
I N A S A I I N A S A I

-
* * 8 * * * * * * * * * * * * 8 * * * * * * * * 8 8 8 8 8 * 8 * * 8 8 8 * * * 8 8 8 * 8 8 * * * 8 8 * * 8 8 8 8 8 8

8 8

8 8

8 8

-

8 U S L / D B M S N A S A / R E C O N 8

W O R K I N G P A P E R

Report N u m b e r

D B U L S . N A S A / R E m - 2 1

S E R I E S

r r , 4 8 8

D b C 8 8
&tern

1 O Q @ O G U l
(bM. C?N
er U \ o
r+ rr) I.W-
fD o a m
k r J h M

I+U Dp m e x m
O , I * W
ntn m u * 06

P,* . lr T h e U S L / D W N A S A I R E m W o r k i n g Paper Series contains a a@ WB, m u - collection of reports representing results of activities being
m $ c g conducted by the C e n t e r for Advanced Computer Studies of the

0 +I * +n U n i v e r s i t y of Southwestern Louisiana pursuant to the
hC) (n*!
n ~ a - r P specifications of National Aeronautics and Space Administration c. a m ma, tl C o n t r a c t N u m b e r NASW-3846. T h e w o r k on this contract i s being
z r 4 z g performed jointly by the University of Southwestern Louisiana and

* 8 * * * * * * * * * * * * * * 8 * * 8 * * * * * . * . * * * * * 8 8 * 8 * * * * 8 8 8 * * * 8 * * * * 8 * * * 8 8 8 * * -

- -
w EI b ' i S o u t h e r n University.
GOI
e. $R

For m o r e information, contact:

W a y n e D. D o m i n i c k

Editor
U S L / D W NASAIRECON W o r k i n g Paper Se'ries

C e n t e r for Advanced Computer S t u d i e s
University o f Southwestern L o u i s i a n a

P. 0. Box 44330
Lafayette, Louisiana 70504

KARL: A KNCWLEDGE-ASSISTED RETRIEVAL LANGUAGE

A T h e s i s

Presented to

T h e G r a d u a t e Faculty of

T h e U n i v e r s i t y of Southwestern L o u i s i a n a

In Partial Fulfillment of the

Requirements for the D e g r e e

M a s t e r of Science

S p i r o s Triantafyllopoulos

F a l l 1985

-
KARL: A IC*('OWLEDGE ASSISTED RETRIEVAL LANGUAGE

by

Spiros Triantafyllopoulos

APPROVED:

D r . N a y n e D. Do m i n i c k Dr. L o i s M. L. Delcambre
A s s o c i a t e P r o f e s s o r
C e n t e r € o r A d v a n c e d
C o m p u t e r Studies

A s s i s t a n t P r o f e s s o r
C e n t e r for A d v a n c e d
Computer Studies

Dr. Joan T. C a i n
$fz7k&dL

Dr. William R. Edwadds
Associate P r o f e s s o r D e a n , Graduate School
C e n t e r f o r A d v a n c e d
C o m p uter Studies

I wish to express my appreciation to my comnittee

chairman and advisor, Dr. Wayne D. Dominick, for his time and

effort during the development of this thesis. His support

throughout my graduate studies has been invaluable. I would

also like to thank my comnittee members, Dr. Lois M.

Delcambre and Dr. William R. Edwards, for helpful suggestions

during the preparation of the thesis.

The National Aeronautics and Space Administration (NASA)

deserves my appreciation for the funding I received as a

Research Assistant from January to December 1 9 8 4 , under NASA

Contract Number NAW-3846, “NASA/RECON: Course Development,

Evaluation and Administration”.

M r . Patrick Landry and the staff of the Computer

Research Laboratory deserve my appreciation for technical

advice, suggestions and valuable discussions. M y fellow

graduate students I-Hsiung Liu, Carlos Pena, Suzy Gallagher

and Frank Chum made useful comnents on this work. Finally,

special thanks go to my fiancee, Jinous Bassari, f o r her

support and encouragement.

i i

TABLE OF CONTENTS
.

ACKNC)WLEDGMENTS .. i i

LIST OF FIGURES .. v i i

LIST OF ~ L E S ... ix

CHAPTER PAGE

1 INTRODUCTION .. 1

2 BACKGROUND .. 4

2.1 THE (XMVlUNICATIONS HIERARCHY 4
2.2 EARLY DATAl"IPULATI0N TECHNIQUES 5
2.3 DATABASE MANAGEMENT SYSTEMS 6

2.4 ACCESSING THE DATABASE 9

2.5 NATURAL. LANGUAGE DATABASE QUERYING 10
2.6 MAN-MACHINE INTERACTI<JN CONSIDERATIONS 12
2.7 NATURAL LANGUAGE DATABASE FRONT ENDS 15
2.8 EXISTING NL SYSTEUT AND PROBLEMS 17
2.9 GENERIC DESIGN OBJECTIVES 28

i

3 THE HIGH LEVEL DESIGN OF KARL 31

3.1 INTRODUCTI(BJ 31

3.2 GENERIC OBJE(;TIVES REVISED 31

i i i

3.3 SPECIFIC OBJECTIVES 34

3.4 SYSTEM K N W E D G E 35

3 . 5 GRAhMATICAL CONSTRUCTS HANDLING 38

.

.

3.6 SYNTACTIC PATTERN RECOGNITION 40
3.7 SEMAhTIC VERIFICATION 43

3.7.1 DATABASE RELATED VERIFICATION 44
3.7.2 LIWUISTIC RELATED VERIFICATION 46

3.8 LEARNING CAPABILITIES 47

3.9 ELLIPSIS AND AMBIGUITY HANDLING 49
3.10 AN OVERVIEWOF THE QUERY PROCESS CYCLE 52

3.10.1 LEXICAL ANALYSIS 53

3.10.2 SYNTACTIC ANALYSIS 54

3.10.3 SEMANTIC ANALYSIS 55

3.10.4 FORMAL QUERY GENERATIOX 55
3.10.5 FORMAL QUERY EVALUATION 56

3.11 K N W E D G E AND QUERY PROCESSING 56
3.12 HIGH-LEVEL DESIGN OVERVI 58

4 Lm-LEVEL DESIGN AND IMpLhlENTATI ON 61
4.1 THE PROTOTYPE FRAMENOW 61

4.2 LW-LEVEL DESIGNMETHODOLOGY 62
4.3 DATA STRUCIVRES 65

4.3.1 QUERY REPRESENTATION 65

4.3.2 KNCWLEDGE REPRESENTATION 67
4.4 LEXICAL AM) GRAbM4.R ANALYSIS 7 2

4.5 SYNTACTIC ANALYSIS AND VERIFICATION 77

i v

. 4 . 5 . 1 TOKEN IDENTIFIER TSPES 80

4 . 5 . 2 TOKEN SEQUENCES 8 1

4 . 5 . 3 SYNTACTIC VERIFIER IMPLEMENTAT1 (M 83

4 . 6 SEMANTIC VERIFICATION 8 4

4 . 6 . 1 LINGUISTIC SEMANTIC ANALYSIS 8 6

4 . 6 . 2 DATABASE SEMANTIC VERIFICATION 88

4 . 7 FORMAL QUERY GENERATION AND EVALUATION 9 2

4 . 8 mDULE INTERCONNECTION 9 6

4 . 8 . 1 INTERNAL CONNECTIONS 9 6

4 . 8 . 2 EXTERNAL CONNECTIONS 100

4 . 9 ANNOTATED EXAMPLES OF QUERY PROCESSING 1 0 2

4 . 1 0 CHAPTER CONCLUSIONS 1 0 5

.

5 DESIGN EVALUATION AND FUTURE ISSUES 1 0 7

5 . 1 DESIGN EVALUATION OBJECTIVES 1 0 7

5 . 2 EVALUATION OF GENERIC OBJECTIVES FULFILLMENT ... 108

5 . 3 EVALUATION OF SPECIFIC OBJECXIVES FULFILIMENT .. 110

5 . 4 FUNCTIONAL EVALUATION OF SYSTEM PERFORMANCE 113

5 . 5 CURRENT STATUS AND FUTURE UORK 119

6 CONCLUSIONS ... 1 2 4

REFERENCES ... 128

APPFNDIX A SAMPLE DATABASE AND KN<IWLEDGE BASE 133

APPENDIX B SAMPLE SESSIONS OF KARL USAGE 1 4 0

V

~ S T R A ~ , ..144

BIOGRAPHICAL SKET CH......................................145

v i

.

. LIST OF FIGURES

F 1 GURE PAGE

1 . Computer Language Hierarchy 4

2 . Language Orientation 10

3 . Sample D W Schema 11

4 . Natural and Formal Language Queries 12

5 . Formal vs . Natural Language Query 15

6 .
7 .
8 .
9 .
10 .
11 .
12 .
13 .
14 .
15 .
16 .
17 .
1 8 .
19 .
2 0 .
2 1 .

Gramnatical Transformations 39

Recursive Transition Network (RTN) 42

Database Related Semantic Errors 45

Linguistic Semantic Inconsistencies 47

Ellipsis Handling Capabilities in KARL 5 1

The NL Query Processing Cycle 5 8

Structure of NL Query Storage Area 66

A Sample Query and its Representation 67

Dynamic Knowledge Representation Schema 6 9

Lexical Analysis o f Input Query 75

Graxxnatical NL Query Processing 76

Sample Patterns and Queries 82

Sample LEX Scanner Specifications 8 4

Linguistic Semantic Verification Flow Chart 88

DBbZS Semantic Verification Flow Chart 89

Integration of Semantic Verification Submodule 9 0

vi i

22 . Sample Semantic Verification Rules 91
23 . "Blank" and QUEL Formal Q u e r y Formats 95
24 . Typical C o m p i l e r O r g a n i z a t i o n 97

25 . KARL Structure O r g a n i z a t i o n 98

26 . I n t e r - S y s t e m O r g a n i z a t i o n 100

2 7 . Hendrix's Capabilities and KARL Performance 116

viii

.

. LIST OF E X W L E S

EXAMPLE PAGE

1 . Q u e r y with Simple Ellipsis 102

2 . Q u e r y w i t h Severe Ellipsis 103

3 . Q u e r y w i t h A d j e c t i v e and N o u n 103-

4 . Q u e r y with N o n - S u p p o r t e d P a t t e r n (Two V e r b s) 104

5 . Q u e r y w i t h Incorrect Semantics (A d j e c t i v e) 105

6 . Query w i t h Incorrect Semantics (Range) 105

ix

KAkL: A KNCWLEDGE-ASSISTED RETRIEVAL UWGUAGE

CHAPTER 1

INTRODUCTION

Av a i l a b i l i t y of computer resources, reduced initial and

operating costs, and simpler operating procedures have all

contributed to the introduction of computers into a w i d e

variety of applications. As the user c o m u n i t y expands, the

number of n o n - c o m p u t e r literate users a l s o increases. W h i l e ,

in the installations of the early years, computers w e r e

"viewed o n l y through glass doors and h a d their own

w h i t e - r o b e d therapists" [Kidder 8 2 1 , many of today's users

neither possess the knowledge necessary to use the computer

efficiently nor are they w i l l i n g to o b t a i n a w o r k i n g

knowledge of applications software, due t o time and other

constraints.

C u r r e n t l y , computers are increasingly used in m o r e

aspects of h u m a n life than ever before. As a consequence,

m o r e a n d m o r e humans come in contact with the computer,

sometimes viewing the m a c h i n e as the panacea that will solve

all their needs. M o r e realistic users, however, w h i l e aware

of the computer's capabilities, sometimes do not possess

skills f o r effective comnunication with the computer, or are

1

2

not able 01 willing to acquire these skills. The so-called

"casual users", - that constitute a significant number of total

users, use the computer in a wide variety of applications,

and sometimes suffer the consequences of training and

retraining for each application. Such applications range from

financial modelling to data comnunications and from

statistical analysis to word processing.

The application that this thesis will concentrate upon

is data retrieval from a database. Data retrieval represents

a major activity o f computers; still, few systems offer -

efficient, user-friendly interfaces. Various comnand

languages, most frequently known as query languages [Ullman

8 2 1 and other systems have been developed [Date 8 3 1 , but

still, for the average user, such systems require a major

comnitment if they are to be utilized properly.

The main problem in the comnunication process between

the user and the system is the "Knowledge Gap", that is, the

contrast between the knowledge that the user has to gather in

order to use the system and the system's inability to obtain

and use knowledge possessed by the user regarding the

particular application. The "knowledge gap" is present in

cases when the user has to learn about the system while the

system is unable to either obtain or use knowledge about the

user.

3

A recsnt survey of people's attitudes towards computers

indicates that many candidate users believe that computers

can solve any problem with very limited human interaction

[Morrison 8 4 1 . Such ideas w e r e introduced by early scientific

predictions and even science fiction [Clarke 7 1 1 . According

to these forecasts, the "almost human" computer comnunicates

with humans in English. Having been exposed to such ideas,

future users find i t difficult to adjust to the existing

technology that usually does not adapt to them and, as a

result, do not use the computer to i t s full potential.

-

Such predictions, however, indicate that English is the

most efficient way of comnunicating between a non-computer

expert and the computer. In the field o f data retrieval,

there have been several programs that allow user-machine

interaction in restricted English, with excellent results

[Mylopoulos 7 6 ; Eisenberg 8 4 1 . The application o f computer

science areas such as Artificial Intelligence, as well as of

interdisciplinary sciences such as Cognitive Psychology and

Computational Linguistics has produced new methods that

improve the data retrieval process to a large extent. This

thesis will present such a system, the Knowledge Assisted

Retrieval Language (KARL), that attempts to provide a

solution to the problem o f man-machine interaction during the

process of retrieving data from a database.

CHAPTER 2

B A C K G R O U N D

Conxnunication between a user and the computer c a n be

performed on several different "levels", depending on the

u s e r skills, the computer s y s t e m available, and the task to

be performed. Traditionally, these levels a r e defined as

increments, f r o m m a c h i n e to user convenience, as in Figure 1.

Restricted Natural Languages (PLANES, INTELLECT)
v v v

S p e c i a l P r o b l e m O r i e n t e d Languages (Minitab, Simscript)
v v v

P r o b l e m - O r i e n t e d Programning Languages (P r o l o g , LISP)
v v v

P r o c e d u r e - O r i e n t e d Programning Languages (PL/l, Ad a , BASIC)

v v v
.

M a c h i n e - O r i e n t e d L a n g u a g e s (Assemblers)
v v v

M a c h i n e Languages

Figure 1 C o m p u t e r Language H i e r a r c h y

T h e programning languages m e n t i o n e d in Figure 1

represent a variety o f uses; some are f o r general-purpose

programning, w h i l e others are for a variety Of

4

5

problem-orjented applications o r even very specific

applications such as data retrieval or simulation. Some

overlapping of tasks has been taking place, i.e., the case

where a language i s used for applications other than the ones

for which i t was designed, but typically, task separation

according t o functionality is well defined in the hierarchy

[Pratt 8 3 1 .

-

2 . 2 EARLYDATAMANIPULATIONTECHNIOUES

In the early data management systems, retrieval was

performed by programs written in general-purpose languages of

the time, the most popular ,being COBOL and FORTRAN IV [Date

8 1 1 . Such systems were rather crude for today’s standards,

since they provided none of the characteristics of “modern”

of maintenance, software, i.e., reliability, ease

portability, modifiability, etc., as defined in software

engineering texts [Turner 8 4 ; Somnerville 8 2 1 .

As demands for flexibility and performance increased,

more sophisticated file management systems were developed

that allowed subroutine libraries for coxnnon code segments to

be maintained and offered some type of protection and sharing

[Ullman 8 2 1 . Such systems provided some facilities for

automated organization of data in tabular forms, typically

through a flat-file model. Still, reorganization of the

6

information present, full protection, and data independence

w a s not provided. Such systems, known typically as File

M a n a g e m e n t Systems (FMS), provided facilities for definition,

access and update of indexed files through hashing tables,

B - t r e e s , sequentially or via indices [Wiederhold 77; Theorey

831.

-

2.3 DATABAsE-SYSTEMS

Since user demands for improved computer-based

information systems w e r e continually increasing, D a t a Base

M a n a g e m e n t Systems (DBMS) w e r e introduced, initially for

m a i n f r a m e s and later for smaller systems [Stonebroker 76;

D a t e 81; D a t e 831. DBMS’s offer considerable advantages

compared to file management systems, primarily in the areas

o f integrity, flexibility, and security. E v e n in their early

forms, they provided sophisticated facilities for definition

of data through data m o d e l s , access control through locking

at the database, file, record, or even field levels, data

integrity through language constructs, and reorganization

(restructuring) of data already in the database. Furthermore,

many DIPUIS’s developed w e r e portable in the sense that they

w e r e designed for a variety of environments, and not for a

specific environment.

In the area of data definition, virtually all DIMS’S

7

provide a-facility for defining structured data that reflect

the r e p r e s e n t a t i o n of user information in the database. S u c h

representations w e r e m a d e based on the database type that

specified the m a j o r organization of information in trees,

tables or networks. T h e representation of data, as w e l l as

the a l l o w e d m a n i p u l a t i o n of data contained in the database,

d e p e n d s on the w a y the information i s organized. T h i s i s

especially true in the case of interaction between the user

and the m a c h i n e : the type of database that is used specifies

the a l l o w a b l e operations, w h i c h in turn specify the f o r m o f

user requests that have to be issued in order for a

particular task to be accomplished. T h e r e are three major

d e s i g n philosophies for D M , that resulted in three distinct

D M m o d e l s , as defined in [Ullman 8 2 1 :

-

(1) R e l a t i o n a l M o d e l : B a s e d on mathematical set-theory and

domains/ranges, the relational m o d e l u s e s tables t o

s t o r e data. I t uses a collection o f constructs known a s

t h e schema to indicate the grouping a n d relationship o f

data. T h e relational m o d e l has operations defined that

m a t c h the operations present in set manipulation, as

w e l l a s operations that are used in traditional storage

a n d retrieval of data.

(2) N e t w o r k M o d e l : U s i n g binary, m a n y - t o - o n e relationships,

t h i s m o d e l represents data in simple directed g r a p h

forms. T h e n e t w o r k m o d e l a l s o groups d a t a entities into

sets,-but the set operations are m o r e explicit than the

corresponding ones o n the relational model. T h e network

m o d e l , as defined by the ANSI/SPARC DBTG standard [Date

8 1 1 , provides set concepts such as "owner", "member",

"set type", and others, for expressing the relationship

b e t w e e n data objects. Initially, o n e - t o - m a n y type

relationships w e r e supported, but w i t h the creation of

intersection records and other techniques, m a n y - t o - m a n y

type relationships c a n be represented.

-

(3) H i e r a r c h i c a l M o d e l : This model represents a "forest" -

network, w h e r e only parent-child relationships are

allowed. T h e hierarchical model i s the oldest of the

three m o d e l s of database systems. In the hierarchical

m o d e l , a t r e e - l i k e structure is defined, with a

o n e - t o - m a n y (but not m a n y - t o - m a n y o r m a n y - t o - o n e

capabilities that are found in the n e t w o r k m o d e l)

o r g a n i z a t i o n of data into database records.

T o create a database, a set of descriptors has to be

created. T h e s e descriptors indicate the n a m e s , types, and

o t h e r a t t r i b u t e s of d a t a objects and the relationships

b e t w e e n t h e d a t a objects created. T h e s e descriptors for each

r e c o r d constitute the database schema. S u b s e t s of the

d a t a b a s e c a n a l s o be considered, yielding sub-schemas. T h e

t e r m i n o l o g y depends on the type of database m a n a g e m e n t s y s t e m

that is being used to process the schema, but the concept of

9

database creation is similar in all models. -

AfteP a database is created, i t is typically initialized

from data that has already been collected, or transformed

from previous files. Then, the entire system is turned over

to the users that are going to be using the information

stored. W h i l e such a method of operation is not always

followed, i t represents fairly closely the "modus operandi"

of the database environment.

T o access stored data, typically a request has to be

issued to the database. This system-dependent request, called

a query, has numerous forms, the most conmon ones resembling

programning languages [Epstein 7 9 1 . The user has to either

learn the query language or use the database through a

simplified, application specific interface through a program

or comnand file. There is also the alternative o f using

application programs that invoke the database facilities for

creation and manipulation o f data via existing programning

languages, through embedded code, like EQUEL and Ingres, or

through subroutine calls, like the MRDS system and its

associated "dsl-" calls [Honeywell 761 . Finally, non-language

alternatives exist in the form of questionnaire-style forms,

completed interactively by the user, like the Iwll

10

Query-By-Ejsample system, menu-driven systems such as DBaseII,

and others [Zloof 7 6 ; Date 8 3 1 . -

The hierarchy that w-as mentioned earlier can be

abstracted to two main categories, depending on the

orientation of the languages. Figure 2 shows the generic

classification.

