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ABSTRACT

The spacecraft in the next series of Geostationary Operational Environmental
Satellites (GOES-Next) are Earth pointing and have 5-year mission lifetimes. Be-
cause gyros can be depended on only for a few years of continuous use, they will
be turned off during routine operations. This means attitude must, at times, be
determined without benefit of gyros and, often, using only Earth sensor data. To
minimize the interruption caused by dumping angular momentum, these spacecraft
have been designed to reduce the environmental torque acting on them and incor-
porate an adjustable solar trim tab for fine adjustment. A new support require-
ment for GOES-Next is that of setting the solar trim tab. Optimizing its setting
requires an estimate of the unbalanced torque on the spacecraft. These two re-
quirements, determining attitude without gyros and estimating the external torque,
are addressed by replacing or supplementing the gyro propagation with a dynamic
one, that is, one that integrates the rigid body equations of motion. By process-
ing quarter-orbit or longer batches, this approach takes advantage of roll-yaw
coupling to observe attitude completely without Sun sensor data. Telemetered
momentum wheel speeds are used as observations of the unbalanced external torques.
GOES-Next provides a unique opportunity to study dynamic attitude propagation.

The geosynchronous altitude and adjustable trim tab minimize the external torque
and its uncertainty, making long-term dynamic propagation feasible. This paper
presents the equations for dynamic propagation, an analysis of the environmental
torques, and an estimate of the accuracies obtainable with the proposed method.
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1. INTRODUCTION

Accurate attitude determination typically requires a large amount of data taken at
different times. This takes advantage of averaging to reduce the effects of sensor
noise but requires a means of attitude propagation. Three-axis stabilized space-
craft usually carry gyros that measure how much the spacecraft rotates over short
time intervals. For the next series of Geostationary Operational Environmental
Satellites (GOES-Next), however, the gyros will be turned off when the spacecraft
is on-station, making the usual method of attitude determination impossible.

GOES-Next has Earth and Sun sensors, and when both provide data, it is possible to
compute a "single-frame" attitude solution. The Earth sensors provide pitch and
roll data; the Sun sensors provide pitch and yaw data. However, the Sun is visi-
ble to the Sun sensors for only two-thirds of the day-long orbit, causing an 8-hour
period each day when yaw cannot be observed directly. Having an alternative to
gyro propagation would make it possible to compute the yaw when the Sun is visible
and then predict it for later times when the Sun is out of view. The obvious can-
didate for this role is the dynamic equation for rigid body rotation, or Euler's
equation. ‘

Using Euler's equation to propagate for attitude estimation is not a new idea. In
1976, Lefferts and Markley (Reference 1) and Markley and Wood (Reference 2) applied
dynamic propagation to Nimbus-6. The estimator included detailed torque and dy-
namic modeling and, in addition to solving for attitude and angular velocity, al-
lowed the estimation of torque model parameters. It worked well with simulated
data but was unable to duplicate real Nimbus-6 attitude histories. This difficulty
seemed due to imperfectly known environmental torques, unmodeled control system
activity, and uncertainty about the mass properties of the spacecraft.

Fein (Reference 3) concentrated on the idea of estimating environmental torques
from wheel speeds and sensor data. He attributed short-term variations in the
speed to the control system and long-term variations to the environmental torques.
Based on the knowledge that the attitude remained close to nominal, he was able to
model the torques with low-order polynomial functions. Sensor observations served
to correct the propagated attitude. Although only time spans up to 22 minutes
were considered, agreement with observed attitude histories was good.
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Because GOES-Next is at the much higher geosynchronous altitude, environmental
torques are expected to be much smaller and correspondingly less uncertain. This
should make dynamic propagation more feasible for GOES-Next than for Nimbus-6.
Prospects for GOES-Next are further encouraged by its large pitch momentum bias,
which stabilizes the spacecraft yaw and roll by keeping the pitch axis aligned
with the orbit normal (Reference 4).

This paper describes an attitude estimator that uses Euler's equation, adapts it
to the GOES-Next mission, and estimates its accuracy for yaw determination.

2. GOES-NEXT ATTITUDE

The attitude of GOES-Next is defined relative to a rotating reference coordinate
system with its z-axis pointing to the center of the Earth; y-axis in the direction
of the negative orbit normal; and x-axis oriented so that x, y, and z form a right-
handed orthogonal triad. The spacecraft attitude relative to the reference system
is defined by a 3-1-2 Euler axis sequence with the three rotation angles referred
to as yaw (y), roll (r), and pitch (p) (Reference 5).

