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ABSTRACT

g flux vector in n-direction
A finite-volume lower-upper (LU) implicit scheme Hpy integrated interpolation function
is used to simulate an inviscid flow in a turbine cas-
ca?e. hThis approximate facto;izationdscheme require? J Jacobian of coordinate transformation
only the inversion of sparse lower and upper triangular ; fn o di ;
matrices, which can be done efficiently without exten- M number of control points in g-direction
sive storage. As an implicit scheme it allows a large : Sa ion
time step to reach the steady state. An interactive N number of control points in n-directio
grid generation program (TURBO), which is being deve- .
loped, is used to generate grids. This program uses P(r,t) position vector
the control point form of algebraic grid generation
which uses a sparse collection of control points from P static pressure
which the shape and position of coordinate curves can
be adjusted. A distinct advantage of TURBO compared Pt total pressure
with other grid generation programs is that it allows .
the easy change of local mesh structure without Q(r,t) Boolean sum transformation
affecting the grid outside the domain of dependence. .
Sample grids are generated by TURBO for a compressor R residual
rotor blade and a turbine cascade. The turbine cascade .
flow is simulated by using the LU implicit scheme on r curve parameterization
the grid generated by TURBO. ‘s
TA'TB spectral radii
NOMENCLATURE
T(r,t) tensor product transformation
A,B Jacobian matrices
Tr transpose of matrix
Cij a control point
t curve parametrization
b difference operator
u,v contravariant velocities
Ej(r) control point curve . .
u,v, Cartesian velocities in x- and y-directions
e total energy/volume
W vector of flow variables
F flux vector in the x-direction
X,y Cartesian coordinates
Fi(t control point curve
a; on-of f boundary switch
f flux vector in g-direction
: B numerical parameter between O and 1
G flux vector in y-direction
Y ratio of specific heat

Gy, integrated interpolation function



E,n transformed coordinate system

A eigenvalues of Jacobian matrices
I3 density

T time

¥ interpolation function
INTRODUCTION

An unconditionally stable implicit scheme that
has error terms, at most, of the order (4t)2 in any
number of space dimensions can be derived by lower-
upper (LU) factorization (Jameson and Turkel, 1981).
Splitting ensures the diagonal dominance of lower and
upper factors and makes use of the built-in implicit
dissipation. The LU implicit scheme requires only the
inversion of sparse triangular matrices, which can be
done efficiently without using extensive storage. As an
implicit scheme it allows a large time step to reach
the steady state. This approximate factorization
scheme was demonstrated to be robust and efficient in a
broad flow regime; for example, Jameson and Yoon (1987)
for transonic flows and Yoon and Jameson (1986) for a
high speed inlet flow. These previous efforts focused
on improving efficiency of the LU implicit scheme by
using multiple grids with simple isolated airfoils and
inlet geometries. In the work presented herein the LU
scheme is applied to obtain the solution of the invis-
cid compressible fiow in a turbine cascade. This is a
first step towards simulation of flows in turbomachinery
that have more complex phenomena. One such example
could be a flow in a supersonic through-flow fan
(Schmidt et al., 1987). Eventually, for viscous calcu-
lations the meshes will need to be very fine to resolve
the boundary tayer. And it is likely that the time
step imposed by an explicit stability bound will be
much less than that imposed by the accuracy bound of an
implicit scheme. Since an obvious way to accelerate
convergence to a steady state is to increase the size
of the time step, an implicit scheme is expected to
have a faster convergence. Although the alternating
direction implicit (ADI) scheme has been valuable in
two-dimensional problems (Beam and Warming, 1978), its
inherent limitations in three dimensions suggest an
alternative approach.

Flow passages in turbomachinery are highly con-
strained geometric regions. Fine meshes are needed to
capture flow phenomena where flow properties change
rapidly in several subregions. The orthogonality
desired in highly cambered blades conflicts with the
periodicity constraints that are required by many flow
solvers; the need to cluster the grid conflicts with
the smoothness desired. Generating grids for turboma-
chinery, therefore, requires a sensible compromise
between geometric constraints and desired grid struc-
ture. One of the best approaches would be to generate
the grid interactively by using a method that allows
easy local control over the grid distribution (Choo
et al., 1988). The control point form of algebraic
grid generation was formulated by Eiseman (1987). From
the control points sparsely distributed over the flow
domain, the shape and position of coordinate curves can
be adjusted while the grid conforms precisely to all
boundaries. As an algebraic method, the control point
form provides explicit control of grid structure and
requires relatively few computations. The basic ele-
ments of this method are the multisurface transformation
for control in a given direction (Eiseman, 1982) and
the Boolean sum operation for the combination direc-

tions. Eiseman (1987) demonstrated how mesh structure
can be changed with control points by using simple duct-
like geometries. The control point formulation is used
herein to generate grids for turbomachinery geometry.