NON- PROCEDLXAL , PROBLEM OR I ENTED LANGUAGES
N L ’ s , Object-oriented, problem-oriented.
Little requirement of computer science
knowledge; knowledge of application required

PROCEDURAL, GENERAL -TYPE LANGUAGES
Most programning languages. Require
knowledge of basic computer science
skills, but no application know-ledge.

Figure 2 Language Orientation

Given a certain task, there i s a collection of metrics,

both software and user-related, that can be applied t o the

language that is used to determine its relative efficiency

(in terms of both human and machine effort). For example,

assume a collection of data exists about airline flights,

with the schema as illustrated i n Figure 3 . The database

model shown is relational, but the terminology and metrics

can be used with other database models.

1 1

+ - - - - - - - - + - - - - - - + - - - - - - + - - - - - - - -
I Flight I From I T o I Depart
I Number I City I City I Time

I 114 I LFT I NOR I l l O O a m
I 023 I LFT I DFW I 1040am
I 112 I DFW I DET I 1245pm
I 122 I NOR I MEM I 0320pm
I I I I

-
+ - - - - - - - - + - - - - - - + - - - - - - + - - - - - - - -

+ - - - - - - - - + - - - - - - - - +
I Arrive I Flight I
I Time I Cost I
+ - - - - - - - - + - - - - - - - - +
I 1145- I 45.00 I
I 1240pm I 78.40 I
I 0220pm I 120.00 I
I 0410pm I 94.00 I
I I I

+ - - - - - - + - - - - - - - - - - - - - + - - - - - - - - - +

I City ICity Name I Airport I
I Code I I Phone I

I LFT I Lafayette I 2341344 I
I NOR I New Orleans I 5789894 I
I DFW I Dallas-Ft.W I 5872565 I
I DET I Detroit I 7642334 I
I MEM I Memphis I 2223443 I
I I I I

- + + - - - - - - + - - - - - - - - - - - - - + - - - - - - - -

Figure 3 Sample DWlS Schema

The above example is adopted from [Date 831. In order to

perform data retrieval using a general-purpose programning

language, as defined by the hierarchy presented earlier, a

full program would have to be written, compiled, tested and

run before the application can be created. Then, the program

created will be only for a very specific application, and new

applications will result in more coding. Although the size of

required 'code would vary, depending on the language, a

natural language (NL) query would typically be much smaller

than a programwriten in a progranming language. The natural

language query shown in Figure 4 is even shorter than its

corresponding formal query.

1 2

NATURAL LANGUAGE QUERY: -

s h o w the flights that leave from Lafayette to D a l l a s
before'1100pm.

FORMAL LANGUAGE QUERY:

retrieve flight w h e r e
(f l t . f r o m = retrieve city.code w h e r e city.name="Lafayette")

(flt.to = retrieve city.code w h e r e city.name="Dallas")

(fit-depart I t "11OOpm")

and

and

print flight

F i g u r e 4 N a t u r a l and Formal Language Q u e r i e s

M o d e r n software m e t h o d o l o g i e s [Freeman 81; B r o w n 761

suggest that a n y application c a n be implemented using any

computer language as the implementation vehicle; a request

f o r the retrieval of data f r o m a collection of d a t a c a n be

implemented in almost any conceivable computer language.

Human e f f i c i e n c y i n the retrieval process, especially as

human time becomes m o r e critical, should be a n important

f u t u r e r e s e a r c h m e t r i c .

In C h a p t e r 1 , the case o f the "casual" user w a s

m e n t i o n e d as the important issue to consider, since the

casual u s e r represents a large percentage o f total

i n f o r m a t i o n s y s t e m usage. As [Dillon 831 reports, computers

h a v e b e e n introduced to a large number of non-computer

13

skilled us_trs who were eventually expected to obtain computer

literacy in order to fully use the machine's capabilities.

However, evidence o f improvement of computer literacy has not

become apparent, in spite o f the wide introduction of

computers in many household- and school-level activities such

as Computer-Aided Learning and games.

-

The focus of this research is the retrieval of

information from on-line databases. Casual users are the most

frequent users of such systems. Typically, casual users

perform relatively simple and/or routine retrieval tasks.

Such tasks, however, still require system-specific knowledge

to be acquired in the form of invocation procedures, conxnand

languages, query formatting and execution, etc.

Since most casual users are neither able or willing to

obtain the necessary knowledge in order to use a database

system effectively, the opposite direction, i.e., enabling

the system t o obtain detailed knowledge about the application

area(s), appears to be a way to bridge the "knowledge gap"

between the user and the machine. Efforts in the area of

user/machine interfaces have produced remarkable results.

For example, the User-Derived-Interface (UDI) reported in

[Good 8 4 1 has capabilities of obtaining knowledge from

specific users and applications, and incorporating the

knowledge obtained through interactive use for later

utilization.

1 4

I t is apparent that the knowledge gap can be bridged

only by supplying the software system with user-derived

knowledge, that is, knowledge from the user’s point of view

regarding the particular application area(s) that the

database contains. Several successful natural language

front-ends exist for comnercially available DW.IS’s, and more

are developed as prototypes of front-ends to other

applications, using similar techniques for translating user

NL requests into system-specific requests. However, the main

problem of such configurations, and in particular in the

field of database systems due to the variety of applications,

is the inability of the system to retarget to different

applications.

-

The result of such characteristics is a system that

performs acceptably on a particular domain, but requires

considerable ”surgery” in order to adapt to a new

environment. The PLANES system is one such example of a

system [Wassermann 8 5 1 . Desiged originally to maintain a

database of airplanes and their associated service and flight

records, PLANES performed well in a near-production level.

Its ”application knowledge”, however, was encoded in the

source code, thus necessitating recoding for use in other

application areas.

15

The 'rationale for a natural language interface for a

D M is simple: increased efficiency of the man-machine

interface through improved comnunication capabilities

[mlopoulos 7 6 ; Good 8 4 ; Salton 831 . Another example will

demonstrate the simplicity of natural language queries, from

the casual user's point of view.

The query o f Figure 5 retrieves salaries and names of

all male employees with salaries more than 18,000 dollars.

The first query is for the INGRES relational database system

[Stonebroker 7 6 ; Epstein 7 9 1 . An equivalent natural language

query is also presented in Figure 5 .

FORMAL QUERY

RANGE OF E IS EMPLOYEE
SELECT (SALARY, NAME)
W E R E (SALARY > 18000 &

PRINT E
SEX = "MALE")

NATURAL LANGUAGE QUERY

PLEASE PRINT THE NAMES AND SALARIES OF ALL MEN
THAT EARNmRE THAN $ 1 8 , 0 0 0 A YEAR

Figure 5 Formal vs. Natural Language Query

Simplification o f the user interface with the database

results i n several improvements t o the process of

comnunication between users and computers. The results that

1 6

are expectsd typically include:

(1) Increased productivity, since the users of the

database(s) will no longer be required to formulate

queries in a non-native (i . e , , formal query) language.

(2) Better system utilization, since users of a NLQS are

expected to be less prone to make syntactic or semantic

errors (using their own natural language, rather than an

unfamiliar formal query language). Such errors can

result in having users re-issue queries without being

sure that they are correct (trial-and-error approach).

System utilization in such cases is thus reduced due to

having users "experiment" in order to perform their

retrieval tasks. Also, a reduction in the amount of

training time required can make more user time available

for productive vs. non-productive work [Logsdon 7 6 1 .

(3) Reduced user frustration, since the conmunication

process is performed in the user's terms rather than in

the system's.

(4) Virtual elimination of a training period. However, a

brief introduction to the system's capabilities and

associated features (i.e., how to "teach" the system new

words, use customized output formatting, etc., if such

are implemented) would be required.

17

(5) Simplsr query structures by allowing the storing and

retrieving, as needed, of expressions or characteristics

in the appropriate gramnatical forms.

-

(6) Improved handling of concepts that appear “natural” to a

human user, such as thesaurus and dictionary support, or

even cross-referencing between records [Salton 8 3 1 .

(7) No need for retraining for new applications or updates

of current applications will be needed. A l s o , a NL DIPvlS

interface can be a part of an integrated NL-based front

end for a variety of applications which all have NL

front-ends, thus elimininating the need to learn several

different comnand procedures [Green 7 6 ; Coombs 7 6 1 .

There are numerous systems that provide a natural

language database front end [Grishman 8 4 1 . However, detailed

case studies o f such systems have indicated a series o f

characteristics that are not desirable. Development time can

be long, even spanning a period of years. Complexity appears

to be a main factor. The task of understanding natural

language (even in restricted forms) is non-trivial;

development o f NL systems has traditionally been extremely

consuming in man-power and resources.

1 8

Other systems suffer from being tailored to a restricted

application domain, and are thus not adaptable to new

applications. F o r example, the BASEBALL or the LUNAR

systems, mentioned in [Wasserman 8 5 1 , while capable of

handling relatively complex queries, could not be ported to

other application domains without major revisions. Knowledge

was essentially "hard-wired" to the effect that modifications

to the source code needed to parse and/or verify the NL query

would be needed, if the application domain were to change.

-

-

Another problem i s portability between different

computer systems and/or supporting software tools (such as

D W hosts, languages, operating systems, etc.). This is also

often true in the case where a NL system is developed in a

research environment, with a "toy" database being supported.

The NL system, if i t is to be useful, must be able to

interface successfully with existing prototype D W ' s or

comnercially available DBUE's.

A number of NL systems have been successful in their

respective domains; some will be briefly presented below in

order to . demonstrate the current state-of-the-art in NL

systems, as well as the general techniques that have been

followed in their implementation. The majority of the systems

that will be discussed are experimental systems while one has

been in production use for several years.

19

O n e _of the early NL front ends for database systems is

the PLANES system. PLANES w a s developed as a front end to a -
large database containing maintainance and flight records for

N a v y planes. I t s m a i n structure w a s an A T N - b a s e d parser that

constructed the network after analyzing sub-patterns (subsets

of the entire sentence, k n o w n as semantic constituents). As

the a p p l i c a t i o n d o m a i n as w e l l as the underlying database

structure w e r e fixed and not subject to changes, the ATN

parser w a s "hardwired" w i t h application-specific knowledge.

S u c h k n o w l e d g e enabled the parser to determine the specific

semantic constituents and, following a continuous left to

right scan, determine the entire NL qu e r y structure a n d

create the ATN. T h e semantic constituents understood by the

parser w e r e fixed and related to the application o n l y ; t h e y

included phrase terms related to time periods, aircraft

types, flight and m a l f u n c t i o n codes a n d identifiers,

m a i n t a i n a n c e actions, and other application-specific phrase

segments.

PLANES w a s able to parse and process a n u m b e r of E n g l i s h

language constructs. I t w a s also capable of identifying and

processing NL queries expressed in statements w h i c h d i d not

f o l l o w exact syntactic rules. Being m o r e semantic than syntax

oriented, PLANES w o u l d ignore m u c h of the underlying gramnar

o f a sentence and use o n l y semantic information present in

the f o r m of the semantic constituents. Implementation-wise,

2 0

PLANES followed a rather inefficient push-down automaton

mechanism - that would often push unacceptable parts of a

sentence for matching without being able to efficiently

recognize return conditions [Tennant 8 1 1 .

One capability that PLANES helped demonstrate as

feasible was i t s handling o f pronoun references and several

types of elliptic queries. If a semantic constituent required

for a query was missing (such as a time period or an aircraft

type) a look-up in a previous query list could retrieve the

missing part(s) of the query and process i t properly. I t s

elliptic and pronoun handling capability can mainly be

attributed to its restricted application domain and

"hardwired" knowledge and database structure. PLANES proved

a rather usable systemwithin its application domain.

RENDEZVOUS is another NL front end designed specifically

for relational database systems, taking into consideration

the database schema and the processing of sub-queries in

order to produce the formal query from the user's input. In

addition, RENDEZVOUS did not follow other systems in

performing'a single transformation of the input NL query into

an intermediate representation and then into the formal

query, but rather followed a number of production rules at

different stages of the query processing.

RENDEZVOUS is implemented as a semantic gramnar system

21

implemented thru production and transformation rules

[Tennant, 8 1 ; Wasserman, 8 5 1 . Repeated application of the

rules would then transform the input NL query into the formal

query. The rules themselves would be implemented as pairs of

constructs; each rule would have a left side (LHS) and a

right side (RHS). Pattern matching would match a subset of

the input query into an LHS, and then the LHS would be

replaced by its corresponding RHS. If no match was obtained,

the next LHS would be tested. In addition, boolean

expressions could be included a s LHS components, thus

allowing conditional replacement. Finally, the RHS could

contain a function call to be executed and the result placed

as the LHS replacement (such as date, location, etc.).

-

RENDEZVOUS was able to initiate clarification dialogues

with the user i f additional information to process the input

queries was required. In most cases there was no real

conversation between the NLQS and the user, but rather a

multiple-choice type interaction where the program would

display the possible interpretations and the user would be

prompted to select one. In other cases (such as misspelled

words) the user would be prompted to key in the word again.

Finally, if the conceptual information presented i n the query

was incomplete, the program would prompt for additional

statements instead o f processing the query imnediately. Then,

whatever the user typed as part of a continuation dialog

2 2

either wa_s added to the current query or replaced statements

that already existed. -

Several rule classes w e r e provided for the processing of

input queries; however, little flexibility w a s provided for

adding rules to the rule base or m o d i f y i n g existing rules.

Rule classes w e r e applied o n e - a t - a - t i m e , with no heuristics

being used for efficiency. W h e n a rule m a t c h i n g a LHS w a s

found, i t s production w a s applied and the RHS replaced the

sub-construct. T h e procedure w o u l d then be repeated as

necessary. If sub-queries generated as parts of LHS

expressions failed, the s y s t e m w o u l d indicate the s u b - q u e r y

that failed and prompt for further action.

A l t h o u g h not as sophisticated as o t h e r NL systems,

RENDEZVOUS introduced several n e w concepts in the field of NL

processing. C o n c e p t s such as continuous dialog between the

u s e r and the system, transformations using r u l e s and q u e r y

failure analysis have t h e n been used by o t h e r systems. Also,

interface of the NL qu e r y processor with a n existing

relational database s y s t e m (a s opposed to interfacing with

"toy" d a t a b a s e s for other NLQS's) is important f o r

production-level systems.

T h e third s y s t e m to be discussed, INTELLECT, is a

comnercial product m a r k e t e d for interface with existing

database systems in a v a r i e t y of applications. I t is capable

23

of interfacing - with different database systems that exist

already, under a variety of underlying data models. -

INTELLECT is a comnercial product and as such,

information regarding i t s internals and implementation has

not been readily available. I t is a very sophisticated

production-level system capable of supporting different

applications, capable of user-defined term processing,

user-defined or application-based query output formatting,

and others [INTELLECT, 8 5 1 . The main concept that is present

in INTELLECT i s the system dictionary, or "lexicon".

Different applications can be included in the system's

capabilities by creating new application lexicons, populating

the lexicons with the initial knowledge required to process

typical user queries, and then releasing the system for

production use. As mentioned earlier, the system has a

learning capability that allows users to include their own

terms and idioms. Also, custom formats can be provided for

output formatting where applicable.

Development of INTELLECT required several years. Also,

the requirements for using i t are rather demanding,

restricting its use only t o mainframe-based systems.

INTELLECT'S run time requirements include the PL/1 resident

and transient libraries, and a number of resident utilities

for creation and maintainance o f lexicons. Finally, the cost

of acquiring INTELLECI' is large, when compared with the cost

2 4

of other software systems for similar environments. A binary

license for INTELLECT can cost as much as $ 6 7 , 0 0 0 . Although

the retrieval of data is improved by using such a system,

creation and maintainance of the application-specific

-

-

lexicons requires the use of special analysts (typically

knowledge engineers), thus increasing the operational costs

even more.

INTELLEm is oriented more towards MIS applications.

Additional software available for use with i t provides

capabilities for NL based graphics, NL lexicon construction,

and others. INTELLECT’S capabilities for processing natural

language queries include extensive pronoun reference

capabilities, ambiguity and ellipsis handling, interactive

dialogues with the user for clarification o r requests for

additional information, and others. INTELLECT ’ s ma in

advantage is i t s use of the lexicon that allows different

applications to be mapped on lexicons and then using the

lexicons for retrieval.

INTELLECT is more word-driven than the previous two

systems di.scussed that were more semantic and concept-driven.

This results i n reduced semantic verification capabilities.

Also, database semantics information is not fully represented

in the lexicon, thus reducing even more its semantic

capabilities. Further, access for lexicon modifications is

granted to all end users for lexicon updates, instead of

25

providing - personalized dictionaries. Neverthless, INTELLECT

is a vast improvement in the area of user-oriented retrieval

languages, in particular within an area where few of the

-

recent advances in software design have been infroduced

(corporate MIS and data processing environments).

The last NLQS that will be discussed is one of the

earliest approaches in NL front ends for databases [Tennant,

8 1 1 . The Airline Guide, developed in the late 1 9 6 0 ’ s , had a

number of interesting features that formed the basis for

further research in the area of NL processing. Such concepts

included improved semantic capabilities, and separate

database and natural language systems (in contrast to other

systems of the time that provided a c o m o n database/NLQS

system. often with a ”toy” database). Finally, the interface

of the Airline Guide with the actual file management system

that maintained the flight information was achieved at the

formal query level (i.e., the Airline Guide would generate

formal queries) s o that portability to other applications

could be facilitated.

As there were at that time no database systems in the

form known today (i.e., relational, network, etc), the

Airline Guide interfaced with a flat-file based system that

maintained a machine-readable form of information about

comnercial flights. Only one record was provided for each

flight. Most of the design efforts were concentrated on

semantics, - and although a syntactic analyzer w a s present, i t s

functionality w a s reduced to the single task of providing the

semantic analyzer with parsed sentence fragments.

-

Semantic analysis w a s the main focus of the Airline

Guide. Its development timeframe (late 1 9 6 0 ' s) w a s

imnediately after the studies o n semantics performed in the

e a r l y 1 9 6 0 ' s with the task of selecting a semantically

correct sentence out of a number of different syntactic

representations. Semantic information for the A i r l i n e G u i d e

w a s provided directly f r o m the contents of the flight

information file, without a separate dictionary or similar

construct.

T h e A i r l i n e G u i d e used a traditional parse tree f o r the

representation of the input sentence. T h e tree w a s

constructed by the parser and w a s verified by comparing i t to

a collection of primitives that existed in the flight file.

Such primitives w e r e considered as functions relating u s e r

input w o r d s a n d terms used in the flight file. Predicates

w e r e also used to test conditions among functions. F o r

example, a primitive function "CONNECT" w o u l d return the

v a l u e o f "true" o r "false" if the parameters specified (that

is, city names) w e r e connected by a flight. Semantic

information w a s collected f o r four different classes of w o r d s

(nouns, n o u n m o d i f i e r s , determiners and verbs) and the

semantic information w a s used to build the actual formal

queries. The Airline Guide allowed constructs such as -
quantifiers (explicit or implicit) to be used, thus expanding

the vocabulary even more.

-

Although semantics-oriented, the Airline Guide did have

a parser and a syntactic verification system. For each input

query, i t s parse tree would be constructed and then the tree

would be compared to templates provided. Once a template was

provided that matched the supplied sentence, semantic

analysis could proceed. Limited syntactic capabilities,

however, result in loss of flexibility that is otherwise

obtained by processing sentences which can be syntactically

incorrect (for a given parser) but semantically correct, as

is the case for "pidgin English" queries. Also, "hardwiring"

the system vocabulary in the program reduces its flexibility

and portability to new applications. Despite these problems,

the Airline Guide was one of the first programs to

demonstrate the feasiblity of NLQS's, and also to accept and

implement query semantics as the main issue in NL query

processing.

Concluding the overview of experimental and commercial

natural language database front ends, some of the problems

associated with NL query processing identified earlier in

this sub-section can be visualized. Problems ranging from

inefficient systems (PLANES had an average processing time

per query on the order of 6 8 seconds) to inflexible systems

28

that could not be ported to different applications, to -
systems that perform well on mainframe environments with

support personnel but are unsuitable for mini- and

-

micro-computer applications (INTELLECT) have long been known

among researchers. However, most NL systems offer

considerable improvements to the interface problem over the

more traditional formal query systems, and their use has been

demonstrated to be feasible [Blanning 8 4 ; Mylopoulos 7 6 1 .

This is true, even considering the drawbacks mentioned that

would be potential problems. Simply stated, the advantages

outweigh the disadvantages [Tennant 8 1 ; Grishman 8 4 1 .

