NONPRINCIPAL PLANE SCATTERING OF FLAT PLATES

AND PATTERN CONTROL OF HORN ANTENNAS

Semiannual Report

PART A
Constantine A. Balanis and Lesley A. Polka

August 1, 1988 - January 31, 1989

PART B
Constantine A. Balanis and Kefeng Liu

August 1, 1988 - January 31, 1989

Department of Electrical and Computer Engineering
Arizona State University
Tempe, AZ 85287

Grant No. NAG-1-562
National Aeronautic and Space Administration
Langley Research Center
Hampton, VA 23665

(KASA—-CR—-184691) NONPBRINCIFAL FILANE N89-16CS6
"SCATTERING CF FLA1 ELATES ANL ¥M)ITEEN
CCNTRCL CF HCEE RK1ENNAS Sesignnual Report
(Arizcna State Univ.) 50 f CsCL 178 Unclas
G3/32 018€377



ABSTRACT

Using the geometrical theory of diffraction, the traditional
method of high frequency scattering analysis, the prediction of
the radar cross section of a perfectly conducting, flat,
rectangular plate is limited to principal planes. Part A of this
report predicts the radar cross section in nonprincipal planes
using the method of equivalent currents. This technique is based
upon an asymptotic end-point reduction of the surface radiation
integrals for an infinite wedge and enables nonprincipal plane
prediction. The predicted radar cross sections for Dboth
horizontal and vertical polarizations are compared to moment
method results and experimental data from Arizona State
University's anechoic chamber.

In part B of this report, a variational calculus approach to
the pattern control of the horn antenna is outlined. The approach
starts with the optimization of the aperture field distribution so
that the control of the radiation pattern in a range of directions
can be realized. A control functional is thus formulated. Next,
a spectral analysis method is introduced to solve for the
eigenfunctions from the extremal condition of the formulated
functional. Solutions to the optimized aperture field

distribution are then obtained.
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Part A

Nonprincipal Plane Scattering of Flat Plates

I. Introduction

The design of low-observable vehicles, with a reduced radar
cross section (RCS), is a problem of current interest within the
scientific and military communities. The parameters of interest
in RCS reduction are the material composition and shape of the
target. The importance of each of these factors varies with the
type of radar used for detection. Over-the-horizon radar, used
for long-range surveillance, operates at low frequencies in the
VHF region or lower, resulting in targets on the order of one or
two wavelengths in size. The material composition of the target
is the chief factor in RCS minimization in this frequency range.
Other radars, such as airborne systems, operate at higher
frequencies, wusually above 1 GHz, rendering targets several
wavelengths in size. In this frequency range the shape of the
target takes precedence over material composition in RCS
determination.

For high-frequency scattering prediction, each part of the
body of interest can be viewed as an independent scatterer. RCS
prediction at high frequencies thus involves decomposing the
target into simple geometric entities, calculating the RCS of each

entity, and then appropriately summing the individual predictions



to achieve an overall RCS. The accurate modeling of simple shapes
is, therefore, critical. One geometry of particular interest is
the perfectly conducting, flat, rectangular plate.

The Geometrical Theory of Diffraction (GTD) [1] and the
Uniform Theory of Diffraction (UTD) [2], the traditional
high-frequency modeling techniques, accurately predict the
scattering from the flat plate in the principal plane away from
grazing and near-grazing incidences [3]. The GTD/UTD results are
inaccurate in directions away from the Keller cone of diffracted
rays; therefore, this method cannot be wused in modeling the
scattering patterns in nonprincipal planes, or planes not parallel
to one of the edges of the plate. Ross's analysis [3] of the
principal plane scattering of the plate involves truncating the
two-dimensional GTD solution for an infinite, perfectly
conducting, finite-width strip. This truncation does not account
for the presence of the two edges parallel to the plane of
incidence and diffraction. These edges are not critical in
scattering near normal incidence; but as the grazing and
near-grazing directions are approached, the role of these two
edges in the scattering mechanism becomes more important. Because
the GTD solution does not include these edges, the predictions
near grazing and at grazing do not agree with experimental
results.

Sikta [4] developed another high-frequency analysis using the

method of equivalent currents. By dividing the plate into strips
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that approach zero thickness as a 1limit and summing the
contributions from each strip, the RCS for principal and
nonprincipal scattering planes can be calculated by varying the
orientation of the strips. The RCS of each strip is calculated
using the method of equivalent currents.