The spacecraft roll, pitch, and yaw axes (x, y, and z, respectively) are close to
the principal axes of the spacecraft moment-of-inertia tensor. The diagonal compo-
nents of this tensor in the roll, pitch, yaw frame are IX = 3364.376 kilogram-
meters squared (kg-m), I, = 954.936 kg-n’, and I, = 3461.393 kg-m’, and all of
the off-diagonal elements (the products of inertia) are less than 30 kg-m2 in

magnitude.

Estimated attitude uncertainty is due to sensor noise, sensor visibility, and prop-
agation noise. The standard deviation of the sensor noise is a measure of the
accuracy of the sensors. Visibility, in this case, involves only Sun visibility
since the Earth is assumed to be in view at all times. Propagation noise includes
errors in the models of environmental and control torques and unmodeled contribu-
tions to these torques.

2.1 SENSORS AND SUN VISIBILITY

GOES-Next has Earth sensors that measure pitch and roll and Sun sensors that meas-
ure pitch and yaw; these measurements are telemetered at 0.512-second intervals
(Reference 6).  Under normal conditions, the Earth sensors provide continuous
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measurements. The Sun sensors, however, do not cover the spacecraft z-axis and so
do not see the Sun around local midnight.

There are two Earth sensors that scan east-west across the Earth disk and combine
their measurements to give pitch and roll. Because of the high altitude, horizon
height uncertainty contributes little to sensor error, and the standard deviation
of these observations is given as 0.01 degree (lo). The quantization is also
0.01 degree.

There are two types of Sun sensor. The digital Sun sensor (DSS) is the more accu-
rate of the two, having standard deviation of 0.0042 degree (lo) and quantiza-
tion of 0.125 degree. There are also two coarse analog Sun sensor (CASS) systems.
These are less accurate, having unspecified noise characteristics and quantization
of 0.039 degree. The error for these sensors is on the order of 1 degree on the
boresight and increases away from the boresight.

GOES-Next rotates once a day about its y-axis, which is roughly 67 degrees from
the ecliptic plane. The percentage of each orbit having Sun coverage is approxi-
mately the fraction of the spacecraft x-z plane in the Sun sensor fields of view.
As seen from Figure 1, this leaves about one-third of each day without coverage
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Figure 1. Sun Sensor Field of View
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and without yaw observations. It is the more accurate DSS that sees the Sun just
before the loss of coverage.

2.2 TORQUES

The torques acting on a spacecraft arise both naturally and from the control sys-
tem. Natural disturbances include solar radiation, gravity gradient, residual
magnetic dipole, and aerodynamic torques. For GOES-Next, which is at geosynchro-
nous altitude, atmospheric torques are negligible. The torques cau$ed by the con-
trol system include those due to the magnetic torquers, changing wheel speeds, and
thruster activity. Because the thrusters are not expected to be used more than
once a day, they are not modeled here.

Solar radiation causes the largest environmental torques on GOES-Next (Refer-
ence 7). There is a controllable flap at the end of the solar array that is com-
manded from the ground to minimize the solar torque. Proper setting of the trim
tab can reduce the solar torque to 10_7 newton meters (Nem), but the residual

5 Nem. The solar torque is approximately a constant

torques may be as large as 10
scalar times the cross product of the vector from the center of pressure of the
solar array to the center of pressure of the solar sail, which is closely aligned
with the spacecraft pitch axis, and the Sun-to-spacecraft vector. Thus, the solar
torque vector is nearly constant in inertial space and is mostly in the spacecraft
roll/yaw plane. In the spacecraft body frame, the largest components of the solar
torque are the roll and yaw components, which have sinusoidal time dependence with
the orbit period (one sidereal day) with nearly equal magnitudes, and a 90-degree
difference in phase. Figure 2 illustrates this dependence of the roll and yaw

torques.

Gravity gradient torques depend only on the spacecraft attitude and moment-of-
inertia tensor, so they are easily modeled. The largest errors in the gravity
gradient torque model come from uncertainty about the inertia tensor for the
spacecraft.