A menu-driven interactive program called TURBO is
being developed to generate well-structured grids for
turbomachinery flow field simulations. By using the
control point form mentioned previously, TURBO can
achieve a balance between the constraints of the turbo-
machinery geometry and the desired grid structure.

A distinct advantage of TURBO compared with other grid-
generation programs is that it allows the easy change
of local mesh structure without affecting the grid out-
side the domain of dependence. The boundary surface
can be either a fixed form (transfinite) or a free
form, which can be changed. Once the grid is improved,
it can be closely examined by zooming, transtating, and
rotating. Further improvement to the grid structure
can be made with this closer view of the grid. The pro-
gram, TURBO, is being built around the control net
which guides the coordinate curves. By choosing menus,
TURBO now normalizes the grid near the vane or blade
surface, provides slope continuity across the periodic
boundary in C-type grids, stretches grids by stretching
the control points in real time with the movement of
the workstation mouse, and simultaneously translates
multipte control points on a line in a manner similar
to points on a rubber band. These are some of the fea-
tures that provide convenience to users.

The finite-volume LU implicit scheme was used to
simulate an inviscid flow in a turbine cascade on a
C-grid generated by TURBO. The grid generated for this
flow is normal to the vane surface and has slope conti-
nuity across the periodic boundary. For this cambered
blade, the rubberbanding feature was used to reduce the
grid skewness on the suction side of the vane. Com-
puted results are compared with the experimental data
obtained by Goldman and Seasholz (1982).

For clarity and completeness of this paper, govern-
ing equations, the LU approximate factorization scheme,
and the control point formulation are briefly presented
in the following sections, even though detailed deriva-
tions are available in the references cited above.

GOVERNING EQUATIONS

The conservative form of the Euler equations in
Cartesian coordinates for two space dimensions is
3N 3F 3G
L0 - L S« I
X 3y

+

0 QP

where W 1is the vector of dependent variables and F
and G are convective flux vectors as follows:

T
W= (p, pu, pv, & " (2a)
2 Tr
F- [pU, pu? + p, puv, ule + p)] 20
2 Tr
G = [pv, puv, pv- + p, vie + p)] (2¢)

where p, u, v, e, and p are density, Cartesian veloc-
ity components in the x- and y-directions, total energy,
and pressure respectively. The total energy e is the
sum of the internal energy and the kinetic energy per



unit volume of fluid. The system of Eqs. (1) and (2)
is solved with time <t for the primary unknowns,
(p, pu, pv, and e), and the pressure is obtained subse-

quently by the equation of state as,

2 2
p = (y - l)[e -5 Sﬂ——g—l—l] 3
where y s the ratio of specific heats. Because of

the constrained flow passage geometry of turbomachinery,
a coordinate transformation, is performed in such a way
that the transformed coordinate coincides with the flow
boundary. MWith the coordinate transformation, £ =
£(x,y) and n = n(x,y), the vector form of the Carte-
stan components of Euler equations is

J(gg . gﬂ) -0 @)

where f = (E4F + Ey G)/J, g = (nyF + n G)/J, and
J = ixny - Eynx N\th the relations {x

ng = =Jyg, £y = -dxy = Jxg and the use o? con-
y 3
travariant ve10c1ties = yuUu - xpv and
V= -YEU & XgV, vectors f and g in Eq. (4) are
written as
eV pV
pul + nP puv - }’Ep
f = g = ()
pvU - XpP pvV + xgp
(e + PIU (e + PV

LOWER-UPPER IMPLICIT SCHEME

To advance the Euler equations with time we
discretize Eq. (4) in time as

n+l n+1 n
E________ _ (gf
BJ< n) ca - (g 0
(6)
where [ varies between 0 and 1. For pB = 0, Eq. (&)
is a purely explicit scheme, and for R = 1/2, a second

order accuracy holds in time. Nonlinear terms at time
level n + 1 are linearized by the fo\\owvng
approximations:

n+1l

n n+1
%g) - %E) + AMsw, %ﬂ) !