2 . 9 GENERIC--

Based on the advantages and disadvantages of Natural

Language Query Systems (NLQS), general objectives that can

apply to any software system, and thus also be adaptable for

a NLQS, are presented here. The generic objectives of the

proposed design, the Knowledge Assisted Retrieval Language

(KARL), include the following:

(1) Adaptability to new applications: The system should be

able to adapt to n e w applications with modifications to

the application-specific knowledge only, and no

modifications to the system source code. The degree o f

adaptability (i.e., the spectrum of applications that

2 9

the - system can handle without code modifications) would

also depend on i t s capabilities; therefore, flexibility

in processing a variety of constructs would be required.

-

(2) Portability between systems/host tools: the system

should be retargetable to new hosts and environments,

(i.e., new operating s y s t e m s / D W ’ s) with no major

recoding necessary. The degree of retargetability would

ultimately depend upon the initial system design and/or

implementation; should i t prove too system- or

tool-dependent, then any future retargetability attempts -

would require considerable recoding to eliminate such

interdependencies.

(3) Reduced complexity: the design should be made using a

hierarchical methodology that encourages modularity,

abstraction and independence. Thus, the complex task of

processing NL queries would be decomposed into more

manageable, simpler tasks that can be implemented

independently. The integration procedure should also

follow similar guidelines. The resulting design would

then consist of a tree-like structure of modules, each

performing a single task, with well-defined and uniform

data exchange.

(4) Efficiency: as data retrieval is a process that requires

”visible” man-machine interaction, response time is very

30

important. - This is especially true for casual users who

often do not realize the complexity of the retrieval

process and expect "instant" response. Therefore,

system processing time for translating NL to formal

queries should be reduced to a minimum, necessitating a

highly optimized design. In addition, resource usage

such a s disk accesses, main memory requirements, special

I/O devices, etc., should also be minimized.

-

Using these objectives a s guidelines for system design,

the methodology o f the system development process will be

presented in the next section. The objectives presented here

are general; more emphasis on NL related aspects, as well a s

the specific objectives, will be examined in the next

section, where the NL related system design objectives will

be presented and explained.

- CHAPTER 3

-
THE HIGH LEVEL DESlGN OF KARL

3.1 l"

KARL is a software system designed for understanding

restricted natural language within a retrieval environment.

As such, i t has design objectives which are related to

natural language processing, as well as design objectives

which are considered more general and applicable to any

software system.

In this section, both classes of design objectives will

be examined and the high level design o f the systemwill be

presented. In several aspects, KARL deviates from traditional

natural language systems. These differences will be

presented. In addition, the state-of-the-art will be

presented in the design alternative areas addressing

technology that is available for use in designing and

implementing NLQS.

3.2 GENERICOBJECTIVESREVISED

The generic objectives called for a number of desirable

characteristics that the resulting system i s intended to

3 1

3 2

possess. KARL design focuses on a number of these.

Specifically, the characteristics that KARL has, as dictated

by the generic objectives, are as follows:

-

-

(1) Adaptability to new applications: one o f the main

problems in today's NLQS's is their inability to

function within a variety o f applications. KARL allows

retargeting to different applications by allowing the

user to redefine the Knowledge Base contents relevant to

the application. Then, any application (within limits,

of course) can be handled without modifying the programs

themselves.

(2) Portability between systems/tools: KARL i s implemented

on the UNIX operating system and the Ingres relational

DIMS [Epstein 7 9 ; Stonebroker 7 6 1 . I t is expected that

KARL can be ported to other operating systems with minor

changes only. This is achieved by using only one system

dependent call (" s y s t e m o " f o r comnand level escape)

that is typically available on most operating systems,

coding all parts of KARL in the "C" language which is

highly portable and available in a wide variety of

operating systems and hardware configurations. This is

also true for converting KARL to operate with different

DIMS'S, as its embedded query language constructs have

been selected and structured based on calls available in

many o f today's modern DWZS's using embedded query

3 3

languages. -

(3) Reduc‘ed complexity: Many successful natural language

programs have been written in AI-specific languages,

like LISP, PROLOG, etc. [Winston 8 1 ; Rich 8 3 1 . However,

such languages, while convenient for development, are

typically not suited f o r interface with ”real” existing

DRvlS’s. Also, the programning complexity increases due

to the restrictive nature of such languages for

general-type programning. KARL is written entirely in

”C” [Kerningham 7 6 1 . Also, the underlying concepts of

KARL, to be discussed in more detail in the next

chapter, are relatively simple, thus yielding a less

complex design than other NLQS’s available [Wasserman

8 5 ; Salton 8 3 1 .

‘ I

(4) Efficiency: KARL is implemented using simple programming

constructs and fixed memory configurations in order to

avoid complex subroutine invocations and dynamic storage

allocation and reclamation overhead. Exe cu t i on

efficiency i s improved by using the efficient, optimized

“C” compiler available on UNIX [Kerningham 761 . For

further investigation, Chapter 5 presents metrics of

KARL overhead in the retrieval process, using Ingres and

UNIX. It should be noted, however, that KARL’S prototype

design and implementation necessitates an approach that

emphasizes convenience and flexibility rather than

34

3.3

perfoimance. A l s o , Chapter 5 discusses, as part of

future research areas, production-level optimization

techniques that can be used f o r further performance

improvement.

-

SPECIFIC

A p a r t f r o m the m o r e general, software engineering

criteria that essentially recomnended the first set of

generic objectives, there are several NLQS and DBMS related

aspects that the d e s i g n of KARL mu s t handle. T h e s e aspects

are a s follows:

(1) K n o w l e d g e storage, processing, and acquisition

capabilities that assist in s y s t e m retargetability.

(2) G r a m m a t i c a l constructs handling capabilities that a l l o w

r e c o g n i t i o n of different forms of the same word. A l s o ,

c a p a b i l i t y of handling synonyms.

(3) S y n t a c t i c construct handling capabilities that a l l o w

r e c o g n i t i o n of different syntactic forms of questions.

(4) S e m a n r i c construct handling capabilities that a l l o w

v e r i f i c a t i o n of different semantic forms of questions.

(5) L e a r n i n g capabilities that a l l o w a s y s t e m to "learn" n e w

w o r d s and constructs.

35

(6) Handling of elliptic queries, thus necessitating

heuristics in order to understand and process such

queries. Also, capabilities for generalized error

detection and appropriate reporting.

-

In the following six sub-sections, the NL specific

objectives will be examined and the methodologies followed to

provide solutions to these objectives will be presented and

exp 1 a ined.

Knowledge is used to augment the process of natural

language interpretation and assist in resolving ambiguities

that might arise from the user’s English input. Extensive

research has been undertaken on the subject of knowledge, in

particular, knowledge acquisition, representation and usage

[Winograd 8 3 ; Taylor 8 4 1 .

KARL’S capabilities for learning, system and application

independence, and relatively easy retargetability benefit

from its ability to store, manipulate and retrieve knowledge

stored in a machine-readable form. Thus, certain key

functions of the Knowledge Base Management System (Kw12s) can

be viewed (and implemented) as D M operations. For example,

knowledge addition would involve additions to the Knowledge

Base (K B) , while retargeting to a new application would

36

involve re-populating the (relatively small in relationship

to the DB) KB.

-

-

There are three aspects on which the KARL system i s

based with respect to using knowledge to process queries:

(1) Knowledge Acquisition i s performed either at system

initialization time or during actual use. Acquisition is

highly dependent on the knowledge type; for example,

knowledge of English language structure and syntax is

not likely to be acquired at use time, whereas

entity-specific knowledge can be initialized to an

operational minimum and grow as a system is being used.

(2) Knowledge Representation involves storing the knowledge

in a machine-readable form that can be used by the

system. Knowledge representation is typically handled by

the Knowledge Base Management System and is independent

o f the application [Wiederhold 8 4 1 . The approach that is

to be followed in KARL will use the host DIMS to store

knowledge. This approach eliminates the complexity and

overhead of traditional K M ' s , since the knowledge

required is relatively simple and does not involve

complex interdependent representations. Knowledge about

English syntax is "hard-wired" in the syntax analyzer,

and can be extended by adding new patterns. Entity

knowledge is stored in frames, which are defined as all

37

the information available for a particular type of

entity and conmon for all instances of the same entity.

The frame representation is altered to a table form and

stored in the host DBMS. Relationships between entities

and/or actions are encoded in function form similar to

the first-order predicate calculus [Dahl 8 3 1 , and are

also transformed and stored in table form.

-

(3) Knowledge Utilization involves the use of knowledge in

query processing [Wiederhold 8 4 1 . Syntactic analysis

uses knowledge of allowable English question forms to

syntactically verify an input sentence; semantic

analysis uses knowledge of domain-specific terms,

ranges, and relationships; pragmatic analysis uses more I
conmon knowledge to complete the semantic verification; ~

database schema mapping uses schema knowledge to map

input terms onto DIMS constructs; and query generation

uses knowledge of the D W formal query mechanism to

create the final query.

KARL’S learning capability benefits from the presence o f

a redefinable KB. The user i s able to redefine terms during a

session and thus ”teach” the system new terms and constructs.

The main knowledge entity that is user-accessible is the

Intelligent Dictionary (I D) . Its purpose is to maintain the

knowledge of words and multi-word sequences that are known

for the application being used. The ID is implemented as a

38

table collection. I t contains entries for different word

classes, namely: -

(1) Nouns (database table and attribute names)

(2) Verbs (action & property indicators)

(3) Single-word Synonyms (replacing and eliminating query

terms)

(4) Multi-word Synonyms (replacing query terms)

(5) Adjectives (property and condition indicators)

In addition, the ID contains a l i s t o f all known words

irrespective of class, to assist identification and improve

efficiency by performing a two-step access. Finally, the ID

contains a frame collection of all entities in the database

and their associated characteristics. The DBMS that

implements the Knowledge Storage and Retrieval System is

responsible for the encoding and storage of the ID.

3.5 --HANDLING

Gramnatical constructs handling involves the addition of

English language rules and methods for determining the "stem"

of words f r o m alternate forms, so that they can be compared

against the contents of the ID and positively identified (or

diagnosed as such, if unknown). Such transformations

39

generate oqe s t e m or general t e r m f r o m singular or plural

forms (f o r nouns/adjectives) or past, present or future forms

for verbs. F o r example, Figure 6 indicates several forms of

entries that are handled through gramnatical transformations.

-

student e a r n salary m a d e
student's earned salaries m a k e
students earning will m a k e

I will earn I I
I I I I
V V V V

student earn salary m a k e

F i g u r e 6 Gramnatical Transformations

In addition, the gramnar transformation o f the input

q u e r y involves handling of noisewords such as articles,

m e a n i n g l e s s w o r d s , punctuation, etc., and

recognition/classification of certain w o r d types such as

literals and numeric constants. A l s o , replacement of synonyms

o c c u r s during this phase. T h e result is a "cleaned" query

that is ready to be passed to the next processes.

In o r d e r to determine the gramnatical structure of the

input q u e r y terms, the m o s t conxnon rules of the E n g l i s h

language are implemented through a rule base. S i n c e this form

of k n o w l e d g e i s "stable", i.e., does not change w i t h each

application, the knowledge c a n be programned d i r e c t l y into

the granmatical transformation and recognition component of

the system, a n d subsequent updates that may be n e e d e d c a n be

4 0

implemente4 by additions/modifications of the system source

code. As stated earlier, however, the rules of the English

language do not change, s o this method i s viable.

-

Irregular words and constructs are stored as synonyms.

If all rules for the recognition of a t e r m fail, then i t may

be a synonym. For example, "made" (the past of "make") i s

stored as a synonym and direct replacement of "make".

Synt ac t i c pattern recognition and subsequent

verification is the phase of the query processing cycle at

which the query is verified according to accepted syntactic

rules of the English language (or restricted subset thereof).

Syntactic recognition and verification is very important in

the query processing cycle since i t allows the query

processor to determine the syntactic structure of the input

query and take subsequent actions based on this structure

[Jones 8 3 1 . A l s o , i t allows early error recognition and even

suggestions to the user.

Until recently, syntactic verification was the only

means of verifying a natural language query. That is,

syntactic verification was conceived to be adequate for

accepting a NL query as valid. This methodology was shown in

early general-purpose dialog systems like ELIZA and PARRY

4 1

[Winograd 331, and later in NL DBMS interfaces such as PLANES

and IhTELLECT - [Wassermann 851. W h i l e i t is true today that

syntactic verification alone i s not adequate proof of

correctness, still, i t comprises a significant amount of the

entire query processing cycle and therefore deserves special

attention.

There exist methodologies for sufficiently correct

recognition of English gramnar [Salton 831. Mapping these

techniques to the subset of the English language that

constitutes questions and answers provides sufficient

syntactic verification capabilities [Leslhart 761. Salton

[Salton 831 identifies three main types of syntactic analysis

frameworks:

(1) Phrase structure gramnars, that map most of the language

properties into structured elements.

(2) Transformation gramnars, that analyze distinct subsets

of the sentence into equivalent fragments based on

transformation principles.

(3) Network granmars, that construct a network from the

input sentence and apply rules to its structure.

Transformation and network gramnars are almost

equivalent in the sense that both can be used to represent

the English language constructs sought. KARL uses the

network gramnar approach. Due to simplicity considerations,

4 2

the recur_sive transition network is used instead of the

augmented transition network [Tennant 8 1 ; Winograd 8 1 1 . A

sample query and its associated recursive transition network

(R T N) are shown in Figure 7 .

-

Show the good female students enrolled in "(rvIpS150"
I I I I
V V V V

show good female student enroll "CMPS150"

verb noun verb literal

adject ive noun

Figure 7 Recursive Transition Network (RTN)

As was the case with the gramnatical constructs that

remain unchanged over different applications and DB contents,

the knowledge represented in the RTN i s considered "stable"

and therefore is suitable for implementing directly in the

program source code. Implementation details of the RTN

structure can be found in Section 4 . 5 .

The effect of the syntactic analysis and verification i s

full identification of the sentence structure, association of

the input sentence structure with known (correct as well as

incorrect) sentence pattern structures, and further

clarification of ambiguous terms that were not properly

4 3

resolved bg gramnar rules alone. F o r example, the word "love"

is both - a verb and a noun, thus necessitating delayed

identification. The result of the syntactic analysis module

is a list of terms (tokens) that are fully identified within

the scope of the ID. This l i s t is then passed f o r subsequent

analysis to the semantic verification module.

I t should be noted that the syntactic and semantic

verification modules do not interact with each other. Several

research methodologies suggest a more integrated approach

that integrates syntactic and semantic analysis. Such

approaches, however, are more practical in the solution of

the general natural language understanding problem and are

t o o complex for a subset-based application such as NLQS.

3 . 7 SEMANTIC-

A NL query is finally verified as correct (and thus

acceptable) by the NLQS if its semantics are correct.

Semantics can be widely defined as the aspects of the query

that refer t o the meaning of entities, regardless of gramnar

and syntax [Kalz 7 2 1 . This phase of the query processing

cycle is important since i t is the last step in the flow o f

the NL query within the system. Casual users are more prone

to make i t difficult to detect semantic errors than

experienced users. In general, as i s the case with

4 4

programning languages [Pratt 8 3 1 , semantic errors are more

difficult to detect than syntactic errors and suggest

positive measures for correction.

-

Semantic verification is performed on two levels: the

linguistic level and the database schema level. The

linguistic level handles verification based only on

linguistic semantic criteria, while the database schema level

handles verifications based only on database schema-related

criteria. The rules that are used for linguistic semantic

verification are traditional English semantic-based rules,

while the database schema itself, (actually an expanded view

stored in frames) provides the database-related verification

rules. In both cases, the two sub-procedures are distinct

with no interaction due to functionality considerations.

Different criteria apply for the two sub-processes;

similarly, there are different knowledge requirements

involved. The two sub-processes with their associated

knowledge requirements are addressed in the following two

sub-sections.

3 . 7 . 1 DATABASERELATED-

Database related verification involves checking the

input query for semantic inconsistencies against the database

schema, or an expanded version that includes semantic

4 5

constraints [Brodie 841, Therefore, the queries that are

syntactically correct but semantically incorrect (in

relationship to the DB itself) can be detected. Several types

o f inconsistencies are handled by KARL:

-

(1) Invalid attribute names and table names.

(2) Concordance o f attribute and table names.

(3) Values of literals out of range.

(4) Incorrect literal patterns.

(5) Inappropriate operators associated with operands.

System knowledge o f the entities present, represented by

case frames in the knowledge base, is used to detect the

inconsistencies. Figure 8 shows examples of such errors,

numbered as the causes above:

(1) display manager for city "Detroit"
(No "manager" in the database)

(2) display prices of cities where name = "Dallas"
(City relationship does not have price)

(3) print flights with prices less than " $ 0 . 2 5 "
- (there is a low limit on all flight prices)

(4) print city with code equal "AX123&"
(invalid literal, all codes are 3 chars long)

(5) print flights with name greater than "LFT"
(operator "greater than" can not be applied)

Figure 8 Database Related Semantic Errors

4 6

-

The process of database related semantic verification is

able to detect and indicate different classes of semantic

errors that the user does not realize. The output of this

verification is then forwarded for linguistic verification.

-

3 . 7 . 2 LINGUISTIC RELATED YERIFIC&l"ION

Linguistic verification involves checking the input

query against a set of linguistic-based rules of correctness.

There may be the case that syntactically the query is correct

(that is, using English syntax as the criterion), but the

combination of words produces an incorrect meaning.

Linguistic verification involves knowledge of the

interrelationships of words based solely on meaning [Lehnert

7 6 1 . Thus, the linguistic knowledge is dynamic and needs

update capabilities, s o i t is implemented as a part of the

user-defined knowledge base.

The verification process involves checking the possibly

incorrect constructs against the contents of the appropriate

entries in the knowledge base. KARL supports several such

checks, including:

(1) Concordance of noun-noun constructs.

4 7

(2) ConcoIdance of noun-verb constructs.

(3) Agreement of noun-adjective combinations.

Linguistic verification is considerably more complex

than database related verification. This is because the

knowledge encoded in the database schema and its frame

expansion i s relatively simple to verify, while this is not

the case with a more complex linguistic semantics problem.

Also, linguistic verification depends on the human meaning

that is associated with words and constructs, which i s not

always simple to convert to a machine-readable and

processible form. Examples o f linguistic semantic

inconsistencies can be seen in Figure 9 .

(1) who is taking a rich course?
("rich" and "course" don't match)

(2) print the courses that earn "$13,000" a year
("earn" is associated with "faculty" or "student")

(3) What is the salary o f a good car?
("car" does not include a "salary" attribute)

Figure 9 Linguistic Semantic Inconsistencies

3 . 8 LEARNING-

Learning is a capability that has long been associated

with humans and animals only. I t is a process that involves

acquisition o f certain elements encountered in a task and

4 8

later utilization - of these elements. Knowledge i s distinct

from data in that i t does not change as dynamically as data,

but in many cases remains relatively stable.

-

Knowledge capabilities, however, dictate that the system

(or human) must have the ability for acquiring, transforming

(if needed), storing and later retrieving and using knowledge

for use in a given task. In a NL processing system, this

capability is crucial if retargeting to a different

application is being sought, o r redefinitions/updates are

performed on the database schema and overall organization.

KARL uses learning to i t s benefit in a number o f different

areas:

(1) Learning is used to aid retargetability to different

applications. The entire re-initialization can be

performed through a massive learning process, or read

through prepared file(s).

(2) Knowledge updates for a variety of reasons (performance

improvement, debugging the KB, etc.) are convenient.

(3) There-exist capabilities f o r incorporating n e w terms as

either entities or relationships between entities, in

the form of nouns and adjectives or verbs, respectively.

(4) If the system encounters an unknown term, KARL is able

to interactively ask the user for the type of term, and

4 9

its known properties. A simple fill-in-the-blank form is

used. -
The last characteristic has been very important as i t

allows the users to customize the knowledge base. For a

prototype model such as the one presented in this thesis, no

security constraints have been considered. A production

environment may set updatelappend restrictions which can be

implemented through the relational database system underlying

KARL, using i t s security system.

3 . 9 ELLIPSISm-HANDLING

Ellipsis and ambiguity are present in many forms of

human-to-human conmunications [Kalz 7 6 1 . However, while they

can be tolerated and understood by humans, a system is

typically not able to understand and process such sentences.

Ellipsis is a form of speech in which certain parts o f

the sentence structure a r e omitted. The purpose of ellipsis

can be either as a figure of speech or for convenience.

Typical forms of ellipsis include pronoun reference, missing

noun phrases or missing verbs. KARL has not incorporated

pronoun references, although a framework for inclusion is

presented in the conclusions section. It can then be seen

that simple pronoun reference implementation involves

backtracking and maintenance o f query histories which can be

5 0

included iEKARL at a later time.

As ifidicated earlier, several forms of ellipsis handling

are provided within KARL. These ellipsis forms are found in

typical English phrase structures. These forms include:

(1) Missing nouns, where a noun is either a relation name or

an attribute name. Then, context analysis is required to

determine the missing term(s) and incorporate them into

the intermediate query.