Magnetic torques come from residual and control magnetic dipoles (References 8 and
9). The residual dipoles are due to electric currents, magnetized material in the
spacecraft, and commanded torquer biases. They are considered to be almost con-

stant in the spacecraft body frame and to have magnitudes of about 8 ampere-meters
squared (A-mz). At geosynchronous altitude, this can produce a torque of at most
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Figure 2. Solar Radiation Torques

10"7 Nem. Because of the equatorial orbit of GOES-Next, the Earth's magnetic field
is mainly along its pitch axis. Therefore, the torque due to residual dipoles is
approximately constant in the body frame. The control dipoles vary slowly over

time, producing torques as large as 10'6 Nem.

2.3 MOMENTUM WHEELS

GOES-Next is equipped with two momentum wheels with their axes in the pitch-yaw
plane, canted at an angle of 1.656 degrees from the pitch axes. These produce a
pitch angular momentum bias of

H = -I (6, + w,) cos (1.656°) (1)

and a yaw angular momentum of

h = I(0 - @) sin (1.656%) (2)
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where ) and w, are the angula; velocities of the two wheels in radians per second
(rad/sec) and Iw = 0.1082 kg-m~ is the moment of inertia of each momentum wheel.
The nominal on-orbit wheel speeds are 5485 revolutions per minute (rpm) for both
wheels, giving H = -124.2 Nms and h = 0. Commanding the wheels in the same direc-
tion gives a pitch control torque, and commanding them in opposite directions gives
a yaw control torque. The dominant error contribution of the momentum wheels is
the torque ripple, which has a maximum spectral density of 6 x 10'7 (N-m)zlhertz
(Hz) for each wheel (Reference 10). The momentum wheel speed is measured by a
tachometer, sampled at 0.512-second intervals, with a quantization of 0.0163 rpm
and a noise level of 0.0978 rpm (30) (Reference 11).

Should one momentum wheel fail, the other wheel is operated with a smaller reac-
tion wheel (moment of inertia = 0.008626 kg—mz) whose axis is along the yaw axis.
The speeds of these wheels are nominally set to give a smaller pitch angular mo-
mentum bias and zero net angular momentum along the yaw axis, as before. The
present analysis is easily extended to this backup situation, but it will not be
considered further.

3. DYNAMIC MODEL

For an Earth-pointing spacecraft in a circular orbit, Euler's equation and the
kinematic attitude equations can be expressed in terms of roll, pitch, and yaw;
the resulting equations can be linearized for small deviations from nominal atti-
tude (e.g., pages 608-610 of Reference 5). The resulting equations for GOES-Next,
taking into account the rotation of the reference frame (at one revolution per

sidereal day, or wy = 7.29 x 1072 rad/sec) are
Ixr - wo[H - 4(I.y - Iz) wo] r-[H + (IX - Iy + IZ) wO] y = NX + woh (3a)
I5+ 30l -1)p=N -H (3b)
y 0 "X 2 y
Izy - wo[H - (Iy - Ix) mo] y + [H+ (Ix - Iy + IZ) wo] f = Nz - Nw (3¢
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where r, p, and y are the spacecraft roll, pitch, and yaw in radians; a dot de-
notes a time derivative; Ix’ Iy, and Iz are the diagonal components of the space-
craft moment-of-inertia tensor (the off-diagonal elements have been neglected); H
and h are the internal pitch and yaw angular momentum (as defined in Section 2.3);
Nx' Ny, and Nz are the external torques on the spacecraft (excluding the gravity
gradient torque, which is included on the left-hand sides of the equations); and
Nw is the yaw component of the momentum wheel control torque, so that

h = Nw (4)
Equations (3a), (3b), and (3c) exhibit the well-known fact that the spacecraft
pitch motion is independent of the coupled roll/yaw motion, to within the accuracy
of the linear approximations used to derive these equations. The GOES-Next pitch
is well determined by continuous Earth sensor measurements, as discussed in Sec-
tion 2.1, so this paper will concentrate on the roll/yaw motion.

The numerical values for Ix and Iz given in Section 2 establish the validity
of the approximation

— 1/2 2
Ix = IZ =1= (IXIZ) = 3412.54 kg-m (5)
The differences of the principal moments of inertia can be ignored in the coeffi-
cients containing the bias momentum in Equations (3a) and (3c) since
mo(Iy - I) =0.0015 H (6)
With these approximations, Equations (3a) and (3c) can be written
T = IR (wn + wo) y + (Nx + woh)/I (7a).
Y=y - (o +w)r+ (N, -N)/I (7b)
where the nutation frequency 9 is given by
w, = H/I = 0.0364 rad/sec (8)
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This corresponds to a nutation period of 173 seconds.

