NASA Technical Memorandum 100566

The Preliminary SOL Reference Manual

(MASA-TM-100566) THE FEELIBIBREY SCL N89-163%4
(SIZIKG ANL CEIIMIZATICN LARGUAGE) BEFRBRENCE
FAMUAL {NASA) <04 p CSCL 09B

Unclas

G3/61 0189696

Stephen H. Lucas
Stephen J. Scotti

JANUARY 1989

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

PREFACE : SOL VERSION 1.22

What this Manual Describes ...

The Sizing and Optimization Language, SOL, a high-level, special-purpose language
developed for the solution of sizing and optimization problems. This manual is intended as
a reference guide for those who wish to write SOL programs on a VAX computer running
the VMS system. An overview of SOL appears in NASA Technical Memorandum 100565
entitled, “ The Sizing and Optimization Language, SOL - A Computer Language for Design
Problems.” This manual is a more detailed reference document.

What this Manual Does Not Describe ...

Detailed tutorial information on how to program, advanced system-related information,
or detailed reference information on the VAX/VMS command language. Wherever a more
extensive understanding of the operating system is required, readers are referred to the
appropriate VAX/VMS documentation for more information.

The Structure of This Document ...

The installation guide explains how to install SOL on a VAX/VMS computers. Chapter
One describes how to compile, link and run SOL programs. Chapters Two through Eleven
provide language reference information and syntax rules. Additional information is found in
the appendices. Several of the chapters contain two levels of information: introductory and
advanced; the advanced level information is clearly delimited.

A Little about the Sizing and Optimization Language (SOL) ...

SOL is a compiled language, and the SOL compiler produces FORTRAN object code. In
other words, the SOL compiler translates your SOL program into an equivalent FORTRAN
program. The SOL package consists of three elements: the SOL compiler; the SOL object
library, that needs to be on your system for SOL to work properly; and this reference manual.
Additional command procedures SOL and LSOL described in Chapter 1 are also included.

SOL was developed primarily for in-house use, so at present SOL runs only on DEC
VAX/VMS systems. To support SOL you need a VAX/VMS computer. In addition, your
system needs at least two things. First, your system must have an editor (such as EDT) so
that you will be able to type your SOL programs. Any editor will do, but full-screen editors
are generally better for composing programs. Second, you will need the VAX FORTRAN
compiler. Since the SOL compiler translates SOL into FORTRAN, you will need to compile
and link the FORTRAN to execute your program.

The SOL compiler is a Pascal program written using the MYSTRO compiler development
system created at the College of William and Mary and available through COSMIC. By
utilizing MYSTRO, the SOL compiler was developed fairly rapidly, and includes an error
recovery capability

Notation Used in this Manual to Describe Syntax ...
Descriptions of the syntax of SOL statements appear regularly in this manual. The
following syntactic conventions are used in these descriptions.

. Words and letters in typewriter type indicate that you should type the word
or letter as shown.

° Symbols, parentheses and so forth that appear in the descriptions should be
typed as shown.

° Items that appear inside of angle brackets, {(and), indicate a template to be
filled in at your choice. The syntax for each angle bracket template is usually
described separately.

Differences between SOL Version 1.22 and previous versions . ..
OPTIMIZATION:

The \ is no longer used to prefix Optimizer Options. To make previous SOL programs
compatible simply delete all \ symbols from optimizer option selections.

FORTRAN blocks:
FORTRAN blocks are allowed in the declaration section of the main program or subroutine.

. ALL FORTRAN type declarations MUST be placed in FORTRAN blocks inside
a SOL declaration section. The SOL compiler does NOT catch this error,
but the FORTRAN code created by the compiler COULD FAIL TO COMPILE
if this rule is not followed. Simply place all FORTRAN type declarations inside
the appropriate SOL declaration sections to make previous SOL programs
compatible.

COMPONENTs:

A new ASSEMBLAGE statement has been added. Please see Chapter 7 for details. Basically,
SUMMARIZATION variables are no longer declared in the declaration section of a main program
or subroutine, and the outermost COMPONENT now has a distinct ASSEMBLAGE syntax with its
OWN declaration section for SUMMARIZATION variables.

o The way summarization variables are declared has changed.

) The way iteration variables are declared has changed.

Simply make the outermost COMPONENT an ASSEMBLAGE statement and move summariza-
tion variable declarations into the ASSEMBLAGE declaration section to make previous programs
compatible. Also if iteration variables are used, they must be declared according to the new
syntax in Chapter 7.

DECLARATION sections:

SUMMARIZATION variables CANNOT be declared inside a main program or a subroutine
declaration section. A new ASSEMBLAGE statement now declares SUMMARIZATION variables.

Table of Contents

Installation: Installing SOL on a VAX/VMS Computer
Chapter 1: Compiling, Linking and Executing Sol Programs

1.1 COMPILING A SOL PROGRAM: THE SOL COMMAND 1-2
1.1.1 The SOL File Parameter 1-3
1.1.2 The SOL Compiler Options 1-3

1.1.2.1 The listing option, L. 1-4
1.1.2.2 The cross reference option, X 14
1.1.2.3 The create FORTRAN option, O 1-5
1.1.2.4 The parse trace option, P 1-5
1.1.2.5 The print rules option, D 1-5

1.2 LINKING A SOL PROGRAM: THE LSOL COMMAND 1-5

1.3 EXECUTING A SOL PROGRAM: THE RUN COMMAND 1-7

1.4 SAMPLE LISTING« . o 1-7
1.4.1 The Source Listing 1-12
1.4.2 The Cross-reference Listing 1-12
1.4.3 The Error Listing 1-13

Chapter 2: An Introduction to SOL

21 OVERVIEW OF SOL 2-1
2.1.1 Data Types 2-2
2.1.2 Variable Initialization 2-3
2.1.3 Executable Statements L. 2-4
2.1.4 Subroutines L 2-5
2.1.5 Structure of a SOL program 2-6

2.2 LEXICAL ELEMENTS 2-7
2.2.1 Character Set, 2-7
2.2.2 Special Symbols 000 2-8
223 Reserved Words 2-9
224 Identifiers L L 2-9
225 Numbers 0.0 2-10

23 COMMENTS s 2-11

2.4 CONTINUATION LINES 2-11

Chapter 3: Data Tvpes

3.1 THE INTEGER TYPE 3-1

3.2 THE LOGICAL TYPE 3-2

3.3 THE REAL TYPE 3-2

3.4 TYPE CHECKING 3-3
3.4.1 Assignment Compatibility Rules 3-4

i

3.4.1.1 compatibility rules for regular assignment 3-4
3.4.1.2 subroutine parameter passing assignment compatibility rules 3-4
3.4.2 Operator Compatibility Rules 3-5
Chapter 4: Expressions
1.1 ARITHMETIC EXPRESSIONS S 42
1.2 LOGICAL EXPRESSIONS 4-2
4.3 OPERATOR PRECEDENCE 4-4
4.3.1 Precedence Rules for Arithmetic Expressions 4-4
4.3.2 Precedence Rules for Logical Expressions 4-4
4.3.3 Using Parentheses to Force Precedence 4-5
Chapter 3: The Declaration Section
5.1 VARIABLE TYPE DECLARATIONS R
5.2 SUBROUTINE DECLARATIONS 5-3
5.3 THE DECLARATION SECTION IN SUBROUTINES 5-6
Chapter 6: Statements
6.1 THE ASSIGNMENT STATEMENT 6-2
6.1.1 Arithmetic Assignments 62
6.1.2 Logical Assignments .. 6-3
6.2 THE PRINT STATEMENTS 6-4
6.2.1 Print Statement e e e e 6-5
6.2.2 Formats for Print and Summarize Print Statements 6--6
6.22.1 Eformat00 6-6
6.2.22F format L0 6-8
6.223Tformat oo 6-9
6.224 Lformat 6-10
6.3 THE CONDITIONAL STATEMENT (IF/THEN/ELSE) 6-12
6.3.1 Scope Rules for IF Statements 6-14
6.4 REPETITIVE STATEMENTS 6-17
6.4.1 The Iterative DoLoop Coe e 6-17
6.4.2 The Conditional DoLoop 6-21
5 ASSEMBLAGE and COMPONENT STATEMEN [S 6-22
6 6 THE OPTIMIZE STATEMENT C 6-23
6 7 THE SUBROUTINE CALL e e e 6-23
8 FORTRAN BLOCKS - ADVANCED MATERIL. \I - 6-24
Chapter 7: Sizing: Assemblages and Components
7.1 ASSEMBLAGEs and COMPONENTs . . . 7-92
7.1.1 Summarization Variable Declaration : 7-5
7.1.1.1 summarization variable and expression variable declarations -7
7.1.1.2 summary title declarations 7-14
7.1.1.3 summarize print statement 7-16

11.4 ASSEMBLAGE & COMPONENT SCOPE 11-4
APPENDICES

APPENDIX A: BNF GRAMMAR FORSOL A-1
APPENDIX B: COMPILER ERROR MESSAGE EXPLANATIONS B-1
APPENDIX C: SOL MACROS C-1
C.1 SIMPLE MACROS o o e C-2
C.1.1 General Rules for Simple Macro Definitions C-2
C.1.2 Simple Macro Definition Replacement Text C-14
C.2 PARAMETRIC MACROS C-5
C.2.1 Parametric Macro Definition C-6
C.2.2 Parametric MacroUse C-7
>.2.2.1 arguments to parametric macros C-8

C.2.2.2 association between arguments and parameters C-10

C.3 DELIMITED MACROS C-11
C.3.1 Delimited Simple Macros C-11
C.3.2 Delimited Parametric Macros C-13
C.4 PREDEFINED MACROS C-16
C4.17?DEF s C-16
C427?XDEFo C-17
C437INCLUDE C-17
C447LIST e C-17
C.4.5 7CHECK_LIST e e e e C-19
C4.6 7COMPONENT.NAME C-20
C.4.7 7APPEND and ?7XAPPENDo oL C-20
C.5 SUMMARY OF MACROS C-22

vl

7.1.2 Extended Identifier Notation 719

7.2 SCOPE RULES FOR ASSEMBLAGEs AND COMPONENTs 7-22

7.3 ASSEMBLAGE and/or COMPONENT ITERATION 7-27
7.3.1 How Iteration Works 7-29

Chapter 8: The Optimize Statement

8.1 DESIGN VARIABLE DECLARATIONS 84

8.2 CONSTRAINT DECLARATIONS 8-5
8.2.1 Constraint Scaling - ADVANCED MATERIAL - 8-6

8.3 Optimize Statement { Options) Section - ADVANCED MATERIAL - 8-8
8.3.1 Strategy. Optimizer, and One-dimensional Search Settings 8-10
8.3.2 Output of Optimization Results 8-13
8.3.3 Normalization of Design Variables 8--19
8.3.4 ADS Parameter Settings 8-20

Chapter 9: Subroutines
9.1 SOL SUBROUTINES: DECLARATION, IMPLEMENTATION, and CALLS . . 9-2

9.1.1 Subroutine Declaration L. 9-3

9.1.2 Subroutine Implementation 9-3

9.1.3 The Subroutine Call 9-5

9.2 SUBROUTINE PARAMETERS 9-6

9.2.1 Formal Parameters 9--6

9.2.1.1 formal independent parameters 9-6

9.2.1.2 formal dependent parameters 9-8

9.2.2 Actual Parameterso L0, 9-9

9.2.2.1 actual independent parameters 9-10

9.2.2.2 actual dependent parameters 9-10

9.2.3 The Relationship Between Actual & Formal Parameters 9-11

9.3 THE SCOPE RULES FOR SUBROUTINES 9-12
Chapter 10: Predeclared Routines

ABS L 10-2

COS . . e e, 10-2

EXP o e 10-2

LOG . . o o o e 10-2

INT . o o 10-2

SIN e 10-2

SQRT 10-2

TAN e e 10-2

Chapter 11: Scope Rules
11.1 THE MAIN PROGRAM 11-2
11.2 SUBROUTINE SCOPE 11-2

Installation
Installing SOL on a VAX/VMS Computer

The Sizing and Optimization Language is installed on a VAX/VMS computer in several
steps. First, a system environment is created which includes creating a SOL directory.
Second, the SOL system is read from the delivery media (i.e. the SOL tape) into the
SOL directory. The instructions in this installation guide are geared towards the use of a
VAX TK50 magnetic tape cartridge. Finally, several SYSTEM wide parameters and file
protections are set.

Installation requires the assignment of logical names and will require system management
privileges (i.e. you must login as SYSTEM). Although this guide attempts to make installa-
tion simple and easy, system privileges and some understanding of systems management is
required. To install SOL, follow the steps below:

. LOGIN as system:

You must choose the exact disk drives and directory on which to install SOL. The
installation instructions given below assume that the installer has system privileges so that
svstem-wide parameters can be set and system login command procedures altered.

. MOUNT the SOL tape:

Your SOL tape contains a single save_set containing all the files required for SOL,
including the compiler, optimizer and runtime library. The save_set was created using the
VAX BACKUP command.

1) WRITE-PROTECT the tape by sliding the write-protect switch on the
front of the tape to the left. This will prevent any data on the tape from
being accidently destroyed during the installation. Instructions for this step
can be found in Chapter 5 of the MicroVAIS User’s Primer or in Chapter |
of the MicroVAMS User’s Manual: Part 1.

LOAD the tape by inserting it into the tape drive. Instructions for this
step can be found in the appropriate VAX documentation. l'or example, in
Chapter 5 of the MicroVMS User’s Primer or in Chapter | of the Micro VMS
User’s Manual: Part 1.

[SV]
~—

Installing SOL on a VAX/VMS Computer ~1

3) MOUNT the tape with the following command:
MOUNT /FOREIGN tape._drive:

Where tape_drive is the name (e.g. $TAPE1) of the tape drive on which you
mounted the tape. The physical name for the TK5H0 cartridge tape drive is
MUAO, or if vou have two tape drives, MUAO and MUBO. The system-defined
logical name for the TK50 device is $TAPE1.

If you wish to identify the files on the SOL declivery tape before procceding with the
installation, issue the following commands AFTER mounting the tape:

BACKUP/REWIND/LIST tape.drive:
where tape_drive is the name of the drive on which the tape was mounted.

. Create the SOL System Environment

Create a high-level SOL directory so that SOL can be used by several users with the
following command:

CREATE/DIRECTORY sys$sysdevice: [SOL]

Next, set the file protection of this directory such that all users are able to access the
files to be placed in it with the following command:

SET PROTECTION=(WORLD:RE) sys$sysdevice:[000000]SOL.dir
Define the logical name SOL$DIR by issuing the command below:
DEFINE/SYSTEM SOL$DIR sys$sysdevice: [SOL]

Since the SOL$DIR logical name must exist at all times, you should add this definition
statement to your system startup procedure, usually found in the sys$manager directory
under the name systartup.com:

1) Use an editor (e.g. EDT) to edit the systartup.com command procedure.
2) Add the line:
$ DEFINE/SYSTEM SOL$DIR sys$sysdevice: [SOL]

to the command procedure so that the SOL$DIR logical name will always be
defined.

3) EXIT the editor, making sure the changes to systartup.com are saved.

A command procedure called SOL_SYMBOLS.COM is included with the SOL system and
contains the standard symbol definitions that allow the SOL user to invoke the SOL compiler
and linker as discussed in the SOL user’s manual. The following line should be added to the
svstem-wide login command procedure. typically SYSSMANAGER : SYLOGIN.COM:

$ ©@SOL$DIR:SOL_SYMBOLS

Be sure to add the command to the system-wide login procedure such that the defined
symbols will be available for all users, avoiding sections of the login procedure that are only
executed for SYSTEM or other privileged users.

Installing SOL on a VAX/VMS Computer -2

4. BACKUP the tape into the SOL directory

Once the SOL directory has been created, the SOL files must be copied from the tape into
the directory, SOL$DIR. Since the files are stored as a save_set, the VAX BACKUP command
is used. Type the following to copy the SOL files:

BACKUP/REWIND tape.drive:SOL.BCK SOL$DIR

The required files will be copied into the SOL$DIR directory. With TK50 tapes, this
operation can be slow so be patient.

Next, set the file protection so that all users are able to access the individual files within
the SOL directory with the following command:

SET PROTECTION = (WORLD:RE) SOL$DIR:*.=*

To verify that the files have been properly read from the tape. issue the following com-
mand:

DIRECTORY/SIZE SOL$DIR

The following should be displayed:

Directory SYS$SYSDEVICE: [SOL]

DVBOUNDS.FOR; 1 4
DVNORM.FOR; 1 3
LINKSOL.COM;1 9
CPTIMIZER.FOR;1 1008
OPTIMIZER.OBJ;1 550
OPT_OUTPUT.FOR;1 42
RUNERR.FOR; 1 6
RUNSOL.COM; 1 2
SOL_COMPILER.EXE;1 378
SOL_COMPILER.PAS;1 1020
SOL_LIB.OLB;1 891
SOL_SYMBOLS.COM; 1 1
UNNORMALIZE.FOR;1 3

Total of 13 files, 3917 blocks.

If these files are missing. check your BACKUP command for typing crrors.

5. DISMOUNT the SOL tape

To dismount the tape from the tape drive, type the following:
DISMOUNT tape_drive

where tape_drive is the name of the tape drive on which vou mounted the
tape (e.g. $TAPE1). Once the tape dismount is completed, the tape can be
removed.

Installing SOL on a VAX/VMS Compuler -3

6. VERIFICATION

~1

This completes the installation process. To verify that things are working:
1) LOGOUT as SYSTEM.
2) LLOGIN as a normal user and CREATE a simple SOL program using an
editor. For example:
PROGRAM test

PRINT ’this is a test’
END test

Save the program in a file named test.sol
3) Compile the program with the command SOL test.

1) Link the program with the command LSOL test. You will be prompted for
external file names; simply type a carriage-return in response to the prompt.

3) Run the program with the command RUN test.

If the program compiles, links, and runs (producing the output this is a test for the
example above), then it is reasonable to assume SOL has been installed properly. One might
also try shutting the machine down, and then repeating steps 2) through 5) above to further
verifv the installation.

. User Authorization

SOL’s macro features are implemented with files. As a result, it is possible that SOL
programs will require many files to be opened at once. VAX/VMS systems set a limit on
the number of files that a user can have opened at once. When a SOL program exceeds the
VAX/VAIS limits. a system error message will be displayed and the SOL program will halt.
One can avoid this problem by increasing the number of files a user is permitted to have
open through the use of the AUTHORIZE utility, described in the MicroVMS User’s Manual,
Part I, Appendix AUTH . To increase the file limits, do the following;:

) Login as SYSTEM.

) Switch to the proper directory and run the AUTHORIZE utility with the
following commands:

SET DEFAULT SYS$SYSTEM
RUN AUTHORIZE

—_—

o

3) The UAF> prompt symbol should appear. Increase the file limits for EACH
SOL user who needs a higher limit with the following command:

MODIFY user /£fi11m=200

where “user” is the login name of the user requiring an increased file limit.

The AUTHORIZE utility should return the message:
AUAF-I-MDFYMSG, user record(s) updated

to signifv the necessary changes have been made.

Installing SOL on a VAX/VMS Computer -4

4) Increase the number of bytes allowed in buffered 1/O operations with the
command:

MODIFY user /byt1lm=10000

where “user” is the login name of the user requiring an increased byte limit.
The AUTHORIZE utility should return the message:
WUAF-I-MDFYMSG, user record(s) updated
5) The changes can be verified with the command:

SHOW user

where “user” is the login name of the user.
6) Exit the AUTHORIZE utility with the command:

EXIT
It will not be necessary to increase the “opened file” limits unless macros are used

extensively.

Installing SOI on o VAX/VMS Computer -5

Chapter 1
Compiling, Linking, and Executing SOL Programs

SOL is a compiled language. After creating a SOL source program with your favorite
editor, you must comptile the program. The compilation process translates your SOL pro-
gram into an equivalent FORTRAN program. A computer program, the compiler, does the
translation. You compile your program with the SOL command procedure described below.
This command invokes the SOL compiler to translate your SOL program into FORTRAN.
After using the SOL command to compile your program, you must use the LSOL command
procedure to link your program. The LSOL command compiles the FORTRAN program, and
links it with the SOL library routines. The result of the LSOL command is an executable
version of your program, a version which is ready to be run on the computer. Finally, the
VAX RUN command is used to run your program.

In summary, to create and run a SOL program, do the following:

1) - Write a SOL program.

2) — Use the SOL command procedure to compile the SOL program

3) — Use the LSOL command procedure to link the SOL program.

4) - Use the VAX RUN command to run the program.
EXAMPLES:

For instance, to compile, link, and execute a SOL program named testsol.sol, type
the following sequence of commands:

SOL testsol
LSOL testsol
RUN testsol

The SOL command will invoke the SOL compiler which translates testsol into an equiv-
alent FORTRAN program named testsol .for. The LSOL command invokes the FORTRAN
compiler to compile testsol.for, and links the result with needed library routines.

This chapter describes how to use the SOL and LSOL command procedures. The chapter
is divided into four sections:

1.1 - Discusses the SOL command

1.2 - Discusses the LSOL command

1.3 - Discusses the VAX RUN command

1.4 ~ Discusses an example LISTING produced by the SOL compiler

Compiling, Linking, and Fzecuting SOL Programs 1-1

1.1 COMPILING A SOL PROGRAM: THE SOL COMMAND PROCEDURE

The SOL command invokes the SOL compiler. The primary functions of the SOL compiler
are:

1) to translate SOL source statements into an equivalent FORTRAN program
and to issue any error messages.

2) to optionally generate a LISTING and/or CROSS-REFERENCE file.

The SOL command is not invoked from the editor, or from your SOL program. Once you
have created your SOL program, save the program and exit from the editor. At the system
prompt, type SOL and a space followed by the filename of your SOL program, another space
and the compiler options. Press the RETURN or ENTER key. This will invoke the SOL

compiler.
More formally, the SOL command has the following syntax:

SOL (SOL file) (compiler options)
where:

(SOL file) is the name of your SOL source program (use standard VAX file
names; the suffix .sol is assumed).

(compiler options) are the optional settings for the compiler. These are discussed in
detail in Chapter 1, section 1.1.2.

The following restrictions hold for the SOL command:

1) The (SOL file) and the (compiler options) must appear on the same line.

2) One or more spaces MUST appear between the word SOL and (SOL file) and
between the (SOL file) parameter and the (compiler options) parameter.

3) Type a carriage return once you have finished typing the SOL command and
parameters.

Thus, the SOL command procedure has two parameters: the name of the SOL source
file, and optional qualifiers for the compiler. The following examples illustrate the use of the
SOL command procedure:

1) SOL optimum
2) SOL optimum.sol 1x

The name of the program being compiled, the compiler options selected, and the current
settings for the compiler options are displayed on the screen after the SOL command is given.

Compiling, Linking. and Erecuting SOL Programs 1-2

For example, the invocation SOL Optimum 1x will cause the following to be displayed:

% SOL COMPILER UTILITY **#
*xxkskk VERSION 1.00 *xhssk%
Compiling OPTIMUM with options LX

SOL Compiler v. 1.2, Current Option Settings are:

CODE OPTION SETTING
D PRINT RULES OFF
L LISTING OFF
P PARSE TRACE OFF
0] CREATE FORTRAN ON
X XREF OFF

#x* This run of the SOL Compiler Utility is complete **x*

Further details about the SOL command are found in the following three sections:

1.1.1 - Discusses the (SOL file) parameter.
1.1.2 - Discusses the (compiler options) parameter.

1.1.3 - Discusses the output of the SOL compiler.

1.1.1 THeE SOL FILE PARAMETER

The (SOL file) parameter to the SOL command is the name of the SOL source file
containing the program to be compiled. The file must exist in the current directory, or the
complete file specification must be given.

The SOL compiler assumes a .SOL suflix if no suffix is explicitly given in the (SOL file)
parameter. For instance, the SOL command:

SOL filename
is equivalent to using the SOL compiler with the following command:
SOL filename.sol
Therefore, it is a good idea to suffix vour SOL files with the suflix, “.SOL.” This suffix will

distinguish SOL files from other programs, and save typing when using the SOL command
to compile your SOL programs.

1.1.2 Tue SOL CoMPILER OPTIONS

Compiler options are specified in the (compiler options)} parameter. The SOL compiler
has default settings, so { compiler options } can be left blank.

Compiling, Linking, and Erecuting SOL Programs -3

The (compiler options) parameter is one of the [ollowing:

1) nothing — use the default settings. The default settings are:
l(listing) ON
o (create FORTRANcode) ON
x (cross-reference) ON
p(parsetrace) OFF
d(printrules) OFF

2) 1 - turn off the listing option

3) o - turn off the gencration of FORTRAN code

4) x — turn off the cross-reference option

3) p — turn on the parse tracing

6) d - turn on the printing of parse rules

7) one or more of 2) ... 6), not separated by spaces or carriage returns. E.g.,

lpd or lox or lo
Each of the options 2) through 6) is discussed in detail in the five sections that follow.

1.1.2.1 The Listing Option, L

The SOL compiler produces a source listing file by default. This file has the same name
as the source file, but with the suffix “.list”. For example, compiling “example.sol” will
produce a listing file named “example.list”.

The Listing option turns off the SOL compiler’s listing option, so that no listing is
produced. Since the cross-reference listing goes into the listing file, turning off the compiler’s
listing option also turns off the cross reference option. For example, the following command
turns off the SOL compiler’s generation of a listing:

SOL example 1

A sample listing is discussed in Chapter 1, section 1.4.

1.1.2.2 The Cross-reference Option, X

The SOL compiler produces a cross-reference index of all variables in the compiled SOL
program by default. The cross-reference index appears in the listing file, also produced
automatically. The cross-reference index lists each variable, and the line numbers where the
variable is accessed.

