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ABSTRACT

This paper develops the mathematical relations
for the "Virtual Kinematic Model" as an improvement
over the vectorial model developed eariier.
solution described herein provides the most energy
efficient means of cooling gears - that is, it requires
the least pressure or pumping power to distribute the
coolant on the tooth surface.
orientation allows impingement to the root of the
tooth if needed and provides the most cooling control
when compared to into-mesh or out-of-mesh cooling.
NOMENCLATURE
a addendum of tooth
di impingement depth
dy uncorrected impingement depth in origin plane
ev of © = sec ¢ = evolvent function of ©
N number of teeth in gear
n rotational speed
Pg diametrical pitch
Pn  normal diametrial pitch
Py transverse diametrial pitch
R standard pitch radius
Rp  base radius of gear
Rhpy base radius of virtual involute

Rj radius at impingement point

Ror operational outside radius (for modified
addendum)

Ro standard outside radius

Rt  transverse pitch radius
Ry uncorrected radius at impingement point (see
Fig. 3
The model t arbitrary flight time
t¢g  jet stream flight time at impingement
Further, this nozzTe ty time to rotate through angle, 8y
Vg linear pitch line velocity of gear
Vj  Jet velocity
a jet inclination angle
Aa  addendum modification
84 dimensionless impingement depth Eiifg
ejy virtual roll angle at impingement point
egy Vvirtual roll angle to outside diameter
63 vectorial angle of involute between point i
and O (Fig. 2»
H involute of ¢j = involute function at impinge-
ment point
©iy virtual vectoral angle to impingement point
Ogy Virtual vectoral angle to outside diameter
8y angle across tooth space at base circle
Oy total vectoral angle at impingement point
Y3 dimensionless jet velocity AL
Py dimensionless base circle radius
R dimensionless impingement radius



dimensionless outside radius

Pt dimensionless transverse pitch radius
$ pressure angle at pitch radius

¢ pressure angle at impingement point

$iy pressure angle of virtual involute at impinge-
ment point

én normal pressure angle
¢ pressure angle at outside radius

doy pressure angle of virtual involute at outside
diameter

¢t transverse pressure angle
¢ helical angle

w gear angular velocity

g9
mj virtural jet angular velocity
INTRODUCTION

Cooling of lightweight high speed gears via the
lubricating oil supply provided to the gearbox conti-
nues to be one of the most difficult areas in the high
performance mechanical power transmission design proc-
ess. Since the cooling process is controlled by oil
Jet orientation and by the jet velocity relative to
the pitch line velocity (PLV), these authors have con-
sidered the development of a fundamental understanding
of the oil jet primary impingement phenomena as essen-
tial to understanding how the gear tooth cooling
process works. In the early 1970's when this work was
started, a "vectorial model” was used to describe the
radial jet flow phenomena, (Akin, 1975), which com-
pared reasonably well with the experimental data,
(Akin, 1975), especially at pressures above approxi-
mately 140 kPa (20 psi). Models were also developed
for into mesh (Akin, 1983) and for out of mesh (Akin,
1985) to determine the oil jet impingement depths for
these conditions. The intc mesh and out of mesh
models indicate the oil jet impingement depths were
limited and therefore maximum cooling could not be
obtained using this approach.

The "Virtual Kinematic Model" was first mentioned
by Townsend in 1980, but the full mathematical devel-
opment of this model has not been published until now.
This model! has been generalized to include spur or
helical gears with standard AGMA proportions as well
as long or short addendums. Further, parametric limi-
tations have been formulated to allow the gear analyst
to know he is specifying his problem where a solution
is possible. Also, the dimensionless parameter devel-
opment has been provided to allow the gear engineer to
examine a wide range of generalized solutions easily
and to expose the limits mentioned above.

