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Preface

This five-volume document presents Command Language for Applied Mechanics
Processors (CLAMP). As the name suggests, CLAMP is designed to control the ‘flow
of execution of Processors written for the Network of Interactive Computational
Elements (NICE), an integrated software system developed at the Applied Mechanics
Laboratory.

The syntax of CLAMP is largely based on a 1969 command language (NOSTRA
Input Language (NIL) ). The language is written in the form of free-field source command
records. These records may reside on ordinary text files, be stored as global database
text elements, or be directly typed at a terminal. These source commands are read and
processed by an interpreter Command Language Interface Program (CLIP). The
output of CLIP does not have meaning per se. The Processor that calls CLIP is responsible
for translating the decoded commands into specific actions.

NIL and its original interpreter “LODREC,” which now constitutes the “kernel” of
CLIP, has been put to extensive field testing for over a decade. NIL has been the input
language used by all application programs developed by the author since 1969 to 1979.
(LODREC also drives the relational data manager RIM developed by Boeing for NASA
LaRC.) During this period many features of varying degree of complexity were tried and
about half of them discarded or replaced after extensive experimentation. CLAMP rep-
resents a significant enhancement of NIL, particularly as regards to directive processing,
interface with database management facilities, and interprocessor control. The current
version is therefore believed to be powerful, efficient, and easy to use, and well suited to

interactive work.

Volume I (NASA CR 178384) presents the basic elements of the CLAMP language
and is intended for all users. Volume II (NASA CR 178385), which covers CLIP directives,
is intended for intermediate and advanced users. Volume Il (NASA CR 178386) deals
with the CLIP-Processor interface and related topics, and is meant only for Processor
developers. Volume IV (NASA CR178387) describes the Global Database Manager: GAL-
DBM and Volume V (NASA CR178388) describes the Input-Output Manager: DMGASP.

All volumes are primarily organized as reference documents. Except for feeble at-
tempts here and there (e.g. §3.1 in Volume I and Appendix A in Volume III), the presen-
tation style is not tutorial.
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Section 1: INTRODUCTION

§1.1 THE CLIP-PROCESSOR INTERFACE

The running Processor communicates with CLIP through entry points provided in the
CLIP shell. The entry points are implemented as FORTRAN 77 functions or subroutines.
All communication data are passed through arguments or function returns. There is no
communication through common blocks, which would degrade modularity. The set of entry
points constitutes the CLIP-Processor Interface. The description of this interface is
the main topic of the present Volume.

The entry points described here can be classified in three types:

JLIP Control. Calls to these entry points control subsequent command-loading actions.
These entry points are alphabetically listed in Table 1.1 and described in Section 2.
By far the most important is CLREAD, which directs CLIP to load the next command;
it supersedes the old entry point CLNEXT. The other entry points in this class are
primarily for advanced applications.

2. Item Processing. A command has been read in and decoded by CLIP (generally in
response to a CLREAD request). Next, the command interpreter shell of the Processor
accesses keywords, qualifiers and data values so as to carry out the actions requested
by the user. A fairly large number of entry points is provided for convenient im-
plementation of these functions. These entry points are summarized in Tables 1.2
through 1.7, which are grouped in accordance to the organization of later Sections of
this Volume.

3.  Miscellaneous Utilities. These entry points provide miscellaneous services that do not
fall within the preceding two classes. For example: getting run information, evaluating
macrosymbols, converting characters to Hollerith and vice versa, comparing keywords.
Some of these services are not necessarily tied to CLIP, but involve more primitive
actions. These entry points are summarized in Tables 1.8 through 1.10.

The material described in the following sections is primarily intended for processor devel-
opers, and not for the general public. Accordingly, a fairly high level of proficiency with
FORTRAN 77 is assumed.

If you are a processor developer, one important thing to keep in mind is that the
Processor-CLIP relationship is of master-slave type. More precisely,

Your Processor 1s the Master

CLIP 1s the Slave

That is, your Processor (or, more precisely, the Processor Executive) can invoke CLIP, but
the opposite is not true.

Of course, the control hierarchy is affected by the presence of other elements, such as
user procedures and command procedures. Nevertheless, from a technical standpoint the
master-slave relationship holds.
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§1.1 THE CLIP-PROCESSOR INTERFACE

Table 1.1 CLIP Control Entry Points

Section
FEntry Point in which
Name Purpose described
CLGET Get next command image §2.3
CLPUT Insert immediate one-line message §2.4
CLPUTM Insert multiline message §2.5
CLPUTW Insert one-line message and wait §2.6
CLREAD Get and parse next command §2.7
CLNEXT Same as CLREAD §2.7
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Section 1: INTRODUCTION

Table 1.2 Entry Points for Searching

Sectton
FEntry Point in which
Name Purpose described
ICLSEK Search for keyword §5.2
ICLSEQR Search for qualifier §5.3
ICLKYP Search for keyword position §5.4
ICLQLP Search for qualifier position §5.5

Table 1.3 Entry Points for Loading Individual Item Values

Section
Entry Point in which
Name Purpose described
CCLVAL Get character value of item §6.2
DCLVAL Get double-precision floating value of item §6.3
FCLVAL Get single-precision floating value of item §6.4
ICLVAL Get integer value of individual itemn 6.5
NCLVAL Get nearest integer of individual item §6.6
XCLVAL Get single-precision complex value of item pair §6.7
ZCLVAL Get double-precision complex value of item pair §6.8
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§1.1 THE CLIP-PROCESSOR INTERFACE

Table 1.4 Entry Points for Loading Item List Values

Section
Entry Point tn which
Name Purpose described
CLVALC Load character list §7.2
CLVALD Load double-precision floating list §7.2
CLVALF Load single-precision floating list §7.4
CLVALI Load integer list §7.2
CLVALN Load nearest-integer list §7.2

Table 1.5 Entry Points for Loading Keywords & Qualifiers

Section
Entry Point in which
Name Purpose described
CLOADK Load keywords §8.2
CLOADQ Load qualifiers §8.3
CCLKEY Get keyword given position §8.4
CCLQUL Get qualifier given position §8.5
ICLNKY Get number of keywords §8.6
ICLNQL Get number of keywords §8.7
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Section 1: INTRODUCTION

Table 1.6 Entry Points for Retrieving Item Information

Section
Entry Point in which
Name Purpose described
CCLPRE Get item prefix §9.2
CCLSEP Get item separator §9.3
ICLIST Get list length §9.4
ICLNIT Get number of items §9.5
ICLOAD Get current load pointer §9.6
ICLTYP Get item type code §9.7

Table 1.7 Entry Points for Miscellaneous Operations

\ Section

i Entry Point in which
Name Purpose described
CLEIlF Get information on specific error §10.2
CLERR1 Get error counters §10.3
CLGLIM Get last image loaded §10.4
CLSLIM Show last image loaded §10.5

; CLSLOP Set load pointer §10.6




&

§1.1 THE CLIP-PROCESSOR INTERFACE

Table 1.8 Entry Points for Retrieving Run Information

Section
Entry Point ' tn which
Name Purpose described
CLCHAR Get information on control characters §11.2
ICLRUN Get information on run state and parameters §11.3
ICLUNT Get information on logical unit §11.4

Table 1.9 Entry Points for Evaluating Macrosymbols and Expressions

Section
Entry Point in which
Name Purpose described
CCLMAC Evaluate character macrosymbol §12.2
DCLMAC Evaluate double-precision floating macrosymbol §12.2
FCLMAC Evaluate single-precision floating macrosymbol §12.2
ICLMAC Evaluate integer macrosymbol §12.2
NCLMAC Evaluate nearest-integer macrosymbol §12.2




Section 1: INTRODUCTION
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Section 2: CONTROL ENTRY POINTS

§2.1 GENERAL DESCRIPTION

The control entry points presented in this Section are used to retrieve commands and to
submit messages.

For convenience we recapitulate some of the basic terminology already discussed at
length in Volume I.

A command can be an ordinary command or a directive.
Ordinary commands are handled by the Processor Executive.
Directives are handled internally by CLIP.
Commands may be submitted by either the User or the Processor.

A message is a command submitted by the Processor.

Retrieving Commands

Entry points CLGET and CLREAD are used to “get the next ordinary command”. As noted
in Volume I, any directive encountered along the way is processed by CLIP; control does
not return to the Processor until the next ordinary command has been found in a buffer
arca known as dataline collector (see §2.2). v

If you call CLREAD, the command items are processed by CLIP and stored in the
Decoded Item Table described in §4.1. (CLREAD replaces the entry point CLNEXT, which
nonetheless will be retained in future versions of CLIP.)

If you call CLGET, the command image will be furnished to you untouched (except for
the substitution of macrosymbols and formal procedure arguments). In general CLREAD
should be used unless there is a good reason to do otherwise. Two cases in which CLGET
find application are:

1. You want to do vour own item parsing because the rules used by CLIP conflict with
the ones you prefer.

2. You are attaching CLIP to an existing command-driven program. In this case all
you need to do is “disconnect” the old “read card” statement(s) and feed the images
provided by CLGET instead.



§2.1 GENERAL DESCRIPTION

Sending Messages

Three entry points are provided to send messages: CLPUT, CLPUTW and CLPUTM. These
replace the old entry point CLMAIL, which should be viewed as obsolete.

If your message is a “one-liner,” as the great majority are, you should use either CLPUT
or CLPUTW. Your message is then placed in front of the dataline collector as described in
§2.2. No input/output takes place (as it was the case under CLMAIL); just a memory-to-
memory copy.

You should use CLPUT to send messages containing one or more directives to be pro-
cessed immediately by CLIP, before it returns control back to the calling program. But
if the message contains an ordinary command, you should use the “put and wait” entry
point CLPUTW instead. If you call CLPUTW, CLIP will not process the message text imme-
diately but simply stores it and returns control to the calling program; the message will
be accessed by the next CLREAD or CLGET call. Further operational details are provided in
§2.2.

On rare occasions, a multiline message must be sent as a block, and several one-line
messages will not do the job properly. For this situation CLIP provides CLPUTM, which
opens a scratch file and writes the message lines to it. When the end of the message is
signalled, CLPUTM rewinds the file and “adds” it to the command source stream just like
an ADD directive would.
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Section 2: CONTROL ENTRY POINTS

§2.2 COMMAND DYNAMICS

The Dataline Collector

Understanding “command dynamics” for complex situations requires some knowledge of
the existence of the dataline collector and how commands are entered and removed from it.
This will be explained in this subsection using examples to illustrate the basic procedures.

The dataline collector, often referred to as “collector” for brevity, is a long character
string that holds text of commands read from the command source file as well as messages
sent by the Processor.

The collector functions as a staging area that buffers fluctuations in activity. For
example, if an arriving data line contains several commands, all of them are placed in
the collector to wait for extraction. If a command extends over several data lines, the
entire text is accumulated in the collector and continuation marks erased. Commands
are extracted from the front of the collector, one at a time, in response to calls by the
Processor.

Commands that arrive from the source file are queued and treated on a first-in, first-
out basis. One-line messages that arrive from the Processor via CLPUT or CLPUTW are stacked
and treated on a last-in, first-out basis. Messages that arrive via CLPUTM are queued.

User Commands

To facilitate visualization, all examples given below assume conversational operation: there
is a user sitting at a terminal who types commands in response to CLIP prompts.

When the Processor starts up, the collector is empty. Suppose that CLIP is first
entered by a CLREAD call. CLIP prompts the user, who responds by typing in the same
line three commands: an ordinary command, UC,, a directive, UD;, and another ordinary
command, UCy:

UCl H UD] N UC2

(UC and UD are used to denote “ordinary user command” and “user directive”, respec-
tively.) Since CLREAD was called, CLIP removes UC, from the collector and parses it. On
exit from CLREAD, the collector configuration is

UD, ; UC, (1)

with the parsed contents of UC; in the Decoded Item Table discussed in §4.1.

Upon processing command UC,, the Processor calls CLREAD again. Since the collector
is not empty, CLIP does not prompt the user for more data. First it processes directive
UD,, which is removed from the collector (for simplicity, let us assume that the directive
does not affect subsequent command reading, as a PROCEDURE or ADD directive would).
Then CLIP removes UCy and parses it. On return from CLREAD, the collector is empty.
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§2.2 COMMAND DYNAMICS

When CLREAD is called a third time, CLIP notices that the collector is empty and
prompts the user for more data. In response the user types two commands: UC3 and UC,4
in the same line. CLIP extracts UC3 and parses it. On return from CLREAD, the collector

configuration is

uc,

with UC3’s parsing in the Decoded Item Table. On the next entry, the user is not prompted
for data; UC4 is removed and parsed, and so on.

The key feature of this procedure is that each reference to CLREAD retrieves one and
eractly one user command: the it* call retrieves UC;. It doesn’t matter if the user types
one command per line, one command over many lines, or many commands per line; what
the Processor “sees” is always the sequence

UC] N UC2 H UC3 H UC4 .

Furthermore, the presence of directives (more precisely, directives that do not modify the
command stream) does not affect what the Processor receives.

REMARK 2.1

Replacing CLREAD by CLGET in the above narrative does not change things in any essential way; it
only influences the “packaging” of the information received by the Processor.

REMARK 2.2

The sequence of events is also identical if the human user is replaced by a script file or a command
procedure. Of course, in such a case CLIP does not issue prompts.

Immediate Messages

The presence of messages sent by the Processor may introduce complications. Consider
first one-line messages, which are the ones most frequently used.

Let’s go back to the collector configuration(1)(page 2-4) that follows the first CLREAD.
Before calling CLREAD again, suppose that the Processor sends through CLPUT a message
containing two directives: PD, and PD, (where P stands for “processor directive”). The
message is stacked in front of the collector, so at that point the collector configuration
becomes

PD] H PDg N UD] H UC2

Since CLPUT has been called, CLIP proceeds to digest the message immediately. It extracts
PD; and PD; (in that order) from the collector, and performs the tasks indicated in them.
On return from CLPUT, the collector configuration is again given by collector configuration
(1). The next CLREAD call then processes UD; and UC,, so there is no change with respect
to the no-message case.
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Sectlon 2: CONTROL ENTRY POINTS

REMARK 2.3

Certain directives, notably ADD and CALL, erase the collector. 1f they arrive as messages, commands
already there are lost.

Deferred Messages

But now assume that the message contains an ordinary command, PC;, which is submitted
via the “put and wait” entry point CLPUTW. As before, the message is stored in front of the
collector:

PCl ) UD[ H UCZ

but now CLIP does not process the message; it returns leaving the collector in the preceding
state. Now the next CLREAD call retrieves PCy and not UC,. If no other messages intervene,
the second user comnmand is retrieved by the third CLREAD call. The user is of course
unaware of this reshuffling, but the Processor logic must account for these variations as
appropriate.

REMARK 2.4

You may want to work out what happens if PC; were sent through CLPUT instead of CLPUTW. After
the next CLREAD call, you will find that PC; has disappeared without a trace! This is the reason for
recommending the use of put-and-wait. There are a few cases, however, in which the submitting
an ordinary command as immediate message has applications in conjunction with CLGET.

REMARK 2.5

If you call CLPUT¥ twice in a row to submit ordinary commands, the order is reversed. Let’s
say the first call sends PC; and the second one PC,. As these commands are stacked, the
last one is processed first; i.e., in the order PCy, PC;. The same “reversal” occurs for more calls.
Should this be undesirable, either reverse the order of the calls, or send them as components of a
single message.

Multiline Messages

Multiline messages are less frequently used than one-line messages so there is no need to
delve into much detail here. The key difference is that the contents of a message submitted
through CLPUTM are processed as if they appeared on the back of the collector.

If the collector is empty when the message is sent, there is no difference between
CLPUTW and CLPUTM, because multiline messages are always made to wait. But if the
collector is nonemply the event sequence may be quite different.

For example, let us say that directives PD; and PD; are submitted through CLPUTM
when the collector has the configuration(1)(page 2-4). Upon return the state may be
visualized as

UD, ; UC, ; PDy ; PD,
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§2.2 COMMAND DYNAMICS

in which PD; and PD, are not physically in the collector but in a card-image file to be
added once UC; is removed. The next (second) CLREAD call will remove UD; and UC,,
so directives PD; and PD; will not be processed until the third CLREAD call. (You should
contrast this to the one-line message submission, in which PD,; and PD, are processed
ahead of UD; and UC,.)

If the user had entered UC; and UC; on different lines, the sequence of events would be
different. Because of these unpredictable side effects, it is best to avoid multiline messages
if possible, or to precede them with an EOL directive, which empties the dataline collector
(see Volume II).
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Section 2. CONTROL ENTRY POINTS

§2.3 GET NEXT COMMAND IMAGE: CLGET

Entry point CLGET should be called instead of CLREAD if you want to retrieve command
images and inhibit CLIP parsing. You provide a receiving character argument into which
CLGET stores the image of the last command loaded. Two reasons for this modus operands
are discussed in §2.1.

Calling sequence

CALL CLGET (PROMPT, SPLASH, IMAGE, NCH)

Input arguments
PROMPT Same as for CLREAD; cf. §2.7.
SPLASH Same as for CLREAD; cf. §2.7.

Output arguments

IMAGE A character string into which CLGET places the image of the next
ordinary command found in the collector (cf. §4.2). The number of
characters transferred into IMAGE cannot exceed the passed length; con-
sequently, if the length is insufficient the image may be truncated.

NCH The absolute value of HCH is the number of characters loaded into IMAGE.
A negative value indicates that the command image has been truncated
because its length exceeds that of the passed length of IMAGE.

REMARK 2.6

Macrdsymbols in the command input are normally replaced by their values in the returned image.
This default mode may be altered by sending a SET MODE directive.

REMARK 2.7

If lines are being read from a command procedure, formal argument references are normally
replaced by their values in the IMAGE text. This default mode may be altered by sending a SET
MODE directive.

REMARK 2.8

Directives inserted before the next user command are processed by CLIP and not returned in
IMAGE. Thus the operation of CLGET is externally the same as that of CLREAD. (The user cannot
tell the difference between the two).
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§2.3 GET NEXT COMMAND IMAGE: CLGET

EXAMPLE 2.1

Consider the following code block:

CHARACTER*80 IMAGE

CALL CLGET (' Enter Command>', ' ‘', IMAGE, N)
PRINT %, IMAGE(1:N)

In response to the prompt, the user types
Enter Command> DO WHAT FOLLOWS

(The blank after > is part of the prompt, not of the response.) On return from CLGET, argument
IMAGE will contain DO WHAT FOLLOWS and argument N will be set to 15, which is the length of the

command line.

Now suppose that IMAGE had been declared CHARACTER*12, or that the third argument in the
call to CLGET had been IMAGE(1:12). Then the returned command is truncated to 12 characters:

DO WHAT FOLLOWS

and Il returns -12.
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Section 2: CONTROL ENTRY POINTS

§2.4 SEND ONE-LINE IMMEDIATE MESSAGE: CLPUT

The CLPUT entry point is used to send a one-line message containing directives to be
interpreted by CLIP. The message may contain more than one directive, but should not
normally contain user commands.

Calling sequence

CALL CLPUT (TEXT)

Input argument

TEXT The text of the message. It should not exceed 480 characters. The text
may contain one directive, or several directives separated by semicolons.

REMARK 2.9

If you want to send ordinary commands through this entry point, be sure you understand the
material presented in §2.2.

EXAMPLE 2.2

Consider the call

CALL CLPUT (' *set echo = on,verbose ; *show ces ')

This call sends a line that contains two directives to be immediately processed by CLIP.

2 10



§2.5 SEND MULTILINE MESSAGE: CLPUTM

§2.5 SEND MULTILINE MESSAGE: CLPUTM

There are occasions in which the message to be sent is so voluminous that it must be
broken down into several lines of text. In this case the proper message entry point to call
is CLPUTM. This is normally done in a loop, one line per call, and the last line is signalled
by an end-of-message flag.

Calling sequence

CALL CLPUTM (TEXT)

Input argument

TEXT TEXT is a character string containing either a message line (not to exceed
80 characters) or the *EOM or *EOM/I message terminator characters.
Use of the *EOM/I will cause CLIP to insert the message immediately
into the command stream. Otherwise, it will simply return and a sub-
sequent call to CLREAD or CLGET will cause the message file to be
added to the command source streain.

REMARK 2.10

The end-of-message mark must be in columns 1-4 or else it will be ignored.

REMARK 2.11
If the end-of-message mark is *EOM/I, the dataline collector is flushed.

EXAMPLE 2.3
Consider

CALL CLPUTM (’*PROCEDURE CHANGE.STEP (H=0.04)')
CALL CLPUTM (' SET INTEGRATION STEP TO [H] ')

CALL CLPUTM ('=*END ')
CALL CLPUTM ('*EOM/I ')

These four calls submit a three-line message that define a command procedure called CHANGE . STEP.
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Section 2: CONTROL ENTRY POINTS

§2.6 SEND ONE-LINE MESSAGE AND WAIT: CLPUTW

This entry point operates like CLPUT, except that the message is not processed immediately
by CLIP, but by the next CLREAD or CLGET call. This is the recommended procedure if the
message includes one or more user commands, as explained in §2.2.

Calling sequence

[ cALL crpuTw (TEXT) |

Input argument

TEXT A character string that contains the text of the message. Its length
should not exceed 480 characters.

EXAMPLE 2.4
Consider

CALL CLPUTW (' set omega=1.45 ; *show macros ; set damping=.07 °)

On return from CLPUTW the indicated text is stored in the dataline collector, but has not been
processed. Suppose that two CLREAD calls follow. The first CLREAD call “captures” the SET OMEGA
command. The second call processes the SHOW directive and “captures” the SET DAMPING com-
mand.

If this call had been submitted via CLPUT followed by CLREADs, the first ordinary command
would have been lost.



§2.7 READ NEXT USER COMMAND: CLREAD

§2.7 READ NEXT USER COMMAND: CLREAD

You request that the next user command be read and decoded by CLIP by calling the
entry point CLREAD. This is by far the most important control entry point and the only
one most Processors should use.

Calling sequence

Input arguments

PROMPT

SPLASH

CALL CLREAD (PROMPT, SPLASH)

Optional prompt text. A character string that may contain up to 132
characters. The second through last characters will be printed as a
prompting message if (a) running in conversational interactive mode
and (b) CLIP expects the next command from the terminal. The extent
of the prompt message is determined by its passed length, except that
multiple trailing blanks, if any, are reduced to one.

The first character of PROMPT controls the spacing before the prompt
line as follows:

1  One blank line.
2 Two blank lines.
- Page skip.
Any other: no skip. This character is not printed.

A double ampersand (&&) may be used to generate a carriage re-
turn/line feed (=: new line) in long prompts. This symbol is not printed.
The character that follows && is not considered a space control:

This argument is ignored in the cases noted in Remark 2.12 below.

Optional “splash line” to be displayed before the prompt if the “verbose”
mode has been enabled through a SET ECHO directive. On the VAX, this
string may contain any number of characters; on other computers it is
limited to 4R0 characters. The length of the SPLASH line is that of
the passed length or that of the last nonblank character, whichever is
smaller.

The first character of SPLASH is a line spacer that functions as described
above for PROMPT. Double ampersands may be used to force line feeds.

This argument is ignored in the cases noted in Remark 2.13 below.
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Sectlon 2. CONTROL ENTRY POINTS

REMARK 2.12

The PROMPT argument is ignored in the following cases: (a) batch mode; (b) command source is
not the user’s terminal, or (c) the length of the PROMPT string is only one character.

REMARK 2.13

The SPLASH argument is ignored in the following cases: (a) “verbose” mode is off, or (b) any of
the conditions listed in the above Remark applies.

REMARK 2.14
Entry point CLNEXT is a variant of CLREAD. It has the calling sequence

rCALL CLNEXT (PROMPT, SPLASH, ITEMS)

where ITEMS is an output integer argument that receives the number of items in the last parsed
command. This entry point will be retained in future CLIP versions.

EXAMPLE 2.5

Consider the call

CALL CLREAD (' lext command: ', ' ')

This call specifies
llext command:
as the prompt line (there will be a blank after the colon). The splash line is empty.

EXAMPLE 2.6

Consider now the call

CALL CLREAD (' Next command: ',
$ ' Commands: BEGIN, RUN, CONTINUE, STOP')

This call specifies the same prompt as in the previous example, but now it includes a splashline
that has a short command menu.
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Section 3: STANDARD COMMAND FORMAT

§3.1 INTRODUCTION

The present Section repeats much of the material presented in §3.1 of Volume I in greater
detail. As a Processor developer, you are expected to understand the precise meaning of
terms such as keywords, qualifiers and item lists in order to be able to effectively use the
command-processing entry points described in Sections 4 to 8 of this Volume.

The description that follows covers the so-called standard CLAMP format. It was
noted in §3.2 of Volume | that this is a subset of the total number of conmand formats
that CLIP can process. But many of the entry points described in following Sections are
tuned to this format.

REMARK 3.1

If you decide for a command format other than the standard CLAMP format, you must be
prepared to take one of the following approaches, depending on the degree of deviation from the
standard.

1.  CLIP Item Parsing is Acceptable. If the way CLIP breaks up the command into items is
acceptable to you, commands may be retrieved through CLREAD. Command processing may
be done on a detailed, item-by-item basis, avoiding search and list-loading entry points.

2. SLIP Item Parsing is not Acceptable. In this case you must retrieve command images through
CLGET and do vour own parsing. You may be able to send “chunks” such as item lists back to
CLIP via CLPUT for convenient decoding. But in general this approach will entail a lot more
programming work on your part, so it should be justified only under special circumstances.

If you have taken a nonstandard approach, the material that follows is not particularly relevant
and may be skipped.

3-2



§3.2 PHRASES

§3.2 PHRASES

In the standard CLAMP format, a command is always a sequence of phrases as shown in
the display box:

Standard command = Phrase, Phraseqy ... Phrase;

A Phrase {capitalized) is one or more interrelated items that must appear in sequence. A
Phrase can take five forms:

Keyword

List

Keyword = List
Qualifier
Qualifier = List

(There are two variants of the second and third forms, as explained in §3.5.) The following
subsections describe keywords, qualifiers and lists.
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§3.3 KEYWORDS
Definition

A keyword is a character string that meets the following conditions:

1. It is not a component of a list.

2. It is not a qualifier.

What’s the way to tell a keyword? You have to follow a process of elimination.

In the first place, the above definition says that a keyword must be a character string.
A numeric item cannot be a keyword. (One may type apostrophe character strings that
look like numbers, for example *1984° but this is admittedly rare.)

Next, if the alleged keyword is not the first item, look before it for prefixes or connec-
tives. If you see a qualifier prefix (normally a slash) this is a qualifier and not a keyword.
If you see an equals sign, this is the first item of a list (perhaps the only item). If you see
a comma, this is a component of a list.

