The USL/DBMS NASA/PC R&D Working Paper Series contains a collection of formal and informal reports representing results of PC-based research and development activities being conducted by the Computer Science Department of the University of Southwestern Louisiana pursuant to the specifications of National Aeronautics and Space Administration Contract Number NASW-3846.

For more information, contact:

Wayne D. Dominick
Editor
USL/DBMS NASA/PC R&D Working Paper Series
Computer Science Department
University of Southwestern Louisiana
P. O. Box 44330
Lafayette, Louisiana 70504
(318) 231-6308
GENERAL SPECIFICATIONS
FOR THE DEVELOPMENT
OF A USL NASA PC R&D
STATISTICAL ANALYSIS SUPPORT PACKAGE

Jinous Bassari
Spiros Triantafyllopoulos

The University of Southwestern Louisiana
Computer Science Department
Lafayette, Louisiana

August 2, 1984
GENERAL SPECIFICATIONS
FOR THE DEVELOPMENT
OF A USL NASA PC R&D
STATISTICAL ANALYSIS SUPPORT PACKAGE

ABSTRACT

This is a three-level package designed to allow statistical analysis for a variety of applications within the USL DHMS NASA/RECON project. Designed with flexibility and uniformity as the main considerations, it is expected to provide computational capabilities for a variety of user needs, beginner to expert, in three different forms: a library package, an interactive package and a batch-processing package.
### TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>II. Objectives</td>
<td>6</td>
</tr>
<tr>
<td>III. Methodology</td>
<td>8</td>
</tr>
<tr>
<td>Proposed Configuration</td>
<td>10</td>
</tr>
<tr>
<td>IV. Summary</td>
<td>14</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

This is a proposal for the design, development and implementation of a general-purpose statistical package for the USL DBMS NASA/RECON project.

Statistical Packages offer to the user the power and flexibility they need, without having to write complicated programs. In addition, the user can be assured of the accuracy of the results. Many statistical packages have been developed so far, for all types and sizes of computers.

There are three major types of statistical packages available for the user:

i. Statistical Program Libraries.

Statistical Libraries are collections of programs that are bound together in one collection. The user can call them from his/her application programs, supplying the appropriate arguments and obtaining the results in a similar way.
ii. Interactive Statistical Packages.

Interactive Statistical Packages allow the user to interact with the computer. The user is put on at a "command level", where he/she issues commands and enters data. The program processes the data and returns the results to the user on the terminal screen.

iii. Batch Statistical Programs.

Batch programs allow the user to collect all his/her commands to the program in one group, code them in a particular language, and then process the entire batch. The user does not interact with the execution at all.

This research and development proposal intends to implement all three packages under a unified interface. The result is expected to be a flexible and powerful package with common characteristics between its three forms. It is also intended to be completely transportable among any computer that can support the "C" programming language. This includes 3 of the 4 large computer systems available at USL, namely the DEC UNIX VAX-11/780, DEC VMS VAX-11/780, the Pyramid Technologies 90x, and, of course, the IBM PC/XT.
II. OBJECTIVES OF THE PROJECT

The generic objectives of the project are as follows:

i. To develop a powerful, flexible, easy-to-use and transportable statistical package.

ii. To improve our knowledge in the fields of statistics and numerical computation.

iii. To obtain further experience on the design, implementation, testing and maintenance of a major software product.

The specific objectives of the statistical package design are as follows:

i. Computational power: the objective is a design that can satisfy most user needs in terms of available functions and options. The package should offer a full range of commands for most applied statistical computations.

ii. Design flexibility: The design must be flexible so that changes, improvements and addition of more functions can be accommodated without major changes, if any, to the entire package.

iii. Ease of use: the design should be such that any of the three interfaces will be easy to use efficiently. This includes
error checking and, in the case of the interactive user interfaces, available online help. Uniform command and function formats in all three modes will be used also.

iv. Efficiency and accuracy: Efficiency of the algorithms used is very important considering that the package to be developed will be used in mini and micro computers with often limited resources and speed of execution problems. Accuracy is also critical so that the user is assured of the quality of the results.

v. Package Transportability: The programs should be written in a way that ensures transportability between varying operating environments. Standard programming policy will be adopted for all modules.

This design will be first implemented on the IBM Personal Computers of the NASA/RECON Project. Parallel development on the DEC VAX-11/780 will also be considered.
III. METHODOLOGY

A highly modular approach will be followed in the design and implementation of this project. This will ensure that many of the design objectives, in particular, flexibility and modifiability, are inherent in the implementation.

For achieving the transportability and modularity goals, the "C" programming language was chosen as the implementation language. It offers good performance characteristics and high modularity which make it most desirable. It is also powerful in character and file manipulation, facts that make it more desirable to use in the second and third phase of the design.

