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April 11, 1988 

Dr. Wallace T. Fowler 
Aerospace Engineering Department 
The University of Texas at Austin 
Austin, Texas 78712 

Dear Dr. Fowler: 
. I  Attached is our report entitled RadlatlDn P r o w i v e  Str- 

es for Habitats of a Lunar B a s e  Research Ou-. The 
report outlines the advantages and disadvantages of each 
alternative, the method of analysis used, the final design 
selected, and recommendations of topics f o r  further consideration. 

We have enjoyed working with you throughout the semester, and we 
look forward to seeing you at the project presentation. Our 
presentation is scheduled f o r  Tuesday, April 26, 1988 at 9 a.m. in 
Room 4.110 of the University of Texas at Austin. You are also 
invited to attend a catered luncheon at noon of the same day. 

Thank you for your assistance throughout the semester. 

Sincerely, 

Fred J. B e l l ,  Team Leader 

&- 
Lai T. Foo 

William P. McGrew 
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ABSTRACT 

RADIATION PROTECTIVE STRUCTURE ALTERNATIVES 
FOR HABITATS OF A LUNAR BASE RESEARCH OUTPOST 

The solar and galactic cosmic radiation levels on the Moon pose a hazard 
to extended manned lunar missions. Lunar soil represents an available, 
economical material to be used for radiation shielding. Several alternatives 
have been suggested to use lunar soil to protect the inhabitants of a lunar base 
research outpost from radiation. The Universities Space Research Association 
has requested that a comparative analysis of the alternatives be performed, with 
the purpose of developing the most advantageous design. Eight alternatives 
have been analyzed, including an original design which was developed to 
satisfy the identified design criteria. The original design consists of a cylindrical 
module and airlock, partially buried in the lunar soil, at a depth sufficient to 
achieve adequate radiation shielding. The report includes descriptions of the 
alternatives considered, the method of analysis used, and the final design 
selected. 

Keywords: lunar base research outpost 
lunar radiation protection 
radiation protective structure 

Fred J. Bell, Team Leader Lai T. Foo William P. McGrew 
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INTRODUCTION 

The Universities Space Research Association (USRA) is a consortium of 

universities organized by the National Academy of Sciences in 1969. USRA is 

headquartered in Houston, Texas and is dedicated to promoting the exploration 

and development of space. USRA currently operates a program through which 

the National Aeronautics and Space Administration (NASA) sponsors design 

projects at universities throughout the country. 

One of NASA's long range goals is the development of a manned lunar 

base. The base inhabitants will require radiation protection, because some 

solar flares produce radiation levels that could result in a lethal exposure after 

two to three hours. NASA has investigated a number of alternatives for the 

protection of lunar habitat structures, but to date, no satisfactory comparative 

analysis of the alternatives has been performed. USRA has now commissioned 

this comparative study, with the purpose of developing the most advantageous 

method of shielding lunar habitats from radiation. This report includes 

descriptions of the eight alternatives considered, the method of analysis used, 

and the final design selected. 

Background 

The Moon's environment is not hospitable to humans. Since it lacks an 

appreciable atmosphere, the surface of the Moon resembles the vacuum of 
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space. Surface temperatures range from -1 71 to 1 11 degrees Celsius (-275.8 

to 231.8 degrees Farenheit). Radiation also poses a threat to human habitation 

on the Moon. Extended exposure to radiation results in accumulated doses of 

dangerous leve Is. 

The two major types of radiation reaching the Moon are Galactic Cosmic 

Rays (GCR) and Solar Energetic Particles (SEP). GCR are high energy 

particles originating from outside the solar system. GCR are composed of 

protons, alpha particles, and the nuclei of heavy elements. SEP originate from 

the Sun and have a composition similar to GCR, but the particles are less 

energetic. On the surface of the Moon, an unprotected astronaut is subjected to 

20 to 50 rem per year due to GCR. A rem is the measure of dosage acquired 

due to radiation exposure. Five rem per year is considered the maximum safe 

dosage for radiation workers. The amount of radiation due to SEP is about 1000 

rem over the 11.7 year solar cycle. However, 95 percent of this radiation occurs 

during periods of intense solar activity which last only 2 to 3 days.’’ The 

Radiobiological Advisory Panello states that the maximum permissible radiation 

exposure for astronauts over 30 years of age is 38 rem per year, with a 

maximum of 200 rem per lifetime. Exposures exceeding this limit will cause 

radiation sickness and even death. An ideal protective structure will shield 

against all GCR and SEP. 