Finally, look after it. If you see a comma, this is a component of a list and not a
keyword.

Function
Keywords are associated with control functions. They are used to specify operations to be
performed by the Processor, and to select cases within complex operations.

Keywords should be distinguished from character string data. For example, in the
two-phrase command

OPEN FILE = INPUT.DAT

OPElN and FILE are keywords, but INPUT.DAT is a file name and not a keyword. An easy way
to distinguish the control versus data functions is to ask oneself: has the name INPUT.DAT
a special significance to the Processor?

There is an ambiguous interpretation case discussed in §3.5.

The Action Verb

In the standard CLAMP format, if the first command item is a character string, it is
usually a keyword called the action verb. The action verb defines what the command is
supposed to do; §3.1 of Volume I contains many examples.

Note that this is recommended practice and not a mandatory rule. There is an
important class of commands, called data commands, which consist of a list only.
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§3.4 QUALIFIERS
Definition

Qualifiers are character strings (with the exception noted in the Remark below) preceded
by a qualifier prefix. The default prefix is the slash, although this may be changed through
a SET CHAR directive as explained in Volume II. We shall assume the slash for all examples,
as in

OPEN /NEW

Here NEW is a qualifier. Note that the prefix is not considered part of the qualifier string.
When the Processor retrieves this qualifier from CLIP, it gets NEW and not /NEW. (Doing
the latter would lead to character-matching programming problems should be the prefix
be changed by the user to, for example, a dollar sign.)

REMARK 3.2
Apostrophe strings should not be specified as qualifiers. For example:

PRINT TABLE = RRR /'Format’=E

should be avoided; say /FORMAT=E instead. The item-parsing logic of CLIP gets quite confused
when a construction of this type is encountered.

Function

As explained in §3.1 of Volume I, the basic function of the qualifier is to implement options.
It follows that qualifiers may always be omitted from the command, and that a default
interpretation must exist.

Qualifiers may be followed by a qualifier list that contains one or more items. The
list must be preceded by an equals sign that “attaches” it to the qualifier; this sign may
not be omitted.
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§3.6 ITEM LISTS
An Expanded Definition

Section 9 of Volume I defined item lists as sequence of items of the same type (numeric
and character strings) separated by commas. Now the term “item sequence” denotes two
or more items, as opposed to an individual item. But, for command processing tasks, it is
usually convenient to view an individual item as a one-item list.

REMARK 3.3

From this expanded interpretation it follows that a numeric item is either a list or a component of
a list.

In forming a Phrase, an item list may follow a keyword, follow a qualifier, or stand by
itself. If a list follows a qualifier, it must be preceded by an equals sign. In the other cases,
the equals sign is optional but never hurts. In fact, it helps to eliminate the ambiguous
interpretation discussed below. These Phrase composition rules deserve a display that
expands upon that of §3.2:

List

= List

Keyword = List
Keyword Luist
Qualifier = List

Function

Lists supply data to the Processor. Although the Processor actions may be influenced
by the values of the data, the influence is not so direct and unequivocal as in the case of
keywords and qualifiers.

An Ambiguous Case

There is an ambiguous case in which a character string may be interpreted as a keyword
or as a one-item list. Example:

OPEN INPUT.DAT

It is clear that OPEN, which is the action verb, is a keyword. But what is INPUT.DAT?
From the likely interpretation of the command “open filename”, it has to be a data value;
therefore it is a one-item list. But it could also be interpreted legally as a keyword according
to the rules of §3.3.



§3.5 ITEM LISTS

Placing an equals sign between the two items would make the interpretation unambiguous:

OPEN = INPUT.DAT

But the rules of §3.4 state that the sign is optlional, so the “equals-less” form cannot be
ruled out.

In practice this ambiguity has not lead to significant problems in command interpre-
tation. Therefore, the standard CLAMP format gives Processor developers a choice.

If you hate syntactical ambiguities, you may want to require users to put equals signs
before character lists (or all lists, for that matter). But if you are not a particularly
fastidious person and are aware that users hate typing equal signs (they are hard to find
on keyboards) you may decide to accept the ambiguity in stmple commands such as the
above example. (If the ambiguity can occur in a complex command, you should redesign

it.)
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Section 4: ITEM LOADING OVERVIEW

§4.1 THE DECODED ITEM TABLE

When CLIP interprets an ordinary command, it stores the result of the interpretation in a
Decoded Item Table, also called Parsed Item Table. This table was mentioned in in Remark
6.2 of Volume I to help explain some advanced concepts, but it is of limited interest to
users. In the present Volume, the table is central to the exposition.

The best way to describe the configuration of the Decoded Item Table is to go through
an example. Consider the eight-item command

SOLVE FOR X=(1/3) /RANGE= 25,86 /SCALE

Upon interpreting this command, the Decoded Item Table contains the following data:

Index Type Prefir  Value Separator
1 Character SOLVE
2 Character FOR
3 Character X =
4 Floating 0.33333333
5 Character / RANGE =
6 Integer 2b ,
7 Integer 86
8 Character / SCALE

The item indez is not stored, but serves to identify the position in the table. Attributes
type and value are self-explanatory. The table also “remembers” two characters called
prefiz and separator, which are not part of the value itself.

Only certain special characters may legally fill the role of prefixes and separators;
details to this respect have been given in Section 6 of Volume I. If none of these special
characters appears, a blank value is stored.

REMARK 4.1

The Decoded Item Table may be displayed through the SHOW DEC directive. The display format
is not exactly that shown above (for example, the value appears last to facilitate showing long
character strings), but it contains the same information.

The Decoded Item Table is accessible to the Processor through the entry points described
in Sections 5 to 8. The most important function of these entry points is item loading, which
is the transfer of information from the table into the Processor work area. For example,
the Processor may begin by testing the action verb, and so the keyword SOLVE must be
retrieved. The contents of the table cannot be modified by the Processor.
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§4.2 THE LOAD POINTER

Many of the Processor-CLIP interface points are of the “item loading” type. Their chief
function is to facilitate transfer of information from the Decoded Item Table into the
Processor work area for subsequent interpretation by the Processor executive. An item
is said to have been loaded when it has been accessed by an item-loading function or
subroutine and its value has been copied to the specified destination.

To systematize the transfer process, CLIP maintains an internal variable called the
load pointer, which is often denoted by the FORTRAN-like symbol, ILOAD. This is an
integer that has the index of the last item loaded, the index of a keyword or qualifier
matched by a “search” operation, or the value communicated through a “set pointer”
operation; whichever occurred last.

There is a closely related pointer called the nezt item to load, which is often denoted
by INEXT. Its value is obtained by adding 1 to ILOAD.

The number of items in the Decoded Item Table is denoted by ITEMS; in the example
of §4.1, ITEMS = 8. The load pointer ILOAD may range from O to ITEMS, and the next-
item-to-load pointer INEXT from 1 to ITEMS+1.

The basic item-loading principle is: select by pointing, then move. More precisely, if
you want to load the item that follows keyword X, you have to make ILOAD point to X,
which in turn makes INEXT point to whatever follows X. This manipulation can be done in
several ways as is summarized in §4.3.
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§4.3 MANIPULATING THE LOAD POINTER

On return from a “get next command” reference to CLREAD or CLGET, ILOAD and INEXT
initially have the values zero and one, respectively. From then on, the load pointer moves
in response to searching, itemn loading and setting actions, as described next.

Searching

The occurrence of specific keywords or qualifiers in the Decoded Item Table may be tested
through search operations requested via functions ICLSEK or ICLSEQ, which are described
in Section 5. ICLSEK is used for keywords and ICLSEQ for qualifiers. If a match takes place,
the load pointer is set to the index of the matched item. To illustrate, consider again the
sample command:

SOLVE FOR X=(1/3) /RANGE= 25,86 /SCALE

If a search is made for keyword X, the load pointer is set to 3 and INEXT becomes 4 so it
points to (1/3). This happens regardless of previous operations. If no match occurs, the
values do not change.

Loading an Individual Item

The value of an individual item (an isolated item or a list component) may be retrieved
through the FORTRAN-callable functions named xCLVAL, which are described in Section
6. The single function argument is the item index with a value of zero defaulting to ILOAD.
If the index is in range, upon return ILOAD points to the retrieved item and INEXT to the
next one.

Loading Lists

Item lists may be processed all at once by calling subroutines named CLVALz, which are
described in Section 7. Loading always begins at the current INEXT and proceeds until a
termination condition is reached. On return, ILOAD points to the last item transferred (if

any).
Direct Setting

The load pointer may be set to a specific value by calling entry point CLSLOP, which is
described in §10.3.

REMARK 4.2

The similarity of item loading and processing of direct-access files may be helpful to developers
familiar with the latter. A zero ILDAD corresponds to a “file rewound” condition, a keyword search
corresponds to a seek-key operation, and so on.
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Section 5: SEARCHING

§5.1 SEARCHING: ICLSEK and ICLSEQ

This Section describes two entry points for searching the Decoded Item Table: ICLSEK
for keywords and ICLSEQ for qualifiers. Both functions take two arguments. The first
argument specifies the starting point for the search while the second one specifies the
character string to be matched. If a match occurs the function returns the index of the
matched item while ILOAD is internally set to point to it.

But what is the meaning of “to match”? The case of character-by-character equality
is of course obvious: ICLSEK(1, 'COPY') matches keyword COPY. But there is more to the
subject than this.

Upstairs/Downstairs
First we examine the question of uppercase vs. lowercase. Suppose the command you have
typed has the keyword

Copy

Does ICLSEK(1,'COPY’) match this keyword?

Yes. Remember that CLIP converts all lowercase input to uppercase except for apos-
trophe strings, and that apostrophe strings should never be used for keywords or qualifiers;
only for character data such as plot legends and the like.

Abbreviating Keywords

Many Processors do not insist on complete matching of the command keywords and qual-
ifiers shown in the Processor Manuals or its help file. Instead, they permit abbrevtations.
For example, let us suppose that the Processor Manual describes a command as

PRINT ELEMENTS

but that keyword PRINT may be abbreviated to PRI (but not P or PR) while keyword
ELEMENTS may be abbreviated to E. So in fact a user can in fact type only:

PRI E

Roots and Extensions

Abbreviations such as the ones shown above are technically known as keyword roots. The
additional characters shown in the cornmand description are called the extension. The
extension is shown primarily for mnemonic purposes: PRINT ELEMENTS is more easily
remembered and understood than PRI E.

G_.’V
i
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§5.1 SEARCHING: ICLSEK and ICLSEQ

How are roots and extensions specified when invoking the search functions? You should
separate the two parts by a caret mark; for example:

ICLSEK(1, 'PRI"NT’)
ICLSEK(1,'E"LEMENTS’)

tells CLIP to search for keywords PRINT and ELEMENTS, whose roots are PRI and E, respec-
tively. Note that this convention precludes the use of the caret in keywords.

Another way of doing this is to to switch to lowercase for the extension, as in

ICLSEK(1,'PRINnt’)
ICLSEK(1,'Elements’)

This notation is more readable, but has two drawbacks, one minor, one major:

1. It cannot be used on the (admittedly few) computers that do not recognize lowercase
letters.

2. It may lead to ambiguity if the keyword contains nonletters. For example, if you say
ICLSEK (0, 'X-value')

it is impossible to tell whether the dash belongs to the root or not.

Uniqueness and Consistency

A basic requirement is that keyword roots should be unambiguous. For example, let us
say that there are two commands whose action verbs are PRINT and PROCEED. Then the
abbreviations PRI and PRO are acceptable, but PR is ambiguous. The Processor developer
is responsible for specifying unambiguous roots. Note that as more commands are added
during the lifetime of a Processor, certain roots may have to be expanded.

A more subtle question arises when the user types “beyond” the root. For example,
PRINT ELE or PRINT ELEMS.

One course of action would be to accept a keyword as long as it matches the root.
This can be achieved by simply omitting the extension when you call the search functions,
as in

ICLSEK(O, 'PRI')
ICLSEK(2, 'E’)

This is straightforward, but may surprise and confuse some users. A more rational way is
implemented in the search functions: accept a match if the excess characters agree with
the extension and to disallow a match if they do not. As an illustration, any of

EL ELEM ELEMENT
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match ELEMENTS, but ELEVATE or ELEMENTAL do not.

In practice Processor developers often follow a middle course: the tests against the
extension are limited to two or three characters beyond the root. For example, if the
developer writes the search reference as

ICLSEK (1, 'ELEM')

then anything that the user types beyond ELEM is ignored.

Both ICLSEK and ICLSEQ are trained to apply this approach if an extension appears
in the argument. For tests-within-the-processor, the universal string-matching routine
CMATCH is available.

Newer Entry Points

In addition to ICLSEK and ICLSEQ, two more search functions have been added in the
present version of this document: ICLKYP and ICLQLP. These also search for given keywords
or qualifiers, but return their position count rather than item index. These entry points
are designed to work in conjunction with CCLKEY, CCLQUL, ICLNKY and ICLNQL, which are
described in §8.
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§6.2 SEARCH FOR KEYWORD: ICLSEK

Entry point ICLSEK, which is referenced as a integer function, scans the Decoded Item
Table for the first occurrence of a keyword that matches its argument. The search begins
at the item index specified as argument; but if this argument is zero, the “next item to
load” position is assumed. If a match occurs, the function returns a nonzero value and
the load pointer is set to the matched item index. If no match occurs the function returns
zero and the load pointer is unchanged.

ICLSEK does not test its argument against qualifiers, items preceded by a comma or
equals sign, items followed by a comma, or numeric items. None of these fits the definition
of “ordinary keyword” given in §3.3.

Calling Sequence

M = ICLSEK (I, KEY)

REMARK 5.1
An explicit function reference is rare, however; more often than not ICLSEK is tested within an IF
statement.

Input Arguments

I If I > 0, begin search at the ** item.

If zero, begin at INEXT.

KEY A character string that contains the keyword to be matched left justified.
The string may also specify the keyword root followed by its extension
as explained in §5.1.

Function Return

ICLSEK If a match occurs, ICLSEK returns the index of the matched item and
internally sets ILOAD to point to it.
If no match is detected, the function returns zero and ILOAD is not
altered.

Procedure

Initialize function value to zero. Examine entries in the Decoded Item Table starting at
I>0, or INEXT if I=0. Numeric items, qualifiers (items preceded by a qualifier prefix) and
items preceded by an equals sign are skipped. A compare test of the argument and the
candidate keyword is performed. If match occurs, set ILOAD to its index and return; else
continue until the end of command is reached.
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EXAMPLE 5.1

Assume that the last loaded command is

LOAD COORDINATES X = 1.2 Y = (2/3) Z = -7.5

and that INEXT is one. Then

ICLSEK (0, 'X") returns 3
ICLSEK (0, 'Z~-VALUE') returns 7
ICLSEK (O, 'COOR"D’) returns 2
ICLSEK (1, 'LOAD’) returns 1
ICLSEK (2, 'LOAD’) returns O
ICLSEK (0, 'LOADER’) returns 0
ICLSEK (0, 'LO"CK') returns O
ICLSEK (O, 'COOR"DINATE') returns 2

EXAMPLE 5.2

This is a trickier example:

FILE /FILE=FILE FILE = FILE

with INEXT = 2. What does ICLSEK(O, 'FI"LE') return? Answer: 4 (why?).

c’,’l
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§5.3 SEARCH FOR QUALIFIER: ICLSEQ

Fntry point ICLSEQR, which is referenced as a integer function, scans the Decoded Item
Table for the first occurrence of a qualifier that matches its argument. The search begins
at the item index specified as argument; but if this argument is zero, the “next item to
load” position is assumed. If a match occurs, the function returns “next item to load”
position. If a match is made, the function returns a nonzero value and the load pointer is
set to the matched item index. If no match occurs the function returns zero and the load

pointer is unchanged.

Calling Sequence

M = ICLSEQ (I. KEY)

REMARK 5.2
As with ICLSEK, explicit function references are rare. More often than not ICLSEQ is tested within
an IF statement.

Input Arguments

I If I > 0, begin search at the 1** item.
If zero, begin at INEXT.
KEY A character array that contains the keyword to be matched left justi-

fied. It may also specify the keyword root followed by its extension as
explained in §5.1.

Function Return

ICLSEQ If a match occurs ICLSEQ returns the index of the matched item, and
also internally sets ILOAD to it.

If no match is detected the function returns zero and ILOAD is not al-

tered.

Procedure

Initialize function return to zero. Examine the Decoded Item Table starting at I>0, or
INEXT if I=0. Numeric items and items not preceded by a qualifier prefix are skipped. A
compare test of the argument and the candidate keyword is performed. If match occurs,
set ILOAD to its index and return; else continue until the end of command is reached.

EXAMPLE 5.3

Assume that the last loaded command is

OPEN /ROLD 3, [REAGAN]BUDGET.DEF /LIMIT=INFINITE
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and that INEXT is 1. Then

ICLSEQ (0, ‘R’)
ICLSEQ (0, 'LIM")
ICLSEQ (0, 'L"IMIT’)
ICLSEQ (O, 'LIMITS')
ICLSEQ (O, 'BUDGET')

5-8
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§6.4 SEARCH FOR KEYWORD POSITION: ICLKYP

Integer function ICLKYP receives a keyword value as argument, and returns the keyword
position if that keyword occurs in the command.

Calling Sequence

IK ICLKYP (KEY)

Input Arguments

KEY A character string that contains the keyword to be matched left justified.
The string may also specify the keyword root followed by its extension
as explained in §5.1.

Function Return

ICLKYP Keyword position (not to be confused with the item index) if the key-
word is found, otherwise it is zero. If a match occurs, pointer ILOAD is
set to the keyword index.

Procedure

The Decoded Item Table is scanned from beginning to end. For each item classified as
a keyword, a comparison test is performed against the argument value. If the match
succeeds, the keyword position is returned. If no match is detected after scanning the
entire table, a zero is returned.

EXAMPLE 5.4

Assume that the last loaded command is

SOLVE FOR X=(1/3) /RANGE= 25,86 /SCALE STORE

Then ICLKYP('FOR’) returns 2, ICLKYP('ST"ORE') returns 4, but ICLKYP(*ZZZZ"') returns zero.
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§6.5 SEARCH FOR QUALIFIER POSITION: ICLQLP

Integer function ICLQLP receives a qualifier value as argiument, and returns the qualifier
position if the qualifier occurs in the command.

Calling Sequence

IK

ICLQLP (KEY)

Input Arguments

KEY A character string that contains the qualifier to be matched left justified.
The string may also specify the qualifier root followed by its extension

as explained in §5.1.
Function Return

ICLQLP The qualifier position (not to be confused with the item index) if the
qualifier is found, otherwise it is zero. If a match occurs, the pointer
ILOAD is set to the item index.

Procedure

The Decoded Item Table is scanned from beginning to end. For each item classified as a
qualifier, a comparison test is performed against the argument value. If the match succeeds,
the qualifier position is returned. If no match is detected after scanning the entire table,
a zero is returned.

EXAMPLE 5.5

Assume that the last loaded command is
SOLVE FOR X=(1/3) /RANGE= 25,86 /SCALE STORE

Then ICLQLP('RANGE') returns 1, ICLQLP('SC~ALE’) returns 2, but ICLQLP(’VOID’) returns

zero.
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Section 6: LOADING INDIVIDUAL ITEMS

§6.1 GENERAL DESCRIPTION

The value of individual items identified by an item index may be retrieved through function
entry points named zCLVAL. The first letter of the function name identifies the data type
of the receiving variable in the calling program. Presently that letter may be C, F, D, I, N,
X and Z, for character, single float, double float, integer, next integer, single complex and
double complex data types, respectively.

The only function argument is the item index; if a value of zero is specified, INEXT is
assumed.

REMARK 6.1
Some of these functions are among the most venerable pieces of code in CLIP and its ancestor
LODREC. In fact, the first ICLVAL and FCLVAL were coded in 1969 on the CDC 6600, under

the names IVALUE and and FVALUE, respectively. Of course there was no character data type in
FORTRAN at that time; to get keywords there was an integer function HVALUE that returned a

Hollerith value.
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§6.2 GET INDIVIDUAL CHARACTER VALUE: CCLVAL

Entry point CCLVAL, which is invoked as a character function, returns the character value
of a decoded CLIP item identified by its index.

Calling Sequence

Input Arguments

I

Function Return

CCLVAL

Procedure

CHARACTER*(N) CS, CCLVAL

CS = CCLVAL (I)

If I >0, item index.

If I = 0, CCLVAL assumes that I = ILOAD+1 = INEXT, t.e., the “next
item to load.”

If the I-th item is of character string type and is of lengthM < N, CCLVAL
returns its value in the first M characters, and the remaining N-M ones
are blankfilled. If I < M, the returned value is truncated to the first N
characters.

If the I-th item is of numeric type, or if I exceeds the total number of
items, CCLVAL returns a blank.

Check argument I; if zero, replace as indicated; set function value as indicated. Before
returning, if (1 < I < ITEMS) set the load pointer ILOAD to I, and adjust INEXT accordingly.

EXAMPLE 6.1

If the last user command starts with a keyword whose first four characters are SOLV, call subroutine

SOLVER

CHARACTER+*4 CCLVAL
IF (CCLVAL(1) .EQ. 'SOLV') THEN

CALL SOLVER
END IF
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§6.3 GET INDIVIDUAL DOUBLE FLOATING VALUE: DCLVAL

Entry point DCLVAL, which is invoked as a double-precision function, returns the double-
precision floating-point value of a numeric CLIP item identified by its index.

Calling Sequence

DOUBLE PRECISION D, DCLVAL

D = DCLVAL (I)

Input Arguments

I If I > 0,item index.

If I = 0, DCLVAL assumes that I = ILOAD+1 = INEXT, i.e., the “next
item to load.”

Function Return

DCLVAL If the I-th item is of numeric type DCLVAL returns its value as a double-
precision floating-point number.
If the I-th item is of character type, or if I exceeds the total number of
items, DCLVAL returns zero.

Procedure

Check argument I; if zero, replace as indicated; set function value as indicated. Before
returning, if 1 < I < ITEMS set the load pointer ILOAD to I, and adjust INEXT accordingly.

REMARK:6.2
An integer value is converted to a double-precision floating-point value; for example, 6 is returned
as 5.0D+0.

EXAMPLE 6.2
Load items 4 through & into first 5 entries of the double-precision array DD:

DOUBLE PRECISION DD(5), DCLVAL
DO 2000 J = 1,5

DD(J) = DCLVAL(J+3)
2000 CONTINUE
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§6.4 GET INDIVIDUAL SINGLE FLOATING VALUE: FCLVAL

Entry point FCLVAL, which is invoked as a real function, returns the single-precision
floating-point value of a numeric CLIP item identified by its index.

Calling Sequence

| F = FCLVAL (I)

Input Arguments

I : If I > 0, item index.

If I = 0, FCLVAL assumes that I = ILOAD+1 = INEXT, t.e., the “next
item to load.”

Function Return
FCLVAL If the I-th item is of numeric type FCLVAL returns its value as a single-

precision floating-point number.

If the I-th item is of character type, or if I exceeds the total number of
items, FCLVAL returns zero.

Procedure
Check argument I; if zero, replace as indicated; set function value as indicated. Before
returning, if 1 < I < ITEMS set the load pointer ILOAD to I, and adjust INEXT accordingly.

REMARK 6.3

An integer value is converted to a single-precision floating-point value; for example, b is returned
as 5.0.

EXAMPLE 6.3
A three item keyword phrase has the following form

LIMITS == rl r2

It is desired to load rf and r? into user-program variables XMIN and XMAX. respectively. The
following code block, which assumes that LIM is the “root” of keyword LIMITS, does it:

IF (ICLTYP ('LIM"ITS’)) .NE. 0) THEN

XMIN = FCLVAL(0)
XMAX = FCLVAL(0)
ENDIF

For example, if the actual command is
SET COORDINATE LIMITS = 1.5 2.57

then XMIN receives 1.5 and XMAX receives 2.57.
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§6.5 GET INDIVIDUAL INTEGER VALUE: ICLVAL

Entry point ICLVAL, which is invoked as an integer function, returns the integer value of
a numeric CLIP item identified by its index.

Calling Sequence

J = 1ICLVAL (I)

Input Arguments

I If I >0, item index.

If I = 0, ICLVAL assumes that I = ILOAD+1 = INEXT, 1.e., the “next
item to load.”

Function Return

ICLVAL If the I-th item is of numeric type ICLVAL returns its integer value.

If the I-th item is of character type, or if I exceeds the total number of
items, ICLVAL returns zero.

Procedure

Check argument I; if zero, replace as indicated; set function value as indicated. Before
returning, if I < I < ITEMS set the load pointer ILOAD to I, and adjust INEXT accordingly.

REMARK 6.4

A floating-point value is converted to an integer value following the usual FORTRAN 77 truncation
procedure; for example 5.8 is returned as 5. If you prefer rounding to the next integer, use NCLVAL

(§6.6).

EXAMPLE 6.4

Load items 13 to 20 into the first 8 entries of integer array IV.

INTEGER 1IV(30)
DO 2000 J = 1,8

IV(J) = ICLVAL(J+5)
2000 COHNTINUE
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§6.6 GET NEAREST INTEGER VALUE: NCLVAL

Entry point NCLVAL, which is invoked as an integer function, returns the nearest integer
value of a numeric CLIP item identified by its index.

Calling Sequence

Input Arguments

I

Function Return

NCLVAL

Procedure

J = NCLVAL (I)

If I >0, item index.

If I = 0, NCLVAL assumes that I = ILOAD+1 = INEXT, i.e., the “next
item to load.”

If the I-th item is of numneric type NCLVAL returns the value of the nearest
integer.

If the I-th item is of character type, or if I exceeds the total number of
items, NCLVAL returns zero.

Similar to ICLVAL. but use the FORTRAN 77 function NINT to convert floating point to

integer.

EXAMPLE 6.5

Consider the command

Then

CONVERT 1.2 4.55

ICLVAL (2) returns 1
NCLVAL (2) returns 1
ICLVAL (3) returns 4
NCLVAL (3) returns b
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§6.7 GET SINGLE-PRECISION COMPLEX VALUE: XCLVAL

Entry point XCLVAL, which is invoked as a complex function, returns the single-precision
floating value of a pair of numeric CLIP item identified by index of the first one.

Calling Sequence

Input Arguments

I

Function Return

XCLVAL

Procedure

COMPLEX X, XCLVAL

X = XCLVAL (I)

If I > 0, index of the first item.

If I = 0, XCLVAL assumes that I = ILOAD+1 = INEXT, t.e., the “next
item to load.”

If both items are of numeric type XCLVAL returns their value as the real
and imaginary parts of a single-precision complex number.

