N89-16373

Ada Structure Design Language
ASDL

Lutfi Chedrawi, M.S.
Applied Technology Division
System Engineering Department

Computer Sciences Corporation:

An artist acquires all the necessary tools baefore painting a
scena. In the same analogy, a software engineer needs the necessary
tools to provide his/her design with the proper means for
implementation. Ada provides these tools. Yet, as an artist’s
painting needs a brochure to accompany it for further explanation
of the scenes, an Ada design also needs a document along with it to
show the design in its detailed structure and hierarchial order.

Ada could be self-explanatory in small programs not exceeding
fifty lines of code in length. But, in a large environment, ranging
from thousands of lines and above, Ada programs need to be well
documented to be preserved and maintained. The language used to
specify an Ada document is called Ada Structure Design Language
(ASDL). This language sets some rules to help derive a well
formatted Ada detailed design document. The rules are defined to
meet the needs of &a project manager, a maintenance team, a
programmer and a system designer. This paper will explain in detail
the design document templates, the document extractor, and the
rules set forth by the Ada Structure Design Language.

Ada covers the different scopes under the software engineering
spectrum. The Ada scopes can range from real time systems,
scientific applications and other known software applications to
abstract problems mapping, object oriented programming and new
software engineering concepts.

Keeping this in mind, Ada can become very complicated when
designing large projects governed by many different tasks, generic
entities and overloading mechanisms. Therefore, design documents
are needed to clarify some of the obscurities that might arise when
designing largs systems. The design document should also accomodate
for the tools provided by Ada and support the Ada language by
showing the program, entities, and tasks at the functional level.
The dasign method, called Ada Structure Design Language (ASDL),
approaches Ada from two different levels :

o The specification level.
o The functional lavel.

G.2.2.1

ORIGINAL PAGE IS
OF POOR QUALITY

- (000
P 2 8 £ X 2 38 2.2 2 2 3 2 2 2.2 802 2.8 2 % 2.3 3 8.2 £ 3 2 5 233 2.3 8 2007 020 20 2 2 20 22222 2 242 2232 2.2
-— Package TASKS_INPUT_QUEUE *
- Ak drdeirioirk

-— *
—-= % Author H Lutf{ Chedrawi *
== % Company] cscC *
-= % Job order *
== % Contract @ ! *
-— *

wi th UNCHECKED_DEALLOCATION;

generic
type OBJECT is private)

packege TASKS_INPUT_QUEUE is
-— (e

PACKAGE OVERVIEMW

Package overview

The tasks input gueuve Wwill manage the input queue for a given
process. The input queue manager task in this package will either
put or take an object on or off the queue Tepectively. This task
also manages the queue by adding or releasing nodes to and from the
input queue and keeping a record of the queue size.

INTERNAL ROUTINES

Internal routines - Description

Task
QUEUE_MANAGER To manage the queue size, the reads and wr tes
from and to the input queue. In the read
operation, if no objects were on the queue
the queue manager requester will wait until
an object is put on the queve.
Procedures
Performs a rendezvous with the get entry in
the queue manager task to get an object off
: the queve. .

PUT Performs a rendezvous with the put entry in

. the queuve manager task to put an object on
the queue.’
QUEVE_SIZE Performs a rendezvous with the queue size
entry in the queue manager task to get the
size of the queue in terms of number of nodes
in the queue.

SERRRRRRRRERERRNRN
§

- EXCEPTIONS
-~ Exceptiong ————=—=—== Description
- N/A

G.2.2.2

L g,
OF poop FACE [g
. OR QUA’ ’.u
Ty
- EXTERNAL REFERENCES
-- External entities —-- Description
-— NA.
- EXTERNAL ROUTINES
-- External routines -- Description
-= Procedure }
== UNCHECKED i
- _DEALLOCATION This procedure will release the input Qqueue
- . nodes back to heap storage.
-~ CHANGE HISTORY
- Date/Authors - -- Description
- 3/731/86 -~ Lutfi Added a get procedure to rendezvous with the
- get entry in the input queue manager task.
-— 4717086 <~ Lutfi Added a put procedure to rendezvous with the
e put entry in the input queue manager task.
-~ 4/1/86 - Lutfi Added a queue size procedure to rendezvous

manager tash.