The method of equivalent currents lacks the simplicity of the
GTD approach to scattering prediction and the insight into
physical ~ scattering points that GTD provides. Despite these
drawbacks, it has two distinct advantages over GTD. First, it can
be used to correct for axial caustics encountered by GTD ({5].
Second, and more importantly for the modeling of the flat
rectangular plate, the method of equivalent currents can be used
to predict scatttering in directions away from the Keller cone.

The general theory behind the method of equivalent currents
is that the fields scattered by an object are approximated by the
fields radiated by nonphysical electric and magnetic currents
placed along the edges of the scatterer. The crucial problem in
scattering prediction using the method of equivalent currents is,
therefore, the formulation of accurate equivalent currents.
Several different versions of equivalent currents exist. One of
the first references to the method of equivalent currents is in
Millar's work on scattering by a circular aperture in a perfectly
conducting, plane, infinite screen with plane wave incidence [6].
These equivalent currents are derived by extracting the first term

in the asymptotic expansion of the exact Sommerfeld half-plane



solution. The extent of the applications of Millar's equivalent
currents is limited.

Ryan and Peters formulated equivalent currents using the GTD
diffraction coefficient {5]. Conceptually these are the same as
Millar's currents, although they differ in form. These
successfully correct for axial caustics [5] and predict radiation
patterns of rectangular waveguides [7] and horn antennas [8].
Because of the nature of the GTD diffraction coefficient, their
equivalent currents are limited to scattering prediction on the
Keller cone. Despite this limitation, Sikta predicts nonprincipal
plane scattering from flat plates using these equivalent currents
by careful orientation of the strips that divide the plate.

Michaeli formulated more rigorous equivalent currents that
are valid for scattering directions away from the Keller cone of
diffracted rays {9-11]. These currents are derived using an
asymptotic end-point reduction of the surface radiation integral
to a line radiation integral. The GTD equivalent currents [9]
contain infinite discontinuities at certain directions of
incidence and observation. By considering the integration across
the surface at a skew angle, the Physical Optics/Physical Theory
of Diffraction (PO/PTD) equivalent currents ([10-11] remove all
singularities, except the Ufimtsev singularity for forward
scattering at grazing incidence.

This work examines the monostatic RCS of the perfectly

conducting, flat, rectangular plate using the GTD [9] and PO/PTD

,A‘
-

L



{10-11] equivalent currents of Michaeli. Both horizontal and
vertical polarizations are considered. Scattering in nonprincipal
planes is emphasized. Results are compared with data from moment
method (MM) computations and experimental measurements performed

in Arizona State University's (ASU's) compact range.



11. Theory
A. RCS Calculation

The plate geometry, shown in Fig. 1, is oriented so that the
x-z and y-z planes correspond to principal planes. Nonprincipal
planes are designated by a tilt angle ¢', measured from the
positive x axis. RCS values in a designated plane are calculated
t ] P . j(l)t
as a function of 6', measured from the positive z axis. An e
time convention is assumed and suppressed throughout.

The standard definition of the three-dimensional RCS is

(12}:
Iz

2 Igs
03_D=lim anr — (1)
e |E. |

i
This definition implies that the observation point is in the
far-field region, or a distance of at least 2D2/X from the target
where D is the largest dimension of the target.
Both horizontal and vertical polarizations are considered.

For the horizontal polarization the incident electric and magnetic

fields are:

= a Siker
gi— aj, Eoe (2a)

8 Eo(1m)e”"-‘°5 (2b)

H

=i
The fields for vertical polarization are:

E = ag Eoe-jgof (2c)

B - —;¢E0(1/n)e'j5°5 (2d)
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a and a are the standard directional unit vectors in the

(1 (]
spherical coordinate system, and k is the wavenumber, 2n/A, in the
direction of propagation.