Invoking the Cross-reference option turns off the SOL compiler’s cross-reference in the
listing. Since the cross-reference information is produced in the listing, turning off the listing
option will also turn off the cross-reference option.

Compiling, Linking, and Executing SOL Programs 1-{

The three example invocations below turn off the cross-reference option:

1) SOL example x
2) SOL example 1
3) SOIL example lox

A sample cross-reference index is discussed in Chapter 1, section 1.4,
[1 y

1.1.2.3 The Create FORTRAN Option, O

As a default, the SOL compiler automatically produces an object file containing a FOR-
TRAN program equivalent to the compiled SOL. The object file contains the FORTRAN
output from the SOL compiler. The name of the file containing the FORTRAN output is
the same as the SOL source file, except it has a “.for” suffix. For example, “example_1.sol”
will produce a FORTRAN output file named “example_l.for”

The Create FORTRAN option turns the SOL compiler’s FORTRAN code generator off,
so that FORTRAN output will not be produced. To turn off the code generation, the O
option is specified. For instance, the following command will turn OFF the code generation
of the SOL compiler:

SOL example.l o

The FORTRAN output file, produced when the Create FORTRAN option is left on,
must be linked with the LSOL command, discussed in Chapter 1, section 1.2.

1.1.2.4 The Parse Trace Option, P

The parse trace option is intended for debugging the SOL compiler, and therefore is not
described. Unless modifying the SOL compiler source code, the P option is not needed.

1.1.2.5 The Print Rules Option, D

The print rules option is intended for debugging the SOL compiler, and therefore is not
described. Unless modifying the SOL compiler source code, the I option is not needed.

1.2 LINKING A SOL PROGRAM: THE LSOL COMMAND PROCEDURE

The LSOL command invokes the SOL linker. The primary functions of the SOL linker
are:

1) to invoke the VAX FORTRAN compiler to compile the FORTRAN output
produced by the SOL compiler.

Compiling, Linking, and Frecuting SOL Programs 1-5

2) to link the output of the FORTRAN compiler to a standard library of rou-
tines, and also to link with any other user-provided FORTRAN subroutines
needed by the SOL program. This step produces an executable version of
the SOL program.

To link a SOL source program, invoke the LSOL command from the terminal. After using
the SOL command procedure, at the system prompt type LSOL and a space followed by the
name of the file to be linked. Remember that the file being linked is the output of the SO,
compiler, so no suffix or a .FFOR suffix should be used. (e.g. “example” or “example.for”)

More formally the invocation has the following syntax:
LsoL { SOL file)
where:
(SOL file) is the name of the FORTRAN program generated by the SOL com-

piler. (your SOL program and the equivalent FORTRAN program,
produced by the SOL command, automatically have the same names).

The following restrictions hold for the LSOL command:

1) The word LSOL, and (SOL file) must appear on a single line.
2) One or more spaces MUST appear between the word LSOL and (SOL file)

3) Type a carriage return once finished typing the LSOL command procedure
and parameters.

Thus, the LSOL command procedure has one parameter, the name of the SOL object file.
For example, the following calls will invoke the LSOL Command Procedure:

1) LSOL example.l
2) LSOL optimum.for
3) LSOL optimum

The LSOL command will prompt you for the names of any external FORTRAN routines
called by your SOL program. For example, the command LSOL Optimum will cause the
following to be displayed:

%% SOL LINKER UTILITY ##=*
**xx%%x VERSION 1.00 ek
Linking OPTIMUM to SOL Library Routines

Please answer Y or N
Do you have external FORTRAN (.obj) files to be linked?

In response to this prompt, you should type Y if you have external routines to link and
N if you do not. If you answer Y, you will be prompted for the external file’s name, with the
following prompt:

You will be prompted for file names.
Enter a single name followed by a carriage return. You will be prompted for
the next name. When you have finished, just hit a carriage return at the prompt.

Enter the complete filename ==>

Compiling, Linking, and Erecuting SOL Programs -0

Type a filename, and type carriage return. The LSOL command continues to prompt you for
additional files until you type a carriage return in response to the enter filename prompt.
Once this prompting has ended, LSOL will compile the FORTRAN translation of your SOL
program and invoke the VAX Linker to create an executable (.exe) image which can be
run on the computer. The LSOL command procedure will signal that linking has ended by
sending the following message to the screen:

*** This run of the SOL Linker Utility is complete *x*x
The following restrictions hold for the external file names:
1) The linker requires “.obj” files produced by the VAX FORTRAN compiler.
If a FORTRAN routine is needed by your SOL program, vou must compile

the FORTRAN to create a “.obj” file. This “.obj” file can now be linked
with your SOL program.

2) The linker assumes a “.obj” suffix, so it need not be supplied. For example,
to link “example_l.0obj” either of the following are valid file names:

“example_l.0bj” or “example_1”
3) The linker defaults to the current device and directory. If a different device
or directory is desired, this must be specified in the file name.

The executable image will be created in the current directory. This image will have
the same name as the file name passed to the LSOL command procedure, except the “.for”
suffix is replaced with a “.exe” suffix. For example, LSOL optim and LSOL optim.for both
produce an executable image named, “optim.exe”

1.3 EXECUTING A SOL PROGRAM: THE RUN COMMAND

Once you have compiled your program using the SOL command and linked it using the
LSOL command, the last step is to run your program. Simply type:

RUN { file name)

where:

(file name) is the name of the “.exe” version of your SOL program, produced by
the LSOL command. The “.exe” suffix is assumed, so it need not be

supplied. For example, to execute “test.exe” you can type either of
the following:

RUN test or RUN test.exe

This command is the VAX RUN command. which is used to execute most programs on

VAX/VMS systems.

1.4 SAMPLE SOL LISTING

A complete SOL compiler listing has three parts:

1) A source code listing, generated by leaving the L option on.

Compiling, Linking, and Ercculing SOL Programs [-7

2) A cross-reference listing, generated by leaving the X option on.

3) A list of error messages outlining where errors have been encountered in your
SOL program.

The source code listing for the main program appears first, followed by the cross-reference
information (if X option selected) for the main program. The main program cross-reference
is followed by a series of source listing/cross-reference pairs, one pair for each subroutine.
The last thing to appear in the compiler listing is the error messages.

On the following pages, a complete SOL compiler listing appears. After the SOL compiler
listing, three discussion sections appear that explain the compiler listing. The italicized
numbers that appear in the listing correspond to the numbered explanations in the sections
that follow:

1.4.1 - Discusses the source listing
1.4.2 - Discusses the cross-reference information
1.4.3 - Discusses the error messages

Compiling, Linking, and Ezecuting SOL Programs 1--8

SIZING AND OPTIMIZATION LANGUAGE [(SOL) v1.22 2 SOURCE LISTING & 21-JUN-1988 / 10:53:47.88 § PAGE 1 6

LINES

D ONDN AWM -

53

59

7 sourck LIEE &

: PROGRAN Opt_Beam
'

! Determine the optimimum Geometry for min weight beam
L

. DECLARE

SUBROUTINE (Rho_max) = calc_rho(max, depth)

: END DECLARE

! constants for beam weight calculation.
Fs_Allow = 60000
Fb_Allow = 100000

length = 40 ! beam length in inches

load = 100 ! uniform load in 1bs per inch
steel = .3

t_min =1

material wt = 7

cap_width =3

OPTIMIZE Beam Weight

USE
depth = 20 In [.25,]
cap_thickness = t_min In [t_min,]
web_thickness = t_min In [t_min,]

! constraints
Rho_b_max .1t. Fb_Allow
web_stress .1t. Fs_Aillow
END USE

ASSEMBLAGE beam (0, ’Beam’)
SUMMARIZE
area

END SUMMARIZE

COMPONENT top_cap(1, ’Top Cap’)

area = length ® cap_width e cap_thickness
END top.cap
COMPONERT base_cap (1, ’Base Cap’)

area = length ® cap_width e cap_thickness
END base_cap
COMPONENT web (1, ’'Web)

area = depth ¢ web_thickness ¢ length

END web
END beam
M_max = ((load¢length)*s2)/8
1 = (area@top_cap@beams(depthss2))/2
(Rho_b_max) = calc_rho(M_max, depth, I)
veb_stress = loadslength/(2¢area@ueb@beam)
Beam_Weight = area@beam o steel
cap_area = area@top_caplbeam + arealbase_cap@beanm
veb_area = area@web@beam
END OPTIMIZE
Print ’cap area ’, cap.area : £5.2
Print ’Web thickness ’, web_thickness : f 5.2
Print ’web area ’, web_area : £5.2
Print ’Beam Depth ’, depth : £5.2

: End Opt_Beam

ORIGIINAL FLGE I8

OF FOOR GQUALITY

Compiling, Linking. and Ezecuting SOL Programs -9

SIZING AND OPTIMIZATION LANGUAGE (SOL) Vi.22

+++ CROSS REFERENCE FOR MAIN PROGRAK »s+ ()

+++ ASSEMBLAGE WESTING STRUCTURE ses [/

BEAM
TOP_CAP
BASE_CAP
WEB

CROSS REFERENCE 9

#++ SUNMARIZATION VARIABLES AND EXPRESSIONS ess [2

Summarization Variable Name
AREA

s¢+ Optimization Listing #ee 15
OPTINIZATION NAME :

DESIGE VARIABLES
CONSTRAINTS

BEAM_WEIGHT

Variable name, Component Nesting Appended

BEAM_WEIGHT
CAP_AREA
CAP_THICKNESS
CAP_VIDTH
DEPTH
FB_ALLOW
FS_ALLOW

I

LENGTH

LOAD
MATERIAL_NT
M_MAX
RHO_B_MAX
STEEL

T_MIB
VEB_AREA
WEB_STRESS
WEB_TRICKNESS

Variables for Assemblage BEAM 15
Variable name, Component Nesting Appended

AREA@ BEAM

Variables for Component TOP_CAP
Variable name, Component Nesting Appended

AREAC TOP_CAPQ BEANM

Variables for Component BASE_CAP
Variable name, Component Nesting Appended

AREAQ BASE_CAP@ BEAM

Variables for Component WEB
Variable name, Component Nesting Appended

AREAC WEB@ BEAM

Line Numbers

32

DEPTH, CAP_THICKNESS, WEB_THICKEESS
RHO_B_MAX, WEB_STRESS

Line Numbers

49

50 54
21 35
16 35
20 41
10 25
9 26
46 47
11 35
13 43
15

45 47
47

13 49
14 21
51 56
48

21 41

Line Numbers

49

Line Numbers

35 46

Line Numbers

38 50

Line Bumbers

41 48

21~JUB-1988 10:53:47.88

14
38
38
446 47 57

38 41 45 48
46

22

55

50

51

Compiling, Linking, and Executing SOL Programs 1-10

PAGE 2

SIZING AND OPTIMIZATION LANGUAGE (SOL) V1.22 SOURCE LISTING /6 21-JUN-1988 10:53:47.88 PAGE 3

LINE® SOURCE LINE
60 : SUBROUTINE (Rho.max) = calc.rho(max, depth, I)
61 : Rhomax = (max o depth) / (2 ¢ I)
62 : END calc_rho
63
SIZING AND OPTIMIZATION LANGUAGE (SOL) V1.22 CROSS REFERENCE 21-JUN-1988 10:53:47.88 PAGE 4

s++ CROSS REFERENCE FOR SUBROUTINE s+« CALC_RHO 17

Variable name, Component Nesting Appended Line Numbers

DEPTH 60 61
I 60 61
MAX 60 61
RHO_MAX 61
SIZING AND OPTIMIZATION LANGUAGE (SOL) V1.22 SOURCE LISTING 21-JUN-1988 10:53:47.88 PAGE 5
LINES® SOURCE LIRE
0o 2 ERRORS Fousp. I8
1 O WARNINGS ISSUED.
SIZING AND OPTIMIZATION LANGUAGE (SOL) Vi1.22 ERROR MESSAGES 19 21-JUR-1988 10:53:47.88 PAGE 6
LIBE® SOURCE LIBE
47 : (Rho_b_max) = calc_rho(M_max, depth, I)
«+*» ERROR ~ SUBROUTINE ARGUMENT NUMBER NOT MATCH DECLARATION
60 : SUBROUTINE (Rho_max) = calc_rho(max, depth, I)
=*s ERROR ~ SUBROUTINE ARGUMENT BUMBER NHOT MATCH DECLARATION

DRIGINAL Fiy o
CF POCR QUALITY

Compiling, Linking, and Executing SOL Programs 1-11

1.4.1 THE SOURCE LISTING

This section explains the format of the compiler source listing in detail. The italicized
numbers in the explanations below refer to the italicized numbers that appear in the sample
listing from the previous pages.

Fach page ol the listing begins with a title line, consisting of cight clements:

!
2
3

-o

~ Sy

8

A SOL header message.
The version number of the SOL compiler.

A subtitle that describes which part of the listing is found on this page. In
the case of the source listing the words, “SOURCE LISTING,” appear.

The date the listing was created.

The time the listing was created.

The page number for the complete listing.
A line number column.

A source line column.

The compiler listing begins with the main program source listing, as on page one. The
lines from vour SOL program appear, and are numbered for referencing. The line numbers
that appear in the cross-reference and error messages, refer to these line numbers in the

source listing.

Following the main program source listing, the cross-reference for the main program (if
the cross-reference option was chosen) appears. Next, the source listing for the subroutine
implementation appears, 16 on page 3 of the listing. The subroutine source listing is followed
by its own cross-reference. If other subroutines were used, a source listing/cross-reference
pair for every subsequent subroutine implementation would also appear.

The last page of the source listing will be blank if no errors occur, or will contain
information on the number of errors and the number of warnings 18 that appeared followed
by a listing of the error messages 19.

1.4.2 Tue CROSS-REFERENCE LISTING

The cross-reference listing follows the source listing. The cross-reference will begin on a

new page, and will be indicated by the words, “CROSS REFERENCE,” in the page title as

in 9.

The cross-reference listing consists of the following:

10

11

13

A title indicating that the cross-reference is for the main program. In the case
of subroutines, a different title is used to indicate the name of the subroutine,
as in the case of 17.

An ASSEMBLAGE section appears, which illustrates components that make up
the assemblage. If no components appear, this section is left blank.

A list of the ASSEMBLAGE summarization variables and summarization expres-
sion variables appears, along with the line number where they were declared.

An optimization section appears, which lists the objective function, design
variables and constraints for each optimize statement in your SOL program.

Compiling, Linking, and Frecuting SOL Programs 1-12

14 A variable listing appears, which lists the variables and the lines where they
were used. (ASSEMBLAGE and COMPONENT variables are listed separately, see
15 below).

15 A variable listing for the assemblage and associated components appears.

Following the cross-reference of the main program, the source listing for the subroutine
appears, followed by its own cross-reference section as on pages 3 — 4 of the listing. Source
listing/cross-reference pairs continue to alternate for each subsequent subroutine.

If the cross-reference option is not selected, only a source listing will appear in the listing.
Also, if the listing option is not selected, the cross-reference option defaults to “not selected,”
and no cross-reference will be produced.

1.4.3 THE ERROR LISTING

The next to last page of the source listing 18 gives the number of error and warning
messages that were issued, and is followed by a list of the messages in an error message
section. The error message section is clearly delimited as it begins on a new page, and the
words “ERROR MESSAGES” appears in the page header 19. The line number, line, and
message issued for each error follow. The “up-arrow” mark before the issued message points
to the general location of the error in the line.

Compiling. Linking, and Erecuting SOL Programs 1-13

Chapter 2

Introduction to SOL

This chapter is divided into the following sections:

2.1
2.2

- Presents an overview of SOL, and illustrates the structure of a SOL program.

- Discusses SOL’s lexical elements - the character set, special symbols, reserved

words, identifiers and numbers.

- Explains how to document a SOL program using comments.

~ Explains the use of SOL’s continuation lines.

2.1 AN OVERVIEW OF SOL

SOL is a high-level, special-purpose language that has been developed for use under the
VAX/VMS operating system. Four basic features describe SOL:

1)

[S™]
~—

Conventional features: SOL has many features of “conventional” lan-
guages such as FORTRAN or Pascal. SOL offers variables; math-operators;
built-in mathematical functions; program control statements for loops and
if/then/else logical branching statements; subroutines; and some PRINT state-
ments to allow the output of values.

Optimization features: One of SOL’s purposes is to make the computer
implementation of a numerical optimization problem as simple and error-
free as possible. There should be no confusion; SOL is not intended as a
language for the development of numerical methods of mathematical opti-
mization. Rather, SOL’s purpose is to provide a language in which to write
code which applies existing methods of numerical optimization to solve an
optimization problem. One writes SOL code to apply optimization. At

present, the methods of numerical optimization implemented in the ADST
optimization routine are available for use within SOL programs. In terms of
its optimization capability, SOL can be considered as a sophisticated shell
around an optimization routine.

t ADS - A FORTRAN Program for Automated Design Synthesis ~—— Version 1.10, NASA
Contractor Report 177985, Grant NAG1-567, 1985 by G.N. Vanderplaats

Introduclion to SOL 2-1

3) Sizing Features: SOL includes features to facilitate a type of engineering
systems modeling herein referred to as sizing. In this manual, sizing is de-
fined as the modeling of a system as the simple sum of its parts with respect
to some special summarization variables. For example, an airplane can be
modeled and sized for weight; we model the major parts of the airplane, its
systems and structural components, along with the interaction between the
parts. The model is constructed so that the weight of the entire airplane can
be determined by summing the weight of its parts, the systems and structural
weights. Likewise the weight of any part of the airplane can be determined
by summing tts parts. In this case, “weight” is considered a summariza-
tion variable. SOL aids the modeling of such “assemblages;” by allowing
the user to create such models, and automatically computing the necessary
summations.

4) FORTRAN Interface: SOL provides a FORTRAN block feature, which
allows one to write FORTRAN code within a SOL program, or to interface with
an existing FORTRAN code.

° Conventional SOL features combine with its specialized optimization and
sizing capabilities to create programs.

. SOL’s compiler also provides an important error-checking capability. The
compiler not only checks for syntax errors, but also uses knowledge about
sizing and optimization to give specialized error messages.

. As a convention in this manual, a description of the correct use of a SOL
feature is followed by a list of restrictions on usage which defines the error-
checking of the compiler.

The following sections introduce the main elements of SOL:

1) Data Types 211
2) Variable Initialization 212
3) Execcutable Statements 213
1) Subroutines L. ..o 214
5) Structure of a SOL Program 215

2.1.1 DaTA TYPES

Every SOL variable has a data type. A data type classifies a variable, determining both
the range of values the variable can have, and the operations which can be performed on it.
SOL provides only three kinds of predefined types:
~ REAL (8 Bytes long)
- INTEGER (4 Bytes long)

- LOGICAL
o SOL does NOT allow user-defined types.
. SOL does NOT provide structured types such as arrays or records.

Introduction to SOL 2-2

o Chapter 3 describes SOL data types in greater detail.
SOL identifiers are given a data type in two ways:
1) Explicit: Explicit type declarations can appear in the declaration sections of

a SOL program, or in a subroutine formal parameter list. Explicit
declarations give variables a type.

2) Implicit: If a SOL identifier is not explicitly declared, the variable is implicitly
declared as type REAL when it is initialized.

Chapter § offers an in depth discussion of type declarations.

2.1.2 VARIABLE INITIALIZATION

SOL distinguishes between initializing a variable and declaring a variable.

) A variable is declared when it is associated with a data type.
. A variable is initialized when it first receives a value.
o SOL requires every variable to be initialized before you access its value.

The most common means of accessing a variable’s value is using the variable on the
right-hand side of an assignment statement. Variables can be initialized in six ways:

1) most variables are initialized by appearing on the left-hand side of an assign-
ment statement. (See Chapter 6, section 6.1)

S
~—

subroutine independent parameters are initialized for use within the sub-
routine when the subroutine is called and passed values. (See Chapter 9,
sections 9.2-9.3)

3) optimization design variables are initialized when they are bounded (given a
range of possible values) in the USE section of an optimize statement. (See

Chapter 8)

1) summmarization variables of composite COMPONENTs are implicitly initialized
at the end of a COMPONENT. (See Chapter 7)
5) Iteration variables are initialized in the ITERATE section of a COMPONENT

statement (See Chapter 7, section 7.1.3)

6) variables are initialized when they are returned as the dependent variables
from a subroutine call. (See Chapter 6, section 6.7, or Chapter 9)

Variable initialization takes place in the statement section of a SOL program the first time
a variable gets a value. Detailed discussions of each variable initialization method can be
found in the sections named above.

The block in which a variable is initialized determines the variable’s scope, where the
variable can be accessed. Each of the following is a block in SOL:
1) The main program
2) Subroutines
3) [FF/THEN/ELSE statements

Introduction to SOL 2-3

4) ASSEMBLAGEs and related COMPONENTS

Block: The chief characteristic of a block is that a variable can be initialized inside a
block, and remain uninitialized outside it. Some blocks can be nested inside
each other.

Scope: The scope of a variable determines where the variable can be accessed, and
the rules which decide the scope of the variable are called “scope rules.”
Scope rules follow from SOL’s stringent error checking. The scope rules are
designed to insure that variables are always initialized before they arc used.
For instance, consider the IF/THEN/ELSE statement. One cannot be certain
that the statements in the THEN or the ELSE portion of an IF statement
will be executed. Statements in the THEN part are executed only when the
condition is true, and statements in the ELSE part are executed only when the
condition is false. Therefore, it is uncertain whether a variable initialization
which only appears in either the THEN or ELSE portion of an IF statement,
will occur. SOL will not allow a variable to be used unless its initialization is
certain. Hence, the scope rules require that only a local variable be initialized
when it is not certain that the initialization will actually take place.

. In general, the scope of a variable includes the block where the variable was
initialized, and any blocks nested inside the initializing block. Outside of
this scope, the variable is uninitialized and cannot be accessed.

Chapter 11 offers a detailed discussion of scope rules, and the scope rules for each block
are discussed when the block is described.

2.1.3 EXECUTABLE STATEMENTS

Statements include conditional branching, loops, assignments, optimizations, ASSEM-
BLAGE descriptions, print statements, subroutine calls, and FORTRAN blocks. The statement
section ends when the main program or subroutine ends. The following table gives a repre-
sentitive list of the SOL statements and their use:

Introduction to SOL 2-4

Table 2-1

Calculation Statements

Description

Assignment
[Expression

Control Statements

Assigns a value to a variable.
Combines variables, operators, and/or functions to give values.
Expressions can only appear as part of other statements.

Conditional DO loop
Iterative DO loop
IF/THEN/ELSE
Subroutine call

Declaration Statements

Repeats statements while a condition is TRUE.
Repeats statements a specified number of times.
Branches based on a logical decision.

Calls a SOL subroutine.

Subroutine declaration
Variable declaration

Description Statements

Declares a subroutine and its parameters.
Declares a variables type.

ASSEMBLAGE or COMPONENT
OPTIMIZE

Miscellaneous Statements

Describes a sizing model.
Describes an optimization problem.

FORTRAN block
?INCLUDE
Macro call
Macro definition

Output Statements

Incorporates FORTRAN code into a SOL program.
Include a file into the SOL program.

Use a macro abbreviation.

Define a macros abbreviation.

PRINT
SUMMARIZE

Output a value or optimization result
Output individual component values for a sizing model

SOL statements are fully described in Chapter 6.

2.1.4 SUBROUTINES

SOL allows you to group declarations and executable statements into subroutines. Sub-
routines are a convenient way to organize a program, because you can isolate individual
tasks a program must accomplish by coding each task as a subroutine.

o Subroutines must be declared in the declaration section (Chapter 5) of the
main program, before they are used. The declaration consists of the subrou-
tine name, and the number and types of parameters.

o Subroutine implementations, in which the actual code for the subroutine is
given, appear after the main program’s body.

Introduclion to SOL 2-5

° SOL subroutines can call each other, but recursion is not allowed; SOL
subroutines cannot call themselves directly or indirectly.

° Subroutines can declare local variables, but not local subroutines.

. SOL has no global variables; SOL subroutines cannot access variables initial-
ized in the main program, except through explicit parameter-passing.

) Chapter 9 describes subroutines more {ully.

. Chapter 6. section 6.7 provides details on subroutine calls.

) Chapter 5 describes subroutine declaration.

2.1.5 STRUCTURE OF A SOL PROGRAM

A SOL program has the following v sual structure:

Program Header
Optional Declaration Section
Statement Section
End Program Footer ’
Optional Subroutine Implementation Section

The declaration and subroutine implementation sections are optional, and can be left
out of your SOL programs under certain conditions. All the other sections must appear.

The following sample SOL program illustrates the structure of SOL programs in general.
In the example, the structures outlined above have been noted by SOL comments, which
follow the symbol, !.

PROGRAM example ! this is an example program header. Special
! SOL words are shown in uppercase letters

DECLARE ! The declaration section, appears in this
INTEGER a_var ! program. A variable is declared to be
SUBROUTINE (y) = test(x) ! of type INTEGER and a subroutine is declared

END DECLARE

a_var = 4 { The statement section, and here is
(a_var) = test (a_var) _ ! a subroutine call
END example ! The end program footer
SUBROUTINE (y) = test (x) ! the start of the subroutine
! implementation section, only one
IF x .eq. 4 THEN ! subroutine is implemented in this
print ’x equals 4’ ! sample program
ENDIF
y=x+1
END test ! end of subroutine implementation

Introduction to SOL 2-6

Thus, to write a SOL program:

1) Give the program header, consisting of the word PROGRAM, followed by the
name of your program.

2) Write a declaration section, delimited by the reserved words DECLARE and
END DECLARE, if desired.