with the queues size entry in the isput queue

- DEPENDENCY TREE
== Dependency tree

- Task Calling procedures
- QUEUE_MANAGER ~—

- |

- Entries |

-— o GET i GET

-— o PUT |

- o QUEUE_SIZE |

- } PUT

- 1

- |

- I

<9 0e)>

QUEUE -=)> to queue the rtequest for a task in & FIFO queus.

type QUEUE;)
type QUEUE_ACCESS is access QUEUE;
type QUEUE is .
record
FORMARD 1 QUEUE_ACCESS
BACKIWARD: QUEUE_ACCESS ;
ELEMENT 1 OBJECT 1
end record;

= Internal routines GET, PUT and QUEUE_SIZE

. procedure GET CELEMENT. s out OBJECT),
procedure PUT (ELEMENT s in OBJECT)3
procedure QUEUE_SIZE (SIZE_OF_QUELE r out INTEGER);

ond TASKS_INPUT_QUEUE;

Example ~1- t Ada specification level design document using ASDL.

G.2.2.3

2.0 ASDOL lsvels:

ASDL, at this level, will suffice the specification definition
and description of a system and put the following at hands :

o Requirements : statement definition of the overall
structure.

o Author & ,

History updates : a log file of updates will provide another

programmer and the system managaer with
history information of all changes mads.
This pin-points the responsible person for
the changes made and keep track of program
progression.
Tracking responsibilities is needed by the
system manager in case any ambiguities ever
arise that need further explanation or
further documentation to help clarify the
changes made.

o Independability : interfaces and hierarchies definitions of
each entity.

o Maintainability : the system will be easily maintained
throughout its 1life cycles. ASDL will
provide all the clues for a maintenance
team to kesp track of the snvironment.

ASDL, at this 1lsvel, provides programmers with tools for
debugging ease and managers with prospects on design clarity . It
allows, the documentation of

0 Requirements : statement definition of an entity.
o Structured '
analysis : explaining the input/output and
specifications of each entity.
o Structured
design : defining the functional flow of sach
sntity.

3.0 ASDL format

ASDL will show the declaration of an entity. The data structurae,
functions, procedurss, tasks, and packages are explainesd at this
lavel in a general form without going into details. The
spacification lsvel design documsnt using ASDL is shown in example
-1~. A further investigation of this example allows us to identify
different antries within the specification level format. Each entry
permits the documentation of a part of the system that meets the
needs of the different classes of people involved. All entries ars
mapped to a static form which allows the derivation of a
specification lavel template. The template skesleton is static on

G.2.2.4

the outsids, but the esxplanation within each entry can be
dynamically filled with information to preserve the creator’s
integrity to express his own design documents. .

The template entries for the specification level format serve as
a road map to each or all individuals involved in the design of the
entity. ASOL specification template format holds the following
entries:
entity overvieuw
internal routines
exceptions
axtesrnal refersnces
axternal routines
change history
dependency tres

SCo0o0ODOODO

The entity overview entry identifies the function of an entity.
This entry serves all the classes of people involved in the
development of the project. The information covered in this entry
should hold the important features governining an entity. Not only
would this entry serve as information coverage of the entity but
also acts as a fast index to the contents of the entity under
development or investigation.

The internal routines entry covers the naming definitions and the
entity internal routines descriptions. A maintenance team can make
use of this entry by utilizing the explanation provided to
understand the problem statement definition and to identify the
internal routines. Both, the project developsrs and system
maintainers hold the responsibility of keeping the information
within this entry up to date.

The exceptions, external refsrences and external routines sntries
exclusively permit the system designers and project managers to
recognize the system exceptions handling mechanism and to
understand the system components interaction. The system designers
can keep a close uatch of the system by making sure that all errors
are handled and a safe passage is assured by the exceptions
handlers. Moreover, the sxception entry will provide a fast summary
of all exceptions occuring within an entity. In the same manner,
the mxternal references and routine entries will allow the project
managers to check the entity interaction at both the general
(External references) and specific levels (external
references’internal routines.)

