
N $ 9 - 1 6 3 1 3

Ada Structure Design Language
ASDL

Lutfi Chedrawi, M.S.
Applied Technology Division

System Engineering Department

Computer Sciences Corporation

Abstract
An artist acquires all the necessary tools before painting a

scene. In the same analogy, a software engineer needs the necessary
tools to provide hidher design with the proper means for
implementation. Ada provides these tools. Yet, as an artist's
painting needs a brochure to accompany it for further explanation
of the scene, an Ada design also needs a document along with it to
show the design in its detailed structure and hierarchial order.

Ada could be self-explanatory in small programs not exceeding
fifty lines of code in length. But, in a large environment, ranging
from thousands of lines and above, Ada programs need to be well
documented to be pressrved and maintained. The language used to
specifg an Ada document is called Ada Structure Design Language
CASDL). This language sets some rules to help derive a well
formatted Ada detailed design document. The rules are defined to
meet the needs of a project manager, a maintenance team, a
programmer and a system designer. This paper will explain in detail
the design document templates, the document extractor, and the
rules set forth by the Ada Structure Design Language. -
Rda covers the different scopes under the software engineering

spectrum. The Rda scopes can range from real time systems,
scientific applications and other known software applications to

software engineering concepts.
Keeping this in mind, Ada can become very complicated when

designing large projects governed by manu different tasks, generic
entities and overloading mechanisms. Therefore, design documents
are needed to clarifu some of the obscurities that might arise when
designing large systems. The design document should also accomodate
for the tools provided by Ada and support the Ada language by
showing the program, entities, and tasks at the functional level.
The d8sign method, called Ada Structure Design Language CASDL),
approaches Ada from two different levels :

1 abstract problems mapping, object oriented programming and new

o Ths specification level.
o The functional level.

G.2.2.1

ORlG~NkP PAGE IS
OF POOR QUALITY

-- <m>
-- - * Packago TASKS-INPUT-QUEUE * -- E m -

- <m>
-- - * * -- * Author I L u t f i C h o d r u i *
- - * c o m p a n y I csc * -- * Job ordor I * - * Contract I * -- * * -

G.2.2.2

G.2.2.3

2.0 ASDL levels:

tinn lmvel:
ASDL, at this level, will suffice the specification definition

and description of a system and put the following at hands :

structure.
o Requirements : statement definition of the overall

o Author 8
History updates : a log file of updates will provide another

programmer and the system manager with
history information of all changes made.
This pin-points the responsible person far
the changes made and ksep track of program
progression.
Tracking rssponsibilities is needed by the
system manager in case anu ambiguities ever
arise that need further explanation or
further documentation to help clarify the
changes made.

each entitu.

throughout its life cucle. ASDL will
provide all the clues for a maintenance
team to keep track of the environment.

o Independability : interfaces and hierarchies definitions of

o maintainability : the system will be easily maintained

ASDL, at this level, provides programmers with tools for
It debugging ease and managers with prospects on design clarity

allows, the docurnentation of :
.

o Requirements : statement definition of an entity.
o Structured

analysis : explaining the input/output and

design : defining the functional flow of each

specifications of each entity.
o Structured

entity.

I 3.0 ASDL format

CISDL will show the declaration of an entity. The data structure,
functions, procedures, tasks, and packages are explained at this
level in a general form without going into details. The
specification level design document using ASDL is shown in example
-1-. CI further investigation of this example allows us to identify
different entries within the specification level format. Each entry
permits the documentation of a part of the sustsm that meets the
needs of the different classes of people involved. All entries are
mapped to a static form which allows the derivation of a
specification level template. The template skeleton is static on

G.2.2.4

the outside, but the explanation within each entry can be
dynamically filled with information to preserve the creator’s
integrity to express his own design documents.