The best current method of protection for all types of radiation exposure 

Mass shielding is the placement of mass between a body is mass shielding. 

All references in this report refer to the numbered references on pages 34-35. 
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and the source of radiation. The greater the intensity of radiation, the more 

mass is required for the same level of protection. 

Radiation shielding is measured in mass per unit area. The mass 

shielding required to achieve adequate protection on the Moon has been 

determined for a number of different materials. For example concrete, graphite, 

water, and aluminum are four common materials used for radiation shielding. It 

takes 19.05 grams per centimeter squared (g/cm2) of concrete to provide 

.adequate protection against radioactive particles with energies of 150 mega 

electron volts (the most common lunar radiation energy levell). 18.06 gkm2 of 

graphite are required for the same level of protection, 14.35 g/cm2 of water, or 

20.41 gkm2 of aluminum. 2 

The common size of planned space station modules is 12.5 m (meters) 

long and 4.5 m in diameter. Even with a reduced module only 9 m long it would 

take 448,000 kgs (kilograms) of graphite to reduce the radiation inside such a 

cylinder to below 5 remlyear. If graphite composites are used it would take 

436,000 kgs, or 534,200 kgs of aluminum. On Earth there is no problem in 

obtaining adequate amounts of mass for shielding. If mass is to be brought from 

Earth for shielding on the Moon or in outer space, the mass must be launched 

into orbit. The current estimated cost to place a kilogram of mass into orbit is 

approximately $2 million. 

In addition to radiation, the lunar surface is subjected to a steady 

bombardment by rocks of all sizes. The most frequent strikes come from 

fragments about 1 micrometer in diameter, known as micrometeorites. The 

micrometeorites impact the Moon's surface with velocities averaging 20 

kilometers per second (45,000 miles per hour).14 Although the micrometeorites 
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are very small, their high velocities cause craters upon impact. Over long 

periods of time, the cumulative damage from these impacts can be significant. 

The cost to bring shielding material to the Moon can be avoided if lunar 

soil, known as regolith, is used for mass shielding. Using regolith for shielding 

also provides the needed protection against micrometeorite impact damage. 

The project goal is to determine the most efficient method of using regolith to 

shield the habitats of a lunar research outpost. 

Project Requirements 

The requirements of this project are to analyze proposed alternatives for 

providing radiation and micrometeorite protection on the Moon, and to develop 

a final design which best satisfies the desired design criteria. 

The team chose to concentrate on the development of a manned lunar 

research outpost. The outpost will be an initial base that is temporarily 

occupied and totally supplied from Earth. 

Design Criteria 

The project team identified eleven design criteria by which to judge each 

alternative: 

1. The protective structure must provide adequate 
shielding from GCR and SEP. 

2. The shielding should be accomplished with 
maximum use of lunar resources. 

3. The protective structure must provide adequate 
protection against micrometeorite impacts. 
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4. 
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6. 

7. 

a. 
9. 

10. 

To achieve quick start-up operations, the structure 
should make maximum use of prefabricated parts. 

To minimize waste, all equipment required should 
be transformable (multi-purpose). 

All structures should allow for future expansion. 

The protective structure should be as simple as 
possible to construct. 

All structures should require minimum maintenance. 

The structure configuration should provide access 
for maintenance. 

The structure should require minimum transportation 
of materials from Earth. 

11. All designs must be structurally sound. 

Project Methodology 

The project team performed the following steps during their 

investigations: 

1 . Researched alternative protective structures using 
computer search methods, reviews of books and 
technical reports, and interviews with experts in lunar 
base considerations. 