Precise attitude estimation will require simultaneous estimation of unmodeled
torques, in view of the difficulty of accurately modeling the disturbance and con-
trol torques. As discussed in Section 2.2, the principal torque modeling errors
have both a constant term ﬁc and a sinusoidal term N_ with angular frequency

@y Thus, the torques are

p

N
NX = NX + ch + pr + W, (9a)
_ N*
Nz = NZ + ch + sz + W (9b)
T
NW_NW~0-Ww (9¢)

where N;, N;, and NQ are the modeled roll, yaw, and wheel torques, respec-
tively, and W W, and W, are independent white noise processes. The estimated
values of Nc and Np will include all the unmodeled torques with the prescribed
time dependence.

A nine-component state vector containing all the parameters to be estimated is

T

X = [r, F/wn, Yo Y0a, by Ny N, N ] (10)

px’ "pz® “cx’ ch
where superscript T denotes the matrix transpose. For GOES-Next, variations in H,
and therefore in w,» are very small and can be ignored. Then, combining Equa-
tions (4), (7), (9), and (10) with the assumed sinusoidal dependence of ﬁp gives
the dynamic equation

(113)

>Xe
L}
-
x|
+
<l
+
x|

where

(11b)

-
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}
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with

0 @, 0 0
w 0 0 W, +w
A=|©° n-o (11¢)
0 0 0 “n
_0 —(wn + ‘f’o) @y 0 N
0 0 0 0 O]
B = % @, 1 0 1 0 (id)
0 0O 0 0 o
| 0 o 1 0 1
0 0 0 0 0]
0 o 1 0 O
C= 5 o -1 0 0 O (11e)
0 0O 0 0 O
| 0 0 0 0 0]
and O is a 5-by-4 matrix of zeros.
The nine-component vectors U and w are given by
u = [0, N*/H, 0, (N4 - N*)/H, N2, 0, 0, 0, 017 (12a)
and
- T
w= [0, wx/H, 0, (wz - ww)/H, W wpx' "pz’ Wy "cz] (12b)
where wpx’ wpz, Wy and W., are independent (of each other and of W Wy, and ww)

random noise processes. If Yex and W., are not zero, ﬁc will not be truly constant

but will behave as a random walk. Nonzero w_.. and w__ will give random walk de-

—- pX pz
pendence to the phase and amplitude of Np.
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Equation (11a) has the formal solution

t
x(t) = &(t, t,) I(to) + ./f. &Ct, t'LuCt') + w(t')] dt' (13)

%

where the state transition matrix &(t, ty) is a solution of

o(t, to) = F o(t, to) (14a)

with the initial condition

o(t to) = I9 = the 9 x 9 identity matrix (14b)

o’
To avoid confusion, capital I denoting an identity matrix will always have a
numerical subscript, and capital I denoting moment of inertia will have either a
literal subscript or no subscript. The state transition matrix has a partitioning
similar to Equation (11b):

o(t, tO) = | -=-=-=- - - --- (15)
0 v g(t, tO)

Substituting Equation (15) into Equations (14a) and (14b) gives

$(t, t) = AdCt, t)  with ¢t , t) =1, (16a)
W, t) = Cult, t)  with w(t,, t) = I, (16b)

and
6(t, t) = Ae(t, t ) +By(t, t) with (t_, t) = 0 (16¢)
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The solution of Equation (16¢) is

\
1 t

0(t, to) = ‘/(. $(t, t') B y(t', to) dt' 17)
to
so 6(t, to) is determined when ¢(t, to) and y(t, to) are determined. The so-
Tution of Equation (16b) is easily seen to be
1 o o o 0]
o0 % % o0 o
y(t, to) =|0 -5y S 0 0 (18)
0 0 0 1 0
_9 0 0 0 [_
where
¢ = co0Ss wo(t - to) (193)
and
So = sin wo(t - to) (19b)
It is thus seen that the structure of the matrix C gives the desired sinusoidal
dependence of ﬁp.
Equation (16a) is more difficult to solve. Since A is constant,
é(t, to) = exp [A(t - to)] (20)
The characteristic equation of A is
0 = det [A - AI,] = (xz . wg) (xz + w‘,’;) 21
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so the eigenvalues of this matrix are + iwo and + iwn. With Equation (20), this
shows that ¢(t, to) comprises sinusoidal terms with angular frequencies @y and

@, - This is the justification for referring to w, as the nutation frequency.

