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Introduction

In any discussion of distributing programs and entities
of programs written in a high order ianguage (HOL), certain
issues need to be included because they are generally
independent of the particular language involved and have a
direct impact on the feasibility of distribution. Of special
interest is the distribution of Ada program entities, but
many of the issues involved are not specific to Ada and
would require resolution whether written in Pascal, PL/1,
Concurrent Pascal, HAL/S, or any language which provides
similar functionality. The following sections will enumerate
some of these issues, and will show in what ways they relate
to Ada. Also, some (but by no means all) of the issues
involved in the distribution of Ada programs and program
entities will be discussed.

Justification

Before introducing such a subject, it .s perhaps
reasonable to provide a rationale for distributing any named
resource of a HOL program in the first place, Th reasons
are straight-forward.

First, and probably most important, is the issue of
reliability. Computers are increasingly used in ap: iications
which require high reliability, because they impac- life and
property (sometimes literally). Embedded applicat.ons which
provide life support, control guidance and navigation, or
manage weapons are examples. A failure of such an
application can be disastrous. By decentral:izing the
software (and of course, the hardware), we car provide
systems that not only do not have single points of failure,
but that are fault-tolerant. Such systems can recover from

1l Ada is a registered trademark of the U.S. Government
(AJPO)
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failures once they are detected. (This approach should not
be confused with fault-avoidance, which attempts to prevent
failures from impacting the system in the first place.)

The second reason is that of the decreasing cost of
hardware, especially with respect to the ever-increasing
cost of software. In order to make the most, economically,
of the power of software, utilization of multiple processing
resources is desirable. Parallel processing is an example.

The third reason is extensibility, in the domains of
performance and functionality. When the software system 1is
designed with distribution as a design criteria, the
resulting modularity provides a design that does not
necessarily have to be radically changed for increases in
processing power (for performance) or for the addition of
new modules (for additional functionality). In a system
intended to have a long, evolving life cycle, this is a
major issue,

Fourth, given limited resources of operational costs,
hardware, communications, and infcrmation, when those
resources are themselves distributed (as in Space Station),
resource sharing implies that only those elements that
require direct access and are to be held accountable for the
integrity of the resource should be located in proximity to
that resource. In this case, distribution of the software
allows only that part which interacts with the resource to
be present (with potential benefits of reduced
communications costs and localization of accountability).

The fifth reason is the issue of the fidelity of
modelling solutions to real world problems that are
distributed in nature. Such problems are complex enough
without adding additional complexity by distorting the
solution model to fit a non-distributed HOL with no support
for cooperating, parallel activities, or for recognizing
both exceptions to normal processing and the context in
which the exceptions occur (so that appropriate fault
tolerance and fail-soft activities can be supported). For
example, the Space Station Program will eventually involve
ground support stations, free-flying platforms, the Station,
orbital transfer vehicles, and other components. These
components are intended to interact in an integrated, end-
to-end information environment. (Put simply, any authorized
user at any component of the environment who desires to
access entities should be given timely access to such
entities without regard for the location, replication,
number of processors supporting the access, or means of
providing fault tolerance.) Obviously, a model of the
solution to these challenges involves a high degree of
distributed parallel processing activities which must evolve
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Finally, the issue of performance should be addressed.
It, too, is straight-forward. When the application demands
the advantages and benefits of distribution, the price of
decreased efficiency must be paid. It should be understood,
however, that distribution will not automatically mean poor
performance. In fact, distribution will in some cases
improve performance by decreasing communication costs,
taking advantage of remote hardware resources, and so on.

The above reasons should be sufficient for illustrating
the need for distributed software. The dgeneral issues
involved in distribution will follow.

