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ABSTRACT 

IJsing the geometrical theory of diffraction, the traditional 

method of high frequency scattering analysis, the prediction of 

the radar cross sect.ion of a perfectly conducting, flat, 

rectangular plate is limited to principal planes. Part A of this 

report predicts the radar cross section in nonprincipal planes 

using the method of equivalent currents. This technique is based 

upon an asymptotic end-point reduction of the surface radiation 

integrals f o r  an infinite wedge and enables nonprincipal plane 

prediction. The predicted radar cross sections for both 

horizontal and vertical polarizations are compared to moment 

method results and experimental data from Arizona State 

University's anechoic chamber. 

In part B of this report, a variational calculus approach to 

the pattern control of the horn antenna is outlined. The approach 

starts with the optimization of the aperture field distribution so 

that the control of the radiation pattern in a range of  directions 

can be realized. A control functional is thus formulated. Next, 

a spectral analysjs method is introduced to solve for the 

eigenfunctions from the extrema1 condition of the formulated 

functional. Solutions to the optimized aperture field 

distribution are then obtained. 
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Part A 

Nonpr i n c i pa I P I ane Scatter i rig of F 1 at I’ 1 H t e s 

I .  Introduction 

The design of low-observable vehjcles , with a reduced radar 

cross section (HCS), is a problem of current interest within the 

scientific and military communities. The parameters of interest 

in RCS reduction are the material composition and shape of the 

target. The importance of each of these factors varies with the 

type of radar used for detection. Over-the-horizon radar, used 

for long-range surveillance, operates at low frequencies in the 

VHF region o r  lower, resulting in targets on the order of one or 

two wavelengths in size. The material composition of the target 

is the chief factor in RCS minimization in this frequency range. 

Other radars, such as airborne systems, operate at higher 

frequencies, usually above 1 G H z ,  rendering targets several 

wavelengths in size. In this frequency range the shape o f  the 

target takes precedence over material composition in RCS 

determination. 

For high-frequency scattering prediction, each part of the 

body of interest can be viewed as an independent scatterer. RCS 

prediction at high frequencies thus involves decomposing the 

target into simple geometric entities, calculating the RCS of each 

entity, and then appropriately summing the individual predictions 

-2- 



to achieve an overall RCS. The accurate modeling of simple shapes 

is, therefore, critical. One geometry of particular interest is 

the perfectly conducting, flat, rectangular plate. 

The Geometrical Theory of Diffraction (GTD) [l] and the 

Uniform Theory of Diffraction (UTD) [ 2 ] ,  the traditional 

high-frequency modeling techniques, accurately predict the 

scattering from the flat plate in the principal plane away from 

grazing and near-grazing incidences [3]. The GTD/UTD results are 

inaccurate in directions away from the Keller cone of diffracted 

rays: therefore, this method cannot be used in modeling the 

scattering patterns in nonprincipal planes, o r  planes not parallel 

to one of the edges of the plate. ROSS'S analysis [3] of the 

principal plane scattering of the plate involves truncating the 

two-dimensional GTD solution for an infinite, perfectly 

conducting, finite-width strip. Thjs truncation does not account 

for the presence of the two edges parallel to the plane of 

incidence and diffraction. These edges are not critical in 

scattering near normal incidence; but as the grazing and 

near-grazing directions are approached, the role of these two 

edges in the scattering mechanism becomes more important. Because 

the GTD solution does not include these edges, the predictions 

near grazing and at grazing do not agree with experimental 

results . 
Sikta [4] developed another high-frequency analysis using the 

method of equivalent currents. By dividing the plate into strips 
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that approach zero thickness as a limit and summing the 

contributions from each strip, the IKS for priiicipal and 

nonprincipal scattering planes can be calculated by varying the 

orientation of the strips. The RCS of each strip is calculated 

using the method of  equivalent currents. 

The method of equivalent currents lacks the slmplicity of the 

GTD approach to scattering prediction and the insight into 

physical scattering points that GTD provides. Despite these 

drawbacks, it has two distinct advantages over GTD. First, it can 

be used to correct for axial caustics encountered by GTD [ 5 ] .  

Second, and more importantly for the modeJing of the flat 

rectangular plate, the method of equivalent currents can be used 

to predict scatttering in directions away from the Keller cone. 