Note that the characteristic equation is intractable without the assumptions lead-
ing from Equations (3a) and (3c) to Equations (7a) and (7b). HWith the periodic
nature of ¢(t, to) known, it is not too difficult to show that the solution of

Equation (16a) is

o(t, to) = ¢o(t, to) + ¢n(t, to) (22a)
where
@ ~9pSe ©nS, ©nCo
o (t, t) = —1— |95 "9Co 8o 955, (22bH)
0 o] @y = 9@y
—wnso -mnco wnco —wnso
_—woco woso —woso —woco-

% “nSh T9%5h  9RCy
o (t, t) = —1— | 9Sn 9y 9C, oS (22¢)
n (o] W, -
n 0 w_ S w, C -w C w,_ S
o°n n“n o°n n’n
| %% “nSn “°n “nn |
with
¢, = cos wn(t - to) (23a)
and
s, = sin wn(t - to) (23b)
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Substituting Equations (18) and (22a), (22b), and (22c) into Equation (17) gives
integrals that are convolutions of trigonometric functions and can be evaluated
without too much difficulty. The terms in o(t, to) have only six kinds of time

1-c_, So wo(t - t)c., and wo(t - to)so.

dependence: l-cn. Sp» o 0o

4. OBSERVABILITY

Before proceeding to detailed treatment of the attitude estimation algorithms, it
is useful to establish that the attitude state defined in Section 3 is observable.
To discuss observability in a more general sense, consider an n-dimensional state
vector and an m-dimensional vector of measurements of X:

g=0Gx (24)

where G is an m-by-n matrix. Then the state is observable if and only if the
nm-by-n observability matrix

2 (25)

x
I
. . O
*

has full rank n, where F is the dynamic matrix defined by Equation (11a) for the
n-component state X.

Consider first the full nine-component state, with F given by Equations (11b)
through (11e). 1If roll, yaw, and wheel tachometer measurements are available,
m= 3 and

G=]10 0 1 0 0 0 O O O (26)

o
o
o
o
—
o
o
o
o
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A computation of M shows that the state is observable in this case; in fact, com-
puting G, GF, GFZ. and GF3 achieves full rank. Thus, the roll/yaw attitude, atti-
tude rates, wheel speed, and torques are all observable with roll, yaw, and
tachometer measurements.

The observability when yaw measurements are not available is also of interest, as
discussed in Section 2.1. HWith only roll and tachometer measurements, m = 2 and

G" 27)

1
o -
o o
o o
o o
=)
o o
o o
o o
L_9

The observability matrix computed with this has rank eight, so the nine-component
state is not observable.

To ascertain which parameters are observable and which are not, consider the eight-
component state vector obtained by deleting the constant yaw torque from X:

X' = [Y‘, f‘/wn, y, 9/0.)n, h, pr, sz, ch]T (28)

This obeys the state equation

X' = F'X + 0+ W (29a)
where
A ! B
Falo-t_- (29b)
o ! C
with
K 0 0 O]
T COL (29¢)
0 0O 0 O
0 0 1 0]

444



and

0 0O 0 O
C'meo |0 O 10O (29d)
°lo -1 o0 o
0 0 0 O
With only roll and tachometer measurements
1 0 0 0 O O O O
G' = (30)

Forming the observability matrix from products G'(F')k for power k up to six gives
full rank, establishing that the attitude, attitude rates, wheel speed, periodic
torque and constant roll torque are observable with only roll and tachometer meas-
urements. It is more difficult to observe the reduced state without yaw measure-
ments than to observe the full state using yaw measurements along with the roll
and tachometer measurements, as indicated by the need for higher powers of F in
the former case.

The preceding computations establish that the full nine-component state is observa-
ble with roll, yaw, and tachometer measurements, but the constant yaw torque is
unobservable in the absence of yaw measurements, the other eight components of the
state remaining observable from roll and tachometer measurements. This indicates
that the constant yaw torque must be estimated during periods with yaw measure-
ments, and that the errors in this torque must not grow too rapidly in periods
without Sun sensor visibility. This is equivalent.to the assumption that the error
source W, is smail.