Visibility

One of the primary underlying concepts in distributing
a HOL program is that of “"visibility". In this context,
visibility means "the set of objects which may be
potentially referenced at any particular point in a
program”. These objects include both data and code modules,
such as variables and subroutines. Depending on the
distribution scheme, these objects may or may not be locally
available, In those instances where the object is remote,
the Run Time Support Environment (RTSE) will be required to
help fulfill the semantic requirements of a given reference.
For example, the program may have some of its variables
distributed across remote sites., A reference to such a
remote object will require cooperation among the two RTSEs.
The calling RTSE will have to contact the RTSE of the
processing site at which the variable is located, with a
request for the current value of the variable. The remote
(called) RTSE must locate the variable, get its value, and
send back a message containing that value. (The recovery of
a failure of one of these messages is non-trivial.,)

As can be seen, the visibility of objects plays a

considerable part in determining the complexity of the RTSEs
involved.

Distribution Scheme

A distribution scheme may often be described in terms
of the visibility rules of the implementation language.
Traditional block-structured languages, such as ALGOL and
Pascal, use nesting to control visibility of locally
declared data and subroutines. The visibility rules of these
languages are such that the inner declarations of
subroutines and data are visible to further nested units in
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the same declarative region, but not to outer units at the
same nesting level. A global section of data is directly
visible, and of course outer-level subroutines are visible
to successively declared subroutines at the same level, in a
linear manner.

As previously shown, the visibility rules directly
impact the complexity of the required RTSE by determining
the set of entities that may be referenced at a particular
point. This complexity represents a major factor in
determining the feasibility of a distribution scheme itself.
Those schemes which reflect visibility rules that restrict
the size of the name space are easier to implement.

The distribution schemes form a spectrum based on the
visibility rules and the constructs of the source language
involved. For example, if the distribution is to be at the
individual statement level, (representing one extreme), then
any object referenced may be remote, including components of
complex expressions. (The resulting RTSE requirements would
be extensive. The instance discussed under "Visibility"
above is an example.) If distribution is to be at the
compilation-unit level, (the other extreme), then the set of
all entities that may be referenced is reduced to globally
visible entities, such as subroutines and their
parameters. In effect, the distribution scheme controls the
size of the distributable name space, and therefore the
complexity of the RTSE.

Time

Another important concept is that of time, either
expressed in the program directly, or in the underlying
RTSE. The basic problem is that in order to provide correct
semantic execution, distributed program units require the
same effects as a consistent, unified version of time that
would be provided in a non-distributed environment.

As an example of directly expressed timing, if one
module requests a service of another remote module, with a
specified amount of time allowed for the request to be
fulfilled, the two modules must have a common view of time
for the request to have any meaning. Note that this does not
mean that the two modules' clocks are necessarily
synchronized, only that they be mutually consistent while
the request is bheing served.

In the underlying RTSE, certain operations and actions
often need to be synchronized with respect to each other for
correct operation and support of a source program. This will
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also be required in a cooperative manner among the RTSEs
supporting distributed programs.

Semantic Inteqrity

A critical concept is that of semantic integrity, which
* means that the meaning of constructs and program units must

be maintained without regard for distribution. For instance,

a call to a subroutine must have the same semantic effect,
: or meaning, regardless of the routine's actual location with
respect to the caller. Note that this does not mean that the
behavior is the same, especially with respect to temporal
performance. (In other words, it has to work the same, but
not necessarily with the same timing and space profile.)

A specific aspect of semantic integrity is that the
semantics of a given construct are to be invariant over
failures of the processors executing the corresponding
object code. For example, the semantics of a subroutine call
are such that, once the called routine is completed,
execution resumes in the calling module. I:. a distributed
context, in which the called routine is remote from the
caller, if the called module's processor fails, the calling
module will be suspended indefinitely. The semantics would
thus be (incorrectly) different in the distributed
environment. Semantic integrity, in this case, means that
the caller must not be allowed to permanently suspend, since
the semantics of a call do not include that situation.
(Obviously, if the called routine is designed to never
complete, due for example to an infinite loop, then the
caller will never resume. However, that is not a result of
the semantics of a subroutine call,) Similarly, if the
processor (s) executing outer-level units in a nested
Structure fail, the inner-level units must not be allowed to
proceed normally since they depend on the outer-level scopes
for their execution context. This is, again, an issue that
may be partially addressed by the distribution scheme, by
constraining the units that may be distributed to those at
the outer-level.