The general theory behind the method of equivalent currents 

is that the fields scattered by an object are approximated by the 

fields radiated by nonphysical electric and magnetic currents 

placed along the edges of the scatterer. The crucial problem in 

scattering prediction using the method of equivalent currents is, 

therefore, the formulation of  accurate equivalent currents. 

Several different versions of equivalent currents exist. One of 

the first references to the method of equivalent currents is in 

Millar's work on scattering by a circular aperture in a perfectly 

conducting, plane, infinite screen with plane wave incidence [ 6 ] .  

These equivalent currents are derived by extracting the first term 

in the asymptotic expansion of the exact Sommerfeld half-plane 
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solution. The extent of the applications of  Millar's equivalerit 

currents i s  limited. 

Ryan and Peters formulated equivalent currents using the GTD 

diffraction coefficient [ 5 ] .  Concc:ptually these are the same as 

Mlllnr's currents, although they differ in form. These 

successfully correct for axial caustics [5] and predict radiation 

patterns of rectangular waveguides [7] and horn antennas [ 8 ] .  

Because of the nature of the GTII diffraction coefficient, their 

equivalent currents are limited to scattering predlction on the 

Keller cone. Despite this limitation, Sikta predicts nonpriiicipal 

plane scattering from flat plates using these equivalent currents 

by careful orientation of  the strips that divide the plate. 

Michaeli formulated more rigorous equivalent currents that 

are valid for scattering directions away from the Keller cone of 

diffracted rays [9-111. These currents are derived using an 

asymptotic end-point reduction of the surface radiation integral 

to a line radiation integral. The GTD equivalent currents [SI 

contain infinite discontinuities at certain directions of 

incidence and observation. By considering the integration across 

the surface at a skew angle, the Physical Optics/Physical Theory 

of Diffraction (PO/PTD) equivalent currents [lo-111 remove all 

singularities, except the Ufimtsev singularity for forward 

scattering at grazing incidence. 

This work examines the monostatic RCS of  the perfectly 

conducting, flat, rectangular plate using the GTD [ 9 ]  and PO/PTD 
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[lo-111 equivalent currents of Michaeli. Both horizontal and 

vertical polarizations are considered. Scattering in nonprincipal 

planes is emphasized. I~esults are compared with data from moment 

method (MM) computations and experimental measurements performed 

in Arizona State University's (ASU's) compact range. 
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I 1  . Tht:ory 

A. HCS Calculation 

The plate geometry, shown in Pig. 1 ,  is oriented so that the 

x-z and y-z planes correspond t o  principal platies. Nonprincipal 

planes arc: designated by a tilt angle @ ' ,  measured from the 

positive x axis. HCS values in a designated plane are calculated 
j w  t as a function of e ' ,  measured from the positive z axis. An e 

time convention is assumed anti suppressed throughout. 

The standard definition of the three-dimensional HCS is 

[12]: 

This definition implies that the observation point is in the 

far-field region, o r  a distance of at least 2D /X from the target 2 

where D is the largest dimension of  the target. 

. Both horizontal and vertical polarizations are considered. 

For the horizontal polarization the incident electric and magnetic 

ficlds are: 

- j k o r  E.= a E e - - 
-1 9 0 

H.= ae Eo(l/Q)e - - - j k o r  
-1 

The fields for vertical polarization are: 

- j k o r  E.= a E e - - 

H.= -a E (l/Q)e - - 
-1 0 0  

-1 e 0 

- j k o r  
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.. 
and a are the standard directional unit vectors in the % e 

spherical coordinate system, and k is the wavenumber, m/A, in the 

direction of propagation. 

In order to simplify the analysis for the rectangular plate, 

the incident fields will be transformed to the rectangular 

coordinate system. The position vector is: 
1 A .. 

r = a x + a y + a z  
X Y - L 

The propagation vector k for the incident field is: 
( 3 )  

1 .. .. ,. 
k = -ka = -k(a sinecos@ + a sinesin@ + a cose) ( 4  1 r X Y - 

With respect to the rectangular coordinate system, the incident: 

fields are: 

Horizontal Polarization 

E . = E  e jk(xsinecos9+ysineoin9+zcoae) A 

.. 
[-a sin# + a cos9 ] (5a) 

Y -1 0 

X 
jk(xsinecoo@+ysinesin9+zc0se) 