where SW = WM+ _ WM and A and B are Jacobian
matrices defined to be J=1 af/3W, and J-1 3g/aM,
respectively. The truncation error of the above expres-
sion is of 0(At?). The linearized implicit scheme for
Eq. (6) can be formulated as

- (%g)n + B"sH

[1 . B At(DEA . Dn8>}sw + 8t R=0 2

where I is the identity matrix and R
state part of Eq. (4) given as

is the steady

- -g o
R=1 (ag 0 f" + 0.9

Here, Dg and D are central difference operators
that approx1mate 3/3¢ and 3/dn. An LU factorization
scheme is introduced to approximate Egq. (7) as

[1 + B At(DEA+ . D;B+)]
[I . B3 At(DEA_ . D;B')] W + 6T R = 0 (8)

where +Dg and D are backward difference operators
and D “and D are forward difference operators.
Here, A*, A-, B*, and B~ are constructed so that the
eigenvalues of "+" matrices are nonnegative and those

of "-" matrices are nonpositive, that is

A =g (A e rpI) A= g (A=)

2 A -2 A

+_1 -_1

8" =5 (8+ rBI), 87 = 5 (8- rgl)
where

a2 max<IXA|>, g 2 max(|x8|>
Here Xp and g represent eigenvalues of Jacobian
matrices. Equation (8) is inverted in two consecutive
steps. The LU implicit scheme requires the inversion

of sparse triangular matrices, which can be done effici-
ently without using extensive storage. This scheme has
only two factors in three space dimensions.

To make the central difference scheme (Eq. (8))
stable, an artificial dissipation term in the fourth
order difference form is added explicitly to R in
Eq. (8) for the entire flow region. For transonic or
supersonic calculation, additional dissipation needs to
be added implicitly in the neighborhood of shocks
(Jameson, 1987). In the present subsonic case only the
fourth order explicit dissipation is employed.

The cascade flow measured by Goldman and Seasholz
(1982) is fully subsonic. To simulate this flow, the
far-field boundary conditions used for an isolated
airfoil by Jameson and Yoon (1987) were replaced by
in-and-out flow boundary conditions and periodic
boundary on the sides. At the inlet boundary, three
out of four flow variables were specified and the
remaining one was obtained as a solution of the flow.
At the exit boundary, only one flow variable was
specified. In the present work, the density p was
allowed to change while other variables were fixed at
the inlet boundary. At the exit, only the static
pressure was specified. Periodic boundary condition is
enforced on the sides because of the cascade configura-
tion of the present problem.

CONTROL POINT FORMULATION

The control point array is a sparse grid-type
arrangement of locations in physical space with an
index for each direction. In two dimensions it will be
denoted by (Cij). As an algebraic method, the control
point form provides explicit control of the physical
grid shape and spacing through the dynamic movement of
the control points. Figure 1 shows an example of a
two-dimensional control point array.



A fundamental part of the control point formulation
is the construction of curves. This construction repre-
sents algebraic coordinate generation in a single direc-
tion wherein two opposing boundaries are connected by
the newly created curves (e.g., the curve Ex(r) in
Fig. 1). Mith the restriction to only a single curve,
the opposing boundaries are each represented by a point.
The first and last points lie on opposing boundaries and
are the fixed end points of the curve. The remaining
points are in the interior of the sequence and are used
to control the shape of the curve. To enforce the
successive assumptions of the desired direction in a
smooth manner, a continuous direction field is obtained
by interpolation. The independent variable for the
interpolation is simply the curve parameterization.
Altogether, the interpolated result defines the field
of vectors that are tangent to the desired curve and
is simply stated as an interpolation of the first para-
metric derivatives. Thus a smooth first derivative of
the entire curve is determined. The desired curve is
then obtained by a parametric integration.