The history changes entry, allows the system maintainers to 1log
all the changes made to the entity throughout its 1life cycle.
Moreover the system developers can communicate among each other by
notifying through this entry other team members of important
changes.

The tree dependsncy nicely shows in a graphic form the entity
internal hierarchy. This entry is intended to serve all ths people
involved in the project.

G.2.2.5

ORIGINAL P

AGE IS

OF POOR QUALITY

package body TASKS_INPUT_QUEUE is
procedure DEALLOCATE is new UNCHEKED_DEALLOCATION (QUEUE, QUEUE_ACCESS)}

== lnput queue manager --> will retreive information from the input
- queue

task type INPUT_QUEUE_MANAGER is
entry PUT (ELEMENT 1 in OBJECT)3
entry GET (ELEMENT 1 out OBJECT)3
entry QUEUE_SIZE (SIZE_OF_QUEUE 1 out INTEGER)3
end};

QUEUE_MANAGER t INPUT_QUEUE_MANAGER :

pragma PAGE;
-— (000>
task body INPUT_QUEUE_MANAGER is

-~ SIZE =-> to return the size of the input queue in terms of number
- of nodes in the queue.

SI1ZE 1 natural = 0;

== Fynction 1 to manage the input queue. It either puts on or takes
-— an object off the queue. The GET entry to get an object
-— off the queue is guarded so the task will make the

- requestor wait until an object is put on the queue.

- This task will manage the queue size and return its

e value when requested.

«= In Out 1 NA

!
2
5

ALGORITHM

Algoritiwm @
begin
loop
select .
when size is greater than zero.
accept get (element : out object) do
get out object from the node at the forward link of head
of the queue
set the forward link of the node at the get node’s backward
link to the forward link of the get node.
‘a8t the backward link of the node at the get node’s forward
. 1link to the backward link of the get node.)
release get node back to heap storage
decrement size
end get}

or
accept put (eslement : in object) do
create new node
insert ®in® object
set new node forward link to head of the queue
set new node backward link to head backward link
set forward link of the node at the head bachward
link to new node
set backward link of head to new node
increment size
end puty
or .
accept queue_size (size_of_queue 1 out integer) do
-set size_of_queue to size ’
end queue_size;
end select)
end loop}s
end input queue manager}

R RN REN

- (00e)

G.2.2.6

pragwa PAGE;
- (Q0Q>
procedure GET

- Function

¢ ELEMENT 1

1 to call the input gqueue manager
object of f the queue.

P‘/’nn

BRIGINAL PAGE IS
OF POOR QUALITY

out OBJECT) is

taskh 80 it can get an

- In s NA

- In Out t N/A

- Oyt 1 eleament i-> the object to be returned from the queve.
Lad ALGORITiHM

-= Algorithm 1

- Degin

- rendezvous with the input queue manager task to get the object
L end}

- ()

prasns PAGE]

- (et

{ ELEMENT _ '

3 to call the input queve n.n.gﬁ

in OBJECT) is

== Function tash s0. it can put an
- object on the queue.

- In 1 slement <> the abject to be put on the queus.

== In Out 1 N/&

-= Out 3 NA

- ALGORITH

- Algorittm

hand begin .

- rendezveus with the input queve magor task to pet the ebject
- endy . .

- L8>

pragaa PAGE;

- 009>

pwoe.duro QUEUE_SIZE

- Femction

(91ZE_OF_QUEUE 3

1 to call the input queuve mansger
qt:. of the gueve,

out INTEGER) is

task so it cam get the

. - ln t N
== In Ont] N/A
- Out - s ﬂzc of Qom <) the queuve size to be retursed from tm
- input queue mansger task.
- ALBORT THM
- Algorithm 3
= bewin
— rendezvous uith the mput quesue manager task to get the queve
- size
- ondg
- (b))

_ end TASKS_INPUT_QUEUE

Example -2- 1 Ads funcuonn_ level design document using ASDL.