H . = E  (l/q)e 
-1 0 

Vertical Polarization 

X 
jk(xsin0cos@+ysinesin#+zcose) E =E e 

-i o .. .. .. 
[a cosecosct, + a cosesinct, + a s i n e  3 ( 5 c )  

X Y 

X 
jk(xsinecos9+ysinesin9+zcose) 

H . = - E  (l/q)e 
-1 0 

1 .. 
[-a sin9 + a cos9 ] 

X Y 

To calculate the scattered fields, a vector potential 

approach is used. The electric field components in the far zone 

are approximated by [13]: 

E S O  
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E S -  @ 
The magnetic ( A )  and the electric (E) vector potentials are 

defined as [ 131 : 
- j k R  

dl ' A = E I(x',y',z') - e 
4Tc - R - 

c 

- j k K  e F ; 1 -  1 pl(x' ,y' , z ' )  - dl' 
R 

C 
4Tc - 

- I and pII are the equivalent electric and magnetic currents, 

respectively, which are placed along the perimeter of the 

scatterer. They radiate into free space according to ( 6 )  and (7) 

and approximate the scattered fields. The geometry for far-field 

scatt.ering is shown in Fig. 2. The location of the scatterer is 

designated by primed coordinates and the observation location by 

unprimed coordinates. Integration is along C, the edge of  the 

scatterer. The distance from the source point to the observation 

point is R, represented by 

The location vectors of the source and observation points with 

respect to the origin of the coordinate system are E'  and r .  

respectively. 

For far-field scattering the following simplifications can be 

macle : 
1 

R S r-r'cosQ = r - E ' "  a (for phase variations) (9a) 

R S r  (for amplitude variations) (9b) 

r 

For the flat plate centered at the origin of the rectangular 

coordinate system: 
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.. 
r'= a x + a y 

X Y - 

Thus, for phase variations: 

By substj tut.irrg (Ob) and ( 1 1 )  int.o ( 7 a )  and (7b), the vector 

potentials for the flat plate' become: 

- jkr 
d l  A= !L e jk(xsin&os@+ysinOsin@) 

- 4n r (12a) 

J, 

These integrals are evaluated along the perimeter of the plate. 

To simplify the derivation. each integral is represented as a sum 

of four integrals, each corresponding to an edge of the plate. 

For the plate the integration is of simple form, and the 

potentials can be expressed jn closed form. and must be 

determined separately for each edge taking into account the 

individual geometries. Each edge is viewed as the truncation of 

an infinite wedge, which reduces to a half plane for the flat 

plate. The formulation for a general half plane follows. 

B. Equivalent Currents 

1. Geometry 

The general wedge configuration used for both the GTD [9] and 

PO/PTI) [lo-111 equivalent currents is shown in Fig. 3. For a half 

plane, n, which denotes the wedge angle, is 2. There are several 

directional vectors and angles which are crucial to the 
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development. The directional vectors are: 
.. 
s'= onit vector j r i  the direction of' incidence 

s=  unit vector in the dircction of observation 

t= unit vector tangent to the edge of  interest, directed 
so that it encircles the scatterer in a 
counterclockwise manner 

n= unit vector normal to the edge of interest, lying on 
the upper face 

.. 

.. . 
The angles are: .. 

p ' =  anglc between s '  and the edge 

p = angle between s and the edge 

9 ' =  angle between the upper face and the edge-fixed 

9 = anglc: between the upper face and the edge-fixed 

a = skew angle for integration across the surface 

I 

plane of incidence 

plane of observation 

In terms of the directional vectors, the angles are: 

-1 - I 

p '  = cos ( s ' o  t) 

fl = cos ( s  0 t) - 1  - 

.r .. 
9 = cos 

L J 

(13c) 

This report considers only backscattering from the flat, 

rectangular plate. For backscattering, $=a' ,  p=n-p', and s=-s '  . 
1 . .  

For the flat plate this vector is: 
.. .. .. I I 

s ' =  -a = -a sinecos4 - a sinesin4 - a cos0 ( 1 4  
Y 

A different set of angles must be formulated for each edge 

The vectors for each edge are: 
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1 1 

Edge I: t = a 
1 Y  

Edge 2: t = -a 
1 

2 Y 

Edge 3: t = -a 
3 X 

.. 
Edge 4 :  t = a 

For each edge the 

4 x  

1 1 

n = -a 
1 X 

1 -  

n = a  
2 x  

n = -a 
3 Y 
1 

I1 = a 
4 Y  

tangential components of the incident 

electric and magnetic fields are needed to determine the 

corresponding equivalent currents. The tangential electric field 

component at the edge of interest is: 
1 

= E  o t  
-i 

Eta” 
i 

and the magnetic field component is: 

(158) 

(15b) 

The individual current components are easily determined by 

substitution of the incident field components and directional 

angles into the appropriate current equation. 

