
DISTRIBUTING PROGRAJ4 ENTITIES I N Ada1

.
P a t r i c k Rogers

C h a r l e s W. McKay
High T e c h n o l o g i e s L a b o r a t o r y

U n i v e r s i t y of Houston
a t C l e a r L a k e

Introduction

I n any d i s c u s s i o n of d i s t r i b u t i n g programs and e n t i t i e s
of programs w r i t t e n i n a h i g h o r d e r i a n g u a g e (H O L) , c e r t a i n
i s s u e s n e e d t o b e i n c l u d e d b e c a u s e t h e y a r e g e n e r a l l y
independen t o f t h e p a r t i c u l a r l anguage i n v o l v e d and have a
d i r e c t impact o n t h e f e a s i b i l i t y of d i s t r i b u t i o n . O f s p e c i a l
i n t e r e s t is t h e d i s t r i b u t i o n of Ada program e n t i t i e s , b u t
many o f t h e i s sues i n v o l v e d a r e n o t s p e c i f i c t o Ada and
would requi re r e s o l u t i o n whether w r i t t e n i n P a s c a l , PL/1 ,
C o n c u r r e n t P a s c a l , H A I , / S , or a n y l anguage w h i c h p r o v i d e s
s i m i l a r f u n c t i o n a l i t y . T h e f o l l o w i n g sect ions w i l l enumera te
some o f t h e s e i s sues , and w i l l show i n what ways t h e y r e l a t e
t o Ada. Also , some (b u t by n o means a l l) of t h e i s s u e s
i n v o l v e d i n t h e d i s t r i b u t i o n of Ada programs and program
e n t i t i e s w i l l b e d i s c u s s e d .

J u s t i f i c a t i o n

B e f o r e i n t r o d u c i n g s u c h a s u b j e c t , i t 1s p e r h a p s
r e a s o n a b l e to p r o v i d e a r a t i o n a l e f o r d i s t r i b u t i n g a named
r e s o u r c e of a HOI, program i n the f i r s t p l a c e . T h r e a s o n s
a r e s t r a i g h t - f orward.

F i r s t , and p r o b a b l y most i m p o r t a n t , i s t h e i s s u e of
r e l i a b i l i t y . Computers a r e i n c r e a s i n g l y used i n apr i i c a t i o n s
which r e q u i r e h igh r e l i a b i l i t y , b e c a u s e t h e y impac. l i f e and
p r o p e r t y (sometimes l i t e r a l l y) . Embedded a p p l i c a t _oris w h i c h
p r o v i d e l i f e s u p p o r t , control g u i d a n c e and n a v i g a t i o n , o r
m a n a g e w e a p o n s a r e e x a m p l e s . A f a i l u r e o f s u c h a n
a p p l i c a t i o n c a n b e d i s a s t r o u s . By d e c e n t r a l l z i n g t h e
s o f t w a r e (a n d o f c o u r s e , t h e h a r d w a r e) , w e c a r . p r o v i d e
s y s t e m s t h a t n o t o n l y d o n o t have s i n g l e p o i n t s of f a i l u r e ,
b u t t h a t a r e f a u l t - t o l e r a n t . Such s y s t e m s can r ecove r from

1 Ada is a r e g i s t e r e d t rademark of t h e U . S . Government
(A J P O)

B.3.4.1

ORiQlNAL PAGE Is
of)OOR QUALITY

failures once they are detected. (This approach should not
be confused with fault-avoidance, which attempts to prevent
failures from impacting the system in the first place.)

The second reason is that of the decreasing cost of
hardware, especially with respect to the ever-increasing
Cost Of software. In order to make the most, economically,
of the power of software, utilization of multiple processing
resources is desirable. Parallel processing is an example.

The third reason is extensibility, in the domains of
performance and functionality. When the software system 1s
designed with distribution as a design criteria, the
resulting modularity provides a design that does not
necessarily have to be radically changed for increases in
processing power (for performance) or for the addition of
new modules (for additional functionality). In a system
intended to have a long, evolving life cycle, this is a
major issue.

Fourth, given limited resources of operational costs,
hardware , communi c a t ions , and in f (j. r ma t i on, w h e n t hose
resources are themselves distributed (as in Space Station) ,
resource sharing implies that only those elements that
require direct access and are to be held accountable for the
integrity of the resource should be located in proximity to
that resource. In this case, distribution of the software
allows only that part which interacts with the resource to
b e p r e s e n t (w i t h potential b e n e f i t s of reduced
communications costs and localization of accountability).