In order to simplify the analysis for the rectangular plate,
the incident fields will be transformed to the rectangular
coordinate system. The position vector r is:

r=ax+ay+asz (3)
x y z
The propagation vector k for the incident field is:

~

k = --kar = -k(axsinecos¢ + aysin@sin¢ + azcose) (4)
With respect to the rectangular coordinate system, the incident

fields are:

Horizontal Polarization

~ -~

eJk(xsinGcos¢+Ysin98in¢+zcoae)[_axsin¢ N aycos¢ ] (5a)

E =E

1 o

jk{xsinBcosd+ysinBsindprzcosB)

ﬂi=h°(1/n)e X
[axcosacos¢ + aycos@sin¢ + azsine ] (5b)
Vertical Polarization
E =E ejk(xsinecos¢+ysinesin¢+zcose) %
-i o
[axcosecos¢ + aycosesin¢ + azsine ] - {5c)

jk(xsinecos¢+y8inesin¢+zcose)

H =-E_(1/n)e X

~

[—axsin¢ + ;ycos¢ 1 (5d)

To calculate the scattered fields, a vector potential
approach is used. The electric field components in the far zone
are approximated by [13]:

E& 0 (6a)

r



Eez -jw [A6 + nF¢] (6b)

E¢z ~jw [A¢ - nFO] (6c)

The magnetic (A) and the electric (F) vector potentials are
defined as [13]:
- jkR

A =B f 1x',y',z') T a1 (7a)

- 4an

- jkR

E = %; I M(x',y',z") dl' (7b)

I and M are the equivalent electric and magnetic currents,
respectively, which are placed along the perimeter of the
scatterer. They radiate into free space according to (6) and (7)
and approximate the scattered fields. The geometry for far-field
scattering is shown in Fig. 2. The location of the scatterer is
designated by primed coordinates and the observation location by
unprimed coordinates. Integration is along C, the edge of the
scatterer. The distance from the source point to the observation
point is R, represented by

R=|R|=|c-r'] (8)
The location vectors of the source and observation points with
respect to the origin of the coordinate system are r' and r,
respectively.

For far-field scattering the following simplifications can be

made:

R r-r'cos? =r - r'e ;r (for phase variations) (9a)

R&r (for amplitude variations) (9b)
For the flat plate centered at the origin of the rectangular

coordinate system:
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r'=a x +ay (10)
x y
Thus, for phase variations:
R & r-xsinfcos¢ - ysindsing (11)
By substituting (9b) and (11) into (7a) and (7b), the vector

potentials for the flat plate become:

-jkr [ . . . .
e l(x'y'z)ejk(xalnOcos¢+y81nesxn¢)dl (12a)

>
I

U
4N r
<
e—jkr "

€_ jk(xsinBcosP+ysinfsind)
an T dl (12b)

e
i

M(x,y,z)e

o

c

These integrals are evaluated along the perimeter of the plate.
To simplify the derivation, each integral is represented as a sum
of four integrals, each corresponding to an edge of the plate.
For the plate the integration is of simple form, and the
potentials can be expressed in closed form. I and M must be
determined separately for each edge taking into account the
individual geometries. Each edge is viewed as the truncation of
an infinite wedge, which reduces to a half plane for the flat

plate. The formulation for a general half plane follows.
B. Equivalent Currents

1. Geometry

The general wedge configuration used for both the GTD [9] and
PO/PTD [10-11] equivalent currents is shown in Fig. 3. For a half
plane, n, which denotes the wedge angle, is 2. There are several

directional vectors and angles which are c¢rucial to the

-10-



development. The directional vectors are:

$'= unit vector in the direction of incidence

)

s= unit vector in the direction of observation

t= unit vector tangent to the edge of interest, directed
1) that it encircles the scatterer in a
counterclockwise manner

n= unit vector normal to the edge of interest, lying on
the upper face

The angles are:

B'= angle between s' and the edge
B = angle between s and the edge
¥4'= angle between the upper face and the edge-fixed

plane of incidence

¥4 = angle between the upper face and the edge-fixed
plane of observation

o = skew angle for integration across the surface

In terms of the directional vectors, the angles are:

B' = cos-i(s'o t) {13a)
B = cos'1(s o t) (13b)
- s ! . -~ ~
d4' = cos 1{ —2—5—%— X tle n } (13c)
|s'x t
3 = cos_l{ _3_5_2_ X tle n } (13d)
s x ¢

This report considers only backscattering from the flat,

rectangular plate. For backscattering, %=%', B=n-B', and s=-s'.

For the flat plate this vector is:
s'= -a = -a sinBcos¢p - a sinBsing - a cosB (14)
r x y z

A different set of angles must be formulated for each edge.