Let c1j, czj. e, ch, be the given sequence of
M points in spacé (e.g., €j2. C22, ..., €5y for J =2
in Fig. 1); let r be the curve parameterization; let
Ej(r) be the position at r along the desired curve;
18t ry, rp, ..., ry_) be the successive parametric
locations to interpolate the directions of (€5 - Cyy),
(C3j - ng). ooy (CM3 - CM-1 305 and let L AT T
¥y_] be the corresponding interpolation functions which
successively separate each direction by assuming a non-
zero value at the associated Tocation while vanishing
at the remaining locations for interpolation. HWith
this notation the desired curve is given by

N-1
Ej(r) = €y + E c;m(r)[cw,j - caj}
a=1
52,2, M (D
where
.
6,(r) = J ¥, (Wu ao
r

1

To apply the method, the interpolation. functions
must be chosen. With local functions, the alteration
of a control point results in an alteration of the
constructed curve that is restricted to a local region
about the point. The remaining regions are unaltered.
Therefore local sections can be manipulated in an inde-
pendent manner. The simplest local interpolants are
the piecewise linear functions that do not vanish over,
at most, two intervals defined by ry ¢ rz ¢ ... ¢ ry_7.
Yo further simplify the form of the multisurface trans-
formation, the height of each interpolant shall be
adjusted so that each interpolant integrates to unity.
Then, the evaluation of the transformation at ry.
will reduce to Cy3 by means of a telescopic collapse

of terms. An explicit form of the normalized interpola-
tion functions (Eiseman and Smith, 1980) 1is given for

a case with the uniform partition (rx = k, k =1,2, ...,
N-1)

22 - ™ for 1 <¢r«<¢?2
w](r) = an
0 for 2<¢r ¢N-1

0 for 1<rc<k-1
(r-kK)+1 for k-1<r«<k
wk(r) = a2
(k-r)+1 for k<rck+1
0 for k+1¢r <N-1
0 for 1 ¢<r<N-2
wN-l(r) = ady

2(r ~ N+ 2) for N-2¢r <N~
Similarly, for the index value of 1, a curve can
be constructed

M-1

Fi(t) = Cy o ;?;1 HB(t)[ci,B” - cm]

i=1, 2, ., N a4

wherg t is the curve parameterization and Ha(t) is
the integration of the multisurface interpolants. The

tensor product form depends only upon Cij and is
given by
M-1
Tt = Ey(r) BZ] HB(t)[EB”(r) - EB(r)] as)
or alternatively by
N-1
T( = -
nO = F e 3 6w B - Fan]  ae
a=1
These two expressions are equivalent. The tensor

product matches
and j.

When boundaries are to be specified, the corre-
sponding data appear at the extremities of the values
for r and t. Since the coordinate transformations
are generally expressed in the form of a vector P(r,t)
for the desired positions of all points in physical
space, it is convenient to express the boundary specifi-
cations in terms of the position vector. Thus, the
boundaries are denoted by P(1,t), P(N-1,t), P(r, 1),
and P(r ,M-1). To include the boundaries, the multisur-
face transformation is performed again as above, but now
with the actual boundaries inserted. This results in a
modification of T for both the r and t- directions.
In each such directional construction, the actual bound-
aries appear as end conditions for the corresponding
variable whereas the remaining bcundaries are solely
generated by the control points. Thus, by subtracting
T from the sum of both directional constructions, the
actual boundaries become end conditions for each varia-
bie. This process follows a Boolean sum format and
upon simplification becomes

AP, = Tt + a1 - G](r)][P(l,t) - F],(t)]

Ej or Fj at the extremities of |

v @y Gy (O [POCTL D - Fut]
+ ay [1 - H1(t)] [P(r,l) - E](r)]

v ag y  (O[Pr M1 - By(r] an

M



where each of the four terms following the tensor prod-
uct T(r,t) represents a transfinite conformity to a
boundary when each «j is 1. By setting any «j to O,
the corresponding boundary becomes available for
free-form modeling by means of the control points.

In the order listed, the boundaries are for r =1,
r=N-1,t=1,and t=M- 1, Further details are
discussed by Eiseman (1987).

RESULTS

The basic interactive process of TURBO is illus-
trated with a simple geometry in Fig. 2. It starts
with construction of a simple control net and surface
grid. An initial grid is generated and examined. If
desired, the grid structure can be improved through the
dynamic movement of the control points. In this example
a control point was moved to obtain dense meshes in the
middie of the flow region.