The template entries for the specification level format serve as
a road map to each or all individuals involved in the design of the
entitu. ASDL specification template Format holds the following
entries:

o entity overview
o internal routines
o exceptions
o external references
o external routines
o change history
o dependency tree

The entity overview entry identifies the function of an entity.
This entry serves all the classes of people involved in the
development of the project. Tho information covered in this entry
should hold the important features governining an entity. Not only
would this entry serve as information coverage of the entity but
also acts as a fast index to the contents of the entity under
development or investigation.
The internal routines entru covers the naming definitions and the

entity internal routines descriptions. A maintenance team can make
use of this entry bg utilizing the explanation provided to
understand the problem statement definition and to identify the
internal routines. Both, the project developers and system
maintainers hold the responsibility of keeping the informetion
within this entry up to date.
The exceptions, external references and external routines entries

exclusively permit the system designers and project managers to
recognize the sustem exceptions handling mechanism and to
understand the system components interaction. The system designers
can keep a close watch OF the sglstem by making sure that all errors
are handlgd and a safe passage is assured bg(the exceptions
handlers. tloreover, the exception entry will provide a fast summary
of all exceptions occuring within an entity. In the same manner,
the external references and routine entries will allow the project
managers to check the entity interaction at both the gengral
C External references) and spec if ic levels Cexternal
references’internal routines.)
The historu changes entry, allows the system maintainers to log

all the changes made to the entitu throughout its life cycle.
Horeover the sgstem developers can communicats among each other by
notifuing through this entry other team members of important
changes.
The tree dependency nicely shows in a graphic form the entity

internal hierarchu. This entru is intended to serve all the people
involved in the project.

7

G . 2 . 2 . 5

. ..
, .

0RlGiN.N P X E fS
OF POOR QUALITY

packagw body TASKS-INPCTT-QUEUE $ 8

procwdurw DEALLOCATE i s naw UJCHEKED-DECKLOCATION (QUEUE, WEUE-ACCESS)I

-- I n p u t quwuw m a n r w r --? w i l l rwtrwiuw i n f o r m a t i o n from t h e input -- quww

t n k t ype INPUT-QUEUE-WWMSER 1 8
e n t r y PUT (ELEMENT I i n OBJECT);
e n t r y GET (E LMEM i ou t OBJECT))
e n t r y PUEUE,SIZE (SIZE-OF-QUEUE I o u t INTEGER) I

end i

OUEUE-ER I I NfUT-QUEUE-r(PIE#GER I

Pt.?P. - 8

- <ew>
task body INPUT-QUEuE,I'W&GER I 8

- SIZE -> t o r e t u r n t h w 8izw o f tho i n p u t quwuw I n twrms o f nunkr -- o f nod- i n t h w quwue.

SIZE

-- Func t ion 1 - - - -- -
- In I

-- I n O u t 1

- out I

1 natural 1- 0 ;

t o manag. t h e input quww. I t w i t t u r p u t s on or t d r w s
an objwct o f f t h w quwuw. The GET wntry t o g w t an o b j w c t
o f f t h w queue is gurrdwd 80 thw task uill nakw the
requwstor W a i t u n t i l an o b j 8 c t i 8 p u t on t h w quwuw.
Thf8 task w i l l m8n8ge the q u w e 8 i z e and r e t u r n i t 8
V A l U W Uhm rwuestwd.

w4

N / A

N/4

G . 2 . 2 . 6

-- <m>
proc.do+o M

- $unction a t o cal l tho input quwo nnagmr task so i t c m got n -- objoet o f f tho quwo.

- I n 8)ryA

-Is out CWCI - out I ol.mnt -> tho oh joct t o bo rorutned frm t b quouo.

- Functiorr I t o crll tiu input guru. rnrJII tamk w i t w put rn -- O b j e c t 01) th. quw.. - I n a el-t e) t h 0bf-t to k Put 00 th * . r u e

- I n Out I W A

- ou* I EVA

- Fatetian I t o call ttr input pucluo - t u & se i t c m got thm - sire o f th. qum.

- Ln aw

- Z n k r r W A

-nlAlg.rltA I
c r r n - rwndoxuous w i t h ttm input quouo u ~ a y o r tW to get thwquwo - size
md;

-
-

ond TASKSJtWUT-PUEUE(

Exanple -2- I Ada functional Am01 dosign do-t using ASDL.

