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ABSTRACT

This report presents the results for Task III, Automatic-
Programming of Simulation Models, on NASA/MSFC Grant NAG8-641. Mr. John W.
Wolfsberger was the Technical Monitor. The research was also funded in
part by contract ADECA-UAH-9001 from the Science, Technology, and Energy

Division, Alabama Department of Economic and Community Affairs.
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1.0 INTRODUCTION

The term Automatic Programming (AP) has been defined as an applica-
tion of Artificial Intelligence (AI) dealing withAautomating some aspects
of the computer programming process. In other words, automatic programming
uses another program, an AP system, to raise the level of specifying
program instructions., Stated from the practitioner's point of view, AP
systems are programs that help programmers write programs.

The objective of automatic programming is to improve the overall
environment for describing the program. This improved énVironment is
realized by a reduction in the amount of detail that the programmer needs
to know and is exposed to. Furthermore, this improved venvironment is
achieved by a specification language that is more natural to the user's
problem domain and to the user's way of thinking and looking at the
problem.

The goal of this research is to apply the concepts of automatic
programming (AP) to modeling discrete event simulation systems. Specific
emphasis is on the design and development of simulation tools to assist the

modeler define or construct a model of the system and to then automatically
write the corresponding simulation code in the target simulation language,
GPSS/PC. A related goal is to evaluate the feasibility of various
languages for constructing automatic programming simulation tools.
The following domains have been selected for the construction and
evaluation of these AP simulation tools:
° Manufacturing systems that can be described with assembly and
subassembly lines where parts are being added to an assembly;
manufacturing cells that provide parts to the assembly and

subassembly lines; and inventory transfers of parts between the




manufacturing cells and assembly lines.

° Reliability networks that can be described in terms of activities
with starting and ending nodes; activity times; activity failures
and repairs; and the effect or the interdependency of failures on

other activities.

2.0 TRADITIONAL SIMULATION APPROACH

Figure 1 outlines the traditional approach to simulation modeling.
The traditional approach requires that the simulationist first have a
thorough underétanding of the problem or system to be modeled. Given this
knowledge, the simulationist must then define the model of the system
resulting in a detailed problem specification.

The next step is for the simulationist to write the simulation
program, following the problem specification, in the selected target
language. The simulation program is then debugged to remove all syntax
errors. Following debugging, the model must be verified and validated.

Next, the user defines the experiment and the model is executed.

3.0 ARTIFICIAL INTELLIGENCE AND SIMULATION

The current research into coupling Al with the traditional simula-
tion approach is concentrated into two specific areas. The first area is
the use of AI concepts for automating the problem specification process.
The second area, and the more difficult area, is the use of Al for auto-
mating the writing of the executable code in the target simulation
language.

3.1 Automatic Problem Specification

Figure 2 1is a schematic of the automatic problem specification

approach for coupling Al with simulation. This approach can be considered
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as an intelligent assistant to the user in defining the simulation model.
Some authors call this approach the specification acquisition element of
the simu]at{on model construction (Murray and Sheppard 1988).

Two types of knowledge, or knowledge bases, are used to support the
automatic problem specification. These types of knowledge are problem
domain knowledge and simulation modeling knowledge. The domain knowledge
is knowledge related to a specific problem. Consequently, each problem
domain requires its own knowledge base. For example, the Electronics
Manufacturing Simu]at%on System (Ford and Schroer 1987) is domain specific
to electronics assembly. The simulation modeling knowledge is knowledge
necessary in construéting the final simulation code in the target language.

These knowledge bases are then used in defining a set of rules that
govern the interactive dialogue between the user and the system. The
system will execute different logic by firing different rules based on the

user's response to specific questions. At the completion of this interac-

“tive dialogue, the system will have defined an internal specification of

the problem or model.

Three approaches are commonly used to assist the user define the
simulation model, or problem specification. These approaches are a natural
language interface, an interactive graphical interface, and an interactive
dialogue interface.

The natural Tlanguage interface (NLI) 1lets the user specify the
problem in free text format. The NLI then attempts to parse the text and
automatically generate the simulation code in the target language. One of
the earliest NLI's was the natural lanquage programming for queueing
simulations (NLPQ) (Heidorn 1974). Through an interactive dialogue in

English, the NLPQ system creates an internal description of the queueing



problem and generates the simulation code in the target language GPSS. A
more recent NLI was the Electronic Manufacturing Simulation System (EMSS)
(Ford and Schroer 1987). The system is constructed around a dictionary of
electronics assembly words and expressions. The EMSS parses the text into
a conceptual dependency representation which is used to automatically write
the simulation code in the target language SIMAN.

The second approach to assist the user specify the problem, which
is less difficult than the NLI, is an interactive graphical interface
(IGI). An IGI consists of a menu of icons that are mouse selectable, to
construct a graphical representation of the system. Once the system ha§
been constructed, the user 1inputs the attributes corresponding to the
icons. Khoshnevis and Chen (1986) have developed an object oriented
approach for graphically modeling a system. A library of idcons is
available to the user in constructing the model. The system is rule based
and written in common LISP on an IBM PC. Once the graphical description of
the model is completed, the system automatically generates the equivalent
SLAM simulation code.