If an item is not of numeric value, or is out of range, the corresponding
component is set to zero. If both items are nonnumeric or out of range,
both components are set to zero.

Check argument I: if zero, replace as indicated; set function value as indicated. Before
returning, if 1 < I < ITEMS - 1 set the load pointer ILOAD to I+1, and adjust INEXT

accordingly.

REMARK 6.5

Any integer value is converted to single-precision floating point as usual.

REMARK 6.6

A reference to XCLVAL is equivalent to two successive FCLVAL calls with the first value going to the
real part and the second going to the imaginary part.

EXAMPLE 6.6

The last command is

SET DAMPIIIG COEFFICIENT = 0.0349, (-1/40)

Then the following code



§6.7 GET SINGLE-PRECISION COMPLEX VALUE: XCLVAL

COMPLEX GAMMA, XCLVAL

GAMMA = XCLVAL (4)

stores the complex value (0.0345,-0.026) into variable GAMMA. (The comma after 0.03456 is not
strictly necessary, but cannot hurt.) On exit, ILOAD is 6.
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§6.8 GET INDIVIDUAL DOUBLE-PRECISION COMPLEX VALUE: ZCLVAL

Entry point ZCLVAL, which is invoked as a double complex function, returns the double-
precision complex value defined by a pair of numeric CLIP items identified by the index
of the first one.

Calling Sequence

DOUBLE PRECISION COMPLEX Z, ZCLVAL

Z = ZCLVAL (I)

(Type declaration may be machine-dependent; see Remark below).
Input Arguments

I If I > 0, index of first item in pair.

If I = 0, ZCLVAL assumes that I = ILOAD+1 = INEXT, t.e., the “next
item to load.”

Function Return

ZCLVAL If both items are of numeric type ZCLVAL returns their value as a double-
precision complex number.

If one of the items is nonnumeric or is outside the range, zero is returned
for that component. If both items are nonnumeric or out of range, both
components are set to zero.

Procedure

Check argument I; if zero, replace as indicated; set function value as indicated. Before
returning, if 1 < I < ITEMS set the load pointer ILOAD to I+1, and adjust INEXT accordingly.

REMARK 6.7

This data type is not part of standard FORTRAN 77 and so it may not be provided by some
compilers. For such machines this entry point is undefined. Fven if provided, the syntax for
declaring it may vary. On byte-oriented machines, it’s usually COMPLEX*16.

REMARK 6.8

Integer values, if any. are converted to double-precision floating-point values in the usual way.

REMARK 6.9
The same results may be obtained by two successive calls to DCLVAL with the first value going to
the real part and the second value going to the imaginary part.

6-10



[

Loading
ltem Lists



Section 7: LOADING ITEM LISTS

§7.1 GENERAL DESCRIPTION

To load an item list with one call you use entry points named CLVALz, where the last letter
identifies the data type of the array that will receive the values: C for character, D for
double-precision, F for single-precision floating, I for integer, and N for nearest integer.
Entry points for loading complex arrays are not presently provided, but may be added in
the future if there is sufficient demand.

Item-list processing occurs less frequently than individual item processing. Thus, Pro-
cessor developers usually learn the entry points of Section 6 first. An easy way to remember
the names of list-loading entry points is to take the first letter of the corresponding function
entry and append it to what’s left; for example, ICLVAL becomes CLVALI.

REMARK 7.1

The old (1979 vintage) list-loading entry points were named CLOADz. These are still supplied but
should be regarded as obsolete and replaced by CLVALz in new software. The CLVALz entry points
are designed to work efficiently in conjunction with processing of lists after qualifiers and allow
loading of comma-less lists.
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§7.2 LOAD ITEM LIST: CLVALz
There are four list-loading entry points of the form CLVALz. The last letter zis C, D, F, I
or N and designates the data type of the recetving array.

Loading starts at the “next item to load” position and is incremented on exit by the
number of values loaded. The loading process terminates when one of the following exit
conditions holds true:

1. The list terminates.
2. The end of the Decoded Itemn Table is reached.

3. A maximum number of values (specified as argument) is reached.

Calling Sequence

CALL  CLVALz (OPTS, M, A, N)

Input Arguments

OPTS A character array containing list-interpretation option letters. The fol-
lowing letters are presently meaningful.
B: Accept blanks and commas as item list connectors. If omitted, only
commas are considered as connectors and a blanks-only separator is
interpreted as a list terminator.
E: Load list only if first item is preceded by an equals sign. This option
is mandatory to load qualifier lists following a reference to ICLSEQ. If E
is specified and no equals sign is found, nothing is loaded and argument
N returns zero.

The default OPTS = * ' is appropriate for non-qualified lists; equal signs
are ignored and commas are required connectives.

M The absolute value of M is the maximum number of values that may be
loaded into A. (This is usually the array dimension.)

if M is negative, array A is initialized on entry to the list-load subroutine.
Initialization means blankfilling if A is of type character, or zerofilling
otherwise.

Output Arguments

A Array that will receive the item values in the first N locations. The
data type of A should correlate with the last entry-point name letter as
follows:

z = C, if A is character.

r = D, if A is double-precision floating.
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z = F, if A is single-precision floating.

z - I or N, if A is integer.
N Number of values loaded into A. May be zero.

Description

On entry, initialize array A if M is negative. Clear N. If option letter E appears, exit if no
equals sign precedes the first list item. Load list items until one of the exit conditions
listed above is verified. As each item is loaded, increment N and ILOAD by one.

REMARK 7.2

To load K single-precision complex values, set M = 2%K (or M = -2%K if you want initialization),
and call CLVALF; the number of complex items loaded should be N/2. For double-precision complex
do the same with CLVALD. This should work as long as the FORTRAN comnpiler (a) does not check
data types across subroutine interfaces, and (b) stores rcal and imaginary part in consecutive
locations.

REMARK 7.3
For loading characters CLVALC uses the passed length of the entries of A.

EXAMPLE 7.1

Assume that the last loaded command has been
SELECT FREEDOMS = TX, TY, TZ

and that the receiving character array is IDOF (8)*4. To load the list following keyword FREEDOMS
into IDOF, one may use

IF (ICLSEK('FREE’) .NE. O) CALL CLVALC (' ', 6, IDOF, N)

This sets IDOF(1) = 'TX', IDOF(2) = 'TY', IDOF(3) = 'TZ',and N = 3. The last three entries
of IDOF are not touched; if you want them blankfilled, set the second argument of CLVALC to -6.

EXAMPLE 7.2

The current command contains only a list of eight floating point numbers not separated by commas.

3.4 -4.563 0.23 (5/3) -8.34 7.1 0.67 (-2/7)

Allowing commas to be omitted is a bad programming practice, but it may happen (remember
Ben Franklin’s “experience is a dear school, but fools will learn at no other”). These values are
to be loaded into a double-precision array dimensioned DD(24), which is to be cieared on entry to
CLVALD:

CALL CLSLOP (0)
CALL CLVALD ('B’, -24, DD, I)

The CLSLOP call sets the load pointer ILOAD to zero so that list loading will start with the first
item; this is not required if the command has just been retrieved via CLREAD, but it can’t hurt.

On exit, DD(1) = 3.4,DD(2) = -4.53,....and !l = 8.
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EXAMPLE 7.3
Assume that the current command is

FACTOR XK /RANGE=21,629 /PDCHEK

Load the two integers following qualifier RANGE into the 2-word integer array IRANGE:

IF (ICLSEQ('RANGE') .NE. O) CALL CLVALI ('Q’', 2, IRANGE, N)

On exit, IRANGE(1) = 21, IRANGE(2) = 629, and Il = 2. Note that if the comma had been omit-
ted, as in

FACTOR XK /RANGE=21 629 /PDCHEK

only 21 would be loaded into IRANGE(1) and N = 1. Item 629 is here considered to be “disasso-
ciated” from the qualifier RANGE.
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§7.3 OBSOLETE ENTRY POINTS: CLOADz

Earlier versions of CLIP provided the three list-loading entry points CLOADz, where z is C, F or
I. CLOADF handles both single-and double-precision floating-point lists. Loading may start at a
specified item number, or be defaulted to the load-pointer.

Calling Sequence

[ CALL CLOADz (I, M, K, A, N)

Input Arguments

I If I > 0, index of itemn at which load is to start.
If I = 0, assume that I = ILOAD+1 = INEXT.

M Same meaning as for CLVALz.

K For CLOADC, number of characters per item stored in each entry of A.
For CLOADF, set K = 1 if receiving array is double precision, else K= 0.
Ignored for CLOADI

Output Arguments

A Array that will receive the itemn values in the first N locations. The data type
of A should correlate with the last entry-point name letter as follows:

r == C, if A is character.
z = F, if A is single- or double-precision floating point.

r = I,if A is integer.

H Number of values loaded into A. May be zero.
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Section 8: LOADING KEYWORDS AND QUALIFIERS

§8.1 GENERAL DESCRIPTION

Two entry points, CLOADK and CLOADQ, are provided for “collecting” keywords and qual-
ifiers, respectively, in one pass and storing them in a specified character array. These
entry points differ from ICLSEK and ICLSEQ in that no search for specific strings is made.
Thus, use of CLOADK and CLOADQ is appropriate when the Processor is to perform its own
matching.

In the present version of the document, four more functions have been added: CCLKEY,
CCLQUL, ICLNKY and ICLNQL. These entry points are intended to work in conjunction with
ICLKYP and ICLQLP, which are documented in §5.
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§8.2 LOAD KEYWORDS LIST: CLOADK

Subroutine CLOADK scans the Decoded Item Table for keywords, starting at the “next item
to load” position. All keywords found and their indices are stored in a character array
specified in the argument list. The keyword indices (in the Decoded ltem Table) may be
optionally returned in an integer array provided for this effect.

Calling Sequence

CALL  CLOADK (OPTS, M, A, L, N)

Input Arguments

OPTS A character array containing uppercase option letters. Presently the
only option implemented is

L: Return indices of matched keywords in argument L. If L does not
appear, the fourth argument is a dumimy argument.

M The absolute value of M is the maximum number of values that may be
loaded into A. (This is usually the array dimension.)

If M is negative, array A is initialized with blanks on entry to the sub-
routine,

Output Arguments

A Array that will receive the keywords found by CLOADK.

L If option letter L appears in OPTS, integer array that will receive the
indices of the keywords found by CLOADK. In other words, L(t) receives
the Decoded Item Table index of A(¢) fort = 1, ... N.

If the option is not exercised, this is a duminy argument and an integer
zero may be inserted in the calling sequence.

N Number of values loaded into A. May be zero.

Procedure

On entry, initialize array A if M is negative. Clear N. Scan for keywords starting at INEXT.
If a keyword is found, store it in array A and increment N; if option letter L is specified,
store the index into array L.

REMARK 8.1

CLOADK does not resolve the ambiguity noted in §5.1 unless the first item of a character list is
always preceded by an equals sign.
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EXAMPLE 8.1

Assume that the last loaded command is
SOLVE FOR X=(1/3) /RANGE= 25,868 /SCALE
and that ILOAD = 0. To load all keywords into character array KEYS*4(8), do

CALL CLOADK (* ', 8, KEYS, 0, N)

On return from CLOADK, KEYS(1) = 'SOLV’, KEYS(2) = 'FOR’, KEYS(3) = 'X',and N = 3. The
remaining entries of KEYS are not altered. Note that the first keyword is truncated to four char-
acters because that is the passed character length of KEYS.
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§8.3 LOAD QUALIFIER LIST: CLVALQ

Subroutine CLOADQ scans the Decoded Item Table for qualifiers, starting at the “next item

to load” position.

All qualifiers found are stored in a character array specified in the

argument list. The qualifier indices may be optionally requested.

Calling Sequence

Input Arguments

OPTS

CALL  CLOADQ (OPTS, M, A, L, N)

A character array containing uppercase option letters. Presently the
only option implemented is

L: Return indices of matched keywords in argument L. If L does not
appear, the fourth argument is a dummy argument.

The absolute value of M is the maximum number of values that may be
loaded into A. (This is usually the array dimension.)

If M is negative, array A is initialized with blanks on entry to the sub-
routine.

Output Arguments

A
L

N

Procedure

Array that will receive the keywords found by CLOADQ.

I option letter L appears in OPTS, integer array that will receive the

indices of the qualifiers found by CLOADK. In other words, L(t) receives
the Decoded Item Table index of A(z) for ¢+ = 1, ... N. If the option
is not exercised, this is a dummy argument and an integer zero may be
inserted in the calling sequence.

Number of values loaded into A. May be zero.

On entry, initialize array A if M is negative. Clear . Scan for qualifiers starting at INEXT. If
a qualifier is found, store it in array A and incremnent N; if option letter L has been specified,
store the index in array L. '

EXAMPLE 8.2

Assume that the last loaded command is

SOLVE FOR X=(1/3) /RANIGE= 25,86 /SCALE

and that ILOAD = 0. To load all qualifiers into character array QUALS*6(4), do

CALL CLOADQ (' ', 4, QUALS, 0, N)

On return from CLOADG, QUALS(1) = 'RANGE’, QUALS(2) = 'SCALE’,and N = 2.
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§8.4 GET KEYWORD GIVEN ITS POSITION: CCLKEY

Character function CCLKEY returns the value of a keyword given the keyword position as
argument.

Calling Sequence

CHARACTER*(n) KEY, CCLKEY

KEY = CCLKEY (IK)

Input Arguments

IK The keyword position (do not confuse it with its item index).

Function Return

CCLKEY Left justified value of the IK** keyword if one exists, otherwise it is
blank. If the keyword length exceeds the passed length, the rightmost
characters will be truncated.

Procedure

The Decoded Item Table is scanned from the beginning while counting keywords. When
the count reaches IK, the keyword value is returned. Otherwise, a blank is returned.

EXAMPLE 8.3
Assume that the last loaded command is

SOLVE FOR X=(1/3) /RANGE= 25,86 /SCALE STORE

Then
CHARACTER*8 KEY, CCLKEY »

KEY = CCLKEY (4)

places 'STORE’ into KEY because STORE is the fourth keyword (the first three are SOLVE, FOR, and
X).
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§8.5 GET QUALIFIER GIVEN ITS POSITION: CCLQUL

Character function CCLQUL returns the value of a qualifier given the qualifier position as
argument.

Calling Sequence

CHARACTER*(n) KEY, CCLQUL

KEY = CCLQUL (IQ)

Input Arguments

1Q The qualifier position {do not confuse it with its item index).

Funetion Return

CCLQUL Left justified value of the IQ* qualifier if one exists, otherwise it is
blank. If the qualifier length exceeds the passed length, the rightmost
characters will be truncated.

Procedure

The Decoded Item Table is scanned from the beginning while counting qualifiers. When
the count reaches IQ, the qualifier value is returned. Otherwise, a blank is returned.

EXAMPLE 8.4
Assume that the last loaded command is

SOLVE FOR X=(1/3) /RANGE= 25,86 /SCALE STORE

Then
CHARACTER+8 KEY, CCLQUL

KEY = CCLQUL (4)

places 'SCALE’ into KEY because SCALE is the second qualifier.
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§8.6 GET NUMBER OF KEYWORDS: ICLNKY

Integer function ICLNKY, which is called with an empty argument, returns the number of
keywords in the last command.

Calling Sequence

NK =  ICLHKY ()

Function Return

ICLNKY Number of keywords in the last command. May be zero.

Procedure

The Decoded Item Table is scanned from beginning to end while counting keywords. The
count is returned as function value.

EXAMPLE 8.5

Assume that the last loaded command is

SOLVE FOR X=(1/3) /RANGE= 25,86 /SCALE STORE

Then ICLNKY() returns 4, which is the number of keywords (SOLVE, FOR, X and STORE).
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§8.7 GET NUMBER OF QUALIFIERS: ICLNQL

Integer function ICLNQL, which is called with an empty argument, returns the number of
qualifiers in the last command.

Calling Sequence

NK = ICLNQL ()

Function Return

ICLNQL Number of qualifiers in the last command. May be zero.

Procedure

The Decoded Item Table is scanned from beginning to end while counting qualifiers. The
count is returned as function value.

EXAMPLE 8.6

Assume that the last loaded command is

SOLVE FOR X=(1/3) /RANIGE= 25,868 /SCALE STORE

Then ICLMQL() returns 2, which is the number of qualifiers (RANGE and SCALE).
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Section 9: RETRIEVING ITEM INFORMATION

§9.1 GENERAL DESCRIPTION

This Section describes some function eniry points by which miscellaneous information
about items in the Decoded Item Table can be directly retrieved. For example, prefix,
separator, item type code, and total number of items.

From a Processor developer’s standpoint, the most useful entry point is possibly
ICLTYP, which returns item data type codes.

REMARK 9.1

These entry points are useful for detailed processing of commands that do not quite fit the standard
CLAMP format of Section 3.
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§9.2 RETRIEVE ITEM PREFIX: CCLPRE

Entry CCLPRE, referenced as a CHARACTER+1 function, returns the prefix character associ-
ated with an item identified by its index in the Decoded Item Table.

Calling Sequence

CHARACTER*1  CH, CCLPRE

CH = CCLPRE (I)

Input Argument

I If I > 0, item number.

If zero, INEXT is assumed.
Funection Return
- CCLPRE Item prefix (see §4.1). If argument is out of bounds, a blank is returned.

Procedure

Set CCLPRE to blank. Check whether argument is in bounds; if so fetch prefix character
from Decoded ltem Table and return.

REMARK 9.2

The only prefix the Processor is normally interested in is the qualifier prefix, which is the slash
by default. The qualifier prefix may be retrieved by calling CLCHAR as described in §11.1.

EXAMPLE 9.1

Assume that the last command is

OPEN /ROLD 3, [REAGAN)BUDGET.DEF /LIMIT=INFINITE

Then CCLPRE(2) returns /, which is the prefix of qualifier ROLD.
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§9.3 RETRIEVE ITEM SEPARATOR: CCLSEP

Entry point CCLSEP, which is referenced as a CHARACTER*1 function, returns the separator
associated with an item identified by its index in the Decoded Item Table.

Calling Sequence

CHARACTER*1  CH, CCLSEP

CH = CCLSEP (I)

Input Argument

I If I > 0, item number.
If I = 0, INEXT is assumed.

Function Return

CCLSEP Item separator (cf. §4.1). If the argument is out of bounds, a blank is
returned.

Procedure

Set CCLSEP to blank. Check whether argument is in hounds; if so fetch prefix character
from Decoded Item Table and return.

REMARK 9.3

For command processing the most interesting nonblank separators are the equals sign, which
separates a keyword or qualifier from assigned values, and the cornma, which connects items that
pertain to an item list.

EXAMPLE 9.2
Assume that the last command is

OPEN /ROLD 3, [REAGANIBUDGFET.LIB /LIMIT=1600000

Then CCLSEP(3) returns a comma, which follows integer 3, and CCLSEP(5) returns an equals sign,
which follows qualifier LIMIT.
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§9.4 RETRIEVE LIST LENGTH: ICLIST

Integer function ICLIST returns the length of a item list that starts at a specified index.

Calling Sequence

LL = ICLIST (I)

Input Argument

I If I > 0, item number.

If I = 0, INEXT is assumned.

Function Return

ICLIST List length. If I is in range, the length will always be one or greater
(because a isolated item is an one-item list). If I is out of range, ICLIST
returns zero.
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§9.5 RETRIEVE NUMBER OF ITEMS: ICLNIT

Integer function ICLNIT, which is called with an empty argument, returns the total number
of items in the Decoded Item Table.

Calling Sequence

ITEMS = ICLNIT ()

Function Return

ICLNIT The total number of items in the Decoded Item Table.

EXAMPLE 9.3

Write a two-line Processor code block that prints the data type codes of all items in the Decoded
Item Table. Here it is:

DO 2000 I = 1,ICLNIT()
2000 PRINT *, ‘'Data type of item number’,i,’ is ',ICLTYP(I)

Function ICLTYP is described in §9.7.
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§9.6 RETRIEVE LOAD POINTER: ICLOAD

Integer function ICLOAD, which is called with an empty argument, returns the current value
of the load pointer ILOAD.

Calling Sequence

ILOAD = 1ICLOAD ()

Function Return

ICLOAD The current value of the load pointer.

EXAMPLE 9.4
A message call usually resets ILOAD. Assuming that the message contains only directives, write a
code block that restores ILOAD.

ISAVE = ICLOAD ( )
CALL CLPUT ( ... )
CALL CLSLOP (ISAVE)

Subroutine CLSLOP is described in §10.3.
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§9.7 RETRIEVE ITEM TYPE: ICLTYP

Integer function ICLTYP returns the data type code of an item identified by its index in
the Decoded Item Table. (This is the actual code stored in the Table.)

Calling Sequence

ITYPE = ICLTYP (KEY)

Input Argument

I If I > 0, item index.
If I = 0, INEXT is assumed.

Function Return

ICLTYP Returns the item type code:
ICLTYP = n > O if item is n-character string.
ICLTYP = O if item is integer.
ICLTYP = -1 if item is floating-point (which is always stored in double-

precision form).
If the argument is out of bounds, ICLTYP returns zero.

Procedure

Initialize ICLTYP to zero. An argument-in-bounds check is made and if verified the stored
type code is fetched into ICLTYP.

EXAMPLE 9.5
Assume that the last command is

COORDINATES IIODE 1 = 2.5, (5/3), -6.4

Then the references ICLTYP(1). ICLTYP(3) aned ICLTYP(4) return 11, 0 and -1, respectively.
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Section 10: MISCELLANEOUS OPERATIONS

§10.1 GENERAL DESCRIPTION

This Section describes entry points for command-related operations that do not fit the
framework of the previous Sections.
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§10.2 GET ERROR INFORMATION: CLEINF

Entry point CLEINF returns error information on a specific error condition. CLIP detected
errors (and in general all NICE errors) are characterized by a 4-character key, an associated
integer code, and an explanatory message. Given the integer code, CLEINF may be used
to retrieve the message, or given the error key, CLEINF may be used to get the error code.
The type of operation is defined by a selector argument.

Calling Sequence

Three possible calling sequences are:

CALL CLEINF ('C’, ICODE, EKEY, 0)
CALL CLEINF ('M', ICODE, MSG, KCH)
CALL CLEINF ('T', ICODE, EKEY, 0)

The first form is used to get ICODE given EKEY; the last argument is a dumnmy one. The
second form is used to retrieve MSG(1:KCH) given ICODE. The third form, which returns

EKEY given ICODE, is used primarily in code testing.

Input Arguments
IGODE Error code. An input argument if the first argument is M or T.

EKEY Four-letter error key. An input argument if the first argument is C.

Output Arguments

ICODE Output argument if first argument is C.
EKEY Output argument if first argument is T.
MSG Error message. Output argument if first argument is M.
KCH Number of characters returned in MSG. Output argument if first argu-
ment is M.
Procedure

CLEINF simply calls NEKINF, which handles error information retrieval for the entire NICE
system and resides on the NICE utilities file. Users interested in the inner details should

study the source code of NEKINF.

REMARK 10.1
This entry point is primarily intended for those Processor developers that intend to do their own
error handling.
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§10.3 GET ERROR COUNTS: CLERRI1

Entry point CLERR1 returns error count information.

Calling Sequence

CALL CLERR1 (KFERR, KWERR)

Output Arguments

KFERR Count of fatal errors detected by CLIP since Processor execution start.
KWERR Count of warning errors detected by CLIP since Processor execution
start.
Procedure

Simple access to an internal common block to pick up the value of the counters.
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§10.4 GET LAST IMAGE: CLGLIM

Entry point CLGLIM returns to the calling program the last command image loaded by
CLREAD. This is similar to what CLGET returns as third argument, but is intended for
programs that make use of CLREAD to get parsed commands. Its main application is the
processing of error conditions in programs that absorb voluminous input data.

Calling Sequence

CALL CLGLIM (IMAGE)

Output Argument

IMAGE A character string into which CLGLIM places the image of the last ordi-
nary command processed by CLREAD.

Procedure

Access dataline collector and retrieve portion marked “to be discarded” (the processed
command image is not immediately erased, as §4.2 would make you believe). Store this
text into argument IMAGE and return.

REMARK 10.2

The main use of CLGLIM is for displaying input images after an error has been detected by a
Processor that uses CLREAD to read commands.

EXAMPLE 10.1

The last command read by a material Processor is
ELASTIC MODULUS = -3.7E8

The Processor logic complains about a negative elastic modulus. After printing an appropriate
error message, it branches to a subroutine GUILTY that displays the image that caused the error:

SUBROUTINE GUILTY

CHARACTER*80 IMAGE

CALL CLGLIM (IMAGE)

PRINT '(A/1X,A)’, ' Data line in error:',image(1:LENETB(image))
RETUR)!

END

Function LENETB is described in Appendix D. For this use an 80-character image is enough, as it
doesn’t matter too much if truncation occurs.
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§10.5 SHOW LAST IMAGE: CLSLIM

Subroutine CLSLIM writes the last command image to the bulk print file if the dataline
echo is off; otherwise, nothing happens.

Calling Sequence

| CALL CLSLIM |

Procedure

If the dataline echo mode is on, exit. Otherwise proceed as for CLGLIM (§10.1) but instead
of storing the last conmand image to an argument, write it to the bulk print file.
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§10.6 SET LOAD POINTER: CLSLOP

Subroutine CLSLOP sets the load pointer ILOAD to the value specified in the argument.

Calling Sequence

CALL CLSLoOP (I)

Input Argument

I The value to be assigned to the load pointer. If less than zero, I = O is
assumed. If greater than ITEMS, I = ITEMS is assumed.
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Section 11: RETRIEVING RUN INFORMATION

§11.1 GENERAL DESCRIPTION

This section collects entry points that provide miscellaneous information about the run
state and certain run parameters maintained by CLIP. The information is not related to
a specific command or command items.
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§11.2 GET CONTROL CHARACTER: CLCHAR

Entry point CLCHAR, which is referenced as a character function, returns the character used
by CLIP for certain control functions. The type of function is identified by the argument.

Calling Sequence

CALL CLCHAR (KEY, CH)

Input Argument

KEY One of the keywords specified in Table 11.1. Only the first four charac-
ters are considered significant.

Output Argument

CH Control character associated with the function specified in KEY, The
default value shown in Table 11.1 is returned unless the value has been
changed through a SET CHARACTER directive.

If KEY is not matched, a blank character is returned.
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Table 11.1 Information Returned by CLCHAR

Argument key Information Returned Default

ARGBEG Left formal-argument delimiter {
in procedure body

ARGEND Right formal-argument delimiter ]
in procedure body

DIRPRE Directive prefix *
ENDSRC End-of-command-source sentinel @
EOL1 End of line terminator #1

(also comment sentinel #1)

EOL2 End of line terminator #2 $
(also comment sentinel #2)

MACBEG Left macrosymbol delimiter <
MACEND Right macrosymbol delimiter >
MACPAR Macro definition parameter marker %
QUAPRE Qualifier prefix /
REPEAT ltem repetitor | Q@
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§11.3 GET RUN STATE DATA: ICLRUN

You may interrogate CLIP on run state or run parameters by calling the integer function
ICLRUN. The type of information you seek is specified in the argument.