KINEMATIC SOLUTION FOR MODIFIED SPUR GEARS

The jet stream flight time starts (t = Q) at
position "1" at the intersection of the top land and
trailing profile of the leading tooth, as shown in
Fig. 1. Then the terminal end of the jet passes
through the tooth space where it impinges at "i" on
the leading profile of the trailing tooth at radius

Rj after time (t = t¢). From inspection of Fig. 1,
it can be seen that the radius of impingement is:

Ri = Rg - Vjtf (@D
where Vj is the jet velocity. The time of flight of
the oil Jet through the tooth space is:

t, = 21 i sec (2)

The gear must rotate through the angle By in
the same time it takes the oil jet to travel through
the tooth space to a depth of dj = Vjtf and impinge
at Ry. From Fig. 1 we see that Oy, = 65 + 6, + 8j.
The components of ©, are developed below.

The pressure angle, ¢, at the depth of impinge-
ment, dj is:

= cos”! EQ and tan = gii 1 " (3)
% = R, 4 = -

where
Rp 1s the gear base radius

Rj = Rg - dj
so that 85 = inv ¢; = tan ¢y - $i -

Also, the angle across the tcoth space at the gear
base circle is:

Q =

w
r -2 inv ¢ = N - 2(tan ¢ - ¢) 4)

Zld

where ¢ = cos—‘(Rb/R) is the pressure angle at the
standard pitch circle R. Further, the pressure angle
at the outside radius Ry is:

2 1/2
ARy Rs
¢o = C0S T and tan ¢o =1=3 - ] (5
o) R

b
so that

80 = iny ¢O = tan ¢o - ¢o
and thus

ew = eo + 6+ 9i as stated earlier, so that the time
it takes the gear to rotate through ew is

°) 30 8

-~
Woow ™™
9

sec; (6)

where n = rev/min.

Equating the times of flight ti and rotation tw:

ii ) 30 ew o R - R, )
vV, © v -
i j g
If d1 is given, then the required Vj can be found

explicitly as

N



w d. .
V. = —g—l = = (8)
J W

note, that d1 is a function of ¢i(di = fn(¢i)>

If Vj is given and the resulting di or Ri

is desired, we must iterate until Ri' as fn(¢i, Vj),
is satisfied. In dimensionless form, where:

vy = Vj/Vg and 8i = diPdIZ
di 461
V. = = (9)
JTRS, T[N+ D8]

GEARS WITH MODIFIED ADDENDUMS AND AN OIL JET DIRECTED
AT AN ARBITRARY INCLINATION ANGLE o FROM THE GEAR
CENTER

A more general solution can be provided to this
problem if we assume that the jet is pointed away from
the line through center of the gear by an arbitrary
angle "«" as shown in Fig. 2. This angle is defined
to be positive in magnitude when pointed in the direc-
tion of wq as shown in Fig. 2. Modified addendum
lengths or center distances are accommodated by the
use of the parameter AR, = ANg/2P, = A3, so that
Ror = Ro + Aa. Obviously when” 4a = 0, Ry = Rgr. In
this paper we will generalize and use 4da, Ry, and
Ror in all equations.

For helical gears we let: R¢ = N(2P, cos ¢, so
that, Ry = Rt + a and Rgor = Rt + a + Aa, where
Pt = Pp cos ¢y and the subscript t refers to the
transverse plane (normal to gear axis.) This problem
has been formulated by assuming that the jet terminal
end (or head) follows a trajectory in mesh with a
"virtual involute" as shown in Fig. 2. The virtual
involute is: defined by the radius of the base cir-
cle Rpy. where

V.
= i = N S
va = ROl" sin a, V:.| = ijbV' or wj = Ror STh o
(10)
As can be seen by inspection of Fig. 2, "w." is

the theoretical angular velocity of the virtual™jet
involute that produces the proper locus for the term-
inal end of the jet stream line at the actual jet
velocity V3, subsequent to passing the point 1 at

t = 0. The virtual involute is used to develop the
mathematical relationships needed to formulate the
time of flight to impingement of the jet stream on the
trailing tooth profile at R;j when the gear angular
velocity is wg. Note that in general wg * w, since

the virtual base circle is not fixed on the gear blank
(or wheel).