The third approach to assist the user define the problem specifica-

tion is the interactive dialogue interface. This approach is similar to
the graphical interface with the exception of the icons. Instead, the user
responds to a series of questions in defining the problem specification.
Several systems have been developed using the 1nteract1vg dialogue
approach. Haddock and Davis (1985) have developed a flexible manufacturing
system (FMS) simulation generator. Brazier and Shannon (1987) have deve-
loped an automatic programming system for modeling automated guided vehicle
systems. The system is written in Turbo Prolog for an IBM PC and generates

SIMAN code. More recently, a knowledge based model construction system has



been developed to automate model definition and code generation (Murray and
Sheppard 1988). The system automatically writes executable SIMAN code.

3.2 Automatic Simulation Writing

Figure 3 is a schematic of the automatic code generation approach
for coupling AI with simulation. Basically, two approaches exist for
taking the internal problem specification and then automatically generating
the executable code in the target simulation language. The first approach
is to generate the simulation code directly from the internal represen-
tafidn of the problem specification.

The second approach is to use a library of predefined macros to
aésist in the automatic generation of the simulation code. The advantage
of such an approach is the ability to solve more complex problems than
those previously discussed in the literature. The disadvantage is that

most macros are domain specific. As a result, additional macros are needed

to solve another problem domain.

Two types of knowledge are used to support the automatic simulation
writing. These types of knowledge are simulation modeling knowledge and
target language knowledge. The simulation modeling knowledge is the same
knowledge base used for the automatic problem specification in Figure 2.
The target language knowledge is knowledge specific to a simulation
language. These knowledge bases are then used in defining a set of rules
for constructing the appropriate lines of simulation code from the internal

problem specification.

4.0 SCOPE OF RESEARCH
The following automatic programming simulation tools have been

completed during the first year of the contract:
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° AMPS - Automated Manufacturing Programming System for the
Symbolics 3620 Workstation
° ANPS/PC - Automated Network Programming System for the PC
Also the following automatic programming simulation tools are under
construction and evaluation and should be completed during the second year:
° AMPS/Graphics - Automatic Manufacturing Programming System (using
a graphical interface) for the Symbolics 3620 Workstation
° AMPS/PC - A PC version of AMPS written in Turbo Pascal
° ANPS/MAC II - An Apple MAC II version of ANPS written in
HyperCard
Table 1 gives a summary of the simulation tool development and the
development platforms. The following two sections will briefly discuss the
AP systems that were completed during this contract period. These two AP

systems are the AMPS for the Symbolics 3620 and fhe ANPS for the PC.

5.0 AUTOMATIC MANUFACTURING PROGRAMMING SYSTEM
The Automatic Manufacturing Programming System (AMPS) is a proto-
type Al based system that has been structured using the conceptual foun-
dation outlined in the previous sections. Specifically, the AMPS system
is a simulation assistant to assist the modeler of manufacturing systems
define his problem through an interactive user dialogue and to then automa-
tically generate the corresponding GPSS/PC simulation code.
The AMPS system domain is those manufacturing systems that can be
described as having:
° Assembly dnd subassembly lines where parts are being added to an
assembly.

° Manufacturing cells that are providing parts to the assembly and



Table I. Development Platforms
Systems Hardware Software Status Documentation
AMPS Symbolics 3620 LIsp Complete UAH Report #659

UAH Report #720
AMPS Texas Instruments LISP Complete
Explorer
ANPS/PC PC Turbo Prolog Complete UAH Report #704
AMPS /Graphics Symbolics 3620 Lisp windows Under development
and flavors

AMPS/PC PC Turbo Pascal Under development
ANPS /MAC MAC II HyperCard Under development
AMPS/PC PC Turbo € Not started
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subassembly lines.
° Inventory of parts being moved between the manufacturing cells
and subassembly lines.

5.1 AMPS System Overview

Figure 4 is an overview of the AMPS system operation. Once the
user has scoped the problem domain, the user sits at the Symbolics 3620 AI
workstation and responds to the questions from the interface program.
Based on the responses, the interface program creates an internal problem
specification file. This file includes the manufacturing process network
flow and the attributes for all stations, cells and stock points. The
problem specification file 1is then used as input to the automatic code
generator program which generates the simulation program in the target
language GPSS/PC. The output of the code generator program is a GPSS/PC
program file which is then doWn]oaded to an IBM PC.

The GPSS/PC system (Minuteman 1986) is resident on the PC. The
user then adds the experimental frame, such as the run statements, and the
GPSS/PC simulation program is executed. The output file is stored on a
diskette or printed on the PC. To change the GPSS/PC model, the user
returns to the Symbolics 3620 and recalls the problem specification. The
user interface then provides the simulationist with a number of options to
change or modify the problem specification. The code generator will then
rewrite the GPSS program.