3) Supply the SOL statements that make up the statement section. Indicate

the end of the statement section with the end program footer, which consists
of the word END, followed by your program name.

4) If subroutines have been declared, supply their implementations in the sub-
routine implementation section.

Blank lines and comment lines, lines that consist of nothing or a comment respectively,
can appear almost anywhere in a SOL program including before the program header and
after the end of the main program or subroutine implementation.

In the chapters of this manual, specific details are given about the declaration section,
SOL statements and statement section, subroutines, and the relationship hetween these
parts. But, all SOL programs, no matter how complicated, will still have the basic structure
outlined above.

2.2 LEXICAL ELEMENTS

A SOL program is composed of lexical elements. Lexical elements consist of a single
character (individual symbols like parenthesis or mathematical operators), or a collection of
characters (words that have a special meaning in SOL). Each character must be a member
of SOL’s character set, described in section 2.2.1.

. Some characters act as special symbols in SOL, representing statement delim-
iters, operators, or elements of the language syntax. These special symbols
are presented in section 2.2.2.

o Some words in SOL are reserved for the names of SOL language constructs,
statements, and operations. The SOL reserved words are listed in section
2.2.3.

o Some words in SOL are identifiers that are crcated by the user to name
variables, subroutines and so forth. Section 2.2.1 explains how identifiers are
formed.

2.2.1 CHARACTER SET

SOL uses the extended ASCII character set used by VAX Pascal. The SOL compiler
assumes that the horizontal tab will be represented by the ASCII character numbered by
decimal number 9.

Introduction to SOL 2-7

The SOL compiler does not distinguish between uppercase and lowercase; for example
the word OPTIMIZE has the same meaning when written in any of the following ways:

OPTIMIZE
optimize
OpTImiZe

SOL utilizes a number of special symbols which are listed in the following table, along
with a short English description of their meaning in SOL. For symbols which are composed
of more than a single character, the characters must be contiguous and cannot be separated
by spaces.

Table 2-2: Special Symbols

Symbol Symbol Description

! comment delimiter symbol
% percentage symbol

(open parenthesis, often delimits arithmetic expressions
) close parenthesis, often delimits arithmetic expressions
* multiplication
** exponentiation
+ addition
comma
- subtraction
/ division
/* beginning delimiter of FORTRAN blocks in SOL programs
’ quote symbol for SOL strings
* ending delimiter of FORTRAN blocks in SOL programs
colon

assignment symbol

continuation symbol for overlong lines

macro delimiter, indicates where a macro begins
macro replacement text opening delimiter

macro replacement text closing delimiter

optimization design variable bounds opening delimiter
optimization design variable bounds closing delimiter

I [

.NOT. logical operator, boolean negation

.AND. logical operator, boolean conjunction
.OR. logical operator, boolean disjunction
.TRUE. boolean true

.FALSE. boolean false

.LT. relational operator “less than”

.LE. relational operator “less than or equal to”
EQ. relational operator “equals”

.NE. relational operator “not equal to”

.GE. relational operator “greater than or equal to”
GT. relational operator “greater than”

Introduction to SOL 2-8

2.2.3 RESERVED WORDS

In SOL, certain words form the basic SOL language, and are predefined with special
meanings that cannot be changed. These words are reserved for the names of statements,
data types, and operators. Reserved words can appear in uppercase or lowercase, but the
following table shows SOL reserved words in all uppercase letters.

Table 2-2: Standard SOIL Reserved Words

ABS DFP IF NONE SIN

ACTIVE DIRECTIONS IN NORMALIZE SQRT
ASSEMBLAGE DO INITIALLY NOTHING STEP

AT ELSE INSCRIBED OBJECTIVE STRATEGY
ATAN END INT OPTIMIZE SUBROUTINE
BFGS ENDDO INTEGER OPTIMIZER SUMMARIZE
BOUNDS ENDIF INTERPOLATION OPTIONS TAB

COMP EVERY INTERPOLATION/EXTRAPOLATION PENALTY TAN
COMPONENT EVERYTHING ITERATE PRINT TERMINATION
CONSTRAINTS EXP ITERATION PROGRAM THEN
CONVEX EXTERIOR LAGRANGE QUADRATIC USE

cos FEASIBLE LINEAR REAL VARTABLES
CRITERIA FIND LOG REEVES VIOLATED
CUBIC FLETCHER LOGICAL SEARCH WHEN
DECLARE GOLDEN MODIFIED SECTION

DESIGN HYPERSPHERES MULTIPLIER SEQUENTIAL

Reserved words can only be used in the contexts for which they are defined. Reserved
words cannot be redefined for use as identifiers. (see section 2.2.4 for description of identifiers)

2.2.4 IDENTIFIERS

SOL identifiers are used to name variables, ASSEMBLAGEs or COMPONENTs, a SOL pro-
gram, SOL macros. or a SOL subroutine. However, there is a standard form with which all
identifiers must conform to be considered legal:

1) All SOL identifiers must begin with a letter

2) After the starting letter, the rest of the identifier can be a combination of
the following elements:

letters
- digits(0...9)
underscores(.).
3) SOL is not letter case sensitive, so the letters can he uppercase, lowercase,
or some combination of both.
4) Reserved words cannot be used as identifiers.
5) Identifiers MUST be strictly less than 28 characters in length.

Introduction to SOL 2-9

Some illustrations of legal identifiers and illegal identifiers follow:

LEGAL - birthday, OuT tO_LUncH, a234_5k6, First__try, tHe_3rd_value
ILLEGAL - 2late, 12_hours, a$$time, program, a.answer, ?wrongo

* Note: program is illegal because it is a reserved word.

ADVANCED MATERIAL:

SOL also has extended identifiers. These are only used to access variables initialized
inside of an ASSEMBLAGE. Extended identifiers consist of a list of identifiers, separated by the
@ symbol. Several examples of extended identifiers follow:

weight@shaft a_large_test@my_will golf@noon@can_be@fun

. No blanks can appear between the symbol, @, and the adjacent identifiers.
) Extended identifiers MUST be less than 121 characters in total length.
. See Chapter 7 for more information on ASSEMBLAGEs and extended identifiers.

2.2.5 NUMBERS

SOL numbers can be positive or negative numbers that may include decimal points or
be expressed as powers of 10 through the use of scientific notation. In this notation, the
letter “E” stands for “times 10 to the power of.” Some examples of SOL’s representation of
integers, reals and scientific notation are given follow:

integer =12, 0, 42, -4, 1000000, 66, 29
real = 12,0, 0.0, +0.123. -3.156, .72
scientific notation = 12e2 (equals “12 times 10 to the second” or 1200)

+2e-3 (equals “2 times 10 to the -3rd” or .002)
1.0E06 (equals *1 times 10 to the sixth” or 1000000)

o INTEGER values range from -2,147,483,648 through 2,147,483,648.

° REAL values range from 1.7e38 through 0.29e-38.

. Leading zeros are allowed but not required.

o Commas are not allowed. Thus, one hundred thousand is written as 100000,

not 100,000. Unless otherwise specified, SOL will output numbers using
scientific notation.

Introduction to SOL 2--10

2.3 COMMENTS

It is a good idea to comment your SOL programs, and SOL allows one to use comments
freely. You can type anything you want in a comment. The SOL compiler ignores comments
completely, so that even reserved words can appear in a comment. The SOL compiler will
not do error checking in your comments. There are only two rules for comments:

“'”

1) Comments start with an exclamation point, c.g
2) Comments end at the end of the line.

So, once you start a comment on a line, the rest of the line is treated as a comment. Here
are some examples of comments:

! this is a comment
! I can type anything, even 12klf[8 &*)Y)#()J{CMKM{)(#*.)JFM”
! munnnnit 3 comment £t00000000000000

In a SOL program, comments should either appear alone on a line, or after a SOL
statement. You cannot put a comment before a SOL statement on a single line, because the
entire line will be treated as a comment, and the SOL statement will be ignored just like
any other text inside a comment. Some examples follow:

a=6 ! comments are effective after statements
! and here is a comment alone on a line
! calculate the area area=width * height

The last example above is fine for a comment, but if the text “area=width * height” was
meant to be a SOL assignment statement, then there is an error, because it will be ignored
as part of a comment.

As a final caution, some keyboards have a double-bar symbol, that looks a little bit like
an exclamation point. You cannot use the double-bar symbol as a comment symbol. If you
do, your SOL program will be incorrect.

2.4 CONTINUATION LINES

SOL is not entirely free-format, as carriage returns are used as statement separators.
There are times when you will not have enough space on your terminal’s screen to con-
veniently finish typing a SOL statement. You would like to continue typing on the next
line, but in your case SOL does not allow a carriage return to appear in the middle of the
statement. To accomodate this situation, SOL offers a continuation symbol, &.

The continuation symbol. &, should be read as “continued from the previous line.” If
you place the symbol in column one of a line of text, SOL will treat the text as if you had
typed it on the previous line. An example follows:

Legal illegal
a=(4%3)/ a=(4%3)/
& ((c *x 4) + 2) ((c ** 4) + 2)

Introduclion to SOL 2-11

There are a few general rules to remember when using the continuation symbol:

1)
2)
3)
1)

5)

The continuation symbol, &, MUST be placed in column 1 !! If it is not in
column 1, an error will result.

There are cases when SOL requires a carriage return after a line. If a contin-
uation symbol appears in column one of the next line, an error will result.

You can string together as many lines as desired, using the continuation
symbol, &.

SOL strings, such as ’this is a string’ CANNOT be broken over two
lines with the continuation symbol.

SOL lines can be at most 120 characters long.

Information about the use of the & symbol in a specific case is sprinkled throughout the

manual.

Introduction to SOL 2-12

Chapter 3

Data Types

Every SOL variable has a data type. A data type classifics a variable, determining both
the range of values the variable can have and the operations which can be performed on
it. Furthermore, variables can be combined with operations (e.g. a + b/2 - ¢) to form
expressions. SOL expressions calculate a value with a certain data type. This chapter’s focus
is the data types; the discussion of SOL expressions and their types is left to Chapter 4.

. SOL supplies three predefined types: INTEGER, LOGICAL, and REAL.
o No other types, such as arrays, records or user-defined types are available.
o An identifier is declared to be of a certain type in the declaration section (see

Chapter 5) of the main program or a subroutine.
. If no explicit declaration is made, identifiers default to be type REAL.

This chapter describes the range of possible values and the legal operations for the three
predefined types. INTEGER, LOGICAL, and REAL. In addition, the SOL compiler provides some
type checking capability which is also discussed. For example, it is an crror to assign an
INTEGER value to a LOGICAL variable.

This chapter is divided into four sections:

3.1 - Discusses the INTEGER type.
3.2 - Discusses the LOGICAL type.
3.3 - Discusses the REAL type.
3.4 - Discusses type checking.

3.1 THE INTEGER TYPE

The INTEGER type allows positive and negative integer values. A variable must be de-
clared to be of type INTEGER in the declaration section of the main program or subroutine
(See Chapter 3).

° INTEGER values can range from -2,147,483,6-13 through 2,147,483,647 inclu-
sive.
. An INTEGER consists of a series of contiguous decimal digits; no commas or

decimal points are allowed.

) Negative INTEGER numbers are expressed by placing a minus symbol (=) in
front of the number.

Data Types 3-1

° The use of negative INTEGERs in complicated expressions may not give the
results you expect, see Chapter 4, section 4.3.1 for details.

o The legal operations on INTEGERs follow:

+, —, *, /, **, .eq., .gt., .ge., .1t., .le., .ne.
The following are valid integers in SOL:

1200, -1, 0, 2, 24

3.2 THE LOGICAL TYPE

The LOGICAL tvpe, also known as the boolean type, represents the logical conditions of
true and false. Variables are declared to be of type LOGICAL in the declaration section of the
main program or subroutine (See Chapter 5).

o The symbol, .true., represents a logically true condition.

° The symbol, .false., represents a logically false condition.

. A LOGICAL variable can have only one of the two values, .true. or .false.
o Legal operations on logical values follow:

.and., .or., .not.

. Relational operators, such as .GT. (>), produce logical results. Chapter 4,
section 4.2 discusses logical and relational operators.

3.3 THE REAL TYPE

The REAL type denotes positive or negative real values. Variables are declared to be of
type REAL in the declaration section of the main program or subroutine (See Chapter 5).

. All REAL values are double-precision, (eight bytes long).

. REAL values are allowed to range from +1.7e38 through + 0.29e-38 inclusive.
° Variables are assumed to be REAL unless declared otherwise.

. Negative REAL numbers are expressed by placing a minus symbol (—) in front

of the number.

° The use of negative numbers in complicated expressions sometimes will not
produce the results you expect, Sec Chapter 1. section 1.3.1.

° Legal operations on REAL variables follow:

+, —, *, /, **, .eq., .gt., .ge., .1lt., .le., .ne.

Data Types 3-2

REAL numbers can be expressed with either of the following notations:

1) Decimal notation: Use the set of decimal digits and an optional decimal
point. Leading zeros are ignored.

2) Scientific notation: Some numbers cannot be conveniently represented
with decimal notation. The parts of a REAL number written with this notation
are;

— a REAL number or INTEGER,
an upper-case or lower-case “e,”
— an INTEGER exponent.
The letter “e” stands for “times ten to the power of.”

The following are valid REAL numbers in scientific notation, representing the number 237:

Table 3-1:

Scientific Notation English Description of Meaning

237e0 237 times 10 to the 0 power.

2.37e2 2.37 times 10 to the second power.
0.000237e+6 .000237 times 10 to the sixth power.
2370e-1 2370 times 10 to the negative first power.
2373 .237 times 10 to the third power.

The following are valid REAL numbers in decimal notation:

6. 6.0, 500, 006, 56.8, .89, 0.5312

3.4 TYPE CHECKING

SOL offers two kinds of type checking:

1) Assignment Compatibility rules: Assignment compatibility rules deter-
mine the types of data allowed when giving values to a variable. For instance,
can a LOGICAL variable be given an INTEGER valuc?

2) Operator Compatibility rules: Opecrator compatibility rules determine
what operations are allowed on variables of a certain type. For instance, can
two LOGICAL variables be multiplied together?

This section is divided into two sections:
3.4.1 - Discusses assignment compatibility rules

3.4.2 - Discusses operator compatibility rules

Data Types 3-3

3.4.1 ASSIGNMENT COMPATIBILITY RULES

Assignment compatibility rules apply when giving values to variables, either by assign-
ment or by a subroutine parameter pass. The rules restrict the types of data allowed, as
detailed in the following sections:

3.4.1.1 Compatibility rules for regular assignments.

3.4.1.2 Compatibility rules for subroutine parameter passing during subroutine calls.

3.4.1.1 Compatibility Rules for Regular Assignment

Compatibility rules for assignment apply when variables are given a value:

o by assignment statement (Chapter 6, section 6.1);

° when used as optimization design variables (Chapter 8, section 8.1);

° or as iteration variables of an ASSEMBLAGE or COMPONENT (Chapter 7, section
7.3).

i The following table shows the rules of assignment compatibility. The left column gives the
type of the variable and the right column gives the types which are assignment compatible.

Table 3-2: Assignment Compatibility Rules

Type of Variable Assignment Compatible Type(s)
INTEGER INTEGER, REAL
REAL INTEGER, REAL
LOGICAL LOGICAL
|

° Assignments between incompatible types are not allowed and result in a
compile-time error message.

° An INTEGER variable is assigned the truncated REAL; for instance, if an INTE-
GER variable is assigned the REAL number, 3.99999, the integer variable will

receive the value, 3.

3.4.1.2 Subroutine Parameter Passing Assignment Compatibility Rules

The following table shows assignment compatibility rules {or the parameter passing dur-
ing subroutine calls. The left side of the table gives the type of parameter, and the right
column lists the types which are assignment compatible.

Data Types 3—4

Table 3-3: Assignment Compatibility for Subroutine Calls

Type of Parameter Assignment Compatible Type(s)
INTEGER INTEGER
REAL REAL
LOGICAL LOGICAL
. Assignments between incompatible types are not allowed.
. Compatibility rules for parameter passing are strict. The variable passed

must have the same type as the parameter.

. Further details on subroutine parameters are found in Chapter 5, section 5.2,
Chapter 6, section 6.7, and in Chapter 9, section 9.2.

3.4.2 OPERATOR COMPATIBILITY RULES

Operator compatibility rules define which operations are allowed on variables of each
type. The legal operators for each data type have already been given, and the results are
summarized in the following table. The left side of the table lists the type, and the right
column displays the legal operations for that type.

Table 3-4:
Type Legal Operations
INTEGER +, -, *, /, ¥*, eq., .gt., .ge., lt., le.. ne.
REAL +, =, %, /[, **, eq., .gt., .ge., ., e, e,
LOGICAL .and., .or., .not.

) Note that INTEGER and REAL types share the same operations. As discussed
in Chapter 4, REALs and INTEGERs can be mixed in ezpressions, with the
resulting value always being of type REAL.

) Chapter 4 provides a more detailed discusion of this topic.

o Chapter 10 lists predefined functions and their assignment compatibility

rules.

Data Types 3-5

Chapter 4

Expressions

A SOL expression consists of variables or constants combined with operators (e.g. a +
b/2 + 32); the expression calculates a value of a certain data type. This chapter’s focus is
on expressions; a discussion on data types appears in Chapter 3.

SOL has two kinds of expressions:

1)
2)

Arithmetic expressions which calculate INTEGER or REAL values.
LOGICAL (boolean) expressions which calculate LOGICAL values.

A SOL expression is one of the following:

1)
2)
3)
4)

This chapter is

4.1
4.2
4.3

a single variable
a single constant
a single predefined function call

a collection of variables and/or constants and/or predeclared function calls,
all combined with operators.

The operators used to form SOL expressions are the arithmetic, relational,
and LOGICAL operators, all of which are explained in the sections that follow.

The data type of the expression is determined by the data types of the
operators or operands as described in the sections that follow.

The predeclared functions (See chapter 10 for more details on predeclared
functions) are:

— ABS, ATAN, COS, EXP, INT, LOG, SIN, SQRT, TAN
Expressions cannot be parameters to subroutines.

Expressions extending over more than a single line in SO must use the
continuation symbol, &, See Chapter 2, section 2.4 for details.

divided into two sections:
Discusses arithmetic expressions, describing their syntax and action.
Discusses LOGICAL expressions. describing their syntax and action.

Discusses the precedence rules that determine the order in which operators
are evaluated.

Lxpressions 4-1

4.1 ARITHMETIC EXPRESSIONS

Arithmetic expressions calculate REAL or INTEGER values.

. To form an arithmetic expression, combine numeric data (constants, INTEGER,
or REAL variables) with one or more arithmetic operators

. The use of parentheses in expressions is outlined in section 4.3.3 of this
chapter.

The following table lists the arithmetic operators (Also see Chapter 3, section 3.4.2):
Table 4-1:

Operator Example Result

+ a+hb The sum of a and b.

+ +a The positive value of a.

- a-b Subtract b from a.

- -a The negative value of a.

* a*b The product of a and b.
*ok a ** b a raised to the power of b.
/ al/b a divided by b.

Although the previous examples show no more than two operands, there is no limit. The
following details are also important:

1) Negative exponents must be enclosed in parentheses. E.g. a*x*(-b)
2) Arithmetic operations cannot be applied to LOGICAL values.
3) INTEGER division is truncated, not rounded. E.g Consider two INTEGER

variables, ¢ and d. If ¢=9 and d=8, then d/c = 0, not 1.

4) The value calculated by an arithmetic expression has a data type, which is
determined by the types of the operands and operators:

. If all operands are of type INTEGER, and no division operators
appear, the resulting value will be of type INTEGER. note: the
predeclared functions can also be operands; predeclared functions
return either INTEGER or REAL values (See Chapter 10).

o If any operands are REAL or if a division operator appears, the
resulting value will be of type REAL.

5) Operator precedence rules are given in Chapter 4, section 4.3

4.2 LOGICAL EXPRESSIONS

LOGICAL expressions calculate LOGICAL values.

) To form a LOGICAL expression, combine LOGICAL data terms (e.g. LOGICAL
constants or variables) with one or more LOGICAL operators.

Ezpressions 4-2

Relational operators test the relationship between two arithmetic expressions
and return a LOGICAL value as a result. If the relationship holds, the value
.TRUE. is returned, otherwise the value .FALSE. is returned. Thus, rela-
tional operators can be used to form LOGICAL data terms which can appear
in a LOGICAL expression.

The following table lists the relational operators.

Table 4-2:

Operator

.eq.
.gt.
.ge.
.le.
21t
| .ne.

Example Result

a .eq. b .true. IF ais equal to b

a.gt. b .true. IF ais greater than b

a.ge. b .true. IF a is greater than or equal to b
a .le. b .true. IF ais less than or equal to b

a .1t. b .true. IF ais less than b

a .ne. b .true. IF a is not equal to b

Relational operators are indivisible units, no spaces or miscellaneous charac-
ters can appear between the periods and the letters.

LOGICAL values cannot be used with relational operators (e.g. .true .ge.
c).
REAL and INTEGER type values can be compared.

Chapter 4, section 4.3 contains information on operator precedence.

The LOGICAL operators used to combine LOGICAL data terms formed with relational operators
and/or LOGICAL constants and/or LOGICAL variables are listed in the following table:

Table 4-3:

Operator

.and.
.or.

.not.

Example Result
a .and. b .true. IF both a and b are .true.
.false. IF either a or b are .false.
a .orb .true. IF aor bis .true.
.false. IF both a and b are .false.
.not. a .true. IF ais .false.

.false. [F ais .true.

LOGICAL operators can only be used with LOGICAL values as arguments.

Chapter 4, section 4.3 below provides information on operator precedence.

Ezpressions /-3

4.3 OPERATOR PRECEDENCE

Precedence rules determine the order in which the operations will be evaluated in ex-
pressions. There are three types of precedence rules:

1) Precedence Rules for Arithmetic Expressions 43.1
2) Precedence Rules for Logical Expressions 432
3) Parentheses to Force Precedence Rules 433

4.3.1 PRECEDENCE RULES FOR ARITHMETIC EXPRESSIONS

The following table lists the precedence order for all operators which can appear in an
arithmetic expression:

Table 4-4:
Operator Precedence level
*k first
*, / second
+ and - third
° Operators are evaluated in order of precedence listed above.
. In the case of two operators which have equal precedence, evaluation takes
place from left to right.
. In the case of the operator, “*x,” evaluation takes place from right to left.
For example:
a **x b ** ¢
is evaluated as
a *xx (b **x c).
) Two operators cannot be placed in succession. E.g. a * -b is illegal while
a* (- b)islegal
) See Chapter 4, section 4.3.3 discusses the use of parentheses to force prece-

dence.

4.3.2 PRECEDENCE RULES FOR LOGICAL EXPRESSIONS

The following table lists the precedence assigned for all operators that can appear in a
LOGICAL expression:

Ezpressions {-4

Table 4-5:

Operator Precedence
Relational Operators first
.not. second
.and. third
.or. fourth
. Arithmetic expressions, being compared with relational operators, are evalu-

ated using arithmetic precedence rules before relational operator precedence
rules are applied.

° Some LOGICAL expressions are evaluated before all subexpressions are evalu-
ated. For example, if a is .false., thena .and. (¢ / b .1t. 12) can
be determined by testing a, without evaluating (¢ / b .1t. 12). This
is useful for avoiding division by zero and other problems.

. Two LOGICAL operators cannot appear consecutively, unless the second op-
erator is .not.

4.3.3 UsSING PARENTHESES TO FORCE PRECEDENCE

Parentheses can appear in arithemetic, relational and LOGICAL expressions to alter the
normal sequence of evaluation.

° Whatever appears in parentheses is given higher precedence, and evaluated
prior to any other operators. Consider these examples:

2 ¥ 3 ¥x 2 = 2 *x 9 = 512 versus (2 %% 3) *x 2 = 8 xx 2 = 64
4 +4/2 =4 +2 =6 versus (4 + 4)/2 =8/2 =4
If a = false., b = ¢ = .true.
a .and. b .or ¢ = .true. versus a .and. (b .or. <c¢) = .false.
: o The use of parentheses is mandatory when negative or positive operators are

used in arithmetic expressions. E.g. a + -bisillegal whilea + (-b) is legal.

Ezpressions /-5

Chapter S)

Declaration Section

The declaration section appears immediately after the main program or subroutine
header (See Chapter 2, section 2.1.5), and has two functions:

1)
2)

Allows the explicit declaration of variables’ types.
Allows subroutines to be declared

The declaration section is optional; it need not appecar.

The declaration section (when it appears) has the following syntax:

DECLARE

(Variable or Subroutine Decls)

END DECLARE

where:

(Variable or Subroutine Decls) consists of:

nothing, it is optional
a variable type declaration (See Chapter 5, section 5.1).
a subroutine declaration (See Chapter 5, section 5.2).

a series of variable type and/or subroutine declarations separated by carriage
returns.

The (Variable or Subroutine Decls) end when the words END DECLARE are
reached.

FORTRAN blocks containing ONLY FORTRAN type declarations can also appear
inside a declaration statement (See Chapter 6, section 6.8). It is the user’s re-
sponsibility to place ONLY FORTRAN type declarations within FORTRAN blocks
in the declaration section. The SOL compiler DOES NOT catch the error
of using other FORTRAN statements in a declaration section FORTRAN block .

The following restrictions apply to the declaration statement, when it appears:

1)
2)

3)

The word DECLARE must appear alone on a line.

Only blank lines and comment lines can separate the declaration section from
the program header.

The words, END DECLARE, must appear together. alone on a single line.