Calling Sequence

INF = ICLRUN (KEY)

Input Argument
KEY One of the information retrieval keys listed in Table 11.2.
Function Return

ICLRUN Returns the information indicated in Table 11.2.

If the argument key is not matched, ICLRUN returns zero.
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Table 11.2 Information Returned by ICLRUN

Argument key

RUN

LIW

LPW

Information Returned

Batch/interactive indicator. In general,
0 : run is batch mode.
>0 : run is interactive.

Under VAX/VMS, further details are available:
1: command procedure executed interactively
2: conversational (terminal input).

10,11,12: as above, but spawned process.

Line input width in characters (normally 80
characters, but may be expanded up to 132)

Line print width in characters (normally 80 in
interactive mode and 132 in batch mode)
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§11.4 GET LOGICAL UNIT DATA: ICLUNT

Integer function ICLUNT returns the logical unit number of certain card-image files used
by CLIP.

Calling Sequence

LU = ICLUNT (KEY)

Input Argument

KEY One of the information retrieval keys listed in Table 11.3.

Function Return

ICLUNT Returns the information indicated in Table 11.3.

If the argument key is not matched, ICLUNT returns zero.
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Argument key

CIN

ERR

LOG

PRT

Table 11.3 Information Returned by ICLUNT

Information Returned Usual Value

Logical unit number of the command source 0
file from which CLIP is reading data lines.
If zero, the default input device is assumed.

Logical unit number of the error print file if 0
greater than zero. If zero, error messages go
to the default print file (the terminal in

interactive mode).

Logical unit number of the command log file if one 0
is currently open, otherwise zero.

Logical unit number of the bulk print file. 6
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Section 12: RETRIEVING MACROSYMBOL VALUES

§12.1 GENERAL DESCRIPTION

The processor may retrieve the value of a macrosymbol or of a general expression that
contains macrosymbols through function entry points of the form zCLMAC. The first letter
identifies the data type of the function return: C for character, D for double-precision, F
for single-precision floating-point, I for integer, and N for nearest integer. The function
argument is a character string that carries the macrosymbol or macro expression.

REMARK 12.1
These entry points are for very advanced developers, who are expected to be thoroughly familiar
with the macrosymbol facilities of CLIP as described in Volume II.
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§12.2 GET MACRO VALUE: z:CLMAC

There are five macro-value-retrieval entry points of the form zCLMAC, which are referenced
as functions. The first letter z is C, D, F, I or N and designates the data type of the
returning value. There is a single argument: a character string that has the macrosymbol

or macroexpression to be evaluated.

Calling Seguence

V = zCLMAC (TEXT)

Input Argument

TEXT A character string that has the name of the macrosymbol or the text of
the macroexpression to be evaluated.

For example, FCLMAC('pi’') returns <pi>= 7 = 3.14159165... in
FCLMAC, and DCLMAC (' exp(<pi>"’) returns <exp(<pi>)>= e” in DCLMAC.

As the examples show, the outer pair of < > delimiters may be omitted.

The length of TEXT should not exceed 480 characters, which is fairly
generous.

Function Return
rCLMAC The value of the argument expression, returned in the data type specified
by the first letter of the function name:
r = C, character string (passed length assumed).
r = D, double-precision floating-point.
r = F, single-precision floating-point.

r = I or N, integer.

Description

On entry, surround argument text with a < > pair, prefix the whole by the evaluate-
directive key *VAL and submit to self as a one-line message. The expression that follows
*VAL is processed by the macrosymbol facility. Access the result and return as function.

REMARK 12.2
If the result of the argument evaluation is a character string, DCLMAC, FCLMAC, ICLMAC and NCLMAC

return zero.

REMARK 12.3
If the result of the argument evaluation is numeric, CCLMAC returns blank.
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EXAMPLE 12.1

CCLMAC ('ifdef (<exp>;true;false’) returns TRUE

FCLMAC (’2°.5%<exp(-2)>") returns  V2/e?

ICLMAC (’'max(12;<pi>*<pi>)"’) returns 12
12-4
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Section 13: WORKPOOL MANAGER INTERFACE

§13.1 GENERAL DESCRIPTION

The NICE system now contains a local data manager called the Workpool Manager, or
WM. CLIP communicates with WM through a directive/macrosymbol interface as docu-
mented in §9 of Volume II. The Processor may communicate with WM through the set of
entry points documented here. Bypassing the directive interface cuts down the overhead
involved in command item processing.

As of this writing the WM entry points are experimental and subject to frequent
change. So a formal description will have to wait for the next cycle of this document.
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Appendix A: A $300,000 CALCULATOR

§A.1 SIMULATING AN RPN CALCULATOR

To illustrate the simplest formn of commands, we are going to build a “virtual calculator”
on the VAX. More specifically, a “toy processor” that simulates an RPN (Reverse Polish
Notation) calculator exemplified by the popular Ilewlett-Packard (11P) models.

Recall that RPN calculators are stack machines. We will assume a 4-register opera-
tional stack:

(top)

(bottom)

These registers are programmed to hold signed single-precision floating-point numbers.
We shall use parentheses to denote the value stored in a stack registers; thus (X) means
the contents of register X. To represent such a stack in a FORTRAN program, a labelled
common block will do:

common /STACK/ x, y, z, t
real x, y, z, ¢t

Deciding upon this representation at this early stage is not capricious. It responds to a
basic design principle:

Design the data first

Designing the stack for this toy processor takes perhaps ten seconds. For the example Pro-
cessor of Appendix B, data design takes a couple of hours. For a real-life NICE Processor
that has to communicate with other Processors, it may take several weeks. Whatever it
takes, it’s time well spent.

The Basic Commands

We shall assume that each calculator command can have only one item. Plainly the
ultimate in command language simplicity!

The item can be either a number (written as either integer or floating-point number,
it doesn’t matter) or one of the following keywords:

ON

ENTER
ADD
SUBTRACT
PS

OFF
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The underlying idea is that each one word command simulates a keystroke on a hand-held
calculator.

The keyword roots will be ON, E, A, S, P and OF, respectively, which uniquely identify
the commands. (Of course, should more commands be added these roots may have to be
altered; for example, if SQRT is added then root S becomes ambiguous and we must expand
the root of SUB to SU.)

Operations

Typing a numeric value causes the stack to be raised (as discussed below for operation
ENTER) and the value to be stored, as a floating point constant, in register X. This is true
even if an integer is typed; for example typing 26 results in (X) « 26.0.

The meaning of keyword commands is as follows.

oN “Turns on” the calculator. All stack registers are initialized to zero. If
typed during the run, it has the effect of a calculator’s “CLEAR” key.

ENTER Copies (X) into register Y and raises the stack (HP terminology). More
precisely, (Z) — T, (Y) — Z, (X) — Y, and (T) is lost.

ADD Adds (X) to (Y), places result in (X) and lowers the stack; that is, (Z)
— Y, (Y) — X, while T is unchanged. The new value of X is printed.

SUB Subtracts (X) from (Y), places result in (X) and lowers the stack; that
is, (Z) — Y, (Y) — X, while T is unchanged. The new value of X is
printed.

PS Prints the complete stack, i.e. (X), (Y), (Z), and (T).

OFF “Turns off” the calculator by terminating the run of the Processor.

Next we describe how these operations can be implemented as simple FORTRAN subrou-
tines.

Turning On

The Oli operation consists of a simple initialization:

subroutine ON
common /STACK/ x, vy, z, t
real x, y, z, ¢

X = 0.0
y = 0.0
z = 0.0
t = 0.0
return

end
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Storing a Number

The code for storing a new numeric value xnew in register X is

subroutine STOREX (xnew)
common /STACK/ x, y, z, t
real :z, y, z, t

call ENTER
X = Xnew
return

end

where the ENTER subroutine is described below.

The ENTER Operation

Implementation of the ENTER operation is equally straightforward:

subroutine ENTER
common /STACK/ x, y, z, t
real x, y, z, t

t = z
z = y
y = X
return
end

The ADD and SUBTRACT Operation

The.implementation of these two operations is quite similar:

subroutine ADD

common /STACK/ x, y., z., t
real x, y, z, t

X = + X

y:
z=
print *, ' X:', x
return

end

ot N

subroutine SUB

common /STACK/ x, y, z, t
real x, y, z, ¢

X = y - X



y = z
z = t
print x,
return
end

§A.1 SIMULATING AN RPN CALCULATOR

(4]
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Printing the Stack

Very simple with a list-oriented print statement:

subroutine PS

common /STACK/ x, y., z. t
real x, y, z, t

print *, 'Stack:’, x,y.z,t
return

end

Turning Off

This is just a run stop:

subroutine OFF
stop 'That is all, folks’
end
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§A.2 THE EXECUTIVE

In true bottom-up program-building style, we are ready for the piéce de resistance: the
main program that drives all those small subroutines. Like all interactive programs fitting
the NICE Processor model, the driver is essentially an infinite loop that can be expressed
informally as

Program HPVAX
Begin
Do forever {
Get next command
Process command }

End

This may be readily implemented as a FORTRAN main program:

program HPVAX
% Simulating a $50 RPN calculator on a $300,000 minicomputer

character*4 key, CCLVAL
integer ICLVAL
real x, FCLVAL
1000 continue
call CLREAD (' Command> ',
$ ' ON, ENTER, ADD, SUB, PS, OFF')
if (ICLTYP(1) .le. 0) then
x = FCLVAL(1)
call STOREX (x)
else
key = CCLVAL(1)
call DOKEY (key)
end if
go to 1000
end

Program HPVAX asks for the next command by calling CLREAD (§2.7). This call specifies

Command>

as the prompt message you will see on the terminal. The “splash” line, which will appear
on the terminal if the “verbose” echo mode is turned on, is simply a remainder of the
available commands.

On return from CLREAD, the program checks for the type code of the first (and only)
command item through ICLTYP (§10.3). If the item is numeric, its floating-point value
is retrieved through function FCLVAL (§6.3), and STOREX is called to put it in register X.
Otherwise the command is a keyword, which is retrieved via CCLVAL (§6.1) and placed into
character string variable key; subroutine DOKEY is called to interpret the commmand.

AT
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Subroutine DOKEY is essentially a six-way “case” statement:

subroutine DOKEY (key)

characterx(*) key

logical CMATCH

if (CMATCH (key, 'A°DD’)) then
call ADD

else if (CMATCH (key,’'E"NTER’)) then
call ENTER

else if (CMATCH (key,'OF°F')) then

call OFF

else if (CMATCH (key,’'ON’)) then
call Ol

else if (CMATCH (key,'P"S')) then
call PS

else if (CMATCH (key,'S"UB’)) then
call SUB

else
print %, '#%x Illegal or ambiguous keyword: ', key

end if

return

end

The logical function CMATCH compares two keywords following the “root + extension” rules
stated in §5.1. The calling sequence is described in Appendix D.

Note that the IF-THEN-ELSE construction tests commands alphabetically. There is one
motivation behind this: if you later come back to DOKEY to insert additional commands
(and you will), having sorted keywords greatly simplifies checking whether their roots
ought to be expanded to avoid ambiguities as discussed in §5.1.

The implementation of the six-command calculator is complete.
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§A.3 RUNNING HPVAX ON THE VAX

If you have never run a CLIP-supported interactive program before, then HPVAX is not a
bad place to start. The internal logic is so straightforward that there is little chance that
the workings of the calculator will mask the goings-on of the interactive process.

The following material assumes that the work wsll be per-
formed on a VAX 11/7xx minicomputer running under

VAX/VMS.

Preparing an Executable Image
If you do not have access to an executable image of HPVAX, you will have to make one by
yourself. Here are the basic steps explained in cookbook fashion.

Since HPVAX is so tiny, it is convenient to have all of its code in a single source file,
say HPVAX.FOR. Upon compiling it you have an object file called HPVAX.0BJ.

Next you must link to the NICE object library. On several VAX systems at LMSC
and LaRC/CSM, this library resides on the file

NICE$OLB:NICE.OLB
where NICE$OLB is a system-wide logical name, so you can create an executable image by
saying
LINK HPVAX, NICE$OLB:NICE/LIB
On some systems there is a “shareable image” version of the NICE library, which is accessed
by saying
LINK HPVAX, HICE$OLB:SHARENICE/LIB

If SHARENICE is available, by all means use it, since it saves both link time and executable-

image size (the latter drops from over 400 disk blocks — 1 disk block = 512 bytes — to
less than 10).

Whatever the library used, you should end up with an executable image file called
HPVAX .EXE. To run this image you say, reasonably enough,

RUN HPVAX

and now the fun begins.
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Typing Commands

HPVAX’s prompt message will show up on the screen as

Command>

and the cursor stays “frozen” after the angle bracket (>). It is waiting for you! You may
begin by responding ON followed by a carriage-return, and the prompt reappears:

Command> ON
Command>

Next type PS followed by carriage-return. The program will then print the contents of the
stack, which should be four zeros, and then come back with the usual prompt:

Command> PS
Stack: 0.0000E+00 O.0000E+0Q0 0.0000E+00 0O.0000E+00

Command>

Next you should try entering numbers. Type 1, then 2, then 3, then 4, following each
number with a carriage-return. Then type PS and verify that the four numbers are in the
stack.

Command> 1

Command> 2

Command> 3

Command> 4

Command> PS
Stack: 4 .0000E+00 3.0000E+00 2.0000E+00 1.0000E+00

Command>

Next try some ADD and SUBTRACT commands and verify that HPVAX works as an RPN
calculator should.

After you acquire some proficiency, try entering multiple commands per line. CLIP
will let you do this if you separate commands with semicolons, but do not forget to put
a blank before each semicolon (a blank after a semicolon is not necessary but it doesn’t

hurt). For example:

Command> O ; 1 ; 2 ; 3 : A ; A

and you should see the result X = 3+2+1 = 6.
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Suggested Run Exercises

EXERCISE A.1

Command Formatting. Try entering an illegal command, e.g., KILL. What happens? Enter com-
mands in lowercase and uppercase forins. Does it matter?

EXERCISE A.2

Composiie Numbers. Enter (1/3) and print the stack. Did you get what you expected, viz. the
fraction one third? Then try entering (1-(1/3)), (2°.5), ((1/9)*(1/9)), printing the stack after
each entry. Comment on what’s going on. Did you realize that you have an algebraic calculator
(within CLIP) embedded in a stack calculator (HPVAX)?

EXERCISE A.3

Built-in Macrosysmbols. Enter <pi> and print the stack. Do you recognize that number? Then try
entering <exp(1)>, <sing(45)>~2>, <1og10(2)> and <atan2g(1;1)>, printing the stack after each
entry. Comment. (To see all available built-in macrosymbols, you may type *SHOW MACROS/B/V,
but only after you understand directives.)

EXERCISE A4

Directives. Assuming that the source file HPVAX .FOR is in the same directory as you are running
HPVAX .EXE from, say

Command> *type hpvax.for

What comes to your screen? By printing the stack before and after this peculiar command, you
may verify that nothing has happened to HPVAX. You have just entered a directive, which is a special
command for internal consumption by CLIP. You can tell it apart from an ordinary command
because its action verb is prefixed by an asterisk. Try *TYPE or *LIST on some other card-image
files.

EXERCISE A5

FEcho Control. After two or three *TYPEs, you should be an old hand at directives. Now enter *SET
ECHO = ON. Type some command; what do you see? Then *SET ECHO = BELL. Then *SET ECHO
= VERBOSE. For obvious reasons, these are called echo options. The ordinary (default) options
may be reset by entering *SET ECHO only.

EXERCISE A.6

More on Display Options. If you are working at a VT100 or VT100 compatible terminal, try *SET
ECHO/PROMPT = RV and *SET ECHO/SPLASH = RV followed by *SET ECHO = VERBOSE.
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Suggested Programming Exercises

EXERCISE A.7
Ezrtending the Calculator. Implement MULTIPLY, DIVIDE and SQUAREROOT operations.

EXERCISE A.8

Continuing the previous exercise: How do you take care of arithinetic errors such as division by
zero on DIVIDE or negative arguments to SQUARERDOT? Discuss alternatives.

EXERCISE A.9

Complez Arithmetic. Convert HPVAX to operate as a “complex calculator” by globally substituting
all real declarations by complex and replacing FCLVAL by XCLVAL. Now each “numerical entry”
involves entering a number pair. Do the two values have to be separated by a comma? And what
happens if you only enter one?

EXERCISE A.10

Messages. Implement a CLEAR command that does the same thing as ON, i.e., clears the stack.
But instead of calling subroutine Oll, CLEAR should call the following subroutine:

subroutine CLEAR
call CLPUTW ('ON')
return

end

which sends a message through the put-message-and-wait entry point CLPUTW. Test it by filling the
stack with numbers, entering C, then PS. (To see the message in action, turn the echo on before
typing CLEAR.)

EXERCISE A.11

More on Messages. Implement a BELL command that mails the directive *'*SET ECHO = BELL'
through the immediate-message entry point CLPUT. How can the user turn off the bell?

EXERCISE A.12

An Embryonic Database. Conceptually design SAVE and RESTORE commands to save the stack on
a permanent FORTRAN file, and to read it back. Do you think these operations are worth the
effort for this application?

EXERCISE A.13

A Matriz Calculator. Suppose that each of the “stack registers” becomes an (n x n) matrix, where
n is a modest number read when the calculator is turned on. Which commands would have to
be changed? How should numeric values be entered? Would “matrix edit” commands be useful?
Can you think of any uses for such a calculator when n = 2 or n = 37
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Appendix B: A DIRECT BOUNDARY ELEMENT PROCESSOR

§B.1 BACKGROUND

The case study presented in Appendix A deals with a “toy processor” purposely chosen to
illustrate the simplest possible input form: one-item commands. The whole Processor can
be written and tested in a couple of hours.

The example Processor presented in this Appendix is still quite simple as production
Processors go, but is no longer trivial. It requires about one week to put together. The Pro-
cessor solves » two-dimensional elastostatic problem by a directly-formulated* Boundary
Element Method (BEM), and is appropriately named DBEM2,

The “kernel” of the Processor is a BEM-program adapted from the book Boundary
Elements Methods in Solid Mechanics by S. L. Crouch and A. M. Starfield, reference B-1.
(See page B-53.) The program is called TWOBI and is presented in Appendix A of the
book; it is based on the boundary-integral theory covered in Section 6 therein.

The program is appropriate as an example of the use of interactive techniques because
the input data are fairly simple but the commands are now of multiple-item type and thus
serve to illustrate things like phrases, item lists, and defaults.

* The term direct formulation refers to the technique used in deriving the governing boundary-
integral equations. Direct methods are formulated from the start in terms of physical quan-
tities such as displacement and stress fluxes. On the other hand, indirect methods are
formulated in terms of source strength distributions, which have no direct physical meaning
and are eventually eliminated following spatial discretization.
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§B.2 THE BEM MODEL

The BEM model accepted by DBEM2 is a finite or infinite domain of elastic isotropic
material under a plane-strain condition. If finite, the domain is enclosed by a boundary
that consists of line segments as illustrated on the left of Figure 1.

Figure B.1 Two-dimensional domains that can be treated by DBEM2

If the domain is infinite, it is assumed to be the exterior of a cavity defined by a series of line
segments. Thus Figure 1 may also be viewed as defining an exterior problem. The sense
in which the boundary is traversed when the component segments are defined determines
whether the problem is interior or exterior, as illustrated in the Figure.

Boundary conditions of stress-traction or displacement.type may be prescribed on
each segment as explained in further detail later. The prescribed values are assumed to be
constant over each segment.

Each line segiment may be discretized into one or more boundary elements. All un-
known quantities (displacements or stresses) are assumed to be constant over each element.
The element unknowns are evaluated at the element midpoints. There are two unknowns
per element: a shear (tangential) value and a normal value; these being the conjugates of
the prescribed boundary values.

The boundary unknowns are determined by solving a linear, unsymimetric system of
algebraic equations. Once these unknowns are determined, stresses and displacements
at any “field point” located in the interior of the domain can be readily calculated by
Somigliana’s superposition formula.
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§B.3 THE DATA STRUCTURES

Following sound practice, we begin by designing the data structures first. The task is more
complicated for DBEM2 than for the toy program of Appendix A, although it’s still trivial
compared to the problem of designing a “global database” shared by many Processors.

The task is simplified by the following considerations:

1. The Processor presented here is isolated from others. There is no need to transact
business with a global database.

2. DBEM2 makes use of only one matrix, which is generally unsymmetric and full. There
being no need to make use of sparse storage formats, an ordinary FORTRAN array
suffice.

3. Everything is assumed to fit in core at one time. Not having to deal with auxiliary
storage avoids many complications.

As in Appendix A, all data that has to be shared among many parts of DBEM2 are
accommodated in labelled common blocks. But in the present Processor several blocks are
used to group data according to function. Furthermore, the blocks are declared in separated
files whose extension (on the VAX system) is INC. These files are inserted where they are
needed via INCLUDE statements. The use of INCLUDE enforces consistency (everything is
declared only once) and makes maintenance and modification much easier.

The Segment Data

We begin by setting up the data for boundary segments, which is placed in file SEGMENT . INC.
The maximum number of segments is parameterized to be MAXSEG, which is set to 100 in
the version listed below.

The DBEM?2 user will be allowed to define segments in any order and give them
arbitrary numbers from 1 through MAXSEG, so we need a “marker” array that tells which
segments have been defined. We also need a counter of how many boundary elements are
in each defined segment. Then there are the geomnetric arrays: the z and y coordinates of
the end points. Finally, there are the boundary condition arrays: one integer code (related
to that used by Crouch and Starfield (ref. B-1)) and two floating-point arrays of prescribed
shear and normal values. Here is a list of the file that groups this information:

* This is file SEGMENT.INC

common /SEGMENT_DATA/
$ segdef, numel, xbeg, ybeg, xend, yend, kode, bvs, bvn
integer MAXSEG

parameter (MAXSEG=20)

integer segdef (MAXSEG) ! Segment definition tag

integer numel(MAXSEG) ! lNumber of BE divisions of segment
real xbeg (MAXSEG) ! X-coord of starting segment point
real ybeg (MAXSEG) ! Y-coord of starting segment point
real xend (MAXSEG) ! X-coord of ending segment point
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real yend (MAXSEG) ! Y-coord of ending segment point
integer kode(MAXSEG) ! Segment BC code

real bve (MAXSEG) ! Prescribed shear value

real bvn(MAXSEG) ! Prescribed normal value

The style used in this INCLUDE file will be followed for all others. There is a COMMON
declaration that lists the shared variables. Then each variable is declared on a separate
line. The variable name is followed by an inline comment that provides a short description
of the function of each variable. This brief documentation should be entered at the time
you prepare or update the INCLUDE file.

The Material Data

Since we are dealing with a homogeneous elastic isotropic material and we ignore thermal
effects, the material is fully characterized by two properties: the elastic modulus £ and
the Poisson’s ratio . These two are collected in file MATERIAL.INC:

E
* This ie file MATERIAL.INC

common /MATERIAL/ em, pr
real em ! Elastic modulus
real pr ! Poisson’s ratio

The Symmetry Data

The program allows one or two lines parallel to the coordinate axes to be specified as axes of
symmetry. For example, z = 2.5 or y = —1.50, or both. Three pieces of data accommodate
this information: one symmetry tag (O=none, 1=symmetry about z = a, 2 = symmetry
about y = b, 3 = double symmetry), and the values of a and b as appropriate. The
necessary declarations are placed in file SYMMETRY . INC:

*
* This is file SYMMETRY.IIIC
*

common /SYMMETRY_DATA/
$ ksym, xsym, ysym
integer ksym

real Xsym, ysym

The Prestress Data

The program allows a constant initial-stress field to exist in the undeformed medium. This
prestress tensor field is defined by the three components o7, o;, and of,. If undefined,
these three values are assumed to be zero. File PRESTRESS.INC contains the appropriate

declarations:
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* This is file PRESTRESS.INC
common /PRESTRESS/ 8xx0O, syyO, sxyO
real 8xx0 | Prestress (initial field stress) sigma_xx
real syy0 ! Ibid., for sigma_yy
real sxy0 ! Ibid., for sigma_xy

Prestress data are especially important for analysis of unbounded domains, for which they
assume the role of conditions at infinity. For example, suppose that we want to analyze
the effect of a hole in an infinite region under uniform uniaxial stress, say &,,. Then we

0 _ = 0 _ 0 _Q; :
set 0., = 0z4,0,, =0, =01in the input data.

The Element Data

The most voluminous data are those pertaining to the boundary elements, since typically
there will be many elements per segment. The information is collected in file ELEMENT. INC,

which reads

* This is file ELEMENT.INC

common /ELEMENT_DATA/
$ numbe, xme, yme, hleng, sinbet, cosbet, kod, ¢, b, r, x
integer MAXELM, MAXEQS

parameter (MAXELM=100) ! Maximum no. of boundary elements
parameter (MAXEQS=2*MAXELM) ! Maximum no. of discrete equations
integer numbe ! Total number of boundary elements
real xme (MAXELM) ! X-coor of element midpoint

real yme (MAXELM) ! Y-coor of element midpoint

real hleng(MAXELM) ! Half length of element

real sinbet (MAXELM) ! Sine of (element,x) angle

real cosbet (MAXELM) ! Cosine ibid.

integer  kod(MAXELM) ! Elem BC code (copies seg code)
real b(MAXEQS) ! Prescribed boundary values

real ¢ (MAXEQS ,MAXEQS) ! Influence coefficient matrix
real r (MAXEQS) ! Forcing (RHS) vector

real x (MAXEQS) ! Solution vector

The elements arravs such as XME, YME. etc. are parameterized in terms of the maximum
number of elentents MAXELM.

This block also contains arrays used to set up and solve the BEM equation system,
namely C, R, B and X. These are parameterized in terms of the total number of equations
MAXEQS, which of course is twice MAXELM.
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The Field Location Data

The final block of data pertains to the location of field points at which stresses and dis-
placements are to be calculated once the boundary solution is obtained. The program
allows these locations to be specified as equally spaced points along straight lines defined
by the user. Up to MAXLIN (=100 in the version below) lines can be defined. The locations
are specified by giving the £ and y coordinates of the first and last points on the line,
and the number of intermediate points (>0) to be “collocated” between the first and last
points. An isolated point may be specified by making the first and last point coincide.