2. Identified the criteria by which the best design was 
selected. 

3. Synthesized an original composite design. 

4. Analyzed each alternative by employing decision 
matrices. 
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6 
5. Developed the selected best design as outlined 

below: 

i. assumptions 

ii. recommendation of site selection 

ii i . protective structure configuration detai Is 

iv. material selection 

v. structural integrity considerations 

vi. construction sequence outline 

vii. heat transfer considerations 

vii i . maintenance aspects 

ix. future expansion. 
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ALTERNATE DESIGNS 

The habitat alternatives are divided into two categories by location: 

above ground and below ground. The project team considered five alternatives 

for above ground regolith-shielded habitats, and three alternatives for below 

ground habitat placement. One of the below ground alternatives was 

synthesized by the project team. The design is a composite which incorporates 

ideas from other alternatives and original design concepts. 

Above Ground Alternatives 

Three of the above ground alternatives make use of a cylindrical, 

modular habitat structure covered with regolith. The other two employ inflated 

enclosures placed beneath a rigid structure which supports the regolith 

shielding. All of the above ground scenarios avoid the possibility of 

encountering bedrock or very large boulders in the regolith, which could hinder 

excavation efforts. The exception to this is the flat shield alternative, which 

employs girders set in the regolith. Although digging is not required for module 

emplacement, some means of gathering regolith must still be provided for all 

above ground alternatives. 

7 
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Derstrucwe F:gveloDe Design 

The superstructure envelope is configured as a flat-topped mound of 

loose regolith supported by a continuous tension membrane connected to a 

regular grid of telescopic columns and tapered beams beneath (see Figure 1).9 

The advantages of this alternative are: 

1. No digging or trenching device is required. 

2. The configuration allows access to outside of module 
for maintenance. 

3. The habitat module can be made lightweight, since it 
would not have to support weight of the regolith 
s h ie Idi ng . 

The disadvantages of this alternative are: 

1. All beams, struts, and mesh membrane panels must 
be brought from Earth (estimated launch weight 
7,500 pounds). 

2. The components require extensive construction on 
the Moon, including: unpacking, layout, assembly, 
hoisting, leveling, and tie-down. 

3. The expected construction requirements will delay 
start-up operations. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
1 

A I 

b 

Figure 1: SUPERSTRUCTURE ENVELOPE DESIGN l1 

9 

.... 
. ... . .  

Cutaway illustration of superstructure enwlope system: I--regolith mass shielding 2-main tapered 
beams 3-graphite jber mesh; 4-longitudinal struts. 5-longitudinal bracing 6-telescopic tubular columns. 
7--circular footpads 8-linked habitavloboratoyhrkshop modules 9 - d u l e  ground support cradle 10- 
aesl of s l O R  I I-base of slope. 
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Shield With I n f w d  S-ura 

There are two parts to this design configuration: pressurized enclosures 

beneath radiation shielding canopies. The structure supporting the regolith 

consists of floors resting on lattice girders connected to columns and erected by 

pneumatic jacks. The pressurized enclosures can be made to whatever shape 

and size will fit under the shield (see Figure 2a).” 

The advantages of this alternative are: 

1. No digging or trenching device is required. 

2. The design can be configured to provide large 
volumes of habitable space per kilogram of launch 
weight. 

3. The pressurized enclosure weighs less than a habitat 
module, which reduces transportation requirements. 

The disadvantages of this alternative are: 

1. Girders must be placed and anchored, which could 
pose construction difficulties. 

2. Pneumatic jacks are required to raise the roof of the 
structure. 

3. All life support equipment and other machinery must 
be brought into the enclosure after it has been 
erected. 
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BASE CON- 1. flat shield raised in sections, pressurized enclosures beneath. Overall View of 
base. ( I )  Regolith shielding. (2) Perimeter expansion. (3) Base entry through mrlapping radiation bam'er wlls 
porn lunar sugace equipment and installations pork' (4) Solar shaded links to other parts of base. (5) Shielded 
links to other prts of base. (6) Ramp acccs lo lower levels (7) Initial erection sequence 

Figure 2a: FLAT SHIELD WITH INFLATED 
SUBSTRUCTURE l1 
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Low Arch Shield With Inflated Substructu re 

