzg,
Academic Press, New York, NY, 1972.

305

[Winograd, 75]. T. Winograd, "Frame Representations and the
Declarative/Procedural Controversy", in Represeniation and
Understanding: Studies in Cognitive Science, D. Bobrow, A.
Collins (Eds.), Academic Press, New York, NY, 1975, pp.
188-210.

[Winston, 77]. P. Winston, Artificial Intelligence,
Addison-Wesley, Reading, Mai, 1977.

[Wipke, et al, 77]. W. Wipke, H. Braun, G. Smith, F. Choplin,
and W. Sieber, "SECS (Simulation and Evaluation of Chemical
Synthesis): Strategy and Planning", in Comnuter Assisted
Organic Synthesis, W. Wipke and W. House (Eds.), American
Chemical Society, Washington, DC, 1977, pp. 97-127.

[Wolf &Woods, 80]. J. Wolf and W. Woods, "The HWIM Speech
Understanding System", in Trends in Speech Recognition, W.
Lea (Ed.), Prentice-Hall, Englewood Cliffs, NJ, 1980, PP-
310-339.

[Woods, 73a]. W. Woods, "An Experimental Parsing System for-
Transition Network Grammars", in Natural Language Processing,
R. Rustin (Ed.), Algorithmics Press, New York, NY, 1973, pp.
111-154.

[Woods, 73b]. W. Woods, "Progress in Natural Language
Understanding: An Application to Lunar Geology", Ammrican
Federation of Information Processing Society (AFIPS), vol.
42, 1973, pp. 441-450.

[Yu, et al, 79]. V. Yu, L. Fagan, S. Wraith, W. Clancey, A.
Scott, J. Hannigan, R. Blum, B. Buchanan, S. Cohen, R. Davis,
J. Aikins, W. Van Melle, E. Shortliffe, and S. Axline,
"Antimacrobial Selection for Meningitis by a Computerized
Consultant - A Blinded Evaluation by Infectious Disease
Experts", Journal _ol:Anmrican Mkdical Association, vol. 241,
1979.

[Zadeh, 75]. L. Zadeh, "The Concept of a Linguistic Variable and
its Application to Approximate Reasoning - I", Information
Sciences, vol. 8, no. 3, 1975, pp. 199-249.

ABSTRACT

After being in a relatively dormant state for many years,

only recently is artificial intelligence (AI) - that branch of

computer science that attempts to have machines emulate

intelligent behavior - accomplishing practical results. Most of

these results can be attributed to the design and use of

Knowledge-Based Systems, KBSs (or expert systems) - problem

solving computer programs that can reach a level of performance

comparable to that of a human expert in some specialized problnn

domain [Nau, 83]. These systems can act as a consultant for-

various requirements like medical diagnosis, military threat

analysis, project risk assessment, etc. These systems possess

knowledge to enable them to make intelligent decisions. They

are, however, not meant to replace the human specialists in any

particular domain.

In this thesis, a critical survey of recent work in

interactive KBSs is reported, explaining KBS concepts and issues

and techniques used to construct KBS. Application considerations

to construct KBSs and potential future research areas in KBSs are

identified.

A case study (MYCIN) of a KBS, a list of existing KBSs, and

an introduction to the Japanese Fifth Generation Computer Project

are provided as appendicies. Finally, an extensive set of

KBS-related references are provided at the end of this report.

306

BIOGRAPHICAL SKETCH

Srinu Kavi was born in on . He

attended Andhra University and Indian Institute of Science. He

has a Masters degree in Physics from IISc, Bangalore, in 1980.

He came to the University of Southwestern Louisiana in 1982,

pursuing graduate studies in Computer Science, with a focus on

Management Information Systems.

307

/
1. Report No.

/ /1/ — 9.2-

2. Government Accession No. /rj LI-J-5-

°"744/ 73 W

3. Recipient's Catalog No.

4. Title and Subtitle
_, e)

USL/NGT-19-010-900: KNOWLEDGE BASED SYSTEMS: A CRITICAL
SURVEY OF MAJOR CONCEPTS, ISSUES, AND TECHNIQUES

5. Report Date D,4 7 -"-

December 11, 19840,t,?,4W)e-

6. Performing Organization Code

_
7. Author(s) _

SRINU KAVI

8. Performing Organization Report No.

10. Work Unit No.

9. Performing Organization Name and Address

University of Southwestern Louisiana
The Center for Advanced Computer Studies
P.O. Box 44330
Lafayette, LA 70504-4330

11. Contract or Grant No.

NGT-19-010-900

13. Type of Report and Period Covered

FINAL; 07/01/85 - 12/31/8712. Sponsoring Agency Name and Address

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This Working Paper Series entry presents a detailed critical survey of knowledge based systems.
After being in a relatively dormant state for many years, only recently is artificial intelligence (AI) -
that branch of computer science that attempts to have machines emulate intelligent behavior -
accomplishing practical results. Most of these results can be attributed to the design and use of
Knowledge-Based Systems, KBSs (or expert systems) - problem solving computer programs that can
reach a level of performance comparable to that of a human expert in some specialized problem
domain. These systems can act as a consultant for various requirements like medical diagnosis, mili-
tary threat analysis, project risk assessment, etc. These systems possess knowledge to enable them to
make intelligent decisions. They are, however, not meant to replace the human specialists in any
particular domain. In this thesis, a critical survey of recent work in interactive KBSs is reported,
KBSs are identified. A case study (MYCIN) of a KBS, a list of existing KBSs, and an introduction to
the Japanese Fifth Generation Computer Project are provided a.s appendices. Finally, an extensive
set of KBS-related references are provided at the end of this report.

This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's
Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in
using this report out of the context of the full Final Report.

_ -

17. Key Words (Suggested by Author(s))

Knowledge—Based Systems, Informa—
tion Storage and Retrieval Systems

18. Distribution Statement

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

306

22. Price.

For sale by the National Technical Information Service, Springfield, Virginia 22161