All of this information is gathered in file QOUTPUT.INC:

*
* This is file OUTPUT.INC
*

common /OUTPUT_DATA/

$ lindef, nintop, xfirst, yfirst, xlast, ylast

integer MAXLIN

parameter (MAXLIN=100)

integer 1lindef(MAXLIN) ! Line definition tags

integer nintop(MAXLIN) ! No. of intermediate points on line

real xfirst (MAXLIN) ! X-coor of first point on line
real yEfirst (MAXLIN) { Y-coor of first point on line
real xlast(MAXLIN) ! X-coor of last point on line
real ylast(MAXLIN) ! Y-coor of last point on line

This concludes the design of the important data structures. Next we pass to the design of
a command set to control logic of DBEM2.
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§B.4 THE COMMANDS

Having described the data, we now have to design an appropriate set of commands to
perforin operations on the data. The writer found it convenient to chose commands headed
by the following action verbs:

CLEAR
DEFINE
BUILD
GENERATE
SOLVE
PRINT
STOP

Why these particular commands? Partly from a preliminary study of the problem, and
partly from the wishles] to get several command formats so that the use of many of the
entry points described in the main body of this Volume would be illustrated.

It turns out that the last wish (of illustrating various command formats) makes the
command set a bit inconsistent, but that should not cause a great deal of concern. After

all, it’s only an example.

Another Processor developer faced with the same problem (even a simple problem like
this one) may in fact come up with a radically different set of command that accomplishes
virtually the same thing.

We next describe briefly what the commands do.

CLEAR

DEFINE

BUILD

GENERATE

SOLVE

PRINT

STOP

Initializes all Tables maintained by the Processor and sets some default
values.

Enters data that are used in the definition of the problem to be solved.
The DEFINE verb will be followed by another keyword that makes the
data more specific.

Indicates that the problem-definition phase is complete, and calls for
the generation of the discrete governing eqnations. This is carried out
in two phases identified by a keyword that follows BUILD.

Triggers the assembly of the influence coefficient matrix and force vector.
Triggers the solution for the unknown boundary variables.

Prints displacements and stresses at boundary points and at specified
field points.

Terminates execution of the processor.
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§B.5 STARTING AT THE TOP

We are going to build the Processor Executive “top down”. For this relatively small
Processor it probably doesn’t make much difference whether we do it top-down, bottom-
up or inside-out. But adhering to this approach makes life easier for bigger Processors.

Following the top-down approach we must do the main program first. Here it is:

*
* Computer Program for the Two-Dimensional Direct
* Boundary Element Method (DBEM2)
*
* Adapted from program TWOBI in the book Boundary Element Methods
* Methods in Solid Mechanics by S. L. Crouch and A. M., Starfield,
* G. Allen & Unwin, London, 1983, by C. A. Felippa to
* exemplify conversion to interactive operation via CLIP.
*
program DBEM2
*
implicit none
character*8  CCLVAL, verb
integer ICLTYP
S
1000 call CLREAD (’ DBEM2> ’,
$ ' CLEAR, DEFINE, BUILD, GENERATE, SOLVE, '//
$ "PRINT, STOP')

if (ICLTYP(1) .le. 0) then
print %, '*x* Commands must begin with keyword’

else
verb =  CCLVAL(1)
call DO_COMMAND (verb)
end if
go to 1000
end

Some differences with the main program of HPVAX are evident. A top-level command must
start with an action verb; it cannot start with a numeric item, hence the error check.
The prompt is now the name of the Processor: this is a convention followed in the NICE
system.

The observant reader will note substantial similarities with the main program for
Processor HPVAX presented in Appendix A. It is a fact that the top level of all Processors
looks very much the same, regardless of the complexity of what lies underneath. This is
not surprising if you note that all Processors fit the “do forever” model illustrated in §A.2.

The next level is DO_COMMAND, which is again a “case” statement that branches on the
action verb:
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* %

subrouti
implicit
characte

logical

key =

ne DO_COMMAND (verb)

none

r key*8, verb*(*)

CMATCH

verb

if (CMATCH (key, °B"UILD’))

call
else if
call
else if
call
else if
call
else if
call
else if
call
else if
call
else if
call
else
print
end if
return
end

BUILD

(CMATCH (key,
CLEAR

(CMATCH (key,
DEFINE
(CMATCH (key,
GENERATE
(CMATCH (key,
HELP

(CMATCH (key,
PRINT

(CMATCH (key,
SOLVE

(CMATCH (key,
STOP

%, "xix Jllegal or ambiguous verb:

"C"LEAR'))
"D°EFINE'))
"G ENERATE'))
"H7ELP'))
"P°RINT’))
"SO"LVE"))

'ST"0P'))

Top level command interpreter for DBEM2

then

then

then

then

then

then

then

then

, key

Note again that the tests are ordered so that keywords are alphabetically sorted. This
makes it easier to insert new keywords without forgetting to expand roots of existing ones.
For example, suppose you want to insert a PLOT command for your favorite graphic device;
inserting it just before the test for PRINT makes it easy to spot that the root for the latter

has to be expanded to PR.
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§B.6 STARTING AND STOPPING

The CLEAR subroutine is quite simple, as it only has to zero out the model definition tables:

b3

* Initialize tables, set default values

*
subroutine CLEAR

C
implicit none
include 'SEGMENT .inc’
include 'ELEMENT . inc¢’
include 'MATERIAL .inc’
include 'SYMMETRY .inc’
include 'PRESTRESS. inc’
include 'QUTPUT. inc’
integer i

do 1500 i = 1,MAXSEG
segdef (i) = 0

xbeg(i) = 0.0
xend(i) = 0.0
ybeg(i) = 0.0
yend(i) = 0.0
numel(i) = O

kode(i) = O

bve(i) = 0.0
bvn(i) = 0.0

1500 continue

do 2000 i = 1 ,MAXLIU
lindef(i) = O
2000 continue

numbe = O

*
kseym = O
em = 1.0
pr = 0.0
8xx0 = 0.0
syy0 = 0.0
sxy0 = 0.0
print *, ’'Tables initialized’
return
end

The function of the arrays is explained in §B.3.
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Equally simple is the STOP subroutine:

Terminate the run

subroutine STOP
stop 'Hope you enjoyed the ride’
end

B-12



§B.7 DEFINING THE

§B.7 DEFINING THE PROBLEM

PROBLEM

The DEFINE command introduces problem-definition data. It is convenient to break up
the definition into several types of data, which correspond closely to the data-structure

grouping discussed in §B.3.

DEFINE. The keywords are:

SEGMENTS

ELEMENTS

BOUNDARY _CONDITIONS

SYMMETRY _CONDITIONS

MATERIAL
PRESTRESS

FIELD

Each type is identified by a keyword that immediately follows

Specifies the straight-line segments that make up the boundary
of the problem to be solved.

Specifies inlo how many boundary elements each segment will
be divided.

Specifies the boundary conditions that apply to each boundary
segment.

Specifies the symmetry conditions, if any, that apply to the
problem to be solved.

Specifies constitutive properties of the material.
Specifies prestress data in the form of initial stress components.

Specifies the location of field points at which displacement and
stresses are to be evaluated and printed later.

Subroutine DEFINE, unlike CLEAR or STOP, branches as per the second keyword:

Interpret DEFINE command

subroutine DEFINE

implicit none

character key*8, CCLVAL*8
integer ICLTYP

logical CMATCH

it (ICLTYP(2) .le. O) then
print %, “*** No keyword after DEFINE’

return
end if

key =  CCLVAL(2)

if (CMATCH (key, 'B"0OUND')) then
call DEFINE_BOUNDARY_CONDITIONS

elge if (CMATCH (key, 'E"LEMENTS')) then
call DEFINE_ELEMENTS

else if (CMATCH (key, 'F"IELD')) then
call DEFINE_FIELD_LOCATIONS
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else if (CMATCH (key, 'M"ATERIAL')) then
call DEFINE_MATERIAL

else if (CMATCH (key, 'P"RESTRESS’)) then
call DEFINE_PRESTRESS

else if (CMATCH (key, 'SE"GMENTS')) then
call DEFINE_SEGMENTS

else if (CMATCH (key, 'SY"MMETRY')) then
call DEFINE_SYMMETRY_CONDITIONS

else
print *, ’#%% Jllegal or ambiguous keyword ', key,
$ * after DEFINE’
end if
return
end

The program begins checking whether a keyword actually follows DEFINE. If so it compares
them in the usual matter and calls appropriate input subroutines. These are described
next.

Defining Segments
The DEFINE SEGMENT command introduces a series of segment-definition commands which
are expected to have the form

SEGMENT = i BEGIN = z'* 3’9  END = z¢nd, yend

1 YN

where :c?eg,y?eg are the z,y coordinates of the starting point of the it* segment, and
zend, yf"d are the r,y coordinates of the ending point. The segment list is terminated by an
END command that takes the control back to the main program. In listing the coordinates,
the following boundary traversal convention must be observed: a closed contour is traversed
in the counterclockwise sense if the region of interest is outside the contour (a cavity
problem), and in the clockwise sense if the region of interest is inside the the contour (a
finite body problem).

For example, to define a 4-segment boundary that encloses a square region whose
corner points are (0,0), (4,0), (4,4) and (0,4), and which constitutes the region of
interest, you say

DEFINE SEGMENTS
SEG=1 BEGIN=0,0 END=0,4
SEG=2 BEGIN=0,4 ElND=4,4
SEG=3 BEGIlN=4,4 EliD=4,0
SEG=4 BEGIN=4,0 ElD=0,0
ElID

(Segments may be actually defined in any order; there is also no need to number them
sequentially.)
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The commands that enter the segment data, plus the END command, are call subor-
dinate commands, because they can appear if and only if the command DEFINE SEGMENT
has been entered. The DEFINE SEGMENT command, which introduces the subordinate com-
mands, is said to be the header command (it also goes by the names master command,
parent command, leader, etc.)

The processing of the segment-definition commands is carried out within subroutine
DEFINE_SEGMENTS:

%

*

Read segment-definition data
subroutine DEFINE_SEGMENTS

implicit none

include *SEGMENT . inc’

character*8 key, CCLVAL

integer iseg, n, ICLTYP, ICLVAL, ICLSEK
real xy(2)

logical CMATCH

1000 call CLREAD (' Segment data> ',

' Enter SEG=iseg BEG=xbeg,ybeg END=xend,yend&&'//
'Terminate with END’,

» ')

@ P P

if (ICLTYP(1) .le. 0) then
print #, ’'#i* Command must begin with SEG or END’
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"ND')) then
return
else if (CMATCH (key, 'S"EGMENT')) then
iseg =  ICLVAL(2)
if (iseg .le. O .or. iseg .gt. MAXSEG) then
print *, '+**x Segment number’', iseg, ' out of range’
go to 1000
end if
segdef (iseg) = 1
if (numel(iseg) .le. 0) numel(iseg) = 1
if (ICLSEK(3, 'B"EGIN') .ne. 0) then
call CLVALF (* ', 2, xy, n)
if (n .ge. 1) xbeg(iseg) = xy(1)
if (n .ge. 2) ybeg(iseg) = xy(2)

end if
if (ICLSEK(3, 'E°ND') .ne. 0) then
call CLVALF (' ', 2, xy, n)
if (n .ge. 1) xend(iseg) = xy(1)
if (n .ge. 2) yend(iseg) = xy(2)
end if
else

print *, °*#%+ Illegal keyword ', key,’' in segment data’
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end if
go to 1000
end

The structure of this subroutine is typical of those that handle subordinate commands. A
“do forever” construction is headed by a CLREAD call, and the loop is escaped only when an
END command is detected. Notice the different prompt and splash-line input arguments.

This subroutine provides an example of the use of the “search for keyword” function
ICLSEK described in §5.2. A keyword match is followed by a value pair retrieval through
the list-loading subroutine CLVALF described in §7.2.

Note the careful handling of the case in which less than two values appear after either
BEGIN or END. This facilitates table editing. For example, the command

S=3 B=45.2

resets XBEG(3) to 45.2; nothing else changes.

Several variations on the processing of the coordinate data are possible, and are sug-
gested in the exercise list that appears later in this Appendix.

Digression on Subordinate Cominands

Why have we used subordinate commands rather than making the user type the segment
in the DEFINE command itself? Contrast the above definition of the square region with
the following one:

DEFINE SEGMENT=1 BEGIN=0,0 END=4,0
DEFINE SEGMENT=2 BEGIN=4,0 END=4,4
DEFINE SEGMENT=3 BEGIN=4,4 END=0,4
DEFINE SEGMENT=4 BEGIN=0,4 END=0,0

This is not too different in terms of typing effort, so the decision for adopting a one-level
and a two-level structure in terms of number of keystrokes is marginal. But note that
going to a two-level scheme we have effectively separated the action of selecting what to
define, namely segments, from the actual definition by entering coordinate values. This is
a key aspect of object-oriented programming: first select, then operate. Let us make this a
command design principle:

Try to separate selection from operation

If you are entering commands from a keyboard perhaps the advantages are not immediately
apparent. But if you go to some form of interactive graphics input the advantages will be
evident when you try to “cover” the commands through message-sending techniques. The
user of such a graphic system will then see SEGMENTS in a “model definition” menu, and
by pointing to it he or she is transported to another screen or window in which the process
of entering the segments is actually carried out.
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Defining Elements

By default, each segment contains only one boundary element (see logic of DEFINE_SEGMENT).
To put more elements per segment you use the DEFINE ELEMENTS command. This intro-
duces subordinate commands of the form

SEGMENT = ¢ ELEMENTS = n

where n is the number of boundary elements in the i** segment. The data are terminated
by an END command. For the square region used as an example, let’s say we want 10 BEs
on segments 1 and 3, and 15 BEs on segments 2 and 4:

DEFINE ELEMENTS
SEG=1 EL=10 ; SEG=3 EL=10 ; SEG=2 EL=156 ; SEG=4 EL=16 ; END

which illustrates the fact that data may be entered in any order. The implementation
shown below actually allows a more general command form:

SEGMENTS = iy,...,ix ELEMENTS = ng,...,nk

so that segment ¢, gets n; elements, segment 73 gets nz, and so on. The example above
can be abbreviated to

DEFINE ELEMENTS
SEG=1:4 EL=10,15,10,15 ; END

For this simple Processor allowing a command like this is probably overkill. It is imple-
mented in that fashion only to illustrate the processing of variable length integer lists via
CLVALI:

*

Define number of (equally spaced) boundary elements per segment
subroutine DEFINE_ELEMENTS

implicit none
include *SEGMENT . inc’

character*{ key, CCLVAL

integer i, iseg, n, nseg
integer iseglist (MAXSEG), numelist(MAXSEG)
integer ICLTYP, ICLSEK
real FCLVAL
logical CMATCH
*
1000 call CLREAD (' Element data> ’,
$ ' Enter SEG = i1 ... ik EL = nel, ... nek&&'//
$ ‘Terminate with END')
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if (ICLTYP(1) .le. 0) then
print *, '#**% Command must begin with keyword'
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"ND')) then
return
else if (CMATCH (key, 'S°EG')) then
call CLVALI (' ', -MAXSEG, iseglist, nseg)

if (ICLSEK(O,’E"LEM') .eq. O) then
print *, ’"#** Keyword ELEMENTS is missing’

go to 1000
end if ‘
call CLVALI (’ ', -MAXSEG, numelist, n)
do 2500 i = 1,nseg

iseg = iseglist(i)

if (iseg .le. O .or. iseg .gt. MAXSEG) then
print #, '#***x Segment number’,iseg,’' out of range’
elge
numel(iseg) = max(numelist(i),1)
end if
2500 continue
else
print #, ’'#%x Illegal keyword ', key,’' in element data’
end if
go to 1000
end

If you can’t follow the code, don’t worry. It is more advanced than the typical input routine
in DBEM2, so you can study it later.

Digression; Simplifying Commands

Why didn’t we allow element data to be specified in the same commands that define the
segment geometry? For example, we might have allowed commands such as

SEG = 13 BEG = -1.50,3.53 END = 14.81,6.22 ELEM =5

The answer fits within another design principle:

Keep commands simple

Paraphrasing Einstein: A command should be as simple as possible, but no simpler. Or
Saint-Exupery: you know that you have the perfect command when you can’t remove any-
thing.

Simplicity is an admirable general principle, but for our case something more specific
applies:
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Don't miz persistent and volatile data i1n the same command

The terms “persistent” and “volatile” are used in a relative sense to denote degrees of
“changeability” of the data. For example, segment data are more persistent than element
data, since presumably you want to solve a problem whose geometry is dictated by external
requirements; typically by engineering considerations. On the other hand, the number of
elements per segment is a judgment decision: the program user attempts to get satisfac-
tory accuracy (more elements, more accuracy) with reasonable cost (more elements, more

computer time).

Frequently the number of elements is varied while keeping the segment data fixed;
this is called a convergence study. So there are good reasons to separate the commands

that define these two aspects.
Defining Boundary Conditions

Each segment may be given a different boundary condition (BC) that involves any of the
following stress/displacement combinations:

BC Code Prescribed boundary values

0 Shear stress ¢, and normal stress o,

1 Shear displacement u, and normal displacement u,
2 Shear displacement u, and normal stress o,

3 Shear stress o, and normal displacement u,,

These values are constant along the segment, so they can be read on a segment-by-segment
basis. The stress values are understood to be resultants over the segment.

REMARK B.1

The “BC codes” are related to those used by Crouch and Starfield. Using integer codes is far
from the best way to implement readable software, but we shall follow their convention.

The BC data commands are introduced by a DEFINE BOUNDARY_CONDITIONS header com-
mand (which may be abbreviated to just D B), and have the form

SEG =i {SS=o0, |SD=u} {HS =0, |ND=u,}

terminated by an END command. Keyword SS means shear stress, SD shear displacement,
and so on.

In the CLAMP metalanguage, this means that one may specify either o, or u,, but
not both simultaneously, and similarly for o,, and u,. The specifications are shown in
braces, meaning that they may not be omitted.

If no BC is ever specified for segment ¢, that segment is assumed stress free (code 0
with 0, = 0, = 0). If only a normal value is prescribed, a zero shear stress is assumed,
and so on.
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The implementation of DEFINE_BOUNDARY follows.

*
* Read boundary condition data for segments
*
subroutine DEFINE_BOUNDARY_CONDITIONS
c
implicit none
include *SEGMENT . inc’
*
character*4 key, CCLVAL, word(2)
integer iseg, n, nw, iloc(2)
integer ICLVAL, ICLSEK, ICLTYP
logical CMATCH
*
1000 call CLREAD (' Bound_cond data> °,
$ ' Enter SEG=iseg {SS=sig_s | SD=u_s} {NS=sig_n | ND=u_n}'//
$ ‘&kTerminate with END')
*
if (ICLTYP(1) .le. 0) then
print *, ’'#*x Command must begin with keyword’
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"ND')) then
return
else if (CMATCH (key, 'S"EG’')) then
iseg = ICLVAL(2)
if (iseg .le. O .or. iseg .gt. MAXSEG) then
print *, 'xx* Segment number’, iseg, ° is out of range’
go to 1000
end if

call CLOADK ('L’', -2, word, iloc, nw)
call BCVALUES (iseg, nw, word, iloc)
else
print *, ‘*¥¥ Jllegal keyword ', key, ' in BC data’
end if
go to 1000
end

This illustrates the use of the “load keyword” entry points of §8.2. These calls search for
keywords such as SS and move them to the subroutine work area. This simplifies keyword
legality tests such as “SS and SD cannot appear in the same command.” To do these chores

DEFINE_BOUNDARY calls subroutine BCVALUES:

Store boundary condition values in tables

* *

subroutine BCVALUES
$ (iseg, nw, word, iloc)
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2000

implicit
include
character*(+)
real

none
'SEGMENT .inc’
word(2)
FCLVAL

§B.7 DEFINING THE PROBLEM

word(i),’ segment’',kiseg

FCLVAL(iloadn+1)
FCLVAL(iloads+1)

integer iseg, nw, iloc(2)
integer code, i, isd, iloads, iloadn, ks, kd, kn
logical CMATCH
ks = 0
kn = o]
kd = 0
isd = O
iloadn = O
iloads = O
do 2000 i = 1., nw
if (CMATCH (word(i), 'SS')) then
ks = ks + 1
iloads = iloc (i)
else if (CMATCH (word(i), 'SD’')) then
ks = ks + 1
kd = kd + 1
isd = 1
iloads = iloc(i)
else if (CMATCH (word(i), 'NS’)) then
kn = kn + 1
iloadn = iloc(i)
else if (CMATCH (word(i), 'ND’)) then
kn = kn + 1
kd = kd + 1
iloadn = iloc(i)
else
print *, '+x* Illegal BC keyword ',
return
end if
if (kn .gt. 1 .or. ks .gt. 1) then
print *, '#xx Illegal BC combination for segment', iseg
return
end if
continue
if (iloadn .gt. 0) bvn(iseg) =
if (iloads .gt. 0) bve(iseg) =
if (kd .eq. O) then
code = |
elgse if (kd .eq. 1) then
code = 3
if (isd .eq. 0) code = 4
else
code = 2
end if
kode(iseg) = code-1
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return
end

which embodies the logic for eventually storing the user-supplied values into appropriate
spots in arrays BVS and BVN.

Defining Symmetry Conditions

If the problem exhibits symmetry conditions, commands to specify symmetry axes are
introduced by the header command DEFINE SYMMETRY_CONDITIONS (which may be abbre-
viated to just D S) and have the form

YSYM = yoym

The XSYM command specifies that = zy,, is a line of symmetry parallel to the = axis.
The YSYM command specifies that y = y,ym is a line of symmetry parallel to the y axis. One
or two specifications may be given. The Processor logic does not allow “skew” symmetry
conditions,

The implementation of the DEFINE_SYMMETRY routine is straightforward:

*

Read symmetry condition data
subroutine DEFINE_SYMMETRY_CONDITIONS

implicit none

include 'SYMMETRY . inc’
characterx4  key, CCLVAL, word(2)
integer ixeym, iysym, ICLTYP
real FCLVAL

logical CMATCH

ixsym = mod(ksym,2)
iysym = ksym/2
L3
1000 call CLREAD (' Symmetry data> ',
$ * Enter XSYM=xsym or YSYM=ysym '//
$ '&&Terminate with END’)
if (ICLTYP(1) .le. 0) then
print *, ‘*%% Command must begin with keyword’
go to 1000
end if

key = CCLVAL(1)

if (CMATCH (key, 'E"ND')) then
ksym = 2%iysym + ixsym
return

else if (CMATCH (key, 'X"SYM')) then
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xeym =  FCLVAL(2)
ixeym = 1
else if (CMATCH (key, 'Y"SYM')) then
ysym =  FCLVAL(2)
iysym = 1
else
print #, ‘'#*%* Illegal keyword ', key,' in symmetry data’
end if
go to 1000
end

REMARK B.2
Here KSYM is an integer “symmetry flag” related to that used in the original TWOBI program.

Defining Material Properties

Material properties are introduced by a DEFINE MATERIAL header command (which can
be abbreviated to just D M). The commands have a simple form:

EM = F
PR = v

terminated by an END command. The E command specifies the elastic modulus and the PR
command specifies Poisson’s ratio. Since DBEM2 is restricted to elastic isotropic materials
and does not consider thermal effects, these two material properties suffice.

The default values for E and v set by CLEAR are 1.0 and 0.0, respectively.

The implementation of DEFINE MATERIALS is straightforward and does not involve
any fancy new construct:
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*

Read material property data

subroutine DEFINE_MATERIAL

implicit none
include "MATERIAL .inc’
character*4 key, CCLVAL
integer ICLTYP
real FCLVAL
logical CMATCH

%

1000 call CLREAD ('’ Material data> ',
$ ' Enter EM=em or PR=pri&'//
$ 'Terminate with END')

*
if (ICLTYP(1) .le. O) then
print *, '**x Command must begin with keyword’
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"ND')) then
return
else if (CMATCH (key, 'EM')) then
em = FCLVAL(0)
else if (CMATCH (key, 'P°R’)) then
pr = FCLVAL(0)
else
print *, ‘*%x Jllegal keyword ', key,’' in material data’
end if
go to 1000
end

Defining Prestress Data

If the initial stress state has nonzero components, prestress data have to be introduced by
a DEFINE PRESTRESS header. The prestress-definition commands have a very simple form:

SXX0 = o,
= A"

sYY0 = o,
0

SXY0 = o,

As usual, these commands are terminated by an END command. Undefined prestress com-
ponents are assumed zero.

The implementation of DEFINE PRESTRESS is quite similar to that of DEFINE_MATERIAL :
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Read prestress (initial field stresses) data

*

subroutine DEFINE_PRESTRESS

implicit none
include *PRESTRESS . inc’
character*4 key, CCLVAL
integer ICLTYP
real FCLVAL
logical CMATCH
*
1000 call CLREAD (' Prestress data> ',
$ ' Enter SXXO=exx0, SYYO=syyO or SXYO=sxyOk&'//
$ 'Terminate with END')
*
if (ICLTYP(1) .le. 0) then
print *, ’'x*x Command must begin with keyword'’
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"ND’)) then
return

else if (CMATCH (key, 'SX"X0')) then
sxx0 = FCLVAL(0)

else if (CMATCH (key, 'SY"Y0')) then
syy0 = FCLVAL(0)

else if (CMATCH (key, 'SX“YO0')) then
sxy0 = FCLVAL(0)

else
print *, #*x* Illegal keyword ', key,’ in prestress data’

end if

go to 1000

end

Defining Output Field Locations

The last piece of input data are not related to the prohlem definition, but to the specifica-
tion of the field points at which the program user would like to get computed results, viz.,
displacements and stresses.

REMARK B.3

This set of information is characteristic of boundary element methods, in which all basic givens
and unknowns are at the boundary. If you want information at field points not on the boundary,
you have to ask for it and specify where.

For convenience the output locations are not specified point by point, but as equally
spaced points on line segments. You specify the location of the first and last point on the
line, and the number of points, if any, to be “collocated” between the first and last one.
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The output field location specification commands are introduced by a DEFINE FIELD
-LOCATIONS header command (which may be abbreviated to D F) and have a form remi-
niscent of the segment-definition commands:

LINE = i FIRST = z{'"*",y/""*" LAST = zloet yloct  [POINTS=rin]
Here n;y; is the number of fntermediate points to be inserted (equally spaced) between the
first and last poini. If this phrase is omitted, n;,¢ = 0 is assumed so only the first and last
points will be output points. If the first and last points coincide, output will be at only
one point.

For example:

DEF 0OUT
LINE=1 F=200.2 L=2@3.8 P=9
LINE=2 F=3.8,0.2 L=0.2,3.8 P=9
END

specifies two output lines running at 45° and 135°, respectively, and with 11 output points
(first+last+9) in each.