The vectors for each edge are:

-11-
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Edge 1: t = a n = -a

1 y 1 x
Edge 2: t_= -a n_ = a

2 Yy 2 x
Edge 3: t_= -a n = -a

3 x 3 y
Edge 4: t = a n = a

4 x 4 y

For each edge the tangential components of the incident
electric and magnetic fields are needed to determine the
corresponding equivalent currents. The tangential electric field
component at the edge of interest is:

tan

E = E ot (15a)

i i

and the magnetic field component is:

-~
tan

Hi =H ot (15b)

—i
The individual current components are easily determined by

substitution of the incident field components and directional

angles into the appropriate current equation.

2. GTD Equivalent Currents

The GTD equivalent currents [9] are based upon an asymptotic
endpoint evaluation of the surface radiation integrals for a
wedge. The integration across the surface is along a coordinate
normal to the edge of the wedge. This choice of integration

coordinate results in infinite discontinuities in the calculated

‘fields when bistatic calculations are made. The monostatic

results using these currents, however, avoid infinities.

The expressions for the equivalent electric (I) and magnetic

-12-



(M) currents for a general wedge configuration are quite long and
are, therefore, not repeated here. For backscattering (J=9',

B=nt-B, and s=-s') from a half plane (n=2), they simplify

considerably, and they take the forms of:

Electric Equivalent Current:

1= 1 Efan (cosd-1) H?an 2cosB ' (1+cosd) (16a)
. 2 i ncosd i sind
jksin"B'

Magnetic Equivalent Current:

M= H?an N(1+cosd) (16b)

jksinZB'cosﬂ
An interesting aspect of these currents is that the electric
current depends on both the incident tangential electric and
magnetic fields. Earlier versions formulated by Millar [6] and
Ryan and Peters [5] do not contain this dependence, which makes
them invalid in directions away from the Keller cone of diffracted
rays. The currents of (16a) and (16b) are valid in all directions

of observation.

3. PO/PTD Equivalent Currents

In order to correct for the discontinuities incurred by the
GTD equivalent currents, Michaeli derived new currents [10-11]
that incorporated integration across the wedge at a skew angle
rather than in a direction normal to the edge under consideration.
The skew coordinate of integration corresponds to the grazing

diffracted ray, which is shown in Fig. 3. The angle of this ray

o
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with respect to the edge is B', the same as the angle that the
incident ray makes with the edge. This choice of geometry for the
integration eliminates all singularities except the Ufimtsev
forward scatter singularity due to grazing incidence.

The PO/PTD analysis consists of PO and PTD current
components. The PO components [10] account for the radiation of
the surface currents that would be present if the scatterer were
infinite in extent. The PTD components [11] account for the
finite boundaries of the scatterer. The sum of these components
is finite in all directions except for the Ufimtsev singularity
for forward scatter and grazing incidence.

A. PO Components

The forms of the general PO equivalent currents [10] are
rather tedious expressions involving the modified Fresnel
transition function. For far-field, plane-wave backscattering
from a half plane, however, the Fresnel transition function can be
replaced by its asymptotic expansion. In this case the components
simplify to:

J

po_ _° sinasind' 1 ]
r- kn  sinB' (t Ei) (sinfsinB'cosd '~ cosbcosB') (17a)
n .. -
po_ _ - sinasind' ° 1
o k  sing! (tod,) (sinBsinB'cosy'- cosbBcosB') (17b)

The angle « denotes the direction of the transverse
coordinate for integration. For the analysis in this work, a was

taken to be 90°, corresponding to integration normal to the plate

-14-
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! edge. Accurate results are obtained for a between ¢ and 90° .
B. PTD Components
The PTD components that must be added to the PO currents

reduce to the following for backscattering from a half plane:

ptd J/E tan sin(2'/2)
1 - ksing!' Ei 2 X
nNsinB' (cosd'-cot”p')

L/vl—cosﬁ’+2cotzﬁ' - /2 cos(9'/2) ] +

tan 2cos(3'/2)cotf’ (18a)

i

H

//l—cnsﬁ'+200tzﬁ'
o

ptd tan anln\? %

. ksinZB'(cosﬂ'—cotzﬁ')

Y2 cos(9'/2) (18b)

//1—cosﬁ'+2cot2B'

1~

Note that, similar to the GTD electric currents, the PTD electric

currents depend on both the incident electric and magnetic fields.

