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ABSTRACT

This paper develops the mathematical relations

for the "Virtual Kinematic Model" as an improvement
over the vectorlal model developed earlier. The model
solution described herein provides the most energy

efficient means of cooling gears - that is, it requires
the least pressure or pumping power to distribute the
coolant on the tooth surface. Further, this nozzle
orientation allows impingement to the root of the

tooth if needed and provides the most cooling control
when compared to into-mesh or out-of-mesh cooling.

NOMENCLATURE

a addendum of tooth

d t impingement depth

dx uncorrected impingement depth in origin plane

ev of e = sec @ = evolvent function of e

N number of teeth in gear

n rotational speed

Pd diametrical pitch

Pn normal diametrlal pitch

Pt transverse diametrial pitch

R standard pitch radlus

Rb base radius of gear

Rbv base radius of virtual involute

Ri radius at Impingement point

Rot operational outside radius (for modified
addendum)

Ro standard outside radius

Rt

Rx

t

tf

tw

Vg

vj

C_

Aa

6i

Civ

COV

Oa

ei

Oiv

Oov

Or

Ow

_j

Pb

Pi

1

transverse pitch radius

uncorrected radius at Impingement point (see
Fig. 3)

arbitrary flight time

jet stream flight time at impingement

time to rotate through angle, ew

linear pitch line velocity of gear

jet velocity

jet inclination angle

addendum modification

di Pd
dimensionless impingement depth 2

virtual roll angle at impingement point

virtual roll angle to outside diameter

vectorlal angle of involute between point i
and 0 (Fig. 2)

involute of ¢i = involute function at impinge-
ment point

virtual vectora] angle to impingement point

vlrtual vectoral angle to outside diameter

angle across tooth space at base circle

total vectoral angle at impingement point

dimensionless jet velocity Vj/Vg

dimensionless base circle radius

dimensionless impingement radius



Por dimensionlessoutsideradius

Pt dlmensionlesstransversepitch radius
¢ pressureangleat pitch radius

¢i pressureangleat impingementpoint

@Iv pressureangleof virtual involuteat impinge-
mentpoint

Cn normalpressureangle

¢o pressure angle at outside radius

@ov pressure angle of virtual involute at outside
diameter

¢t transverse pressure angle

helical angle

Wg gear angular velocity

_j virtural jet angular velocity

INTRODUCTION

Cooling of lightweight high speed gears via the
lubricating oil supply provided to the gearbox conti-
nues to be one of the most difficult areas in the high
performance mechanical power transmission design proc-
ess. Since the cooling process is controlled by oil
jet orientation and by the jet velocity relative to
the pitch line velocity (PLV), these authors have con-
sidered the development of a fundamental understanding
of the oil jet primary implngement phenomena as essen-
tial to understanding how the gear tooth cooling
process works. In the early 1970's when this work was
started, a "vectorial model" was used to describe the
radial jet flow phenomena, (Akin, 1975), which com-
pared reasonably well with the experimental data,
(Akin, 1975), especially at pressures above approxi-
mately 140 kPa (20 psi). Models were also developed
for into mesh (Akin, 1983) and for out of mesh (Akin,
1985) to determine the oil jet impingement depths for
these conditions. The into mesh and out of mesh

models indicate the oil jet impingement depths were
limited and therefore maximum cooling could not be
obtalned using this approach.

The "Virtual Kinematic Model" was first mentioned
by Townsend in 1980, but the full mathematical devel-
opment of this model has not been published until now.
This model has been generalized to include spur or
helical gears with standard AGMA proportions as well
as long or short addendums. Further, parametric Iimi-
tatlons have been formulated to allow the gear analyst
to know he is specifying his problem where a solution

Is possible. Also, the dimensionless parameter devel-
opment has been provided to allow the gear engineer to
examine a wide range of generalized solutions easily
and to expose the _Imits mentioned above.