Here is the implementation of the DEFINE_QUTPUT_LOCATIONS routine:

*
* Read location of output field points
*
subroutine DEFINE_FIELD_LOCATIONS
*
implicit none
include 'OUTPUT . inc’
character*8 key, CCLVAL
real FCLVAL
integer ilin, n, mark, ICLVAL, ICLSEK, ICLTYP
real xy(2)
logical onepoint, CMATCH
*
1000 call CLREAD (' Field location data> ',
$ ' Enter LIN=ilin FIRST=xfirst,yfirst LAST=xlast,ylast’'//
$ ' [P=ninterJ&&Terminate with EIID’)
*
if (ICLTYP(1) .le. O) then
print x, ‘'#x* Command must begin with keyword’
go to 1000
end if
key = CCLVAL(1)
if (CMATCH (key, 'E"lID')) then
return

else if (CMATCH (key, 'L"INE’))  then
ilin = ICLVAL(2)
if (ilin .le. O .or. ilin .gt. MAXLIN) then
print %, ‘%% Field line number’,ilin,’' is out of range’
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go to 1000

end if

lindef (ilin) = 1

nintop(ilin) = O

onepoint = .true.

it (ICLSEK(3, 'F"IRST') .ne. 0) then
call CLVALF (' ', 2, xy, n)

if (n .ge. 1) xfirst(ilin) = xy(1)

if (n .ge. 2) yfirst(ilin) = xy(2)

end if

it (ICLSEK(3, 'L"AST') .ne. 0) then
call CLVALF (' ', 2, xy, n)
if (n .ge. 1) xlast(ilin) = xy(1)
if (n .ge. 2) ylast(ilin) = xy(2)
onepoint = .false.

end it

if (onepoint) then
xlast(ilin) = xfirst(ilin)
ylast(ilin) = yfirst(ilin)

end if

if (ICLSEK(3, 'P"DINTS') .ne. 0) then
nintop(ilin) = max(ICLVAL(0),0)
end if
else

§B.7 DEFINING THE PROBLEM

print *, ‘'*** Illegal keyword ', key,' in field loc data’ -

end if
go to 1000
end

The input data section is complete.
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§B.8 SOLVING THE PROBLEM

Having finished input data preparation, the three steps invoived in solving the elastostatic
probiem are as follows.

Buslding the Boundary Element Model. The input data has defined the geometry of the
problem in terms of segments. Segments are broken down into equally spaced boundary
elements. The first step consists of building element-by-element data, and is carried out
when you enter the command BUILD.

Assembling the Discrete Equations. This step generates a matrix C of “influence coeffi-
cients” and a vector r of “forcing functions.” These arrays have dimensions equal to twice
the total number of boundary elements. The construction of the elements of C and r fol-
lows the direct formulation of boundary-integral methods and is not explained here. This
step is triggered by the command GENERATE and is carried out by subroutine GENERATE
and subordinate routines.

Solving for the unknowns. The linear equation system Cx = r is solved (by a Gauss
elimination method) for vector x, which contains the boundary unknowns. This step is
triggered by command SOLVE and is carried out by subroutine SOLVE and a subordinate

routine.
Since we are not going to explain the theory behind these tasks, the BUILD, GENERATE and
SOLVE subroutines are listed next without commentary.

* Build detailed boundary element data

subroutine BUILD

implicit none
include 'SEGMENT . inc’
include 'ELEMENT . inc'
include "MATERIAL .inc’
include *PRESTRESS. inc’
integer iseg, k, ne, num
real xd, yd, side

*
k= O

do 2000 iseg = 1,MAXSEG
if (segdef(iseg) .eq. 0) go to 2000

num = numel(iseg)
xd = (xend(iseg)-xbeg(iseg))/num
yd = (yend(iseg)-ybeg(iseg))/num
side = sqrt(xd**2+yd**2)
if (side .eq. 0.0) go to 2000
do. 1600 ne = 1,num
k= k+1
if (k .gt. MAXELM) then
print *, ’#x* Boundary element count exceeds ’',MAXELM
print x, ’ Excess elements ignored’
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return
end if
xme(k) = xbeg(iseg) + 0.5%(2.*ne-1)*xd
yme(k) = ybeg(iseg) + 0.5+(2.*ne-1)+yd

hleng(k) = 0.b*side
sinbet (k) = yd/side

cosbet (k) = xd/side
b(2%k-1) = bvs(iseg)
b(2+*k ) = bvn(iseg)
kod(k) = kode(iseg)
1600 continue
2000 continue
numbe = k
print ' ('’ Discrete model building completed:’’,
$ I5,'' boundary elements'’/)’', numbe
return

end
Calculate influence coefficient matrix and RHS vector

subroutine GENERATE

implicit none
include 'MATERIAL.inc’
include 'ELEMENT . inc’
include 'PRESTRESS . inc’
include 'SYMMETRY .inc’
integer i, j
real sinbi, cosbi, sinbj, cosbj, es0, snld, g
real xi, xj, yi, yi. 8}
real ass, asn, ans, ann, bes, ban, bns, bnn
g = 0.5xem/(1.+pr)
do 3000 i = 1,numbe
r(2*i-1) = O.
r(2xi ) = 0.
xi = xme(i)
yi = yme(i)
cosbi = cosbet(i)
ginbi = sinbet(i)
do 2500 j = 1,numbe
agss = 0.0
asn = 0.0
ans = 0.0
ann = 0.0
bss = 0.0
bsn = 0.0
bns = 0.0
bnn = 0.0
xj = xme(j)
yi = yme(j)
cosbj = cosbet(j)
sinbj = sinbet(j)
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8j = hleng(j)
880 = (8yyO-sxx0)*sinbj+*cosbj + sxyO*(cosbj**2-sinbj*+*2)

sn0 = sxxO*ginbj**2 - 2. xsxyO*sinbj*cosbj + syyOxcosbj**2
call COEFF (xi, yi, xj, yj., sj.

$ 1, em, pr, cosbi, sinbi, cosbj, sinbj,

$ ass, asn, ans, ann, bss, bsn, bns, bnn)

if (ksym .eq. 1 .or. ksym .eq. 3) then
call COEFF (xi, yi, 2.*xsym-xme(j), yj, 8],
$ -1, em, pr, cosbi, sinbi, cosbj, -sinbj,
$ ass, asn, ans, ann, bss, bsn, bns, bnn)
end if
if (ksym .eq. 2 .or. ksym .eq. 3) then
call COEFF (xi, yi, xj, 2.*ysym-yme(j), sj,

$ -1, em, pr, cosbi, sinbi, -cosbj, sinbj,
$ ass, asn, ans, ann, bss, bsn, bns, bnn)

end if

if (ksym .eq. 3) then

call COEFF (xi, yi, 2.xxsym-xme(j), 2.*ysym-yme(j). 8j,

$ 1, em, pr, cosbi, sinbi, -cosbj, -sinbj,
$ ass, asn, ans, ann, bss, bsn, bns, bnn)

end if

call SETUP (i, j, kod(j), g, 880, snO,
$ ass, asn, ans, ann, bss, bsn, bns, bnn,
$ b, ¢, r, 2*numbe, MAXEQS)

2500 continue

3000 continue
print %, 'Influence coefficient matrix & RHS vector generated’
return
end

Solve for unknown boundary values

subroutine SOLVE

implicit none
include 'ELEMENT . inc’
integer ising

call GAUSSER (¢, r, x, 2*numbe, MAXEQS, ising)

if (ising .eq. 0) then
print *, ’'Discrete equations solved’
else
print *, ’'Singularity detected at BE equation’,ising
end if
return
end

Subroutine GENERATE calls COEFF (which is essentially the same as a TWOBI subroutine with
the same name) and SETUP, which fills the entries of the influence coefficient matrix and

right-hand-side vector:
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* Calculate source/receiver coefficients

subroutine COEFF

$ (xi, yi, xj, yj. aj,

$ msym, em, pr, cosbi, sinbi, cosb, sinb,
$ ass, asn, ans, ann, bss, bsn, bns, bnn)

*
implicit none
real xi, yi, xj, yj. aj
real em, pr, cosbi, sinbi, cosb, sinb
real ass, asn, ans, ann, bss, bsn, bns, ban
real pi, con, pril, pr2, pr3
integer msym
real cma, cpa, cxb, cyb, cosg, sing
real ris, r2s, f11, £f12
real tbl, tb2, tb3, tb4, tbd
real asst, asnt, anst, annt
real bast, bsnt, bnset, bnnt
*
pi = 4.xatan2(1.,1.)
con = 1.0/(4.*pi*(1.-pr))
pri = 1.-2x%pr
pr2 = 2.*(1.-pr)
pr3 = 3.-4.%pr
cxb = (xi-xj)*cosb + (yi-yj)+sindb
cyb = -(xi-xj)*sinb + (yi-yj)*cosd
cosg = cosbi*cosb + sinbi*sinb
sing = sinbi*cosb - cosbi*sinb
*
cma = cxb - aj
cpa = cxb + aj
ris = cma**2 + cyb**2
r28 = cpa**2 + cyb**2
11 = 0.5*log(ris)
£12 = 0.5%log(r2s)
tb2 = -conx(£11-£12)
tb3 = con*(atan2(cpa,cyb)-atan2(cma,cyb))
tbl = -cyb*tb3 + con*(cmaxfll-cpa*f12)
tbd = con*(cyb/ris-cyb/r2s)
tb6 = con*(cma/ris-cpa/r2s)
*
asst = pr2*cosg*tb3 + pri*sing+tb2 + cyb*(sing*tbd+cosg*tbb)
asnt = -prixcosg*tb2 + pr2+sing*tb3 + cyb*(cosg+tb4-sing*tbb)
anst = -pr2*sing*tb3 + prixcosg*tb2 + cyb*(cosg*tbd-sing*tbb)
annt = pri*sing*tb2 + pr2xcosg*tb3 - cyb*(sing*tbd+cosg*tbb)
*
bsst = pr3xcosgttbl + cyb*(sing*tb2-cosg*tb3)
bsnt = pr3*sing*tbl + cyb*(cosgrtb2+sing*tb3)
bnst = -pr3+sing*tbl + cyb*(cosg*tb2+sing*tb3)
bnnt = pr3*cosg*tbl - cyb*(sing*tb2-cosg*tb3)
%
ass = ass + msym+asst
asn = asn + asnt
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ang = ans + meym*anst
ann = ann + annt
*
bss = bss + msym*bsst
bsn = bsn + bsnt
bne = bns + msym*bnst
ban = bnn + bant
return
end
*
* Set up influence coeff matrix and RHS of discrete system
*
subroutine SETUP
$ (i, j, bckodj, g, &80, 8n0,
$ ass, asn, ans, ann,
$ bss, bsn, bns, bnn,
$ b, ¢, r, n, ne)
*
implicit none
integer i, j, n, nc, beckodj
real 880, sn0, g, bs, bn
real asg, asn, ans, ann, bss, bsn, bns, bnn
real b(*), clnc,*), r(x*)
b
if (bckodj .eq. 0) then
c(2*i-1,2*%j-1) = ass
c(2*%i-1,2%j ) = asn
c(2*i ,2%j-1) = ans
c(2*i ,2%j ) = ann
bs = 0.5%(b(2*j-1)-880)/g
bn = 0.5%(b(2%j )-sn0)/g
r(2+i-1) = r(2+i-1) + bss*bs + bsn*bn
r(2#*i ) = r(2«xi ) + bns*bs + bnn*bn
else if (bckodj .eq. 1) then
c(2%i-1,2%j-1) = -bss
c(2%i-1,2%xj ) = -bsn
c¢(2*i ,2%¥j-1) = -bns
c(2*i ,2+¢j ) = -bnn
r(2xi-1) = r(2*i-1) - ass*b(2*j-1) - asnxb(2%j)
r(2*xi ) = r(2+i ) - ans*b(2%j-1) - ann¥b(2*j)
else if (bckodj .eq. 2) then
c(2%i-1,2*%j-1) = -bss
c(2%i-1,2%xj ) = asn
c(2%i ,2%j-1) = ~-bns
c(2%i ,2%j ) = ann
bn = 0.5+(b(2*%j )-sn0)/g
r(2*i-1) = r(2*i-1) - ass*b(2*j-1) + ben*bn
r(2*i ) = r(2*i ) - ans*b(2xj-1) + bnn*bn
else
c(2%i-1,2%j-1) = ass
c(2*%i-1,2%j ) = -bsn
c(2%i ,2%j-1) = ans
c(2*%i ,2%¥j ) = -bmn
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bs = 0.6%(b(2+j-1)-880)/g
r(2*i-1) = r(2+i-1) + bes*bs - asn¥b(2+j)
r(2*%1i ) = r(2*%i ) + bne*bs - ann*b(2%j)
end if
return
end

SOLVE calls GAUSSER, which is a naive implementation of unsymmetric Gauss elimination
without pivoting:

*

Solve algebraic equation system A x = b by Gauss elimination

subroutine GAUSSER

3 (a, b, x, n, na, ising)
*
implicit none
integer n, na, ising
real a(na,*), b(*), x(*), c, sum
integer i, j. k
*
iging = O

do 2000 j = 1,n-1

if (a(j,j) .eq. 0.0) then
ieing = j
return

end if

do 1600 k = j+i,n
c = a(k,j)/a(j.j)
do 1400 i = j,n

a(k,i) = a(k,i) - c*a(j,i)

1400 continue
b(k) = b(k) - c*xb(j)
1600 continue
2000 continue
*

x(n) = b(n)/a(n,n)
do 3000 j = n-1,1,-1

sum = 0.0
do 2600 i = j+1,n
sum = sum + a(j,i)*x(i)
2600 continue

x(j) = (b(j)-sum)/a(j,j)
3000 continue
return
end

(The only redeeming quality about GAUSSER is that the code is quite short; in fact, it’s
about the shortest possible implementation of a linear equation solver.)
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§B.9 PRINTING DATA

One area in which the interactive operation excels is data display. If you are using an
interactive Processor for a engineering design task, you can selectively trim the otherwise
voluminous output to the important essentials. Conversely, if you are debugging a new
or modified implementation, you may want more output than is normally required; for
example, printing the influence coefficient matrix.

What applies for printed output applies with equal force to graphic output. We are
not going to illustrate graphic displays here, however, since the details depend strongly on

the output device and the plotting software you are using.

The PRINT command is similar to the DEFINE command in that it takes a second
keyword that specifies what is to be printed:

SEGMENTS

BOUNDARY_CONDITIONS

SYMMETRY_CONDITIONS
MATERIAL
PRESTRESS

FIELD_LOCATIONS

ELEMENTS

COEFFICIENTS

RHS

SOLUTION

RESULTS

Prints segment geometry data and number of elements per seg-
ment.

Prints boundary condition (BC) code and prescribed boundary
values for each segment.

Prints symmetry conditions if any are in effect.
Prints material property data.
Prints prestress data.

Prints information about output-location lines if any are de-
fined.

Prints detailed boundary-element data produced by subroutine
BUILD (this is primarily for debugging).

Prints the matrix C of influence coefficients assembled by
GENERATE (this is primarily for debugging).

Prints the right-hand side (forcing) vector r assembled by
GENERATE (this is primarily for debugging).

Prints the solution vector x calculated by SOLVE (this is pri-
marily for debugging).

Print stresses and displacements at boundary-element mid-
points or at output field locations, depending on a command
qualifier.

The PRINT command is processed by subroutine PRINT, which has a “case” structure similar
to that of subroutine DEFINE:
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* Interpre
subrouti

implicit
characte
integer
logical

t PRINT command

ne PRINT
none

r key*8, CCLVAL*8
ICLTYP
CMATCH

if (ICLTYP(2) .le. O) then

call

CLREAD (’ PRINT what? °,

$ ' BOUNDARY, ELEMENTS, COEFFICIENTS,'//

$ 'FI

ELD, MATERIAL, PRESTRESS&&'//

$ 'RESULTS, RHS, SOLUTION, SYMMETRY')

key =
else

key =
end if

CCLVAL(1)

CCLVAL(2)

if (CMATCH (key, 'B"OUNDARY')) then

call
else if
$
call
elge if
call
else if
call
else if
call
else if
call
else if
call
else if
call
elge if
call
else if
call
else if
call
else
print
end if
return
end

PRINT_BOUNDARY_CONDITIONS

(CMATCH (key, 'C-OEFFICIENTS') .or.

CMATCH (key, 'I"NFLUENCE')) then
PRINT_INFLUENCE_COEFFICIENTS
(CMATCH (key, 'E"LEMENTS')) then
PRINT_ELEMENTS
(CMATCH (key, 'F-IELD')) then
PRINT_FIELD_LOCATIONS
(CMATCH (key, 'M"ATERIAL')) then
PRINT_MATERIAL
(CMATCH (key, 'P~RESTRESS’)) then
PRINT_PRESTRESS
(CMATCH (key, 'RE"SULTS')) then
PRINT_RESULTS
(CMATCH (key, °'RHS’)) then
PRINT_RHS_VECTOR
(CMATCH (key, 'SE"GMENT')) then
PRINT_SEGMENTS
(CMATCH (key, 'S"OLUTION')) then
PRINT_SOLUTION_VECTOR
(CMATCH (key, 'SY"MMETRY')) then
PRINT_SYMMETRY_CONDITIONS

¥, 'x%*x Jllegal or ambiguous keyword ', key,

atter PRINT’

Subroutine PRINT provides our first (and only) example of an implementation that prompts
for missing data. If you type only the keyword PRINT followed by a carriage return, you
will see the prompt
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Print what?

on the screen, and vou are supposed to type the next keyword, e.g., SEGMENTS that you for-
got. (Notice that this friendly technique was not used for the DEFINE command explained
in §B.7; instead subroutine DEFINE complains about missing keywords after DEFINE.)

Next we examine the subordinate routines.

Printing Input Data

The implementation of the subroutines that print segment, boundary condition, symmetry,
material, prestress, and field-location data are straightforward and so are simply listed next

as a group:

Print segment data

subroutine PRINT_SEGMENTS

implicit none
include *SEGMENT . inc’
integer i, k
%
k = 0
do 2000 i = 1 ,6MAXSEG
if (segdef(i) .gt. 0) then
if (k .eq. 0) then

print ' (/A/A6,A9,4A12)",
' Boundary Segment Data’,

$ "Segm’, 'Elements’, 'Xbeg’, 'Ybeg’, ’'Xend', ’'Yend’
end if
k = k+1
print '(I6,19,3X,4612.4)",
$ i, numel(i), xbeg(i), ybeg(i), xend(i), yend(i)
end if
2000 continue
it (k .eq. 0) then
print *, 'Segment tables are empty'’
end if
print *, ' '
return
end
*
* Print boundary data in response to a PRINT BOUNDARY command

subroutine PRINT_BOUNDARY_CONDITIONS

implicit none

include *SEGMENT . inc’
*

integer i, k

character*9 given(0:3)
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data given /'SS and NS’, 'SD and ND', 'SD and NS', °'SS and ND'/

*
k = 0
do 2000 i = 1,MAXSEG
if (segdef(i) .gt. 0) then
if (k .eq. 0) then
print '(/A/A6,A11,2412)°,
$ ' Boundary Conditions Data’, 'Segm’,
$ ‘Given’, 'Shear’, ‘Normal’
end if
k = k+1
print '(I5,1X,A11,3X,1P2G12.3)",
$ i, given(kode(i)), bvs(i), bvn(i)
end if
2000 continue
*
if (k .eq. 0) then
print *, ’'Boundary tables are empty’
end if
print *, ' °
return
end
*
* Print symmetry data
*
subroutine PRINT_SYMMETRY_CONDITIONS
*
implicit none
include 'SYMMETRY .inc’
%
print '(/A)', ' Symmetry Data’
if (ksym .eq. 3) then
print *, ’Symmetry about axis X=',6xeym
print *, °* and axis Y=',ysym
else if (ksym .eq. 1) then
print *, ’'Symmetry about axis X=', xsym
else if (ksym .eq. 2) then
print *, ‘Symmetry about axis Y=',ysym
else
print *, 'llo symmetry conditions’
end if
print *, °* °
return
end
*
* Print material property data
*
subroutine PRINT_MATERIAL
*
implicit none
include "MATERIAL .inc’

print '(/A)', ' Material Property Data’
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print ' ('’ Elastic modulus:'’',1PE12.3)’', em
print '(’' Poisson’’''s ratio:'’',F12.3)’, pr

print x, ' '
return
end
* Print field location data
*
subroutine PRINT_FIELD_LOCATIONS
*
implicit none
include 'OUTPUT . inc’
integer i, k
*
k = 0
do 2000 i = 1,MAXLIN
if (lindef(i) .gt. 0) then
if (k .eq. 0) then
print ' (/A/A6,49,A9,3A12)",
$ ’ Field Location Data’,
$ ‘Line’, 'Int.Pts’, ’x-first’', 'y-first’,
$ 'x-last’', 'y-last’
end if
k = k+1
print '(16,19,4G12.4)",
$ i, nintop(i), xfirst(i), yfirst(i), xlast(i), ylast(i)
end if
2000 continue
*
if (k .eq. 0) then
print ¥, 'FIELD Location Tables are empty’
end if
print *, ' '
return
end

Debug-Oriented Print Commands

The PRINT ELEMENTS, PRINT COEFFICIENTS, PRINT RHS and PRINT SOLUTION are
detailed print commands primarily useful in debug situations. They are implemented in
the following subroutines:

*
* Print detailed boundary element data
*

subroutine PRINT_ELEMENTS
*

implicit none
* include 'SEGMENT . inc’

include 'ELEMENT . inc’

integer m
*
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if (numbe .le. 0) then
print *, ’'Boundary element table empty’
return

end if

print ’(/A/A5,A8,2A11,A12,A8,49,A12) ",
$ ' Boundary Element Data’,
$ ‘Elem’, 'Xmid’, 'Ymid’, 'Length’,
$ *Orient’, 'BCode’, ’'Shear’, ’Normal’
do 2000 m = 1,numbe
print '(I5,1P3G11.3,0PF10.2,16,1P2G12.3)",
m,xme(m),yme(m),2.*hleng(m),

$ (180./3.14159265)+*atan2(sinbet(m) ,cosbet(m)),
$ kod(m), b(2*m-1) ,b(2*m)
2000 continue
print *, ' '
return
end

Print influence coefficient matrix

subroutine PRINT_INFLUENCE_COEFFICIENTS

implicit none

include 'SEGMENT. inc’

include 'ELEMENT . inc’

print '(/4)', ' Influence Coefficient Matrix’

call PRINT_REAL_MATRIX (¢, MAXEQS, 2*numbe, 2*numbe)
print *, ' °

return

end

Print right hand side vector

subroutine PRINT_RHS_VECTOR

implicit none

include *SEGMENT . inc’

include 'ELEMENT . inc’

print '(/A)’, ' Right Hand Side (Forcing) Vector’
call PRINT_REAL_MATRIX (r, 1, 1, 2+numbe)
print *, ° °

return

end

Print right hand side vector

subroutine PRINT_SOLUTION_VECTOR

implicit none

include *SEGMENT . inc’
include 'ELEMENT . inc’
print '(/A)’', ' Solution Vector’
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call PRINT_REAL_MATRIX (x, 1, 1, 2*numbe)
print *, '~

return

end

The previous three subroutines call PRINT_REAL MATRIX, which is a “no frills” array printer:

* Print real matrix (or vector) in 6-column template

subroutine PRINT_REAL_MATRIX

$ (a, na, m, n)
integer na, m, n, i, j, jref
real a(na,*)

do 4000 jref = O,n-1,6
print '(1X,6I12)°, (j,j=jref+1,min(jref+6,n))
do 3000 i =1,m
print '(I4,1P6E12.4)’', i,(a(i,j),j=jref+1,min(jref+6,n))
3000 continue
4000 continue
return
end
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Printing Results

The PRINT RESULTS command without a qualifier lists stresses and displacements
computed at boundary element midpoints. If qualifier FIELD appears, the command
refers to the field points previously defined. This switch is implemented in subroutine
PRINT_RESULTS:

* Process PRINT RESULTS command
subroutine PRINT_RESULTS

implicit none
integer ICLSEQ

if (ICLSEQ(3,’F"IELD’) .eq. 0) then
call PRIIT_BOUNDARY_RESULTS

else
call PRINT_FIELD_RESULTS

end if

return

end

The code above provides an example of the use of ICLSEQ to test for the existence of a
specific qualifier, in this case FIELD.