C. Assembly of Scattered Fields

The calculation of the RCS involves the assembling of the
appropriate equations. First, calculate the currents for each
edge of the plate using either the GTD currents of (16a) and (16b)
or the PO/PTD currents of (17a)-(18b). To determine the

tangential fields, use (15a) and (15b) and either (5a) and (5b)

for horizontal polarization or (5c) and (5d) for vertical

-15-~



polarization. Substitute the appropriate currents into (12a) and
(12b) to obtain the vector potentials. Finally, substitute into
{6b) and (6c) to obtain the electric field components.

Unlike the fields predicted by traditional GTD analysis, the
scattered electric fields for both polarizations (as predicted by
the proposed methods) include cross polarization terms. However,
in the calculation of the RCS, only the primary polarization terms
are considered. In other words, the E¢ components are used for
horizontal polarization, and the E6 components are used for
vertical polarization.

A final note of interest in the RCS calculations using the
equivalent currents method is that the fields must be multiplied
by a factor 1/2 to obtain the correct magnitudes. This is a
problem that Ryan and Peters [5] and Sikta [4] also encounter.
Ryan and Peters were off by a factor of 1/2 elsewhere in their
derivation and, therefore, did not recognize that the fields were
double the correct values. Sikta pointed out their error and
avoided the same problem by considering currents only along edges
normal to the plane of incidence and diffraction in calculating
the fields. One intuitive explanation for the necessity of the
factor of 1/2 is that in placing currents along all four edges of
the plate, the integration across the plate is performed twice,
thus doubling the fields. For a four-sided parallelogram the
compensating factor of 1/2 is easily justified. It is not clear

what the correction factor should be in applying the equivalent

-16-
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currents method to scatterers with more edges.

examined in our next period.

-17~-
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II1. Results

Computations were made for a square plate with each side
equal to 5.73 A. The results of both the GTD and PO/PTD
equivalent currents analyses were compared with MM computations
and measurements performed at ASU's anechoic chamber. The results
for scattering in a plane designated by ¢'=30° are shown in Fig. 4
for horizontal polarization and in Fig. 5 for vertical
polarization. Figs. 6 and 7 are for horizontal and vertical
polarization, respectively, at a tilt angle of ¢'=45°.

The GTD equivalent currents results agrce very well with the
PO/PTD results, which is expected for monostatic calculations.
For bistatic computations, the GTD currents encounter infinities
in many directions. The PO/PTD formulation avoids infinities and,
therefore, should be used. Since the GTD current expressions are
less complicated than the PO/PTD components and are just as
accurate, they are sufficient for monostatic work.

The equivalent currents predictions agree quite well with MM
and experimental results up to 45° from normal incidence. As
grazing incidence is approached, the equivalent currents patterns
deviate from the MM and experimental. These discrepancies can
probably be resolved by including corner diffraction [4] and
higher-order terms [14].

The method of equivalent currents assumes that each edge is

an infinite wedge; therefore, it does not properly account for the

-18-
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joining of two edges at a corner. The need for some method of
including the presence of the corners is illustrated in the
results for a tilt angle of ¢ =45° (Figs. 6 and 7), which
corresponds to a plane of diffraétion through both corners. These
results deviate from the MM and experimental data to a greater
extent than for ¢' =30°. No rigorously formulated corner
diffraction coefficients currently exist. Sikta uses
semi-empirical corner diffraction coefficients {[4] and obtains
accurate results despite the nonuniqueness of the fields in
certain directions [14]. If carefully applied so that problem
areas are avoided, this corner diffraction coefficient may lead to
improved pattern results.

For vertical polarization higher-order diffractions dominate
near grazing. The need to include higher-order terms is evident
in comparing the vertical polarization results (Figs. 5 and 7) to
the horizontal polarization results (Figs. 4 and 6). The results
near grazing are much more accurate for horizontal than for
vertical polarization. Michaeli formulates equivalent currents
for second-order diffractions [14] that should improve the results

near grazing incidence.
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IV. Conclusions

The scattering patterns that can be accurately calculated
using GTD, the traditional high-frequency prediction technique,
are limited to principal planes. This work used the method of
equivalent currents to extend scattering prediction to
nonprincipal planes for monostatic RCS calculations. Results
compared favorably with MM and experimental data away from grazing
incidence. The addition of corner diffraction and higher-order

terms was suggested to improve results near corners and grazing.