2 .  GTD Equivalent Currents 

The GTD equivalent currents [9] are based upon an asymptotic 

endpoint evaluation of the surface radiation integrals for a 

wedge. The integration across the surface is along a coordinate 

normal to the edge of the wedge. This choice of integration 

coordinate results in infinite discontinuities in the calculated 

fields when bistatic calculations are made. The monostatic 

results using these currents, however, avoid infinities. 

The expressions for the equivalent electric (I) and magnetic 
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(M) currents for a general wedge configuration are quite long and 

are, therefore, not rcpeatect here. F o r  backscattering ($4 ' , 

/3=7c-8, and s=--SI) from a half plane (n-2), they simplify 
* L  

considerably, and they take the  forms o f :  

Electric Equivalent Current: 

Magnetic Equivalent Current: 

M= H t a n  q ( l+COS$ ) 
i 2 jksin /3'cos$ 

An interesting aspect of these currents is that the electric 

current depends on both the incident tangential electric and 

magnetic fields. Earlier versions formulated by Millar [SI and 

Ryan and Peters [5] do not contain this dependence, which makes 

them invalid in directions away from the Keller cone of diffracted 

rays. The currents of (16a) and (16b) are valid in all directions 

of observation. 

3 .  PO/PTD Equivalent Currents 

In order to correct f o r  the discontinuities incurred by the 

GTD equivalent currents, Michaeli derived new currents [lo-111 

that incorporated integration across the wedge at a skew angle 

rather than in a direction normal to the edge under consideration. 

The skew coordinate of integration corresponds to the grazing 

diffracted ray, which is shown in Fig. 3. The angle of this ray 
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with respect to the edge is 0 ' .  the same as the angle that the 

incident ray makes with the edge. This choice of geomctry f o r  the 

integration el jeinates a1 1 singulari tit?s except the Uf imtstw 

forward scatter singularity due to grazing incidence. 

The PO/PTD analysis consists of PO and PTL) current 

components. The PO components [IO] account for the radiation of 

the surface currents that would be present if the scatterer were 

infinite in extent. The PTD components [ I l l  account for the 

finite boundaries of the scatterer. The sum of these components 

is finite in all directions except for the Ufimtsev singularity 

f o r  forward scatter and grazing incidence. 

A .  PO Components 

The forms of the general PO equivalent currents [ l o ]  are 

rather tedious expressions involving the modified Fresnel 

transition function. For far-field, plane-wave backscattering 

from a half plane, however, the Fresnel transition function can be 

replaced by its asymptotic expansion. In this case the components 

simplify to: 

The angle a denotes the direction of the transverse 

coordinate for integration. For the analysis in this work, a was 

taken to be 90° ,  corresponding to integration normal to the plate 
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edge. Accurate results are obtained for a between q.) and 90'. 

B .  PTI) Components 

The PTL) components that must be added to the PO currents 

reduce to the following for backscattering from a half p l a n e :  

2 -  [J l-cos8 +2cot 8 '  Jz c o s ( 9  I / 2 )  ] + 

*,tan BCOS (6 ' /2  ) cotp 
i 

2 l-cos9'+2cot 8 '  

jqsin9 ' 
Mptd = €1. - - X 

t a II 

1 ksinzg' ( c o s ~ ' - c o ~ ~ ~ '  ) 

(18a) 

1 J I-cos9'+2cot p I I  

Note that, similar to the GTL) electric currents, the PTD electric 

currents depend on both the incident electric and magnetic fields. 

C .  Assembly of Scattered Fields 

The calculation of the RCS involves the assembling of the 

appropriate equations. First, calculate the currents f o r  each 

edge of the plate using either the GTD currents of (16a) and (16b) 

o r  the PO/PTD currents of (17a)- (  18b). To determine the 

tangential fields, use (15a)  and (15b) and either (5a) and (5b) 

f o r  horizontal polarization or (5c) and (5d) for vertical 
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polarization. Substj tute the appropriate currents into (12a) and 

(12b) to obtain the vector potentials. Finally, substitute into 

(6b) and (6c) to obtain the elect.ric field components. 