T h e f i f t h reason is the issue of the fidelity of
modelling solutions to real world problems that are
distributed in nature. Such problems are complex enough
without adding additional complexity by distorting t h e
solution model to fit a non-distributed HOL with no support
for cooperating, parallel activities, or for recognizing
both exceptions to normal processing and the context in
which the exceptions occur (s o thit appropriate fault
tolerance and fail-soft activities can be supported). For
example, the Space Station Program will eventually involve
ground support stat ions , f ree-f ly ing plat forms , the Stat ion,
orbital transfer vehicles, and other components. These
components are intended to interact in an integrated, end-
to-end information environment. (Put simply, any asthorized
user at any component of the environment who desires to
access entities should be given timely access to such
entities without regard for the location, replication,
number of processors supporting the access, or means of
providing fault tolerance.) Obviously, a model of the
solution to these challenges involves a high degree of
distributed parallel processing activities which must evolve

B . 3 . 4 . 2 0

.

kh 'k&k't-&f&tXve, adaptable, and sa fe f a s h i o n .

F i n a l l y , t h e issue of p e r f o r m a n c e s h o u l d b e a d d r e s s e d .
I t , too, is s t r a i g h t - f o r w a r d . When t h e a p p l i c a t i o n demands
t h e a d v a n t a es and b e n e f i t s of d i s t r i b u t i o n , t h e p r i c e O f

however , t h a t d i s t r i b u t i o n w i l l n o t a u t o m a t i c a l l y mean poor
p e r f o r m a n c e . I n f a c t , d i s t r i b u t i o n w i l l i n some c a s e s
imp;rove p e r f o r m a n c e b y d e c r e a s i n g c o m m u n i c a t i o n c o s t s ,
t a k i n g a d v a n t a g e of remote ha rdware resources , and so on.

The above r e a s o n s s h o u l d b e s u f f i c i e n t f o r i l l u s t r a t i n g
t h e n e e d f o r d i s t r i b u t e d s o f t w a r e . T h e g e n e r a l i s s u e s
i n v o l v e d i n d i s t r i b u t i o n w i l l f o l l o w .

decreased e s f i c i e n c y mus t be p a i d . I t s h o u l d b e u n d e r s t o o d ,

V i s i b i l i t y

One of t h e p r i m a r y u n d e r l y i n g c o n c e p t s i n d i s t r i b u t i n g
a HOL program is t h a t of " v i s i b i l i t y " . I n t h i s c o n t e x t ,
v i s i b i l i t y m e a n s " t h e s e t of o b j e c t s w h i c h may b e
p o t e n t i a l l y r e f e r e n c e d a t a n y p a r t i c u l a r p o i n t i n a
proqram". T h e s e o b j e c t s i n c l u d e b o t h da t a and c o d e modules ,
s u c h a s v a r i a b l e s a n d s u b r o u t i n e s . D e p e n d i n g o n t h e
d i s t r i b u t i o n scheme, t h e s e objects may or may n o t b e l o c a l l y
a v a i l a b l e . I n t h o s e i n s t a n c e s where t h e o b j e c t i s r e m o t e ,
t h e Run T i m e S u p p o r t Envi ronment (RTSE) w i l l b e r e q u i r e d to
h e l p f u l f i l l t h e s e m a n t i c r e q u i r e m e n t s o f a g i v e n r e f e r e n c e .
F o r e x a m p l e , t h e p r o g r a m may h a v e some of i t s v a r i a b l e s
d i s t r i b u t e d a c r o s s r e m o t e s i t e s . A r e f e r e n c e t o s u c h a
remote object w i l l r e q u i r e c o o p e r a t i o n among t h e t w o R T S E s .
T h e c a l l i n g RTSE w i l l h a v e t o c o n t a c t t h e RTSE of t h e
p r o c e s s i n g s i t e a t w h i c h t h e v a r i a b l e i s l o c a t e d , w i t h a
r e q u e s t for t h e c u r r e n t v a l u e of t h e v a r i a b l e . T h e r e m o t e
(c a l l e d) RTSE m u s t l oca t e t h e v a r i a b l e , g e t i t s v a l u e , and
send back a message c o n t a i n i n g t h a t v a l u e . (The r e c o v e r y of
a f a i l u r e of one of these messages is non-trivial.)