Resource Management

A more obvious issue than those above is the management
of resources. These resources include storage, processors,
and information (among others, such as devices).
Specifically, storage management involves dynamic, static
and temporary data, as well as the management of code (which
may also be dynamic).

B.3.4.5



LTS, T

Processor management involves dispatching pgtentia}ly
remote processors to processes, as well as scheduling, which
determines the units that are to be able to execute at a
given moment. Both are, of course, requirements of the RTSE.

Information management involves the maintenance of
consistent, current status information regarding individual
modules' contexts, processing status and workloadg, ;he
global program state for each executing program, descriptive
information about data and code, and so on.

Different languages have varying degrees of resource
management requirements, as well as varying degrees of
programmer-level control over them. Thus the amount of RTSE
support required varies. For instance, languages which allow
the allocation and deallocation of dynamic objects from a
heap will require different RTSE support from those
languages which have no such capabilities (often
intentionally, such as in HAL/S). Some languages have only
static data, and thus require different storage management
techniques that those which are stack-oriented. In a
distributed context, where heaps may be effectively
distributed and/or shared, the management of dynamic objects
will require specialized RTSE capabilites.

ISA Homogeneity

The Instruction Set Architectures (ISA) of the
processors that comprise the target environment are also an
issue, If these processors are potentially heterogeneous,
target dependencies become a problem. One such dependency is
of course implicit in the object code itself, since the
machine code was generated for a particular ISA. Also, the
source code may contain explicit target dependencies. These
could include references to absolute addresses and specific
devices, as well as specific data representation requests,
and so on.,

Furthermore, the default representation of data may
vary among ISA's with different capabilities. This
difference in representation will be a problem when objects
are visible to (two or more) remote modules on non-
homogeneous ISAs, as well as when objects are passed as
parameters between such modules.

Changes In Situ

In systems which are intended to have a very long,
evolving life-span, such as Space Station, changes to the
software are 1inevitable. These changes will occur as a
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result of upgrades in technology, and as a result of
changing requirements in functionality. The design of the
software must, in its initial form, provide for such
changes, (Alterations to the design after-the-fact present a
much more difficult situation.) Currently accepted
complexity~control methods of modularity and information
hiding, along with the requirement for changing a system
without first halting that system, dictate that separate
programs be employed in the construction of the software.
Each program is to be distributed as necessary, or not at
all. This approach is in contrast to one in which a single,
monolithic program is distributed across the network(s).

Issues in Distributing Ada Programs & Program Bntities

Justification for Selecting Ada

Provably Correct Construcfs

Older HOLs were designed in an era of single monolithic
processors that were typically expected to execute programs
that were small (by current standards), and that were
developed by one programmer, The three oldest high order
languages, FORTRAN, LISP, and COBOL, were developed (in
1957, 1958, and 1959, respectively) before the development
and wide recognition of the concepts of building
"structured" software from a small set of provably correct
constructs. Thus it is understandable that natural
reenforcement for consistent use of such constructs is
lacking. In fact, those who use early languages in building
solution models for many of today's complex problems often
find themselves penalized for such use. In contrast, the Ada
language provides direct support for developing solutions to
large, complex problems that are demonstrably correct,
maintainable and adaptable.

Support for Parallel Activities with Fault Tolerance

These early languages are called sequential because
they have no support for modelling concurrent or parallel
actions. Additionally, they provide support for normal
processing only, with no means for expressing the response
to run-time errors. Aqgain, The Ada language provides direct
support for such activities. To distort the solution model
with such a language as FORTRAN or Pascal would require
extensive programming in assembly language and use of
operating system calls in order to compensate for the
inadequacies of the language. The resulting software system
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would be too expensive to build, much more difficult to
maintain and operate, and far more difficult to adapt to
changing requirements, Similarly, to distort the solution
model by failing to support distributed program entities, as
well as distributed programs (when appropriate), would be to
add rather that to reduce complexity, since the resulting
model would be far less representative of the problem.