(2) Missing operators in the case of conditional or

relational statements. The default values are

determined by consulting the appropriate frames in the

Knowledge Base.

(3) Missing verbs. If an action verb is missing, then

"select" is chosen by default. If a

relationship-indicating verb is missing, the context

system is used t o insert the appropriate term.

Ellipsis is typically handled in the syntactic analysis

and verification module, by including elliptic sentence

construct patterns in the database of patterns and

transforming them into non-elliptic structures for further

processing. Figure 10 displays ellipsis handling in KARL.

5 1

(1) who - is rich?
(ascertains that "rich" i s used with "salary",
which in turn is used only with "faculty") -

(2) who i s "John Doe" ?
(ascertains that "John Doe" is a free-form
string, address or name, but since i t has
"who" i t is a name within student or faculty)

(3) print names of students in " W S I S O "
(ascertains that " W S 1 5 0 " is a course
and use the proper form to complete the query)

Figure 10 Ellipsis Handling Capabilities in KARL.

Ambiguity is also a conmon feature of the human's

process of speech. Ambiguity may arise in a NL statement when

a query interpretation process attempts to associate more

than one meaning (or term interpretation) to the same term.

In order to fully process the query, the NL interpreter has

to decide on only one meaning which will then be bound with

the term. If the NL processor is not able to determine the

exact meaning, then either heuristics have to be applied, the

user queried for additional explanation o r the query process

is abandoned.

Ambiguity in KARL arises when words which can be of

multiple type definitions in the dictionary are used, or when

a qualifier in a multiple word construct is omitted. Most

ambiguity is considered linguistic ambiguity, and the

heuristics applied attempt to clarify the construct by

applying semantic information provided in the KE.

5 2

KARL Lmplements a solution by trying to eliminate to the

highest degree the ambiguity that exists as part of the KB

definition. I f there is ambiguity present, then certain

heuristics will be applied and if the heuristics also fail,

the order of the entries determines the default. Therefore,

the terms of an ambiguous entry in the KB are arranged in a

likelihood order, thus assisting the selection. If this also

fails, then the user i s presented with the sequence o f

possible interpretations and requested to select one. A

-

sample session in which ambiguity arises and the user is

queried is presented within the KARL sample session contained

in Appendix B.

A NL query processing system can be considered as a

never-ending design process, since n e w features, originating

in the English (or human) language are considered for

inclusion and eventually included in the design. Therefore,

there exists a line between implementability of the design

and lack - o f features that limit the NL processor’s

performance.

Aside from the details of implementation, many natural

languages have comnon structures. This can be compared to

compilers, where almost every compiler has comnon processes

5 3

with other-similar ones, i.e., token generation, lexical

analysis, gramnar analysis, code generation, optimization,

etc., and also components comnonly used, i.e., the parser,

code optimizer, etc. [Aho 7 9 1 . Since KARL and mostly any

question-answering system can be thought of as a type of

compiler, the same methodology of basic components and

features is followed. The query processing cycle and comnon

requirements for the understanding o f NL queries is presented

next.

-

Natural language understanding in general involves at

least three distinct procedures that may be independent of

each other. The three procedures are known as Syntactic,

Semantic and Pragmatic Analysis [Salton 8 3 ; Blanning 8 4 ;

Winograd 8 3 1 . These steps are typically sufficient for

general-purpose natural language understanding applications,

but additional steps are required in order to process

database queries, i.e., questions. The additional tasks

performed by a database front-end should also include schema

mapping and formal query generation in order to provide the

capabilities needed for the query translation process.

3 . 1 0 . 1 -ANALYSIS

Lexical analysis involves recognition o f the individual

terms of the query and generation of the intermediate form

5 4

that is used to represent the NL query throughout the

program. This phase varies from one system to another. Query

“clean-up” and gramnar operations also occur on this level.

-

This step of the query processing cycle is often

integrated within the terminal monitor/user interface.

Although not many systems have a gramnatical processor, i t is

o f high value since the number o f words stored in the

dictionary is drastically reduced. In addition, features

such as spelling checking can be incorporated and even

switched on/off, without further implications.

3 . 1 0 . 2 SYNTA- ANALySIS

Syntax refers to the relative position of words and word

sequences in a sentence, taking into consideration syntactic

restrictions only [Markus 8 2 1 . Syntactic analysis is

necessary to determine the structural correctness of the

sentence.

NL syntactic analysis can be presented in a way similar

to the syntactic analysis of computer languages. The meaning

of entities is not involved in the process. Syntax rules are

used to determine the correctness (or acceptability) of the

user’s NL input. Also, there must be provision for ”pidgin

English” (i.e., semi-formal query) handling, since users may

be using such input.

5 5

Semantics refers to the meaning of words and

relationships associated with application-dependent

terms/words in sentences [Charniak 7 6 1 . Pragmatic analysis,

a part of semantic analysis, attempts to further semantically

verify the correctness of the input sentence by using

general, application independent concepts [Salton 8 3 1 .

' I
Not many existing programs perform a per se semantic

analysis. Many A m - b a s e d systems perform syntactic and

semantic analysis at the same time, using the A T " s network

structure for syntactic checking and the register contents of

the ATN for the semantic conditions that must hold. This

produces a method of semantic verification [Bolc 8 3 1 .

However, semantic verification at the abstract level is a

task that is considered separate from syntactic verification.

The next step in the natural language query process is

the translation of the query into the formal query syntactic

and semantic constructs. This process often involves

compiler-related manipulations, such as code generation and

possibly optimization [Aho 7 8 ; Hunter 8 1 1 .

Depending on the system capabilities, the code

5 6

generation can be retargetable to different hosts, i.e.,

generate formal queries that are suited for execution on

different systems. Such capabilities have the potential for

multiple database and information system usage [Hall 8 5 1 , and

are highly desirable.

-
-

3 . 1 0 . 5 -EVALUATION

The final step in the NL query processing cycle is the

evaluation of the formal query generated by the NL processor.

This is performed by either generating the appropriate

high-level formal query and passing i t to the DfPvlS for

interpretation and execution, or by decomposing the formal

query generated and invoking the low-level D M routines in

order to execute i t . The choice would be made depending on

the facilities that the host DBMS provides. The results are

then displayed.

With knowledge o f English language terms and constructs,

the role of knowledge in the query processing cycle becomes

extremely important. The phases presented above all assume

certain knowledge types to be available in order to assist

the query processing cycle.

5 7

Knowledge is divided into two types: the knowledge that

is required - for the application, and general knowledge that

is required t o process any query that the system can handle.

The first type of knowledge is called "dynamic" knowledge in

KARL, since i t tends to change with time (i.e., knowledge

base improvement or learning), or with the application

(retargeting). The second type of knowledge is considered as

"static", and i s based on general principles applicable to

question-answering. Such examples of static knowledge include

knowledge of suffix-removal rules, gramnar rules that

determine the appropriate form of sentences and sentence

fragments, and the syntax of a target formal language into

which the NL input is translated by cycling through the

processing cycle. Figure 1 1 displays the cycle, as well as

the knom-ledge required. The knowledge is tagged as either

static or dynamic by the marker (s) for static and (d) for

dynamic .

5 8

Input
Query

I I
- \ /

+ - - - - - - - - - - - - +
I LEXICAL I
I ANALYSIS I
+ - - - - - + + - - - - - +

I I
/ /

I S n I T A x I
I \TRIFIER !

I I
\ /

I SEMANTIC I
I VERIFIER I

I I
\ /

I FORMAL I
I QUERY I
I GENERATION I
+ - - - - - + + - - - - - +

I I
\ /

I FORMAL I
I QUERY I
I EVALUATION I

+ - - - - - - - - - - - - +

+ - - - - - + + - - - - - +

+ - - - - - - - - - - - - +

+ - - - - - + + - - - - - +

+ - - - - - - - - - - - - +

+ - - - - - - - - - - - - +

+ - - - - - - - - - - - - +

Figure 1 1

Intelligent Dictionary
Gramnar Knowledge

Syntax Knowledge
Schema Knowledge

Semantic Knowledge
Schema Knowledge

Schema Knowledge
Formal Syntax Knowledge
Formal Semantic Knowledge

Formal Syntax Knowledge
Formal Semantic Knowledge
DEMS Specific Knowledge

The NL Query Processing Cycle

3.12 - DESIGN-

Although the process of understanding general human

input has been too complicated for machines to perceive with

an acceptable degree o f comprehension, special-purpose

understanding programs such as abstracting, indexing o r NL

5 9

query systems have been able to function properly, sometimes

even to production-level quality. Careful system design, that

does not attempt to be a "one-in-all" type of solution, but

-

-

rather focuses on the problem that is to be solved, is the

answer.

S o f twa re design techniques such as functional

decomposition and abstraction allow separation of tasks and

creation of what is essentially an "airtight" processing

system with highly individualized functions [Warnier 7 9 ;

Freeman 8 1 1 . Although the task of comprehending NL queries

is difficult by any means, decomposing the problem into small

subsets, for which there are often answers (i.e., lexical and

gramnar analysis, formal query generation, etc.) i s a method

that can be more practical to design and implement than the

highly complex approaches s o far.

Following the divide-and-conquer approach [Aho 7 9 1 , the

real design problem is not forming the solution but rather

defining the problem in terms such that a computer solvable

approach is viable. Once the individual problems have been

identified-, a uniform representation form for the information

that i s conmunicated between modules is required. Once a

module is defined, the internal transformations that are

performed on the input query must be localized to avoid their

propagation throughout the entire system.

6 0

Concluding the high-level design of the K4RL system, the

important techniques and concepts introduced in this chapter

will be applied in the next chapter w h i c h discusses the

-

-

low-level design and implementation process. Such techniques

and concepts include task separation amongst m o d u l e s , high

functionality, independence and simplicity.

CHAPTER 4

LCW-LEVEL DESIGN AND IMPLEMENTATION

The principal concepts that K R L is based on are

simplicity and use of modern software design techniques to

obtain both implementation capability (i.e., have a design

that is implementable) and NL handling capabilities that can

be used for query processing. These concepts have not been

used extensively in other rCn query processing systems

[Wasserman 85; Taylor 841 and the results can be seen as

systems that are not flexible in handling queries [Taylor 84;

Blanning 841 (low NL handling capabilities) or difficult to

implement and maintain [Weizenbaum 66; Wasserman 851.

To prove the validity o f the design concepts used in

KARL, an experimental computer program was developed. The

design and implementation of the prototype, the KARL 1.02

system, is presented in this section. The prototype is

implemented on a Digital VAX-11/780 computer running the UNIX

operating system, Berkeley 4.2 distribution [Kerningham 791.

The entire prototype is implemented in the "C" programning

1 anguage.

6 1

6 2

KARL interfaces with Relational Technology's INGRES

relational database system, Version 7 . The interface is

possible through system subroutine calls to the DBMS monitor

for the query processing, and embedded DIMS code contained in

the knowledge processing routines. In addition, the "LEX"

tool for generating regular expression recognizers is used,

as i t accepts regular expressions and generates finite-state

automata that recognize them. "LEX" generates portable "C"

code [Lesk 7 6 1 .

-

-

Because proven techniques from compiler construction and

traditional software design methodologies were used, as

outlined in the last part of Chapter 3 , the low-level design

and implementation o f the KARL software system is simple to

understand. Compiler techniques such as regular expression

recognition, lexical analysis and intermediate code

generation are used in the implementation of KARL [Aho 7 9 ;

Hunter 8 1 1 . More general principles such as modularity,

top-down design and functional decomposition are also used.

KARL is knowledge-assisted, using knowledge to assist

the retrieval process. Knowledge is represented i n

machine-readable form and stored in the KB. Then i t is used

to assist the translation process o f the input NL query. The

6 3

issue of representation of real entities as abstractions

handled by the software is the main aspect that KARL benefits

from. Data representation, therefore, is the main issue of

the KARL low-level design. Input consists of both knowledge,

either contained in the program structure or encoded and

stored in the K B , and the NL query, as stored by the NLQS

monitor system.

-

-

Manipulation o f the NL query with sequences o f

transformations, from the NL query, to the formal query, is

the main process that occurs within KARL. No specific

intermediate query representation is used except the original

data structure (l i s t of words and types) that is initialized

after the NL query is read in and manipulated as each module

performs its transformations to it. Thus, the orthogonal

design methodology is followed with no exceptions.

In order to obtain the appropriate transformations, each

module of the system performs an independent task. A top-down

organization o f the operations that are performed on the data

structure that holds the query is used. Each operation occurs

in a defined location within the entire process, with no

interdependencies of either data or operations. The "black

box" approach in the design methodology has several

advantages over highly interdependent method-specific

internal representations [Sonmervile 8 2 1 :

6 4

(1) Convenience of additions/updates to the techniques used

in the system. By avoiding dependencies of the entire

program on certain segments of code and making all

segments operate based on one input and one output, new

features can be added by literally "plugging in" modules

in the appropriate locations.

-

-

(2) Design efficiency. This i s the result of the designers

being able to concentrate on one problem only, with no

concern for side-effects. Since li t t l e interdependency

exists amongst modules, this approach is feasible.

(3) Error isolation and improvement considerations. Should a

module malfunction due to design and/or implementation

errors, a different design can be tested with few

constraints. This is also true in the performance

improvement issue, where the designer can determine

defects and improve any malfunctioning modules with no

e f f e c t on properly operating modules.

Abstract software design methodology is coupled with the

generic and specific objectives presented earlier in order t o

provide the framework f o r the implementation of KARL 1 . 0 2 .

In this chapter, the details of the low-level design and

implementation, in essence the internals of KARL, will be

presented.

6 5

4 . 3 DATA

Data- structures are the logical structures in which

information is stored. KARL uses data structures to store the

NL query as i t is being transformed into a formal query, and

also to store application-dependent components of the KB.

In selecting the data structures to be used,

considerations regarding programning languages, applications,

and complexity have to be made. If the design of the data

structures has a flaw, then the flaw i s propagated as the

data structure is used in the program. Also, if the data

structure is complex, the possibility of side effects

increases. Finally, the representation has to be simple, in

order to conform with the framework of the implementation.

There are two major concepts represented; one is the NL query

itself and the other is the application-dependent, dynamic

knowledge.

4 . 3 . 1 QYERXBEPRESENTATION

There- have been several "traditional" data

representation schemas for the internal storage of database

queries. Network models have been popular, i n simple as well

as complicated (i.e., augmented) forms. KARL uses a simple

linear structure that consists of two lists. The first list

is the list of tokens and the second is the list of token

6 6

type identifiers. The structure can be seen in Figure 1 2 :

-
+ - - - - - + - - - - - - - - - - +

I NO. I token I
+ - - - - - + - - - - - - - - - - +

I
V

I NO. I token I
+ - - - - - + - - - - - - - - - - +

I
v

I NO. I token I

+ - - - - - + - - - - - - - - - - +

+ - - - - - + - - - - - - - - - - +

I
v

- + + - - - - - + - - - - -
I NO. I type I

I
V

I NO. I type I

- + + - - - - - + - - - - -

- - + + - - - - - + - - - -

+ - - - - - + - - - - - - +

I
V

I NO. I type I

I
V

+ - - - - - + - - - - - - +

- + + - - - - - + - - - - -

.

. . . .

. . . .

Figure 1 2 Structure o f NL Query Storage Area.

The representation contains sufficient information s o

that the various knowledge processing elements can identify

the token as being o f certain types and perform the actions

required. A s different parts of the system use different

areas of the knowledge base, inefficiencies in this schema

are reduced t o a minimum (i.e., retrieving the same data more

than once)-. A sample query can be seen in Figure 1 3 .

' I

6 7

FORMAL QUEBY

-
print

f
all *

s t uden t s *
taking *

*
and *
*
in *

"C!"S35 1 " = >

1 iving

"Lafayette"

FORMAL QUERY
(with no noisewords)

print
f

student
f

enrol 1 *
"(XIpS351" *

& *
1 ive *

"La fayet t e"

TOKEN PATTERN

V e r b *
Noun *
Verb *

Literal *
Boolean *
Verb *

Literal

Figure 13 A Sample Query and its Representation

4 . 3 . 2 WWEDGE REPRESENTATION

Data structures for knowledge representation refer to

the storage techniques of the dynamic parts of the knowledge

base. As the dynamic part is required to change with the

applications, there is a need for the ability of storing,

retrieving and updating such knowledge.

The solution presented in KARL is to use the host DIMS'S

facilities of defining and handling tables (relations) for

storing the dynamic parts of the knowledge base. Although

there is a performance penalty for such a solution, the

ability for rapid prototyping as well as the handling of

6 8

,

changes that come as the design evolves overshadows the

efficiency penalty. Should efficiency become a higher

priority, such as may be required in a production system, a

more efficient solution based on a memory-resident table

driven I(M can be implemented while maintaining the

operational compatibility with the rest of the software

system.

Dynamic knowledge i s represented as a collection of

tables. The table collection i s implemented through a

relational database system schema. The storage representation

f o r the dynamic components of the KB is presented in Figure

1 4 . A sample knowledge base f o r the university database that

i s used throughout the example i s presented in Appendix A .

The contents of the dynamic database were empirically

determined, using basic database theory and

linguistic/gramnar references regarding the rules o f the

English language that handle the words present in the

knowledge base. Learning capabilities also assisted the

knowledge base building process.

6 9

D a t a b a s e Related Knowledge:
-

N o u n Frame

- + + - - - - - + - - - - + - - - - - - - - + - - - - - + - - - - - + - - - - - - - - - + - - - - -
ih'ame ITypelDatatypel M a x I Min I Pattern I Unit I

I I I I I I I I
I I I I I I I I

- + + - - - - - + - - - - + - - - - - - - - + - - - - - + - - - - - + - - - - - - - - - + - - - - -

L i n g u i s t i c s Related Knowledge:

Synonyms Representation V e r b s Representation

Adjective Representation

+ - - - - - - - - - - - + - - - - - - + - - +
I A d j e c t i v e I N o u n I Implied-property I
+ - - - - - - - - - - - + - - - - - - + - - +
I I I I
I I I I

D i c t i o n a r y Representation M u l t i w o r d Representation

F i g u r e 14 D y n a m i c K n o w l e d g e Representation Schema

7 0

-
Figure 1 4 presents the entire schema of the dynamic part

of the K B . The individual tables represent the follow-ing

knowledge:

-

(1) Noun frame: contains the knowledge that is required for

the nouns part of the vocabulary, which are taken as

either attributes of tables o r table names. The

knowledge contained is the noun name, type, data type

(i.e., real, integer, string), i t s maximum and minimum

values if appropriate, an optional pattern that is -
required in i t s literals, relation name in which i t

belongs, and its allowable operations (comparison,

aggregation, etc.). Most of the knowledge is used for

the semantic verification o f the input query.

(2) Synonym representation: represents word pairs that are

considered synonyms f o r query processing requirements.

Noise words are contained as synonyms to the empty or

null string. The table contains the term and the term i t

stands for.

-
(3) Verbs representation: verbs are associated with subjects

and objects and the verb section of the dynamic

knowledge base contains such knowledge. Specifically,

f o r each verb, a noun is associated as subject and

another as object. This holds true for retrieval

7 1

purpo-ses only, and verbs with both direct and indirect

subjects are not considered, i.e., "A student earns a

grade" may be used in a query but "the teacher threw him

-

the ball" type o f construct with direct and indirect

noun objects are not handled, as i t is far less frequent

in retrieval contexts than subject-verb-direct object

questions [Lehnert 7 8 1 . This table is used for semantic

verification as well as ellipsis o r plethora handling,

in cases where the verb i s supplied but not i t s indirect

object (ellipsis) o r in cases where both are specified

and one has to be rejected (plethora).
-

(4) Adjective representation: adjectives are associated with

properties (similar to property l i s t s in LISP [Winston

8 1 1 1 , but only when associated with certain nouns. S o ,

"good student" would imply a student whose GPA is more

than a certain amount, but, at the same time, "rich

car", although syntactically correct (as a noun phrase),

is semantically incorrect. Adjectives are used like

verbs, and also during the formal query generation phase

where adjectives are replaced by their property. -

(5) Dictionary representation: all words known to the system

are contained in the dictionary, including punctuation

and noise words. If an unknown word is found, a number

of granmar and lexical rules will be applied and, if

these fail, the user will be queried. This table is

7 2

consujted only during lexical analysis.

(6) Multrword representation: this table contains entries

for noun sequences, which are traditionally very

difficult to interpret otherwise. Such sequences are

"social security number", "home address", etc. The

patterns are considered as synonyms to single-word

terms, i.e., the sequence "social security number"

yields "ssn" which can be identified as a noun in the

dictionary and the noun frame lists.

The lexical analysis phase of the compiler is typically

defined as:

"The phase of the compilation that separates
characters of the source language into groups that
logically belong together; these groups are called
tokens. The tokens are keywords, identifiers, operand
symbols and punctuation. The output of the lexical
analysis phase is a sequence of tokens, the token
list."