The AMPS system is written in LISP for the Symbolics 3620 worksta-
tion. The library of macros is written in GPSS/PC. AMPS contains 750
lines of LISP code. The simulation code generated by AMPS is GPSS/PC
(Minuteman 1986). |

5.2 Library of GPSS Macros

11
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In analyzing most manufacturing systems at the macro level, the
following functions are generally similar in nature:

® Assembly - adding part X to part Y resulting in part Z

° Fabrication - making of part X from part Y

° Inspection - inspecting part X
Inventory transfer - moving part X or a cart of part X from stock
point A to stock point B

® Simple operation - performing an operation on part X resulting in

a modified part X

These five functions represent the current domain of manufacturing
functions within the AMPS system. Once the manufacturing functions have
been defined, the GPSS subroutines are written for the functions. These
routines constitute a library of predefined GPSS subroutines or macros.
This 1ibfary of macros is then called, when needed, in the construction of
the GPSS simulation model. Currently, the AMPS system has the following
five GPSS subroutines:

° Assembly station

° Manufacturing cell

o

Inventory transfer

® Inspection station

° Task station.
Figure 5 briefly describes each of these macros. For example, the assembly
station macro has the capability of simulating the adding of a variety of
different items to the incoming part resulting in a modified part that is
then transferred to the next destination, a station or stock point. For
examp]e,-in Figure 5, station STAl assembles two part C's and three part

D's to the incoming part A resulting in Part B.

13
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The manufacturing cell makes a cart of specified parts when an
order is received. The cell can make multiple part types. For example,
cell MC1 makes one part A from two part C's and three part D's and one part
B from one part D. The task station performs an operation on a part. For
example, in Figure 5 an operation is performed at station STA4 on part E
resulting in a modified part E. The inspection station inspects a defined
percentage of parts. Of those inspected, a defined percentage is defec-
tive. Of those defective, a defined percentage is scrapped.

The inventory transfer macro grants part requests from an assembly
station or a manufacturing cell and checks if the inventory system is a
push or pull, For a pull system the macro orders a cart of parts by
sending an empty cart back to the source and sends a full cart of parts to
the demand stock point from the source stock point.

Figure 6 is the GPSS code for the manufacturing cell macro. Note
that the matrix savevalues are used to pass data from the main program or
from a subroutine to a subroutine.

5.3 Sample Problem

Figure 7 is an example of a typical manufacturing system that can
be modeled by the AMPS system. The manufacturing system consists of one
assembly Tine, two subassembly lines, and two manufacturing cells. The
assembly line consists of two assembly stations, one task station and one
inspection station. Subassembly line 2 consists of one assembly station
and one task station while line 3 consists of two assembly stations.
Manufacturing cell MC1l provides part type C for assembly station ASSY1l and
part type H for assembly station ASSY8. Manufacturing cell MC2 provides
part type E for assembly station ASSY5 and part types F and G for assembly

station ASSY7. There are a variety of stock points, labeled A through L,

15
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MFG  ASSIGN
ASSIGN
ASSIGN
QUEUE
ASSIGN

CARTQ ASSIGN
ASSIGN
ASSIGN

PARTQ ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
QUEUE
TRANSFER
DEPART
LOOP
LOOP

FAC SEIZE
ADVANCE
ADVANCE

MTIME FVARIABLE
DEPART
RELEASE
TRANSFER

13,MX$CELL(P12,1)
14 ,MX$CTIME(P12,1)
16 ,MX$CTIME(P12,2)
P13

7 ,MX$CSIZE(P12,1)
17 ,MX$ITEM(P12,1)
8,0

9,1

8+,2

9+,2
5,MX$ITEM(P12,P8)
10 ,MX$PART(PS,1)
20,MX$ITEM(P12,P9)
P10

SBR, TAKEP ,RTRN2
P10

17 ,PARTQ

7 ,CARTQ

P13

vV*14

V$MTIME
V*16#MX$CSIZE(P12,1)
P13

P13

P,RTRN3,1

Figure 6. GPSS code for manufacturing cell
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located throughout the manufacturing system.

Figure 8 is a partial listing of the interface dialogue between the
system and the user to define the manufacturing system in Figure 7. Only
the dialogue for subassembly line 2 and the part specification for parts B,
C, and E is included in Figure 8.

Figure 9 is a partial listing of the GPSS code generated by the
AMPS system. Lines 2770-3100 are the GPSS code for the assembly and two
subassembly Tlines. Line 2820 is the transfer to the assembly station
subroutine ASM. Line 2840 is the transfer to the task subroutine TASK.
Line 2880 1is the transfer to the inspection station subroutine INSP.

The GPSS program for the manufacturing system in Figure 7 consists
of 344 blocks, of which 110 blocks were for the five macros, 25 blocks were
for the main program and 209 blocks were matrix savevalues for defining the
system attributes.

5.4 AMPS Summary

The Automatic Manufacturing Programming System (AMPS) has been used
to successfully model several manufacturing systems. One of these systems
has been a flexible manufacturing system (FMS) consisting of an 18
station cell and 9 alien stations (Schroer 1988). The FMS makes four dif-
ferent parts with each part requiring 47, 31, 22, and 22 operations respec-
tively. The system was sufficiently different that another library of GPSS
macros was written for the FMS stations. Consequently, the interactive
user dialogue could not be used; however, the structured GPSS coding as
shown 1in Figure 9 resulted in the FMS being modeled quickly and
accurately.