Algorithm selection is critical in the computational parts. Therefore, extensive research will have to be performed in order to determine the most appropriate ones to be used. While a computer approach to manual algorithms can be used, for some cases it is not efficient and better methods should be found.

At this point only the first phase of the statistical package has been totally defined. The interactive and batch interfaces will be designed under the considerations applied to the first phase, with the final goal being to create a common, efficient interface for all three modes. A defined command
language for the interactive phase would consist of either a menu-selection procedure, a command language or a combination. Again, the batch interface can be similar to the interactive in terms of command names, arguments, etc, or be a completely different programming language by itself.

For the interactive interface, a spreadsheet configuration like MINITAB is likely to be implemented, with its commands, arguments and options combined to form the batch programming language. Therefore, by making the library interface with a similar structure, the goal of uniformity can be achieved.

As a minimum, the functions shown below are expected to be implemented for the first phase (program library). Then the interactive and batch interfaces can be built on top of the packages. The modularity of the design will allow the addition of new functions and/or the modification of existing ones to be performed efficiently, with no major code changes in the entire program structure.
PROPOSED CONFIGURATION
OF PHASE 1

1. Basic Input/Output
   Read from a given file
   Read from terminal
   Write to a given file
   Write to terminal
   Report error/warning messages

2. Basic One-Vector Calculations
   SumX, SumX2, sum2X
   Mean, mode, median
   Variance, standard deviation
   Sort ascending, descending, rank
   Frequency, most/least frequent
   Relative frequencies, signs
   Max-min, local max/min, k-th max/min

3. One-Vector Test Statistics
   Confidence intervals
   z-scores, z-tests
   Proportion tests
   Student's t-test
Small/large sample sizes

4. Basic one-Vector Graphs
   Bar Charts - Histograms
   Frequency graphs

5. Two-Way Statistics
   Hypothesis testing
      Difference of means
      Variance known/unknown
      D-test
   Paired Samples Tests
   Tests for Standard Deviation
   Degrees of Freedom, F-test
   Tests for proportions

6. Two-Vector Graphics
   Plots
   Scatter Grams
   Frequency Plots
   Charts
   X-Y plots
   Distributions
7. Linear Regression and Correlation
   - Linear Regression Analysis
   - Regression Line calculations
   - Correlation Analysis
   - Standard Error

8. Multiple Regression
   - Exponential regression analysis
   - Logarithmic regression analysis
   - Parabolic regression analysis
   - Multiple Analysis

9. Basic Probability Calculations
   - Probability distributions
     - Normal distribution
     - Binomial distribution
     - Poisson distribution
   - Probability tests
     - p-test Probability confidence intervals

10. Advanced Probability Calculations
    - Conditional Probabilities
    - Independent Probabilities
    - Probability Estimations
    - Bayes' Theorem
Basic Combinatoric Calculations

P(m,n) value
C(m,n) value
n! value

Probability distributions of samples

11. Chi Square Analysis

Contingency Tables
Chi Square tests
Chi Square distribution
Lambda Index of association

12. Analysis of Variance

One-way analysis
Two-way analysis
Difference of several means
Total Variance calculations

13. Non-Parametric Tests

Sign test
Mann-Whitney test
Non-parametric ANOVA
IV. SUMMARY

Design, implementation, testing and maintenance of this major software package is expected to generate a support environment for any other activities that require statistical analysis within the NASA/RECON or related DBMS projects. The applicability of statistical analysis methods in information storage and retrieval systems is increasing, ranging from performance measurement and evaluation to natural language text analysis, thus making this project an interesting consideration for further research and development.

The unified environment that this document proposes is expected to further improve the user/system interface and make it more effective. Portability is also provided in order to have a single data analysis environment for more than one hardware configuration.
### Title and Subtitle
USL/NGT-19-010-900: GENERAL SPECIFICATIONS FOR THE DEVELOPMENT OF A USL NASA PC R&D STATISTICAL ANALYSIS SUPPORT PACKAGE

### Author(s)
JINOUS BASSARI AND SPIROS TRIANTAFYLLOPOULOS

### Performing Organization Name and Address
University of Southwestern Louisiana
The Center for Advanced Computer Studies
P.O. Box 44330
Lafayette, LA 70504-4330

### Report Date
August 2, 1984

### Type of Report and Period Covered
FINAL; 07/01/85 - 12/31/87

### Abstract
The USL NASA PC R&D statistical analysis support package is designed to be a three level package to allow statistical analysis for a variety of applications within the USL DBMS NASA Contract work. The design addresses usage of the statistical facilities as a library package, as an interactive statistical analysis system, and as a batch processing package.

This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in using this report out of the context of the full Final Report.