Distribution Scheme

The central theme in the following discussion is that
of the distribution scheme. As demonstrated, its control
over visibility has a considerable impact on the complexity
of the underlying RTSE, and thus the feasibility of
distribution. In Ada, the spectrum of distribution begins
with constants and variables, continues to nested program
units (blocks, subprograms, packages and tasks), and ends at
the other extreme of compilation units. (It should be noted
that Ada provides greater control over the name space via
packages.) Compilations units in this case would be Ada's
"library units": specifically, subprograms and packages. At
this level, the only visible entities are these library
units, parameters for these units when they are subprograms,
and declarations in the visible parts of library unit
packages. Distribution at this level is the easiest to
support. Distribution at the nested program unit wouid limit
some visibility, (i.e., the declarations local to nested
vnits), but not globally visible data and routines. Thus it
would not result in less RTSE complexity, Obviously, the
simpler the requirements for the RTSE the better, since the
implementation of distribution support is simpler.

However, other factors besides RTSE complexity must be
considered in the choice of distribution level support.
Specifically, the amount of fault-tolerance required must be
seriously considered. If little fault-tolerance is required,
the system may be allowed to deal with it transparently (in
very deterministic ways), such that the programmer is not
directly involved with the response to failures. As such,
the programmer has no need to express aspects of
distribution dynamically in the source language. However, in
some applications only the programmer can know what is to be
done in response to failures. The appropriate response may
be a specific reconfiguration of the program units involved.
Since the only dynamic program unit is the task, the
distribution scheme may have to support distribution of
tasks in order for the programmer to specify the
reconfiguration,
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Time

The concept of time in Ada may be expressed explicitly
in several ways, based on the delay statement. An example of
the need for consistency across remote units is, of course
the timed entry call, which requests a service to be
provided to the caller in a specific amount of time. If the
server is to respond meaningfully, it must perform the
request for rendezvous in the amount of time indicated by
the call. However, since the clocks of the two processors
will not be synchronized, and there will be an
indeterminable communication lag, difficulties will exist.
Specifically, the server may respond too late, such that the
caller will have timed-out and continued on as if the
service was never provided. If not handled by the RTSE, the
program would then be in a logically inconsistent state.

An example of timing issues in the underlying RTSE is
the activation of remote tasks. The parent task must not
begin execution until all tasks declared in its declarative
region are successfully activated. If one or more of these
activations fail, then Tasking Error must be raised in the
parent.?2 -

Another example is the elaboration of the library units
named in the context clauses of a main (sub)program. These
must be elaborated in an order that is consistent with the
transitive dependencies. As a result, distributed library
units cannot simply be elaborated when the remote host site
is ready. Rather, there must be communication and
cooperation among the sites,

Semantic Integrity

Ada subprogram calls will exhibit the behavior
described under the general section on "Semantic Integrity"
with respect to failure of the called unit (i.e., they too
will not return). Furthermore, an entry call will exhibit
those same characteristics when the processor supporting the
called entry fails. Conditional and timed entry calls can
protect the caller from permanent suspension prior to the
start of the rendezvous. However, these calls do not protect
the caller once the rendezvous has begun, -

2 Note that in a distributed context, the activation
status messages may be lost. The resulting indefinite
suspension of the parent would be an example of failed
semantic integrity.
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It should be noted that in a distributed execution
environment, the conditional entry call is not the same as a
timed entry call with a zero delay. The reason is as
follows. In the Language Reference Manual (LRM)3, the phrase
"immediately possible" in the discussion of the conditional
entry call refers to the readiness of the called task to
accept the call, (not to an amount of time). The conditional
caller is dependent upon the called task to indicate whether
or not it can accept the call. If not, the caller will
resume under the "else" part of the call. If the called task
indicated that it could perform the rendezvous (resulting in
the caller being suspended), and then failed, the caller
would be indefinitely suspended (unless fault tolerant
programming techniques are applied). This is not the case
with a timed entry call. Under a timed call, the caller is
not dependent on the called task. (The caller does the
timing.) If the call is not performed in the specified
delay, then the caller continues on, without regard for the
status of the called task. Thus, the semantics are not the
same,