As c a n b e s e e n , t h e v i s i b i l i t y of o b j e c t s p l a y s a
c o n s i d e r a b l e p a r t i n d e t e r m i n i n g t h e c o m p l e x i t y of t h e RTSEs
i n v o l v e d .

D i s t r i b u t i o n Scheme

A d i s t r i b u t i o n scheme may o f t e n be d e s c r i b e d i n t e r m s
of t h e v i s i b i l i t y r u l e s of t h e i m p l e m e n t a t i o n l a n g u a g e .
T r a d i t i o n a l b l o c k - s t r u c t u r e d l a n g u a g e s , s u c h a s ALGOL and
P a s c a l , u s e n e s t i n g t o c o n t r o l v i s i b i l i t y of l o c a l l y
d e c l a r e d d a t a and s u b r o u t i n e s . T h e v i s i b i l i t y r u l e s of t h e s e
l a n g u a g e s a r e s u c h t h a t t h e i n n e r d e c l a r a t i o n s o f
s u b r o u t i n e s and d a t a a r e v i s i b l e to f u r t h e r n e s t e d u n i t s i n

8 . 3 . 4 . 3

the same declarative region, but not to outer units at the
same nesting level. A global section of data is directly
visible, and of course outer-level subroutines are visible
to Successively declared subroutines at the same level, in a
linear manner.

A S previously shown, the visibility rules directly
impact the complexity of the required RTSE by determining
the set of entities that may be referenced at a particular
point. This complexity represents a major factor in
determining the feasibility of a distribution scheme itself.
Those schemes which reflect visibility rules that restrict
the size of the name space are easier to implement.

The distribution schemes form a spectrum based on the
visibility rules and the constructs of the source language
involved. For example, if the distribution is to be at the
individual statement level, (representing one extreme) , then
any object referenced may be remote, including components of
complex expressions. (The resulting RTSE requirements would
be extensive. The instance discussed under "Visibility"
above is an example.) If distribution is to be at the
compilation-unit level, (the other extreme) , then the set of
all entities that may be referenced is reduced to globally
visible entities, such as subroutines and their
parameters. In effect, the distribution scheme controls the
size of the distributable name space, and therefore the
complexity of the RTSE.

Time

Another important concept is that of time, either
expressed in the program directly, or in the underlying
RTSE. The basic problem is that in order to provide correct
semantic execution, distributed program units require the
same effects as a consistent, unified version of time that
would be provided in a non-distributed environment.

As an example of directly expressed timing, if one
module requests a service of another remote module, with a
specified amount of time allowed for the request to be
fulfilled, the two modules must have a common view of time
for the request to have any meaning. Note that this does not
mean that the two modules' clocks are necessarily
synchronized, only that they be mutually consistent while
the request is being served.

In the underlying RTSE, certain operations and actions
often need to be synchronized with respect to each other for
correct operation and support of a source program. This will

8 . 3 . 4 . 4

a l s o be r e q u i r e d i n a c o o p e r a t i v e manner among t h e RTSES
s u p p o r t i n g d i s t r i b u t e d programs.

Semantic Integr i ty

A c r i t i c a l c o n c e p t is t h a t of s e m a n t i c i n t e g r i t y , w h i c h
m e a n s t h a t t h e m e a n i n of c o n s t r u c t s a n d program u n i t s m u s t
be m a i n t a i n e d w i t 7;-9 out r e g a r d for d i s t r i b u t i o n . F o r i n s t a n c e ,
a c a l l t o a s u b r o u t i n e m u s t h a v e t h e same s e m a n t i c e f f e c t ,
or m e a n i n g , r e g a r d l e s s of t h e r o u t i n e ' s a c t u a l l o c a t i o n w i t h
respect t o t h e c a l l e r . Note t h a t t h i s does n o t mean t h a t t h e
b e h a v i o r i s t h e same, e s p e c i a l l y w i t h r e s p e c t t o t e m p o r a l
p e r f o r m a n c e . (I n o t h e r w o r d s , i t h a s to work t h e same, b u t
n o t n e c e s s a r i l y w i t h t h e same t i m i n g and s p a c e p r o f i l e .)