KINEMATIC SOLUTION FOR MODIFIED SPUR GEARS

The jet stream flight time starts (t - O) at
position "I" at the Intersection of the top land and
trailing profile of the leading tooth, as shown in

Fig. I. Then the termlnal end of the jet passes
through the tooth space where it impinges at "i" on
the leading profile of the trailing tooth at radius

Ri after time (t : tf). From inspection of Fig. I,
it can be seen that the radius of impingement is:

Ri = Ro - Vjtf (l)

where Vj is the jet velocity. The time of flight of
the oil Jet through the tooth space is:

Ro - R i d i

tf - Vj - Vj sec (2)

The gear must rotate through the angle e w in
the same time it takes the oil jet to travel through
the tooth space to a depth of dl : Vjtf and Impinge
at R i. From Fig. l we see that e w _ e o + e r + ei.
The components of e w are developed below.

The pressure angle, ¢i, at the depth of impinge-
ment, d i is:

I12andtan

where

Rb is the gear base radius

Ri : Ro - di

so that e i : inv @i : tan ¢i - _i.

Also, the angle across the tooth space at the gear
base circle Is:

_r IT

er = N-- 2 Inv ¢ : _-- 2(tan @ - @) (4)

where ¢ = cos-l(Rb/R) is the pressure angle at the
standard pitch circle R. Further, the pressure angle

at the outside radius Ro is:

+0 = COS t_OO) and tan +0 = [Rb2 - ]
(5)

so that

e ° = inv @o : tan @o - ¢0

and thus

8w : eo + er + e i as stated earlier, so that the time

It takes the gear to rotate through ew is

ew 30 8w
t = - sec;

w _g _n

where n : revlmin.

(6)

Equating the times of flight t i and rotation tw:

d i 30 ew Ro - Ri ew

V-j: _n or Vj _g
(7)

If d I is given, then the required Vj can be found

explicitly as



_dfn
Vj = E)w - 30 ew

(8)
From here we can deve]op the remainder of the virtual

involute functions including eov and @or as fol-
lows (see Fig. 2):

note, that d i is a function of @i(dl = fn(@i))

If Vj is given and the resulting d i or Ri

is desired, we must iterate until Ri, as fn(@ i, Vj
is satisfied. In dimensionless form, where:

vj = Vj/Vg and 6 i = diPdl2

d i 46 i

:%% : [(N+2)%]

) ,

GEARS WITH MODIFIED ADDENDUMSAND AN OIL JET DIRECTED
AT AN ARBITRARY INCLINATION ANGLE _ FROM THE GEAR
CENTER

(9)

A more general so]ution can be provided to this
problem if we assume that the jet is pointed away from
the line through center of the gear by an arbitrary
angle "_" as shown in Fig. 2. This angle is defined
to be positive in magnitude when pointed in the direc-

tion of _g as shown in Fig. 2. Modified addendum
lengths or center distances are accommodated by the

use of the parameter ARo = ANgI2P n : Aa, so that
Ror : Ro + Aa. Obviously when- Aa : O, Ro :Ror. In
this paper we will generalize and use Aa, Ro, and
Ror in all equations.

For helica] gears we ]et: Rt = N(2P n cos 9), so
that, R0 = Rt + a and Ror = Rt + a + 6a, where
Pt = Pn cos _ and the subscript t refers to the
transverse plane (normal to gear axis.) This problem
has been formulated by assuming that the jet terminal
end (or head) follows a trajectory In mesh with a
"virtual involute" as shown in Fig. 2. The virtual
involute is: defined by the radius of the base cir-
c]e Rbv, where

V,

a
Rbv : Ror sin _, Vj : _jRbv, or _j : R sin

or

(I0)

As can be seen by inspection of Fig. 2, "_" is
J

the theoretical angular ve]ocity of the virtual jet
involute that produces the proper locus for the term-
inal end of the jet stream line at the actual jet
velocity Vj, subsequent to passing the point 1 at
t = O. The virtual involute is used to develop the
mathematical relationships needed to formulate the
time of flight to Impingement of the jet stream on the
trailing tooth profile at R i when the gear angular

velocity is _g. Note that in general _ = _. sinceJ
the virtual base circle is not fixed on the gear blank
(or wheel).