A low arch shield working in compression to support regolith requires 

less structural reinforcement than a flat shield. The only reinforcement required 

would be the girders needed to accommodate the outward (horizontal) thrust of 

the arch or arches. The components of such an arch would be made of molded 

regolith 'bricks' assembled over a movable pneumatic support form (see Figure 

2b).11 

The advantages of this alternative are: 

1. An arch is very strong structurally. 

2. The design can be configured to provide large 
volumes of habitable space per kilogram of launch 
weight. 

3. The pressurized enclosure weighs less than a habitat 
module, which reduces transportation requirements. 

The disadvantages of this alternative are: 

1. It requires a digger to excavate below the arch and to 
create an entrance ramp. 

2. The arch is labor intensive to construct. 

3. There is a need for a regolith molder or brick maker. 

4. A pneumatic form is required to support the arch 
assembly during construction. 

5. All life support equipment and other machinery must 
be brought into the enclosure after it has been 
erected. 
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BASE CONCEPT n. b w  arch shield using moulded regolith components assembled over temporary, 
movable pneumatic support form, pressurized enclosures beneath. General view of base ( I )  Regolith shielding. 
(2) Interlccking moulded q o l i t h  a M  components All components identical dimensions (3) Movable pneumatic 
/om supporting arch assembly. (4)  Aluminum IatUce gitzien to accommodate outwad thrust of a M a  Girdas 
assembledjlot on sur/oe with short wmponents and anchorrd to surfoce with vemcal p f m  or wnndcfd with 
transvrrse cables at convenient widely space intends (5) Height inmsed  whee q u i &  by a m t i o n .  (6) 
Expansion. 

Figure 2b: LOW ARCH SHIELD WITH INFLATED 
SUBSTRUCTURE " 
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Lunar Soil Baas 

The soil bag alternative proposes placing a habitat module directly on 

the ground and then surrounding it to the required depth by 'sandbags' filled 

with lunar soil (see Figure 3).'5 The bags would be made of Kevlar or other 

material which is resistant to ultraviolet radiation degradation. Although the 

bags could possibly be filled manually, the project team assumed that an 

automatic bagging device would be used? Placement of the bags around the 

habitat would be performed by hand. 

The advantages of this alternative are: 

1. No digging or trenching device is required. 

2. The bags would be easy to remove for future 
expansions. 

3. The bags would reduce the regolith's tendency to 
slide away from habitat walls during construction and 
later. 

4. Bags could be used to construct vertical walls if such 
were needed. 

The disadvantages of this alternative are: 

1. Material for the bags would have to be brought from 
Earth (estimated launch weight 100 pounds). 

2. The bag-filling device would have to brought from 
Earth (estimated launch weight 1,000 pounds). 

3. The bagger would not be transformable to other 
purposes. 

4. Bagging would take approximately 300 hours to fill 
enough bags to protect one module. 
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Figure 3a: LUNAR SOIL BAGS” 
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Loose Reaolith Shieldinq 

A variation of the lunar soil bag proposal is to place the regolith directly 

on and around the habitat (see Figure 3b). This loose regolith alternative needs 

no bags or bagging device. The soil would still have to be gathered and 

deposited around the habitat using some type of mechanical implement. 

The advantages of this alternative are: 

1. The construction time required is minimal 
(estimated to be approximately 15 hours). 

2. No digging or trenching device is required. 

The disadvantage of this alternative is: 

1. The regolith mound might tend to subside 
away from the habitat. 
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Figure 3b: LOOSE REGOLITH SHIELDING 
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Below Ground Alternatives 

Two of the below ground alternatives require an ability to dig into the 

lunar soil. This necessitates bringing digging equipment of some sort to the 

Moon. For the purposes of analysis, the project team used an opposed-bucket 

digging implement developed at Georgia Tech? After the habitat is placed 

below ground, the excavated material is used as backfill to cover the module. 

Underaround With Support Structure 

This alternative by the Lunar Operations Company12 is similar to the 

superstructure envelope design, but the habitat is located underground instead 

of on the surface (see Figure 4). 