A s p e c i f i c a s p e c t o f s e m a n t i c i n t e g r i t y i s t h a t t h e
s e m a n t i c s o f a g i v e n c o n s t r u c t a r e t o b e i n v a r i a n t o v e r
f a i l u r e s of t h e p rocesso r s e x e c u t i n g t h e c o r r e s p o n d i n g
object c o d e . F o r e x a m p l e , t h e s e m a n t i c s o f a s u b r o u t i n e c a l l
a r e s u c h t h a t , o n c e t h e c a l l e d r o u t i n e is c o m p l e t e d ,
e x e c u t i o n r e s u m e s i n t h e c a l l i n g module . I i i a d i s t r i b u t e d
c o n t e x t , i n w h i c h t h e c a l l e d r o u t i n e is remote f r o m t h e
c a l l e r , i f t h e c a l l e d m o d u l e ' s processor f a i l s , t h e c a l l i n g
m o d u l e w i l l be s u s p e n d e d i n d e f i n i t e l y . T h e s e m a n t i c s w o u l d
t h u s b e (i . n c o r r e c t l y) d i f f e r e n t i n t h e d i s t r i b u t e d
e n v i r o n m e n t . S e m a n t i c i n t e g r i t y , i n t h i s case, means t h a t
t h e c a l l e r m u s t n o t b e allowed to p e r m a n e n t l y s u s p e n d , s i n c e
t h e s e m a n t i c s o f a c a l l d o n o t i n c l u d e t h a t s i t u a t i o n .
(O b v i o u s l y , i f t h e c a l l e d r o u t i n e i s d e s i g n e d t o n e v e r
c o m p l e t e , d u e f o r e x a m p l e t o a n i n f i n i t e loop, t h e n t h e
c a l l e r w i l l n e v e r resume. However, t h a t i s n o t a r e s u l t of
t h e s e m a n t i c s o f a s u b r o u t i n e c a l l .) S i m i l a r l y , i f t h e
p r o c e s s o r (s) e x e c u t i n g o u t e r - l e v e l u n i t s i n a n e s t e d
s t r u c t u r e f a i l , t h e i n n e r - l e v e l u n i t s m u s t n o t b e a l lowed to
p r o c e e d n o r m a l l y s i n c e t h e y depend o n t h e o u t e r - l e v e l scopes
f o r t h e i r e x e c u t i o n c o n t e x t . T h i s is, a g a i n , a n i s s u e t h a t
may b e p a r t i a l l y a d d r e s s e d b y t h e d i s t r i b u t i o n s c h e m e , b v
c o n s t r a i n i n g t h e u n i t s t h a t may b e d i s t r i b u t e d t o t h o s e a c
t h e o u t e r - l e v e l .

Resource Manaaement

A more o b v i o u s i s sue t h a n t h o s e a b o v e is t h e manaqcment
of resources. T h e s e r e s o u r c e s i n c l u d e s t o r a g e , p r o c e s s o r s ,
a n d i n f o r m a t i o n (a m o n g o t h e r s , s u c h a s d e v i c e h) .
S p e c i f i c a l l y , s t o r a g e management i n v o l v e s d y n a m i c , s t a t i c
and t e m p o r a r y d a t a , a s w e l l a s t h e management of c o d e (w h i c h
may a l s o b e d y n a m i c) .

8.3.4.5

P roces sor management involves dispatching potent i a1 ly
remote processors to processes, as well as scheduling, which
determines the units that are to be able to execute at a
given moment. Both are, of course, requirements of the RTSE.

Information management involves the maintenance Of
consistent, current status information regarding individual
modules' contexts, processing status and workloads, the
global program state for each executing program, descriptive
information about data and code, and so on.

Different languages have varying degrees of resource
management requirements, as well as varying degrees of
programmer-level control over them. Thus the amount of RTSE
support required varies. For instance, languages which allow
the allocation and deallocation of dynamic objects from a
heap will require different RTSE support from those
languages which have no such capabilities (often
intentionally, such as in HAL/S). Some languages have only
static data, and thus require different storage management
techniques that those which are stack-oriented. In a
distributed context, where heaps may be effectively
distributed and/or shared, the management of dynamic objects
Will require specialized RTSE capabilites.

ISA Homogeneity

The Instruction Set Architectures (ISA) of the
processors that comprise the target environment are also an
issue. If these processors are potentially heterogeneous,
target dependencies become a problem. One such dependency is
of course impjicit in the object code itself, since the
machine code was generated for a particular ISA. A l s o , the
source C O ~ ? may contain explicit target dependencies. These
could include references to absolute addresses and specific
devices, a s well as specific data representation requests,
and so on.