The writer has selected the vlrtual involute gen-
eralized roll angle c v as the parameter to interre-
late the virtual involute for the jet stream with the
rotating gear geometry. Thus the virtual roll angle
Cov at the gear outside diameter can be calculated
from the fundamental relationship (see Fig. 2):

Rbv Cov: Rot cos _, so that Cov

Ror cos _ Ror cos _ 1 IT

- cot _ (0 < c( < _-)

(11)

Rbv = Rot sin _ : tan'----_-

: 2 I)I12 where byCov (ev2B - I) I/2 or eve =(Cov +

definition (Vogel, 1945):

= )2 ]I/2
ev 8 = Ror/Rbv, so that Cov [(Ror/Rbv - l

avoids the use of _ functions. The virtual

vertorial angle or polar angle Oov at the O.D. is:

= )2 I/2 - 18ov [RorlRbv - 1] _ tan-l[(Ror/Rbv)2 ]I12

(Fad.) and the virtual pressure angle @ov is
obtained from:

@ov : inv-lOov : sec-l(ev eov) = c°s-] (Rbv/Ror)"

(12

From the above we get Cov= eov+ $ov as a check.

Also, m : =ov = #/2 -¢ov (tad) as a check)

R cos

or - cot _ (0 < _ < _-)
¢ov= Rbv

(13

The virtual roll angle Civ

diameter is developed as follows:

Co_ i =Cov - Civ : wjtf =

at the impingement

Vjtf' (14
R sin
o

so that ci(t f) =Cov - _jtf = (Ror cos _ - Vjtf)l

(Rot sin _) = cot _ - Vjtf/(Ror sin _).

Note from Fig. 2 that Vjtf : dilcos m, thus when

and/or tf are unknown:

d.
i

R cos m - -- d i
eiv(di ) : or cos _ cot _ - sin _ cos

Ror sin _ : Ror

V.

J

and ¢o-i = eov - Civ

d i 2d i

= cot _ - cot _ + Ror sin _ cos _ : Ror sin 2
(15)

Again the other virtual involute functions at the
impingement diameter are; starting with the vectoral
angle:

°'v'L,L _I -tanIL  ra,,

and the virtual pressure angle ¢iv at Ri:

(16)



 iv=-,FRbv1
cos[Ror_diJ

(17)

Further noting that

(Ror - di) 2 ]1

L ,J

"IT

_iv = 2-- ¢iv (tad"

12

= @iv + ely as a check, and

2 I)
and Ri = Rbv(Civ +

(IB)

I12

as a check. Thus the time of flight can be checked
from:

However, we cannot use di to calculate e a
except as an approximation because the angular origin
for ea is along the radius vector RX (Fig. 3) pass-

ing through the time origin at "0" while di _s meas-
ured along the Ri radius vector terminating at point
"I" on the leadlng profile of the trailing tooth,
which is the terminating vector position for the

angle Ca; thus (see Fig, 3):

Rx : Ri cos ea = (Ror - di)cos ea (22)

dx = Ror - Rx = Ror - (Ror - di)cos ea
Noting that:

(See Fig. 3)

d x tan : = Rx tan e a (23)

it can be shown that:

Co_ i d i

tf = ---_-: Rot sin _ cos _[Vjl(Ror sln _)]

d,
1 (sec)

: V. cos
J

(19)

d x = Rot cos _ - [(Ror cos _)2 _

di(2Ror - di)] I12 cos _. (24)

so that. e a = tan -I [d x tan _/(RoF - dx)].
Then as a check on the calculated value of d X

above:

where

di = (Ro + _a) - Ri = Ror - Ri

Ror - d x
(25)

di = Rot - cos e a

Theoretically, the virtual involute is a dummy
device for mathematically describing the time motion

of the terminal end of the jet stream line. As such,
the jet stream line is the line of actlon between the
vlrtual involute and the oi1 jet. Thus the coincident

points "i" at radius ri on the virtual involute
(v.i.) and R i on the gear tooth (g.t.) define the
point of oii impingement at time tf (v,i,) = t w
(g.t.). This coincident instant in time is the result
of the simultaneous motions of the (v.i.) and (g.t.)
from time t = 0 when the (v.i.) Is at its outer
position 2 at the virtual base circle (Fig. 2) while

the trailing edge of the leading gear tooth is at
position "0" where the jet line crosses the O.D. and
the (v.i.) is such that the rotation of the (v.l.) at