The AMPS system has been successfully ported to a Texas Instrument

Explorer workstation. This system is currently installed and under eva-

18



ltomonnn

*  Creste & line *
PUPFe-+Svtadedu et

l Wame of line: ¥y
Nuaber of stations: 2
3. Source of line:
Type (see menu for selection): Beginning node
Distridbution: Normal
Mean: 100
Standard deviation: 3
4. Destination of line: Stock peint
i Name of the product of the line y: b

ORIGINAL PAGE IS
OF POOR QUALITY

you want to modify the input above?(Y or X) No.

station $

1) Statiom 4d: 3
2) Type of station: Assembly station
3) Ststiom name: assy$

4) Part required:
Number of part types required: 1

¥eme of part: e
Nusber of part: 2
S) Tiwe:
Distribution: Normal
Mean: 100
I Standard deviation: $

you want to modify the input ebove?(Y or B) ¥o.

ation 6
1) Stetiom 1d: ¢
2) Type of station: Task statiom
3) Station name: taské
4) Time:
Distribution: Normal
Meen: 100
standazrd deviation: 3

Do you want to modify the input above?(Y or W) Wo.
of line ¥
F more lime to create? (Y or N) Yes.

[T 2o a2 laaaadta el iyt )]s

Part specification ¢
Stttttdt ittt tddRttAdRe

Part B
1. Part-4d: 2
Part-name: PA_D
sSupply-systea: Push
Capscity and initial inventory at the stock points:

Maximus pumber of parts st stock point: 2000

'yw want to modify the input sbovel(Y or N) We.

art C
Part-dd: 3
Part-name: PA_C
Supply-system: Pull from an inside source

. Capscity and initial inventory st the stock points:
Mximum cart capacity (mex. number of parts per csrt): 10
Current cart capacity (number of parts per cart): 4
Maximum pomber of carts st demsnd stock point: 10
Ifnitial oomber of carts st demand stock point: &
Maximua mmber of carts at supply stock point: 10

Ilnitlll namber of carts at supply stock point: &

5. Vehicle used to move carts between stock points:
Name: truckl
Time:
Distribution: Uniform
Minimum: §
Maximum: 12
6. Sourca-where the part i» made:
(1) Manufscturing cell: mel
7. Items required to make the part:
Number of item types required: 1

Name of item: {

. Wumber of item: 2

8. Set up time for esch cart:
Distribution: Constant
Constant: 0

9.Time to make 8 part:
Distribution: Wormal
Mean: 30
Standard deviation: 3

Do you want to modify the input above?(Y or N) Wo.
Part &

1. Part-1d: $

2. Part-name: PA_R

3: Supply-systems: Pull from an inside source
4. Capacity end initisl inventory st the stock points:

Mximum cart cspacity (max. nuaber of parts per cart):
Current cart capacity {number of perts per cart): 4
Msximum number of carts at dmnd_ stock point: 10
Initisl number of csrts at demsnd stock point: &
Maximum number of carts st supply stock point: 10
Initisl number of carts at supply stock point: &

3. Vshicle used to move carts between stock points:
Name: truckl
Time:
Distribution: Unifors
Minieum: §
Maximam: 12 :
6. Source-where the part is made:
(1) Manufacturing cell: mc2
7. Items required to sake the part:
Fumber of item types required: 2

Heme of item: §
Humber of item: 2

Neme of {tema: &
Bumber of item: 1
8. Set up time for each cart:
Distribution: Constant
Constant: 0
9.Time to make g part:
Distridbution: Normal
Meean: 1
Standard deviation: 1

Do you want to modify the input sbove?(Y or N) No.

Figure 8. Partial AMPS interactive user interface dialogue

K4



2770 *kkkkhkkkhkkhhkkhkhkhhkhkhkkhkhrikrkhhkhkhkdkihitiik

2780 * ASSEMBLY LINE x

2790 ***************************************
2800 GENERATE V$TIMEL

2810 ASSIGN 2,1

2820 TRANSFER SBR, ASM,RTRN1
2830 ASSIGN 2,2

2840 TRANSFER SBR, TASK, RTRN1
2850 ASSIGN 2,3

2860 TRANSFER SBR, ASM, RTRN1
2870 ASSIGN 2,4

2880 TRANSFER SBR, INSP,RTRN1
2890 ENTER PA_a,l

2900 TERMINATE

2910 ***************************************
2920 * ASSEMBLY LINE y

2930 ***************************************
2940 GENERATE V$TIMES

2950 ASSIGN 2,5

2960 TRANSFER SBR,ASM, RTRN1

2970 ASSIGN 2,6

2980 TRANSFER SBR, TASK, RTRN1
2990 ENTER PA_D,1

3000 TERMINATE

3010 ***************************************
3020 * ASSEMBLY LINE gz

3030 ***************************************
3040 GENERATE V$TIMEG

3050 ASSIGN 2,7

3060 TRANSFER SBR,ASM,RTRN1

3070 ASSIGN 2,8

3080 TRANSFER SBR, ASM, RTRN1

3090 ENTER PA_d,1

3100 TERMINATE

Figure 9. Partial GPSS listing for assembly lines



luation at the School of Engjneering, Auburn University.