The writer has selected the virtual involute gen-
eralized roll angle ey as the parameter to interre-
late the virtual involute for the jet stream with the
rotating gear geometry. Thus the virtual roll angle
egy at the gear outside diameter can be calculated
from the fundamental relationship (see Fig. 2):

= R__ cos a, so that e

Rov Sov = Ror ov

R_cosa R__cosa

or or S r
= R =R smectana" cot a@ (0 ¢ a ¢ 3 )

bv or
(1

From here we can develop the remainder of the virtual
involute functions including &gy and ¢gy as fol-
Tows (see Fig. 2):

172

= (evze - D or eve = (52 + ])]/2

Cov ov where by
definition (Vogel, 1945):

2 1/2
ev B = Ror/va‘ so that €oy = [(Ror/va) - 1]

avoids the use of a functions. The virtual
vertorial angle or polar angle eov at the 0.D. is:

2 172 -1 2 1/2
eov = [Ror/va) - 11 - tan [(Ror/va) - 11
(rad.> and the virtual pressure angle ¢ov is
chtained from:
¢ = inv_le = sec'](ev 8 )= cos—] (R /R_D
ov ov ov bv Tor””
a2)
From the above we get Cov = eov + ¢ov as a check.
Also, a = %oy = w2 - ¢ov (rad) as a check)
R._cos «a
e =X —cota W<a<Zy AP
ov va 2

The virtual roll angle €iy at the impingement

diameter is developed as follows:

V.t
- - o 3f
€o-i = fov T Biv T wjtf "R sin a aa
so that ci(tf) = €5 ”jtf = (Ror oS a - Vjtf)/

(ROr sin a) = cot a - Vjtf/(Ror sin a).

Note from Fig. 2 that V.t di/cos a, thus when V.

ifr i
and/or tf are unknown:

4
ooy o nor P Geva gl G

iv 10 T Ror sin a - Ror sin a €oS a

and e, ; = ey, - gy

di Zdi
= Cota-cotax Ry, SiN a cos a = R, sinZa as

Again the other virtual involute functions at the
impingement diameter are; starting with the vectoral
angle:

R, -dp? ]2 NG R b
eiv =l -1 - tan — - ] (rad.)
R R
bv by
16)
and the virtual pressure angle ¢iv at Ri:



R

-1 bv
¢, = cOs ["‘“‘i“‘] an
iv ROr d;

Further noting that

2 1/2

= ¢, + 0,

iv jy as a check, and

(18)

" 2 1/2
Ay =y - ¢iv(rad.) and Ri = va(eiv +

as a check. Thus the time of flight can be checked
from:

b €o-i - _ di i

f uj Ror sin a cos a[vj/(Ror sin a)]
di
=V cos a (sec) (19)
J
where

dj = (Ry + 83) - Rj = Ryr - Rj

Theoretically, the virtual involute is a dummy
device for mathematically describing the time motion
of the terminal end of the jet stream line. As such,
the jet stream line is the line of action between the
virtual involute and the oil jet. Thus the coincident
points "i" at radius ri on the virtual involute
(v.t.) and Ry on the gear tooth (g.t.) define the
point of oil impingement at time te (vii) = ty
(g.t.). This coincident instant in time is the result
of the simultaneous motions of the (v.i.) and (g.t.)
from time t = O when the (v.i.) is at its outer
position 2 at the virtual base circle (Fig. 2) while
the trailing edge of the leading gear tooth is at
position "0" where the jet line crosses the 0.0. and
the (v.i.) is such that the rotation of the (v.i.) at
wg without the relative rotation of (w, - mg) through
time ty, would place the (v.i.) originat positicn 3
at the virtual base circle. Thus the (v.i.) is pre-
celved to rotate faster than w. by the amount
(ws - wg) such that it rotates at wg + (w; - wg) = o,
in"keeping with the jet velocity Vj whic% places theé
(v.1.) at position 4 at the virtual“base circle and at
i on the leading profile of the trailing tooth as
shown in Fig. 2

It is now necessary to involve the gear tooth

gecmetry. The solution will involve the assumption
ri =Ry = Rgp ~ dj
where
dj = Vjtf Cos a 20

Thus from the gecmetry of Fig. 2 it can be seen that
©3 can be approximated from:

Vjtf sin « di tan « (Ror - Ri)tan a

or " Vjtf Cos a ROr - di Ri

tan ea =3

=

@2n

However, we cannot use dj to calculate O3
except as an approximation because the angular origin
for ©; s along the radius vector Ry (Fig. 3) pass-
ing through the time origin at 0" while di s meas-
ured along the R; radius vector terminating at point
"i" on the leading profile of the trailing tooth,
which is the terminating vector position for the
angle 8,; thus (see Fig. 3):

Ry = Rj ¢os 83 = (Rgr - dj)cos 03 (22)
dy = Ror - Ry = Ror - (Ror - dj)cos 8, (See Fig. 3)
Noting that:
dy tan « = Ry tan @, (23)
it can be shown that:
dy = Ror €os a - [(Rop cOs )2 -
di(2Rgr - 4121172 cos «. (24)

so that, 63 = tan~! [dy tan a/(Ryy - dy)1.
Then as a check on the calculated value of dy
above:

4. - Ror - dx

i Ror "~ cos 8 (25
a
which should be the same as before.

If it is noted that Ri = Ror - di then
(see Fig. 2).

B N2 1/2
i -1 (R
e] = inv ¢] = tan ¢i - ¢i = ﬁg -1 - Cos ﬁ;
(26)
Note that ; Is a function of R and di making an

explicit solution for (Ry or dj) impossible when Vs
is specified leaving dy or Rj as the dependent
variable. Also.

4Aa tan @n

o = g—- —x— - 2, Q2n

where: en = inv ¢n = tan ¢n - ¢n for spur gears and
er = w/n - 2Aa tan ¢>t/Rt - 28t for helical gears
where

et = iny ¢t = tan ¢t - ¢t and tan °t = tan o, secy

N
and Rt = EE;

(28)

Further

8 =tan o -¢_ = [l=—| - 1| - cos™' [ (29
o} ¢} 0 Rb Ror

Now the gear angle of rotation, 6w, between points 1}
and i in Fig. 2, can be calculated from

ew = 80 + er + 81 + ea (30)



so that

ew 30(9O + er + 8i + Sa)
— = sec (31)
W wg mn

where
n = rev./min
It is now possible to equate the time of flight

tg of the ofl jet to the time of gear rotation ty,, so
that

308w di )
tw(gt) = p = (VJ cos o) = tf(V.l.) (32)
Since ei is fn(di), the impingement depth

cannot be solved explicitly but must be fterated
numerically. Thus, we solve for Vj so that an

explicit solution is possible as follows:

ﬂdin d.w

= - 1.9
Vj - 309w Cos a« O cos « 33

It would be desirable to graph the results of
these formulas as in Figs. 4 and 5. Thus the
independent varjables will be normalized to provide
dimensionless solutions to the above results. The
principle parameters used are V; and dj so that
we will express them in terms of the dimensionless
parameters vy 8§ and N as:

V. v .
¥y = Vl = a B8R d]cos (39
J g “g"or whor <
and
di d] diPn 281
Vj VJ“gRorsi W.D. ~ 2IP " 72 and 4, = 5;_
(35)

where W.D. 1is the whole depth.

Thus the time of flight (tf) from the trailing
edge of the leading tooth top land at radius ROr
to the radius of impingement Ri on the leading
profile of the trailing tooth is:

26,

i
t, = 36

f “j”anRor cosS a
and in terms of N, using R = (N + 2 cos y + 28m)/

or
(2P cos )
n
481 cos (37)
te = [F30gN + 2 cos v + 28N)cos a]

Then the time of rotation tw from the trailing

edge of the leading tooth top land at radius Ror to

to the jet line when it intercepts the impingement
point at radius Ror on the leading profile of the

trailing tooth is:

@

(38)

=
£
v =

where

Gw = 60 + er + 8i + ea (39)

so that angular geometry expressed in fundamental

terms of N, &N, ¢, ¢, « and 8i or vj are;

starting with the vertorial angle ea (see Fig. 1) is:

[+ 4
tan ea = di tan Ri , so that
1 46i tan o cos ¢

0, = tan N'+ 2 cos y+2aN-45 cosy

J (40)