REMARK B.4

Admittedly the use of a qualifier here is somewhat contrived, for using the command form PRINT
RESULTS FIELD would be perfectly acceptable. The qualifier form is merely selected only to
illustrate the use of ICLSEQ. Generally speaking, the use of qualifiers is appropriate only for more
complex Processors than DBEM2. ’

Printing Boundary Results

This is done by subroutine PRINT_BOUNDARY RESULTS, the implementation of which is
straightforward:

*

Print stresses and displacement €@ boundary element midpoints

subroutine PRINT_BOUNDARY_RESULTS

implicit none

include 'SEGMENT . inc'

include 'ELEMENT . inc’

include *MATERIAL .inc’

include 'PRESTRESS. inc’

integer k

real g. 880, sn0, sinbi, cosbi
real us, un, ux, uy, sign, sigs
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print '(/A)’', ' Displacements and Stresses at'//

$ ' Boundary Element Midpoints’

print ‘'(A5,A9,6411)', 'Elem’', ‘u_s', ‘'u_n’', ‘u_x', ‘u_y’,
$ 'sig_s’, 'sig_n’

g = 0.5%em/(1.+pr)

do 2000 k = 1,numbe

us = x(2%k-1)
un = x(2*k )
sigs = b(2xk-1)
sign = b(2*%k )
if (kod(k) .eq. 1) then

un = b(2xk-1)
us = b(2*k )
sigs = x(2%k-1)
sign = x(2*k)
elgse if (kod(k) .eq. 2) then
us = b(2+k-1)
sigs = x(2xk-1)
elgse if (kod(k) .eq. 3) then
un = b(2xk )
gign = b(2*k )

end if
sinbi = sinbet (k)
cosbi = cosbet (k)

ux = us*cosbi - un*sinbi
uy = us+*sinbi + un*cosbi
print '(I5,1P6G11.3)’', k, us,un,ux,uy,sigs,sign
2000 continue
print *, ° '
return
end

Printing Field Results

Showing displacements and stresses at field points is complicated by the fact that, unlike
finite element programs, such values are not readily available but must be calculated as part
of the display procedure. This will become evident as one shows the coding of subroutine
PRINUT_FIELD RESULTS:

* Print stresses and displacements @ specified field points

subroutine PRINT_FIELD_RESULTS

implicit none

include *OUTPUT.inc’

integer m, p, points

real xp, yp, ux, uy, sigxx, sigyy, sigxy, £
logical skip
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print '(/A4)', ' Displacements and Stresses at'//
$ ' Specified Field Points’

if (lindef(m) .eq. 0) go to 3000
print °(A5,2A10,A8,4A11)°, ' Lin’, 'x', 'y’, ‘u_x’, ‘u.y’,
$ 'sBig_xx', 'sig_yy’', 'sig_xy’
points = nintop(m) + 2
‘ if (xfirst(m) .eq. xlast(m) .and.
‘ $ yfirst(m) .eq. ylast(m)) points =1
‘ t= 0.0
do 2000 p = 1,points
if (points .gt. 1) f = real(p-1)/(points-1)
xp = xfirst(m)*(1.0-f) + xlast(m)+f
yp = yfirst(m)*(1.0-£f) + ylast(m)+f
call FIELDP (xp, yp. ux, uy, sigxx, sigyy, sigxy, skip)
if (skip) then
print '(I5,2F10.3,6X,A)', m, xp,yp,
$ ‘Point is too close to boundary’
else
print '(I5,2F10.3,1P5G11.3)', m, xp,yp, ux,uy,
$ sigxx,sigyy,sigxy
end if
2000 continue
print *, * '’
3000 continue
return
end

|
i
!
|
| : do 3000 m = 1,MAXLIN
i
|

Subroutine FIELDP receives the location XP,YP of the field point and returns the displace-
ment components u, and u,, and the stress components 0, gyy and o,y:

*
* Compute stresses and displacements at field point
*
subroutine FIELDP
$ (xp, yp.
$ ux, uy, sigxx, sigyy, sigxy, skip)
*
implicit none
* include *SEGMENT . inc’
include 'ELEMENT . inc’
include 'MATERIAL .inc’
- include *SYMMETRY .inc’
include 'PRESTRESS . inc'’
real Xp., yp. us, un, ux, uy, sigxx, sigyy, sigxy
logical skip
. real uxus, uxun, uxss, UXsn
real uyus, uyun, uyss, uysn
real 8XXus, s8XXun, 8XXxes, SXXBN
real syyus, syyun, syyss, syysn
real sxyus, sXyun, sXyss, SXysn
real xj, yj. 8j, cosbj, sinbj

B-43



Appendix B: A DIRECT BOUNDARY ELEMENT PROCESSOR

NP PP NHD

real usj, unj, ssj, snj, ssg, sng
real g. 880, sn0
integer j
*
skip = .false.
ux = 0.0
uy = 0.0
sigxx = 8xx0
sigyy = s8yyo0
sigxy = s8xy0
g = 0.5+em/(1.+pr)
%
do 2000 j = 1,numbe

uxus = 0.0

uxun = 0.0

uxes = 0.0

uxsn = 0.0

uyun = 0.0

uyun = 0.0

uyss = 0.0

uysn = 0.0

sxxus = 0.0

sxxun = 0.0

sxxss = 0.0

sxxsn = 0.0

syyus = 0.0

syyun = 0.0

syyss = 0.0

syysn = 0.0

sxyus = 0.0

sxyun = 0.0

sxyss = 0.0

sxysn = 0.0

xj = xme(j)

yi = yme(j)

8j = hleng(j)

if ((xp-xj)**2+(yp-yj)**2 .le. (  8j)**2) then
skip = .true.
return

end if

cosbj = cosbet(j)

sinbj = sinbet(j)

880 = (8yyO-sxxO)+sinbj*cosbj + sxyO*(cosbj**2-sinbj**2)
sn0 = sxx0*sinbj*%2 - 2.*sxyO*sinbj*cosbj + ByyO*cosbj**2
call SOMIGLIANA (xp, yp. xj. yj. 8i.
1, em, pr, cosbj, sinbj,
uxus, uxun, uxss, uxsn,
uyus, uyun, uyss, uysn,
SXXUB, BXXUN, SXX88, SXXSR,
syyus, syyun, Byyss, syysn,
SXyus, SsXyun, sXyss, SXysn)
if (ksym .eq. 1 .or. ksym .eq. 3) then
call SOMIGLIANA (xp, yp. 2.*xsym-xme(j), yj. 8j.
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-1, em, pr, cosbj, -sinbj,
uxus, uxun, uxss, uxsn,
uyus, uyun, uyss, uysn,
BXXUB, 8XXUn, S8XXBS, BXXs8n,
syyus, syyun, syyss, syysmn,
8Xyus, SXyun, sXyss, sxysn)
end if
if (keym .eq. 2 .or. ksym .eq. 3) then
call SOMIGLIANA (xp, yp, xj. 2.*ysym-yme(j), sj,
-1, em, pr, -cosbj, sinbj,
uxus, uxun, uxss, uxsn,
uyus, uyun, uyss, uysn,
B8XXUS, S8XXUn, 8XXss, 8XXsn,
syyus, syyun, syyses, syysnm,
sXyus, sxyun, sxyss, sxysn)
end if
if (ksym .eq. 3) then
call SOMIGLIANA (xp, yp, 2.*xsym-xme(j), 2.*ysym-yme(j), sj,
1, em, pr, -cosbj, -sinbj,
uxus, uxun, uxse, uxen,
uyus, uyun, uyss, uysn,
8XXUB, S8XXUn, SXX8S, BXXsn,
syyus, syyun, syyss, syysn,
8Xyus, sXyun, sXyss, BXysn)
end if
usj = x(2*j-1)
unj = x(2%j )
88j = b(2%j-1) - 880
snj = b(2+«j ) - snO
if (kod(j) .eq. 1) then
usj = b(2*j-1)
unj = b(2%j )
88j = x(2*j-1)
snj = x(2*j )
else if (kod(j) .eq. 2) then
usj = b(2xj-1)
esj = x(2%j )
else if (kod(j) .eq. 3) then
unj = b(2%j )
snj = x(2%j )
end if
ssg = 0.5*88j/g
sng = 0.5*snj/g
ux = ux + uxus*usj + uxun*unj + uxss¥gsg + UXsn¥sng
uy = uy + uyus*usj + uyun*unj + uyss*ssg + uysn¥sng
usj = 2.*g*usj
unj = 2.*g+unj
sigxx = sigxx + sxxus*usj + sxxuntunj + sxxss*esj + sxxsn¥snj
sigyy = sigyy + syyus*usj + syyun*unj + syyse*ssj + syysn*snj
sigxy = sigxy + sxyus*usj + sxyun*unj + sxyss*ssj + sxysn*enj
continue
return
end
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Finally, FIELDP calls subroutine SOMIGLIANA to evaluate the important boundary-on-field-
point influence coefficients:

*
* Calculate field influence coefficients from Somigliana’s formula
*

subroutine SOMIGLIANA

$ (x, y. xj. yj. aj, msym, em, pr, cosb, sinb,

$ uxXus, uxun, uxss, uxsn,

$ uyus, uyun, uyss, uysn,

$ BXXUus, BXXUn, BXXSB, BXXBN,

$ syyus, syyun, syyss, syysn,

$ 8Xyus, sxyun, sXyss, sxysn)
*

implicit none

real X, ¥y, Xj, yj. aj, em, pr, cosb, sinb

real uxus, uxun, uxss, uxsn

real uyus, uyun, uyss, uysn

real BXXUS, BXXUn, S8XX8S, BXXSBN

real Byyus, syyun, syyss, Byysn

real BXyus, BXyun, SXyss, sXysn

integer meym '

real pi. con, pri, pr2, pr3

real cxb, cyb, cosg, sing, cpa, cma

real ris, r2s, f11, £12

real tbi, tb2, tb3, tb4, tbs, tb6, tb7

real uxust, uxunt, uxsst, uxsnt

real uyust, uyunt, uysst, uysnt

real sxxust, sxxunt, Bxxsst, sxxsnt

real syyust, syyunt, syysst, syysnt

real exyust, sxyunt, sxysst, sxysnt

real cosb2, sinb2, cos2b, sin2b
%

pi = 4.*atan2(1.,1.)

con = 1.0/(4.*pi*(1.-pr))

prl = 1.-2x%pr

pr2 = 2.*%(1.-pr)

pr3 = 3.-4.%pr
*

exb = (x-xj)*cosb + (y-yj)*sinb

cyb = -(x-xj)+sinb + (y-yj)+cosb
%

cma = c¢xb - aj

cpa = c¢xb + aj

ris = cma**2 + cyb¥*2

r28 = cpa*x*2 + cyb¥*2

f11 = 0.5+log(ris)

£12 = 0.5xlog(r2s)

tb2 = -con+(£f11-£12)

tb3 = con*(atan2(cpa,cyb)-atan2(cma,cyb))

tbl = -cyb#tb3 + con*(cmaxfli-cpa*£f12)

tbd = con+(cyb/ris-cyb/r2s)

tbs = con*(cma/ris-cpa/r2s)
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uxust
uxunt
uxsest
uxsnt
uyust
uyunt
uyest
uysnt

cosb2
8inb2
cos2b
sin2b

sxxust
syyust
sxyust
sxxunt
syyunt
sxyunt
sxxsst

syysst
sxysst
sxxsnt

syysnt
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sxysnt

uxus
uxun
uxss
uxsn
uyus
uyun
uyss
uysn

sxxus
sxxun
8Xx88
8xxsn
syyus
syyun

8yyss
syysn
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con* ((cmax*2-cyb**2) /r1g**2- (cpa*+2-cyb*+2)/r2e*+*2)

-con*2. *cyb*(cma/ris**2-cpa/r2s**2)

prixsinb*tb2 - pr2+cosb*tb3 + cyb*(sinb*tb4-cosb*tbb)

pri*cosbxtb2

-pr3+sinb*tbl

+ pr2*sinb*tb3 - cyb*(cosb*tbd+sinb*tbb)
pr3*cosb*tbl - cyb*(ainb*tb2+cosb*tb3)
+ cyb*(cosb*tb2-sinb*tb3)

-pri*cosbxtb2 - pr2*sinb*tb3 - cyb*(cosb*tb4+sinb*tbb)
pPri*sinb*tb2 - pr2xcosb*tb3 - cyb*(sinb*tbd-cosb*tbb)

pr3*sinbstbl + cyb*(cosb*tb2-sinb*tb3)
pr3+cosb*tbl + cyb*(sinb*tb2+cosb*tb3)

cosb*cosb
sinb*ginb
cosb2-8inb2
2.*sinb*cosb

2.+cosb2*tbd + 8in2b*tbs - cyb+*(cos2b*tb6-8in2b*tb7)

2. *8inb2*tb4

8in2b*tbb6 + cyb*(cos2b*tbB-8in2b*tb7)

gin2b*tbd - cos2b*tb6 - cyb#(sin2b*tbé+cos2b*tb7)

-tb5 - cyb*(sin2b*tb6+cos2b*tb7)
-tb5 + cyb*(sin2b*tb6+cos2b*tb7)
cyb* (cos2b*tb6-8in2b*tb7)
-tb2 - pr2#*(cos2b*tb2-sin2b*tb3)
+ cyb*(co82b*tbd+8in2b*tb5)
-tb2 - pr2*(cos2b*tb2-sin2b+*tb3)
- cyb*(cos2bstbd+sin2b*tbb)
- pr2*(sin2b*tb2+cos2b*tb3)
+ cybx(sin2b*tbd-co82b*tbb)
-tb3 + pri*(sin2b*tb2+cos2b*tb3)
+ cyb*(sin2b*tbd-cos2b*tbb)
-tb3 - pri*(sin2b*tb2+cos2b*tb3)
- cyb*(8in2b*tbd-cos2b*tbb)
- pri*(cos2b*tb2-8in2b*tb3)
- cyb*(cos2b*tb4+sin2b*tbb)

uxus
uxun
uxse
uxsn
uyus
uyun
uyes
uysn

msym*uxust
uxunt
meym¥uxsst
uxsnt
msymtuyust
uyunt
msym+uysst
uysnt

P A A L

sxXxus
sxXxun
8XXB8
sXxsn
syyus
syyun
syyss
syysn

+ mBym*sxxust
+ sxxunt
+ msym*sxxsst
+ sxxsnt
+ meym*syyust
+ syyunt
+ msym+*syysst
+ syysnt
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sxyus = sxXyus + msym*sxyust
sxyun = sxyun + sxyunt
8xyss = sXyss + meym¥sxysst
sxysn = sxysn + sxysnt

*
return
end

The DBEM2 Processor is complete.
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§B.10 DBEM2 MODULE STRUCTURE

After all the coding details given in §B.5 through §B.9 it is perhaps refreshing to get an
overall picture of the structure of DBEM2. A hierarchical diagram of the module structure
can provide such a picture:

DBEM2
DOCOMMAND
BUILD
CLEAR
DEFINE
DEFINE_BOUNDARY_CONDITIONS
BCVALUES
DEFINE_ELEMENTS
DEFINE MATERIAL
DEFINE_FIELD_LOCATIONS
DEFINE_PRESTRESS
DEFINE SEGMENTS
DEFINE_SYMMETRY
GENERATE
COEFF
SETUP
PRINT
PRINT_BOUNDARY _CONDITIONS
PRINT_BOUNDARY_RESULTS
PRINT_COEFFICIENTS
PRINT_REAL MATRIX
PRINT_ELEMENTS
PRINT_FIELD_RESULTS
FIELDP
SOMIGLIANA
PRINT _MATERIAL
PRINT_PRESTRESS
PRINT_RHS
PRINT_REAL MATRIX
PRINT_SEGMENTS
PRINT_SOLUTION
PRINT _REAL MATRIX
PRINT_SYMMETRY
SOLVE
GAUSSER
STOP

This diagram of course excludes the NICE utilities such as the CLIP system. With this
omission noted, the deepest module level is five. This is a feature symptomatic of a fairly

B-49



Appendix B: A DIRECT BOUNDARY ELEMENT PROCESSOR

simple Processor. (Actual production Processors in the NICE system reach module levels
of order 15-20.)
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§B.11 AN EXAMPLE PROBLEM

It is convenient to test DBEM2 on the same example problem used in Crouch and Starfield
(ref. B-1). The problem concerns a unit-radius circular hole in an infinite body under
uniaxial tension at infinity. The boundary element discretization for one-quarter of the

hole is shown in Figure B.2.

Figure B.2. Circular hole in an infinite body:
(a) problem specifications, (b) boundary element model

Both £ = 0 and y = 0 are symmetry lines. The boundary contour is approximated by six
straight-line segments, each of which consists of one boundary element. Two field point
lines are chosen along portions of the z and y axes as shown in Figure B.2(a).
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The input for this problem is prepared (with the text editor) in the form of a script
command file:

clear

def segments
seg=1 b=1,0 e=. 9659, .2588
seg=2 b=.0669, .2688 e=.8660, .5000
seg=3 b=.8660, .5000 e=.7071,.7071
seg=4 b=.7071,.7071 e=.5000, .8660
seg=5 b=.5000, .866C e=.2588, .9659
seg=6 b=.2688,.9659 e=0,1

def material
em=7.E4 ; pr=0.2 ; end
def symmetry
xsym=0 ; ysym = 0 ; end
def prestress
8xx0=100 ; end
def field
line=1 £
line=2 ¢
end
pri seg ; pri mat ; pri bou ; pri symm ; pri pres ; pri field
build ; gen ; sol
pri res ; pri res/field
stop

Note that there is no need for DEFINE ELEMENT input data because each segment contains
only one boundary element, which is the default assumption.

Upon starting the DBEM2 processor, this file is inserted in the command stream
through an ADD directive. For example, under VAX/VMS:

$ RUN DBEM2
DBEM2> *ADD CIRCHOLE.ADD

where CIRCHOLE.ADD is the assumed name of the input file. The printed results should
then be compared with those given in Appendix C of Crouch and Starfield (ref. B-1).
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References:

B-1 Crouch S. L. and Starfield, A. M., Boundary Element Methods in Solid Mechanics:
with Applications in Rock Mechanics and Geological Engineering. G. Allen and Un-
win, London, 1983.



Appendix B: A DIRECT BOUNDARY ELEMENT PROCESSOR

THIS PAGE LEFT BLANK INTENTIONALLY.

B-54



C
Help Files



Appendix C: HELP FILES

§C.1 BACKGROUND

CLIP provides keyword-driven online help display services through the HFILE and HELP
directives documented in Volume II. Online help text does not reside in the Processors
themselves, but on separated card-image files known as help files. To take advantage of
the display services, the structure of help files must conform to the technical specification
presented in this Appendix.

The organization of this Appendix is as follows. §C.2 gives an overview of the NICE
online help philosophy. §C.3 and §C.4 go to the heart of the matter and cover technical
details that should be mastered before you attempt to write help files for your Processors.
The exposition relies heavily on an example file prepared for the DBEM2 (Two-Dimensional
Directly-formulated Boundary Element Method) Processor documented in Appendix B.
§C.5 illustrates the use of messages to implement HELP commands for inexperienced users.
Finally, §C.6 shows the complete help file for DBEM2.

The help file structure described here was originally devised by Charles Perry in 1980
for the NICE demonstration Processors MUP and SNAP.



§C.2 HELP FILE ORGANIZATION OVERVIEW

§C.2 HELP FILE ORGANIZATION OVERVIEW

The structure of a NICE help file closely mimics that of the VAX/VMS online system
help file, which served as inspiration for the original design. The NICE implementation,
however, is not restricted to specific computers.

A NICE help file is a tree of information that maps into a sequential file organszation
readable with standard formatted FORTRAN I/0O. The mapping is controlled by sentinel
characters stored in the first column of each record (card image, line) of the file. These
characters do not show up on display. The arrangement of the information is such that
the file reader never has to backspace over previously read lines while “traversing” the help
file.

Each tree has a root. Each NICE help file has a root section, which is located at the
beginning of the file. The root has a name, which serves as a file label. The root name of
a NICE Processor help file is usually the Processor name.

Logically subordinate to the root are the topic keys, which identify primary sub-
jects such as command names. Topic keys may in turn have subtopic keys which identify
secondary subjects such as command components. Subtopic keys may in turn have sub-
ordinate “subsubtopic” keys, and so on. However, all help files written so far for NICE
Processors have not gone beyond the subtopic level.

As an example, an extract of a help file written for the DBEM2 Processor presented in
Appendix C will be used. The example file contains the following three-level information
tree:



Appendix C: HELP FILES

DBEM2 (root)
BUILD
CLEAR
DEFINE
BOUNDARY _CONDITIONS
ELEMENTS
FIELD _LOCATIONS
MATERIAL
PRESTRESS
SEGMENTS
SYMMETRY _CONDITIONS
BUILD
GENERATE
SOLVE
PRINT
BOUNDARY _CONDITIONS
COEFFICIENTS
ELEMENTS
FIELD RESULTS
MATERIAL
PRESTRESS
RHS
RESULTS
SEGMENTS
SOLUTION
SYMMETRY
STOP

DBEM2 is the root name, which is the same as the Processor name. There are seven topic
keys: BUILD, CLEAR, DEFINE, GENERATE, PRINT, SOLVE and STOP. The topic names are the
same as the action verbs of the DBEM2 commands listed in §B.5.

Topic key DEFINE has seven subtopics identified by keys BOUNDARY_CONDITIONS ...
SYMMETRY CONDITIONS. These subtopic identifiers correspond to the second keyword in
DEFINE commands (see §B.7). Similarly, topic PRINT has eleven subtopics that correspond
to the second keyword in PRINT commands (see §B.9). The other topic keys have no
subtopics.

Assume that CLIP has been told the name of the Processor help file through an HFILE
directive (Volume II). For example, the Processor may have submitted an HFILE directive
as a message via CLPUT (§2.4). Printing of help file sections may now be requested through
HELP directives.
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Some directive examples:

*HELP
*HELP DEFINE
*HELP DEFINE MATERIAL

The first example directive requests only root information. The second one requests general

information on command DEFINE. The third one requests specific information on command
DEFINE MATERIAL.
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§C.3 ORGANIZATIONAL DETAILS

The present section describes the organizational details of NICE help files. The DBEM2 help
file is used throughout as expository example.

The Root Section

Here is a sensible implementation of the root section of the DBEM2 help file:

C=DECK AAAROOT

> DBEM2

? B uild C"lear D"efine G enerate P rint So”"lve St op
*

Help on the DBEM2 Processor commands can be obtained by typing
HELP Topic  Subtopic

where Topics are command names and Subtopics variations of
particular commands.

Available Topics:

BUILD CLEAR DEFINE GENERATE  PRINT SOLVE
STOP

P e e re cem e e b

Now for the details.

First of all, a help file is normally prepared using a text editor. It must therefore
be formatted and sequential. The logical structure of the file is controlled by sentinel
characters that appear in the first column of each line. The help-file reader recognizes the
following sentinel characters:

Symbol Name

> right angle bracket

< left angle bracket

* asterisk

? question mark
period

! exclamation mark

Any line that doesn’t have one of the above sentinels is tgnored by the help file reader.
This fact has practical applications in the maintenance of help files with the help of the
MAX preprocessors, since master source code statements that begin with C= are ignored by
the file reader and therefore harmless.

Five of the sentinels have been used in the above example: >, ?, *, . and !. Now’s
the time to describe the functions they perform.
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The first line, which has a left-angle-bracket sentinel, contains the name of the root:
DBEM2. This name effectively labels the help file. As noted previously, for a Processor help
file the label is usually the Processor name. The name string may be written free-field
after the sentinel. Whenever any section of a help file is listed, this label is written out as
a reminder of which help file is being displayed.

Next comes the question-mark lines. These list topic keys subordinate to the root.
These keys may be written in root plus extension form with the two components being
separated by a caret sign, as explained in §5.1. For example, DEFINE is a topic key with
root D, so it can appear in the question-mark lines as

D"efine

All lowercase letters are automatically converted to upper case for comparison tests, so
any mixture of uppercase of lowercase letters is acceptable. You can render the above as
D~EFINE or d"efine or DEFine; it doesn’t matter.

In question-mark lines topic keys are written free field, with blank separators. No
particular arrangement is expected: topic keys may appear in any order; however, alpha-
betic ordering (as in the example above) is recommended for disciplined file maintenance.
There is no limit on the number of question-mark lines.

The empty line with only an asterisk sentinel is called a terminator. It simply tells
the help file reader that no more topic-key lines follow. (An explicit terminator is needed
because of the sequential nature of the file and the no-backspacing constraint.)

The next group of lines are identified by period and exclamation-mark sentinels. This
is the root help tert, and contains the lines that will actually be printed if a one-word HELP
directive is received. The text that appears on the users’ terminal should be

Help on the DBEM2 Processor commands can be obtained by typing

HELP Topic  Subtopic

where Topics are command names and Subtopice variations of
particular commands.

Available Topics:

BUILD CLEAR DEFINE GENERATE  PRINT SOLVE
STOP

The name enclosed between < and > is the file label. It will appear on all help displays.

CF
-y
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The distinction between period and exclamation mark sentinels only becomes relevant if
a help request names an unknown topic. For example, suppose that CLIP receives the
directive

*HELP ZZZ
The response on your terminal will be
Sorry, no d;;umentation on ZZZ
Available Topics:
BUILD CLEAR DEFINE GENERATE PRINT SOLVE

STOP

The “sorry” message comes from the help file reader. Following the message, the lines
with exclamation-mark sentinels are listed. But how does the reader know that topic ZZZ
doesn’t exist without ever going beyond the root section? Because ZZZ was not listed in
the topic-key dictionary (the question-mark sentinel lines, remember?).

Finally, the last blank line with only an asterisk sentinel is again a terminator; this
now explicitly marks the end of the listable text section.

A Topic Section with Subordinates
Now suppose that the help request is

*HELP DEFINE

The file reader begins searching the topic-key dictionary in the root. Satisfied that the
topic exists, it speeds past the root to plunge deeper into the help file with a single-minded
objective: to find the DEFINE section. This is how such a section may look:

C=DECK DEFINE

> D"EFINE

? B oundary_conditions F"ield _locations M~aterial P restress
7 Se“gments Sy “mmetry_conditions

*
DEFINE
The DEFINE command introduces an input data section.
Format:

DEFINE What

where keyword What identifies the input data section that
follows. The section consists of subordinate commands terminated
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by an END command. The legal keywords are listed below as
subtopics.

Available Subtopics:

BOUNDARY_CONDITIONS ELEMENTS FIELD_LOCATIONS
SYMMETRY_CONDITIONS

!
!
!
!
! MATERIAL SEGMENTS PRESTRESS
1
1
%

The section replicates the basic structure of the root section in many respects. The first
line has the by now familiar right-angle-bracket sentinel with the topic identifier written in
“root plus extension” form. When the help file reader detects this combination it begins
paying attention to the material that follows.

Next are several lines with question-mark sentinels. These list all subtopic keys sub-
ordinate to DEFINE, so they form a subtopic dictionary. This subsection is terminated
by an asterisk-sentinel line. Then comes the listable information: lines with period and
exclamation mark sentinels, the whole being closed by another terminator line. So you can
pretty much guess that in response to the *HELP DEFINE directive, here is what you will

see.

DEFINE

The DEFINE command introduces an input data section.

Format:

DEFINE What

where keyword What identifies the input data section that
follows. The section consists of subordinate commands terminated

by an END command. The legal keywords are listed below as
subtopics.

Available Subtopics:

BOUNDARY_CONDITIONS ELEMENTS FIELD_LOCATIONS
MATERIAL SEGMENTS PRESTRESS
SYMMETRY_CONDITIONS
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A Topic Section With No Subordinates

Topic CLEAR of the example help file has no subordinate keys (i.e, no subtopics). The help
file section has therefore a simpler structure:

subroutine CLEAR
call CLPUTW (’ON°)
return

end

The question-mark sentinel line is empty, which indicates no subtopics, and the exclamation-
mark lines are also missing. But there is a new important thing at the end of the section:
a line that has only a left-angle-bracket sentinel. This is necessary for ordered traversal
of the information tree: it means that there are no more subordinate topics and we must
“back up”. (In computer science terminology: we have reached a leaf node.) We shall go
over this important topic in detail in §C.4.

A Subtopic Section

If you have followed the explanation so far, you should have no trouble with this one. Let’s
assume the directive is '

*HELP DEFINE MATERIAL

Here is the corresponding section:
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C=DECK DEFINEMAT
> M~aterial
?
*

DEFINE
MATERIAL

The DEFINE MATERIAL command introduces subordinate material
property commands of the form

EM
PR

em
nu

where em is the elastic modulus and nu is Poisson’s
ratio. Terminate these commands with an END command.