In addition, the AMPS system has been submitted to NASA COSMIC
through the NASA/MSFC Technology Utilization Office. The COSMIC ID number
is MFS#28367. A user's manual, UAH Research Report No. 720, was written
and accompanied the submission to COSMIC. The AMPS system has been docu-

mented in UAH Research Report No. 659.

6.0 AUTOMATIC NETWORK PROGRAMMING SYSTEM

6.1 Introduction

Large simulation projects have been -undertaken for the space
program. Many of these projects have the need for automated tools and
techniques to support the model development. One of the projects involve
simulating the countdown sequence prior to spacecraft liftoff. A number of
constraints exist for launching a spacecraft into orbit. Many of these
constraints are dependent on the mission. For example, on a lunar mission,
these constraints may include allowable Tlaunch azimuth, required earth
orbit inclination, daylight at the lunar landing area, and daylight at the
primary recovery area. As a result of these constraints, a launch window
of only several hours could exist during three consecutive days in a
month. |

Another constraint is the cryogenic propellents. The handling of
the cryogenic propellents prevent a launch hold from one day to the next.
For example, a Tlaunch that 1is scrubbed after the cryogenics have been
loaded is generally delayed at least until the third day within the launch
opportunity. In addition, a typical prelaunch consists of thousands of
events, both on the launch vehicle, as well as the ground support equip-

ment, that must be successfully completed to launch within a given launch

2L



window.

The objective of the research presented is to develop an automatic
programming system to assist the modeler of prelaunch countdown sequences
define the problem, and to then automatically generate the program code in
the target simulation language GPSS/PC. The AP system is called Automatic
Network Programming System (ANPS). The domain of problems that can be
solved by ANPS is the prelaunch activities of space vehicles and the opera-
tion of supporting ground support equipment. A broader domain is reliabi-
1ity network models of hardware systems and subsystems.

6.2 Previous Research

Synder et al. (1967) have developed a simulation model of the
Saturn V prelaunch activities beginning at T-24 hours and continuing
through T-0 hours, or lift-off. This model was used to predict the proba-
bility of launching the spacecraft within a given launch window. A second
objective of the model was to identify locations in the countdown for
placing holds and to determine the length of these holds. The model con-
sisted of over 1100 vehicle subsystems and 400 ground support subsystems.
A detailed time line was developed showing the interrelationships of these
subsystems. In addition to the time line, the model input included opera-
tional data, reliability data, and maintenance data. The model was written
in GPSS-II and ran on an IBM 360 computer.

The Synder model was expanded to include multiple launch windows and
the operational sequence when a launch window was missed and the spacecraft
had to be recycled to the next launch window (Schroer 1969). The model was
used to predict the probability of launching a spacecraft within a given
set of back-to-back launch windows. A second objective was to predict the

probability of launching in a subsequent window, given a window had been



missed and a recycle sequence and a possible hold had to be executed before
resuming the countdown.

The expanded model included two countdown sequences. The first
sequence was the main countdown sequence identical to the Synder model.
The second sequence was the recycle sequence that consisted of a number of
backout sequences containing those events that were required to return the
countdown to some preceding point. The recycle sequence also consisted of
a recycle hold containing those activities that were required to sustain
the vehicle status at a particular time in the countdown. The model was
written in GPSS-II, contaihed 2300 blocks, several Fortran help routines
and ran on the IBM 360 computer.

6.3 ANPS System Overview

Figure 10 gives an overview of the ANPS system. The ANPS system is
designed using the elements of automatic programming as its foundation.
The three AP elements in ANPS are an interactive user dialogue interface,
a library of software modules, and an automatic simulation code generator.
In Figure 10, the traditional programming task of flow charting has been
replaced by the interactive user dialogue interface that results in the
problem specification.  Likéwise, the program writing task has been
replaced by the automatic code generator and the 1library of software
macros, resulting in the GPSS code.

The ANPS system has four options available to the user. The input
probiem option begins the interactive user dialogue to define the problem
specification. The edit problem option allows the user to edit an existing
mode]lby paging through the problem specification. The save problem option
saves the problem specification on disk. The write GPSS option is selected

when the user is satisfied with the problem specification. This option
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Figure 10. ANPS system overview
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causes the ANPS system to automatically write the GPSS simulation code.

6.4 Interactive User Dialoque Interface

The ANPS system uses an interactive dialogue interface to assist
the user define the problem specification. Using this interface, the user
sits at a personal computer and enters into a dialogue with the ANPS
system. Based on the user's responses, the interactive interface creates
an internal problem specification file. This file includes the time Tine
for the countdown sequence, the attributes for the activities, and the
dependent relationships between the activities.

6.5  Library of GPSS Macros

The robustness of an AP system is dependent on the diversity and
completeness of its library of software modules. Furthermore, this library
is generally domain specific. When new modules or subroutines are needed,
expert simulation programmers are needed to write the simulation code and
to assure fhe proper interface.