Next the impingement angle ©; (see Fig. 1) is:

5 1/2
Pi -1{Fp
6. =tan ¢. - ¢. ={ - - - cos | — 41)
i i i 2 P
Pb i
where
48i coS y
Pi = 1 - NT7aN = 2 cos v
N cos ¢t
Pb " N+ 28N + 2 cos y
thus
P; (N + 2 cos ¢y + 28N) - 46i cos y)
— | = (42>
Py N cos b
and
Por = !
Now this is valid only when (N is given):
N + 28N + 2 cos y - N cos ¢t
§; < T o5 v = Si(max) (43)
or when §; s given

(28i - 1) cos ¢ - AN
1 - cos LN

= N(min) (44)

the tooth space angle 6, at the base diameter is

_ 4N

N (45)

[es]
]
z'i

tan ¢t - 26t

6, = tan 6, - 6. - |[£) -1 Ccos 2o (g
t t t Pt Py



where

N
Pt * N+ 2 cos y + 28N
and
Pt ]
Eg = ¢cos N = Sec ¢y

and finally the involute angle 6o to the outside
diameter is:

1/2 ]

eo = inv ¢or = tan ¢or -¢ . = 3 - 1 - €OS§ (pb)

or .

47>

again it is possible to equate the times of flight ¢t
and rotation

f‘
tw' now in terms of dimensionless param-

eters, so that

48, cos y
(48)

Oy
w ° vj(N + 2 cos ¢ + 28N)cos a

Therefore, if the dimensionless depth &, < &

(max) is given the dimensionless velocity is cal-
culated from:

45, cos y
(49)

Vi T [ewm + 2 o5 y + 2AN)COs «
Also, if the dimensionless velocity vj is given then
the dimensionless depth &; is:

ewa(N + 2 COS ¢ + 2AN) cos a

Si - 4 cos y (50)

where the limits for §;
44 must be observed.

Further, solving for &§; must be done by an
iteration technigue since Oy(81) is a function of &
and is therefore not explicit.

and/or N from Eqs. 43 and

RESULTS OF COMPUTERIZED PARAMETRIC STUDIES

As noted in the introduction a completely new
analytical approach has been taken to development of
the mathematical model for what we identify as the
Kinematic model.

The effect of inclination angle (a) in the Kine-
matic model is shown in Fig. 4 which is in keeping
with the physics of the problem. It should be noted
here that windage has been neglected in keeping with
the results from previous studies
(Akin, 1975).

It should also be noted that when fan jets are
used and are oriented with the fan perpendicular or
broadside to the direction of flow around the gear,
the resulting impingement depth will probably compare
better with a curve for a slighly larger inclination
angle than indicated by the pointing direction of the

jet nozzle. Also the effect of jet velocity on depth
§; s shown in Fig. 5. The curve presented here is

for a specific gear design: pressure angle ¢ = 20°,
number of teeth N = 28, inclination angle « = 47°
and dimensionless jet velocity vj/vg = v. = 0.6468.

Figure 6 (Akin, 1975) shows the thecretical
results compared with the experimental data gathered
in 1974. The experimental data did lie substantially
below the prediction from the mathematical models at
low oil pressures. It is assumed, as also mentioned
earlier, that this is the result of (1) the windage
effect on a fan-jet at low jet velocity and (2) pres-
sure loss in the nozzle. As the jet velocity is
increased the experimental data approaches the curves.
The windage study conducted in Akin (197%) involved
predicting the trajectory of the oil droplets after
they passed into the tooth space between the gear
teeth. Under these circumstances the windage affect
is considered negligible except for small droplet
sizes around 0.001 c¢m ¢0.0004 in.).

CONCLUSION

This paper develops the mathematical relationg
for the “Virtual Kinematic Model” as an improvement
over the vectorial model developed earlier. The model
solution described herein provides the most energy
efficient means of cooling gears-that is, it requires
the least pressure or pumping power to distribute the
coolant on the tooth surface. Further this nozzle
orientation allows impingement to the root if needed
and provides the most control when compared to the
into-mesh or out-of-mesh cooling.
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