G.2.2.7

ASDL will describe the system in a more detailed functional flow.
ASDOL will require system developers to cambine Ada keywords and the
english language to bring about a detailed flow of the entity, yet
not cryptic to the designers or software maintainers. The system
manager can also check the system logic and design structure for
ambiguity, clarity, perfaormance and possible implementation (i.e
whether the entity can be implemented as described or whether the
implamentation is not possible due to misinterpretation of problem
definition, requirements need, Ada weaknesses, stc....).

ASDL functional level format holds four entries as shown in
example -2-. The "in”, "in out” and "out” sntries correspond to Ada
parametars passing descriptions. The inclusion of these entries
will entitle the system maintainers, developers, designers and
managers to understand the input/cutput of system components.
Moreover, a functional flow design is given by the algorithm entry
to show the structure in its more detailed english like design.

Finally, ASDL tends to be similar to PDL (Process Design
Language) at this level, which proves to be advantageous since no
training is needed for individuals already familiar with PDL.

4.0 ASDL rules

In general, ASOL does not impose any rigid rules. The ASDL rules
for the specification level format should insure the derivation of
a design document. The rules are set to give a detailed explanation
of entities interactions, entity specification and data
representation. The specification level format can be mapped onto
the following rules :

o0 new updates should be entered when nscessary

o dependency tres should be leveled to show the new entities in
their hierarchial depth

o history logs updates should cover the changes made

0 the information should be entered under the specified field
to insure the extractor ability to psrform its functions.

At this level, ASDL requires davelopers to raspect the outer and
inner structures of Ada blocks, statements and looping mechanisms.
The Ada keywords should bs entered to show the Ada Flow as if it
was coded. Moreover, the Ada keywords should be combined with a
detailed explanation in english to show the flow of Ada statements.
The advantages of combining Ada keywords and english words will
divulge when the implementation phase takes place. The project’s
implementation will bscome a matter of mapping the algorithm to Ada
code.

G.2.2.8

S.0 ASDL extractor

ASDL extractor is envisionsd as a formatter extractor with menu
driven options. When asked to format a documsnt writtem by ASDIL,
the extractor will prompt the requestor with a menu. The menu
selaction can be accessed through cursor control.

ASDL formatter extractor should come with default values to allow
simple extracting and echo printing of text to the specified
destination file. On the other hand, if required, the extractor
should psrform all the necessary tasks to derive a well formatted
Ada design document including centering of titles, margin
Justification, page numbering and other Ffunctions Found in
wordprocessors. Moreover, the extractor can control the part of
text to be extracted from the document by a simple turn on/off
flags or toggle keys (if an interactive session is requested.)
Those flags ares shown in example 1 & 2 as '@’, ’'#’' signs preceded
and succeded by ’'<’ and ’>°’ designators.

In summary, ASDL will prolonge the software 1life cycle. In
addition, it will allow the documentation of large systems
otherwise might become very difficult to understand. Finally, ASDL
will act as a communicae to all the classes of individuals involved
in the system development.

* Ada is a registered trﬁdema:k of the U.S government, Ada Joint

Program offics.
* ASDL extractor is still under development.

G.2.2.9

C1] Barns, J. G. P. Programming In Ada. Addison-Wesley Publishing
Company. Second Ed.

[2] Booch, G. Software Enginesring With Ada. Benjamin/Cummings.

£3] Caine S. and Kent G. PDL - A Tool For Software Design. IEEE
Computer Society Press.

4] Linger C., Mills H. and Witt B. Structured Programming.
Addison-Wesley Publishing Company.

[S] Privitera J. P. Ada Design For The Structured Design
Methodology. IEEE Computer Society Press.

(6] ---, Reference Manual for the Ada programming Language.
Ada Joint Program Office, Department of Defense.

L7] 2elkowitz M., Shaw A. and Gannon J. Principles Of Software
Engineering Design. Prentice-Hall, Inc.

G.2.2.10