Declaration Section 5-1

Examples of the possible formats for the start of a SOL program follow:

i PROGRAM just_an_example
DECLARE
END DECLARE

! empty declaration section
1. PROGRAM just_an_example
! no declaration section
1. PROGRAM just_an_example
DECLARE
REAL a

LOGICAL s, t, e, £
END DECLARE

! declaration section with type declarations

This chapter is divided into three sections:

5.1 Discusses Variable type declarations.
5.2 Discusses Subroutine declarations.
3.3 Discusses the declaration section in subroutines, and how it differs from the

declaration section in the main program. More information on a subroutine’s
declaration section can be found in Chapter 9.

5.1 VARIABLE TYPE DECLARATIONS

A variable type declaration associates a variable with a type. This is not to be confused
with variable initialization, which associates a variable with a value for the first time.

° See Chapter 2, section 2.1.2 for more information on variable initialization.

. Variable type declarations can ONLY appear in the declaration sections of
the main program and/or subroutines.

) Variables are always local to the routine (i.e. the main program or subroutine)
in which they are declared.

. See Chapter 5, section 5.3 for details on subroutine declarations.
A variable declaration has the following syntax:

(type) (variable list)

where:

(type) is one of the following:
1) INTEGER
2) LOGICAL
3) REAL

Declaration Section 5-2

(variable list) is one of the following:

1) a variable
2) a series of variables separated by commas.

° If you do not explicitly give a variable a type with a variable declaration, it
is assumed to be of type REAL. Chapter 3 discusses types in detail.

° The order of the declaration is unimportant; you can make variable declara-
tions in any order you wish.

The following restrictions apply to how variables can be declared:

1) The list of variables that follows the (type) cannot run over onto the next
line, unless the next line is explicitly defined as a continuation line with an
& symbol. (Remember, the & symbol must appear in the first column, See
Chapter 2, section 2.4 for details). Some examples follow:

Legal Illegal
LOGICAL a, indexer, LOGICAL a, indexer,
& found, b found, b
2) No more than one declaration can appear per line. For example:
Legal Ilegal
LOGICAL Im LOGICAL I_m REAL illegal
REAL legal
3) A variable cannot be declared to be more than one type. So, for example:
Legal Illegal
LOGICAL a_namee LOGICAL same_name
INTEGER different_name INTEGER same_name
4) You must put one or more blanks after the type name to distinguish it from

the variable. For example:
LOGICALa_variable

is illegal.

5.2 SUBROUTINE DECLARATIONS

Subroutine declarations appear in the declaration section of the main program; the
subroutine’s name and its parameters are declared.

° A subroutine must be declared before it is called.

Declaration Section 5-3

o Subroutine declarations can only appcar in the declaration section of the
main program.

) A subroutine declaration differs from a subroutine implementation.

° A subroutine declaration is a template describing the dependent and in-
dependent parameters, and the subroutine’s name, although a subroutine
implementation describes the specific action a subroutine will perform. A
subroutine declaration provides no information about the specific action a
subroutine will perform.

) Chapter 9 discusses subroutines in detail.
A subroutine declaration has the following syntax:

SUBROUTINE ((dep params)) = (sub name) ((indep params))

where:

(dep params) is the dependent parameter list. A parameter list is one of the fol-

lowing:

1) nothing, an empty list is possible
2) a single SOL identifier. (Assumed to be type REAL)
3) an identifier/type pair which consists of:

(identifier) : (type)
where: (tvpe) is REAL, INTEGER or LOGICAL.

4) A series of 2) and/or 3), separated by commas
For example, the following are legal parameter lists:

a, b, c,d: REAL, e : LOGICAL, f
a
a_var_param : INTEGER

|
i (sub name) is a SOL identifier representing the subroutine’s name.
|

(indep params) is the independent parameter list, and has a syntax identical to the
(dep params) stated previously.

The following restrictions apply to subroutine declarations:

1) The entire subroutine declaration must appear on a single line. If it will not
fit. the continuation symbol, &. must be used. See Chapter 2, section 2.4
which provides more information on the continuation symbol. For example:

Legal Illegal
SUBROUTINE SUBROUTINE
& (spread, out) = the_sub () (spread, out) = the_sub ()

Declaration Section 5-4

2) Any subroutine called by the main program, or another subroutine, must be
declared in the declaration section of the MAIN program.

3) Subroutine names must be unique or an error results. You cannot declare
two subroutines with the same name.

4) Variables or parameters CANNOT have the same name as a subroutine.

5) Two parameters, in the same subroutine declaration, CANNOT have the
same name.

6) Dependent parameters are given to the left of the equal sign and are altered

by the subroutine.

7) Independent parameters appear to the right of the subroutine name, and are
NOT altered by the subroutine.

EXAMPLES:

In the following example, each subroutine declaration is scparated by a blank SOL com-
ment, and the declaration section of a SOL main program is also shown:

DECLARE
SUBROUTINE (dep, another : LOGICAL) = subrout
& (an_indep , another_indep)

SUBROUTIKE () = a_sub (single :INTEGER)
SuBroutine (dep : LOGICAL, another :REAL) = the_sub ()

subroutine () = simple ()
END DECLARE

1) The first declaration declares the subroutine subrout with four parameters.
The second dependent parameter, another, is explicitly declared to be of
tvpe LOGICAL whereas the remaining dependent parameter, dep and the in-
dependent parameters are implicitly assumed to be of type REAL since no
type declaration appears.

2) The second declaration declares the subrontine a_sub with a single indepen-
dent parameter of type INTEGER.

3) The third declaration declares the subroutine the_sub with two dependent
parameters and no independent parameters.

4) The final declaration declares the subroutine simple with no parameters.

o Chapter 9 provides detailed information on subroutines, and their declara-
tion.

Declaralion Section 5-5

5.3 THE DECLARATION SECTION IN SUBROUTINES

A declaration section in a subroutine is identical to the main program declaration section
with one cxception:

° No subroutines can be declared in the declaration section of a subroutine.

Otherwise main program and subroutine declaration sections are identical. The syntax
and action described in section 5.1 of this chapter apply equally to both the main program
and subroutine declaration sections.

. Chapter 9 discusses subroutines in detail.

Declaration Section 5-6

e ———————— ere—e gt I —

CH;pt_eT 6

Statements

Following an overview of SOL statements, the chapter is divided into the following sec-
tions:

6.1 - Discusses the assignment statement

6.2 - Discusses the PRINT statements

6.3 - Discusses the conditional statement, IF/THEN/ELSE
6.4 - Discusses the repetitive statements

6.5 - Discusses the ASSEMBLAGE and COMPONENT statements
6.6 - Discusses the OPTIMIZE statement

6.7 - Discusses the subroutine call statement

6.8 — Discusses the use of FORTRAN blocks

OVERVIEW

SOL statements control the actions performed by a SOL program. The following restric-
tions apply to how SOL statements can be placed in a SOL program:

1) SOL statements can only appear three places in a SOL program:
° In the SOL statement section of the main program.
o In the SOL statement scction of a subroutine implementation.
) Inside another SOL statement, (multi-line statement).

2) Blank lines are allowed on the lines before and after all statements.

3) Comments are allowed on the lines before and after all statements.

4) Comments are allowed on the same line as a SOL statement, after the state-

ment.
5) Two statements CANNOT appear on the same line.

Several SOL statements are multi-line statements; so a single statement can be many
lines long. Regardless of the number of lines a statement occupies, a statement must start
alone on a line, and must end alone on a line. The following are multi-line statements:

1) The OPTIMIZE statement
2) The COMPONENT and ASSEMBLAGE statements

Statements 61

! 3) The conditional IF/THEN/ELSE statement
4) The repetitive DO statements
° If a statement is not a multi-line statement, and it won’t fit on a single line,

then the continuation symbol, &, must be used. See chapter 2, section 2.4
which describes the continuation symbol in detail.

. The general structure of a SOL program is detailed in Chapter 2, section
2.1.5.

6.1 THE ASSIGNMENT STATEMENT

Assignment statements give variables a value. Variables can be initialized by assignment
statements. The assignment statement has the following syntax:

i (id) = (expr)

where:

|

} (id) is a SOL identifier. (Extended identifiers used for ASSEMBLAGEs or
| COMPONENTs CANNOT be used: See Chapter 7, section 7.1.2 for de-
| tails).

E (expr) is a SOL expression.

The expression on the right side of the assignment statement’s equal sign is evaluated
and the resulting value is assigned to the variable.

The following restrictions apply to assignment statements:

1) Assignment statements must appear alone on a line. If an assignment state-
ment will not fit on a line, the continuation symbol must be used. (Further
details appear in Chapter 2, section 2.4). For example:

Legal Hlegal
avar = (43 + a.var = (43 +
& r % 2) r ** 2)

There are two types of assignment statements in SOL:

1) Arithmetic Assignment Statements 6.1.1

2) Logical Assignment Statements 6.1.2

6.1.1 ARITHMETIC ASSIGNMENTS

The arithmetic assignment assigns to the variable on the left of the equal sign, the value
of the arithmetic expression on the right of the equal sign.

Statements 6-2

The arithmetic assignment statement has the following syntax:

(a_variable) = (arith_expression)
where:
(avariable) is a REAL or INTEGER variable

(arith_expression) is an arithmetic expression. Chapter 4, section 4.1 details arith-
metic expressions.

The following restrictions apply to arithmetic assignment statements:

1) The equal sign does not mean “is equal to,” as in common mathematical
usage. It means, “is replaced by.” Tor example:

a=a+1

This statement means, “replace the current value of the variable
named ‘a,’” with the sum of a’s current value and one.”

2) All variables which appear on the right-hand side of an assignment statement
MUST be initialized before their appearance.

3) The expression on the right-hand side must evaluate to a REAL or INTEGER
value,

4) Variables on the left side of an assignment statement cannot be signed. (e.g.

[

-a =a* 3 is illegal because “-a” cannot appear on the left-hand side of an

assignment statement.

Type checking of arithmetic assignment statements is relaxed. In some cases, if the value
of the evaluated expression is of a different type from the variable, the result is converted
into a value of the variable’s type.

The following table details how types are converted:

Table 6-1:
Var Tvpe Expression Type Expression converted to
INTEGER INTEGER INTEGER
INTEGER REAL INTEGER, REAL is truncated
INTEGER LOGICAL error —- illegal assignment
REAL INTEGER REAL, INTEGER converted
REAL REAL REAL
REAL LOGICAL error - illegal assignment

Chapter 3, especially sections 3.1 - 3.3. offers some detail on the concept of TYPE.

0.1.2 LOGICAL ASSIGNMENTS

The logical assignment statement assigns to the variable on the left of the equal sign,
the value of the logical expression to the right of the equal sign.

Statements 6-3

The logical assignment statement has the following syntax:

(avar) = (logic_expr)

where:
(a_var) is a LOGICAL variable
(logic_expr) is a logical expression. Chapter 4, section 1.2 details logical expres-

sions.
The following restrictions apply to logical assignment statements:

1) The equal sign does not mean “is equal to,” as in common mathematical
usage. It means, “is replaced by.” For example:

a= .not. r

This statement means, “replace the current value of the LOGICAL
variable named a, with the negation of the LOGICAL variable r.”

2) All variables which appear in the right side of an assignment MUST be
initialized before their appearance.

3) The expression on the right-hand side must evaluate to a LOGICAL value.

Type checking of logical assignment statements is strict: a LOGICAL variable can only be
assigned a LOGICAL value. The following table details the results of such assignments:

Table 6-2:

Var Type Expression Type Expression converted to
LOGICAL INTEGER error — illegal assignment
LOGICAL REAL error — illegal assignment
LOGICAL LOGICAL LOGICAL, value of expression.

Chapter 3, espccially sections 3.1 - 3.3, offers some detail on the concept of TYPE.

6.2 THE PRINT STATEMENTS

SOL print statements are used to write values and messages {from your executing SOL
program to an external logical unit, which by default is your terminal.

. The external unit is not user defined.

o SOL. uses external logical unit 6 (SYSSOUTPUT on VAX/VMS systems).

) For interactive SOL programs external logical unit 6 will be your terminal
by default.

) For batch jobs, this external logical unit 6 defaults to be the batch log file.

Statements 6-4

SOL provides two kinds of print statements:

1) the PRINT statement
2) the SUMMARIZE print statement (ADVANCED MATERIAL). The SUMMARIZE
print statement is discussed in Chapter 7, section 7.1.1.3.

° The PRINT statement is general-purpose, compared to the SUMMARIZE print
statement which is used to print the summarization variables of ASSEMBLAGES
or COMPONENTs.

° See Chapter 7 for more detailed information on ASSEMBLAGEs or COMPONENTS.
This section is divided into two sections:

6.2.1 - Discusses the PRINT statement.
6.2.2 - Discusses the format part of PRINT and SUMMARIZE print statements.

6.2.1 PRINT STATEMENT

SOL’s PRINT statement provides a means of writing values or messages from an executing
SOL program to an external logical unit.

PRINT statements have the following syntax:
PRINT (print.list)

where:

(print_list) is the list of items to be printed, consisting of one of the following:

1) a variable

Example: PRINT a_variable

2) a string

Example: PRINT ’This is a string’

o astring CANNOT be longer than 61 characters.

3) an optional sign(+ or -), followed by a number

Examples: PRINT 23 or PRINT -143.2

4) a variable, followed by a colon, :, followed by the desired print
format.

Example: PRINT a_variable : (format)

3) an optional sign-number pair, followed by a colon, :, followed
by a format.

Example: PRINT -23.4: (format)

6) a mixed series of the five choices above, separated by commas.

Examples:
i) PRINT a.var, -2.3 : (format)
ii) PRINT ’try Again’, a_var : (format)

Statements 6-5

7) nothing
Example: PRINT
o This has the effect of writing a blank line.

In the examples above, the word, (format) , appears where an actual format would

The following restrictions apply to PRINT statements:

1) Variables used in PRINT statements must be initialized before use.
2) No comma appears after the last item in a print list.
3) The format MUST be compatible with the variable or number printed. See
section 6.2.2 of this chapter for details.
1) Print lists must appear on the same line as the word, PRINT.
) If the print list is too long to fit on the line, use the continuation

symbol, &, to continue the list on the next line. See Chapter 2,
section 2.4 for details on the continuation symbol.

o A string cannot be “split” over two lines with a continuation
symbol, rather the entire string must be moved to the next line.

3) Print lists CANNOT be longer than 20 items in length.

6.2.2 FORMATS FOR PRINT AND SUMMARIZE PRINT STATEMENTS

The PRINT and SUMMARIZE print statements use formats identically. The format part of
either print statement specifies the way in which output data will be displayed.
There are four formats available in SOL

IS compatible with values of type REAL 6221

F compatible with values of type REAL 6222

I compatible with values of type INTEGER 6223

L compatible with values of type INTEGER or LOGICAL 6.2.24

o The format must be compatible with the variable or number being printed,
the compatibility rules are given above, or an error will result.

. Since summarization variables are of type REAL by default (Chapter 7, section
7.1.1.1), only the E and F formats are legal for use with the SUMMARIZE print
statement.

The E format is compatible with values of type REAL.

Statements 6-6

The E format has the following syntax:

E (width).

where:
(width)
(digits)

(digits)

is a positive integer representing the size of the print field.

is a positive integer, representing the significant digits for rounding.

Note: No spaces can appear between the (width) , decimal point and (digits) .

EXAMPLES:

E12.3, E 12.3, E 3.2, E12.12, and e12.7.

The E format transfers the value to be printed, rounded to (digits) decimal digits and
right-justified, to an external field that is (width) characters wide. The value is displayed
with scientific notation.

The following restrictions apply:

1)
2)

3)
4)

5)

6)

If the value does not fill the field, leading blank spaces are inserted.

If the value is too large for the field, the entire field is filled with asterisks,
and a runtime error message appears.

The term, (width) , should be at least (digits) + 7.

The term, (digits) , must be greater than zero. A runtime error results if
the term (digits) equals zero.

The term, (width) , must be greater than zero, or a compile time error
results. '

Both of the terms, (width) and (digits) , must appear and must be
separated by a decimal point. If a single term appears, or the decimal point
is excluded, a compile-time error will result

Statements 6-7

Examples of the E format in action are given in the following table:

Table 6-3: E Format Output Example
¢ in what follows, , means a blank space.

Format Internal value Value printed
E9.2 475867 .222 u 0.48E+06
E12.5 475867 .222 u 0.47587E+06
E12.3 0.00069 u uu 0.690E-03
E10.3 -0.5555 -0.556E+00
E5.3 56.12 Hokokokok
E12.0 456.777 runtime error (1)
E9 73.34 compile time error (2
E.4 +1999.334 compile time error (3
E12.5 6 compile time error (4)
E0.2 1.23456 compile time error (5)
1) The first runtime error occurs because the term, (digits) , equals zero.
2) Using E9 is illegal because no term { digits } , is given.
‘ 3) Using E.4 is illegal because no term (width) | is given.
| 4) Using E12.5 is illegal because an E format cannot be used with INTEGERs.
5) Using E0.2 is illegal because the term { width) , equals zero.
6.2.2.2 The F Format

The F format is compatible with values of type REAL. It has the following syntax:
| F (width) . (digits)

where:
(width) is a positive integer representing the size of the print field.
(digits) is a positive integer, representing the significant digits for rounding.

Note: No spaces can appear between the (width) . decimal point and (digits) .

EXAMPLES:

F12.3, F 12.3, F 3.2, F12.11, and £12.7.

The F format transfers the value to be printed, with the fractional part rounded to
| { digits) decimal digits and right-justified, to an external field that is (width) characters
wide. The value is displaved with ordinary decimal notation.
The following restricrions apply:

“ 1) If the valie does not fill the field, leading blank spaces are inserted.

Statements 6-8

2) If the value is too large for the field, the entire field is filled with asterisks,
and a runtime error message appears.

3) The term, (width) , should be at least (digits } + 4.

4) Both of the terms, (width) and (digits) , must appear and must be
separated by a decimal point. If a single term appears, or the decimal point
is excluded, an error will result.

Examples of the F format in action are given in the following table:

Table 6-4: F Format Output Example
e in what follows, ., means a blank space.

Format Internal value Value printed
F8.5 123456789 compile time error (1)
F8.5 -1234.567 HAAAAK
F9.3 8789.7361 u 3789.736
F2.1 51.44 R
F10.4 -23.24352 U u —23.2435
F11 93.45678 compile time error (2)
F.12 123,23178 compile time error (3)
F1.10 1234 .34 *
F0.2 12.345987 compile time error (4)
F6.0 1234 .567 u 1235. (rounded up)
1) The first compile time error for F8.5 occurs because the ' format is not
compatible with integer values, like 123456789.
2) The use of F11 is illegal because no term (digits) appears.
3) The use of F.12 is illegal because no term (width } appears.
4) The use of F0.2 is illegal because (width) must be greater than zero.

The I format is compatible with values of type INTEGER. It has the following syntax:
I (width)

where:

(width) is a positive integer representing the size of the print field

EXAMPLES:

112, 19, I 3, I11, i 6, i, and I.

Statements 6-9

The I format transfers the value to be printed, right-justified, to an external field that is
(width) characters wide. When (width) is left blank, a default value of twelve is used.
The value is displayed with ordinary decimal notation.

The following restrictions apply:

1)

‘ 5)

INTEGER values cannot be larger than 2147483647. Attempting to display
such a value will give a runtime error.

If the value does not fill the field, leading blank spaces are inserted.

If the value is too large for the field, the entire field is filled with asterisks,
and a runtime error message appears.

The term, (width } , must be large enough to include a minus sign when
necessary. (negative numbers will have minus sign as the leftmost nonblank
character)

The term, (width) , cannot be zero.

Examples of the I format in action are given in the following table:

Table 6-5: 1 Format Output Example
¢ in what follows, |, means a blank space

Format Internal value Value printed
I3 284 284
I4 -284 -284

‘ I5 174 uu 174

| I 123456 Luu LU 123456

1 I2 3244 o

‘ I3 -473 ok
17 29.876 compile time error (1)
I 123456789012 compile time error (2)
I0 385 compile time error (3)

3)

The use of I7 is an error because the I format is not compatible with a REAL
value, like 29.876.

The use of I is not illegal, but the number 123456789012 is too large to be
a legal integer, so a compile time error results. If the value is not known at
compile-time, as with a variable, a runtime error would result instead.

The use of 10 is an error because the term (width) |, equals zero.

The L format is compatible with values of type INTEGER or type LOGICAL.

Statements 6-10

The L format has the following syntax:
L (width)

where:

(width) is a positive integer representing the size of the print field

EXAMPLES:

L12, L 9, L 3, L11, 1 6, 1, and L.

For LOGICAL values, the L format transfers either a T (if the value is.true.) or a F (if
the value is .false.) to an external field that is { width) characters long. When (width)
is left blank, a default value of two is used. The T or F is in the rightmost position of the

field, preceded by (width) -1 spaces.

For INTEGER values, the L format transfers either a T (if the value equals one) or a F
(if the value does not equal one). If (width) is left blank, a default value of two is used.
Otherwise, the T or F is in the rightmost position of the field, preceded by (width) -1

spaces.
The following restrictions apply:

1) If the value does not fill the field. leading blank spaces are inserted.
2) The term, (width) , cannot be zero.
Examples of the L format in action are given in the following table:

Table 6-6: L Format Output Example
¢ in what follows, , means a blank space

Format Internal value Value printed
L .true. u T
L1 .true. T
L4 false. UuukF
L 28 u F
L1 1 T
Lo .false. compile time error
L2 1.0 compile time error
) The use of the L0 format is illegal because { width) equals zero.

ST
~—

The use of the L2 format is illegal because the L format cannot be used with
REAL values, like 1.0.

Statements 611

6.3

THE CONDITIONAL STATEMENT

SOL provides a single (multi-line) statement for conditional branching: the IF statement.
The IF statement consists of two parts:

1) a required THEN part
2) an optional ELSE part
° The IF statement evaluates a logical expression and performs a specified

action, the THEN part, if the expression evaluates {o .true.

. The ELSE part is optional. When present, it only executes if the logical
expression evaluates to .false.

The IF statement has the following syntax:

IF (logic_expr) THEN
(SOL_statements)

(optional ELSE)

END IF

where:
(logic.expr) is a logical expression. See Chapter 4, section 4.2.

(SOL _statements) is a series of one or more SOL statements.

{ Optional ELSE) is one of the following:
1) Nothing — the ELSE part is optional.
2) An ELSE part, with the following syntax:

ELSE
(SOL_statements)

where :

{ SOLstatements) is a series of zcro or more SOL state-
ments.

So, an IF statement will have one of the following formats:
IF (logic.expr) THEN

(SOL_statements)
END IF

IF (logic_expr) THEN
{ SOL_statements)

ELSE
(SOL_statements)
END IF
° Additionally, you can use ENDIF, with no space, as a replacement for END IF

Statements 6-12

The following restrictions apply to IF statements:

1) The word IF, the (logic expr) , and the word THEN MUST appear alone

on a single line. If they will not fit on a single line, then the continuation
symbol, &, MUST be used. Further details are in Chapter 2, section 2.4,
Legal Hegal

IF .not. IF .not.

& a THEN a THEN

PRINT ’I am ok’ PRINT ’I am not ok’

ENDIF ENDIF

2) The word ELSE, when it appears, MUST be alone on a single line.

Legal Hlegal

IF a .gt. 10 THEN IF a .gt. 10 THEN

PRINT ’This is ok’ PRINT ’The then part is ok’

ELSE ELSE print ’But the else part is illegal’
PRINT ’0Ok too’ ENDIF

ENDIF

3) The ENDIF

or END IF MUST appear alone on a line.

4) IF statements can be nested. The word ENDIF will match the nearest pre-
ceding IF. For example:

01
02
03
04
05
06
07
08

®

[}

[]

[)

IF a .1t. 20 THEN
IF a .gt. 5 THEN
PRINT ’greater than §’
ELSE
IF a .eq. 5 THEN
PRINT ’equals 5'’
ENDIF
ENDIF

The ENDIF on line 7 matches the IF on line 5.
The ENDIF on line S matches the IF on line 2.

An crror results because there is no ENDIF for the IF statement
on line 1.

Disregard indentation when matching ENDIFs.

5) The IF/THEN/ELSE statement is a block in SOL, and must abide by special

scope rules

outlined in section 6.3.1 of this chapter.

6) ASSEMBLAGE or COMPONENT statements CANNOT appear inside an IF state-

ment.

Stalements 6-13

EXAMPLES:

Example 1:

IF crazy THEN

print ’Yep, you are crazy’
ELSE

print ’Nope, you OK’
ERD IF

This example prints a different line of text, depending on the value of the logical variable,
crazy.

Example 2:

IF (a .gt. b) .AND.
& (b .gt. c) THERE
PRINT ’a is greater than c '’
desirability = 50
ELSE
IF (a.1t. b) .AND.
4 (b .1t. c) THEN
PRINT ’a is less than ¢ ’
desirability = 0
ELSE
PRINT ’What do I know?’
desirability = 100
ENDIF
END IF

This example prints a different line of text, and sets the value of a variable, desirabil-
ity, depending on the values of two relational expressions. It also illustrates the use of the
& continuation symbol to continue a long expression (See Chapter 2, section 2.4).

6.3.1 ScoPE RULES FOR IF STATEMENTS

The IF statement is a block in SOL, which aflects how variables are initialized within
an IF statement:

° The chief characteristic of a block is that variables can be initialized within
the block and remain uninitialized outside the block. Variables with this
property are called local variables.

o It is possible to initialize local variables in the THEN part, and/or the ELSE
part of an IF statement.

) Variable initializations are considered local to an IF statement if and only if
both of the following are true:

1. The variable is uninitialized at the start of the IF statement.

Statements 6-14

ii. The variable is initialized in either the THEN part of the IF state-
ment, or the ELSE part, but NOT BOTH. A variable which is
initialized in both the THEN and the ELSE part of an IF state-
ment is NOT considered local to the IF statement.