Figure 3 shows an H-grid generated for a cambered
turbine stator vane. Only those basic interactive fea-
tures illustrated in Fig. 2 were used in this example.
Figure 3(a) shows an initial control net; Fig. 3(d)
shows an initial grid. By scrolling graphic images for
one view (combination view of the control net and grid)
to another (control net only or grid only) and by
expanding the graphic image around a center of expan-
sion, a user can closely examine the grid and determine
what modification of the control net is needed to
improve the grid structure. The modified control net
and grid are shown in Fig. 3 parts (c¢) and (d), respec-
tively. The modified grid has a densely clustered mesh
around the leading edge and a more nearly orthogonal
grid near the vane surfaces. '

Many grid generation programs do not allow local
mesh control as TURBO does. For the TURBQ program the
initial grid may be generated by any program familiar
to a user; then an initial control net may be obtained
from the grid by attachment to essentially reproduce
the grid structure. The initial control net shown in
Fig. 4(a) was created by attachment. Figure 4(b) shows
an initial grid of a compressor rotor blade. Once the
control net is created, the interactive process to be
followed is the same as described previously; the
initial control net is modified to the one shown in
Fig. 4(c), and a new grid (Fig. 4(d)) is generated from
the modified control. A closer view of the initial and
improved grid is presented in Fig. 5. The improved
grid is more othogonal and has slope continuity across
the periodic boundary. The shape of the control net
can easily be changed by using an interactive process
illustrated in Fig. 6. In part (a) of the figure, a
user first chooses a control line to be changed and
then picks a hinge point. In part (b), control point 1
is moved to point 2 by moving the mouse of the work-
station. Point 1' automatically moves to point 2'
while maintaining a pitch with the points 1 and 2,
respectively. 1In part (c), the desired shape of the
control line is obtained by choosing a menu called
"rubberbanding."

The finite-volume LU implicit scheme was used to
simulate an inviscid flow in a turbine cascade on the
grid shown in Fig. 7. Part (a) of the figure shows the
control net from which the grid shown in part (b) was
generated. Part (c¢) is a closer view of the grid.

This grid is nearly orthogonal in the vicinity of the
solid vane surface and has slope continuity across the
periodic boundary. For this cambered vane, the skewness
of this single block grid was reduced to some degree by
using the “rubberbanding" feature and free-form periodic

boundary. Detailed stator vane geometry, cascade flow
conditions, laser anemometer survey measurements, and
vane surface static pressure measurements are presented
by Goldman and Seasholz (1982). To operate the cascade
facility, ambient air from the test cell was drawn
through the cascade and exhausted into the laboratory
altitude exhaust system. The test conditions in the
cascade were set by controlling the pressure ratio
across the vane row with two throttle valves located in
the exhaust system. A hub static tap Jocated downstream
from the test section, where the flow was assumed to be
nearly circumferentially uniform, was used to set this
pressure ratio. The hub-static- to inlet-total-pressure
ratio was maintained at a value of 0.65. This corre-
sponds to a static- to inlet-total-pressure ratio of
0.687 at a SO0-percent span where a two-dimensional
inviscid computation was made.

Core turbine stator vane geometry at the mean sec-
tion is shown in Fig. 8(a). Also shown are three axial
locations where measured data are compared with computed
resuits. In Fig. 8(b), laser measurements are compared
with computation at 10.2, 50, and 90.1 percent of the
axial chord at the 50-percent span. . The computed criti-
cal velocity ratios (V/V¢y) agree well with the laser
measurements. Figure 9 shows a good agreement between
the blade surface measurement and computation. For this
comparison the vane surface static pressure measurements
are used to obtain the critical velocity ratios by using
the following retation:

ARG RTNOE

where p 1is static pressure and pt is total pressure.
A static pressure contour plot is presented in Fig. 10

without comparison. The pressure was normalized by
using the inlet static pressure.

CONCLUDING REMARKS

The LU approximate factorization scheme was demon-
strated to be robust and efficient in the transonic-
flow and very high Mach-number-flow regimes. In these
previous works, the main interest was in improving the
efficiency of the scheme and therefore simple isolated
airfoil and inlet geometries were used. In the work
presented, the finite-volume LU implicit scheme was
applied to obtain the solution of the inviscid flow in
a turbine cascade on a grid generated by TURBO. This
is a first step towards simulation of more complex
fiows in turbomachinery.

TURBO is a menu-driven interactive algebraic
grid generation program. It is being built around the
control net which guides the coordinate curves. From
the control points sparsely distributed over the flow
domain, TURBO can easily modify the grid structure of a
local region (a domain of dependence) without affecting
the grid outside of it. For the complex flows in turbo-
machinery, the control point formulation is a very use-
ful method because of this precise local mesh control
capability. With the advent of faster graphics worksta-
tions with more memory and better linking to mainframe
supercomputers, interactive grid generation by means of
the control point formulation will become a more effec-
tive and useful approach.
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