-20-
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V. Publications

During this reporting period we had the following

publications:

a.

T. Griesser, C. A. Balanis, K. Liu, "RCS analysis and
reduction for lossy dihedral corner reflectors," Proc. IEEE,
May 1989 (special issue on RCS).

T. Griesser and C. A. Balanis, "Reflections, diffractions, and
surface waves for an interior impedance wedge of arbitrary
angle,”" accepted for publication in IEEE 1Irans. Antennas
Propagat.

L. Polka and C. A. Balanis, "Nonprincipal plane scattering
from perfectly conducting, flat, rectangular plates,”
submitted for presentation at the 1989 International IEEE
Symposium on Antennas and Propagation.

-21-
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VI. Future Work

The model for the perfectly conducting flat plate will be
completed by adding corner diffraction and second-order terms.
The equivalent currents model will be extended to bistatic
scattering as well as to lossy plates. Finally, grazing incidence
scattering will be examined more closely in an attempt to predict
scattering at and near grazing as a function of tilt angle and
plate size. Interesting trends have been experimentally observed
for grazing incidence [3], but no rigorous theoretical models

exist to match these results.

-22-
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Fig. 1. Plate geometry for scattering.
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Fig. 2.
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Geometry for far-field radiation.
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Fig. 3.
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PART B

PATTERN CONTROL. OF HORN ANTENNAS

1. INTRODUCTION

Antenna pattern synthesis or the equivalent problem of
pattern control has been an attractive research topic in the past
three decades[1]-[4]. Particular interest is in the pattern
synthesis of antenna arrays{3],[6],[7]. The pattern synthesis of
an aperture antenna has not yet been found to have a satisfactory
solution.

Early attempts in using the wvariational approach to
optimizing the radiation pattern have been made by Harris et. al.
{57. In [5], the optimization of the radiation pattern at a
single direction is resolved, and a conjugated Green's functional
distribution for the directivity is suggested. Another attempt in
optimizing the aperture antenna amplitude pattern was made by
Elliott{6]-(8]. He discretized the continuous aperture
distribution, which allowed him to optimize with respect to each

element. This resulted in a numerical solution to the problem.

In this report, a functional analysis approach is introduced
to the optimization, in a range of directions, of the antenna
amplitude radiation pattern. A continuous eigenfunction solution
to this problem is found. A demonstration of the use of the

eigenfunction is also included.
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I1. FAR-ZONE ELECTROMAGNETIC FIELDS

A general method of finding the radiation pattern of an
antenna can be obtained by considering the contribution of its
physical electric current distributions or the equivalent electric
and magnetic currents. Without loss of generality, we start with
the magnetic field pattern resulting from the distribution of
the electric current on a planar structure.

~ Given the current distribution J(x',y'), the magnetic field

can be expressed as:

ﬁ=——1—VXX
U
1 _ e-ij
=_v ’ I_— ’ ’
y x [_%E J(x',y") R dx’ dy ]
S
- 1 - e_ij
= — 7 ’ Py ’ ’
H an x ‘J(x V') R dx’ dy (1)
S
1/2
where k = 0(uE) is the wave constant, p and € are the

permeability and permitivity of the medium, respectively.
Since we only deal with the far-field pattern, we can assume
that the observations are made in the far-field of the radiating

object. Thus we can write that

R=r - x"sin® cos¢ - y sinf sin¢ (2)

where r is the distance between the observation point and the
origin of the coordinate. Since we are only concerned with the
radiated field component, we can represent the operator V by

V ée—— -j k. (3)
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Using (3) reduces (1) to

~jkr

H- - (-jﬁ) N J j(x,'y,)eJkS]ne(x cosd +y Sl"¢)dx'dy' (4)
S

4nr

We consider a relatively simple case where we observe the
field along the plane defined by ¢ = 0. In addition, we assume
that the electric current is directed along the X axis. Thus

KxJ=k J(x',y )cosO Qh (5)
where Qh is a unit vector aligned with the total magnetic field.

Finally, combining all the constants in (4) into H,, the magnetic

field can be written as

— Xz . ’ .
(1,61 = &y coseJ 1(x') ek¥ sind g (6)
X1
where

V2

I(x') = | J(x',y') dy (6a)
Vi
k

Ho = o= (6b).