Unlike the fields prcAdicted by traditional GTL) analysis, the 

scattered electric fields for both polarizations (as predicted by 

the proposcxl methods) include cross polarization terms. However, 

in the calculation of the RCS, only the primary polarization terms 

are considered. In other words, the E components are used f o r  

horizontal polarization, and the Ee components are used f o r  

vertical polarization. 

@ 

A final note of interest in the RCS calculations using the 

equivalent currents method is that the fields must be multiplied 

by a factor 1/2 to obtain the correct magnitudes. This is a 

problem that Ryan and Peters [5] and Sikta [ 4 ]  also encounter. 

Ryan and Peters were off by a factor of 1/2 elsewhere in their 

derivation and, therefore, did not recognize that the fields were 

double the correct values. Sikta pointed out their error and 

avoided the same problem by considering currents only along edges 

normal to the plane of incidence and diffraction in calculating 

the fields. One iiituitive explanation for the necessity of the 

factor of 1/2 is that in placing currents along all four edges of 

the plate, the integration across the plate is performed twice, 

thus doubling the fields. For a four-sided parallelogram the 

compensating factor of 1/2 is easily justified. It is not Clear 

what the correction factor should be in applying the equivalent 
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c u r r e n t s  method to scatt.erers with more edges. Thjs will be 

examined i n  our next  p e r i o d .  
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111. Results 

Computations were made for a square plate with each side 

equal to 5.73 A .  The results of both the GTL) and PO/PTD 

equivalent ciirrents analyses were compared with MM computations 

and measurements performed a t  ASU's anechoic chamber. The results 

for scattering in a plane designated by @'=SO are shown in Fig. 4 

for horizontal polarization and in Pig. 5 for vertical 

polarizatlon. Figs. 6 and 7 are for horizontal and vertical 

polarization, respectively, at a tilt angle of (0'-45 . 

0 

0 

The GTD equivalent currents results agroe very we31 with the 

PO/PTD results, which is expected for monostatic: calculations. 

For blstatic computations, the GTD currents encounter infinities 

in many directions. The PO/PTI) formulation avoids infinities and, 

therefore, should be used. Since the GTD current expressions are 

less complicated than the PO/PTD components and are just as 

accurate, they are sufficient for monostatic work. 

The equivalent currents predictions agree quite well with MM 

and experimental results up to 45O from normal incidence. As 

grazing incidence is approached, the equivalent currents patterns 

deviate from the MM and experimental. These discrepancies can 

probably be resolved by including corner diffraction [ 4 ]  and 

higher-order terms [14]. 

The method of equivalent currents assumes that each edge is 

an infinite wedge; therefore, it does not properly account for the 
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joining of two edges at a corner. The need for some method of 

including the presence of the corners is illiistrated in the 

results for a tilt angle of @ '  =45O (Figs. 6 and 7), which 

corresponds to a plane of diffraction through both corners. These 

results deviate from the MM arid experimental data to a greater 

extent than for (#J' =30°. No rigorously formulated corner 

diffraction coefficients currently exist. Sikta uses 

semi-empirical corner diffraction coefficients [ 4 ]  and obtains 

accurate results despite the nonuniqueness of the fields in 

certain directions [ 1 4 ] .  If carefully applied so that problem 

areas are avoided, this corner diffraction coefficient may lead to 

improved pattern results. 

For vertical polarization higher-order tliffi.actions dominate 

near grazing. The need to include higher-order terms is evident 

in comparing the vertical polarization results (Figs. 5 and 7) to 

the horizontal polarization results (Figs. 4 and 6 ) .  The results 

near grazing are much more accurate for horizontal than f o r  

vertical polarization. Michaeli formulates equivalent currents 

for second-order diffractions [14] that should improve the results 

near grazing incidence. 
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1V. Conclusions 

The scattering patterns that can be accurately calculated 

using GTL), the traditional high-frequenc:y prcxiiction technique, 

are limited to principal planes. This work used tho method of 

equivalent currents to extend scattcring prediction to 

nonprincipal planes for monostatic RCS calculations. Results 

compared favorably with MM arid experirnerital data away from grazing 

incidence. The addition of corner diffraction and higher-order 

terms was suggested to improve resu1t.s ricar corners and grazing. 
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V I .  F u t u r e  Work 

T h e  model for the p t : r f ec t ly  conduc t ing  f l a t  p l a t e  w i l l  be 

comp3eted by add ing  c o r n e r  d i f f r a c t i o n  and second-order  terms. 