G. 2.2.7

ASDL will describe the system in a more detailed functional flow.
ASDL will require system developers to combine Ada keywords and the
english language to bring about a detailed flow of the entity, yet
not cryptic to the designers or software maintainers. The system
manager can also check the system logic and design structure for
ambiguity, clarity, performance and possible implementation Ci.e
whether the entity can be implemented as described or whether the
implementation is not possible due to misinterpretation of problem
definition, requirements need, Ada weaknesses, etc....).

ASDL functional level format holds four entries as shown in
example -2-. The "in", "in out" and "out" entries correspond to Ada
parameters passing descriptions. The inclusion of these entries
will entitle the system maintainers, developers, designers and
managers to understand the input/output of system components.
tloreover, a functional flow design is given by the algorithm entry
to show the structure in its more detailed english like design.
Finally, ASDL tends to be similar to PDL (Process Design

Language) at this level, which proves to be advantageous since no
training is needed for individuals already familiar with PDL.

9 . 0 ASDL rules

In general, ASDL does not impose any rigid rules. The ASDL rules
for the specification level format should insure the derivation of
a design document. The rules are set to give a detailed explanation
of entities interactions, entity specification and data
representation. The specification level format can be mapped onto
the following rules :

o new updates should be entered when necessary
o dependency tree should be leveled to show the new entities in
their hierarchial depth

o history logs updates should cover the changes made
o the information should be entered under the specified field

to insure the extractor ability to perform its functions.

At this level, ASDL requires developers to respect the outer and
inner structures of Ada blocks, statements and looping mechanisms.
The Ada keywords should be entered to show the Ada flow as if it
was coded. Moreover, the Ada keywords should be combined with a
detailed explanation in english to show the flow of Ada statements.
The advantages of combining Ada keywords and English words will
divulge when the implementation phase takes place. The proJect's
implementation will become a matter of mapping the algorithm to Ada

I code

G.2.2 .8

5.0 ASDL extractor

5 . 1 The formiter =&Ea&QL
ASDL extractor is envisioned as a formatter extractor with menu

driven options. When asked to format a documsnt written by ASDL,
the extractor will prompt the requestor with a menu. The menu
selection can be accessed through cursor control.
ASDL formatter extractor should come with default values to allow

simple extracting and echo printing of text to the specifisd
destination file. On the other hand, if required, thm extractor
should perform all the necsssary tasks to derive a well formattsd
Ada design document including centering of titles, margin
Justification, page numbering and other functions found in
wordprocessors. Noreover, the extractor can control the part of
text to be extracted from the document by a simple turn on/off
flags or toggle keus Cif an interactive session is requested.]
Those flags are shown in example 1 & 2 as * @ ' , ' # * signs preceded
and succeded bu ' < ' and ' > ' designators. -
In summary, ASDL will prolonge the software life cycls. In

addition, it will allow the documentation of large systems
otherwise might become very difficult to understand. Finally, ASDL
will act as a communicae to all the classes of individuals involved
in the system development.

* Flda is a registered trademark OF the U.S qovernment, Ada Joint

UI ASDL extractor is still under development.
Program office.

G.2.2.9

REFERENCES

C13 Barns, J. G. P. Programming In Ada. Addison-Wesley Publishing
Company. Second Ed.

C23 Booch, G. Software Engineering With Ada. BenJamin/Cummings.

C33 Caine S. and Kent G. PDL - A Tool For Software Design. IEEE
Computer Society Press.

CY3 Linger C., Mills H. and Witt B. Structured Programming,
Addison-Wesley Publishing Company.

C53 Privitera J. P. Ada Design For The Structured Design
Methodology. IEEE Computer Society Press.

C63 --- , Reference Manual for the Ada programming Language.
A d a Joint Program Office, Department of Defense.

C73 Zelkowitz M . , Shaw A . and Gannon J. Principles OF Software
Engineering Design. Prentice-Hall, Inc.

G.2.2.10