This definition was introduced by [Aho 7 9 1 . KARL, utilizing a

number of compiler construction techniques, uses lexical

-

analysis in order to separate the tokens, combine them where

applicable, identify the tokens as terms being either

literals, operands o r operators, and generate the token list

that is used as the the next phase input.

73

As the English language permits transformations of the

terms in the form of tenses o r clauses, the system can

perform heuristic tests and apply English language rules in

order to determine the word type and identify the word.

Should different forms of the word be used, then the program

can perform the appropriate combination of transformations

and determine the word type.

-

The gramnar analyzer can detect the appropriate stem and

identify the word. This approach results in relatively more

complex code than maintaining the list of all combinations of,

word forms in the dictionary. However, dictionary size is

drastically reduced as only the basic word (stem) is needed,

thus yielding one entry per word. The exception of abnormal

nouns and verbs is handled through synonyms.

Gramnar and lexical analyses result in the initial

stream of tokens and, where applicable, token identifiers.

The sequence o f tokens is free of synonyms, multiple sequence

patterns and noise words. If there are still terms that are

unknown although all rules have been exchausted, then the

program qneries the user to either correct the error (if

any), replace the t e r m w i t h one that is known to the system,

or redefine the term entirely. The system can then "learn"

the n e w term.

The learning subsystem is invoked at the lexical stage,

1 4

because mgst of the lack of knowledge is realized as the

program is trying to process queries with unknown words. The

user will be put in the knowledge redefinition subsystem, and

then queried with the type of word that he wishes to select.

Then, the user responds via multiple-choice type responses

and defines the word as being known.

The process o f lexical and gramnar analysis is rather

time-consuming, as i t involves numerous accesses to the

knowledge base and uses a potentially large number o f

heuristics in order to determine the word types, replace -
multiple noun sequences and eliminate noisewords. The

process can be thought of as two independent sub-processes,

namely lexical and gramnar analysis. These processes are

diagramatically shown in Figure 15 and Figure 1 6 .

Figure 15 Lexical Analysis of Input Query

7 5

-
The process of lexical analysis will perform the

following tasks:

(1) Read in the query, and determine query type (query,

quit, help).

(2) Replace all multiword sequences with the appropriate

nouns, s o that only single terms occur (except

literals).

-
(3) Generate the initial token list. A l l tokens are single

words, with the exception of the literals which are

enclosed in quotes and can contain blanks.

(4) Identify and replace all synonyms; also handle all noise

words by eliminating them.

At this stage, punctuation has a l s o been removed with

the exception o f symbols such a s n > n , "<=", etc. Then, the

gramnatical processing can be performed. A graphical

presentation of the process f o r a single token is illustrated

in Figure 16.

7 6

- token
+ - - - - - - - - - 7 I + - - - - - - - - - - - - - - - - - + - - - - - - - - +
I I I I I I
I - - V V v- + - - - - - - + - - - - - - + I
I / I s Word in \ Y I Get next l l
I < Dictionary ? > - - - - - - > I Token I I
I \ / + - - - - - - - - - - - - - + I
I I I
I I N I
I v I
I / I s Counter at \ Y + - - - - - - - - - - - - + I

I < End Of Rules Yet ? > - - - - > I Query User I - - +
i \ / + - - - - - - - - - - - - +
I I
I I N
I + - - - - - - - - v - - - - - - - - +
I I Apply Next Rule I
I + - - - - - - - * - - - - - - - - - +

Figure 16 Gramnatical NL Query Processing

The gramnatical processing results in a string of tokens

which have all been identified in the dictionary, or i n

querying the user for terms which are unknown. The process i s

as follows:

(1) If the word is in the dictionary, then identify the word

and attach i t s token identifier.

(2) If i t is not, then apply all known graMnatica1 rules for

suffix and prefix removal and replacement with proper

forms.

(3) For each transformation, attempt to identify the word.

If i t is identified, proceed with the next one at

step 1 .

7 7

(4) I f no1 identified, query the user and then either accept

a reelacement that is in the dictionary, learn a new

term, or abort the query.

The rule base for the suffix removal contains 17 rules

of modern English that convert tenses and voices. The rules

are part of the static knowledge base, a s they do not change

with different applications. Should the user need to increase

the scope of the rule base, the source code would need

modifications. The structure of the program is explanatory

and there are provisions in the source code for future -
updates (i.e., very few "hardcoding" constructs are

included).

The outcome of the lexical and gramnar analysis phases

is the token list and the token identifier list. Both l i s t s

are passed to the syntax verifier for syntactic verification

o f the input query. This phase is described in the next

sect ion.

Syntax verification has been the traditional method of

determining the correctness of NL queries, with l i t t l e

concern being placed on semantics [Winograd 8 3 1 . Even with

the shift towards more semantic analysis in the processing of

NL queries, syntax verification and syntax-based NL systems

7 8

are s t i l l popular [Wasserman 8 5 ; Tennant 8 1 ; Winograd 8 3 1 .

Syntactic analysis in a programning language involves

reading in the token sequences from the output of the lexical

analyzer and verifying that the patterns occuring in the

input are accepted in the language specifications. Often, the

input sentence(s) are transformed into a tree-like structure

called the parse tree [Hunter 8 1 1 . ,411 subsequent operations

on the sentence are performed on the (more structured) tree.

Since the NL processor accepts a subset of the English

language that has a gramnar and a syntax with rules,
-

transformations similar to the ones performed by programning

language compilers can be applied in order to verify the

syntactic structure of the input sentences. Often, as is the

case with programning languages, a parse tree (for

transformational gramnars) or augmented transition gramnar

(for ATN-based programs) is used. A number of successful NL

query programs use either context-free gramnars or network

based gramnars which perform extensive transformations to

the input query.

-
KARL, being oriented towards more semantic-based query

analysis, uses a significantly simpler mechanism for

verifying NL or near-NL queries. The mechanism is based on

simple recursive transition network gramnars, simulated by

regular expressions [Grimes 7 5 1 . As there is no specific

7 9

intermediate representation (1.e.. an A"), the entire cycle

is simplified. - Simplification of the syntactic analysis

phase results in simplification of the entire query

processing cycle.

The method that is followed in KARL is derived from

finite state automata based mechanisms. A finite state

automaton recognizes inputs known as regular expressions

[Hunter 8 1 3 . The regular expression constitutes a sequence

o f token identifiers that are bound together. If the regular

expression is recognized as being acceptable for further -
processing, then the pattern family number is returned. Else,

a syntactic error occurs. Within KARL, a regular expression

is used to simulate the recursive transition network.

The finite state automaton is designed to recognize

regular expressions. A regular expression i s a string o f

characters (or symbols), from a given alphabet, combined

under the rules of sequence, alternation, multiple

occurrences, and grouping in logical sub-patterns [Hunter

8 1 1 . Since the input sentence is a list (string) o f token

types and Identifiers, verifying the syntactic correctness of

the query involves generating the RTN-based regular

expression, passing i t to the finite state automaton, and

then receiving an answer from the automaton regarding the

status of the input string. If the regular expression is

accepted by the automaton, i t can be concluded that the input

8 0

sentence is acceptable syntactically.

Two rmportant concepts must be presented before the

entire semantic verification cycle can be explained. One is

the individual lexical token identifier types (i.e., verbs,

nouns, adjectives, etc), and the combinations of such token

identifiers that are acceptable and allowed by the automaton.

The implementation of the automaton through a regular

expression recognizer generator is presented also.

4 . 5 . 1 TO= D E N T I F I E B TYPES

The token types are the types that identify the

gramnatical classification o f the input tokens. The token

types are derived from English language word types. The token

identifiers are a s follows:

(1) Noun: a noun can be either a relation name or a relation

attribute name. Symbol: "n".

(2) Adjective: an adjective implies a property to the

attached noun in the noun phrase. Symbol: "a". -

(3) Verb: a verb implies either action or relationship.

Symbol: -v".

(4) Literal: a literal is the value specified by the user in

a conditional retrieval. Symbol: "1".

8 1

(5) Boolean operator: connects various parts of the query,

like-"and", "or", etc. Symbol: "b".

(6) Relational operators: connect the noun with i t s

associated literal, like "greater than", "not equal",

etc. Symbol: "r".

(7) Unknown type: Symbol: " ? " . (initially, all tokens are

typed as " ? ") .

Token sequences refer to acceptable token constructs

that are read by the finite state automaton. The repertoire

of the automaton may vary; however, all that is needed i s the

capability for verifying a sequence of tokens as to whether

their syntax is correct. Thus, after the tokens are

identified individually, the string is formed and then the

pattern is verified.

The following patterns are a sample of these supported.

Once a pattern is recognized, its family number is returned

to the control procedure. With the family number,

reorganization of the pattern is performed in order to

further "formalize" (i.e., transform from natural to formal

language) the query. Sample of patterns with examples and

brief notation explanation i s presented in Figure 1 7 .

-

8 2

V (N B ?) + (V L B ?) + print names of students that live -
in "Dallas"

V (NB?)+ (N R + L B ?) + print names of faculty with salary
greater than " 2 4 , 0 0 0 "

v (AN)+ print the good students

V (V L B ?) who is working in "Dallas"? ("who
replaced with "retrieve name")

(a) repetitions of construct "a"
a+ one or more occurences of construct "a"
a? construct "a" i s optional
a* zero or more occurences o f construct "a"

Figure 17 Sample Patterns and Queries

Patterns are less rigid in their requirements than other

forms o f NL representation such as AT"s [Winograd 8 3 1 . As a

result, queries that do not conform exactly to syntactic

standards can still be accepted, while acceptance of

syntactically correct queries i s not prohibited. The

transformation mentioned earlier reformats the query s o that

i t more closely resembles the SELECT-FRm-WHERE structure

that is created by the formal query generation module.

Restructuring typically involves grouping all conditional

clauses together with their associated relational and

conditional operators, and grouping of noun attributes.

-

8 3

4 . 5 . 3 SYNTACUC V E R I F I E R -
The syntactic verifier is implemented through the finite

state automaton that recognizes the regular expressions that

represent the RTN for each query. The UNIX operating system

provides a lexical analyzer generator program, LEX, that

accepts the specification for the patterns and possible

actions desired and generates the finite state automaton that

accepts such expressions, or rejects them. A meta-language is

used in the specification of the patterns, with the

associated actions embedded in " C " . The result, after a -
pre-processing, is portable "C" code (or Fortran 7 7 , if

desired) that accepts or rejects regular expressions. [Lesk

7 6 1 describes LEX in more detail.

A sample regular expression recognizer is presented in

Figure 1 8 . The allowable constructs in the LEX meta-language

are indicated below Figure 1 8 . The actions have access to

internal variables, such as the pattern length, current

position of the match marker, etc., s o that if the pattern

fails, diagnostic messages can be issued. The example in

Figure 1 8 -recognizes simple patterns of variable names,

integer and floating point types, and operators and returns

appropriate token types t o the scanner.

a 4

-
[A-Za-z][A-Za-zO-9-1* { return (ISVARIABLE); }
- ? [0-9]+ { return (IS-INTEGER) ; }
-?[0:9\.]+ { return (ISFLOATING); }
" + - * / % " return (ISOPERATOR); }

Figure 1 8 Sample LEX Scanner Specifications

Allowable constructs in LEX are as follows:

A-Z
a-z
0-9
[...I
*
+

s
?

matches single character uppercase
matches single character lowercase
matches single digit
groups sub-patterns
any character
zero or more times repetition
one or more times repetition

indicates end of line
optional element

indicates negation, also begin o f line

The output of the syntactic verification is either a

pattern number indicating the family o f patterns with which

the input pattern was associated and recognized, or an error

message specifying the location and nature of the error. In

several cases, as mentioned earlier, slight token list

transformation ("formalization") is performed. Then, the

pattern number, the token list and the token identifier l i s t

(pattern) Bre passed on for semantic verification.

Semantics refer to the meaning o f words and word

sequences. Semantic analysis refers to the analysis (and in

the case-of NL systems, verification) of NL input statements

in order to verify their semantic correctness, based purely

on semantic criteria [Wilks 8 2 1 .

-

A s [Dillon 8 3 1 reports, semantics are concerned with the

meaning of entities. By meaning, he identifies the knowledge

that an individual must possess in order to make judgements

about ambiguity, anomalous construction, ellipsis and

plethora, contradictions, redundant structures, equivalences

and associations, and other concepts. However, while such

knowledge is relatively adequate for human-to-human

comnunications, i t is not enough for NL question answering.

The process of semantic analysis and verification of

input NL queries involves analysis o f several non-linguistic

concepts. The DEPMS schema, for example, or a superset

thereof, can be judged as a collection of abstractions on

which application o f knowledge can yield rejection or

acceptance. Stonebroker suggests the addition o f abstract

data types and rule-based techniques for the INGRES database

system [Stonebroker 7 6 1 . Other NL processing programs use

semantic based representations (such as A T ” s) for semantic

verification.

KARL provides semantic analysis and verification

capabilities related to both database system schema and

linguistic considerations of the words in the knowledge base.

86

In the -following sub-sections, both verification (and

transformation, where applicable) techniques used in KARL

will be presented.

4 . 6 . 1 J.INGUISTIC SEMPLEJTlC ANALYSIS

Handling linguistic semantic analysis involves a number

of distinct operations on the input token l i s t and token

identifier list. At this time, the pattern family is known,

as determined in the previous stage. The operations relate to

verifying the query for inconsistencies that may arise from
-

incorrect combination of terms, resulting in a query that is

syntactically acceptable, but semantically incorrect. The

tests that KARL is capable of performing on the input

pa r ame t e r s i nc 1 ude :

(1) Ambiguity is identified when multiple interpretations of

a single term are found in the dynamic knowledge base.

The main action i s context analysis (i.e., lookup of the

surrounding terms) and use of heuristics for determining

the appropriate meaning. If context analysis fails, then

the user is presented with the l i s t of alternatives and

-

selects to either proceed using one of these meanings,

redefine the offending term or reject the query

altogether.

(2) Ellipsis is identified when less terms are presented

thangeeded, i.e., when terms are missing from the query

context. As with ambiguity, surrounding terms are used

in order to identify the missing parts (or even attempt

to "guess"), and then introduce the missing parts into

the query structure.

(3) Redundancy is identified where duplicate information is

given in a query context, i.e., in the query "give the

names and names of students". Plethora is identified

where more information than the required is supplied, -
i.e., "give the names of students and addresses of

students". In both cases, the program w i l l attempt to

eliminate the useless terms.

(4) Relationships are verified following a set of rules

encoded in the semantic verification module, and using

dynamic knowledge as well. Under rules of the English

language semantics, a number of groups of terms can be

verified. Specifically, noun phrases, collections o f

nouns and/or noun modifiers (i.e., adjectives) are

verified for compliance with the rules of concordance

between adjectivelnoun structures. Also, in verb

phrases, collections of subject/verb/object structures,

the subject, verb, and object(s) have to agree.

Linguistic semantic verification is performed as a

8 8

separate function within the system, with no interaction with

the other semantic verification modules. Figure 1 9

illustrates the structure o f the linguistic verification

process:

-

I Noun Phrase Proc.1
+ - - - - - - - - - - - - - - - - - - +

I
v

Figure 19 Linguistic Semantic Verification Flow Chart

4 . 6 . 2 DATABASE--

A NL (or even formal) query to a DIMS can be analyzed

and verified in terms of its semantics. The semantic

-

correctness problem typically emerges when the query is

syntactically correct, i.e., acceptable by the parser o r DIMS

front end, but the results are wrong, no response is

produced, or an operating system level error occurs. In each

8 9

case, analysis of the input query, usually using the schema

or a superset thereof, can be used for semantic correctness -
verification.

KARL semantic verification of D€MS related entities

(such as table organization, ranges, limitations, etc.)

follows Stonebroker’s suggestions for implementing semantics

in the DIWB [Brodie 8 4 1 . Abstraction of the entities are

stored in a schema superset, which in turn is represented in

the frames of nouns in the dynamic knowledge base. The frames

contain, for each abstract data type (essentially for each

attribute), ranges, patterns, data types, relationships and

operators allowable, and other constructs. KARL 1 .02 database

related verification follows the flowchart seen in Figure 2 0 .

I Operand Concordance I
+ - - - - - - - - - - - + - - - - - - - - - +

I
V

Figure 20 D M Semantic Verification Flow Chart

9 0

Semanzic verification in KARL involves passes over the

token 1 i ~ t and token identifier lists, with each pass

verifying a distinct subset of the query as to i t s

conformance to the correctness standards. The entire

implementation can be divided into two parts, the linguistic

and DB verification modules. The flow of processes throughout

the two parts was presented earlier, in Figures 1 9 and 2 0 .

Figure 2 1 presents the integration of the two components into

a discrete, autonomous unit.

Figure 2 1 Integration of Semantic Verification Submodules

The routines that perform the semantic verification rely

on semantic knowledge supplied by the knowledge base. Thus,

given certain information (i.e., a verb), the knowledge base

can return allowable subject/object combinations for

linguistic verification. Similarly, given a noun (i.e., a

database relation attribute), the knowledge base can supply

all knowledge needed to verify its meaningful use.

-

In both sub-modules, knowledge i s processed in a set o f

rules that accept the token and token identifier lists,

9 1

pattern number and dynamic knowledge, and infer the

compliance_ o f the query to these rules. A sample collection

of rules implemented through ”C” language constructs is

presented below using pseudo-English:

IF TOKEN(N1 IS ADJEnIVE
THEN TOKEN(N + 1) MUST BE NOUN AM) / * I f not a noun * /

NOUN AND ADJECTIL‘E MUST AGREE / * a syntax error * /
AND HAVE ENTRY IN THE KB-ADJ. / * is signalled * /

ELSE ERROR = NO-NOUN-ADJ-AGREEMENT.

IF ToKEN(N) IS VERB / * K i s the * /
THEN TOKEN(N-K), TOKEN(N+K) ARE NOUNS / * lookahead * /

AND MUST AGREE WITH THE DEFINI- / * and/or * /
TION OF THE LZRB IN THE KB-VERB. / * backtrack * /

ELSE ERROR = NO-VERB-NOUN-AGREEMENT. / * pointer * /

I F TOKEN(N) IS LITERAL
THEN ToKEN(N-K) IS THE NOUN ENTITY

SO VERIFY THAT LITERAL RANGE / * i.e., GPA = 6 . 0 * /
IS ACCEPTABLE

ELSE ERROR = LIT-OUT-OF-RANGE.

Figure 22 Sample Semantic Verification Rules

Implementation of the rule structure itself is made

using the ”C” programning language, and, in effect,

constitutes a part o f the static knowledge o f the system.

Such knowledge (i.e., knowledge that a literal must be within

a certain range o f high and low values, or that a noun

phrase’s components must agree) is typically independent o f

applications and can be reused as applications vary.

-

9 2

-
After having processed the NL query and verified its

syntactic and semantic correctness according to predefined

criteria, a formal query has to be generated and executed by

the host D M . Although the two operations are rather

distinct, their combination is necessary s o that host DIMS

related dependencies are minimized. This was one of the

generic design goals, and the solution is well suited in

fulfilling the objective.

-
In generating and evaluating the formal query from the

NL or transformed NL query, two approaches can be considered.

One is to use the low-level DHW facilities, where

applicable, and make the NL processor responsible for

interfacing the formal query generator with the low-level

DWlLS routines that perform the actual retrieval. The other

option is to allow the NL processor to evaluate the generated

formal query as if i t were a user in an interactive session,

by typing in the formal query to the high-level D A B

interactive monitor. This approach would allow better

portability as many formal query languages for relational

DHW’s tend to be similar and simplify the generation part t o

a great extent. On the other hand, interface with the

low-level DAB services would imply layering and/or other CPU

intensive processes in order to determine the proper

sequences o f subroutine calls that are needed for evaluating

9 3

the query.-

Both-methods were considered in the design of KARL. As

the generic as w e l l as specific design objectives call for

simplicity and portability, the second approach of

interfacing at a high level with the DWlIS was adopted. The

process of transforming the NL processed input token l i s t

into a formal query for the INGRES relational database system

is outlined below:

(1) Determine the domains and ranges of the NL query, and

the abbreviated names that are to be used in the RANGE

statement.

(2) Determine the type of operation (retrieval, existence

check, count, etc.) that is being requested and verify

that the request i s supported (in version 1 . 0 2 , only

retrieval is supported).

(3) Select the attributes that are to be retrieved, or use

the defaults from the database schema frame

representations. If none i s specified, default to ALL

and pFepare full tuple retrievals.

(4) I f no conditionals are specified, submit the query after

reorganization to conform to the formal query structure

of the host D m system.

9 4

(5) If there are conditionals and possibly boolean

conjunctions, determine the conditional parts of the

transformed NL query. U s e the patterns of <noun-phrase>

<relational-op> <literal> structures in order t o

-

determine the exact conditions that are to be m e t .