. When the IF statement ends, indicated by the words ENDIF or END IF, local
variables initialized within the IF statement become uninitialized.

. In Chapter 2, section 2.1.2 the concepts of scope, block, and variable initial-
ization are discussed.

° Chapter 11 discusses scope rules in depth.

These scope rules follow from SOL’s stringent error checking. One cannot be certain
that the statements in the THEN or the ELSE portion of an IF statement will be executed.
Statements in the THEN part are executed only when the condition is true, and statements
in the ELSE part are executed only when the condition is false. Therefore, it is uncertain
whether a variable initialization which only appears in either the THEN or ELSE portion of an
IF statement, will occur. SOL will not allow a variable to be used unless its initialization is
certain. Hence, the scope rules require that only a local variable be initialized when it is not
certain that the initialization will actually take place.

EXAMPLES:

In these examples, assume all variables are uninitialized before the code in the example
begins.
Example 1:
a = 65
IF a .gt. 30 THEN
a=17
ENDIF

Is variable, “a,” local to the IF statement?

NO. The variable was initialized prior to the start of the IF statement. After the IF
statement, “a” will have the value 7.

Example 2:
IF .true. THEN
a==6
b =4
ELSE
b=29
ENDIF

Is variable, “a,” local to the IF statement?

YES. It is uninitialized at the start of the IF, and “a” is initialized in the THEN part
only. After the IF statement ends, “a” will be uninitialized, and cannot be printed, used in
arithmetic expressions and so on.

Is variable, “b,” local to the IF statement?

NO. It is initialized in both the THEN and the ELSE part of the IF statement. The variable
“b” will have the value 4 after the IF statement has ended (because .true. is always true).

Statements 6-15

Example 3:

¢ =20

IF ¢ .gt. 2 THEN
8

]
1]

ENDIF

IF a .1t. 12 THEN
a =10
ENDIF

Is variable, ”a.” local to the second IF statement?

NO. Because the variable “a” was initialized in both the THEN and ELSE part of the
first IF, “a” is not local to the first IF. Thus, “a” has been initialized BEFORE the start
of the second IF statement, and CANNOT be local to the second IF. When the second IF
statement ends, “a” will have the value 10.

Example 4:

IF .true. THEN
c = 20

IF ¢ .ge. 15 THER

a=17

ENDIF

ELSE
a=286

ENDIF

Is the variable, “a,” local to the encompassing IF statement?

YES. “a” is only initialized in the ELSE part of the encompassing IF statement, so it is
a local variable. In the THEN part of the encompassing IF statement, another IF statement
appears. This IF statement initializes a local variable, “a.” This local “a” becomes unini-
tialized when the inner IF statement ends, so “a” is never initialized in the THEN part of the
encompassing IF.
Example 5:

c=5
IF ¢ .1t. 12 THEN
IF ¢ .gt. 10 THEN
a=17
ELSE
a=4
ENDIF
ELSE
a=6
ENDIF

Is the variable, “a,” local to the encompassing IF?

Statements 6-16

NO. “a” is initialized in both the THEN and ELSE parts of the encompassing IF, so “a”
is not local. This example is similar to 4), except that the inner IF statement, inside the
encompassing IF statement’s THEN, initializes “a,” in both the THEN and ELSE part, so that
the variable “a” is initialized in the THEN part of the encompassing IF statement.

° The rules are simple, but when IF statements are nested within themselves
and other statements, applying the rules may become a little complicated.

° These rules exist to prevent key variables from accidently being left unini-
tialized.

. A variable that is uninitialized before an IF statement, can ONLY be initial-

ized when the variable is initialized in both the THEN and in the ELSE part
of the IF statement.

. The rules insure that if a variable initialization is dependent on a condition,
only a local variable is initialized.

6.4 REPETITIVE STATEMENTS

SOL’s repetitive control statements are called DO loops. DO loops specify the repetitive
execution of one or more SOL statements. SOL provides two types of repetitive control

statements:
1) an iterative repetitive statement 64.1
2) a conditional repetitive statement 642

6.4.1 THE ITERATIVE DO Loor

The iterative DO loop specifies the repetitive exccution of a statement or statements,
based on the value of an automatically incremented control variable.
The iterative DO loop has the following syntax:

DO (var) = (initial.exp), (final_exp)
(loop_body)

END DO

where :

(var) is a legal SOL identifier. This is called the loop control variable,
because it controls the iteration of the loop.

(initial_exp) is an arithmetic expression. See Chapter 4. section 4.1 for more
information on arithmetic expressions.

(final.exp) is an arithmetic expression. See Chapter 4, section 4.1 for more
information on arithmetic expressions.

(loop-body) is one or more SOL statements.

Additionally, the single word, ENDDO, can be used instead of the words, END DO.

Statements 6-17

Generally, an iterative loop works as follows:

EXAMPLES:

The value of (initial_exp) is calculated.
The control variable is assigned the value of (initial_exp) .
The value of (final_exp) is calculated.

If the value of the control variable is less than or equal to the value of
(final_exp) then SOL statements in (loop_body) are executed; the control
variable is incremented by 1; and this step is repeated until the control
variable is greater than the value of (final.exp) . The loop ends, skipping
step 5), and program execution continues with the statements that follow
the ENDDO.

If the INITIAL value of the control variable is greater than the value of
(final_exp } , the loop executes once and a runtime warning mes-
sage appears. The control variable is incremented, and then the loop ends.
Program execution continues with the statements which follow the ENDDO.

Because of rule 5, an iterative DO loop will always execute at least once.

Example 1:

DO control =1 , 5
PRINT ’Here I go again’

ENDDO

PRINT control : F4.2

will produce the following output at the terminal:

Here I go
Here I go
Here I go
Here I go
Here I go

6.00

again
again
again
again
again

The following restrictions apply to iterative DO loops:

1)

2)

The value of the control variable CANNOT be altered inside the loop. This
restriction insures that the control variable is incremented with every itera-
tion. If you attempt to do so, a compile-time error will result.

All variables which appear in the initial and final arithmetic expressions must
be initialized prior to their use.

The control variable must be of type REAL or INTEGER.

Statements 6-18

4)

The values of both arithmetic expressions will be treated as being of the same
type as the control variable. Thus, if our control variable is of type INTEGER,
the following loop:

DO control = 1.2, 10.9
PRINT ’Convert me’
ENDDO

will be treated as if you typed the {ollowing:

DD control =1, 10
PRINT ’Convert me’
ENDDO

REAL values are truncated, not rounded, when converting from REAL to IN-

TEGER.

The start of the loop, consisting of “D0 (var) = (initial.exp), (final.exp)
;7 must appear alone on a line. If it is too long to fit alone on a line,
the continuation symbol, &, must be used. (Chapter 2, section 2.4 offers a

detailed discussion of the continuation symbol)

The end of the do loop consisting of ENDDO or END DO, must appear alone on
a line.

A COMPONENT or ASSEMBLAGE statecment CANNO'T appear inside a loop

An inner loop’s control variable cannot have the same name as an outer
loop’s control variable.

Some helpful facts about iterative do loops:

1)

o
p—

The loop will eventually terminate. The initial value is calculated at the
start of the loop, and cannot change. The final value is also calculated at
the start and cannot change. Therefore, there is a finite difference between
the initial and final value. As the control variable is incremented each time
the loop repeats, eventually the control variable will be larger than the final
value, and the loop will terminate.

If the initial value is > the final value, the statements of { loop_body) will
execute only once.

Loops can be nested inside each other. However, loops cannot alter the value
of an enclosing loop’s control variable or an error will result. Also, a loop’s
control variable cannot have the same name as an enclosing loop’s control
vanable.

Statements 6-19

EXAMPLES:

Example 1:
DOn=1, 5
print n : 4.2
ENDDO
print ’the final value: ’,n : £4.2

This loop will produce the following output at the terminal:

1.00
2.00
3.00
4.00
5.00
THE FINAL VALUE: 6.00

Example 2:

‘DOn=1, 3
print n : £4.2
DO another = 4, 6

print ’ ’, another : 4.2

ENDDO

ENDDO

print ’the final value: ’,n : f4.2

This loop will produce the following output at the terminal:

1.00
4.00
5.00
6.00

2.00
4.00
5.00
6.00

3.00
4.00
5.00
6.00

THE FINAL VALUE: 4.00

This example tllustrates the effects of nested loops.

Statements 6-20

Example 3:

Line numbers have been displayed to facilitate discussion:
01 DO a = 12,1
02 print ’here I am’

03 ENDDO
04 print a : £5.2

This loop produces the following output at the terminal:

**xx RUNTIME WARNING FOR LINE NUMBER: 1

DO A =12, 1

INITIAL BOUND IS 12.00

FINAL BOUND IS 1.00

WARNING: INITIAL > FINAL *** LOCOP WILL EXECUTE ONCE
here I am

13.00

A warning message, at runtime, is issued because the initial value is greater than the
final value. The loop executes once.

6.4.2 THE ConDpITIONAL DO Loor

The conditional DO loop executes one or more statements until a specified condition is
true. The conditional DO loop has the following syntax:

DO
(loop_body)
END DO WHEN (logical_exp)

where:
(loop-body) is one or more SOL statements
(logical_exp) is a logical expression (one that evaluates to .true. or .false. See

chapter 4 for details.)
Additionally, the single word, ENDDO, can be used instead of the words, END DO.
In general, the conditional DO loop works as follows:

1) The statements in (loop_body) are executed.

2) The value of (logical_exp) is calculated. H the (logical_exp) evaluates
to .true., the loop is terminated and program execution continues with the
statements after the word, ENDDO.

3) Steps 1) through 2) are repeated until the loop terminates.

Clearly, if (Logical.exp) never evaluates to .true., the DO loop will not terminate,
and an infinite loop will result.

Statements 6-21

For example, consider the following conditional DO loop:

stop = .fal

n=20

DO
n=mn+1
PRINT n :
IF n .eq.

stop =

END IF

ENDDO WHEN

se.

F4.2
5 THER
.true.

stop

This loop will produce the following output at the terminal:

1.00
2.00
3.00
4.00
5.00

The execution of the loop terminates when stop is assigned to be .true., which occurs
when n equals five.
The following restrictions apply to conditional DO loops:

1)

2)

ot
~—

The word, DO, must appear alone on a line, or an error will result.

The end of a loop, “ENDDO WHEN (logical_exp) ,” must appear alone on a
line. If your logical expression is too long to fit on a single line, the line must
be continued with the continuation symbol, &. See Chapter 2, section 2.4
which provides more information on the use of the continuation symbol.

If (logical_exp) consists of a single variable, and that variable is left unini-
tialized or is missing, an error will result. (The SOL compiler will inform
you that the missing variable has been replaced with the symbol, .true.)

Any variables used in the logical expression, (logical_exp) must be initialized
prior to use. (See Chapter 4 which provides more information about logical
expressions)

A COMPONENT or ASSEMBLAGE statement cannot appear inside a DO loop.

6.5 ASSEMBLAGE AxD COMPONENT STATEMENTS

The ASSEMBLAGE statement is a data/modeling structure used for sizing. An ASSEMBLAGE
models a “whole;” but an ASSEMBLAGE is a special kind of “whole,” one which equals the sum
of its parts. The COMPONENT definition statement represents an individual piece of the total
ASSEMBLAGE. For example, an airplane wing can be considered as an ASSEMBLAGE, where

the weight of t
skin, hydraulic

he wing equals the sum of the COMPONENT parts, such as flaps, wing box,
systems, cooling systems, engine mounts and so on. Because ASSEMBLAGEs

and COMPONENTs are a unique feature of SOL, Chapter 7 is devoted entirely to a detailed
discussion of ASSEMBLAGEs and COMPONENTSs.

Statements 6-22

6.6 THE OPTIMIZE STATEMENT

The OPTIMIZE statement provides an interface into a state-of-the-art numerical opti-
mization routine, ADS. Thus, optimization is a high-level statecment in SOL. Chapter 8 is
devoted to a detailed discussion of the OPTIMIZE statement.. Ior further information about
ADS proper, please consult “ADS — A FORTRAN PROGRAM FOR AUTOMATED DE-

SIGN SYNTHESIS — VERSION 1.10”, NASA Contractor Report 177985, Grant NAG1-

567, 1983, by G.N. Vanderplaats.

6.7 THE SUBROUTINE CALL

A subroutine call specifies parameters that will be passed to a routine and executes the
routine. SOL subroutine calls have the following syntax:

((dependent list)) = (routine name) ((independent list })

where:

(dependent list)

(routine name)

(independent list)

is the list of dependent parameters, the variables which will be
initialized or altered by the subroutine. This list consists of one
of the following:

1) an empty list, nothing.

2) a single variable

3) a series of variables, separated by commas.

e no comma can appear after the last item in the list.

More information on the dependent parameter list can be found
in Chapter 9, section 9.2.

is the name of the subroutine. This must be a legal SOL identifier.

is the list of independent parameters, the variables which will
supply data needed as input to the subroutine. An independent
parameter list has the same syntax as the (dependent list)
detailed above. More information on the (independent list)
can be found in Chapter 9, section 9.2.

The following restrictions apply to Subroutine calls:

1) The subroutine call must appear on a single line in your SOL program. If the
call will not fit, then the continuation symbol & must be used. (See Chapter
2, section 2.4 which details the use of the continuation symbol)

2) The subroutine MUST be declared in the main program declaration section
before it is called. (See Chapter 5, section 5.2)
i 3) The subroutine MUST be implemented in the subroutine implementation
section or an error will result.
4) The subroutine name MUST be the same for the declaration, call, and im-
. plementation. Further, the formal and actual parameters MUST match in

both number and type. (See Chapter 9, section 9.2 for dctails).

Statements 6-23

5) Only variables can be passed as parameters, values such as: 6, 8.00, or
.true. may not be passed directly as subroutine parameters.

6) Any variable passed as an independent parameter to a subroutine MUST be
initialized before the subroutine call.

EXAMPLES:

Example 1:
(x, y) = Thoth()

This statement calls the subroutine named, Thoth, and returns the variables x and y as
dependent parameters. There are no independent variables, so the independent parameter
list is empty.

Example 2: (x) = Calorific_Caluminations(x)

This statement calls the subroutine named, Calorific_Caluminations, and passes x as
an independent parameter and returns x as a dependent parameter.

Example 3:
() = Craven_Dastard ()

This statement is a call to subroutine Craven. Dastard, with neither dependent nor
independent parameters.
Chapter 9 gives a detailed discussion of subroutines.

6.8 FORTRAN BLOCKS (ADVANCED MATERIAL)

You can write FORTRAN code inside a SOL program. The FORTRAN code must be delimited;
with /* indicating the beginning of a FORTRAN block, and * indicating the end of a FORTRAN
block. In this way, a SOL program can interface with existing FORTRAN routines.

There are several important restrictions on the use of FORTRAN blocks:

1) FORTRAN blocks can only appear in the statement and declaration sections of
the main program or subroutine implementations.

FORTRAN type declarations should ONLY appear in a FORTRAN block INSTDIS
a SOL DECLARATION section. ONLY FORTRAN type declarations should
appear in FORTRAN blocks inside a SOL declaration section.

[SV]
e

) The SOL compiler does NOT offer error-checking for the
contents of FORTRAN blocks. It is the SOL user’s responsibility to
use FORTRAN blocks inside SOL declaration sections correctly.

3) ONLY FORTRAN statements should appear in FORTRAN blocks inside the state-
ment sections of SOL programs.

Statements 6-24

7)

o SOL does NO error checking on the FORTRAN code that appears
within a FORTRAN block. Thus, if you make a FORTRAN coding
mistake it will not be caught by the SOL compiler, but should
be detected when the FORTRAN output of the SOL compiler is
compiled using the FORTRAN compiler.

FORTRAN blocks cannot appear before the start of the main program header,
or an error will result.

FORTRAN block delimiters, /* and *, MUST begin in colurin one of a SQI,
program or an error will result.

Macro calls SHOULD NOT be used inside a FORTRAN block -— only FORTRAN
code should appear in a FORTRAN block (See Appendix C). However, FORTRAN
blocks can be part of a macro’s replacement text.

FORTRAN blocks CANNOT appear inside an ASSEMBLAGE or COMPONENT state-
ment.

In general, it is best to abide by the following guidelines:

write each FORTRAN block delimiter on a line by itself, and write the FORTRAN
code between the delimiters.

Do not nest FORTRAN blocks inside of other SOL statements, such as DO loops
or IF statements. Keep FORTRAN blocks at the main program or subroutine
level.

FORTRAN blocks should ONLY be used to access variables initialized in the
main program or subroutine implementation BEFORE the FORTRAN block
appears; local variables should not be accessed.

Columns are significant in FORTRAN, so space carefully inside your FORTRAN
blocks. Be sure to indent correctly inside the FORTRAN block.

Statements 6-25

EXAMPLES:

Example 1:

PROGRAM ftn_block
! Notice the delimiters start in column one, and the FORTRAN
! block accesses previously initialized non-local variables only.
! This is the safest way to use FORTRAN blocks. The FORTRAN code
! produced by the compiler will need to be "linked" by the
! programmer to the external subroutine RANDOM, called
! in what follows.
DECLARE

INTEGER seed
END DECLARE
seed =
number = 0

/*

1777

CALL RANDOM(seed, number)
*
print number
end ftn_block

Example 2:

PROGRAM ftn_block
! Notice that the FORTRAN block accesses a unitialized variable, ‘‘number.?’’
! This is not a good way to use FORTRAN BLOCKS. 1In fact,
! because of the way SOL’s variables work, the
! variable ‘‘number’’ is not initialized inside the IF
! statement.
DECLARE
INTEGER seed
END DECLARE

seed = 1777
IF (seed .gt. O) THEN
/*
CALL RANDOM(seed, number)

*
ELSE

number = 0
ENDIF

end ftn_block
FORTRAN blocks should be avoided if possible.

. SOL does NO ERROR CHECKING on FORTRAN code introduced by FORTRAN
blocks.
o FORTRAN blocks SHOULD NOT be used to access local variables, or to ini-

tialize variables.

Thus, FORTRAN blocks are sufficiently dangerous to be off-limits for the novice. Experi-
enced SOL users should utilize FORTRAN blocks only when necessary.

Statements 6-26

ADVANCED MATERIAL: HOW TO INTERFACE WITH A FORTRAN ROUTINE

There are two ways to interface SOL with a FORTRAN routine: use a call to an external
subroutine, or put the body of the FORTRAN block inside a SOL subroutine implementation.
Both of these methods are described in detail in the text that follows.

I. EXTERNAL FORTRAN ROUTINES:

External FORTRAN routines are written and compiled separately, and then “linked” to
the FORTRAN object code produced by the SOL compiler. The external routine is called from
within a SOL program through the use of a FORTRAN call statement in a SOL FORTRAN block.
The two example programs given earlier use this technique to call an external subroutine
named RANDOM. Thus, to use an external subroutine in a SOL program, the following
procedure should be employed:

1) Write the SOL program.

2) Make sure all SOL variables that are to be used or altered by the exter-
nal FORTRAN routine are NON-LOCAL and INITIALIZED BEFORE THE
FORTRAN block. (This is a very IMPORTANT step)

3) Invoke the FORTRAN routine in the SOL program, using a SOL FORTRAN block
that contains a FORTRAN CALL statement.

4) Compile the SOL program, using the SOL compiler.

5) Link the compiled SOL program with the “Linksol” Command Procedure;
the “Linksol” command procedure prompts for the names of any external
FORTRAN subroutines. (See Chapter 1, section 1.2 for details).

M

. The external routines need to be compiled separately (creating an “.obj
files) BEFORE they can be linked with the compiled SOL program.

II. USING THE BODY OF A FORTRAN ROUTINE INSIDE A SOL ROUTINE

This method is a little more complicated than the first technique, but requires less fussing
with the linker, and has the advantage of keeping a SOL program sclf-contained, with all of
the code in a single source file.

As the basis for discussion of this method, the following SOL program accomplishes the
same task as the earlier examples, but does not use an external subroutine call.

Statements 6-27

Example 3:

PROGRAM ftn_block
! Need to declare the subroutine in the declaration section

DECLARE

INTEGER seed

SUBROUTINE (seed_out : INTEGER, number) = Random (seed_in : INTEGER)
END DECLARE

seed = 1777
1 ! calling the routine as a SOL subroutine call
‘ (seed, number) = Random(seed)
PRINT number

END ftn_block

‘ ! The subroutine implementation. It is especially important

| ! to initialize all dependent variables BEFORE accessing them in a FORTRAN block
SUBROUTINE (seed_out : INTEGER, number) = Random (seed_in : INTEGER)

i ! Generate a random number using the linear congruential Method, D. Lehmer (1949)
DECLARE
/*

INTEGER Multiplier, Increment
‘ REAL#*8 Modulus

*
ERD DECLARE
| number =0
‘ seed_out = 0
/*
Modulus = 65536.0
Multiplier = 25173
Increment = 13849
seed_out = MOD((multiplier*seed_in+Increment), INT(Modulus))
number = seed_out/Modulus
*
| END Random

Thus, take the following steps to include the body of a FORTRAN routine as a SOL routine:

1) Declare a SOL subroutine in the declaration section with the same parameters
as required by the FORTRAN routine, use SOL subroutine calls to call the SOL
subroutine, and include it in the subroutine implementation section.

o
~—

Define the types for local FORTRAN variables using a FORTRAN block in a SOL
Declaration section.

3) Initialize all dependent variables AFTER the declaration section, but BE-
FORE a second FORTRAN block (step 5)) containing the body of the FORTRAN
routine. (VERY IMPORTANT)

Statements 6-28

4)

5)
6)

7)
8)

Make sure types will agree with all FORTRAN statements :

. REAL is equivalent to REAL*8
° INTEGER is equivalent to INTEGER.
) LOGICAL is equivalent to LOGICAL.

Use a second FORTRAN block to include the body of a FORTRAN routine as the
statement section of a SOL routine.

Caution: Make sure the FORTRAN block alters any dependent parameters,
unless you want the values defined in 3) above to be returned.

END the SOL subroutine.

Run the SOL compiler and linker as normal, unless FORTRAN code from the
block requires special linking for external subroutines and so forth.

1I1. Using THE SOL CoMPILER OUTPUT AS AN AID TO FORTRAN BLOCKS:

Perhaps the easiest way to see the effects of a FORTRAN block is to examine the FORTRAN
output from the SOL compiler. This is especially helpful to make sure that things appear
in the correct column. However, making changes to the FORTRAN output is STRONGLY
discouraged. It is better to make a change in the SOL source and recompile. In this way,
the more readable SOL source code accurately reflects what occurs when the program runs.

Statements 6-29

|

Chapter 7

Sizing: Assemblages and Components

ASSEMBLAGE and COMPONENT statements facilitate sizing, a type of engineering systems
modeling. In this manual, sizing is defined as the modeling of a system as the simple sum
of its parts with respect to some special summarization variables. For example, an airplane
can be modeled and sized for weight; we model the major parts of the airplane, its systems
and structural components, along with the interaction between the parts. The model is
constructed so that the weight of the entire airplane can be determined by summing the
weight of its parts, the systems and structural weights. Likewise the weight of any part of
the airplane can be determined by summing its parts. In this case, “weight” is considered a
simple summarization variable. SOL aids the modeling of such “assemblages;” by allowing
the user to create such models, and automatically computing the necessary summations.
In addition to simple summarization variables, SOL also offers erpression summarization
variables, discussed subsequently in section 7.1.1.1 of this chapter.

° The ASSEMBLAGE statement models the whole structure, such as the airplane
above.
° The COMPONENT statement models subsystems and structures of an ASSEM-

BLAGE, such as the airplane’s wings, fuselage and landing gear. By nesting
COMPONENTSs inside other COMPONENTs and inside the ASSEMBLAGE, the whole
structure can be modeled and sized.

° Simple summarization variables are automatically summed by SOL to yield
correct totals for parts and subsystems (represented by COMPONENTs), and
the whole structure (represented by the ASSEMBLAGE).

. The simple summarization variables for an ASSEMBLAGE or a COM-
PONENT which does not contain nested COMPONENTs MUST be ex-
plicitly initialized.
° Expression summarization variable values are also computed automatically

by SOL for each COMPONENT or ASSEMBLAGE. but expression summarization
variables are not summed like simple summarization variables.

° Section 7.1.1.1 of this chapter details expression suimnmarization
variables.
. An extended identifier notation allows variables in ASSEMBLAGEs and COMPO-

NENTs to be accessed. The notation distinguishes among various COMPONENTS
so that, for example, the weight of a wing box is distinguished from the
weight of an insulation system.

Sizing: Asser'rzblages and Components 7-1

EXAMPLES:

The following code fragment models an airplane wing as consisting of structural and
clectrical system components. A single summarization variable, w, is declared to size the wing
for weight. The values of the component summarization variables are summed automatically
to yield the total weight of the wing. The last line prints the total weight (179000 + 5000 in
this case) of the ASSEMBLAGE using extended identifier notation (Chapter 7, section 7.1.2).

ASSEMBLAGE Wing (0, ’ ’)
' The Summarization Section appears below
SUMMARIZE
v
END SUMMARIZE

! The Structural Component of the wing
COMPONENT Structure (1, ’ ?)
v = 179000
END Structure

! The Electrical system Component of the wing
COMPONENT Electrical (1, ’ ’)
w = 5000
END Electrical
END Wing
PRINT wQWing

This chapter is divided into the following sections which detail ASSEMBLAGE and COMPO-
NENT usage:

E I

7.1 — Offers an overview of the ASSEMBLAGE and COMPONENT definition statements,
addressing their syntax, simple and expression summarization variables and
extended identifier notation.