The e q u i v a l e n t  cr1rrent.s model w i  11 be ex tended  t o  b i s t a t i c  

s c a t t e r i n g  as well as t o  l o s s y  p l a t e s .  F i n a l l y ,  g r a z i n g  i n c i d e n c e  

s c a t t e r i n g  w i l l  be examined more c l o s e l y  i n  an a t t e m p t  t o  p r e d i c t  

s c a t t e r i n g  a t  and n e a r  g r a z i n g  as a f u n c t i o n  of tilt angle  and 

p l a t e  s i z e .  I n t e r e s t i n g  t r e n d s  have been e x p e r i m e n t a l l y  obse rved  

f o r  g r a z i n g  i n c i d e n c e  [3], bu t  no r i g o r o u s  t h e o r e t i c a l  models 

exist t o  match these results. 
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Fig. 1 .  Plate geometry for scattering. 
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F i g .  2 .  Geometry f o r  f a r - f i e l d  r a d i a t i o n .  
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PART B 

PA'I'TE,kN CONTROL OF HORN AN'I'ENNAS 

1 .  INTRODUCTION 

Antenna pat.tern synthasis or the equivalent problem of 

pattern control has been an attractive research topic in the past 

thrce decadcs[ll-[4]. Particular interest is in the pattern 

synthesis of antenna. arrays[3], [6], ( 7 1 .  The pattern synthesis of 

an aperture antenna has not yet been found to have a satisfactory 

solution. 

Early attempts in using the variational approach to 

optimizing the radiation pattern have been made by Harris et. al. 

[5]. In [5], the optimization of the radiation pattern at a 

single direction is  resolved, and a conjugated Green's functional 

distribution for the directivity is suggested. Another attempt in 

optimizing the aperture antenna amplitude pattern was made by 

Elliott(6]-[8]. He discretized the continuous aperture 

distribution, which allowed him to optimize with respect to each 

element. This resulted in a numerical solution to the problem. 

In this report, a functional analysis approach is introduced 

to the optimization, in a range of directions, o f  the antenna 

amplitude radiation pattern. A continuous eigenfunction solution 

to this problem is found. A demonstration of the use of the 

eigenfunction is also included. 
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1 1 .  FAR-ZONE ELECTROMAGNETIC FIELDS 

A general method of finding the radiation pattern of an 

antenna can be obtained by considering the contribution of  its 

physical electric ciirrerit distributions or the equivalent electric 

and magnetic currents. Without l o s s  of generality, we start with 

tho magnetic field pattern resulting from the distribution of 

the electric current on a planclr structure. 

Given the current distribution :(XI ,y '  ) ,  the magnetic field 

can be expressed as: 
- 
€1 = - v x i  

P 

-jkH 
_ -  e dx' dy '1 

-jkK 
dx' dy' - 1  e 

4n 

1/2 where k = o ( p & )  is the wave constant, p and E. are the 

permeability and permitivity of  the medium, respcctively. 

Since we only deal with the far-field pattern, we can assume 

that the observations are made in the far-field of the radiating 

object. Thus we can write that 

R = r - x'sine cos@ - y'sine sin@ ( 2 )  

where r is the distance between the observation point and the 

origin of the coordinate. Since we are only concerned with the 

radiated field component, we can represent the operator V by 
- 

V c-------) -j k. ( 3 )  
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Using ( 3 )  reduces ( 1 )  to 

-jkr 
( 4 )  

jksi&(x' cos@ +yJ sir@) dx' tly' e - 
H= - 

4n r 

We consider a relatively simple case where we observe the 

field along the plane defined by @ = 0. I n  addition, we assume 

that the electric current is directed along the X axis. Thus 

A - 
k x ? = k J(x' ,y' )cos0 ah (5) 
h where a is a unit vector aligned with thc? total magnetlc field. 