The radiated power density pattern is widely used to evaluate
the quality of an antenna. In the far zone, the radiated power

density is proportional to the sguare of the magnitude of the

radiated magnetic field. Thus we can write that
- 2
P(®) =« | H[1,0]] (7)

where o is a proportionality physical constant.
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111. VARTATIONAL APPROACH TO PATTERN CONTROL

1. The Construction of the Functional

The optimization of the radiation pattern in a certain range
of directions ( from 8; to 0, for example), turns out to be a
variational calculus problem having the following functional,
02
JUx')1 = | «(6) p(6) @6 (8)

0,
where g(0) is a function which can be used to weight the different

parts of pattern contributed to the functional. P(B) is

represented by (7), and it can be expressed as

-— — -k
P(O) = « |H[1,0]]|%= « H[1,0] + H [1,0]
X2 . .
= o |H, cosO J I(s) e Jkssind ds
X1
* Xz * -jktsin®
-| H, cosB 1 (t) e dt
X1
. X2 X2 e -
PO) = « IHOIZC()SZGJ J 1(s) 1 (t) e IKSINOS-Vyeqe (o)
Xdxq

Substituting (9) into (8) leads to

62 Xz | X2 Plecs 3 -~
J[I(x')]=j g(G)a]HOIZCOSZGJ J 1(s)1 (t)edksim0(s=Ygiaildae  (10).

1 X1JXq

The function inside the middle brackets is a well behaved
continuous function with respect to 6. Therefore, we interchange

the order of the two integrations; and for simplicity, let

-35-

b}



g(68) = 1/(« |H,]%). choosing g(0) to be constant implies that all
parts of the radiation pattern are weighted equally. However,
g(8) may be chosen as a function of 0 to weight some directions of
the radiation pattern more heavily in the functional (8), which
results in a higher optimization level for the given directions.

After some obvious simplifications, we have:

X2 P X2 6, o _
Jirx') = J J I(S)I*(t) J cos’0 eJk31n6(s ©) 40)dsat (11)
X1J X1 64
or
X2 { X2 x
J (1x')1= K(s,t) I{s) I (t) dsdt (12)
X1dXq
where
02 2 jksinB(s-t)
K(s,t) = cos 6 eJ ) dée (12a)
6,

Notice that K(s,t) is a self-adjoint kernel which satisfies the
following equation:
*
K(s,t) = K (t,s) (13)
If the functional in (12) should have an extremal, the

variational derivative of (12) must satisfy the following

condition:
6I[I] o for each point s, in the (14)
o1 So source I(s)

which is equivalent to
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6|[I]

5y

8](1]

5y

=0

o

s

(14a)

(14b)

where hy, hp are the real and imaginary variational components of

the current distribution I(x’), respectively.

derivative (12a) can be written as

The variational

X2 X2 * *
J J K(s,t)[ I(s) B (t) ~ I(s)1 (t)]dsdt

6'[1] = 1i X1J X,
6}]1 So €0 €

sz *
= [K(x,so)l(x)+K(s°,x)I (x)]dx= 0
X1

where T(x) = 1(x) + €6(x-s,)

Following a similar procedure, (12b) gives

8] (1]
Shy

X2 *
&> } [K(so,x)l (x)-K(x,s8,) I(x)]dx =0
e X‘l

Combining (15) and (16), we have an equation which

variational condition of
X2
K(x,s,)I(x)dx = 0
Xq
We can define (17) as the extremal condition.
2. Spectral Analysis of the Extremal Condition
The solvability of the problem for the extremal

be analyzed by Fourier transforms. Since K(x,s.)
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of the difference of the two arguments [ see (12a) ], (17) is

actually a convolution integral. Thus, the Fourier transform of

(17) turns out to be

K(A )-I(A) =0 (18)
where

‘XZ .