*
<

This is quite similar to the CLEAR topic because it has no subordinates. Note again the
left-angle-bracket termination line.
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§C.4 PUTTING IT ALL TOGETHER

To assemble the complete help file one has to pay attention to some nesting concepts. This
can be more easily understood by looking at the information tree for the example help file
rendered as a hierarchical diagram:

root

BUILD

CLEAR

DEFINE
BOUNDARY CONDITIONS
ELEMENTS
MATERIAL
FIELD_LOCATIONS
PRESTRESS
SEGMENTS
SYMMETRY

GENERATE

PRINT
BOUNDARY_CONDITIONS
COEFFICIENTS
ELEMENTS
FIELD_RESULTS
MATERIAL
PRESTRESS
RESULTS
RHS
SEGMENTS
SOLUTIGH
SYMMETRY

SOLVE

STOP

This hierarchical tree actually defines the order in which the sections are juxtaposed to
form the help file. First comes the root section, then a topic section, then its subordinate
subtopics, then another topic section, and so on.

There is in fact considerable more latitude than the above structure suggests. Things
at the same level need not be alphabetically ordered: they may actually appear in any
order. For example, the BUILD section doesn’t have to be the section that follows the root;
you can make CLEAR or DEFINE or STOP the first one. Similarly, there is no need for the
subordinate subtopics of, say, DEFINE to be alphabetically ordered. However, you cannot
put the DEFINE subtopics after PRINT and vice versa: adjacency implies dependency.

The alphabetical ordering used in the example above is nonetheless recommended for
maintaining help files, as it simplifies the work involved in inserting new help sections
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corresponding to commmands or command options you have just added to the Processor.
Particularly important is the maintenance of help file consistency between dictionaries and
topic sections. For example, suppose you have added a PLOT command to DBEM2. After
writing a PLOT help section, you should not forget to go to the key dictionary located in
the root section and add the PLOT keyword there.

Traversing the Help Tree

Whoever prepares a help file must be aware of the interplay between right-angle-bracket
and left-angle-bracket sentinels. This understanding is necessary to fix the “lost help”
difficulty discussed later in this subsection.

Much of the work of the help file reader is spent traversing across hundreds or even
thousands of lines looking for the right key combinations. Conventionally the root is at
level zero, topics at level one, subtopics at level two, and so on.

Upon leaving the root, traversal proceeds as follows: a right-angle-bracket sentinel
increments the tree level by one unit; a left-angle-bracket sentinel decrements the tree
level by one unit. Keeping track of the level is crucial for matching the right subject.
For example, nothing prohibits the same subtopic key from appearing more than once
in association with different subtopics. (In fact this is quite common, see e.g. DEFINE
SEGMENT and PRINT SEGMENT in our sample file.)

To further illustrate the angle-bracket business, let us reproduce the example hierar-
chical diagram but now with > and < inserted in the proper places:
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> root

> BUILD <

> CLEAR <

> DEFINE
BOUNDARY_CONDITIONS <
ELEMENTS <
FIELD_LOCATIONS <
MATERIAL <
PRESTRESS <
SEGMENTS <
SYMMETRY < <
> GENERATE <
> PRINT
BOUNDARY_CONDITIONS <
COEFFICIENTS <
ELEMENTS <
FIELD_RESULTS <
MATERIAL <
PRESTRESS <
RESULTS <
RHS <
SEGMENTS <
SOLUTION <
SYMMETRY < <
> SOLVE <
> STOP < <

VvV V V V V VvV V

vV V V V V V V V V VvV v

This diagram ought to make everything said so far perfectly clear.

A common problem encountered with new or updated help files is the “where is it?”
syndrome. The user types, e.g. *HELP PRINT; no diagnostics appear but nothing comes
out! This is usually caused by either leaving out a left-angle-bracket sentinel line, or by
having one too many.

To pinpoint the trouble spot, try displaying topics stored nearer and nearer the root
until the display appears. Then backtrack further from the root until the display suddenly
disappears. This “bisection” troubleshooting technique is foolproof.
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§C.5 IMPLEMENTING HELP COMMANDS AS MESSAGES

The user of a NICE Processor for which a help file exists can always get online help through
the HFILE and HELP CLIP directives. But this is too much to expect from inexperienced
users, who are hardly likely to know what a directive or a help file is, let alone what'’s the
name of the latter. And such users are the ones in more need of help ...

What the beginner user of a Processor such as DBEM2 wants to do is to type HELP
— not *HELP — and the root section appears magically on the screen; and to type HELP
DEFINE and the DEFINE section appears on the screen. This can be easily implemented
through messages as illustrated here for the DBEM2 Processor.

We first expand the original DOCOMMAND subroutine to install a HELP command (which
may be abbreviated to H):

*

Top level command interpreter for DBEM2
subroutine DO_COMMAND (verbd)

implicit none
character key*8, verbx(*)
logical CMATCH

key = verbd

if (CMATCH (key, 'B"UVILD')) then
call BUILD

else if (CMATCH (key, 'C"LEAR’)) then
call CLEAR

else if (CMATCH (key, 'D"EFINE’)) then
call DEFINE

else it (CMATCH (key, ‘G ENERATE’)) then
call GENERATE

else if (CMATCH (key, 'H"ELP')) then
call HELP

else if (CMATCH (key, 'P"RINT')) then
call PRINT

else if (CMATCH (key, 'SO"LVE')) then

call SOLVE
else if (CMATCH (key, 'ST-OP')) then
call STOP
else
print *, 'xx* Jllegal or ambiguous verb: °', Kkey
end if
return
end
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Then we write subroutine HELP, which sends the necessary one-liners via CLPUT:

Scream for help

subroutine HELP

implicit none

character*8 CCLVAL

logical first_entry

save first_entry

data first_entry /.true./

if (first_entry) then
call CLPUT (’'*hf drdi:[felippa.manuals.clip.3.bem)dbem2.hlp’)

first_entry = .false.
end if
call CLPUT ('xhelp '//CCLVAL(2)//' '//CCLVAL(3))
return
end

On first entry to HELP, logical flag first_entry is true, and HELP informs CLIP of the help
file name by sending an HFILE directive. (The full name of the help file has been assumed
to be drd1: [felippa.manuals.clip.3.bem)dbem.hlp on a VAX/VMS system.)

Then the subroutine manufactures a HELP directive by catenating keywords entered
by the user and submits it as a message. A maximum of two keywords after HELP has been
assumed; it should be fairly obvious how to extend the construction to as many help levels
as necessary.
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§C.6 THE EXAMPLE HELP FILE

We conclude the Appendix with a listing of the complete DBEM2 help file. The reader
should pay no attention to the C=deck statements; these are used only for file maintenance
and are ignored by the CLIP help file reader.

C=DECK AAAROOT

> DBEM2

? B"uild C"lear D efine G"enerate P rint So"lve St~ op
%

Help on the DBEM2 Processor commands can be obtained by typing
HELP Topic  Subtopic

where Topics are command names and Subtopics variations of
particular commands.

Available Topics:

BUILD CLEAR DEFINE GENERATE  PRINT SOLVE
STOP

DECK BUILD
B-UILD

¥ VWV QO ¥ = e s cem v
H

BUILD

This command builds the Boundary Element tables of the discrete
model.

Format:
BUILD

The BUILD command must be given after the problem-definition
input data is complete, and before the GENERATE command.

=DECK CLEAR
C"LEAR

¥ WV QA ¥ -

CLEAR

This command clears all problem definition arrays and sets
certain defaults.

Format:
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CLEAR

The CLEAR command is particularly useful if you are solving
several unrelated problems in one run.

;
<
C=DECK DEFINE
> D"EFINE
? B oundary_conditions F~ield_locations M"aterial P restress
? Se"gments Sy mmetry_conditions
sk
DEFINE
The DEFINE command introduces an input data section.
Format:
DEFINE What
where keyword What identifies the input data section that
follows. The section consists of subordinate commands terminated
by an END command. The legal keywords are listed below as
. subtopics.
!
! Available Subtopics:
!
! BOUNDARY_CONDITIONS ELEMENTS FIELD_LOCATIONS
! MATERIAL SEGMENTS PRESTRESS
! SYMMETRY_COUDITIONS
!
*
C=DECK DEFINEBOU
> B oundary_conditions
?
*

DEFINE
BOUNDARY_COUDITIONS

The DEFI!IE BOUNDARY_CONDITIONS commands introduces
BC commands that specify displacements and/or stresses on
boundary segments. The BC commands have the form

SEG=iseg {SS = sig_s | SD=u_s} {NS=sig_n | ND = u_d}

in which iseg is the segment number. 5S means shear stress,
SD shear displacement, NS normal stress and ND normal
displacement; the value that follows is the prescribed

value. For stresses, the value is the resultant force.

Terminate these commands with an END command.

If no BC is specified for a segment, a stress-free condition
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is assumed.

=DECK DEFINEELE
E”lements

DEFINE
ELEMENTS

§C.6 THE EXAMPLE HELP FILE

The DEFINE ELEMENTS command introduces subordinate commands
that specify into how many boundary elements segments are to
be subdivided. These commands have the form:

SEG = isegl, ... isegk ELEM = nel, ... nek

This specifies that segment
nel (ge 1) boundary elements,

isegl
segment

is to be subdivided into

iseg2 into

ne2 elements, and so on. Terminate these commands with

and END command.

=DECK DEFINEFIE
Field_locations

DEFINE
FIELD_LOCATIONS

The DEFINE FIELD_LOCATIONS command introduces subordinate
commands that specify field lines at which stresses and
displacements are to be evaluated later in response to a
These commands have the form

PRINT RESULTS/FIELD command.

LINE=ilin FIRST=xf,yf LAST=x1,yl

[(POINTS=nintpts]

LINE is a field-line identification number (1 to 100).

The line extends from (xf,yf) to (x1,yl). The optional POINTS
phrase specifies that output is required at nintpts
intermediate points to be inserted, equally spaced,

between the first and last point. 1If
no intermediate points are inserted.

commands with an END command.

=DECK DEFINEMAT
M~aterial

DEFINE

C-19
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MATERIAL

The DEFINE MATERIAL command introduces subordinate material
property commands of the form

EM
PR

em
nu

where em is the elastic modulus and nu is Poisson's
ratio. Terminate these commands with an END command.

*
<
C=DECK DEFINEPRE
> P restress
?
%*
DEFINE
PRESTRESS
The DEFINE PRESTRESS command introduces subordinate
commands that specify a uniform initial stress
(prestress) state. These commands have the form
SXX0 = sig_xx
SYYO = sig_yy
SXYO = sig_xy
The SXXO command specifies the sigma_xx prestress component,
and so on. Nonzero prestress data is particularly useful in
unbounded-domain problems, for which it takes the role of
conditions at infinity. Terminate this data with an END command.
If no prestress data is specified, the initial state
is assumed to be stress free.
*
<
C=DECK DEFINESEG
> 5" egments
?
*
DEFINE
SEGMENTS

The DEFINE SEGMENTS command introduces subordinate commands
that specify the geometry of boundary segments on which boundary
elements will be located. These commands have the form

SEG=iseg BEGIN=xb,yb END=xe,ye

in which iseg is the segment identification number
(1 to 100). The segment extends from (xb,yb) teo (xe,ye)
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Terminate these commands with an END command.

The BEGIN/END specification establishes a boundary traversal
sense. The traversal should be clockwise if you are solving
a finite-domain problem enclosed by the segmented boundary;
counterclockwise if you are solving an unbounded domain
problem (e.g a cavity) outside the segmented boundary.

*

<

C=DECK DEFINESYM

> Sy “mmetry_conditions

?

%

DEFINE
SYMMETRY_CONDITIONS
The DEFINE SYMMETRY_CONDITIONS command introduces subordinate
commands that specify symmetry conditions about 1 or 2 axes
parallel to the coordinate axes. These commands have the
form
XSYM = a
YSYM = b

The XSYM command specifies x=a as an axis of symmetry,
and the YSYM command specifies y=b as an axis of
symmetry. Terminate this information with an END command.
If no symmetry conditions are specified, no symmetry
conditions are assumed to hold.

;

<

<

C=DECK GENERATE

> G"enerate

?

*

GENERATE

This command causes the discrete element equations, which consist
of the influence coefficient matrix and the right-hand-side
(forcing) vector, to be generated.

Format:

GENERATE

The GENERATE command must be given after a BUILD command but
before a SOLVE command.
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“oundary_conditions C~ocefficients F~ield_locations
? M"aterial P restress

? R"hs Re“sults

? Se“gments S-olution Sy~“mmetry_conditions

%

PRINT

The PRINT command requests printing of input data,
model definition data, or results data.

Format:
PRINT What

where keyword What identifies what is to be printed.
The legal keywords are listed below as subtopics.

Available Subtopics:

BOUNDARY_CONDITIONS COEFFICIENTS ELEMENTS
FIELD_LOCATIONS MATERIAL PRESTRESS
SEGMENTS RESULTS RHS
SOLUTION SYMMETRY_CONDITIONS

ECK PRINTBOU
“oundary_conditions

*.Qv(“)*.-......._....-._._.
- N~

PRINT
BOUNDARY_CONDITIONS

The PRINT BOUNDARY_CONDITIONS command prints the stress/
displacement boundary conditions in effect for all defined
boundary elements.

=DECK PRINTCOE
C oefficients

¥ VWV A ¥

PRINT
COEFFICIENTS

The PRINT COEFFICIENT command prints the matrix of

boundary influence coefficients produced by a GENERATE
command. Primarily used for debugging.
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=DECK PRINTELE
E“lements

PRINT
ELEMENTS

The PRINT ELEMENTS command prints the Boundary Element data
produced by the last BUILD command.

=DECK PRINTFIE
F~ield_locations

PRINT
FIELD_LOCATIONS
The PRINT FIELD_LOCATIONS command prints information on

field lines at which stresses and displacements are to be
computed in response to a PRINT RESULTS /F command.

=DECK PRINTMAT
M-aterial

PRINT
MATERIAL

The PRINT MATERIAL command prints material property data.

=DECK PRINTPRE
P restress

PRINT
PRESTRESS

The PRINT PRESTRESS command prints initial stress data.

=DECK PRINTRES
R"esults

PRINT
RESULTS
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An unqualified PRINT RESULTS command prints computed stresses
and displacements at boundary element midpoints.

If the command is qualified with keyword FIELD, stresses
and displacements at specified field locations will be
computed and printed. :

K PRINTRHS

PRINT
RHS

The PRINT RHS command prints the right-hand-side (boundary
force) vector produced by a GENERATE command. Primarily used
in debugging situations.

=DECK PRINTSEG
Se“gments

¥ YV QA ¥ -

PRINT
SEGMENTS

The PRINT SEGMENTS command printe geometric information on
defined boundary elements as well as the number of
boundary elements per segment.

=DECK PRINTSOL
So”"lution

*¥ N9V EOOA ¥ -

PRINT
SOLUTION

The PRINT SQLUTION command prints the boundary solution vector
produced by a SOLVE command. Primarily used in debugging
situations.

=DECK PRINTSYM
Sy “mmetry_conditions

¥ VI VAOAA ¥ -
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¥ VWVAOA ¥ -
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§C.6 THE EXAMPLE HELP FILE

PRINT
SYMMETRY_CONDITIONS

The PRINT SYMMETRY_CONDITIONS command prints symmetry
conditions data.

=DECK SOLVE
S”olve
SOLVE

This command causes the discrete element equations to be
solved for the boundary element unknows.

Format:
SOLVE

The SOLVE command must be given after a GENERATE command.

=DECK STOP
St-op
STOP
This command terminates the execution of the Processor.

Format:

STOP
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Appendix D: LOW-LEVEL UTILITIES

§D.1 GENERAL DESCRIPTION

This Appendix presents some low-level utilities which are not part of CLIP itself, but are
heavily used by CLIP as well as by other components of the NICE architecture. Most of
these utilities deal with character manipulation.

The calling sequences of these utilities is described here because they may be useful
in programming the Processor shell. We have seen some examples in Appendix A.
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§D.2 CONVERT CHARACTER TO HOLLERITH: CC2H

CC2H converts a FORTRAN 77 character string to a Hollerith string. The first destination
character is assumed to be word aligned.

Calling Sequence

CALL CC2H (C, H, N)

Input Arguments
C Source character string.

N Number of characters to be moved. No operation if N < 0,

Output Argument

H Receiving Hollerith string (typed integer, floating-point or logical in the
main program).
Characters are stored in H beginning at the leftmost location. If H is of
INTEGER or REAL type, this is necessarily word-aligned. CC2H does not
blankfill H, however.

REMARK D.1

The implementation of CC2H has turned out to be surprisingly machine-dependent. So far, five
implementations have had to be written for five computers (CDC, CRAY, IBM, UNIVAC and
VAX). Three versions are presented below, as the techniques followed may be useful for similar
circumstances.

REMARK D.2

The VAX implementation, which takes advantage of the LOGICAL*1 data type provided by the
VAX-11 FORTRAN compiler, is the simplest and most efficient:

subroutine CC2H
$ (c, h, n)
implicit none
logical*l h(*)
character c(*)
do 3000 k = 1,n
h(k) = ichar(c(k))
3000 continue
return
end
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REMARK D.3

The implementation for a word-addressable machine must make use of bit-manipulation (Boolean)
functions provided by the host FORTRAN compiler. This is illustrated by the CRAY version:

subroutine CC2H

$ (¢, h, n)
characterxi  c(*)
integer h(x), ich, jch, k, n, iwd, lcs
do 3000 k = 1,n
iwd = (k-1)/8 + 1
lcs = 8%( 8xiwd - (k-1))
ich = shift(ichar(c(k)),56)
jeh = and (h(iwd),shift(mask(72),1lcs) )
h(iwd) = or (jch, shift(ich,lcs))
3000 continue
return
end

REMARK D.4

On byte addressable machines in which the compiler provides the LOGICAL*1 data type but pro-
hibits storing an integer into it, one may use an internal READ construction illustrated by the

IBM version:

subroutine CC2H

$ (¢, h, n)
character+(*) ¢
logicalx1 h(*)
ml = 0
do 3000 k = 1,(n+127)/128
m2 = min(mi+n-128%(k-1) ,m1+128)
read (c(mi+1:m2),°(128A1)°'), (h(i),i=m1+1,m2)
mil = m2
3000 continue
return
end
REMARK D.5

The above versions have been extracted from the master source code of CC2H via the preprocessor
MAX.

EXAMPLE D.1
Four characters per word are assumed.
INTEGER H(5)

CALL CC2H (’'X-label’, H, 7)
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Word H(1) receives 'X-1a‘ while characters 1-3 of H(2) receive 'bel’. The remaining character
positions in H are not altered.
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§D.3 CONVERT CHARACTER TO OFFSET HOLLERITH: CC2HO

CC2HO converts a FORTRAN 77 character string to a Hollerith string. The first destination
character need not be word aligned.

Calling Sequence

CALL CC2HO (C, H, J, N)

Input Arguments
C Source character string.

J Offset of first receiving character in H. May be zero through NCWORD-1,
where NCWORD is the number of characters per word. If J is outside this
range the results are unpredictable.

N Number of characters to be moved. No operation if N < 0.
Output Argument

H Receiving Hollerith string (typed integer, floating-point or logical in the
main program).
Characters are stored in H beginning at J characters from the leftmost
(word aligned) character position.

REMARK D.6
CALL CC2HO (C, H, 0, N) (zero third argument) is the same as CALL CC2H (C, H, N).

EXAMPLE D.2

Four characters per word are assumed.

LOGICAL QQ(3)

CALL CC2H ('Level: ', QQ, 12)
CALL CC2HO (’22', QQ(2), 3, 2)

On return from CC2HO, QR will contain 12HLevel: 22
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§D.4 CONVERT HOLLERITH TO CHARACTERS: CH2C

CH2C converts a Hollerith string to a FORTRAN 77 character string. The first source
character is assumed to be word aligned.

Calling Sequence

CALL CH2C (H, C, N)

Input Arguments

H Source Hollerith string. Array H may be of type integer, floating-point
or logical in the calling program,

N Number of characters to be moved. No operation if N < 0.

Output Argument
C Receiving character string.

REMARK D.7

The implementation of CH2C is similar to that of CC2H (§D.2), and is likewise machine-dependent.
So far, five implementations have had to be written for five computers (CDC, CRAY, IBM,
UNIVAC and VAX).

EXAMPLE D.3
Four characters per word are assumed.

INTEGER H(3)
CHARACTER*12 CH
DATA  H /4Habcd, 4Hefgh, 4Hijkl/

c = ' emc e e ’
CALL CH2C (H(2), €(3:7), 4)

On return from CH2C, CH will contain '--efgh------ .
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§D.6 CONVERT OFFSET HOLLERITH TO CHARACTER: CHO2C

CHO2C converts a Hollerith string to a FORTRAN 77 character string. The first source
character need not be word aligned.

Calling Sequence

CALL CHO2C (H, J, C, N)

Inputs Arguments
H Source Hollerith string.

J Offset of first source character in H. May be zero through NCWORD-1,
where NCWORD is the number of characters per word. If J is outside this
range the results are unpredictable.

N Number of characters to be moved. No operation if N < 0.
Output Argument

c Receiving character string.

REMARK D.8
CALL CHO2C (H, O, C, N) (zero second argument) is the same as CALL CH2C (H, C, N).

EXAMPLE D.4
Four characters per word are assumed.

INTEGER H(3)
CHARACTER*12 CH
DATA  H /4Habcd, 4Hefgh, 4Hijkl/

CH= et d e ———a f
CALL CHO2C (H(2), 2, C(3:7), 4)

On return from CHO2H, CH will contain ’'--ghij------ .
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§D.6 COMPARE KEYWORDS: CMATCH

CMATCH is a logical function that compares two character strings: an alleged keyword
and an internal keyword, for equality. The internal keyword consist of a “root” and an
optional “extension” portion. These two portions may be separated by a caret character
as described in §5.1. CMATCH first compares root characters, and reports failure if no match
occurs. If root match is achieved, it continues comparing extension characters until:

(a) A mismatch is found;
(b) The input or output key is exhausted; or
(c) A blank character is found in either key.

The alleged key may also contain wild characters: a percent sign matches any character
at that particular position in the internal key, and a trailing asterisk matches all characters
that follow.

Typical Calling Sequence

LOGICAL CMATCH

IF (CMATCH (KEY1i, KEY2)) THEN

Input Arguments
KEY1 Alleged keyword; typically this is entered by the user.
KEY2 Internal keyword against which KEY1 is compared.

Function Return

CMATCH .TRUE. if equality verified; else .FALSE.
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REMARK D.9

This is the present iinplementation of CMATCH as extracted from the master source code via MAX:

logical function CMATCH

$ (keyl, key2)
implicit none
character*(*) keyl, key2
character chi, ch2
integer i, j., root
i =
root = 1
CMATCH = .TRUE.
do 2000 j = 1,len(key2)
ch2 = key2(j:j)
if (ch2 .eq. '"") then
root = O
go to 2000
end if
if (ichar(ch2) .ge. ichar(’a’) .and.
$ ichar(ch2) .le. ichar('z')) then
ch2 = char(ichar(ch2)-(ichar(’'a’)-ichar('A’)))
root = O
end if
chl = '
i= i+ 1
if (i .le. len(keyl)) chl = key1(i:i)
if (¢chi .eq. ' ' .and. root .eq. 0) return
if (chl .eq. '*') return
if (chi .eq. '%") chi = ch2
if (e¢hl .ne. ch2) then
CMATCH = .FALSE.
return
end if
if (c¢h2 .eq. ' ') return
2000 continue
return
end

There are no machine dependencies except for the IMPLICIT NONE statement, which is provided
only by the best FORTRAN compilers.

EXAMPLE D.5

CMATCH ('COPY’, 'COPY’) returns
CMATCH ('CORRECT’, ’'CO°PY’) returns
CMATCH (’COPYALL', *CO°PY') returns
CMATCH (’CO%’', 'COM"PARE’) returns
CMATCH ('COY%%PARE’, 'COM"PARE') returns

D-10
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§D.7 FIND BATCH OR INTERACTIVE: FBI

FBI finds whether the run is batch or interactive.

Calling Sequence

CALL FBI (RUNMOD)

Input Arguments

None.

Output Argument

RUNMOD An integer variable that receives the run mode indicator.
0: batch mode.
>0: interactive mode.
On the VAX there is further breakdown of the interactive case:
2: interactive mode, input coming from terminal. (also called conver-
sational mode).

1: interactive mode, input from source other than terminal.

REMARK D.10

As can be expected, the implementation of FBI is extremely machine dependent, because run type
information has to be provided by the operating system. Here is the VAX/VMS version, which is
currently the most elaborate one:

subroutine FBI

$ (runmod)

implicit none

integer runmod

integer*2 itmlst(8)

integerx*2 item_code, buffer_length

integer buffer_addr, sts_flags, TERM_TEST

character+12 logical_name

equivalence (buffer_addr,itmlst(3))

data itmlst /4, '0305'X,6+0/

runmod = O

buffer_addr = %loc(sts_flags)

call SYS$GETIPI (,,,itmlst,,,)

if (iand(sts_flags,'4000'X) .eq. 0) then
runmod = TERM_TEST (’'SYSS$INPUT') + 1

end if

return

end
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integer function term_test (logical_name)
implicit none

integer DIB$B_DEVCLASS, DIB$K_LENGTH, DC$_TERM
character*(*) logical_name
parameter (DIB$B_DEVCLASS
parameter (DC$_TERM

byte dib_record (0:4)
byte dib_b_devclass
character*5 chr_record
equivalence (chr_record,dib_record)

equivalence (dib_b_devclass, dib_record(DIB$B_DEVCLASS))
call SYS$GETDEV(logical_name,,chr_record,,)
term_test = O

if (dib_b_devclass .eq. DC$_TERM) term_test = 1

return

end

* 00000004 °X)
*00000042°X)

REMA

RK D.11

And here is the CDC/NOS implementation:

subroutine FBI
$ (runmod)
integer runmod
integer runtyp
runmod = O
call JOBSTAT (6HJOBORG, runtyp)
if (runtyp .eq. 3) runmod = 1
return
end
REMARK D.12

Some operating systems refuse to give information of this type. In such a case FBI returns zero.
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§D.8 GET LENGTH EXCLUDING TRAILING BLANKS: LENETB

Function LENETB receives a character string as an argument, and returns its length when
all trailing blanks are excluded.

Calling Sequence

L = LENETB (TEXT)

Input Argument
TEXT
Character string.
Function Return
LENETB The length of the argument string excluding all trailing blanks found

when scanning it backwards starting at the passed length. If TEXT con-
tains only blanks, a length of zero is returned.

REMARK D.13

Here is the current implementation of LENETB:

integer function LENETB

$ (c)
implicit none
character*(*) ¢
integer i

LENETB = 1len(c)
do 2000 i = len(c),1,-1
if (c(i:i) .ne. * ') return
LENETB = 1i-1
2000 continue
return
end

EXAMPLE D.6
LENETB(' Hi there ') returns 9, but LENETB(' ') returns zero.
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