5. KALMAN FILTER

In principle, the GOES-Next attitude estimation could be carried out using either
a batch least-squares estimator or a Kalman filter. The Kalman filter is preferred
because it is more straightforward to account for process noise with this method.
The observability analysis of Section 4 shows that yaw data are needed to estimate
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the constant yaw torque. Thus, a batch estimator must use at least one-third of

an orbit, or 8 hours, of data to estimate the GOES-Next yaw across the period of
yaw data outage. It is very likely that the dynamic models are not accurate enough
to propagate across this interval without accounting for process noise. Thus, only
the Kalman filter will be considered in this paper.

The Kalman filter propagates estlmates of the state x ](+) and covariance matrix
th
k

(+) immediately after the (k-1)3 measurement to the time tk of the meas-
urement by means of the following equations:
t
o ~ ENTYZ Y 1 .
xk(—) = ¢(tk, tk-l) xk_](+) + ./[ ¢(tk. t') u(t') dt a3n
te
and
T
b
] T 1 [}
+ J/f ¢(tk. t') Q¢ (tk, t') dt

te

where the transition matrix ¢ is given by Equation (15) and the process noise
spectral density matrix Q is defined by

ELWCE) W (t')] = Q 6(t - t*) (33)
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E denotes the expectation value, W is defined by Equation (12b), and &(t - t*)
denotes the Dirac delta (unit impulse) function. Equation (31) is simply Equa-
tion (13) without the unknown process noise term, w. The explicit form for the
process noise spectral density matrix is

Qexs, ©
Q=|------ (34a)
0 ' Quyq
with
[0 0 0 0 0
0 qx/HZ 0 0 0
Qg5 = | O 0 0 0 0 (34b)
0 0 0 (g, + qw)/Hz ~q,/H
0 0 0 -qw/H a,
e -
and
Q4X4 = diag [qpx, qu, Aoy qcz] (34c)

where the latter notation means that 04x4 is a diagonal matrix with the indicated
arguments as the elements on the main diagonal. The scalar spectral density dy is
defined by

E[wx(t) wx(t')] = q,68(t - t") (35)
and similar relations hold for q,, qw"qpx’ qu, Qeye and qeq- The results of

Section 3 allow closed form evaluation of the integral in Equation (32), giving a
very efficient means of covariance propagation.
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When a measurement is processed, the state estimate and covariance matrix are
updated as follows:

R (#) = R (=) + K LG - G ()] (36)
and
P (+) = (I - K,G.) P (=) (I - K.G.)' + K.RK' (37
K 9 ~ K& Py 9 ~ Kb kRiKk

where §k is the vector of measured values at time tk, Gk is the matrix relating the
measurement to the state as in Section 4, Rk is the measurement covariance and Kk
is the Kalman gain:

-1
T T

If the attitude estimates are not needed in near-real time, an optimal filter-
smoother may be preferable to a Kalman filter (Reference 12), but that option will

not be considered in this paper.

6. ACCURACY ESTIMATES

In the absence of detailed simulations, quantitative estimates of the accuracy
attainable with the proposed estimation procedure require the use of approximate
models. This paper will consider the accuracy during periods when no yaw measure-
ments are available, because these periods test the attitude estimation process
more severely than periods containing yaw data. The observability analysis of
Section 4 shows that the external torques are not completely observable without
yaw data; the model will therefore be simplified here by eliminating the torques
from the state vector. The remaining five-component state has an estimation error
represented by a 5-by-5 covariance matrix, and the accuracy estimates will be ob-
tained by computing an approximation to this matrix.. The computation can be fur-
ther simplified by averaging the covariance propagation Equation (32) over a
nutation period, using the results of Section 3 for the transition matrix, and
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then considering the 1imit at which the orbit rate is negligible compared to the
nutation rate. This permits the deletion of the roll rate and yaw rate from the
state, resulting in an effective 3-by-3 covariance matrix. The steady-state co-
variance can then be found by solving a quartic equation, which is possible in
principle but inconvenient in practice. However, the simplified approach pre-
sented below gives equivalent results for the steady-state covariance.

The validity of the approximate steady-state covariance analysis rests on two
quantitative aspects of the GOES-Next attitude determination. First, the orbit
rate is much less than the nutation rate, by a factor of 2 x 10'3. Second, the
wheel tachometer measurements are so accurate that the yaw component of the inter-
nal angular momentum, which is a component of the state vector, is essentially
determined by tachometer measurements alone; the correlation between its errors

and the attitude errors is thus effectively zero.