_g without the relative rotation of (_. - eg) through
tlme tw would place the (v.i.) originJat position 3

at the virtual base circle. Thus the (v.i.) is pre-
celved to rotate faster than _< by the amount

J
(e. - _) such that it rotates at _, + (_. - _) = e.

in keeping with the jet velocity Vj whic5 places th_
(v.i.) at positlon 4 at the virtual'base circle and at
i on the leading profile of the trailing tooth as
shown In Fig. 2

It is now necessary to involve the gear tooth
geometry. The solution will involve the assumption

r i = R i = Rot - d i

where

d_ : Vjtf COS _ (20)

which should be the same as before.

If it is noted that Ri = Ror - d i then

(see Fig. 2).

e LLRb;-i cos-I Rb: _

(25)

Note that ¢i is a function of R i and di making an

explicit solution for (R i or di) Impossible when Vj
is specified leaving dI or RI as the dependent
variable. Also.

4&a tan @n
er : N-- R - 2en (27)

where: en : inv ¢n : tan Cn - @n for spur gears and

er : _In - 2&a tan CtlRt - 2e t for helical gears

where

et = inv _t = tan @t - Ct and tan @t = tan en sec V

N

and Rt - 2p t
(28)

Further

Thus from the geometry of Fig. 2 it can be seen that

ea can be approximated From:

Vjtf sin _ d i tan _ (Rot - Ri)tan

tan @a Ror - Vjtf cos _ = Ror - d i Ri

(21)

: 1
Now the gear angle of rotation, ew, between points 1
and i in Fig. 2, can be calculated from

ew = E)o + er + 8 i ÷ ea (30)



sothat

0
t :__w
W co

g

30(80 + er + 8 i + ea)

_tn
sec (31)

where

n = rev.lmin

It is now possible to equate the time of flight
tf of the oll jet to the time of gear rotation tw, so
that

0
__w

tw = co
g

(38)

where

e w : e o + e r + e i ÷ e a (39)

so that angular geometry expressed in fundamental

terms of N, AN, @, 9, _ and 6i or vj are;

starting with the vertorial angle Qa (see Fig. l) is:

30e w d i

tw(g't') : _ = (Vj cos _) = tf(v.i.) (32)

Since e i is fn(di), the impingement depth

cannot be solved explicitly but must be iterated

numerically. Thus, we solve for Vi so that an

expllclt solution is possible as follows:

_din di_q.__
Vj : 300 cos _ - O cos

W W

(33)

It would be desirable to graph the results of

these formulas as in Figs. 4 and 5. Thus the
independent variables will be normalized to provide
dimensionless solutions to the above results. The

principle parameters used are Vj and d i so that
we will express them In terms of-the dimensionless

parameters vj, 81 and N as:

V. _ Vj d i
vj - _.I _ (34)

- Vg cogRor - OwRor cos _

and

d i d i diP n 26 i

Vj = vjcogRor61 - W.D. - 2/P - 2 and d i =
n n

(35)

where M.D. is the whole depth.

Thus the time of flight (tf) from the trailing

edge of the leading tooth top land at radius Ror

to the radius of impingement Ri on the leading

profile of the trailing tooth is:

26i (36)

tf = vjcogPnRor cos

and in terms of N. using Rot = (N + 2 cos , + 2An)/

(2Pn cos 9):

481 cos ,

tf : [Vj_g(N . 2 cos , + 2AN)cos =]
(37)

Then the time of rotation tw from the tralling

edge of the leading tooth top land at radius Ror to

to the jet llne when It intercepts the impingement

point at radius Rot on the leading profile of the

trailing tooth Is:

c_

tan Oa = di tan _i ' so that

46 i tan _ cos , _]Oa = tan-I N + 2 cos , + 2 AN - 46 i cos (40)