Finally, combining a l l  the constants in ( 4 )  into % ,  the magnetic 

field can be written as 

h 

I ( x '  ) = ry;(x' ,y') dy' 
J Y1 

k 
4n r Ho = - 

The radiated power density pattern is widely used to evaluate 

the quality of an antenna. In the far zone, the radiated power 

density is proportional to the square of the magnitude of the 

radiated magnetic field. Thus we can write that 

where a is a proportionality physical constant. 
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J I I . VAR T ATIONAL APPROACH TO PATTERN CONTROL 

1 .  The Construction of tht: Functional 

The optimization of the radiation paltern iri a certain range 

of directions ( from el to 02 for example), turns out to be a 

variational calculus problem havjng the following fiinctional, 

where g(0) is a function which can be used to weight the different 

parts of pattern contributed t o  the functional. P ( 8 )  is 

represented by ( 7 ) ,  and it can be expressed a s  

Substituting (9) into ( 8 )  leads to 

The function inside the middle brackets is a well behaved 

continuous function with respect to 8 .  Therefore, we interchange 

the order of the two integrations: and for simplicity, let 
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g ( e )  = ]/(a Ilbl'). Choosing ~ ( 0 )  to be constant implies that all 

parts of the radiiit ioii pattern are weighted equally. However, 

g(8) may be chosen as a function of 0 to weight some directions of 

the radiation pattern more heavily in the functional ( 8 ) .  whjch 

results in a higher optimization 1wel for tho given direct.ions. 

After some obvious simplifications, we have: 

or 

J XI, 

where 

K(s,t) = 1:; cos 2 0 e jksjne(s-t) de (12a)  

Notice t h a t  K(s,t) is a self-adjoint kernel which satisfies the 

following equation: 
* 

K(s,t) = K ( t , s )  

If the functional in (12) should have an extremal, the 

variational derivative of (12) must satisfy t h e  following 

condition: 

f o r  each p o i n t  so in the 

source I ( s )  

which is equivalent to 
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= o  
SO 

= o  
So 

where hl, hZ are the real and imaginary variat.iona1 components of 

the current distribution I (x' ) , respectively. The variational 

derivative (12a) can be written as 

* I  * ]:]:'.(..I)[ I(s) 1 (t) - I ( s ) l  (t) dsdt 
1 1  wlso= lim €+O 6 

where H(x) -- I(x) + FG(x-s,) 

Following a similar procedure, (12b) gives 

1 * 
K(s,,x)I (x)-K(x,s,) J ( x )  dx = 0 

Combining (15) and (16), we have an equation which satisfies the 

variational condition of 

We can define (17) as the extrema1 condition. 

2. Spectral Analysls of the Extrema1 Condition 

The solvability of the problem for the extrema1 condition can 

be analyzed by Fourier transforms. Since K(x,s,) is a function 
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of' the difference of  the two arguments [ see (12a) 3 ,  (17) i s  

actually %I convolut i o i i  integral. Thus, the fiourier transform of 

(17) turns out to be 

K( h )*I( h ) = 0 

where 

To have a non-zero solution to (16 ) ,  we require that the 

spectrum of  I ( A )  is perpendicular to the spectrum of K(h). That 

is to say, ](A) has only a spectral component. where K(X) i s  zero. 

To find these ejgenvalues and their eigenfunctions, we need to 

find the zeros of equation (20). Interchanging the order of 

integration, the inside integral can be evaluated. After some 

simplifications, we have 

Without loss of' generality, we pick the origin o f  the 

coordinate at the center of the aperture. 

A l s o ,  we denote half of the width as 

rewritten as 

~ ( x ) = 2  1:; case 2 sin[ (A-ksine)~] 
A - ksine 

Thus, xz + x1 is zero. 

9. Then (20) can be 
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T h i s  can be e v a l u a t e d  n u m e r i c a l l y .  A IWKTHAN program was 

w r i t t e n  t o  do t h e  t a s k .  F i g u r e  1 shows t h e  spectrum of K(X) when 

plot t t !d  w i t h  2w = 51, €I1 = n/16, and Oz=n/2. Using a numerical  

r o o t  f i n d e r  t o  de t e rmine  t h e  z e r o s  of ( 2 2 ) .  a set of e i g e n v a l u e s  

can  be found.  Those are denoted as 

( 2 3 )  A I ,  Xz,**.*', hi , . . . . . . . . . . . 
and the i r  co r rc spond ing  e i g e n f u n c t i o n s  are 