Since the ANPS system is domain specific to prelaunch countdown
sequences, the number of needed software modules is minimal. At this point
of development, ANPS consists of the following four GPSS modules:

 ° Fixed activity operation function (VENT_A)

® Continuous activity operation function (VENT_B)

° Activity failure function (FAIL)

® Activity interrupt function (XACT_DELAY)

These modules were selected based on a detailed evaluation of the
two previously discussed models by Synder (1967) and Schroer (1969).
Interestingly, several of these previously developed modules were written
as Fortran HELP routines using the old GPSS-II.

The fixed activity operation function (VENT_A) simulates the opera-
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tion of each fixed time activity and its time to failure. If the activity
fails during its operation, the transaction is forwarded to the activity
failure function (FAIL).

The continuous activity operation function (VENT_B) simulates the
operation of each continuous time activity and its time to failure. This
activity is not completed until all other related activities are completed.
For example, system power 1is a continuous time function that will be on
until all activities requiring power are completed. If the activity fails,
the transaction is forwarded to the activity failure function (FAIL).

The activity failure function (FAIL) simulates the failure of an
activity as indicated by functions VENT_A and VENT_B. When an activity
fails, all the dependent activities enter a hold state. The function then
simulates the time to repair the activity. If another activity fails
during the delay of a dependent activity and the dependent activity is
dependent on the first failed activity, the additional time to repair, if
any, is added to the delay of the dependent activity. The failure function
assumes that a dependent activity that has been delayed cannot fail during
the delay. The activity interrupt function XACT_DELAY contains the logic
to add any additional time to an activity on hold if another activity fails
during the hold and the held activity is dependent on the failed activity.

Figure 11 is a listing of the GPSS code for the continuous activity
function VENT_B. Note that the subroutine makes extensive use of indirect
addressing. The system also contains a large number of matrix savevalues
for transferring data between the subroutines and the main program.
Initially, all the input data from the problem specification are entered
into these matrix savevalues.

6.6 Automatic Simulation Code Generator

o



1830
1832
1834
1840
1842
1843
1845
1850
1835
1860
1865
1870
1875
1880
1885
1820
1895
1900
1905
1210
191S
1920
1925

VENT_E
TIMES

TIMEB

BACKS

BACKS
BACK4

ENDA

CONTINUOUS ACTIVITY TIME SIMULATION GENERATOR

SEIZE
ASSIGN
SAVEVALUE
FVARIAELE
FVARIABLE
TEST L
ASSIGN
ASSIGN
TRANSFER
ASSIGN
ASSIGN
ASSIGN
GBATE LR
ADVANCE
LOOP
ASSIGN
TRANSFER
TRANSFER
RELEASE
TRANSFER

Figure 11,

e

P2

98,MX$F _TIME (F3, 1)
FTS,Vx98

X$FTS

X$FTS/100
V$TIMES, 100, BACKS
TIMS,1
ESUM,VETIMES
,BACKS
TIM3,V$TIMES

BSUM, 100
NR_LOOPS, F$ESUM
MX$SWITCH1 (F3,1) ,ENDA
FETIMS

NR_LOOPS, BFACK4
ROW,P3
SER,FAIL,RTRN1
,BACKS

P2

P,RTRNZ,1

Continuous activity macro
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The output from the interactive dialogue interface, or the problem
specification, is used as input by ANPS to the automatic code generator
program. The code generator program selects the appropriate macros from
the GPSS library and then generates the simulation code in the target
language GPSS/PC.

The output of the code generator program is a GPSS/PC program file.
The experimental frame, such as the run statements, are then added and the
GPSS program executed. The output file is stored on a diskette or printed
on the personal computer. To change the GPSS model, the user must recall
the problem specification file. The interface program provides the user
with a number of options to change or modify the problem specification.
The code generator then rewrites the GPSS/PC program. The GPSS model can
also be changed by using the standard text editor within Turbo Prolog.

The ANPS system is written in Turbo Prolog (Borland 1986) for the
IBM class of personal computer. The library of macros is written in
GPSS/PC. ANPS contains 1218 lines of Prolog code and 86 subroutines. The
simulation code generated by ANPS.is GPSS/PC (Minuteman 1986).

6.7 System Constraints

The ANPS macros imposed the following constraints:

° An activity failure will cause that activity to be delayed until
the failure has been repaired.

° A1l dependent activities will also be delayed for the same time
until the failure has been repaired.

® If another activity fails during the delay of a dependent acti-
vity and the dependent activity is also dependent on the just
failed activity, the additional time to repair, if any, is added

to the delay of the dependent activity.
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° A dependent activity that has been delayed cannot fail during
the delay time and will not cause other dependent activities to
be delayed.

° No two continuous activities can end on the same node.

° No two activities can start from the same node and terminate on
the same node.

6.8 Sample Problem

Figure 12 is a time line for a simplified prelaunch countdown
sequence consisting of 16 fixed activities and two continuous activities.
Figure 13 is the time line redrawn in the form of a network diagram and
structured for input to the ANPS system. The dotted lines in these figures
indicate time line constraints. For example, activities ACT1l and ACT15
must be completed before starting activity ACT12. ACT21 is a dummy acti-
vity with zero time that is used to impose the activity ACT15 constraint.