Next the impingement angle O i (see Fig. 1) is:

0 i = tan @i - @i = - -cos-l(Pb_ (41)

\% \Pi)

where

thus

48 i cos ,
Pi = 1 - N + 2_N + 2 cos ,

N cos Ct

Pb = N + 2AN + 2 cos ,

P_bb) ((N + 2 cos , + 2AN) - 4& i cos 9): N cos @t

and

Por = 1

NOW thls IS valid only when (N is given):

N + 2AN + 2 cos , - N cos @t
61 i 4 cos , : 8i

(42)

or when 8 i Is given

[(26i - I) cos , - AN.]N _> 2 ] : C_-S _T : N(min) (44)

the tooth space angle Or at the base diameter is

_r 4AN
Or = N-- T tan ¢t - 2Ot (45)

where

.... 1 -I Pb- cos -- (46)
L\Pt] Pt

(max) (43)



where

and

Pt : N + 2 cos _ + 2AN

Pt 1

Pb - cos ¢t - sec @t

and finally the involute angle
diameter is:

0o to the outside

0 ° = I nv @or = tan _Por - @or

Pb

112
-I

- cos (pb)

(47)

again it is possible to equate the times of flight tf

and rotation tw, now in terms of dimensionless param-

eters, so that

--Ow[: 4 &i c°s °¢ ]_g vj(N + 2 co-s _u _-2_N)cos c_
(48)

Therefore, if the dimensionless depth 6 i £ 6i

(max) is given the dimensionless velocity is cal-
culated from:

Jew( N 46 i cos _ ]vj , 2 cos _ * 2_N)cos
(49)

Also, if the dimensionless velocity vj is given then
the dimensionless depth 6 i is:

ewvj(N + 2 cos _ + 2aN) cos

6i : 4 cos _ (50)

where the limits for 6 i and/or N from Eqs. 43 and
44 must be observed.

Further, solving for 6 i must be done by an
iteration technique since 8w(6 i) is a function of 6 i
and Is therefore not explicit.

RESULTS OF COMPUTERIZED PARAMETRIC STUDIES

As noted in the introduction a completely new
analytical approach has been taken to development of

the mathematical model for what we identify as the
Kinematic model.

The effect of inclination angle (_) in the Kine-
matic model Is shown in Fig. 4 which is In keeping
with the physics of the problem. It should be noted
here that wlndage has been neglected in keeping wlth

the results from previous studies
(Akln, 1975).

It should also be noted that when fan jets are
used and are oriented with the fan perpendlcular or
broadside to the direction of flow around the gear,

the resulting impingement depth will probably compare
better with a curve for a slighly larger incllnation
angle than indicated by the pointing direction of the

jet nozzle. Also the effect of jet velocity on depth
6i Is shown in Fig. 5. The curve presented here is
for a specific gear design: pressure angle @ = 20 ° ,
number of teeth N = 28, inclination angle _ = 47 °
and dimensionless jet velocity V_/V_ = v. = 0.6468.J _ ]

Figure 6 (Akin, 1975) shows the thedretical
results compared with the experimental data gathered
in 1974. The experimental data did lie substantially
below the prediction from the mathematical models at
low oil pressures. It is assumed, as also mentioned
earlier, that this is the result of (I) the windage
effect on a fan-jet at low jet velocity and (2) pres-
sure loss in the nozzle. As the jet velocity is
increased the experimental data approaches the curves.

The windage study conducted in Akin (1975) involved
predicting the trajectory of the oil droplets after
they passed into the tooth space between the gear
teeth. Under these circumstances the windage affect
is considered negligible except for small droplet
sizes around 0.001 cm (0.0004 in.).

CONCLUSION

This paper develops the mathematical relations
for the "Virtual Kinematic Model" as an improvement
over the vectorlal model developed earlier. The model
solution described herein provides the most energy
efficient means of cooling gears-that is, it requires
the least pressure or pumping power to distribute the
coolant on the tooth surface. Further this nozzle
orientation allows impingement to the root if needed
and provides the most control when compared to the
into-mesh or out-of-mesh cooling.
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