Resource Management

Distributed Ada will require all the resource
management activities outlined in the general section on
resource management, and specifically those for a stack-
oriented language. One aspect that has received attention is
the subject of dynamic data, supported in Ada by the "access
type". Some implementations of distributed Ada restrict
parameters such that values of access types are not passed
between remote program units.4 This is an expedient
approach, but not an absolutely necessary one. In Ada,
dynamic objects are referenced as abstractions, which is why
they are called "access" types rather than "pointer" types.
The value gives "access" to the dynamically allocated
object. This is of course typically implemented (on
uniprocessors) as an actual address. The common reaction to
distributing access types is then that such distribution is
not possible. However, in keeping with the abstraction
concept, in passing an access value to a remote site, rather
than passing an address which will be meaningless to the
remote site, a "token" should be passed which uniquely
identifies the dynamic object. The identifier will have to

3 Ada Language Reference Manual, ANSI Mil-Std-1815A,
Section 9.7.2

4 A Feasibility Study to Determine the Applicability of
Ada and APSE in a Multi-microprocessor Distributed
Environment (Final Report, March, 1983) TXT, CISE, SPL
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be unique over the entire target environment, and may be
passed at will among distributed units.

ISA Homogeneity

Ada programs will have the same problems of data
representation that any HOL program would, when the
processors comprising the target environment are
heterogeneous. These problems will be exhibited when global
objects are referenced by two or more remote program units
on different ISAs, and when parameters are passed between
such program units via subprogram and entry calls. The
specific incarnation of the problem is package Standard,
which logically encloses the units comprising a program.
(Package System is also a problem to a lesser extent.)
Package Standard defines type Integer, Float, Character and
so on, for an entire program. The question then is how
different ISAs can efficiently represent those common types.

One approach is to resort, in all cases, to
representing passed data at the level of the common
denominator: type String. This is considered too extreme,
since not all communicating program units will be on
heterogeneous processors. However, the concept of a common
format, a "canonical data format", may be the most expedient
approach. A promising alternative is the concept of "self-
defining data structures", in which the passed data includes
a description of its representation.

Changes In Situ

As stated in the general section, changes to the
software in a system with an long, evolving life cycle will
be required. It may often be the case on Space Station that
the subsystem being changed is critical and cannot be
stopped in order for the changes to be installed. Also, good
design, maintenance aspects, and the sheer volume of
software involved mandates that multiple Ada programs be
utilized in the construction of the software system. This is
not in conflict with the LRM, although a casual reading
might imply that the LRM requires only one program to be "in
existence" at a time. Nothing in the LRM has been found to
require such a restriction.5

Each program would be distributed if the requirements
dictated that approach. Each would be only as distributed as

5 The issue of multiprogramming is (appropriately) not
addressed in the language reference manual.
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necessary, to reduce the costs of distribution support.
Furthermore, if the RTSE is constructed in a layered,
modular fashion, those programs not requiring distribution
support would not pay an overhead penalty since the RTSE
would be configured to the minimum support necessary. A non-
distributed program would then be supported by a traditional
configuration of runtime support services.

Although the details of supporting the integration of a
new subsystem without first stopping that subsystem are not
clear, it is felt that such an activity is impossible if
separate programs are not employed.

Conclusion

As shown, nany of the issue- ia distributing Ada
programs are common to distributing any high-order lancuage.
The Jdistribution schene, because of its impact on the
underlying RTSE complexity, should be carefully chosen when
implementing distribution of the language. In making the
choice, special consideration must be given to the amount of
fault-tolerance required, and the level of programmer
response, In Space Station, such issues will be critical.
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