Several other dummy activities were also required to construct the
network diagram. For example, dummy activity ACT23 was added to simulate
the termination of the second continuous activity ACT2, since no more than
one continuous activity can end at a node. Also, dummy activity ACT19 was
added at the completion of activity ACT5 since no two activities can start
from the same node, node 2, and end at the same node, node 4.

Table II contains the time attributes for the activities in the pre-
launch countdown. These attributes include activity duration, activity
time to failures, and activity time to repairs. Note that activities ACT1
and ACT2 have continuous operation times. That is, these activities will
operate during the entire prelaunch countdown. An example of a continuous
activity is electrical power that may be needed to operate a number of

activities.
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OF POOR QUALITY

i. Countdown sequencs attributes

8
s

-

Duration Failure Repair
Activity (hours) time (hours) time (minutes)
1 Continuous E(33) N(60,6)
2 Continuous E(33) N(60,6)
3 4 £(12) N(30,3)
4 8 E(12) N(30,3)
5 6 £(12) N(60,6)
6 4 E(12) N(45,5)
7 4 £(12) N(45,5)
8 4 E(12) N(60,6)
9 8 £(12) N(60,6)
10 8 E(12) N(60,6)
1 6 E(12) N(45,5)
12 6 E(12) N(30,3)
13 4 E(12) N(60,6)
14 4 E(12) N(90,9)
15 10 E(12) N(60,6)
16 6 E(12) N(120,2)
17 4 E(12) N(60,6)
18 4 E(12) N(45,5)
19 Dummy - -
20 Dummy - -
21 Dummy - -
22 Dummy - -
23 Dummy - -
Tab Operational dependencies between activities

Activity

5] 6 7 8 910

Dependent Activity
11 12 13 14 15

16 17 18 19 20

21 22 23

X X

X

—
OO0~ [T, XV E AN

11
12

14
15

16
17
18
19

2
23

N AN B -k OGN EE O Ak e En BN B S EE DR EE B Em A
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Table III contains the operational dependencies between the activi-
ties. In other words, the table gives the effect of an activity failure on
other activities in the prelaunch. For example, a failure of the con-
tinuous activity ACT1 will cause a stopping of activities ACT3, ACT4, ACTS,
ACT12, ACT13, and ACT18. Likewise, a failure of activity ACT4 will cause a
stopping of activity ACTS.

The interactive dialogue between the user and the ANPS system con-
sisted of 23 screens with one screen for each activity. Figure 14 is a
screen dump for defining activity ACT4. ACT4 starts at node 2 and ends at
node 4. The activity type is a fixed duration and the operation time is
eight hours. The time to failure follows the exponential distribution with
a mean of 12 hours. The time to repair follows the normal distribution
with a mean of 30 minutes and a standard deviation of three minutes. A
failure of activity ACT4 will result in a stopping of activity ACT5.

At the completion of the problem definition, the ANPS system auto-
matically generates the corresponding GPSS code. Figure 15 is a partial
listing of the main GPSS program that was generated by the ANPS system.
The complete main program consists of 183 GPSS blocks. This program con-
sists of a series of ASSIGN, SPLIT, TRANSFER and ASSEMBLE blocks.

For example, line 2048 is the start of activity ACT3. Line 2053
ends activity ACT3. Line 2049 splits another transaction to start activity
ACT10. The transactions are sent to one of two subroutines depending on
the activity type. For example, in line 2039 the transaction is routed to
the continuous activity subroutine VENT_B. Other transactions, such as in
lines 2052 and 2058, are routed to the fixed activity subroutine VENT A.
These subroutines simulate the activity time and transfer the transactions

to the failure subroutine FAIL which simulates the time to failures and
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Name for

1. Number of
2. Activity

Activity

Activity
Duration

Starting
Ending
MTTF

MTTR

GPSS Program

activities
attributes:

name

type (fixed/variable)
distribution type
mean time

node number

node number
distribution type
mean time

distribution type
mean time
standard deviation

Number of dependent activities

EX1.23
23

$ACT4
FIXED
CONSTANT
480

2
4

EXFONENTIAL
720

NORMAL
30

1

Do you want to modify the input above ? (Y/N) : N

Figure 14 Interactive dialogue for defining activity ACT4
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1943
1950
19353
1560
1965
1970
2000
2001
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2003
2004
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2006
2007

2010
2011
2012
2013
2014
2013
2016
2017
2018
2019
2020
2021
2022
2023
2024
2023
2026
2027
2028
2029
2030
2031
2032
2033
2034
203%