Using a "blank" formal query structure, perform the

"fill in the blanks" operation for each conditional

statementlpair. Link the conditionals with the

appropriate boolean connectors (and, or, not). Once the

formal query has been filled in, proceed with next step.

(6) Check the entire formal query for syntactic correctness

using knowledge of the host formal language syntax. If

correct, prepare for evaluation, e l s e flag the query as

incorrect due to internal (not user-related) error.

(7) Perform the necessary calls to the host D€MS to open the

DB, submit the query, and then, after the results have

been presented to the user, close the DB and proceed.

This concludes the query cycle.

The blank formal query structure mentioned earlier has

the form o f Figure 23. The attribute list, domain list and

-

conditional l i s t s are present, with the conditional

statements being optional. Transformation of such a query

structure to the QUEL query structure is simple, since all

three of the necessary information subsets (i.e., domains,

9 5

attributes, and conditionals) have already been determined.

"Blank" Format:

SELECT <attribute-list>
FR(M <domain>
WHERE <condition-list>

QUEL Format:

RANGE OF <abbrevname> IS <domain7
RETRIEVE <dot-attr-list>
WHERE <dot-conditional-list>

<attribute-list> : : = <attribute> I <attribute-list>
<attribute> : : = any database relation column name
< d oma i n > : := any database tuple name
<condition-list> : : = <attribute> <rel-op> <literal> I

<attribute> <rel,op> <literal> <boola I
<condition-list>

< ab b r e v-n m e > : := shortcut name used in retrievals
<dot-attr-list> : : = < a b b r e v n a m e > . < a t t r i b u t e > I

<dot-cond-list> : := conditional l i s t using dot pairs
<dot-attr-list>

Figure 23 "Blank" and QUEL Formal Query formats

At this point, i t is reiterated that the transformation

o f the user input NL sentence into a fully formal query does

not occur at a single stage, but rather at different points

during syntactic and semantic analysis. For example, after

verifying the semantic correctness o f a noun phrase

consisting of adjective/noun pairs, the semantic verification

-

module replaces the noun phrase with the more formal

<attribute> <relationalpp> <literal> structure. Similar

transformations occur if elliptic queries are being

processed, when, after determining the missing terms, the

9 6

terms are- inserted into the query and the token and token

identifier lists are modified t o reflect the new

transformat ions.

-

The formal query generated for the host D M is

evaluated and processed by the host DIMS itself, thus

simplifying even more the task of NL processing. After the

formal query is submitted, the host DBMS will respond in the

s a m e manner i t would as if the formal query were typed on the

terminal monitor. Then, the results are displayed on the user

terminal screen and the cycle is set up again.

4 . 8 M l D U L E I N T E R C O N "

Module interconnection refers to both the connections o f

the various (loosely coupled) modules with each other, in

order to construct the entire system, and also, the

connections of the entire software systemwith the underlying

operating system, DIMS and run-time support environment. Both

interconnection schemas will be presented.

4 . 8 . 1 INTERNAL-

Aho [Aho 7 9 1 suggests the schema of Figure 24 for a

compiler. As illustrated, a pipeline-like structure accepts

the user program in one end and returns object code (and

9 7

possibly error m e s s a g e s) from the other end.

- Input Program

I
I

+ - - - - - - - - - v - - - - - - - - +
I Intermediate Codel
I Generation (some)l
+ - - - - - - - - - - - - - - - - - - +

I
i

+ - - - - - - - - - v * - - - - - - - +
I Code Optimization1
+ - - - - - - - - - - - - - - - - - - +

I
I

- + + - - - - - - -
I Error I
+ Handl- I
I ing I

- + + - - - - - - -

I Code Generation I
+ - - - - - - - - - - - - - - - - - - +

I
V

Executable Code

Figure 2 4 Typical Compiler Organization

As KARL shares a number of features and concepts from

compiler design, a similar structure that couples together

the modules that w e r e presented earlier can be visualized.

-

The main parts, as seen in Figure 2 5 , are the lexical/granmar

analyzer, syntax verifier, semantic verifier and formal query

generation and evaluation modules.

9 8

I Error I
+ Handl- I
I ing I

- + + - - - - - - -

Figure 2 5 KARL Structure Organization

There are three distinct flows of data (machine-readable

code) in the KARL system. The query tokens flow, the

knowledge flow, and the errors/warnings flow. The three flows

can be thought of as complementary, as no functions overlap

and each module has a determined task allocated.

(1) Flow of tokens involves the "movement" of tokens from

the initial user interface prompt stage t o the final

9 9

stage-of processing by the host D M formal query

parser. The NL query that is input passes through a

number of transformations, each formalizing the query

and updating the token identifier list. The token l i s t

i s initiated in the lexical and gramnar module. Then,

after identification of the tokens, the token identifier

l i s t "travels" with the token list. Syntactic

verification generates one additional item of

information, the pattern family number, which is also

forwarded for semantic analysis and formal query

generation purposes.

(2) Flow of knowledge is bidirectional from the dynamic KB

to and from the individual modules that use it. Such

knowledge can be dictionary knowledge, i.e., word

classes, and semantic knowledge that relates to the

attributes and overall schema of the database. Static

knowledge is considered local to the individual modules

and is of no concern at this phase.

(3) Error and warning flow is unidirectional from any module

in which an abnormal condition may arise. Errors are

identified as functions of the following parameters:

original NL token list, processed token list, token

identifiers list, error number, and error message.

Typically, the program that issues the error message

does not take action, but turns control over to the

100

error-handler and reporter module. This module can also

contain diagnostics for the user. Finally, warnings are

handled similarly to errors, but do not abort the query

processing cycle.

-

4 . 8 . 2 -HAL. m C T I 0 h ‘S

External connections are the interaction paths between

KARL, INGRES and UNIX. Figure 2 6 presents the relationship o f

the three products. All data paths between components are

bi-directional.

- + I + - - - - - - + - - - - - - - - - - - - - - + + - - -

I I I I
I I ow I I I h i g h
I level I I I level
I I I I
I + - - - - - - + - - - - - - - - - - - - - - + + - - - - +
I I INGRES Relational D M I
I I I
I ~ - - + - - - - - - - - - + - - - - - - - - - - + - - - +
I I I I
I I I
I I I I
I XXXXXXXXXXXXX
I : : data : : : : data : : X Knowledge X
I : : base : : : : base :: X Base X
I XXXXXXXXXXXXX

- + + - - - - - - - -

.

....................

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 26 Inter-System Organization

101

Comnunication between INGRES and KARL occurs through two

primary methods. The first i s through embedded INGRES

statements within KARL code, in the Embedded QUEry Language

(EQUEL) that INGRES supports. In such, INGRES QUEL statements

are placed (embedded) within ”C” code, and then a

preprocessor translates them into INGRES low-level calls. The

second approach involves direct calls o f the low-level INGRES

capabilities, usually in order to overcome the inherent

difficulties present within EQLJEL. I t is noted, however, -

that most of the interfacing is performed through EQUEL, and

only the critical parts are implemented directly through

INGRES calls. Transportability is not affected significantly

since the embedded query capabilities o f many relational

DIMS’S, like the SQLISystem R embedded query language [Date

8 1 1 , are similar to the one used by INGRES in KARL.

The second level of interaction i s between KARL and

UNIX. UNIX supplies information to KARL through system

calls. Such services are date, user id, access information,

etc. For -portability reasons, only the functions that are

available in a variety of operating systems (such as time and

access information) are used. [Kerningham 7 9 1 contains

additional information on the interaction o f application

programs and UNIX.

I

1 0 2

-
This section will present several annotated examples of

queries that w e r e processed and/or rejected by KARL. For each

query, the pattern and the different stages of processing

will be explained. In total, six queries will be presented

and discussed. Three failed and three were accepted by the

system.

QUERY 1:

please show the students enrolled in "CMPS351" or " W S 3 6 0 "

LEXICAL ANALYSIS: show student enroll " W S 3 5 1 " or "CMPS360"

(ellipsis): show student enroll "CMPS351" o r
enrol 1 " W S 3 6 0 "

PATTERN MATCHED: Verb (Noun Bool?) (Verb Literal Bool?)'

SYNTACTIC ANALYSIS: OK. Pattern Accepted, P a t t e r n 3 0 = 8 .

SEMANTIC ANALYSIS: enroll (student, course) OK.
course PATTERN = "xxxX9999" OK
course Number = 360 e 699 OK
course Number = 351 < 699 OK

BLANK QUERY: SELECT all / * default * /
FRCM student
WHERE (course = "CMPS351" I

course = "CMPS360")

QUERY PROCESSED CORREC;TLY -

Example 1 Query With Simple Ellipsis

Example 1 was processed with qualifying attribute

ellipsis for the literal "CMPS360". As in programning

languages, the previous attribute is used by default.

103

-
QUERY 2 :

-
who is " 0 0 0 - 4 0 7 6 - 6 5 "

LEXICAL ANALYSIS: retrieve name " 0 0 0 - 4 0 7 6 - 6 5 "
(severe ellipsis): retrieve name " 0 0 0 - 4 0 7 6 - 6 5 "

PATTERN MATCHED: Verb (Noun Rel-op? Literal Bool?) +

SYNTACTIC ANALYSIS: OK. Pattern Accepted, PatternJo = 4 .

SEMANTIC ANALYSIS: Pattern " 9 9 9 - 9 9 - 9 9 9 9 " matches ssn

ssn PATTERN = " 9 9 9 - 9 9 9 9 - 9 9 " OK
REFORMS: show student ssn " 0 0 0 - 4 0 7 6 - 6 5 "

BLANK QUERY: SELECT name
FR(M student
WHERE (ssn = " 0 0 0 - 4 0 7 6 - 6 5 ")

QUERY PROCESSED CORRECTLY

Example 2 Query With Severe Ellipsis

QUERY 3 :

print names and addresses of all the rich faculty

LEXICAL ANALYSIS: print name address rich faculty

PATTERN MATCHED: Verb (Noun Bool?)+ (Adjective Noun) +

SYNTACTIC ANALYSIS: OK. Pattern Accepted, P a t t e r n 3 0 = 1 2 .

SEMANTIC ANALYSIS: name belongs to faculty
address belongs to faculty
rich := salary > 4 0 , 0 0 0

salary range OK
REFORMS: print name address faculty salary > 40000 -

BLANK QUERY

SELECT name, address
FR<M faculty
WHERE salary > 40000

QUERY ACCEPTED

Example 3 Query With Adjective and Noun

1 0 4

Example 2 presented severe ellipsis which can be handled

when the- appropriate number in the pattern family i s

determined. Then the literal patterns frame is scanned and

the "student" frame has that pattern. Example 3 uses

adjectives as noun modifiers, and the semantic verifier uses

the adjective and verifies its use with the noun. Both

queries are accepted.

QUERY 4 :

show students who live and work in "Lafayette"

LEXICAL N4LYSIS: show student live and work "Lafayette

PATTERN MATCHED: NONE (although sentence is correct)

SYNTACTIC ANALYSIS: Failed. Program could not parse
input sentence (No double verb
pattern supported)

QUERY REJECTED

Example 4 Query With Non-supported Pattern (Two Verbs)

QUERY 5 :

show the rich students

LEXICAL ANALYSIS: show rich student

PATTERN MATCHED: Verb (Noun Relop Literal B o o l ?) +
(severe ellipsis, pattern matches after replacing "rich")

SYNTACTIC ANALYSIS: OK. Pattern valid. Pattern No: 4

-

SEMANTIC ANALYSIS: rich student: error.
Attribute "salary" not associated with
relation "student"

QUERY REJECTED

Example 5 Query With Incorrect Semantics (Adjective)

105

QUERY 6 : -

show the students enrolled in ” W S 9 9 9 ” -
LEXICAL ANALYSIS: show student enroll “(xIpS999”

PATTERN MATCHED: Verb (Verb Literal B o o l ?) +

SYNTACXIC ANALYSIS: OK. Pattern valid. Pattern No: 11

SEMANTIC ANALYSIS: enroll (student, class) OK
class pattern OK
class number out of range
class number > 6 9 9

QUERY REJECTED

Example 5 Query With Incorrect Semantics (Range)

Some o f the examples that failed w e r e erroneous because

o f range, syntax, or adjectivelnoun concordance (Examples 5

and 6) . There are other reasons that queries fail, in

particular queries that are out o f the program’s capabilities

(Example 4) . Such queries and future work are discussed in

Chapter 5 .

4 . 1 0 CHAPTER CONaUSIONS

In this chapter, the low level design and implementation

of the KARL software systemwere presented. The system design

was decomposed into its functional modules, and each module

was presented and discussed as an independent entity. The

interconnections between modules were also presented and

discussed.

-

106

Althoqgh technical details in a design of such

complexity are typically overwhelming, the modular design of

KARL assisted in presenting the design itself as well as the

underlying concepts in a structured way. The methodology that

was followed in the design was also stressed.

-

lmplementing a software system as diverse and as complex

as KARL was an experience in itself. Being able to

materialize the theoretical concepts underlying KARL (R T ” s ,

database theory, compiler theory, formal languages,

linguistics) into a single functioning software system -

indicates that the integration of the concepts was far more

difficult than either the selection of design techniques o r

implementation techniques. In such an environment, the need

for controlling the interaction between independent

components was critical, and the presence of a single

methodology for integration was appreciated. Then, by

integrating the various components, full functionality was

achieved.

CHAPTER 5

DESIGN EVALUATION AND FUTURE ISSUES

Completion of the design and implementation phases of a

software product is not considered the end of the software

life cycle [Turner 8 4 1 . Product evaluation, based upon the

product’s own design objectives, user opinions and accepted -

standards are all needed in order to determine the success

and/or failure of the product. Evaluation based on these

criteria is presented in this chapter.

The changing field o f natural language query processing

systems, combined with current progress in interdisciplinary

areas such as human-machine interaction studies, linguistics,

and cognitive psychology, create the need for a design that

not only performs according to set standards, but is able to

expand in order to acconmodate new techniques, modifications

or improvements. As one of the principles of KARL is its

expandability, a framework for future expansions i s presented

in this chapter. The framework contains, as examples,

several proposals for major upgrades that originated during

the design and implementation phases of the prototype version

1 . 0 2 .

107

108

The generic objectives were general guidelines to be

followed in the design of KARL. These were general

objectives that can apply to any software system, and thus

they were adopted for a NLQS. As design objectives, these

characteristics indicate the main areas of attention of the

designer. The objectives, in order of importance, were as

fol lows:

(1) Adaptability to new applications

(2) Portability between systems/host tools

(3) Reduced complexity

(4) Efficiency.

Using these objectives as guidelines for system design,

the high level design of KARL was undertaken. Comparing the

generic design objectives with the results, f r o m both the

design and implementation phases, i t is evident that the

generic objectives have been fulfilled:

-
(1) Adaptability to new applications has been achieved by

providing a fully modifiable dynamic knowledge base that

contains the application dependent knowledge. Therefore,

n e w applications only need redefinition of the dynamic

knowledge base contents. Although building a new

109

knowl3dge base is by no means trivial, even in very

limited - expertise domains [Wiederhold 8 4 1 , i t certainly

is less resource- and time-consuming than having to

modify the system implementation o r develop new

applications.

(2) Portability between systems/host tools has been achieved

through the use of a widely available host operating

system (UNIX), programning language (C) and host

database system (INGRES). In addition, the source code

is portable (i.e., contains no major operating system -

calls except the "system" call that passes a comnand

line to the operating system from execution within a

program, which is a facility available on most modern

operating systems), and the structure o f the INGRES

query format can be retargeted to other relational

DIMS'S without significant effort. Finally, the lexical

analyzer generator creates portable C code.

(3) Reduced complexity is also achieved. This is evident in

the source code that is divided into logically distinct

modul2s performing independent tasks. Reduced complexity

therefore is the result of a "black box" design

methodology, rather than the result of implementing a

particular NL processing strategy.

(4) Efficiency was also achieved through the use of a highly

110

optimized compiled language instead of a more

traditional AI-oriented interpreted language. The

program’s simple structure eliminates many calls to

routines performing multiple functions and contains no

dynamically allocated memory, thus optimizing the

implementation even more. Should the efficiency and

performance become critical, mi gra t ion to a

memory-resident knowledge schema can eliminate the

overhead caused by the knowledge retrieval process.

The following natural-language specific objectives were

identified when the framework for the design and

implementation of KARL was presented:

(1) System knowledge capabilities and i t s associated

domains, processing, and acquisition.

(2) Gramnatical constructs handling capabilities that allow

recognition of different forms of the same word; also,

capabi 1 i ty o f hand1 ing synonyms.

(3) Syntactic construct handling capabilities that allow

recognition o f different syntactic forms of questions.

(4) Semantic construct handling capabilities that allow

verification of different semantic forms of questions.

111

(5) Learnlng capabilities that allow a system to "learn" new

words and constructs. -
(6) Handling of elliptic queries, thus necessitating

heuristics in order to understand and process such

queries; also capabilities for generalized error

detection and appropriate reporting.

Using the specific design objectives as criteria for the

evaluation o f the design, the following is a list of the

status o f these objectives:

(1) System Knowledge capabilities and associated domains,

processing, and acquisition are provided through the

dynamic knowledge definition procedures, the knowledge

utilization procedures and the embedded rules contained

in the static parts of the knowledge base.

(2) Gramnatical constructs handling capabilities that allow

recognition of different forms of the same word and

capability o f handling synonyms are provided through a

collection of gramnatical transformation rules and the

dictibnary which allow multiple forms represented as one

entry and multiple synonyms mapped to the same entry

also.

(3) Syntactic construct handling capabilities that allow

recognition of different syntactic forms of questions

1 1 2

are provided. Such capabilities allow the verification

of sentences based on syntactic criteria, using a simple

network-based algorithm that a1 lows English,

pidgin-English and even semi-formal queries t o be

recognized.

(4) Semantic construct handling capabilities that allow

verification of different semantic forms o f questions

have been provided. Semantic verification at both the

database level and the linguistic level are provided,

along with descriptive diagnostics.

(5) Learning capabilities that allow a system to "learn" new

words and constructs are provided also. When terms that

are unknown to the system (i.e., not in the dictionary)

are encountered, the system has the capability of

querying the user and then retaining the answer f o r

future use, thus providing a form o f learning.

(6) Handling o f elliptic queries is provided through context

analysis. The surrounding context is used in order to

determine the missing terms, along with defaults set in

the dictionary and heuristics where appropriate. Full

diagnostics are also provided for all stages.

-

The specific objectives are met primarily through the

following of a decomposition methodology that allows the

designer t o concentrate on one specific part o f the system

1 1 3

(or objective). Such approaches are typical of large scale

design and implementation projects such as compilers, and the

"black box" methodology and presence of a single intermediate

query representation form ensure compatibility between the

modules.

5 . 4 m E V A L U A T I O N Q E S Y S T E M -

A system is evaluated in order to determine not only how

well i t conforms with the original design objectives and

specifications, but also in order to determine its overall

functionality and capabilities in handling the taskts) for

which i t w as designed.

In evaluating software products in general, in order to

determine their functional capabilities, the problem of

adequate testing is often addressed [Wernier 7 9 1 . There are

suggestions for both basic and advanced level testing. In

more traditional software systems, where the set of possible

inputs is not infinite, testing can often determine the

success or failure of the system by using as many cases as

possible and observing the results. Even in the cases of

software systems as complex as the Ada compiler, there are

test case collections o r suites, that have to be executed in

order to verify the correctness of the system [Barnes 8 4 1 .

-

1 1 4

In t b field of natural language query systems, however,

validation_ of the correctness o f the program has been

overwhelming difficult. There are no input restrictions, and

usually a wide set of rules that a r e imposed (i.e., the

database schema) exist. A NL processing system, therefore,

can not be verified solely in terms o f i t s input/output

alone. Although other software systems can be said to

function/malfunction solely on the basis of their input and

producing output, NL systems can not be verified by solely

typing queries to the program and counting the number of

successes and failures.

I t is then concluded that a NL system can not be judged

in terms of sample inputs/outputs alone. Tests of earlier

versions of KARL (KARL 1.00) indicated a capability of

handling queries in the 60 to 6 5 percent margin, when

adjusted for spelling and typing errors. However, judging

the overall functionality o f the system not in terms of the

percentage of queries that i t handled, but rather by

comparing i t to accepted criteria for NL processing systems

is more appropriate. This serves as an evaluation of the

design concepts, methodology and techniques rather than an

evaluation made on "looks alone", i.e., how the system

responds to the end user.

-

The set of NL processing capabilities that was defined

by Hendrix [Hendrix 8 1 1 is used to evaluate the general

performancL of the KARL system. The capabilities, presented

in Figure_ 27, characterize a production-level NL database

query system in terms of i t s capabilities and design

p r o v i s i o n s / c h a r a c t e r i s t i c s that are incorporated into it.