-jAlx' -jXzx' ... - j X i  X '  . . . . . e , e 9 # e  

The c u r r e n t  d i s t r i b u t j o n  on t h e  a p e r t u r e ,  which s a t i s f i e s  t h e  

extrema1 c o n d i t i o n  can bo expres sed  as l inear  combina t ions  of  

t h e s e  e i g e r i f u n c t i o n s .  
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IV. CONCLUSIONS 

1 .  Solutions 

Prom the work of 111, we coticliide that. the ext.rema1s of the 

control functional can be written as 

-_ jXi x ' 

and the corresponding radiation pattern can be expressed as 

sin[ ( X i  -ksinO)u] 
Xi - ksine p(e) = a l j l c i  case 

where Xi ' s  are the eigenvalues of (22) in 111; Ci ' s  are the 

spectra of each component. We found that (25)  and (26) take a 

surprisingly simple form in their expressions, Although in the 

case when the soiirce distribution is  of the finite extent, the 

eigenfunctions, obtained by such a procedure, still play an 

important part. The Ritz method [9 ]  can be used to refine the 

extremal, and to optimize the C i ' s  used in (25) and (26). 

2. An Example 

To demonstrate the derived algorithm, a 5X aperture antenna 

was examined. The objective was to optimize the antenna pattern 

to allow the largest possible percentages of radiated energy into 

the main beam ( OoS 8 5 11.25' where 8 = Oo is normal to the 

apperture ) while reducing the minor lobe ( 11.25OS 8 5 90' ) 

energy to the smallest level. Control directivities are chosen to 

be from n/16 to n/2 ( since this is only a half space antenna 

problem ) .  

- .: 

t 
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Figure 1 displays the sptrctrum of K ( A )  for this particular 

design. Notice that the zero, which is the closest to A = O ,  has an 

eigenvalue of 0 .4587 .  Figure 2 shows three normalized (to their 

maximum values) radiation patterns of the eigenfunctions which 

correspond to the first three smallest eigenvalues (in magnitude). 

Piguse 3 exhibits a comparison of the two 

pattern-optimizatjon approaches. The solid line is the pattern 

obtained by using the Green's functional distribution suggested by 

Harris et. a1[5]; it maximized the radiation pattern only at 8=0. 

The dashed line is the optimization pattern obtained by the method 

that was outlined here. It reduced the pcrcentages of  the 

radiated energy from n/16 to n / 2  t o  a lowest possible limit. 

Doing this, the beam efficiency of such an antenna is greatly 

enhanced. Moreover, such a radiation pattern shows a certain 

flatness along the main radiation beam which most antenna 

designers would like to have. The electric current distribution 

chosen for this design is the one which has the smallest 

eigenvalue (the first eigenpattern in Figure 2 ) .  

Figure 4 displays the validity of the method. The solid-line 

shows the ratio variation, with respect to the eigenvalue, of the 

energy radiated within the controlled directions to the main-beam 

while the dashed-line shows the variation of the normalized 

radiated power with respect to the eigenvalue. The curve shows a 

minimum ratio at the eigenvalue that we have chosen. A l s o ,  from 

the comparison of  the two curves, our algorithm does choose the 
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best design from t h e  t r a d e - o f f  of the beam efficiency and t h c  

maximum radiation power from t h e  main beam. 
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V .  FUTURE WORK 

F u t u r e  work on t h i s  p ro jec t .  w i l l  c o n c e n t r a t e  on t h e  

f o l l o w i n g :  

1 .  

2 .  

3 .  

The f o r m u l a t j o n  and t h e  s o l u t i o n  of  t h e  two-dimensional 

( o r  th ree -d imens iona l ,  i f  needed) f u n c t i o n a l  source  

d i s t r i b u t j o n  f o r  horn an tenna  p a t t e r n  c o n t r o l .  

S t u d i e s  of r e s i s t i v e  t a p e r i n g  and i t s  e f f e c t  on t h e  

a p e r t u r e  f i e l d  d i s t r i b u t i o n  of  t he  horn a n t e n n a ,  and on 

t h e  o v e r a l l  f a r - zone  r a d i a t i o n  p a t t e r n .  

Numerical s o l u t i o n  of  t h e  e x a c t  houndary v a l u e  problem of  

t h e  ho rn  a n t e n n a .  Th i s  s t e p  is  a l s o  v e r y  impor t an t  

because we need i t  t o  demons t r a t e  t h e  r e s u l t a n t  optimum 

p a t t e r n .  
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