The advantages of this alternative are: 

1. There is a cradle and anchoring system which would 
prevent point loads from occurring on the bottom of 
the module. 

2. The configuration allows access to the module's 
exterior for mai n te nance. 

3. The habitat module can be made lightweight, since it 
would not have to support weight of the regolith 
shielding . 

The disadvantages of this alternative are: 

1. Truss structure components must be brought from 
Earth. 

2. The truss requires extensive construction efforts to 
erect. 

3. Future expansions would require additional truss 
components. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

19 

OVERBURDEN 

CONDARY FRAME 

W 

Figure 4: UNDERGROUND WITH SUPPORT STRUCTURE’* 
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Lunar Lava Tubes 

Natural caverns occur on the Moon in the form of lava tubes, which are 

drained conduits of subsurface lava rivers? The tubes offer preformed 

structures that are deep enough to provide natural protection from radiation and 

micrometeorite impact (see Figure 5). The research outpost in a lava tube is 

envisioned to be a modular habitat, set onto guide rails three times its length. 

The rails are the only site preparation needed, and allow the habitat to be slid 

into the tube under the uncollapsed roof section. 

The advantages of this alternative are: 

1. 

2. 

3. 

4. 

5. 

No support structure is required, which reduces 
transportation requirements and construction efforts. 

There is a constant thermal environment, estimated to 
be -20 degrees Celsius. 

No digging or trenching is required. 

The habitat module can be made lightweight, since it 
would not have to support weight of the regolith 
shielding. 

No hauling and placing of regolith is needed. 

The disadvantages of this alternative are: 

1. The tube may be hard to access (Le., all materials will 
have to be lowered and raised to and from the tube). 

2. As yet no lava tubes have been explored on the 
Moon. 

3. The lava tubes do not offer flexibility of site selection. 
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Lunar lava rille with 
uncollapsed roof sections that 
measure hundreds of meten Note 
that mountains are close by which 
certainly direr in chemistiy and 
mineralogy from the relativeiyj7at 
basalt surfaces. This rille was 
extensively described by 
Cruikshank and Wood (1972) 
(Lunar Orbiter 5. frame M-191). 

Figure 5:  LUNAR LAVA TU8ES8 
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underaround Without Sup~ort St ructure 

The module is buried in a trench so that its roof is 0.5 meters above 

ground level. Primary access is achieved through an airlock, and an escape 

exit is provided for emergency use (see Figure 6). 

The advantages of this alternative are: 

1. No regolith support structure is required. 

2. Placing the module close to the surface reduces the 
volume of excavation required. 

3. Access by means of a ramp provides for ease of 
entrance and exit. 

4. A habitat with built-in reinforcement avoids 
construction requirements and the potential for 
associated problems on the Moon. 

5. The module is equipped with hydraulic legs which 
facilitate leveling and prevent point loads from 
occurring on the bottom of the module. 

The disadvantage of this alternative is: 

1. It is not easily adapted to provide large volumes of 
habitable space. 
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METHOD OF ANALYSIS 

During the research stage of the project, the team assembled a set of 

quantitative attributes for each alternative. The attributes include estimates for 

the volume of excavation required, expected construction time, and the weight 

of equipment to be brought from Earth. The attributes are presented in Table B1 

of Appendix B, along with supporting descriptions and references. 

Each alternative was analyzed according to how well it satisfied the 

eleven identified design criteria. The analysis was performed by assigning a 

weighting factor to each criterion, after which a decision matrix was used to 

determine a numerical rank for each alternative. The team used the quantitative 

data to aid in assigning decision matrix rating factors. In order to assess the 

sensitivity of the analysis method, three different weighting schemes were 

employed. The weighting factors and decision matrices used are found in 

Appendix A. The results are given in Table 1 on page 25. 
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Table 1: SUMMARY OF DECISION RESULTS 

RANKING I 

m a  ALTERNATIVES 
ABOVE GROUND 
1 1 SURFACE ASSEMBLED 

SUPERSTRUCTURE ENVELOPE 

2 A l F L A T  SHIELD 

2B)DOME W I E L D  II 1 1 

I I  I 1 

3 A ) S O I L  SAG SHIELDING II 1 1 
1 l 5 I 6 l 4  
II I 1 

EELOW G73UND 
4)BUk' IE3 WITH II 1 1 

SUPERSTRUCTURE ENVELOPE 11 3 7 1 5  

I I ' I ' I '  
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PROJECT SOLUTION 

In all three cases, the lava tube alternative received the highest ranking 

as the best design solution. However, there is a serious drawback to selecting 

lava tubes as the best method of protecting lunar outpost inhabitants. Only a 

few lava tubes are recognized, and none have been explored. Because no 

suitable tubes are currently identified, the project team chose to develop the 

second-ranked alternative, the buried module without a regolith support 

structure. 