1(x ) =] 1(8) e ae (19)
~X1
"Xz . 62 s :

K(Xx ) = eIT J cos?0 e JktSJDOdG dt (20).
JXq 61

To have a non-zero solution to (16), we require that the
spectrum of I(A) is perpendicular to the spectrum of K(A). That
is to say, 1(A) has only a spectral component where K(A) is zero.
To find these eigenvalues and their eigenfunctions, we need to
find the zeros of equation (20). Interchanging the order of
integration, the inside integral can be evaluated. After some

simplifications, we have

0, Sjn[(k—ksineg(x2~x1)] _j[(k—ksjr@)(x2+x1)

x(x)=J cos20 e 2 ]dB (19)
0,4

A - ksin6

Without loss of generality, we pick the origin of the
coordinate at the center of the aperture. Thus, x» + xq is zero.
Also, we denote half of the width as w. Then (20) can be

rewritten as

K (A ) =2 Jez sin{ (A-ksinB)w] 46 (22)

00326
o A - ksinf
1

-38-

ki



This can be evaluated numerically. A TORTRAN program was
written to do the task. Figure 1 shows the spectrum of K(A) when
plotted with 2w = 5\, 0; = mn/16, and O,=n/2. Using a numerical
root finder to determine the zerous of (22), a set of eigenvalues

can be found. Those are denoted as
xi’xz’o--o-,xj’oo---so'ouo (23)

and their corresponding eigenfunctions are

e-jx1x" e—jkzx"_.. e-jlix'

Jeeeee (24)

1

The current distribution on the aperture, which satisfies the
extremal condition can be expressed as linear combinations of

these eigenfunctions.
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IV. CONCLUSIONS

1. Solutions
From the work of I1I, we conclude that the extremals of the

control functional can be written as

I(x')= S ¢ e IM¥ (25)
i#

and the corresponding radiation pattern can be expressed as

2

S 6 cos SAnLO Tksind)u] (26)

PO) =« . A - ksinB
i1

where A;'s are the eigenvalues of (22) in 11I; C;'s are the
spectra of each component. We found that (25) and (26) take a
surprisingly simple form in their expressions. Although in the
case when the source distribution is of the finite extent, the
eigenfunctions, obtained by such a procedure, still play an
important part. The Ritz method [9]) can be used to refine the
extremal, and to optimize the C; 's used in (25) and (26).

2. An Example

To demonstrate the derived algorithm, a 5\ aperture antenna

was examined. The objective was to optimize the antenna pattern
to allow the largest possible percentages of radiated energy into
the main beam ( 0°< @ < 11.25 where 8 = 0  is normal to the
apperture ) while reducing the minor lobe ( 11.25°€ 0 < 90" )
energy to the smallest level. Control directivities are chosen to

be from n/16 to m/2 ( since this is only a half space antenna

problem ).
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Figure 1 displays the spectrum of K(A) for this particular
design. Notice that the zero, which is the closest to A=0, has an
eigenvalue of 0.4587. VFigure 2 shows three normalized (to their
maximum values) radiation patterns of the eigenfunctions which
correspond to the first three smallest eigenvalues (in magnitude).

Figure 3 exhibits a comparison of the two
pattern-optimization approaches. The solid line is the pattern
obtained by using the Green's functional distribution suggested by
Harris et. al[5]; it maximized the radiation pattern only at 6=0.
The dashed line is the optimization pattern obtained by the method
that was outlined here. It reduced the percentages of the
radiated energy from n/16 to N/2 to a lowest possible limit.
Doing this, the beam efficiency of such an antenna is greatly
enhanced. Moreover, such a radiation pattern shows a certain
flatness along the main radiation beam which most antenna
designers would like to have. The electric current distribution
chosen for this design is the one which has the smallest
eigenvalue (the first eigenpattern in Figure 2).

Figure 4 displays the validity of the method. The solid-line
shows the ratio variation, with respect to the eigenvalue, of the
energy radiated within the controlled directions to the main~beam
while the dashed-line shows the variation of the normalized
radiated power with respect to the eigenvalue. The curve shows a
minimum ratio at the eigenvalue that we have chosen. Also, from

the comparison of the two curves, our algorithm does choose the
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best design from the trade-off of the beam efficiency and

maximum radiation power from the main beam.
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V. FUTURE WORK

Future work on this project will concentrate on the

following:

1. The formulation and the solution of the two-dimensional
(or three-dimensional, if needed) functional source
distribution for horn antenna pattern control.

2. Studies of resistive tapering and its effect on the
aperture field distribution of the horn antenna, and on
the overall far-zone radiation pattern.

3. Numerical solution of the exact boundary value problem of
the horn antenna. This step is also very important
because we need it to demonstrate the resultant optimum

pattern.
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