7.2 — Scope rules for ASSEMBLAGE and COMPONENT statements.
7.3 — ADVANCED MATERIAL on ASSEMBLAGE and COMPONENT iteration.

7.1 ASSEMBLAGEs aAxD COMPONENTS

The syntax of ASSEMBLAGE and COMPONENT statements is nearly identical. There are only
two differences:

. ASSEMBLAGEs have a (Suminarization)} Declaration section, where sim-
ple and expression summarization variables are declared. Since COMPONENT
statements can ONLY appear inside an ASSEMBLAGE, COMPONENTSs inherit their
ASSEMBLAGE'’s summarization variables.

) COMPONENTs have an optional (Iteration) section, where iteration vari-
ables can be declared (See Chapter 7, section 7.3). Iteration variables for an
ASSEMBLAGE appear inside the ASSEMBLAGE (Summarization) Declaration
section, so a separate iteration section is not required.

Sizing: Assemblages and Components 7-2

The ASSEMBLAGE statement has the following syntax:
ASSEMBLAGE (name) ((indentation) , (row label))

(Summarization)

(Body)
END (name)

The COMPONENT statement has the following syntax:
COMPONENT (name) ({ indentation) , (row label))

(Iterations)
{ Body)
END (name)

where (for both ASSEMBLAGEs and COMPONENTS):

(name)

(indentation)

(row label)

is a legal SOL identifier for the name of the ASSEMBLAGE or COMPO-
NENT.

¢ Extended identifiers cannot be used as either ASSEMBLAGE or
COMPONENT names.

is a legal SOL number or the word TAB followed by a legal SOL
number. This provides information for SUMMARIZE print statements.

o See section 7.1.1.3 of this chapter for more information.

is a legal SOL string, that consists of at least one character. Provides
information for SUMMARIZE print statements.

e See section 7.1.1.3 of this chapter for more information.
e Note that the null string, ”, is not permitted.

(Summarization) declares simple and expression summarization variables (see Chap-

(Iterations)

{ Body)

ter 7, section 7.1.1) and iteration variables for the ASSEMBLAGE (see
Chapter 7, sections 7.1.1 and 7.3).

Iteration variables for COMPONENTs are declared in this OPTIONAL
section (see Chapter 7, sections 7.1.1 and 7.3).

is a series of one or more SOL statements.
o The use of FORTRAN Blocks inside an ASSEMBLAGE or COMPO-
NENT definition is NOT allowed. See Chapter 6, section 6.8 for
more details.
e COMPONENT statements can only appear inside of an ASSEM-
BLAGE or another COMPONENT statement.

e ASSEMBLAGE statments CANNOT appear inside another AS-
SEMBLAGE or COMPONENT statement.

I. RESTRICTIONS ON ASSEMBLAGEs AND COMPONENTS:

1) The restrictions listed above for an ASSEMBLAGE or COMPONENT (body) must
be followed.

Sizing: Assemblages and Components 7-3

8)

The (name) at the start of the ASSEMBLAGE or COMPONENT must be the
same as the (name) used at the end of the ASSEMBLAGE or COMPONENT.

An ASSEMBLAGE or COMPONENT (name) cannot be an extended identifier.

The ASSEMBLAGE or COMPONENT header, consisting of the word, “ASSEMBLAGE”
or “COMPONENT;” the ASSEMBLAGE or COMPONENT (name) ; and summarize
print information enclosed in parenthesis, MUST appear alone on a line. If
the entire ASSEMBLAGE or COMPONENT header will not fit on a single line, the
continuation symbol, &, must be used. For further information, see Chapter
2, section 2.4.

An ASSEMBLAGE or COMPONENT definition statement CANNOT appear inside
an IF statement, or a SOL error will result.

An ASSEMBLAGE or COMPONENT definition statement CANNQOT appear inside
a DO loop, or a SOL error will result.

ASSEMBLAGEs and COMPONENTs are SOL blocks, and abide by special scope
rules which determine how variables are initialized or accessed. See Chapter
7, section 7.2 and Chapter 11.

Other restrictions concerning the use of summarization variables and itera-
tion variables appear in Chapter 7, section 7.1.1 and Chapter 7, section 7.3
respectively.

II. RESTRICTIONS ON ASSEMBLAGEs ONLY:

1)

2)

At MOST ONE ASSEMBLAGE statement can appear in the body of the main
program or a subroutine.

An ASSEMBLAGE statement CANNOT appear inside of a COMPONENT state-
ment; COMPONENTSs are parts of an ASSEMBLAGE and not vice-versa.

IIT. RESTRICTIONS ON COMPONENTs ONLY:

1)

[§)
e’

Sizing: Assemblages and Components 7-4

COMPONENT definition statements can ONLY appear inside of an ASSEMBLAGE
or inside other COMPONENT definition statements.

COMPONENTSs nested at the same level inside an ASSEMBLAGE or another COM-
PONENT CANNOT have the same name (or there could be no way of distin-
guishing between them).

Legal

ASSEMBLAGE a (0, * *)

SUMMARIZE
X

END SUMMARIZE

COMPONENT same (0, ’ °*)
x =2

END same

COMPONENT diff (0, * ')
x =2

END diff

END a

Illegal

ASSEMBLAGE a (0, ’)

SUMMARIZE
X

END SUMMARIZE

COMPONENT same (0, ’ ?)
x =2

END same

COMPONENT same (0, °* ?)
x =2

END same

END a

7.1.1 SUMMARIZATION VARIABLE DECLARATION

Each ASSEMBLAGE MUST have an associated set of simple summarization variables, which
represent the sizing information (such as weight) associated with the ASSEMBLAGE. Each AS-
SEMBLAGE can also have an OPTIONAL associated set of expression summarization variables:

Summarization variables are declared in the Summarization Declaration sec-
tion of an ASSEMBLAGE (Described subscquently).

Each COMPONENT that makes up the ASSEMBLAGE initializes local copies of the
simple summarization variables (See Chapter 7, section 7.2 for scope rules).

Expression summarization variables are initialized automatically when an
ASSEMBLAGE or COMPONENT ends.

If an ASSEMBLAGE or COMPONENT contains COMPONENTs nested within it, the
“inner” COMPONENT’s simple summarization variables are summed automati-
cally to vield a total value for the “outer” ASSEMBLAGE or COMPONENT.

If an ASSEMBLAGE or COMPONENT does NOT contain COMPONENTs nested within
it, its simple summarization variables MUST be explicitly initialized (i.e.
with assignment statements or subroutine calls).

The summarization declaration section of an ASSEMBLAGE has the following syntax:

SUMMARIZE

(optional iterations)

|
| (summarize decls)
|
|

END SUMMARIZE

where:

(summarize decls) is the set of summarization declarations. The summarization

declarations end under cither of the following conditions:

* The summarization declaration section ends with the words, END
SUMMARIZE
OR
. if the (optional iterations) section has been supplied (See Chap-

ter 7, section 7.3), the summarization declaration section ends
when the word ITERATE appears.

(optional iterations) is an optional iteration section where iteration variables can be

declared (see Chapter 7, section 7.3).

A summarization declaration consists of one of the following:

1)

A simple summarization variable declaration. (See Chapter 7, section 7.1.1.1
for exact syntax).

An expression summarization variable declaration (Sec Chapter 7, section
7.1.1.1 for exact syntax).

A summary title declaration, used in SUMMARIZE print statements. (See
Chapter 7. sections 7.1.1.2 and 7.1.1.3 for details).

A series of 1) and/or 2) and/or 3) separated by commas OR carriage returns.

Sizing: Assemblages and Components 7-5

) density is an EXPRESSION summarization variable. The density of each
COMPONENT is computed automatically using the expression declared with the
variable, the wt/vol formula.

o The density of the total Radio is computed automatically using the the
total Radio weight and volume (which were also computed automatically.

Note: The two local density variables are NOT summed to yield the total
density of the Radio.
Example 2: The following ASSEMBLAGE models a ballpoint pen sized for weight:

ASSEMBLAGE Pen (0, ' ?)
SUMMARIZE
weight
END SUMMARIZE
COMPONENT Cap (1, ' ?)
weight = 1.322
END Cap
COMPONENT Shaft (1, ’ ?)
COMPONENT Plastic (2, ’ ?)
weight = 3.44
END Plastic
COMPONENT Nib_and_Ink
weight = 2.786
END Nib_and_Ink

END Shaft
END Pen
. The weight of the Shaft is automatically given the sum of the Plastic and
Nib_and_Ink COMPONENTs (6.226)
o The weight of the ASSEMBLAGE is similarily initialized with the sum of the

Shaft and Cap COMPONENTSs.

7.1.1.1 Summarization Variable and Expression Variable Declarations: Syntax & Restrictions

Simple summarization variables have the following syntax:
(id)
where:

(id) is a SOL identifier.

Expression summarization variables have the following syntax:

(id) = (arith expr)

where:
(id) is a SOL identifier, representing an expression summarization vari-
able.
(arith expr) is an arithmetic expression. See Chapter 4, section 4.1 for details.

Sizing: Assemblages and Components 7-7

The following restrictions apply to the summarization declaration section:

1) The word SUMMARIZE MUST appear alone on a line.

2) Comments and blank lines CAN appear between the ASSEMBLAGE header and
the word SUMMARIZE.
3) Comments and blank lines CAN appear between the words SUMMARIZE and

END SUMMARIZE.

4) The (summarize decls) part CANNOT be empty. At least one summariza-
tion variable declaration MUST appear.

The use of simple and expression summarization variables is best shown by example. Ex-
amples illustrating the use of the summarization declaration section are given next, followed
by these three sections:

1) Simple and expression summarization variable declaration; syntax and usage

restrictions oL oL oo L T

2) Summary title declaration; syntax and usage restrictions 7.1.1.2

3) Summarize print statements 7113
EXAMPLES:

Example 1: An ASSEMBLAGE with two simple summarization variables and an expression
summarization variable:

ASSEMBLAGE Radio (0, ' ?)
SUMMARIZE

wt, vol

density = wt/vol
END SUMMARIZE

COMPONENT Housing (1, ’housing’)
wt = 5000
vol = 3000

END Housing

COMPONENT Knobs_n_Stuff (1, ’L.g’)
wt = 0.03 * 10000

vol = 30
END Knobs_n_Stuff
END Radio

In this example, a radio is modeled as consisting of a housing component, with the knobs
and electronics represented by a single component; the entire radio model is sized for weight
and volume.

° wt and vol are SIMPLE summarization variables. The local wt and vol of
the two COMPONENTSs are summed to yield the total Radio weight and volume.

Sizing: Assemblages and Components 7-6

RESTRICTIONS FOR SUMMARIZATION DECLARATIONS
1) Summarization variables are ALWAYS LOCAL.

. If a previously initialized variable is used as a summarization
variable, a local copy is made instead and a warning message
appears.

2) A summarization variable CANNOT be declared twice in the same declara-
tion section.

3) All summarization variables must be of type REAL. Since SOL variables are
REAL by default, no explicit declaration is needed.

4) EVERY summarization variable must be initialized in every ASSEMBLAGE ot
COMPONENT Statement according to the following rules:

i If COMPONENTs DO NOT appear in the body (See Chapter 7, sec-
tion 7.1) of a given ASSEMBLAGE or COMPONENT, all simple sum-
marization variables in that ASSEMBLAGE or COMPONENT MUST be

explicitly initialized (e.g. via assignment statement or subroutine
call).

il. If COMPONENTs DO appear in the body of a given ASSEMBLAGE
or COMPONENT, all simple summarization variables in that ASSEM-
BLAGE or COMPONENT are automatically initialized and explicit
initialization is ILLEGAL.

1ii. Expression summarization variables CANNOT be explicitly ini-
tialized under any circumstances, and are ALWAYS computed
automatically when the ASSEMBLAGE or COMPONENT ends.

5) Since automatic initialization takes place when the COMPONENT or ASSEMBLAGE
ends (cases ii. and iii. above) , automatically initialized variables CANNOT
be accessed until after the COMPONENT or ASSEMBLAGE ends.

6) After a COMPONENT or ASSEMBLAGE ends, local variables such as summarization
variables can be accessed (but NOT altered) via extended identifier notation
(See Chapter 7, section 7.1.2).

7) Only two types of variables can be used in arithmetic expressions for sum-
marization expression declarations:

o Previously initialized variables.
Legal Hiegal
some_var = 12
ASSEMBLAGE Demo (0, > *) ASSEMBLAGE uninitalized (0, ’)
SUMMARIZE SUMMARIZE
a a
b = some_var/2 b = some_var/2
END SUMMARIZE END SUMMARIZE

Sizing: Assemblages and Components 7-8

. Previously declared summarization variables.

Legal Illegal

ASSEMBLAGE Demo (0, ’ ’) ASSEMBLAGE not._declared_yet (0, ’ °’
SUMMARIZE SUMMARIZE

a b = a/2

b = a/2 a

END SUMMARIZE END SUMMARIZE

EXAMPLES:

Recall that summarization and summarization expression variables are declared in the
summarization section of an ASSEMBLAGE. Both the ASSEMBLAGE header and summarization
section are shown in the examples: ‘

Example 1: Five simple summarization variables (a, b, ¢, d, e) and two expression
summarization variables (£, g) are declared.

ASSEMBLAGE example (0, * *)
SUMMARIZE
a, b
[~
d, e, £ =a/b
g=a+c-e+t
END SUMMARIZE

Example 2: A simple summarization variable, a, and an expression summarization variable,
b, are declared.

PROGRAM Demo

ASSEMBLAGE trial (0, ® *)
SUMMARIZE

a, b=a **x 2
END SUMMARIZE

COMPONENT test (1, ’)
a=25
END test

COMPONENT test_2 (1, ' ?)
a =6
END test_2

print bdtest : F3.0
END trial

print a®trial : F3.0

print b@trial : F3.0
END Demo

Sizing: Assemblages and Components 7-9

This program produces the following output:

25.
11.
121.

The following table lists the values for the summarization variables and explains how

the values were computed.

Table 7-1

SSV = “Simple Summarization Variable”

ESV = “Expression Summarization Variable”

Var COMPONENT Type

Value

How value was derived

a test SSv

a test_2 SSV

a trial SSV

b test ESV

b test 2 | DAY

b trial ESV

36

121

explicitly initialized since test
has no subCOMPONENTSs

explicitly initialized since test_2
has no subCOMPONENTSs

computed automatically by SOL;

equals sum of the summarization variables
for subCOMPONENTSs, test and

test 2. (5 4+ 6 =11)

computed automatically by SOL;
equals the summarization expression
evaluated with local summarization
variables. (a =5,b =a **2 =25)

computed automatically by SOL;

equals the summarization expression
evaluated with local summarization variables.
(a=6,b=a**2=236)

computed automatically by SOL;

equals the summarization expression
evaluated with local summarization variables.
(a=11,b=a™* 2=121)

. The print statements use extended identifer notation. (See Chapter 7, section

7.1.2 for details).

. The symbol, @, should be read as “of the.” For example, b@test should be

read as, “variable b of the test component.”

. The print statements will display the following values, in order from first to
last: 25, 11, and 121, which represent “the value of variable b of the test
component,” “the value of variable a of the trial assemblage,” and “the

value of variable b of the trial assemblage” respectively.

Sizing: Assemblages and Components 7-10

Example 3: Two simple summarization variables, a and ¢, and an expression summarization
variable b are declared. Note: this example illustrates the use of a global variable to declare
an expression summarization variable.

PROGRAM Demo2
global = 2
ASSEMBLAGE trial (0, * ?)
SUMMARIZE

a, ¢, b = global ** 2
END SUMMARIZE

COMPONENT test (1, ’ !)
a=5
c =1

END test

COMPONENT test_2 (1, * ?)
global = 3
a =6
c =2

END test_2

print bltest : F2.0
END trial

print aOtest@trial : F2.0
print c@trial : F2.0
print botrial : F2.0

END Demo2

This program produces the following output:

O W o h

The following table lists the values for the summarization variables and explains how
the values were computed.

Sizing: Assemblages and Components 7-11

Table 7-2

SSV = “Simple Summarization Variable”

ESV = “Expression Summarization Variable”

Var COMPONENT Type

Value

How value was derived

test

[+

a test_ 2

a trial

c test

c test_2

c trial

b test

b test_ 2

b trial

SSV

SSV

SSV

SSV

SSV

SSV

- ESV

ESV

ESV

5

11

explicitly initialized since test
has no subCOMPONENTs

explicitly initialized since test_2
has no sub COMPONENTS

computed automatically by SOIL;
equals sum of the summarization variables
for subCOMPONENTSs, test and test_2.

(5 +6=11)

explicitly initialized since test is
has no subCOMPONENTS

explicitly stated since test_2
has no subCOMPONENTSs

computed automatically by SOL;

equals sum of the summarization variables
for subCOMPONENTs, test and test_2.

(5 + 6 = 11)

computed automatically by SOL;

equals the summarization expression evaluated
with the current value of global.

(global = 2, b = global ** 2 =1)

computed automatically by SOL;

equals the summarization expression evaluated
with the current value of global.

(global = 3, b = global ** 2 = 9)

computed automatically by SOL;

equals the summarization expression evaluated
with the current value of global.

(global = 3, b = global **2 =9)

The print statements use extended identifer notation. (See Chapter 7, section

7.1.2 for details).

The symbol, @, should be read as “of the.” For example, b@test should be
read as, “variable b of the test component.”

Sizing: Assemblages and Components 7-12

° The print statements will display the following values, in order from first
to last: 4, 5, 3, and 9, which represent “the value of variable b of the test
component, “the value of variable a of the test component of the trial
assemblage,” “the value of variable c of the trial assemblage,” and “the
value of variable b of the trial assemblage” respectively.

Example 4: The example contains a compilation error because of a violation of rule 4 (iii.)
of the restrictions on summarization variables. (Restrictions appear in this Chapter and
section, just before the current “examples” section.)

PROGRAM Demo3

ASSEMBLAGE trial (0, ’ ?)

SUMMARIZE
a
b = a ** 2

END SUMMARIZE

COMPONENT test (1, ’ ?)

a=25
b= 14
END test

COMPONENT test_2 (1, *)
a =86
END test_2
END trial
END Demo3

° A compilation error occurs inside COMPONENT test. The statement, b =
14, is ILLEGAL because b is an expression summarization variable and

CANNOT be explicitly initialized.

Sizing: Assemblages and Components 7-13

Example 5: This example contains a compilation error because of a violation of rule 5 of
the restrictions on summarization variables. (Restrictions appear in this chapter and section,
just before the current “examples” section).

PROGRAM Demo4

ASSEMBLAGE trial (0, * ?)
SUMMARIZE

a

b= a ** 2
END SUMMARIZE

COMPONENT test (1, ’)
a=>5
END test

COMPONENT test_2 (1, ’ °*)
a =b=*6
END test_2
print bOtest
END trial

ERD Demo4

® An error occurs inside COMPONENT test.2. The statement, a = b * 6 is
ILLEGAL, because the summarization expression variable b of COMPONENT
test_2 is not initialized until the COMPONENT ends.

. The summarization expression variable initialized in COMPONENT test is a
local variable, and CANNOT be accessed from COMPONENT test_2 unless
extended identifier notation is used. (See section 7.1.2 for details on extended
identifier notation).

7.1.1.2 Summary Title Declarations — Advanced Material

The Summary_Title declaration initializes a header title for SUMMARIZE PRINT state-

ments.
. A Summary_Title declaration can appear in the Summarization declaration
section of an ASSEMBLAGE.
° A Summary Title declaration is OPTIONAL; it need NOT appear in the
Sumimarization declaration section of an ASSEMBLAGE.
° More information on summarize print statements can be found in section
7.1.1.3.

Sizing: Assemblages and Components 7-14

A Summary _Title declaration has the following syntax:
SUMMARY_TITLE = (string)

where:
(string) is a SOL string, consisting of a string of characters enclosed by apos-
trophes.
° A string cannot be longer than 61 characters.
. The string must appear on a single line. The continuation symbol,

&, CANNOT be used to split a string over two lines.
The following restrictions apply to Summary_Title declarations:
1) An empty (null) (string) such as " is illegal.

2) Summary_Title declarations appear in the summarization declaration section
of an ASSEMBLAGE, and must be separated from summarization variables by
commas OR carriage returns. For example:

Legal lllegal
ASSEMBLAGE Demo (0, ’ ’) ASSEMBLAGE Demo (0, ’ ?)
SUMMARIZE SUMMARIZE

summary title = ’Demo Title’ summary.title = ’Demo Title’ w

W
END SUMMARIZE END SUMMARIZE
ASSEMBLAGE Demo (0, ’ ’) ASSEMBLAGE Demo (0, ’)
SUMMARIZE SUMMARIZE

summary_title = ’Demo2 Title’, sum_var summary_title = ’Demo2 Title’ sum_var
END SUMMARIZE END SUMMARIZE

3) The Summary_Title declaration must appear on a single line. If it will not fit,

the continuation symbol, &, must be used. For further details, see Chapter
2, section 2.4. For example:

Legal Illegal
ASSEMBLAGE Demo (0, ’) ASSEMBLAGE Demo (0, ’)
SUMMARIZE SUMMARIZE
summary_title = summary_title =
& ’use the continuation symbol’ 'your decl is illegal without it’
W, e = w % 2 W, e =w * 2
END SUMMARIZE END SUMMARIZE

Chapter 7, section 7.1.1.3 details the use of the summarize print statement.

Sizing: Assemblages and Components 7-15

7.1.1.3 Summarize Print Statement — Advanced Material

An understanding of ASSEMBLAGEs and COMPONENTS, detailed earlier in this chapter, will
make this section more understandable

° The SUMMARIZE print statement allows the quick, and concise printing of
ASSEMBLAGE or COMPONENT summarization variables.

° The SUMMARIZE print statement prints summarization variables in a tabular
form, along with a header message indicating whether the ASSEMBLAGE has
ended.

. Each row in the table contains the values for a requested ASSEMBLAGE variable.

° Options allow a title for the table and/or row labels to be specified.

° Rows can be indented to reflect COMPONENT nesting within the ASSEMBLAGE,

or for emphasis.
GENERAL USE AND SYNTAX OF THE SUMMARIZE PRINT STATEMENT
The SUMMARIZE print statement has the following syntax:
SUMMARIZE (printlist)

where:

(print_list) is the list of variables to be printed, and consists of one of the fol-
lowing:
1) a simple summarization variable, or expression summarization
variable.
Example: SUMMARIZE a_summarize_variable

Recall that summarization variables must be declared in the sum-
marize declaration section. (See chapter 7, sections 7.1.1 and
7.1.1.1 for greater detail on summarization variable declarations)

2) a simple summarization variable or expression summarization
variable, followed by a colon, :, followed by a format.
Example: SUMMARIZE a_sum_var : (format)
3) a mixed sequence of the two choices above, scparated by com-
mas.
Examples:

SUMMARIZE a.var, another : (format), a_third

SUMMARIZE a : (format) , b : (format) , last :
(format)

. In the examples above, the word, (format) , appears where an actual format
would appear. (Formats are discussed in Chapter 6, section 6.2.2).

o Since summarization variables are always of type REAL, only E and F formats
are legal with SUMMARIZE print statements.

The following restrictions apply to SUMMARIZE print statements:

1) Variables used in SUMMARIZE print statements must be summarization vari-
ables.

Sizing: Assemblages and Components 7-16

2) No comma can appear after the last item in a print list.

3) You must use a format that is compatible with the variable printed. See
Chapter 6, section 6.2.2 for details on formats.
4) Print lists must appear on the same line as the word, SUMMARIZE.
. If the print list is too long to fit on the line, use the continuation

symbol, &, continue the list on the next line. See Chapter 2,
section 2.4 for details on the continuation symbol.

5) Print lists can be NO LONGER than 20 items.

6) SUMMARIZE print statements are only legal if at least one ASSEMBLAGE or
COMPONENT statement has ended before the SUMMARIZE print statement.

The following is an example of an ASSEMBLAGE statement, illustrating the use of the
SUMMARIZE print:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

PROGRAM example

ASSEMBLAGE One(0, ’the name one’)
SUMMARIZE
a, b
END SUMMARIZE
COMPONENT Two(TAB 1, ’the name two’)
a=1
b =2
END Two
COMPONENT Three(TAB 1, ’the name three’)
a=2
b=3
END Three
END One
SUMMARIZE a : f4.2, b : f4.2
END example

The SUMMARIZE print statement on line sixteen results in the following output at the
terminal:

SUMMARY STATEMENT

NO TITLE DECLARED IN SUMMARY_TITLE

A B
THE NAME TWO 1.00 2.00
THE NAME THREE 2.00 3.00
THE NAME ONE 3.00 5.00

The explanation of the example:

o The first thing printed is the table header, “SUMMARY STATEMENT .” If the
SUMMARIZE print statement appeared before the ASSEMBLAGE had ended, the
table header would have been, “PARTIAL SUMMARY STATEMENT. ”

° A blank line appears next, which is then followed by the table title. As
no title was declared, the default, “NO TITLE DECLARED IN SUMMARY_TITLE,
appears. (See Chapter 7. section 7.1.1.2)

Sizing: Assemblages and Components 7-17

P i;\
i -

° The column headers appear next, automatically labeled with the names of
the summarization variables that will be printed.

° The summarization variables for the first COMPONENT ended (COMPONENT ends
at line 10) appear next.

) The row is labeled with the string declared in the COMPONENT definition, "the
name two’ (Line 7). The label is idented one tab (five spaces). This was also
specified by TAB which appears before the label in the COMPONENT definition
(Line 7). The values of the variables follow.