Furthermore, the defdult representation of data may
vary among I S A ' s with different capabilities. T h i s
difference in representation will be a problem when objects
are visible to (two or more) remote modules on non-
homogeneous ISAs, as well as when objects are passed as
parameters between such modules.

Changes In Situ

I n systems which are intended to have a very long,
evolving life-span, such as Space Station, changes to the
software are inevitable. These changes will occur as a

B.3.4.6

r e s u l t o f u p g r a d e s i n t e c h n o l o g y , a n d a s a r e s u l t O f
chang ing r e q u i r e m e n t s i n f u n c t i o n a l i t y . T h e d e s i g n of t h e
s o f t w a r e m u s t , i n i t s i n i t i a l fo rm, p r o v i d e fo r s u c h
changes . (A l t e r a t i o n s t o t h e d e s i g n a f t e r - t h e - f a c t present a
m u c h more d i f f i c u l t s i t u a t i o n .) C u r r e n t l y a c c e p t e d
c o m p l e x i t y - c o n t r o l m e t h o d s o f m o d u l a r i t y and i n f o r m a t i o n
h i d i n g , a l o n g w i t h t h e r e q u i r e m e n t f o r chang ing a sys t em
w i t h o u t f i r s t h a l t i n g t h a t s y s t e m , d i c t a t e t h a t s e p a r a t e
p r o g r a m s be employed i n t h e c o n s t r u c t i o n o f t h e s o f t w a r e .
Each program is to b e d i s t r i b u t e d as n e c e s s a r y , o r n o t a t
a l l . T h i s approach is i n c o n t r a s t to one i n w h i c h a s i n g l e ,
m o n o l i t h i c program is d i s t r i b u t e d a c r o s s t h e n e t w o r k (s 1 .

Q

I s s u e s in D i s t r i b u t i n g Ada Programs h Program E n t i t i e s

J u s t i f i c a t i o n for S e l e c t i n g Ada

P r o v a b l y Correct C o n s t r u c t s

O lde r HOLs were d e s i g n e d i n an e r a o f s i n g l e m o n o l i t h i c
p r o c e s s o r s t h a t were t y p i c a l l y e x p e c t e d to e x e c u t e programs
t h a t w e r e s m a l l (b y c u r r e n t s t a n d a r d s) , and t h a t w e r e
deve loped by one programmer. T h e t h r e e o l d e s t h i g h o r d e r
l a n g u a g e s , F O R T R A N , L I S P , and COBOL, were d e v e l o p e d (i n
1 9 5 7 , 1958 , and 1 9 5 9 , r e s p e c t i v e l y) b e f o r e t h e deve lopmen t
a n d w i d e r e c o g n i t i o n o f t h e c o n c e p t s o f b u i l d i n g
" s t r u c t u r e d " s o f t w a r e from a s m a l l set of p r o v a b l y c o r r e c t
c o n s t r u c t s . T h u s i t i s u n d e r s t a n d a b l e t h a t n a t u r a l
r e e n f o r c e m e n t f o r c o n s i s t e n t use o f s u c h c o n s t r u c t s i s
l a c k i n g . I n f a c t , those who u s e e a r l y l a n g u a g e s i n b u i l d i n g
s o l u t i o n models for many of t o d a y ' s complex problems often
f i n d t h e m s e l v e s p e n a l i z e d for such u s e . I n c o n t r a s t , t h e Ada
l anguage p r o v i d e s d i r e c t s u p p o r t f o r d e v e l o p i n g s o l u t i o n s t o
l a r g e , c o m p l e x p r o b l e m s t h a t a r e d e m o n s t r a b l y c o r r e c t ,
ma i n t a i n a b l e and a d a p t a b l e .

S u p p o r t for P a r a l l e l A c t i v i t i e s w i t h F a u l t T o l e r a n c e

These e a r l y l a n g u a g e s a r e c a l l e d s e q u e n t i a l b e c a u s e
t h e y h a v e n o s u p p o r t f o r mode l l ing c o n c u r r e n t o r p a r a l l e l
a c t i o n s . A d d i t i o n a l l y , t h e y p r o v i d e s u p p o r t for n o r m a l
p r o c e s s i n g o n l y , w i t h n o means f o r e x p r e s s i n g t h e r e s p o n s e
t o run - t ime e r r o r s . Again, T h e Ada l anguage p r o v i d e s d i r e c t
s u p p o r t f o r s u c h a c t i v i t i e s . T o d i s t o r t t h e s o l u t i o n model
w i t h s u c h a l a n g u a g e a s F O R T R A N o r P a s c a l would r e q u i r e
e x t e n s i v e p rogramming i n a s s e m b l y l a n g u a g e and u s e of
o p e r a t i n g s y s t e m c a l l s i n o r d e r t o c o m p e n s a t e f o r t h e
i n a d e q u a c i e s of t h e language . T h e r e s u l t i n g s o f t w a r e s y s t e m