The criteria are not to be taken as the only means of

determining success or failure, but can be used as guidelines

towards that decision. The set of the capabilities, along

with KARL’S performance “ratings”, can be seen in Figure 2 7 .

116

- CR 1 TER I ON KARL

(1) Be able to access multiple databases YES
(i.e., retargetable within applications)

(2) Answer questions asked directly (i.e., Who ...I YES

(3) Handle multiple files and relationships YES

(4) Handle simple pronoun references No (i)
I

(5) Be able to handle ellipsis YES

(6) Provide report generating facilities for the No

(7) Be able to extend the linguistic knowledge of YES

retrieved data (i.e., formats, graphs, e t c) ~

the system during program execution (Learn)

(8) Handle null (no retrieval) cases, indicating the NO (i i)
condition(s1 that failed

(9) Restate in English the user’s query, to assist in YES (i i i)
understanding the system’s view of t h e query

(10) Handle spelling and typing errors caused by users NO I
I

(11) Provide special functions for improvement of the NO (i i)
database capabilities

(12) Provide semantic constraints in the dialogue YES
between the human and the machine, and handle
errors such as plethora and ambiguity

(i) I t e m has been considered as future extension (next Section)
(i i) Item not in the original design considerations I

(i i i) The program restates the query in a semi-formal way.
-

Figure 27 Hendrix’s Capabilities and KARL performance

1 1 7

In addition - to general natural language capabilities

discussed earlier, a NLQS can also be evaluated in terms of

the subset of the natural language that i t i s capable o f

-

handling properly. This language subset can be considered as

the union of comnon concepts that can be used by the user and

the linguistic facilities that describe how these concepts

can be expressed [Tennant, 8 0 1 .

Both aspects of the natural language are important;

furthermore, the integration o f concepts and facilities must

be made in such a way as to ensure maximum linguistic-

performance. The concepts that the current version of KARL is

capable o f handling are presented below in an outline form

proposed by [Tennant, 8 0 1 .

Comnon Natural Language Concepts

Closed class words
definite references
gender
number

counted objects
singular/plural

modal i ty
locat ion

posit ion
general area

t ime
- past/present/future

different representations
time span (interval)

possesion/ownership

database elements
Domain-Specific Concepts

fields, attributes, values
relationships between fields
restrictions/limitations

domain-specific knowledge
knowledge extension

application knowledge

1 1 8

Logics1 Relationships
negation
disjunction
Con j unc t i on

numerical quantifiers
character string quantifiers
comparison

Extension of Concepts
equivalence terms

new classes

Quantative Relationships

synonym /a c ronyms

named classes
named objects
named properties

Linguistic Facilities

Concept Reference Capabilities
by name (string constants)
by class

mod i f i e r s
determiners
quantifiers
identifiers

by adjective classes
adjective phrases
adjective/noun phrases

verbs
verb phrases

by other means
synonyms / ant onyms
acronyms
property lists
numeric values

by action indicators

Sentence Structure
active voice
limited passive voice
simple sentences
multiple sentences
declarative/imperative/interrogative
noun phrases

subject-verb-object type
limited indirect type
multiple noun phrase type

finite verb phrases
non-finite verb phrases
verbless clauses
adjective phrases

prenominal phrases (adjective-noun)
postnomial phrases (noun-adjective)

119

multiple adjective sequence
Elliptic Phrases

ellipsis and substitution
iiominalized adjectives

nominalized verb phrases

omnited conjunctionslsub-sentence connectors

a s s u m e noun from adjective

assume noun from verb

The initial implementation of KARL was made in order to

determine the validity of the design concepts, namely, the

highly independent processing modules, the relational

implementation o f the knowledge base, and the system’s

capability to retarget. As a result, a number of features

present in production-level systems have not been

implemented. This section will present a collection of such

features, along with a framework for future design and

implementation.

The collection of features that can be implemented in a

NL system can easily become extremely large, as there are

always new rules, features, and improved capabilities that

can be added, or even old ones that can be replaced/improved.
-

The key aspect in this type of system upgrade is the

expandability of the system. KARL, based on a number of

independent modules and a simple representation o f knowledge

and intermediate query form, can be expanded by replacing

120

modules, g r adding new modules between modules. Since the

functionality of each module is well defined, a future

replacement can integrate the updates in the existing frame

with little effort. Should additional modules be needed, such

as a spelling checker, they can be added between modules.

-

In its current status, KARL 1 . 0 2 is targeted towards a

simple student/faculty/course database. The configuration of

the database schema contains four relations. None of the

knowledge required to process queries on the database is

hard-coded, and all is contained in the dynamic part of the,

knowledge base. The knowledge base itself occupies

approximately 1 8 Kbytes of storage (dynamic part only). A

copy of both the database schema and contents, and the

knowledge base schema and contents for the sample application

used throughout the thesis can be found in Appendix A .

KARL does not support nested queries, therefore i t can

process only queries related to one relationship at a time.

Also, i t does not handle spelling or typing errors due t o

time limitation considerations. KARL’S capabilities for

processing-null queries handle only cases where a null

response is the result of a semantic error, not cases where

the conditional is correct but there is no such value (or

values) in the database. Finally, the prototype version 1 .02

does not handle pronoun reference. A framework for designing

and integrating these capabilities within KARL is presented

I
,

1 2 1

be 1 ow: -

(1) Nested queries can be implemented by recursively

selecting the conditions for the sub-queries, or

alternately, defining the maximum number of levels of

sub-querying and iteratively constructing the query. In

order to group the elements of the different sub-queries

into one structure, the query generation module will

have to be expanded to accomnodate multiple conditionals

in the WHERE part of the query. The same syntactic and

semantic constraints will apply. -

(2) Pronoun reference can be handled by maintaining a query

history and applying the criteria for the most recent

query that agrees semantically with the

pronoun-referencing query in question. For example, a

query to display a certain student’s record followed by

a question of the f o r m “When did he take W S 5 5 0 ? ” could

be answered easily. Should other queries interleave,

heuristics that match the rest of the attributes of the

pronoun-referencing query to the ones previously i n the

history would be used. Pronoun reference handling

capabilities can be inserted after the lexical stage s o

that the query is fully resolved for syntactic/semantic

analysis issues. User querying can be considered as a

”last resort” solution. The other system components

would need no changes.

1 2 2

(3) Spelljng correction can be handled in several ways; one

way -would be to assign unique similarity codes to words

and then fetch words of similar similarity codes as

alternative(s1. Heuristics can be used to correct

several types of errors, for example, extrapolating

characters, or forgetting to type a space between words,

o r removing one character from the word. However,

correction of spelling errors requires relatively large

resource utilization, and tradeoffs have to be made for

system capability versus processing time. The spelling

check/correct module can be attached to the lexical
-.

analysis stage with no modification to the remaining

components o f the program.

(4) Null query handling capabilities involve decomposing the

query and re-submitting the fragments for execution,

noting the number of hits. This feature can be added

after the query evaluation stage, and be activated when

a null result occurs. Decomposing the query would

involve boolean processing capabilities and techniques

which do already exist in the field of compiler

construction. Heuristics can be used so that if a part
-

o f the query that fails affects others (i.e., through an

AND construct), the search for the null-causing clause

terminates. I t should be noted that with the range and

pattern semantic verification capabilities, and a

1 2 3

well-glanned database, user errors that result in null

queries are reduced. No changes to the program structure

would be required.

(5) Query optimization is another area that future research

can address. Using application dependent knowledge, the

query processor can eliminate conflicting clauses or

simplify queries to a large extent. Considerable

research has been undertaken on the subject [Wiederhold

8 4 1 ; optimizing should be targeted towards the formal

language query, since the "unstable" NL query can not be+

formalized enough before optimization. In addition, code

optimization techniques can be used. Such a module would

be an extension of the formal query generation module,

with no changes required to other programmodules.

The field of NL processing by computer offers highly

challenging problems. Orienting the product towards

production use brings into consideration computational

efficiency as w e l l as NL handling capability. Finally, user

surveys can be used in order to determine needed system

qualities and, through software maintenance, introduce these

into the system.

CHAPTER 6

CONCLUS IONS

In this thesis, the design and implementation of a

knowledge assisted restricted natural language database query

system, the KARL system, have been presented. The general

methodology, as well as the specific techniques that have

been followed throughout the research have been explained.

Future areas for research have also been identified, using
4

the KARL system as a foundation and research vehicle.

The significance of this thesis is twofold: First, a

design methodology for the construction o f a NL query system

for Dwlls systems has been presented. With the increasing

applications of computerized information systems in everyday

life, there i s a definite need for such systems. In

addition, the methodology and specific techniques described

in the thesis can be adapted for use by other applications

software front-ends or by integrating Dwlls's and other

applications software under a conmon NL interface.
-

The second significant fact is that a NL database front

end has been designed and implemented using primarily conmon

techniques found in Computer Science. General methodologies

that have been proven effective by years of experience are

124

125

used in t b thesis’ high-level and low-level design and

implementation. The result is a software product that is

adaptable to new applications, has a high degree of

transportability between environments, and is relatively

simple (by means of a highly decomposed structure) to

understand.

Although i t seems unlikely that, within the near future

at least, computers will be able to conmunicate fully in

natural language in a way similar to HAL-9000, decomposing

the problem into smaller, more solvable areas such as s p e e c h 4

recognition, abstracting, indexing, and natural language

query processing, can create an environment where, by

integrating all the sub-elements, a full scale natural

language processing computer can be realized.

The methodology that has been followed has been used

comnonly in production software development environments.

However, NL development efforts have had a tendency of being

highly individualistic, with large scale, difficult to

maintain programs being the rule [Wasserman 8 5 ; Eisenberg

8 4 1 . Functional decomposition allows the designer to

concentrate on one part of the problem, while the independent

construction of the modules ensures that side effects are

minimized and/or controlled. The use of a conmonly available

operating system (UNIX), a comnon database system (INGRES)

and a conxnon programning language (C), ensures that the

1 2 6

techniques-can be applied to similar, non-NL or non-AI

s p e c i f i c env i r o n m e n t s .

The methodology followed in this thesis attempts to

solve the problems by using a "Computer Science" rather than

a "Human Language" approach. S o far, attempts to emulate or

simulate the human perception o f language have met with mixed

results, and overwhelming efforts [Coomps 8 1 ; Lehnert 7 8 1 .

This thesis approaches the problem of translating NL input

queries to formal queries by decomposing the problem into its

distinct parts and applying existing solutions (w h e r e 4

applicable, i.e., lexical analysis, query generation) or

developing such solutions using integrated environments

(UNIX) and tools (LEX).

I t has been said that there will not be a human-made

machine that can simulate a bird's flying. The fact that

humans have not achieved this feat does not limit them from

flying at speeds many times the speed of birds. Under the

same methodology of being inventive rather than attempting to

simulate nature, computers may never achieve simulation of

the human process of thought, but, as with airplanes, new

techniques can be invented that achieve the end result and

even outperform nature to a great extent. In the case of NL

processing, the two prime candidate approaches that have been

followed s o far are emulation of the human's perception of

language using linguistic and cognitive psychology models

1 2 7

[Lehnert 3 8 1 , and the computer-based approach of functional

equivalence rather than simulation [Embley 8 5 1 . This thesis

followed the second approach.

Neither approach has been completed thus far. This

thesis has proposed solutions to some of the basic problems

of NL processing by computers. A s there are many more areas

in which solutions can be addressed, this thesis has also

presented and identified future research issues. Utilizing

presented methodology, existing systems, and integration

techniques available from today’s software d e v e l o p m e n t 4

facilities, future research can proceed (hopefully a bit

faster) into the widely desired end product, the true “human

computer”.

REFERENCES

[Aho 781 Aho, Alfred V. and Ullman, Jeffrey D , Princibles nf
iler D e s i g n , Addison-Wesley Publishing Co., Reading,

MA, 1978.

[Barnes 841 Barnes, Jean-Paul G., ProPramninP in u,
Addison-Wesley Publishing Co., London, England, 1984.

[Blanning 841 Blanning, Robert W.,
Management Information Systems in

1984.
icationg nf L k &&I, Vol. 27 No

[Brachman 831 Brachman, Ronald, "What I S - A
Analysis o f Taxonomic Links", IEEE
Vola 18 NO 10, pp. 30-36, 1983.

"Conversing with
Natural Language",
3, pp. 201-206,

Is and Isn't: An-+
Software M a i n e ,

[Brodie 841 Brodie, Michael L., John ~ l o p o u l o s , and Joachim
Schmidt (Edi tors) , Qn Conceptual Mode 1 1 ing.
Springer-Verlag, New York, Ny, 1984, 5 1 0 p .

. . [Brown 761 Brown, P. J. (Editor), Software Portabilitv,
Cambridge University Press, London, England, 1976, 328p.

[Bolc 831 Bolc, Leonard (Editor), m D e s i g n n f InterEreters.
i lers auk Editors fnr AuPmented Transition Networks, . .

Springler-Verlag, Berlin, Germany, 1983, 214p.

[Cater 8 3 1 Cater, A., ' P r o b l e m s i n P a r s i n g , J. Wiley
and Sons, New York City, NY, 1983.

[Charniak 761 Charniak, Eugene, Svntax Linguistics , in
uta- S n t i c c , Eugene Charniak and Yorick

Wilks, editors, North-Holland Publishing Co., New York
City,-NY, 1976.

[Clarke 731 Clarke, Arthur, 2001: A s p a c e Dddissev , p. 385,
Penguin Books, New York City, NY, 1973.

[Coomps 811 Coomps, M. J., and J . L. Alty (Editors),
Skills _the _usGt ha-, Academic Press,

N e w York, NY, 1981.

[Dahl 831 Dahl, Veronica, "Logic Programning as a
Representation o f Knowledge", IEEE S o f t w a r e w i n e
Vol. 18, NO. 10, pp. 106-111, 1983.

128

129

[Date 811 Pate, J. C., BnJntrodu c t i o n u Database Svst ems.
Volume I and 1 1 , Addison-Wesley Publishing Co., Reading,
MA, 1981.

[Date 831 Date, J. C., Data base: A Primer , Addison-Wesley
Publishing Co., Reading, MA, 1983.

[Dillon 831 Dillon, George L. lntroduction rp lhn u m p o r a r y
P U l S t l C u, Prentice-Hall Inc., Englewood

Cliffs, NJ, 1983.

[Eipstein 791 Eipstein, Robert, A Tutorial Pp INGRES, PP.
1-28, ECL, University of California-Berkeley, Berkeley,
CA, 1977.

[Eisenberg 841 Eisenberg, Janet and Hill, Jeffrey, "Using
Natural Language Systems on Personal Computers", Bvte

zine, Vol. 8 No. 1, pp. 226-238, 1984.

[h b l e y 851 Embley, David W. and Kimbrell, Roy E., " A 4
Scheme-Driven Natural Language Query Translator",
P r o c e e d i u a€ a ASM ComDuter, Science Conference 33,
19p, 1985.

[Freeman 811 Freeman, Peter and Anthony I. Wasserman
(Editors), Tutorial pn Sof twa r e Desizn Techniaues , IEEE
Publications, Long Beach, CA., 1981, 4 5 3 p .

[Good 841 Good, Michael D. et. al., "Building a User-Derived
Interface", Comnunlcations nf-m, Vol. 27, No. 10,
pp. 1032- 1043, 1032-1043, 1984.

[Green 761 Green, Thomas R. G. (Editor), JLL Psvchology nf
m u t e r m, Academic Press, New York. NY, 1 9 7 6 , 225p.

[Grimes 751 Grimes, Joe, Netwd-, pp. 47-83, Sumner
Institute of Linguistics Publications, Norman, OK, 1975.

[Grishman 841 Grishman, Ralph, "Natural Language Processing",
Jourpal a€ a American Societv far -tion Science,
Vol. 35 NO. 5 . pp. 291-296, 1984.

[Hall 851 Hall, Philip P., m D e s i p n d -tation pf
PCNISI.a MuItiDle w t i u Svstem Inttrface,
Master's Thesis, Computer Science Department, University
of Southwestern Louisiana, Lafayette, LA, 1985.

[Hendrix 811 Hendrix, G. and Carbonnel, John G, "A Tutorial
On Natural Language Processing", P r o c e e d i u n f A a L u ,
Vole 1, pp. 4-9, 1981.

130

[Honeywe 11-76] (Edi tor 1 , Mu1 t ics Be lat ionaL D a t a S t o r e o
Ma, Honeywell Information Systems

Publication, Minneappolis, IW, 1976.

[Hunter 811 Hunter, Robin, DesiPn anh Construction Qf..
ilers, pp. 18-56, John Wiley and Sons, Chichester,

England, 1981.

[INTELLECT, 851 (Editors), 1NTELI.m Technical Reference
W u a l . Artificial Intelligence Corporation, Waltham,
MA., 1985.

[Jones 831 Jones, Karen Spark and Yorick Wilks, Automated - Lanpuape Parsisg , John Wiley and Sons, N e w York,
NY, 1983, 210p.

[Katz 721 Katz, Jerrorld J., U n t i_E Theorv, Harper and Row
Publishing Company, New York, NY, 465p., 1972.

[Kerningham 7 6 1 Kerningham, Brian and Richie, Dennis, C 4
ProQranming Lannuape, Tec hn i ca 1 Report, Bell
Laboratories, Murray Hill, NJ, 1976.

[Kerningham 7 9 1 Kerningham, Brian, and Pike, J., UNIX
P r o P r u E n v i r o m Academic Press, New York, 283p.

[Kidder 821 Kidder, Tracy, Soul n f a m m c h i n e , Avon Books,
N e w York, NY, 315p., 1982.

[Lehnert 781 Lehnert, Wendel G., Process nf DuestiQp
swering, - AComDuter Simulat ion ef , Lawrence

Erlbaum Associates, Publishers, New York City, NY, 1978.
. .

[Lesk 761 Lesk, M. E., and E. Schmidt, Lex: A Lexical
B ~ I , Generator, 12p., Bell Telephone Laboratories,
Murray Hill, NJ, 1976.

[Logsdon 8 0 1 Logsdon, Thomas S., m u t e r s anh Social
LlQPtroversv, Computer Science Press Inc., Potomac, M),
1980, 396p. -

[Marcus 821 Markus, Michael P., A Theorv nf -tactic
Becopnition far Natural Lanpuapes, pp. 221-239, MIT
Press, Cambridge, MA, 1982.

. .

[McCalla 831 McCalla, Gordon and Cercone, Nick, "Approaches
to Knowledge Representat ion", JEEE Software Magazine,
Vol. 18 NO. 10, pp. 12-16, 1983.

[Morrison 84]Morrison, Perry R., "A Survey of Attitudes
toward Computers", nf a m, Vol. 26
NO. 12, pp. 1051-1057, 1983.

131

[Mylopoulos 761 Mylopoulos, John et. al, "TORUS: A Step
Toward Bridging the Gap Between Data Bases and the
Casugl User", w e m e n t Svst ems, Vol. 2, pp. 49-63,
Pergarnon Press, England, 1976.

[Pratt 831 Pratt, Terence, m D e s i g n d -ntatim nf
w a g e s , Academic Press, New York, 1984,

560p.

, McGraw-Hill [Rich 831 Rich, Elaine, Artificial Jntellipence . . .
Publications, New York, 1983, 436p.

[Salton 831 Salton, Gerald and McGill. Michael J.,
Jntroduct ion U L b l U k U L Betrieval,
McGraw-Hill Publishing Co., New York City, NY, 1983.

[Somnerville 821 Somnerville, Ian, Software M e e r i n g ,
Addison Wesley Publishing C o . , London, England, 290p,
1980.

4
[Stonebraker 761 Stonebraker, Michael et. al., D e s i g n d

ementation nf JNGRES, 73p., Department of Computer
Science, UC-Berkeley, Berkeley, CA, 1976.

[Taylor 841 Taylor, Jared, "Putting a Ph.D in your PC", K

[Tennant, 801 Tennant, Harry, Evaluat ion& Natural a
Svstem, Ph. D. Dissertation, University of

Ma, No 2 , February 1984, pp. 167-174, 1984.

Illinois at Urbana, Urbana, IL., 1980

[Tennant 811 Tennant, Harry, Natural -a_ne Processipg, - a n
L Q B p TechnoloPy, Petrocelli

Books, New York City, m w
[Teory 8 2 1 Teory, Toby J., and James P. Fry, Desi- n f

D- Structures, Prentice-Hall Inc., Englewood
Hills, NJ, 490p., 1982.

[Turner 841 Turner, Ray, Software m i n e e r i Me,
Reston Publishing C o . , Reston, VA, 226p.Yl984.

[Ullman 821 Ullman, Jefferey D., Princi~les efDatabase
Svstems Computer Science Press Inc., Rockville, ML,
1983.