ne
EV1

EVZ
EV3
Eva
EVS
EVéa
EV?
Eve
Eve
Evio
EVit
EViI2
EVI3
EViaA
EEVi4
EVLIS
EEV1Z

Al

AlQ

Atls

ALT

GENERATE
SPLIY
GATE L8
LOGJC R
TRARSFER
MARK
ADVANCE
TRANSFER
ADVANCE
TRANSFER
ADVANCE
TRANSFER
ASSEMBLE
TRANSFER
ADVANCE
TRANSFER
ADVANCE
TRANSFER
ASSEMBLE
TRANSFER
ASSEMBLE
TRANSFER
ASSEMBLE
TRANSFER
ADVANCE
TRANSFER
ADVANCE
TRANSFER
ADVANCE
TRANSFER
ADVANCE
TRANSFER
ASSEMBLE
LOGIC S
ASSEMBLE
TRANSFER
ASSEMBLE
LOGIC 8
ASSEMBLE
TRANSFER
ASSIGN
SPLIT
ASSIGN
LOGIC R
TRANSFER
TRANSFER
ASSIGN
SPLIT
ASSIGN
LosIC R
TRANSFER
TRANSFER
ASSIGN
SFLIT
ASSIGN
TRANSFER
TRANSFER
ASSIGN
SFLIT
ASSIGN
TRANSFER
TRANSFEF
ASSIGN
SPLIT
ASSIGN
TRANSFER
TRANSFER
ASSIGN
23310N
TRANTFER
YAANSFER
RTIIOGN
GFLTT

b geid |

X1
'y
-t

N

- czn

{3
3
)
r
bt ol
I3IGN

o
A33
AZS3IN
TRANCFES

TRANTTEFR

Y-S T

2
$AL2
2

»A13
s A20

yALE

sAY7

sAl18

&

SWITCH_END1

2

s A3

1

SWITCH_ENDZ

2

» END1

2,8ACT1

1,A2

3.1

SWITCH_END1
SBR,VENT_B,RTRN2
+EEVi4

2,8ACT2

1.AZ

3,2

SWITCH_ENDZ

SER, VENT_E.RTRND
EEV1ITS

T.8ACT3

1.A10Q

hs

SEF, VENT_A.RTRND
EV2

Z.$ACTI10

1.A14

T.10
SER.VENT_A.STRAN2
EV?

Z.8ACT:14

1.A1S

T.14

SBR ,VENT_A.FTRND

Figure 15. Partial GPSS listing of main program
generated by ANPS
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time to repairs. After the activity times have been simulated, the tran-
sactions are transferred to the appropriate ASSEMBLE blocks. Once all the
required transactions have been assembled at the ASSEMBLE block, the
remaining branches in the network are simulated. For example, line 2006
assembles activities ACT4 and ACT19.

The complete GPSS program consists of:

° 409 blocks and statements for the entire program

°© 183 blocks for the main program that define the network

° 62 blocks for the subroutines from the library of macros

° 83 matrix savevalues that define the variable statements for the

activity times, failure times, and repair times

° 66 variable statements that contain the actual time expressions

Figure 16 gives the distribution of time to complete the prelaunch
sequence in Figure 12. This distribution is based on the simulation of 200

launches. The mean time to complete thé countdown is 34.2 hours. Launch

‘vehicle availability (LVA) is defined as the probability of launching

within a given launch window. The LVA for up to a six hour window is given
in Figure 17. The LVA for a two hour window is 0.015 and increases to

0.596 for a six hour window.

6.9 ANPS Summary

The Automatic Network Programming System (ANPS) has the potential
for use in rapid prototyping of reliability networks. Specific applica-
tions for ANPS are in modeling prelaunch activities of space vehicles,
ground support equipment, space vehicle turn around plans, space transpor-
tation systems and operational planning, and hardware systems with multiple
subsystems. The ANPS system has been documented in UAH Research Report No.

704.
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7.0 CONCLUSIONS |

Imbedding Al within  discrete event simulation is an
effective and efficient method for modeling manufacturing systems and
reliability networks. There are a number of potential advantages of
automatic programming such as AMPS and ANPS. These advantages include:

° Improved Clarity - The GPSS code generated by AMPS and ANPS is a
structured simulation code that is easy to read, trace and
modify.

° Increased Productivity - The AMPS and ANPS systems should result
in a significant increase in the lines of simulation code written
per hour.

°v Rapid Prototyping - Given the availability of the necessary
macros, the system permits rapid prototyping. In addition, the
system produces executable simulation code that is syntax error
free. |

° Easier Maintenance - The structured approach minimizes the effort
required in locating errors and making program modifications.

° Reduced Modeler Knowledge - Hopefully the modeler's knowledge of
the target simulation language should be reduced.

The AMPS and ANPS systems use the interactive user dialoque to
assist the modeler define the problem specification. The interactive user
interface:

° Provides for a structured procedure for acquiring information on

the system being modeled.

° Expedites the definition of the pfob]em specification.

° Assures a complete and detailed definition of the problem speci-

fication,
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In contrast to the advantages, there are also several disadvantages.
One disadvantage, and probably the most significant, is that the AMPS and
ANPS system are domain specific. Another problem is that similar domains
may require additional new macros or subroutines. An experienced GPSS
simulationist must then be used to write the code for these macros.
Another disadvantage is that the AP systems require more memory and execu-
tion time than a nonstructural equivalent program. However, this disadvan-
tage is not as significant as in prior years because computers are becoming
faster and have more memory. A fourth disadvantage is the user attitude
problem of learning something new and different.

In summary, the AMPS and ANPS systems are still in the research sta-
ges of development. Hopefully, some day these types of automatic
programming techniques will move from the research stages to actual imple-
mentation and operational use by the end user.
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