B.3.4.7

would b e too expensive to build, much more difficult to
maintain and operate, and far more difficult to adapt to
changing requirements, Similarly, to distort the solution
model by failing to support distributed program entities, as
Well as distributed programs (when appropriate), would be to
add rather that to reduce complexity, since the resulting
model would be far less representative of the problem.

D i 8 tr ibu tion Scheme

The central theme in the following discussion is that
Of the distribution scheme. As demonstrated, its control
over visibility has a considerable impact on the complexity
Of the underlying RTSE, and thus the feasibility of
distribution. In Ada, the spectrum of distribution begins
with constants and variables, continues to nested program
units (blocks, Subprograms, packages and tasks), and ends at
the other extreme of compilation units. (It should be noted
that Ada provides greater control over the name space via
packages.) Compilations units in this case would be Ada's
"library units": specifically, subprograms and packages. At
this level, the only visible entities are these library
units, parameters for these units when they are subprograms,
and declarations in the visible parts of library unit
packages. Distribution at this level is the easiest to
support. Distribution at the nested program unit wouid limit
some visibility, (i.e., the declarations local to nested
units), but not globally visible data and routines. Thus it
would not result in less RTSE complexity. Obviously, the
simpler the requirements for the RTSE the better, since the
implementation of distribution support is simpler.

However, other factors besides RTSE complexity must be
considered in the choice of distribution level support.
Specifically, the amount of fault-tolerance required must b e
seriously considered. If little fault-tolerance is required,
the system may be allowed to deal with it transparently (i n
very deterministic ways), such that the programmer is not
directly involved with the response to failures. A s such,
the programmer has n o need to e x p r e s s a s p e c t s of
distribution dynamically in the source language. However, in
some applications only the programmer can know what is to be
done in response to failures. The appropriate response may
be a specific reconfiguration of the program units involved.
Since the only dynamic program unit is the task, the
distribution scheme may have to support distribution of
tasks in order for the programmer to s p e c i f y the
reconf igur a t ion.

0 . 3 . 4 . 8

The concept of time in Ada may be expressed explicitly
in several ways, based on the delay statement. An example of
the need for consistency across remote units is, of course
the timed entry call, which requests a service to be
provided to the caller in a specific amount of time. If the
server is to respond meaningfully, it must perform the
request for rendezvous in the amount of time indicated by
the call. However, since the clocks of the two processors
w i l l n o t b e synchronized, and there will b e an
indeterminable communication lag, difficulties will exist.
Specifically, the server may respond too late, such that the
caller will have timed-out and continued on as if the
service was never provided. If not handled by the RTSE, the
program would then be in a logically inconsistent state.

An example of timing issues in the underlying RTSE is
the activation of remote tasks. The parent task must not
begin execution until all tasks declared in its declarative
region are successfully activated. If one or more of these
activations fail, then Tasking Error must be raised in the
parent. 2

-

Another example is the elaboration of the library units
named in the context clauses of a main (sub)program. These
must be elaborated in an order that is consistent with the
transitive dependencies. As a result, distributed library
units cannot simply be elaborated when the remote host site
is ready. Rather, there must be communication and
cooperation among the sites.

Semantic Integrity

Ada subprogram calls will exhibit the behavior
described under the general section on "Semantic Integrity"
with respect to failure of the called unit (i.e., they too
will not return). Furthermore, an entry call will exhibit
those same characteristics when the processor supporting the
called entry fails. Conditional and timed entry calls can
protect the caller from permanent suspension prior to the
start of the rendezvous. However, these calls do not protect
the caller once the rendezvous has begun. -

Note that in a distributed context, the activation
status messages may be lost. The resulting indefinite
suspension of the parent would be an example of failed
semantic integrity.