This alternative is a composite design developed by the project team to 

best satisfy the desired design criteria. The design consists of a cylindrical 

habitat structure, an airlock with attached trench walls, and a module configured 

for emergency escape and future habitat expansions. The design is shown in 

Figure 7. The design details were developed as outlined in step five of the 

design methodology section, and are presented below. 

Assumptions 

The project team assumed there would be equipment available for 

digging and lifting material on the Moon. Specifically, previous USRA teams 

have developed a lunar crane5 and digger.6 Also, an all-terrain device known 

as the Skittefl has been developed to provide mobility for the crane, digger, and 

other equipment. The Skitter is also assumed to be available for lunar 

construction. 

26 
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Figure 7: MODULE LAYOUT FOR FINAL DESIGN 
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Recommendation of Site Selection 

Sites which have been previously explored offer the advantage of 

familiarity with local terrain and soil conditions. But because there is so much to 

learn about the Moon, the team recommends that an unexplored site be 

chosen for a research outpost. Specifically, we recommend that any site 

selected should have proof that there are lava tubes within reach. The analysis 

results indicate that situating a lunar base inside a lava tube would be a most 

advantageous alternative. Consideration should especially be given to a 

location on the lunar limb (the visible edge of the Moon's near side). Such a site 

would offer proximity to the Moon's far side. The Moon's far side is shielded 

from the radio noise of Earth, which makes it desirable for radio astronomy 

research. 

Protective Structure Configuration Outline 

Three and one half meters (11.5 feet) of regolith cover the habitat 

module. This depth is enough to provide adequate shielding against all GCR 

and SEP.13 The habitat and support modules are seated in a trench that is 

approximately 35.6 meters long by 4.5 meters wide by 4.0 meters deep (see 

Figure 8). Four hydraulic legs support the habitat and allow for ease of 

placement and leveling. 

An airlock with attached ramp walls provides primary access to the 

habitat module. The walls fold down to conserve space during transport, and 

can be unfolded by hand once the airlock is in place. The walls are designed to 

shore up the trench, and are formed with X-shaped corrugations to increase 
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I All dimensions in meters 

Figure 8: TRENCH DIMENSIONS 
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their stiffness. Thin braces placed across the ramp floor provide additional 

strength. 

An emergency exit and expansion module is located opposite of the 

airlock. Escape is accomplished through a vertical tube with ladder rungs 

leading to the surface. The top of the vertical tube provides a 'yardstick' during 

construction to indicate the height required of the regolith mound. The module 

is envisioned as having a pressurized closet containing spare pressure suits. In 

the event of a fire inside the habitat, the crew could get into the closet and vent 

out the habitat's air, which should extinguish the blaze. The emergency module 

is also configured with side ports to allow for future habitat additions. 

Material Selection 

A lightweight titanium alloy such as Ti-6AI-4V is recommended for the 

folding ramp walls. This alloy is a readily available aerospace material, and is 

recommended because it will keep the launch weight low. All moving joints 

must have a protective coating such as Teflon, since bare metal surfaces will 

cold vacuum weld upon contact. Teflon has the added advantage that it does 

not degrade when exposed to ultraviolet radiation. 

Structural Integrity Considerations 

All of the modules must be must be made strong enough to withstand the 

weight of the regolith mass shielding. Using an average regolith density of 

1750 kilograms per cubic mete?, the 3.5 meter of soil covering will produce a 

pressure of approximately 10 kiloPascals (kPa) per square meter. By way of 

comparison, a pressure of one atmosphere is equal to approximately 101 kPa. 
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Although the habitat's internal pressure will exceed the expected 

external pressure, all modules should be designed to withstand the regolith's 

weight unaided. This will prevent collapse of the structure due to a loss of 

internal pressure. 