Consider the dynamic Equations (7a) and (7b) in the limit that @y, becomes infinite.
The resulting equations will describe motion on time scales large compared to the
nutation period, with nutation averaged out. The second derivative terms in Equa-
tions (7a) and (7b) are seen to be negligible if nutation is ignored. The factor
1/1 is replaced by wn/H using Equation (8), and H is held at its physical value as
@, is taken to infinity. This means that the rotational inertia of the spacecraft
body is dominated by the bias angular momentum on time scales larger than the nuta-

tion period. The limits of Equations (7a) and (7b) are

0 = wor + ¥y + (Nx + woh)/H (39a)
0 =uwgy - T+ (Nz - Ny/H (39b)
The two-component state
¥=0r+ b, y1' (40)
obeys the dynamic equation
¥eFXaUew (41a)
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with

F‘“o[o ‘] (41b)
-1 0
Tl BN PEIE ! (423)
= y AR
and
~ -] T
Vet - W (42b)

Equation (4) was used in deriving these equations. MWith the assumption that q,
and q., defined in Equation (35), are equal, the process noise spectral density
matrix, defined by an equation analogous to Equation (33), is

Q= a1, (43)
where q denotes the common value of a, and q,-

In this derivation, q is the spectral density of the process noise representing
unmodeled external torques. The more rigorous method of averaging over a nutation
period, as discussed at the beginning of this section, shows that a contribution
1/2 dy from the momentum wheels should be added to q, the factor of 1/2 arising
from the time average of sin2 wnt and cos2 mnt. Since q, arises from torque rip-
ple, as discussed in Section 2, its numerical value can be estimated as

q, = 2(sin 1.656%)%(6 x 1077 /2y (Nem)? s = 1.3 x 107 0(Nem)? s (44)

where the factor of 2 appears because two wheels contribute to h, and 2r is the
conversion from hertz to radians per second. The environmental torque errors are
not well approximated by a white noise process, but the spectral density of these
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errors can be estimated by multiplying the mean square torque errors by a correla-
tion time. The maximum expected torque errors are about 10 percent of the ampli-
tude of equinox torques shown in Figure 2. The quarter-orbit period, which also
gives the filter memory span required to estimate yaw, is a reasonable estimate of
the correlation time. Thus, an upper limit of the spectral density of external
torques is

2

q = (s x 1076 N-m) (21541 s) = 5.4 x 107/

(Nem)? s (45)

The wheel torque ripple spectral density, q., is negligible compared to this.

w!
The speed of each momentum wheel is measured at 0.512-second intervals with error

variance:

Ryacp = [(0-0163)%/12 + (0.0978/3)%1(2x/60)(rad/s)? = 1.2 x 107 (rad/s)2  (46)
where the factor of 12 converts quantization error to variance and 2x/60 converts
revolutions per minute to radians per second. The roll is also measured at
0.512-second intervals with error variance:

2 2

R .. = [(0.01)%/12 + (0.01)27(x/180)% rad? = 3.3 x 1078 rad 47)

roll

where w/180 converts degrees to radians. These measurements can be combined to
give a measurement of the first component of X with error variance

2
. .0 .

since the tachometer errors are negligible.
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Since the measurement interval At is much less than the nutation period, which
has already been neglected in deriving Equation (41a), the measurements can be
treated as continuous rather than discrete. This leads to a first-order differ-
ential equation for the covariance (Reference 12):

P+ P + Q- r'® (49)
where
C=11017 (50)
and
8 __ 2
R = RAt = 1.7 x 107° rad®s (51)
Writing
~ 1Pt Py
P = (52)
P12 P2

and using Equations (41b) and (43) gives the three scalar equations:

. 2 2

Piy = 2 ”oplz + q/H" - p]]/R (53a3)

D.. = <2 0Py, + q/HE = p2 /R (53b)
P22 oP12 * 9 12

Pi2 = 9o(Pyy = Pyp) = Pyp Ppp/R (53c)
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Solving Equations (53a), (53b),-and (53c) for the covariance for which the time
derivatives vanish gives the following steady-state covariance:

pyy = 6 RICa + 3)(a - n1'/2 (54a)
Pyy = 0 R al(a + 3)(a - 111/2 (54b)
Pyy = woRCx = 1) (54¢)
where
172
a = [1 + q/ (w(Z)HZR):I (54d)

Taking « equal to the negative of the square root in Equation (54d) also gives a
steady-state solution, but this is unacceptable because it gives a negative value
for Pyos which must be nonnegative.