B . 3 . 4 . 9

It should be noted that in a distributed execution
environment, the conditional entry call is not the same as a
timed entry call with a zero delay. The reason is as
follows. In the Language Reference Manual (LRM)3, the phrase
"immediately possible" in the discussion of the conditional
entry call refers to the readiness of the called task to
accept the call, (not to an amount of time). The conditional
caller is dependent upon the called task to indicate whether
or not it can accept the call. If not, the caller will
resume under the "else" part of the call. If the called task
indicated that it could perform the rendezvous (resulting in
the caller being suspecded), and then failed, the caller
would be indefinitely suspended (unless fault tolerant
programming techniques are applied). This is not the case
with a timed entry call. Under a timed call, the caller is
not dependent on the called task. (The caller does the
timing.) If the call is not performed in the specified
delay, then the caller continues on, without reqard for the

-

statbs of the called task. Thus, the semantics-are not the
same.

-

Resource Management

0 Distributed Ada will require all the resource
management activities outlined in- the general section on
resource management, and specifically those for a stack-
oriented language. One aspect that has received attention is
the subject of dynamic data, supported in Ada by the "access
type". Some implementations of distributed Ada restrict
parameters such that values of access types are not passed
between remote program units.4 This is an expedient
approach, but not an absolutely necessary one. In Ada,
dynamic objects are referenced as abstractions, which is why
they are called "access" types rather than "pointer" types.
The value gives "access" to the dynamically allocated
object. This is of course typically implemented (on
uniprocessors) as an actual address. The common reaction to
distributing access types is then that such distribution is
not possible. However, in keeping with the abstraction
concept, in passing an access value to a remote site, rather
than passing an address which will be meaningless to the
remote site, a ''token" should be passed which uniquely
identifies the dynamic object. The identifier will have to

Ada Language Reference Manual, ANSI Mil-Std-l815A,

A Feasibility Study to Determine the Applicability of
Ada and APSE in a Multi-microprocessor Distributed
Environment (Final Report, March, 1983) TXT, C I S E , SPL

Section 9 .7 .2

0.3.4.10
0

.

be u n i q u e o v e r t h e e n t i r e t a r g e t env i ronmen t , and may b e
p a s s e d a t w i l l among d i s t r i b u t e d u n i t s .

I S A Homogeneity

Ada p r o g r a m s w i l l h a v e t h e same p r o b l e m s of d a t a
r e p r e s e n t a t i o n t h a t a n y HOL p r o g r a m w o u l d , when t h e
p r o c e s s o r s c o m p r i s i n g t h e t a r g e t e n v i r o n m e n t a r e
h e t e r o g e n e o u s . These problems w i l l be e x h i b i t e d when g l o b a l
o b j e c t s a r e r e f e r e n c e d by two or more remote program u n i t s
on d i f f e r e n t I S A s , and when p a r a m e t e r s a r e p a s s e d b e t w e e n
s u c h p r o g r a m u n i t s v i a s u b p r o g r a m and e n t r y c a l l s . The
s p e c i f i c i n c a r n a t i o n o f t h e p r o b l e m is p a c k a g e S t a n d a r d ,
w h i c h l o g i c a l l y enc loses t h e u n i t s compr i s ing a program.
(P a c k a g e S y s t e m i s a l s o a p r o b l e m t o a l e s s e r e x t e n t .)
Package S t a n d a r d d e f i n e s t y p e I n t e g e r , F l o a t , C h a r a c t e r and
so o n , f o r a n e n t i r e p r o g r a m . The q u e s t i o n t h e n i s h o w
d i f f e r e n t I S A s c a n e f f i c i e n t l y r e p r e s e n t t h o s e common t y p e s .

O n e a p p r o a c h i s t o r e s o r t , i n - a l l c a s e s , t o
r e p r e s e n t i n g p a s s e d d a t a a t t h e l e v e l o f t h e c o m m o n
d e n o m i n a t o r : t y p e S t r i n g . T h i s is c o n s i d e r e d too e x t r e m e ,
s i n c e n o t a l l c o m m u n i c a t i n g p r o g r a m u n i t s w i l l b e o n
h e t e r o g e n e o u s p r o c e s s o r s . However, t h e c o n c e p t of a common
f o r m a t , a " c a n o n i c a l d a t a fo rma t" , may b e t h e most e x p e d i e n t
approach . A promis ing a l t e r n a t i v e is t h e c o n c e p t of " s e l f -
d e f i n i n g d a t a s t r u c t u r e s " , i n which t h e p a s s e d d a t a i n c l u d e s
a d e s c r i p t i o n of i t s r e p r e s e n t a t i o n .