° The indented label and the values for the next COMPONENT follow.

o Values of the ASSEMBLAGE summarization variables are then printed. This
row is not indented as specified by the definition (on line 3, the number
0 specifies zero spaces). Because of the lack of indentation, the values for
the summarization variables are not aligned with those of the previous two
COMPONENTs.

o A title can be declared in the SUMMARIZE section of an ASSEMBLAGE (See
section 7.1.1.2 of this chapter) that will be printed with the table of summa-
rization variable values generated by a SUMMARIZE print.

. If no title is explicitly declared, the default title will be used.
) The default title is, NO TITLE DECLARED IN SUMMARY_TITLE.

LABELING AND IDENTING TABLE Rows
Identation information must be given for the table rows produced by a SUMMARIZE print
statement. A label for each row of a SUMMARIZE print table must also be specified.

. Each row of a SUMMARIZE print table states an indented label, followed by the
values of the requested summarization variables for a particular ASSEMBLAGE
or COMPONENT.

. Indentation and labeling instructions are given at the start of an ASSEMBLAGE
or COMPONENT.

The start of an ASSEMBLAGE has the following syntax:
ASSEMBLAGE (name) ((identation) , (a_string))
The start of a COMPONENT definition has the following syntax:
COMPONENT (name) ((identation), (a_string))

where (ASSEMBLAGEs and COMPONENTSs) row labeling information is given by (a_string) and
{ indentation) :

(name) is a legal SOL identifier which names the ASSEMBLAGE or COMPONENT.

(indentation) is a legal SOL number or the word TAB followed by a legal SOL
number.

. Specifies how many blank spaces to indent (a_string) .

) If the word TAB appears, the number specifies how many tabs
(where a tab is five blank spaces) to indent.

. numbers less than or equal to -1 will result in the row not being
included in the table.

Sizing: Assemblages and Components 7-18

. numbers are treated as INTEGERs and truncated. e.g. 1.9 becomes
1 and .999999 becomes zero. Only digits before the decimal point
are significant.

(a_string) is a legal, non-null SOL string.

) Row labeling information is given in (a_string) .

° The label specified in (astring) will appear in the leftmost
position of the table row.

° If no label is desired, use a space string, ’ ’. The null string, ” ,
is not allowed.

7.1.2 EXTENDED IDENTIFIER NOTATION

Extended Identifier notation is used to access the values of variables initialized within
an ASSEMBLAGE or COMPONENT:

. Once an ASSEMBLAGE or COMPONENT has ended, the values of any variables
initialized within the ASSEMBLAGE or COMPONENT can be accessed through
SOL’s extended identifier notation.

° Chapter 7, section 7.2 details the scope rules governing variable initializations
within ASSEMBLAGEs or COMPONENTS.

The extended identifier notation has the following syntax:
(identifier) @ (path name)

where:
(identifier) is a legal SOL identifier

(path name) specifies where the desired vartable was initialized in the ASSEMBLAGE.
This (path name) consists of either of the following:

1) an ASSEMBLAGE or COMPONENT name
2) an ASSEMBLAGE or COMPONENT name, followed by the
symbol @ followed by another (path name)

Extended identifiers describe a “search path,” expressing the desired variable’s location
in the hierachy of an ASSEMBLAGE and its COMPONENTs. The ASSEMBLAGE is considered the
OUTERMOST level, COMPONENTs directly inside the ASSEMBLAGE comprise the next most
outer level, COMPONENTs directly inside COMPONENTs inside the ASSEMBLAGE are the third
most outer level and so forth.

° The symbol @ means “of the.” For example “weight@Flaps@Wing” should
be read as, “the weight of the Flaps of the Wing.” This reading makes clear
which variable is being accessed.

Sizing: Assemblages and Components 7-19

. A search for the variable begins with the right-most name in the (path
name) . The search differs slightly depending on where the extended iden-
tifier reference appears, as follows:

1. The extended identifer reference appears inside an ASSEMBLAGE
or COMPONENT:

The search proceeds “outwards,” (from the reference through the
hicrarchy towards the ASSEMBLAGE level). The search continues
through the nested levels of COMPONENTSs, checking the COMPONENT
names at each level, until a matching COMPONENT or ASSEMBLAGE
name is found. If the name is found, the search continues inwards
from the matching COMPONENT or ASSEMBLAGE analagous with ii.
(which follows), otherwise an error occurs.

. A partial “path name” can be used, only the minimum length
extended identifier that uniquely identifies a variable is required.

1. If the extended identifier reference appears outside the ASSEM-
BLAGE, the search moves from the ASSEMBLAGE inwards, matching
the rightmost name in the “path name” with the ASSEMBLAGE
name, the next rightmost name with a COMPONENT nested in the
ASSEMBLAGE, the next name matches a COMPONENT nested in the
COMPONENT in the ASSEMBLAGE and so on until the desired variable
is found. If the variable is not found, an error occurs.

° The full “path name” MUST be used in this case.

° SOL’s extended identifier notation is best explained with the aid of the
example which follows.

Sizing: Assemblages and Components 7-20

EXAMPLES:

Example 1: The following ASSEMBLAGE models an egg, and illustrates the use of SOL’s
extended identifier notation. (Some statements have been annotated to aid the discussion.)

PROGRAM Component_Demo

ASSEMBLAGE egg (0, ')
SUMMARIZE
protein, weight
END SUMMARIZE
protein_factor = .33

COMPONENT Yolk (1, ’ ’)

weight = 1.9

protein = weight # protein_factor
END Yolk

print weight@Yolk®egg
print weight@Yolk

COMPONENT White (1, ’ ’)

weight = 1.3

protein = weight * protein_factor
END White

print weight@WhiteQegg
print weight®White
END egg

print protein_factorQegg
print weight@yolkQegg
print weightQegg
END Component_Demo

! 5)
I 6)
L7

The extended identifier notation is used in six print statements which write out the

following values:

Print Statement Variable Accessed

REAL Number Value Printed

“weight of the Yolk”

=1 O Ot = QO —
e N S et et e’

“weight of the egg”

“weight of the Yolk of the egg”

“weight of the White of the egg”
“weight of the White”
“protein_factor of the egg”
“weight of the yolk of the egg”

[G Sy
O~
O W wWwwww

Lo = o

Sizing: Assemblages and Components 7-21

o Print statements 1) and 2) print the same value. Recall that if an extended
identifier reference appears INSIDE an ASSEMBLAGE or COMPONENT, only the
minimum length extended identifier is required.

. Print statements 3) and 4) are analgous to statements 1) and 2).

° Notice that the complete “path name” must be given in statements 5), 6),
and 7).

. The final print statement writes the value, 3.2. Because ASSEMBLAGE sim-

ple summarization variables are initialized with the sum of the appropriate
simple summarization variables from its subCOMPONENTs. In this case, the
“egg” COMPONENT has two subCOMPONENTs — “Yolk” and “White” - so that
the “weight of the egg” equals “the weight of the Yolk” plus “the weight of
the White,” 1.9+ 1.3 = 3.2

The following restrictions apply to SOL’s extended identifiers:

1) An extended identifier cannot appear on the left side of an assignment state-
ment, or be passed as a subroutine dependent parameter. For example, the
following is ILLEGAL:

weightQegg = 12

(3]
~—

Extended identifiers can only be used to access variables that were initialized
inside of an ASSEMBLAGE or COMPONENT.

3) Extended identifiers CANNOT be used to access variables before the vari-
ables have been initialized. (In particular, summarization variables of AS-
SEMBLAGEs or COMPONENTs which have nested sub COMPONENTs CANNOT be
accessed until the summarization variables are automatically initialized when
the ASSEMBLAGE or COMPONENT ends.)

7.2 SCOPE RULES FOR ASSEMBLAGEs AND COMPONENTS

ASSEMBLAGEs and COMPONENTs abide by the special scope rules. Because COMPONENT
statements are often nested, it is useful to have terminology with which to distinguish the
relationships among COMPONENTs to aid a discussion of scope rules. The following definitions
are used:

Complete COMPONENT

— a COMPONENT whose body contains NO COMPONENT definition statements.
Composite COMPONENT

— COMPONENT whose body contains AT LEAST ONE COMPONENT definition

statement.
Encompass
1) An ASSEMBLAGE ENCOMPASSes all COMPONENTs within it.
2) II" a Composite COMPONENT contains the COMPONENT definition statement for a

second COMPONENT, the first COMPONENT is said to ENCOMPASS the second.

Sizing: Assemblages and Components 7-22

3) IF a Composite COMPONENT contains a sequence of nested COMPONENT defini-
tion statements, the composite COMPONENT is said to ENCOMPASS any and
all members in the sequence.

Outer COMPONENT

— A term used to describe the relationship between COMPONENTs. ALL COMPO-
NENTs that encompass a COMPONENT statement are OUTER to that COMPO-
NENT. (The ASSEMBLAGE is by definition OUTER to all COMPONENTS).

Inner COMPONENT

— All COMPONENTs that a Composite COMPONENT encompasses are INNER to
the Composite COMPONENT. (All COMPONENTs are by definition INNER to the
ASSEMBLAGE).

SubCOMPONENT

— A term used to describe the relationship betwcen COMPONENTs. All COMPO-
NENTs whose definition statements appear IMMEDIATELY inside a COM-
POSITE COMPONENT or ASSEMBLAGE are subCOMPONENTs of the composite
COMPONENT or ASSEMBLAGE. For example:

COMPONENT one (1, ’ ’)
COMPONENT Two (2, ’ *)
COMPONENT Three (3, ’ ’)
sum_var = 2
END Three
END Two
COMPONENT Four (2, ’ 7)
sum_var = 6
END Four
END one

. In this example, subCOMPONENTs Two and Four appear immediately inside
COMPONENT one, but COMPONENT Three is NOT a subCOMPONENT of COMPO-
NENT one COMPONENT Three is a subCOMPONENT of COMPONENT Two.

Other COMPONENT

— A term used to describe the relationship between COMPONENTs. All COMPO-
NENTs which are neither an INNER nor an OUTER COMPONENT to a COMPQO-
NENT. are called OTHER components.

Sizing: Assemblages and Components 7-23

ScoPE RULES FOR ASSEMBLAGEs AND COMPONENTS:
Accessing or Altering Variables:

1)

2)

An ASSEMBLAGE or COMPONENT can access and alter variables which have been
initialized in the MAIN program or SUBROUTINE implementation before
the ASSEMBLAGE or COMPONENT statement appeared, For example:

c = 24

outer.var = 12
ASSEMBLAGE test (0, ’ *)
SUMMARIZE

summarize_var
END SUMMARIZE

summarize_var = outer_var + 12/c ! access ¢ and outer_var
outer_var = 42 ! alter outer_var
END test
. A warning message flags when an outer scope’s variable is al-

tered by an ASSEMBLAGE or COMPONENT such as the alteration to
outer_var in this example.

An INNER COMPONENT can access and alter:

i. Any variables initialized in the ASSEMBLAGE and OUTER COMPO-
NENTs, if the variables are initialized BEFORE the inner COMPO-
NENT appears.

' A warning message flags when an outer scope’s variable is altered.

An ASSEMBLAGE or COMPONENT can ACCESS but NOT ALTER variables
initialized in INNER or OTHER COMPONENTSs.

[

i Access using extended identifier notation. (See (‘hapter 7, section
7.1.2).

il The INNER or OTHER COMPONENT variable must be initialized
before it is accessed.

Variables initialized in an ASSEMBLAGE or COMPONENT can be ACCESSED but
NOT ALTERED by main program or subroutine statements:

i, Access with extended identifier notation. (See Chapter 7, section
7.1.2)

Initializing Variables:

1)

?)

Simple summarization variables and Expression summarization Variables are
ALWAYS local. Every ASSEMBLAGE or COMPONENT accesses and initializes a
local summarization variable.

When an ASSEMBLAGE or COMPONENT initializes a variable, a variable LOCAL
to that ASSEMBLAGE or COMPONENT is initialized. This local variable can be
accessed or altered outside the ASSEMBLAGE or COMPONENT ONLY by the rules
above.

Sizing: Assemblages and Components 7-24

. Note: Variables are only initialized the first time they receive a
value. Therefore, local variables are NOT created when an AS-
SEMBLAGE or COMPONENT assigns a value to an existing variable.
The exceptions, of course, are summarization variables (see sec-
tions 7.1.1 and 7.1.1.1 of this chapter) because these variables are
ALWAYS local.

EXAMPLES:

Example 1:

01 PROGRAM example

02

03 a=286

04 ASSEMBLAGE pie (0, ’)
05 SUMMARIZE

06 cost

o7 END SUMMARIZE
08 cost = a + 1
09 a =15

10 a=a+ 2

11 print a

12 END pie

13 print cost@pie
14 print a

15 END example

What does the print statement on line 11 print?

. On line 9, a is given the value, 15 and then incremented by two on line 10.
Therefore, on line 11 the value, 17 is printed.

What does the print statement on line 13 print?
° On line 8, the summarization variable cost is given the value a + 1. The

variable a has the value 6 (from line 3) at that point, so cost is assigned the
value 7, and 7 is printed.

What does the print statement on line 14 print?

) The assignment statements on lines 9 and 10 have altered the main program
variable, a.. so the value 17 is printed.

Sizing: Assemblages and Components 7-25

Example 2:
01 PROGRAM example_.2
02
03 factor = 13

04 ASSEMBLAGE one (0, * ')
05 SUMMARIZE

06 a, b, cost = a * Db
07 END SUMMARIZE

08

09 factor = 11

10 an_error = a@twolone
11 COMPONENT two (1, ' ')
12 a = factor + 2

13 b = a + factor

14 factor = 10

15 END two

16 COMPONENT three

17 a = factor + cost@®twolQone
18 b = b@twolone

19 factor = 3

20 END three

21 print factor

22 END one

23 PRINT a®twoQone
24 PRINT b@three€one
25 PRINT a®three@one
26 END example_2

The rule numbers that appear in the discussion that follows refer to the rules for accessing
and initializing variables that appear immediately before this “examples” section.

One error occurs in this program, Where is it?

° An error occurs on line 10. An ASSEMBLAGE can access an variables initialized
in subCOMPONENTs, with extended identifier notation but only AFTER the
variables have been initialized (as per rule 3 (ii) of Scope rules for accessing
and Altering variables). COMPONENT two has not ended, so the summariza-
tion variables are not yet initialized and Line 10 is ILLEGAL. For the next
questions, assume line 10 is removed so the program runs.

What value is printed on line 217

° factor has been altered on lines 14 and 19 in accordance with rule 1, The
assignment on line 19 is the most recent, therefore the value 3 is printed.

What value is printed on line 237

. The two COMPONENT’s summarization variable a is assigned its value on line
12. The variable factor is referenced as per rule 1, and the value 11 is
returned. Thus, a@two gets the value “11 + 2,” and the value 13 is printed.

What value is printed on line 247

Sizing: Assemblages and Components 7-26

° The three COMPONENT’s summarization variable b is assigned its value on
line 18 to have the same value as COMPONENT two’s summarization variable
b. The value of the two COMPONENT’s summarization variable b is set on line
13 to be “13 + 11" or 24. Thus, the value 21 is printed.

What value is printed on line 25 ?

o The three COMPONENT’s summarization variable a is assigned its value on line
17. COMPONENT two has changed the value of factor to be “10” (line 14).
COMPONENT two’s summarization variables a and b have the values “13” and
“24” respectively as seen in the previous two print statements. Because the
cost of COMPONENT two is an expression summarization variable, its value is
computed automatically as a * b = 13 ¥ 24 = 312. Thus, factor 4+ 312 =
10 + 312 = 322, and the value 322 is printed.

7.3 ADVANCED MATERIAL — ASSEMBLAGE aAND/OorR COMPONENT
ITERATION

The Iterations section of an ASSEMBLAGE or COMPONENT allows you to give initial values to
ANY variables LOCAL to the COMPONENT or ASSEMBLAGE, such as summarization variables.
The initial values are used before the variables get final values later in the ASSEMBLAGE or
COMPONENT body.

Motivation: It is not always possible to create a sizing model where the sizing information
can be handled in a linear fashion. The values for summarization variables of an ASSEMBLAGE
are computed automatically to be the sum of the corresponding summarization variables
of all nested subCOMPONENTs and are inherently linear. However, in some cases it would be
helpful to define a subCOMPONENT’s summarization variable in terms of another variable, such
as an outer COMPONENT or ASSEMBLAGE summarization variable. For example, in modeling
aircraft, the landing gear is often modeled as a fixed percentage of the total vehicle gross
weight. The vehicle weight would be a summarization variable for the ASSEMBLAGE, and the
weight of the landing gear would be a summarization variable of a subCOMPONENT.

Normally, such a model is not possible, because the total gross weight would not be
initialized until the ASSEMBLAGE ended. The Iterations section allows proper modeling for
these cases.

The iteration section for an ASSEMBLAGE is optional; when supplied the iteration section
appears inside the ASSEMBLAGE summarization declaration section (As detailed in Chapter
7, section 7.1), and has the following syntax:

ITERATE
(iterations)

For example:

ASSEMBLAGE Test (0, * ?)
SUMMARIZE
a, b
ITERATE
a = 12
END SUMMARIZE

Sizing: Assemblages and Components 7-27

° The iteration section ends when the sumrmarization declaration section ends
with the words END SUMMARIZE.

The iteration section for a COMPONENT is optional; when supplied the iteration section appears
immediately after the COMPONENT header (As detailed in Chapter 7, section 7.1), and has the
following syntax:
ITERATE
(iterations)
END ITERATE
For example:

COMPONENT Test (0, ')
ITERATE

a =12
END ITERATE

where (for both ASSEMBLAGEs and COMPONENTS):

(iterations) is one of the following:
1) (id) = (expr)
2) (id)= (expr): (no)
3) (id)= (expr): {(no)%
4) MAX.ITERATIONS = (expr)

5) aseries of 1) and/or 2) and/or 3) and/or 4) separated by one
or more carriage returns.

(id) is a SOL identifier; the variable to be initialized.
(expr) is an arithmetic expression for the initial value.
(no) is a SOL number giving the convergence criteria.

The following restrictions apply to the (iterations) section, when it appears:

1) (id) must be a legal SOL identifier.

2) (id) CANNOT be a previously initialized variable, it MUST BE local
to the COMPONENT which iterates. Since all variables initialized within a
COMPONENT are local variables. any UNINITIALIZED variable can be used,
including summarization variables.

3) (id) MUST BE INITIALIZED within the COMPONENT that declares the iter-
ation. Initialization can be explicit (e.g. an assignment statement or subrou-
tine call) or implicit (such as the automatic initialization of summarization
variables of COMPONENTs as the sum of subCOMPONENT local summarization
variables).

4) If no Max_iterations is explicitly given, a default value of fifty (50) is used.
If iteration stops because Max_iterations is exceeded, a run-time error
message will appear.

Sizing: Assemblages and Components 7-28

5) If no CONVERGENCE criteria is given, i.e. “: (no)” or “: (no) %,
then a default absolute convergence criteria of 1 is used.

7.3.1 How ITERATION WORKS

In what follows, all bracketed items refer to the iteration section syntax described in the
previous section.

) The initial value for the variable is calculated in the (expr) part of an
(iterations } section.

. The iteration variable can now appear in inner COMPONENT calculations.

° The iteration variable MUST be assigned (explicitly or implicitly) a new
value in the COMPONENT or ASSEMBLAGE that defined the iteration.

° At the end of the ASSEMBLAGE or COMPONENT that initiated iteration, the new
value of the iteration variable is compared to the value from the previous
iteration.

. A convergence criteria defines whether the new/previous comparison will end

the iteration or whether the new value will be used as the initial value and
the process repeated. This repetition is called iteration.
) A convergence criteria is either “: (no) 7 (absolute convergence) or “:
(no) % " (relative convergence). If nothing appears, a default absolute

convergence criteria, with (no) = 1 is used.

) absolute convergence: When the difference between the previous value
and the new value of the summarization variable is less than or equal to
(no) , the iteration halts.

) relative convergence: When the previous value changes less than or equal
to the percentage, “ (no) %” then the iteration halts.

. Max_iterations places a further limit on the number of iterations allowed:
the compare/repeat process will continue at most max_iterations times. If
the convergence criteria is not satisfied at that point, iteration halts and an
error message is output.

Sizing: Assemblages and Components 7-29

EXAMPLES:

Example 1:

PROGRAM plane
!
! Demonstrates iteration
!
ASSEMBLAGE g_wt (0, ’all’)
SUMMARIZE
wt, vol, av_density = wt/vol

ITERATE

wt = 10000:0.5 % ! iterate on wt
END SUMMARIZE

COMPONENT wing (1, ’wing’)

wt = 5000
vol = 3000
END wing

COMPONENT Landing_gear (1, 'L.g’)
wt = 0.03 *= wtlg_wt
vol = 30

END Landing_gear

END g wt
END plane

This example shows a landing gear modeling problem discussed earlier. Landing_gear is
a subCOMPONENT of G_wt, but the value of its summarization variable, wt, is a function of the
wt of the ASSEMBLAGE, G_wt, which is uninitialized until automatically initialized with the
sum of its nested COMPONENTs. The initial value of wt@G_wt is given in the iteration section
“ wt = 10000 : 0.5 % .” The iteration statement can be read as, “use 10000 as the initial
value for wt@G_wt in any calculation inside of G_wt.” The calculation of wt@G_wt will repeat
until it changes less than 0.5 % in consecutive iterations.

Sizing: Assemblages and C’o’mponents 7-30

Chapter 8

The Optimize Statement

The OPTIMIZE statement acts as a sophisticated shell about the ADS! numerical opti-
mization routine. Recall that one of SOL’s purposes is to make the computer implementa-
tion of a numerical optimization problem as simple and error-free as possible. The OPTIMIZE
statement permits the methods of numerical optimization implemented in the ADS opti-
mization routine to be applied within a SOL program. The OPTIMIZE statement is combined
with other SOL statements to pose an optimization problem; the resulting SOL program is
compiled, linked and run to solve the posed problem and output the results.

This chapter discusses the OPTIMIZE statement syntax and use, with a minimal but
necessary prior exposure to the concepts of numerical optimization assumed.

The OPTIMIZE statement has the following syntax:

OPTIMIZE (minimized variable)

USE
(design variables & constraints)

(Options Section)
END USE

(SOL statements)
END OPTIMIZE

where:

(minimized variable) is a legal SOL identifier, but CANNOT be an ex-
tended identifier.

t ADS - A FORTRAN Program for Automated Design Synthesis — Version 1.10, NASA
Contractor Report 177985, Grant NAG1-367, 1985 by G.N. Vanderplaats

The Optimize Statement 8-1

(design variables & constraints) section is one of the following:

1) a design variable declaration

2) a constraint declaration

3) A series of design variable declarations or con-
straint declarations separated by one or more carriage
returns.

o At least one design variable must appear in the
USE section. The exact syntax for both 1) and 2)
is given in sections 8.1 and 8.2 of this chapter.

(Options Section) contains the optional settings for the optimizer, al-

lows the user to specify a choice of optimization al-
gorithms, to normalize design variables, to request
output of optimization results, and to change default
parameters of the ADS optimization routine. The
optional settings are discussed in detail in section 8.3
of this chapter.

(SOL statements) consists of one or more SOL statements. The objec-

tive function, (minimized variable) , and constraint
functions are defined in this section.

The following restrictions apply to the OPTIMIZE statement:

1)
2)
3)
4)
5)
6)

7)

9)

The reserved word, OPTIMIZE and the (minimized variable) MUST appear
alone on the same line. If they will not fit on a single line, the continuation
symbol, &, must be used. For more information, see Chapter 2, section 2.4.

The reserved word, USE, must appear alone on a line.

The reserved words, END USE, must appear alone on the same line, and must
be separated by at least one space (i.e. ENDUSE is illegal).

The reserved words, END OPTIMIZE, must appear alone on the same line, and
must be separated by at least one space.

The (minimized variable) and the constraint variables (see section 8.2
which follows) MUST be initialized in the (SOL statements) section.

Design variables (see section 8.1 which follows) CANNOT be initialized or

altered in the (SOL statements) section.

Any legal SOL statement (See Chapter 6) can appear in the (SOL state-
ments) section.

) Note that other OPTIMIZE statements can appear to perform
nested optimizations.

The (minimized variable) MUST be a function of the design variables.
This function is specified in the (SOL statements) section of the OPTIMIZE
statement.

Values for the constraint variables MUST be specified in the { SOL state-
ments) section.

The Optimize Statement 8-2

The OPTIMIZE statement poses the optimization problem, “minimize the value of the
variable, (minimized variable) by varying the values of the design variables and satisfying
the constraints.” The description of an optimization problem with an OPTIMIZE statement
closely parallels the mathematical description of the problem, as seen in the following exam-

ple:

Example:
Mathematical description: SOL program:
Minimize: funct(x,y) OPTIMIZE funct
Subject to: USE
-20< <50 x = -1.2 IN [-20, 50]
0<y<10 y = 1 IN [0, 10]
constraint(z,y) =5 constraint .eq. 5
Where: END USE
funct(z,y) =10 % (y — 22)2 + (1 — z)? funct = 10%(y - x**2)%*2 + (1 - x)**2
constraint(z,y) = T *y constraint = x * y
END OPTIMIZE
. The (minimized variable) is known as the objective function, and it is a
function of the design variables. In the example above, the variable funct
represents the objective function of two design variables, x and y.
o Design variables are stated in the (design variables & constraints) section.

. By varying the values of the design variables, the value of the
objective function is also varied.

. Bounds on the values design variables can also be given to define
the range of possible values. In the example, x and y are stated
as bounded design variables.