Construction Sequence Outline 

The lunar construction operation will consist of digging the trench, 

placing and leveling the modules, deploying the ramp walls, and covering the 

modules with backfill. The modules and construction equipment should be 

landed ahead of the crew. If landing-related problems occur, the mission can 

be aborted without endangering human lives. Equipment unpacking will begin 

after the crew has landed. A heavy-lift crane attached to the equipment lander 

will facilitate the unpacking and it can be used to place the module into the 

trench. 

Heat Transfer Considerations 

The lunar soil is a poor conductor of heat. The thermal conductivity of 

Moon soil ranges from 0.0021 watts per meter Kelvin (w/m-k) at the surface to 

2.077 (w/m-k) at a depth of twenty feet? At this point it is unknown how much 

heat will be generated inside the habitat by onboard electronics and the crew 

members themselves. Once the expected heat transfer requirements have 

been determined, some form of radiant heat exchanger will have to be devised, 

since the soil covering will act as a thermal insulator. 

'I 
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Maintenance Aspects 

Most of the habitat structure is located below surface level, so  the regolith 

mound should have little tendency to subside. The presence of the ramp walls 

will prevent the trench wall from collapsing. Thus little or no maintenance of the 

regolith shield and ramp is expected. 

The exterior of the structure will be covered with soil, making it 

inaccessible for outside maintenance. Therefore all planned maintenance of 

the habitat must  be designed to be accomplished from inside. This aspect is 

actually desirable to exterior maintenance, where the need for a space suit  

imposes severe restrictions on mobility and sensitivity. Interior maintenance 

can be performed in the 'shirtsleeve' environment of the habitat. 

Future Expansion 

The emergency exit module has five ports, three of which can be used to 

attach additional habitats or other modules. When it is desired to add on to the 

base, only the regolith covering the end of the structure would need to be 

removed. 
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CONCLUSIONS AND RECOMMENDATIONS 

The team's original design satisfies all the identified design criteria. The 

structure will adequately protect its inhabitants from both galactic cosmic and 

solar radiation, as well as micrometeorite impacts. 

The project team believes it is more advantageous to build all module 

components so that they are strong enough to support the weight of the regolith 

shielding. Adding this strength to the modules greatly simplifies lunar 

construction by eliminating the need to assemble a truss structure at the site. 

It is highly recommended that this initial operations habitat be provided 

with complete radiation protection. Future additions to the base can be 

provided with less regolith shielding protection. Reducing the regolith 

overburden will lower the structural strength requirement, which will decrease 

the transport weight of additional modules. In the event of a solar flare or any 

other radiation increase, the initial habitat can be used as a 'storm cellar' until 

the radiation has decreased to a tolerable level. 

The project team recommends that future development of this project 

should include a detailed design of all structures (Le., the airlock, habitat, and 

emergency escape modules). 

A recommended future project would be the analysis and development of 

protective structures for a post-outpost base that is permanently occupied and at 

least partially self-sufficient. 
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A decision matrix is a tool used as an aid in the decision making process. 

Decision matrices are usually employed when a selection must be made from 

several possible design alternatives. To use a decision matrix, a set of design 

criteria must be identified. Every criterion is assigned a weighting factor 

determined by its relative importance in the set. Each alternative is then 

assigned rating factors based on the designer's judgement of how well it 

satisfies the design criteria. The products of the weighting factors and rating 

factors are then summed to assign a numerical rating to each alternative. The 

alternative with the highest sum of products is ranked number one, that is, the 

'best' possible alternative. 

Weighting factors for the criteria were determined using the method of 

pairs. The method is a sequential process by which every possible pair of 

criteria is compared. A tally mark is given to the criterion considered to be of 

greater importance. The total number of marks each criterion received is then 

divided by the total number of tally marks to obtain a weighting factor between 

zero and one. 

Table A1 outlines the results of the initial method of pairs analysis. The 

weighting factors from Table A1 were used in an initial decision matrix to 

determine the numerical rank of each alternative. The decision matrix is 

presented in Table A2. 