Changes I n S i t u

A s s t a t e d i n t h e g e n e r a l s e c t i o n , c h a n g e s t o t h e
s o f t w a r e i n a s y s t e m w i t h an l o n g , e v o l v i n g l i f e c y c l e w i l l
be r e q u i r e d . I t may o f t e n b e t h e c a s e o n Space S t a t i o n t ! ia t
t h e s u b s y s t e m b e i n g c h a n g e d i s c r i t i c a l and c a n n o t b e
s t o p p e d i n o r d e r f o r t h e changes t o be i n s t a l l e d . A l s o , good
d e s i g n , m a i n t e n a n c e a s p e c t s , a n d t h e s h e e r v o l u m e o f
s o f t w a r e i n v o l v e d m a n d a t e s t h a t m u l t i p l e Ada programs b e
u t i l i z e d i n t h e c o n s t r u c t i o n of t h e s o f t w a r e sys t em. T h i s i s
n o t i n c o n f l i c t w i t h t h e L R M , a l t h o u g h a c a s u a l r e a d i n g
might imply t h a t t h e LRM r e q u i r e s o n l y one program t o b e " i n
ex is tence" a t a time. Nothing i n t h e LRM h a s been f o u n d t o
r e q u i r e s u c h a r e s t r i c t i o n . 5

E a c h program would be d i s t r i b u t e d i f t h e r e q u i r e m e n t s
d i c t a t e d t h a t approach . Each would b e o n l y a s d i s t r i b u t e d a s

The i s s u e of multiprogramming i s (a p p r o p r i a t e l y) n o t
a d d r e s s e d i n t h e l anguage r e f e r e n c e manual.

B.3.4.11

necessary, t o reduce the costs o f distribution Support.
Furthermore, if t h e RTSE is constructed in a l a y e r e d ,
modular fashion, those programs not requiring distribution
support would not pay an overhead penalty since the RTSE
would b e configured to the minimum support necessary. A non-
distributed program would then be supported by a traditional
configuration of runtime support services.

Although the details of supporting the integration of a
new subsystem without first stopping that subsystem are not
clear, it is felt that such an activity is impossible i f
separate programs are not employed.

Conclusion

A s s h o w n , rrany o f the issue- i.1 distributing Ada
programs are common to distributing any high-order lancuage.
T h e 3 i s t r i b u t i o n schenle, because of its impact on the
underlying RTSE complexity, should be carefully chosen when
implementing distribution of the language. i n making the
choice, special consideration must be given to the amount of
f a u l t - t o l e r a n c e required, and the level of programmer
response. In Space Station, such issues will be critical.

B. 3.4.12

B i b 1 iog r aphy

A Feasibility Study to Determine the Applicability of
Ada and APSE in a Multi-microprocessor Distributed
Environment (Final Report, March, 1983) TXT, CISE, SPL

American National Standards Institute
Reference Manual for the Ada Programming Language
ANSI/MIL-STD-1815A-1983

Cornhill, Dennis
A Survivable Distributed Computing System for Embedded
Application Programs Written in Ada
Ada LETTERS, vol. 3, no. 3, pp. 79-87

Cornhill, Dennis
Four Approaches to Partitioning Ada Programs for
Execution on Distributod Targets
Proceedings of the IEEE Computer Science Conference on

Ada Applications and Environments, St. Paul, MN
(Oct. 15-18, 1984) pp. 153-162

DeWolf, Barton, Nancy Lodano, Roy Whittredge
Using Ada for a Distributed Fault-Tolerant System
Draper Labs Report No. CSDL-P-1942 (dated Sept. 1984)

Dapra, A., S. Gatti, S . Crespi-Reghizzi, et a1
Using Ada and APSE to Support Distributed Multirnicro-

Ada LETTERS, vol. 3 , no. 6, pp. 57-65

Gehani, N. H.

processor Targets

Concurrent Programming in the Ada Language: the Polling
Bias
Software Practice and Experience, vol. 14, no. 5 pp. 413 -
427

Grover, Vinod, arld Reuben Jones
Programming Distributed Applications in Ada
SofTech, Inc. Report No. 9076-3 (Dec. 1984)

Knight, John C. , and John I. A. Urquhart
On the Implementation and Use of Ada on Fault-Tolerant,

Ada LETTERS, vol. 4, no. 3, pp. 53-64
Distributed Systems

Rossi, G. F., and Zicari, R.
Programminq a Distributed System in Ada
Journal of Pascal and Ada, SeptIOct 1983

B.3.4.13