[Urban 841 Urban, Joseph E., Software Desipn Methodolopy
Class Notes, University of Southwestern Louisiana,
Lafayette, LA, 1984.

[Warnier 791 Warnier, Dominique Jean, Lppical Construct iM nf
Svstems, Van Nostrand Reinhold C o . , New York. 1979.

132

[Wasserman- 853 Wasserman, Kenneth, "Physical Object
Representation and Generalization: A Survey of Programs
for Semantics-Based Natural Language Processing", AL

azine. Winter 1985.

[Weizenbaum 661 Weizenbaum, J., "Eliza: A Computer Program
for the Study of Natural Language Comnunication between
Man and Machine", Comnunications nf i?AUL BCM, No. 9,
September 1966, pp. 36-45, 1966.

[Wiederhold 841 Wiederhold, Gio, "Knowledge and Database
Management", IEEE Software -azine , Vol. 19 No. 1, pp.
63-73, 1984.

[Wiederhold 771 Wiederhold, Gio, Database Deslpn,

[Wilks 8 2 1 Wilks, Yorick, Some Tho unhts =Procedural

Mc-Graw-Hill Publishing C o . , N e w York, NY, 656p, 1977.

ntics Laurence Erlbaum Associate Publishers,
Hillside, NJ, 1982. 4

. . [Winograd 831 Winograd, Terry, Lanpuape as a W i t l v e
Process, Addison-Wesley Publishing Co., Reading, MA,
1983.

[Winston 811 Winston, Patric Henry and B. K . P. Horn, LISP,
Addison-Wesley Publishing Co., Reading, MA, 1981, 42Sp.

[Zloof 751 Zloof, M. M. "Query By Example", Proceedings nf
LhSLlhLhlmL fhmputer u f e r e n c c ' 7 6 , M a y 1975.

; I
' I

-

- APPENDIX A

SAMPLE DATABASE AND KNOWEDGE BASE

1 . SAMPLE D.4TABASE

student relation

I name I student id !major lgpa lclassilcreditl
I _ - I
ICollins Philip Y. 1225-8770-89 IARCH I 2.988 I1 I 301 <

IDiaz Bartholomew 1000-8765-22iELEE I 3.87414 I 140 I
lDoe Jonathan T. 1225-5437-63lENGL I 2.00119 I 01
IHellden Mary K. 1656-8787-881HIST I 3.58614 I 98 I
I Jameson Andrea 1999-3431-221HIST I 2.98813 I 4 7 0 1
IMarkowi tz Leonid 1300-4567-651(XIpS I 3.25011 I 40 I
IRobinson Smoky 1123-5678-9OlMUSI I 3.78014 I 127 I
ISokky Dianna 1021-1872-331STAT I 3.34511 I 20 I
ISilver John Long 1000-4076-65ICIVE I 3.51014 I 1301
IWork Will You 1000-0000-01lHIST I 1.59912 I 35 1
IDing Ping Sing 1255-3565-0Ol(XIpS I 3.25815 I 31

course relation

ldept lnumberl instructor I des cr i pt I credi t I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - I
ICIVE 1325 IBauhaus Erich V. IArchitectural Design I V . I 6 I
I M S 1150 IJackson Michael llntroduction to CS Majors I3 I
I W S 1250 IKolf D i eter IProgram Design I. I3 I
I W S 1351 IJackson Michael IAssembly Language 13 I
IENGL 1 1 1 1 IWallash Tina IEnglish f o r Others 19 I
IENGL 1699 lCox John A. IEnglish Dissertation I v I
IFIAR 1320 IDaVinchi Leonardollntroduction to the Arts 13 I
IHIST 1120 IGentry John A. IHistory. o f History I2 I
IHIST 1653 IHunn Attilas 1 . IInvasion and Disaster VI. I 9 I
IMATH 1111 IWright Wilbur llntroduction to ABC I12 I
IMATH 1590 ITuring Alan G. IMaster’s Project Iv I
IMUSI 1102 IPremoli Flavio A.lModern Italian Music 12 I

133

134

faculty relation

I name I addr e s s I ssn I salaryl
) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - I
IBauhaus Erich V. I 5 2 Hauss St. Berlin GDR 1999-9898-121 360001
lCox John A. IHere Avenue #2 Orange TX 1666-9899-891 200001
IDaVinchi Leonard0 11200 Plaza Angelo Roma Italy
IGentry John A. I 5 0 0 E. 16th St. Opelousas LA.
IHunn Attilas I . I 1 Mongolia Apts Houma LA
IJackson Michael 1114 North St. Lafayette LA
IPremoli Flavio A. I 2 3 Via Rose Milano Italy
ITuring Alan G. I 1 Tape Dr. Richmond VA

0 0 0 - 0 0 0 0 - 0 3 1 420001
2 5 5 - 6 5 5 6 - 7 9 1 180001
0 0 0 - 0 0 0 0 - 9 9 1 280001
1 2 3 - 4 5 6 7 - 8 9 1 240001
2 3 2 - 9 9 9 8 - 9 8 1 180001
2 2 6 - 9 8 9 8 - 0 3 1 400001,

IKolf Dieter IBox 14622 Broussard LA 1544-5689-001 225001
IWallash Tina I 4 5 Oak Bvd. Hamnond LA 1 5 5 9 - 9 9 9 9 - 9 9 1 2 4 0 0 1
IWright Wilbur I 6 2 Main St. Baton Rouge LA 1 2 2 2 - 9 9 8 6 - 6 6 1 320001
(_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - I

I de p t I numbe r I name Idate lgrade I
(_ ^ _ _ _ _ _ _ _ _ - - - - - - - - - I
ICIVE 1325 ICollins Philip Y. I 1 9 8 2 ID I
ICIVE 1325 ISilver John Long I 1 9 8 1 IWB I
ICIVE 1325 ISilver John Long 11980 IB I
lCMpS 1250 IWork Will You 11982 INR I
I M S 1351 IDiaz Bartholomew I 1 9 8 2 I A I
r M S 1351 !Ding Ping Sing I 1 9 8 2 IA I
ICMpS 1405 IDiaz Bartholomew I 1 9 8 3 I A I
1-S i 4 0 5 \Ding Ping Sing 11983 IB I
'ENGL 1111 lDoe Jonathan T. 11982 IF I
IENGL 1111 IMarkowitz Leonid 11981 ID I
lENGL I l l 1 ISokky Diana 11980 IC I
IENGL 1111 ISilver John Long 11982 IA I
IENGL 1111 IWork Will You I 1 9 8 1 IF I
IENGL 1111 IDing Ping Sing I 1 9 8 4 IWF I
IENGL 1699 IWork Will You I 1 9 8 4 IA I
IFIAR 1320 ICollins Philip Y . 11981 ID I
IFIAR 1320 IRobinson Smoky 11981 IB I
IFIAR 1320 ISilver John Long 11982 IC I
IFIAR 1320 IWork Will You 11985 IF I
IFIAR 1320 IDing Ping Sing 11984 IB I
IHIST 1120 IJameson Andrea 11982 IA I
IHIST 1650 IHellden Mary K . 11982 IA I
IHIST I 6 5 0 IHellden Mary K . I 1 9 8 0 iC I
lHlST 1650 IJameson Andrea I 1 9 8 5 IA I
IMATH 1111 lDiaz Bartholomew 11980 IB I
IMATH 1111 IMarkowitz Leonid 11981 IF I
IMATH 1111 IDing Ping Sing 11982 ID I
IMUSI 1102 IRobinson Smoky 11980 IA I
IMUSI 1102 IRobinson Smoky 11980 IWA I
I STAT I 4 5 4 IMarkowi t z Leonid 11984 I A I
ISTAT 1454 ISokky Diana I 1 9 8 1 IA I
ISTAT 1454 IDing Ping Sing 11982 I C I
ISTAT 1521 IMarkowitz Leonid 11985 IW I
ISTAT 1521 ISokky Diana 11982 IA I
ISTAT 1523 IDing Ping Sing 11983 IA I
(_ - I

135

records rclation

4

1 3 6

dictionary

1 1 . SAMPLE KNCWLEDGE BASE

laddress In
I course In
I gpa In
lgrade In
linstructorln
lmajor in
! name In
I number In
I salary In
1 ssn In
I student In
I earn Iv
lretrieve Iv
I live Iv
lwork Iv
I study Iv
I that I s
I this I s
I out I s
I in I s
I and Ib
lgreater lr
I : : : I :
I : : : I :

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

sequence relation

lword lpno lrank I
(- _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ _ I
I social I 11 11
I security - I 11 21
I number I 11 31
I student I 21 11
I id I 21 21
lnumber I 21 31
I student I 31 11
I id I 31 21
I : : : : I : : I : : I
I : : : : I : : I : : I

1 3 7

-
synonym relation
-

I sterm I sreplace
/ - _ _ _ _ - _ - - - _ _ _ _ _ - - - - - - - - - - - - - - - - I
I 1 I . I
IME I . I
I YOU I . I
I PLEASE I . I
ITHE I . I
I take I study I
I& I and I
I 1 I or I
I >= lgreatereq I

I I : : : I

adject relation

I good lstudent igpa > 3 . 0 0 0
I bad I student lgpa < 2 . 0 0 0
lrich lfaculty lsalary > 40000
I poor lfaculty lsalary < 2 0 0 0 0

I I I : : : :
I I I

noun relation

lnterm lndbpro I

laddress la
lclassif la
lcourse Ir
I credit la
lma jor la
I name la

Ir I records
I salary la
I ssn la
I student Ir
I : : : : : I :
I : : : : : I :

-

I
I
I
I
I
I
I
I
I
I
I
I

1 3 8

v e r b relation

lvterm lvobject lvsubject I
I I _ _ _ _ _ - _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - -

I earn lfaculty lsalary I
I live lfaculty laddress 1
lwork I facul ty ldept I
I take I student idept I
I take I student lnumber I
lmake I student lgrade I
I teach lfaculty inumber I
I _ _ _ _ _ - - _ _ _ - _ _ _ _ - - - - - - - - - - - - - - - - - I

1 3 9

f a c u l t y s s n
f a c u l t y s a l a r y
c o u r s e d e p t
c o u r s e number
c o u r s e i n s t r u c t o r
c o u r s e d e s c r i p t

I

-
-

r e l n a m e (a t t r n a m e

A-Z A-Z A-Z [A - Z]
1-8 [l-9][1-9]

frame relation

c o u r s e c r e d i t [@-el

I -
I -
l888-8888-88
18.8
I -
I lee
I -
I -
l e
I -
leoe-eeee-ee
I - l e . 8 e e
le
10
I - I lee
I -
I A
I1975

- -
999-9999-99
99.999

699 -
6

999-9999-99

4 . 8 8 8
6
288

699

-
-

-
1985
Z

t I c h a r I
t I c h a r I
a lnum I
t I c h a r I
n lnum I
t I c h o r 1
t I c h o r 1
n inurn 1 I

t (c h a r 1
t I c h o r)
t I c h a r I
a lnum I
n lnum I
n lnum I
t I c h o r)
n lnum 1 ,

I

I

-

- APPENDIX B

SAMPLE SESSIONS OF KARL USAGE

90 karl

The Knowledge Assisted Retrieval Language

Version 1.02

> give m e the names and student numbers for students

studying "STAT"

> who is "000-4076-65" ?

* * * Ambiguity: attribute 'name' belongs to relationships:

1 student
2 faculty

* * * Please select value from 1 to 2: 1

140

141

> give me all the courses in department " W S " or "FIAR"

-
ldept lnumberlinstructor I credit I ldescription

I W S I 1 5 0 IJackson Michael IIntroduction to CS Majors I 3 I
1-S 1250 IKolf D i e t e r IProgram Design I . I 3 I
I W S 1351 IJackson Michael IAssembly Language 13 I
IFIAR 1320 IDavinchi Leonard0 IIntroduction to the Arts I 3 1

(4 tuples)

z give me the rich students

* * * Error: Attribute 'salary' not associated with

relation 'student'

Query aborted

> from the students in "(xIpS251", who has a gpa of

more than " 2 . 0 0 0 " ?

* * * Error: Could not parse input sentence
Syntax error. No such sentence type supported.

Query aborted

> s h o w m e the records of "1982"

ldept lnumber Iname ldate lgrade I
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ - I

I W S 1250 IWork Will You 11982 INR I
ICMPS 1351 IDiaz Bartholomew I 1 9 8 2 IA I

ICIVE 1325 ICollins Philip Y. 11982 ID I

I W S 1351 IDing Ping Sing 11982 IA I
IENGL i i i i lDoe Jonathan T. 11982 IF I
IENGL 1111 ISilver John Long 11982 IA I
IFIAR 1320 ISilver John Long I 1 9 8 2 IC I
IHIST 1120 IJameson Andrea 11982 IA I
IHIST 1650 IHellden Mary K . I 1 9 8 2 IA I
IMATH 1111 IDing Ping Sing 11982 ID I
ISTAT 1454 IDing Ping Sing 11982 IC I
ISTAT 1521 ISokky Diana 11982 IA I

(1 2 tuples)
I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - _ - I

142

> give the-transcript f o r "Ding Ping Sing"

I dept I n-ber I name ldate lgrade 1
I _ - - - - - - - - - I
ICMPS 1351 IDing Ping Sing I1982 IA I
l (X IpS 1405 IDing Ping Sing 11983 IB I
IENGL 1 1 1 1 IDing Ping Sing 11984 1°F I
IFIAR I320 IDing Ping Sing I1984 IB I
IMATH 1 1 1 1 IDing Ping Sing I1982 ID I
ISTAT 1454 IDing Ping Sing I1982 IC I
ISTAT 1521 IDing Ping Sing 11983 I A I

> who i s living in "52 Hauss St. Berlin GDR"

> give me the names and student id. numbers o f the

good students

I name lstudentid I

IDiaz Bartholomew 1000-8765-221
IHellden Mary K. 1656-8787-881
IRobinson Smoky 1123-5678-901
ISilver John Long 1000-4076-651
I _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ - - - - - - - - - - - - - I
(4 tuples)

> retrieve students "Hellden Mary K . " o r "Silver John Long"

1 4 3

-
> give me all the grades during "1982" or " 1 9 8 3 "

lgrade I
I _ - _ - _ _ I
ID I
I N R I
IA I
IA I
IA I
IB I
IF I
I A I
IC I
IA I
I A I
ID I
I C I
IA I
IA I
(- _ _ - - - I
(1 5 tuples)

-

> exit

Karl 1.02: Good Bye!
90

Triantafyilopoulos, Spiros, B.S., University of Southwestern
Louisiana, Fall 1983

Master of Science, Sumner 1985
Major: Computer Science
Title of Thesis: KARL: A Knowledge Assisted Retrieval

Thesis Directed by Professor Wayne D. Dominick
Pages in Thesis, 1 4 6 ; Words in Abstract, 2 1 4

Language

ABSTRACT

+
Data classification and storage are tasks typically

performed by application specialists. In contrast,
information users are primarily non-computer specialists who
use information in their decision-making and other
activities. Interaction efficiency between such users and
the computer is often reduced by machine requirements and
resulting user reluctance to use the system.

This thesis examines the problems associated with
information retrieval for non-computer specialist users, and
proposes a method for comnunicating in restricted English
that uses knowledge of the entities involved, relationships
between entities, and basic English language syntax and
semantics to translate the user requests into formal queries.
The proposed method includes an intelligent dictionary,
syntax and semantic verifiers, and a formal query generator.
In addition, the proposed system has a learning capability
that can improve portability and performance.

With the increasing demand for efficient human-machine
coxununication, the significance of this thesis becomes
apparent. As human resources become more valuable, software
systems that will assist in improving the human-machine
interface will be needed and research addressing new
solutiaddressings will be of upmost importance. This thesis
presents an initial design and implementation as a foundation
for further research and development into the emerging field
of natural language database query systems.

144

B I OGRAPH I CAL SKETCH
-

Spires Triantafyllopoulos was born in , in
 . He studied Civil Engineering in the Center for

Higher Technical Education in Pireaus, Greece, and received
his B.Sc. in Computer Science in December 1983 from the
University of Southwestern Louisiana. He attended the
University as a graduate student from January 1984 to August
1985, receiving his Master of Science in Computer Science.
Mr. Triantafyllopoulos has joined the staff of the Computer
Science Department, General Motors Research Laboratories in
Warren, Michigan, as a Technology Transfer Scientist, working
in R&D on integrated software environments. Previous
publications include:

“Monitor Design” and “Monitor Implementation”, Chapters 6 and

Evaluation. W . D . Dominick and W. D. Penniman, book to
be published by John Wiley and Sons Inc., 1985.

7 in InformatiQa Svstem Monitoring, Analvsis. b

”Knowledge-Based Information Retrieval: Techniques and
Applications”, ProceedinPs Q€ a 1985 AQkl Xhirteenth
Annual ComDuter Science Conference, March 12-14, 1985.

”PC-Based Research and Development for Information Storage
and Retrieval Systems Support,” with Frank Y . Chum,

hteenth AnnualHawall Conference=- Sciences,
Honolulu, Hawaii, January 2-4, 1985, Vol. 1 1 , pp.

Dennis R. Moreau and Philip P. Hall, Proceedings pfa

789-797.

fnr- D ~ Q nf A PC-based
ulator nf U - S v s t e m , ” USL/DM NASAIPC

R&DWorking Paper Series Report Number DIM!S.NASA/PC

. . “General SDeciflcations

R&D-4, August 2, 1984, 21p.

far-D-mnuaLnfaYSLNAsA PL:
is SypDort Pack-,” with Jinous

“General SDec 1 f 1 cat ions
BBJ2 Statistical Analvs
Bassari, USL/D€MS NASA/PC R&D Working Paper Series
Report Number DIMS.NASA/PC R&D-5, August 2 , 1984, 14p.

. .

nf “T4e YSL NASA PS: BBJ2 Project; Detailed SDecificatiQpS
Dbjectives,” with Frank Y. Chum, Philip P. Hall, and
Dennis R. Moreau, USL/DIMS NASA/PC R&D Working Paper
Series Report Number DIMS.NASA/PC R&D-8, August 15,
1984, 21p.

. .

145

"A Performance EvaluatiQn nfm m 370/XT Personal
h p u ? e r , " USLIDBUE NASA/PC R&D Working Paper Series
Report Number DIPVIS.NASA/PC R&D-10, O c t o b e r 5. 1984, 47p.

"H&l pc/Ix Operat ing Svstem Eraluation m," w i t h Martin
Granier and Philip P. Hall, U S L / D W NASA/PC -Working
Paper Series Report Number DBUE.NASA/PC R&D-14, November
28, 1984, 9p.

-

146

1. Report No.

LANGUAGE

2. Government Accession No. / $ J S 6 7 3. Recipient‘s Catalog No.
/ / / - > P r-m

I 6. Performing Organization Code

-
7. Authods)

SPIROS TRIANTAFYLLOEQULOS

9. Performing Organization Name and Address

8. Performing Organization Report No.

10. Work Unit No.

Univers i ty o f S o u t h w e s t e r n L o u i s i a n a
The Center € o r Advanced Computer S t u d i e s
P.O. Box 44330
L a f a y e t t e , LA 70504-4330

12. Sponsoring Agency Name and Address

11. Contract or Grant No.

NGT-19-010-900
13. Type of Repon and Period Covered

FINAL; 07/01/85 - 1 2 / 3 1 / 8 7

17. Key Words (Suggested by Author(sj 1
KARL, Knowledge-Assisted Retrieval
Language, Information Storage and
Retrieval Systems

14. Sponsoring Agency Code

15. Supplementary Notes

18. Distribution Statement

16. Abstract

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. NO. of Pages

U n c l a s s i f i e d . U n c l a s s i f i e d 146

Data classification and storage are tasks typically performed by application specialists. In contrast,
information users are primarily non-computer specialists who use information in their decision-
making and other activities. Interaction efficiency between such users and the computer is often
reduced by machine requirements and resulting user reluctance to use the system. This thesis exam-
ines the problems associated with information retrieval for non-computer specialist users, and pro-
poses a method for communicating in restricted English that uses knowledge of the entities involved,
relationships between entities, and basic English language syntax and semantics to translate the user
requests into formal queries. The proposed method includes an intelligent dictionary, syntax and
semantic verifiers, and a formal query generator. In addition, the proposed system has a learning
capability that can improve portability and performance. With the increasing demand for efficient
human-machine communication, the significance of this thesis becomes apparent. As human resources
become more valuable, software systems that will assist in improving the human-machine interface
will be needed and research addressing new solutions will be of utmost importance. This thesis
presents an initiaI design and implementation as a foundation for further research and development
into the emerging field of natural language database query systems.

22. Rice’

This report represents one of the 72 attachment reports to the University of Southwestern Louisiana’s
Final Report on NASA Grant NGT-19-01G900. Accordingly, appropriate care should be taken in
using this report out of the context of the full Final Report.