A2 

SHEILDING AGAINST RADIATION 

USE OF LUNAR RESOURCES 

Table Al: INITIAL WEIGHTING FACTORS 

I******** 

******* 

CRITERIA 

USE OF PREFAB. PARTS 

USE OF TRANSFORMABLES 

PROVISION FOR EXPANSION 

I TALLY MARKS 

*** 

* 
* *  

STRUCTURAL INTEGRITY 

MAINTENANCE REOUIREMENTS 

PROTECTION AGAINST MICROMETEORITES I * * * * * * * * * 

********* 

I**** 

ACCESS FOR MAINTENANCE 

TRANSPORTATION REQUIREMENT 

EASE OF CONSTRUCTION I **I*** 

******* 

* 

WEIGHTING 
FACTORS TOTAL I 

0 .  I53 + 0.1 19 

9 I 0.153 

3 I 0.051 

I I 0.017 

2 I 0.034 

0.102 + 0.153 

6 I 0 .085  

7 I 0.1 19 

I I 0.017 

SUM TOTAL OF WEIGHTING FACTORS 1 I ,000 
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A4 

The project team employed two additional weighting schemes in order to 

assess the validity of the initial decision results. The second weighting system 

was devised so that the minimum transportation requirement criterion would be 

equal in weight to the other top-ranked criteria (i.e., radiation and 

micrometeorite shielding, and structural integrity). This weighting scheme was 

developed at the suggestion of NASA's Dr. John Allred, and is presented in 

Table A3. 

The weighting factors from Table A3 were used with the original rating 

factors to construct the decision matrix shown in Table A4. 

The final decision matrix was constructed with all criteria weighted 

equally. The results contain a tie for second place, and are presented in Table 

A5. 
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SHEILDING AGAINST RADIATION 

USE OF LUNAR RESOURCES 
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******** 8 

****** 6 

Table A3: WEIGHTING FACTORS WITH 

TRANSPORTATION REQUIREMENTS EMPHASIZED 

PROTECTION AGAINST MICROMETEORITES 

USE OF PREFAB. PARTS 

~ 

CRITERIA 

******** 8 

* *  2 

~~ 1 TALLY MARKS 

~ 

USE OF TRANSFORMABLES 

PROVISION FOR EXPANSION 

EASE OF CONSTRUCTION 

* 

* 

*****  

STRUCTURAL INTEGRITY 

MAINTENANCE REQUIREMENTS 

ACCESS FOR MAINTENANCE 

******** 8 

**+*  4 

****** 6 

I 

I 

5 

TRANSPORTATION REQUIREMENT I ******** I 8 

SUM TOTAL OF WEIGHTING FACTORS 

~ ~ 

WEIGHTIf 
FACTORS 

0. I40 

0. IO5  

0. I40 

0.035 

0.017 

0.017 

0.088 

0. I40 

0 I 070 

0.105 

0.140 

I ,000 
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Quantitative Attributes of Alternatives 
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QUANTITATIVE ATTRIBUTES OF ALTERNATIVES 

Volume of Regolith Excavation Required 

The volume of regolith excavated is determined by the geometric shape 

of the trench. 

Volume of Regolith Required for Shielding 

The regolith depth required for shielding is 3.5 meters. The total volume 

of regolith required varies with each alternative due to surface area differences. 

Construction Time 

The construction time is estimated based upon the expected construction 

sequence of each particular alternative. The sequences include unpacking, 

layout, trenching, structure assembly, habitat placement, regolith gathering, and 

regolith deposition. 

Estimated Weight of External Support Structure 

The weight of each support structure is estimated relative to the specified 

weight of the surface assembled superstnrcture envelope alternative.9 
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Estimated Weight of Additional Equipment Required 

When available, the weight of additional equipment is cited from the 

report on the specific device. Othewise, the weight is estimated based on 

similar equipment found on Earth. 

Total Weight Brought From Earth 

The total weight represents the weight of additional equipment required 

plus the weight of the external support structure, if any. 
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APPENDIX C 

Layout Drawings 