The principal quantity of interest for this analysis is the variance of the yaw
estimate, or Poo- For GOES-Next, q/(ngzR) = 3.9 x 105 >> 1, so to an excellent
approximation:

= W Rcr.2 x q/<w Hz) (55)

It is remarkable that the yaw variance is independent of the measurement error R
in this 1imit. Equation (55) provides a general parameterization of the yaw ac-
curacy as a function of the torque modeling errors. Inserting the GOES-Next
values for the parameters gives

1/2 _ . -4
yaw = (p22) = 6.9 x 10" rad = 0.040 deg (56)

This is very close to the performance expected by the spacecraft contractor (Ref-
erence 10).
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7. CONCLUSIONS

Dynamic propagation promises to be a valuable complement to gyro propagation for
GOES-Next, permitting observation of yaw during Sun sensor data gaps and estimation
of environmental torques for setting the trim tab. Provided the attitude remains
close to Earth pointing, the propagation equations are nearly linear. The added
assumption that the body angular momentum is much smaller than that of the momentum
wheels allows closed-form solution of those equations. The solution has terms that
vary at the orbital rate and at the much higher nutation rate. Neglecting errors
with greater than the nutation frequency allows closed-form expressions for the yaw
accuracy, also.

Error enters the propagation through imperfectly modeled environmental torques,
control torques that are ignored because of lack of information, and random fluc-
tuations in the wheel-bearing torque. The largest sources of error are expected
to be the solar torque modeling and the neglected magnetic control torques. The
stabilizing pitch momentum bias, the accurate wheel tachometer data, and the rel-
atively small torques at geosynchronous altitude permit propagation in the pres-
ence of these errors.

Since the error propagation equations are linear, the Kalman filter proposed here
is also linear and should be easier to develop than a general extended Kalman fil-
ter. HWith the transition matrices calculated in closed form, the filter should
also be efficient to operate. 1In practice, this filter would process full orbits
of data to estimate torque parameters and propagate the yaw during Sunless periods.
The process and sensor noise levels expected for GOES-Next yield an estimated yaw
accuracy of 0.040 deg following the gap in Sun coverage. This number is consistent
with manufacturer estimates of yaw drift over that period. Successfully applying
dynamic propagation to GOES-Next operations support would break new ground for the
Flight Dynamics Division of the Goddard Space Flight Center and would provide a
much needed backup to the usual gyro propagation.

454



10.
11.

12.

REFERENCE

E. J. Lefferts and F. L. Markley, "Dynamic Modeling for Attitude Determina-
tion," AIAA Guidance and Control Conference, San Diego, California, August
1976, paper no. 76-1910

Computer Sciences Corporation, CSC/TM-76/6235, Nimbus-G Attitude Determination
Feasibility Study Utilizing the Attitude Dynamics Generator (ADGEN), F. L.

Markley and J. W. Hood, December 1976

-~, CSC/TM-77/6115, Evaluation of Wheel Rate Data for LANDSAT Attitude Model-
ing, J. Fein, April 1977

Ford Aerospace and Communications Corporation, DRL 302-01, GOES IJK/LM
Attitude/Orbit Control Analysis, January 15, 1987

J. R. Hertz, ed., Spacecraft Attitude Determination and Control. D. Reidel:
Dordrecht, Holland, 1978

Ford Aerospace and Communications Corporation, DRL 300-03, GOES IJK/LM Fields
of View Analysis, December 17, 1986

Computer Sciences Corporation, "Notes on GOES-Next Solar Torque Analysis,"
unpublished, J. Rowe, October 1977

Ford Aerospace and Communications Corporation, PCC-TM-0733, ODC-86-053, "Com-
pensation of S/C Magnetic Dipole Using the Magnetic Torquers," C. Weyandt,
November 11, 1986

--, PCC-TM-0966, ODC-87-059, "Need for Magnetic Torquers," C. Weyandt,
February 18, 1987

--, "Dynamics and Controls Analysis CDR Data Package," Book 2, March 8-9, 1988

I. Kaitath, Linear Systems. Prentice-Hall: Englewood Cliffs, New Jersey,
980

A. Gelb, ed., Applied Optional Estimation. M.I.T. Press: Cambridge,
Massachusetts, 1974

455