. The OPTIMIZE statement includes initial values for the design
variables; the design variables of the example, x and y, are ini-
tialized to —1.2 and 1 respectively.

o Section 8.2 of this Chapter describes design variables in greater
detail.

) Constraints are stated in the (design variables & constraints section) .

Constraints provide additional criteria which must be satisfied, beyond the
goal of minimizing the objective function. For instance, we may want to
minimize the weight of an airplane wing, but with the constraint that the
wing cannot be too weak to withstand flight conditions. In the previous
example, a single variable constraint represents the constraint function.

° Like the objective function, constraints MUST be a function of
the design variables.

The Optimize Statement 8-3

o (ADVANCED MATERIAL) SOL constraint values are automati-
cally scaled by the SOL compiler and constraint values are stored
as a percentage of the constraint bound. If a particular constraint
bound is zero, that constraint is left unscaled (See Section 8.2.1
of this chapter for details).

* The functions computing the (minimized variable) and the constraints
MUST be stated in the (SOL statements) section.

The OPTIMIZE statement invokes the optimizer to solve the problem of minimizing the
(minimized variable) The optimizer automatically varies the values of the design variables,
increasing or decreasing the value of the (minimized variable) The optimizer finds the
values for the design variables which minimize the value of the (minimized variable) and
insures that all the constraints are satisfied. Some values for design variables may give a
mimimum value to the (minimized variable) , but are ruled out because all the constraints
cannot be satisfied with those values.

This Chapter is divided into the following sections:
1) Design Variable Declaration Syntax and Restrictions 8.1
2) Constraint Variable Declaration Syntax and Restrictions 8.2
3) Examples
4) The (options) section of an OPTIMIZE statement 83

8.1 DESIGN VARIABLE DECLARATIONS:

Design variable declarations, which appear in the (designs & constraints) section of
an OPTIMIZE statement, have the following syntax:

(design var) = (initial value) IN [(lower bound) , (upper bound)]

where:
(design var) is a legal SOL identifier, and CANNOT be an extended identifier.

(initial value) is an arithmetic expression. See Chapter 4, 4. 1 for more information
on arithmetic expressions.
(lower bound)

(upper bound) are either arithmetic expressions, or omitted. (they are optional;
both may appear, only one may appear, or neither may appear).

¢ A comma MUST separate the upper and lower bounds even
when one or both of the bounds is excluded.

The following restrictions apply to design variable declarations:

1) Design variable declarations MUST be separated from other design variable
declarations or constraint declarations by one or more carriage returns.

The Optimize Statement 84

2)

Variables that appear in arithmetic expressions of (lower bound), (initial
value) , and (upper bound) CANNOT be design variables. For example:

Legal Illegal
extravar = 1 extra_var = 1
OPTIMIZE mini OPTIMIZE mini
USE USE

x =1 IN [0, 2] x = 1IN [0, 2]

y = 1 IN [extra_var, extra.var + 4] y = 1IN [x, x + 4]
END USE END USE

3) The entire design variable declaration must appear alone on a single line. If
the declaration will not fit, then the continuation symbol & must be used.
For further details, see Chapter 2, section 2.4.

4) The following relationships must be true:

. (lower bound) < (initial value)

. (initial value) < (upper bound)

° (lower bound) < (upper bound)
If the relationships above do not hold, a RUNTIME error message will be
issued when your SOL program is executed. Such messages can only appear
at runtime because arithmetic expressions whose values are not known at
compile-time can be used for the bounds.

5) The (lower bound) and (upper bound) are calculated just once, in the
design variable declaration. Subsequent changes to the variables used in the
arithmetic expressions that compute the bounds will have no effect on the
values of (lower bound)} and { upper bound) .

6) It is illegal to alter or initialize a design variable inside an OPTIMIZE state-

7)

ment. (i.e. in the { SOL statements) part) The ADS optimizer controls the
values of design variables.

Design variables must have unique names; two CANNOT have the same
name nor can a design variable have the same name as a constraint.

8.2 CONSTRAINT DECLARATIONS:

The constraint declaration, which appears in the (designs & constraints) section of the
OPTIMIZE statement. has the following syntax:

{ constraint var) (relationship } (bound)

where:

(constraint var) is a legal SOL identifier, but CANNOT be an extended identifier.

The Optimize Statement 8-5

(relationship)} is one of the following:

.gt. means the value of (constraint_var) MUST be greater
than the value of (bound)

At. means the value of (constraint_var) MUST be less than
the value of (bound)

.eq. means the value of (constraint_var) MUST be equal to

the value of (bound)

(bound) is an arithmetic expression. See Chapter 4, section 4.1 for more
details on arithmetic expressions.

The following restrictions apply to the constraint declaration:

1) Constraint declarations MUST be separated from design variable declarations
and other constraint declarations by one or more carriage returns.

2) Variables which appear in the (bound) expression CANNOT be design
variables.

3) Variables which appear in the (bound) expression MUST be initialized
BEFORE the constraint declaration.

4) The entire constraint declaration must appear alone on a single line. If the

constraint declaration will not fit, the continuation symbol, &, must be used.
For further details, see Chapter 2, section 2.4.

5) The (constraint var) MUST be initialized inside the (SOL statements)
section of an OPTIMIZE statement, or a SOL error results.

6) A (constraint var) CANNOT be accessed before it is initialized.

7) Constraint variable names must be unique; two constraint variables CAN-
NOT have the same name nor can a constraint variable and a design variable
have the same name.

8.2.1 (ADVANCED MATERIAL) CONSTRAINT SCALING

SOL automatically scales constraint values as a percentage of the constraint limit (the

(bound)).

. The scaling is transparent to the user; only THE ACTUAL UNSCALED
values are output to the user from a SOL program. Scaled values are used
internally within the ADS optimizer.

. If a particular constraint limit is zero, then that particular constraint is left

unscaled.

The Optimize Statement 8-6

EXAMPLES:

The following example programs illustrate the OPTIMIZE statement and the declaration
of design variables and constraints. The examples are deliberately simplistic so that syntactic
and semantic details can be discussed without the complications of a a difficult optimization
problem.

Example 1:
OPTIMIZE area

USE
length = 5 IN [1, 10]
width =65 1IN [1, 10]
END USE

area = length * width
END OPTIMIZE
PRINT ’the length is :?, length
PRINT ’the widith is :?, width
PRINT ’the minimum area is :’, area

This example is trivial, but illustrative. The problem posed is to minimize the value of
the variable, “area.” Two design variables are provided, “length” and “width;” no constraints
are provided. The two design variables are bounded with a minimum value of one, and a
maximum value of 10. The functional model states that, “area equals length times width.”
The optimizer will vary the values of “length” and “width” until the minimum area is found.
In this case, the minimum area occurs when both the design variables are at minimum. Thus
when the OPTIMIZE statement ends, the three print statements will print the following: “1,”
“1,” and “1.”

Example 2:

OPTIMIZE area

USE
length = § IN [1, 10]
width 5 IN [1, 5]
diff .eq. 2.5

END USE
area = length * width
diff = length - width

END OPTIMIZE

H

PRINT ’the length is 17, length
PRINT ’the width is :?, width
PRINT ’the minimum area is :’, area

This example differs from the previous example in only one respect: the addition of the
constraint, “diff .eq. 2.5.” The “diff” is the difference between the “length” and “width” as
calculated by the statement, “diff = length - width.”

The “diff” constraint effectively limits the range of possible values for “length.” The
ADS optimizer makes the values of “length” and “width” as small as possible, to minimize
the “area.” However, when “width” has a minimum value of “1,” the “length” cannot be
less than approximately “3.5” or the “diff” constraint would not be satisfied.

In this example, the optimizer varies the values of “length” and “width,” minimizing
the “area” while at the same time satisfying the “diff” constraint. When the OPTIMIZE
statement ends, the three print statements will display the following: “1,” “3.4902,” and
“3.4902.”

The Optimize Statement 8-7

Note: The “diff” constraint is only approximately satisfied; the difference between
“length” and “width” is “2.5” in the exact solution. The variable, “diff,” only approximates
this exact value because the optimizer can only approximately satisfy constraints within
a certain level of tolerance. There is a default tolerance, and the SOL programmer can
adjust the tolerance through the (options) section. (See Chapter 8, section 8.3 for more
information on (options))

The level of tolerance acts regardless of the difficulty of the problem. A very complex
set of constraints from a difficult problem are satisfied with the same degree of precision
as an easy problem. The optimizer approximately satisfied the “diff” constraint with the
difference between the “length” and “width” equal “2.4902,” very close to the exact value
“2.5.”

The OPTIMIZE statement may also be used to maximize a value, by minimizing the
negative value. For example, the following simple OPTIMIZE statement maximizes the area
of a rectangle:

Example 3:
OPTIMIZE neg._area
USE
length = 5 IN [1, 10]
width = 6 IN (1, 10]
END

neg_area = -(length * width)
END OPTIMIZE
area = -neg_area

This concludes the OPTIMIZE statement examples. A more tutorial presentation with
examples appears in “The Sizing and Optimization Language, SOL -~ A Computer Language
for Design Problems,” NASA Technical Memorandum 100565, April 1988.

8.3 OPTIMIZE STATEMENT (OPTIONS SECTION) (ADVANCED MATERIAL)

The OPTIMIZE statement’s (options section) allows the user to:

1) choose from a variety of optimization algorithms 83.1
2) print initial, intermediate, and final results of an optimization . . 8.3.2
3) normalize design variables to between zero and one 8.3.3
4) change the default settings for the ADS optimizer routine used by SOL. 8.3.4
. The (options section) is optional; it need not appear in an OPTIMIZE

statement.

The Optimize Statement 8-8

When the (options section) appears, it has the following syntax:

OPTIONS

{ optional switches)

where:

(optional switches) is one or more of the following:

i.

1.

ii.

1v.

(strategy, optimizer, or search setting) This allows the user
to select from a variety of optimization algorithms; a detailed
description appears in section 8.3.1 of this chapter.

(print results request) is a request to print the initial, interme-
diate or final results of an optimization; a detailed explanation
appears in section 8.3.2 of this chapter.

normalize This setting automatically normalizes the design
variables, as described in section 8.3.3 of this chapter.

{ ADS parameter settings) These settings allow numerous val-
ues used by the ADS optimization routine, such as the constraint
tolerance settings, to be altered to customize the optimization
process. ADS provides default values, so that these control pa-
rameters need only be accessed when absolutely necessary The
details are provided in section 8.3.4 of this chapter.

Each of the (optional switches) MUST appear on a line alone,
separated from other optional switches by one or more carriage
returns.

For example, the following OPTIMIZE statement illustrates the use of the (options
section) to select an optimizer, strategy combination, normalize design variables, and output
some intermediate results (the design variable, constraint and SOL statement sections appear

as comments):
Example:

OPTIMIZE energy

USE
!

! Design variables and constraints would appear here

OPTIONS
optimizer

modified feasible directions

strategy = sequential quadratic

normalize

print everything every iteration

END USE

! equations would appear here

!
END OPTIMIZE

The Optimize Statement 8-9

The following rules apply to the (options section) :

1) The (optional switches) can appear in any order between the word OPTIONS
and the end of the USE section (indicated by the words END USE).

2) Any number of switches can be used.

° If a switch is repeated, the last value given is used by the opti-
mizer.

8.3.1 Strategy, optimizer and one-dimensional search settings (Advanced Material)

The strategy, optimizer and one-dimensional search settings can appear in the { OP-
TIONS) section of an OPTIMIZE statement. These settings allow the selection of an opti-
mization algorithm from those available within the ADS optimization software.

The strategy settings have the following syntax:
strategy = (strategy setting)
where:
(strategy setting) is one of the choices from table 8-1.
The optimizer settings have the following syntax:
optimizer = (optimizer setting)

where:

(optimizer setting) is one of the choices from table 8-2.
The one-dimensional search settings have the following syntax:
search = (search setting)
where:

(search setting) is one of the choices from table 8-3.

The tables that follow list the possible strategy, optimizer and one-dimensional search set-
tings:

The Optimize Statement 8-10

Table 8-1: Strategy settings:

Strategy Setting Strategy Used
None None, go directly to optimizer (Default Setting)
Exterior Penalty Sequential unconstrained minimization

using the exterior penalty function method.

Linear Penalty Sequential unconstrained minimization
using the linear extended interior penalty function method.

Quadratic Penalty Sequential unconstrained minimization
using the quadratic extended interior penalty function method.

Cubic Penalty Sequential unconstrained minimization
using the cubic extended interior penalty function method.

Lagrange Multiplier Augmented Lagrange Multiplier method.

Sequential Linear Sequential Linear Programming.

Inscribed Hyperspheres Inscribed Hyperspheres (Method of Centers)..
\ Sequential Quadratic Sequential Quadratic Programming.

Sequential Convex Sequential Convex Programming.

} Table 8-2: Optimizer settings:

Optimizer Setting Optimization Method Used

None None. Go directly to the one-dimensional search.
(This method should only be used for program development)

i Fletcher-Reeves Fletcher-Reeves algorithm for unconstrained minimization

DFP Davidon-Fletcher-Powell (DFP) variable metric method
for unconstrained minimization.

BFGS Broyer-Fletcher-Goldfarb-Shanno (BFGS) method for

unconstrained minimization. (Default: unconstrained problems)

Feasible Directions Method of Feasible Directions (MID) for
constrained minimization.

Modified Feasible Directions Modified Method of Feasible Directions for constrained
minimization. (Default: constrained problems)

The Optimize Statement 8-11

Table 8-3: One-dimensional search settings: t

One-d Search Setting Search Method Used

Golden Section Find the minimum using the Golden Section Method.

Golden Section + Interpolation Find the minimum using the
Golden Section method followed by polynomial interpolation

Find Bounds + Interpolation Find the minimum by first finding bounds and
then using polynomial interpolation. (Default Setting)

Interpolation/Extrapolation Find the minimum by polynomial interpolation/extrapolation
without first finding bounds on the solution.

SOL automatically supplies default settings for search, optimizer, and one-dimensional
search methods.

The default settings for constrained minimization are:

) Strategy = None
° Optimizer = Modified Feasible Directions
° Search = Find Bounds + Interpolation

The default settings for unconstrained minimization are:

° Strategy = None
o Optimizer = BFGS (Broyer-Fletcher-Goldfarb-Shanno).
° Search = Find Bounds + Interpolation

Recall that the (strategy, optimizer or search setting) appears within the (options
section) of an OPTIMIZE statement. The following example illustrates the use of these
settings:

OPTIMIZE weight

USE

! Design variables and constraints commented out
OPTIONS

strategy = Lagrange Multiplier

optimizer = DFP

search = Golden Section
END USE

! optimization body commented out
END OPTIMIZE

The Optimize Statement 8-12

As might be expected, not all combinations of strategy and optimizer settings are compat-

ible. Table 8-4 (paraphrased from “ADS — A FORTRAN PROGRAM FOR AUTOMATED
DESIGN SYNTHESIS — VERSION 1.10”, NASA Contractor Report 177985, Grant NAG1-
567, 1985 by G.N. Vanderplaats) identifies meaningful combinations of these two options:

Table 8-4: Meaningful Option Combinations:

Optimizer
Strategy Fletcher-Reeves DFP BFGS FD Modified FD
None X X X X X
Exterior Penalty X X X 0 0
Linear Penalty X X X 0 0
Quadratic Penaly X X X 0 0
Cubic Penalty X X X 0 0
Lagrange Multiplier X X X 0 0
Sequential Linear 0 0 0] X X
Inscribed Hyperspheres 0 (o] 0 X X
Sequential Quadratic 0 0] X X
Sequential Convex 0 0 0 X X
° The table pairs strategies with the optimizer selections.
. In this table, “X” denotes an acceptable strategy and optimizer combination.
) The appropriate (constrained or unconstrained) one-dimensional search is

selected automatically.

8.3.2 OuTPUT OF OPTIMIZATION RESULTS

SOL provides statements to request printing of the values of the objective function,
design variables, constraints, and termination criteria at user-selected points during the
optimization process. These (print results request) are placed in the OPTIONS section of
an OPTIMIZE statement.

o The output produced by SOL (print results request) is integrated with
SOL’s OPTIMIZE statement.
. Although an output capability already exists within ADS, by default SOL

suppresses the ADS output.

) The ADS output can be accessed via the IPRINT parameter sctting, outlined
in section 8.3.4 of this chapter.

. By default, the final values of the objective function, design variables, and
all constraints are displayed at the termination of the optimization process.

The remainder of this section is divided in two parts:

I. discusses the syntax of the (print results request } that appears in the
OPTIONS section.
II. discusses the format of the output display produced by a print results request.

The Optimize Statement 8-13

I. PRINT STATEMENTS FOR OUTPUT OF OPTIMIZATION RESULTS
A (print results requests) has the following syntax:
PRINT (optim value) (time)

where:

(optim value) is the optimization result to be printed, and can be one of the fol-

lowing:

objective

design variables
violated constraints
active constraints
constraints

termination criteria

everything

nothing

print the value of the objective function, the { minimijzed
variable) .

print the values of the design variables.

print the values of violated constraints only.

print the values of active and violated constraints only.
print the values of all contraints.

print values of the internal ADS optimization software vari-
ables used to terminate the optimization; primarily usetui
to the knowledgable user of ADS.

print the current values of the objective function, design
variables, constraints, and termination criteria.

negates ALL current print requests, including the default
settings. The (time) parameter CANNOT appear with
this setting.

(time) specifies when to print during the optimization process.

initially

at termination

The (time) parameter is optional; it need not appear. When
the (time) does not appear, the given { optim value) prints

when the optimization ends (i.e. at termination).

The (time) can be either a print time, or a series of print
times separated by commas. If a series will not fit on a single
line, the continuation symbol, &, must be used.

A print time is one of the following:

(nothing). When the (time) does not appear, the
given (optim value) prints when the optimization
ends (i.e. at termination).

print the value(s) for (optim value) at the start of
the optimization process.

print value(s) for (optim value) when optimization
ends.

every (expr) search step print the value(s) for (optim value) on the (expr)

The Optimize Statement 8-1/

h iteration at the one-dimensional search level.

o The (expr) parameter is an optional SOL expres-
sion, just as in the case of optimizer/strategy iteration
and is described in the next example).

every (expr) iteration print the value(s) for (optim value) on the (expr)

th iteration at either the strategy or optimizer level.

o If a strategy is used, printing occurs at the strategy
level, otherwise printing occurs at the optimizer level.

o The (expr) parameter optional. If the (expr)
parameter is not used, printing occurs on every itera-
tion.

e When the (expr) parameter appears it is a SOL
arithmetic expression (See Chapter 4, section 4.1.1).

e For exampleif no strategy is selected, print objec-
tive every 2 iteration specifies printing the value
of the objective function at every 2"? iteration of the
optimizer.

e print objective every 2/a iteration, where
2/a = 4.7 at the time of the print request, specifies
printing the value of the objective every 4th iteration
of the optimizer.

¢ The (expr) parameter is only evaluated once
(before the iterative optimization process begins) and
REAL values are truncated as in the last example above.

MULTIPLE PRINT REQUESTS:

EXAMPLES:

Print requests are USUALLY cumulative, with each print request being added
to all previous print requests for that particular (optim value) .

HOWEVER, some print requests SUPERCEDE previous print requests. For
example:

PRINT violated constraints every iteration, at termination
PRINT constraints at termination

will result in the violated constraints being printed every iteration, but
all constraints will be printed at termination because of the second re-
quest, which supercedes the previous request that only violated constraints
be output.

When print requests contradict each other, the most recent request su-
percedes all others.

The example which follows illustrates the use of print requests to output optimization
results, with parts of the OPTIMIZE statement omitted and line numbers displayed for clarity:

The Optimize Statement 8-15

Example:

0 : OPTIMIZE weight

1 : USE

2 : ! Design variables and constraints would appear here
3 : OPTIONS

4 : print objective initially, every iterationm,

5 : & every search step

6 : print design variables every iteration

7 : print everything at termination

8 : END USE

9 : ! The rest of the optimization statement goes here
10: END OPTIMIZE

The print requests appear on lines 4-7.

° The print request that begins on line 4 illustrates the use of commas and a
continuation symbol to specify a number of print times with a single print
request.

) The (minimized variable) is weight (line 0), so that weight is the objective

function and the print request on line 4 will display the value of weight.

° The print request on line 7 is nearly superfluous, as the final values of the
objective, design variables and constraints are printed by default.

II. FORMAT OF OPTIMIZATION RESULTS QUTPUT

e The format of the output produced by SOL print requests is integrated with
SOL language statements.
o The format consists of a title header followed by one or more of the following:
i. the value of the objective;
ii. the values for all design variables;
iii. the values for all or selected constraints;
iv. the values for the appropriate termination criteria variables.

Caveat: Values displayed at the strategy, optimizer, and one-dimensional search level
are sometimes “incorrect.” This is because the ADS optimization software uses scaled and/or
normalized values at these levels. While the SOL output corrects for such scaling, the
correction logic is immature and scaled and/or normalized values are occasionally displayed
for the objective and constraints. The output format in no way affects the optimization
process itself, and in any event the final values displayed are always correctly unscaled and
denormalized. If this correction is not desired, the values internal to ADS are visible through
the use of the ADS parameter IPRINT as discussed in section 8.3.4 of this chapter.

Each part of the format is discussed subsequently, and an example of the output format
follows this discussion.

TITLE HEADER

The title header indicates the current point in the optimization process. The possible
headers and associated points in the optimization process are as follows:

OPTIMIZATION INITIAL VALUES
Initial values at start of optimization process; initially setting.

The Optimize Statement 8-16

OPTIMIZATION FINAL VALUES

Final values at the end of the optimization process; at termination setting.
OPTIMIZATION ONE-D SEARCH STEP (no)

Values at the one dimensional search level; every search step setting.
OPTIMIZATION ITERATION NUMBER (no)

Values at the optimizer level; every iteration setting. The actual iteration number
is also displayed.
STRATEGY LEVEL ITERATION NUMBER (no)

Values at the strategy level; every iteration setting when a strategy option has
been selected. The actual iteration number is also displayed.
FINAL ITERATION NUMBER (no)

This header is displayed at either the optimizer or strategy level just before termi-
nation; every iteration setting.

OBJECTIVE FUNCTION OUTPUT

The format for the objective function consists of the name of the SOL variable repre-
senting the objective, followed by an equals sign, = , followed by the current value of the
objective. The value displayed is the current value being used by the ADS software.

Caveat: Objective function values from the strategy, optimizer, or one-dimensional
search level are not always DISPLAYED “correctly,” especially when cquality constraints
are used. The ADS software’s internal representations of the objective are occasionally
displayed, due to the immaturity of SOL’s output formatting. This does not affect the
optimization process and the final values are always correctly displayed.

DESIGN VARIABLES OUTPUT

The format for the design variables consists of the header Design Variables Output
followed by a tabular listing. Each table row consists of the name of the design variable, its
current value, and its bounds. In addition if a variable is at a bound, an exclamation point
is displayed at the far right of the row. Unlike the objective and constraints, the “correct”
values for the design variables are always displayed.

CONSTRAINTS OUTPUT

The format for the constraints consists of the header Constraints Output followed by
a tabular listing. Each table row consists of the name of the constraint, its current value, the
type of constraint (>, <, or =), its limit, and its current status (active, violated or satisfied).

Caveat: As with the objective function, values for the constraints are occassionally
“incorrect,” at the strategy, optimizer, or one-dimensional search level, as the ADS software’s
internal representations are sometimes displayed due to the immaturity of SOL’s formatting.
This does not affect the optimization process, and the final values are always correctly
displayed.

TERMINATION CRITERIA OUTPUT

The termination criteria output simply displays the current values of the internal ADS
variables and appropriate messages. This output option is primarily useful to the knowl-
edgable user of ADS. The termination criteria format consists of the header termination

criteria, followed by the appropriate values and messages. If none of the termination
criteria are met, the header appears alone. The following are possible messages:

° Maximum number of iterations exceeds/equals followed by the number
of optimizer or strategy iterations and the maximum allowable iterations.

The Optimize Statement 8-17

° Absolute convergence criteria is satisfied followed by the current
convergence criteria values.

. Relative convergence criteria is satisfied followed by the current
convergence criteria values.

) Kuhn Tucker Conditions are satisfied

° Kuhn Tucker Parameter followed by the parameter value, <= | followed by
the parameter limit.

° Maximum K-T Residual followed by the residual value, <= | followed by the
limit.

° Penalty exceeded limit followed by the penalty, >= | followed by the limit.

° Penalty below limit followed by the penalty, <= , followed by the limit.

. Kuhn Tucker Parameter followed by the parameter value, >= , followed by
the parameter limit.

° S vector value followed by the search vector value, <= , followed by the
limit.

EXAMPLES:

The following is an example of optimization output produced by a print request. The
title header indicates that the final results (at termination) are being displayed. Note the
exclamation point at the far right of the design variable inlet_pressure indicating it has
reached its bounds.

The Optimize Statement 8-18

Example:

R RERERERRE R R R SRR S kh ke bbbk bbb kb b h kb ke kbR bk k ke hkk

¢ OPTIMIZATION FINAL RESULTS *
SREEXRARREER RS SEERREERRRRERRRRREB SR RRE kR R KRR B RRRk Kk

O0BJ_FLOWRATE 2.68346

##% DESIGN VARIABLES OUTPUT *#*
SERERRARERERRERRRN R RS SRR KRRk RRK

DESIGN VARIABLE CURRENT VALUE BOUNDS

i PANEL_FLOWRATE = 2.6835 IN [2.500 » 10.00]
INLET_PRESSURE = 4500 IN [1200. , 4500. PR
PIN_H_O_D_PANEL1 = 1.0872 IN [0.2000 , 6.000]

1
! *x% CONSTRAINTS OUTPUT #*##*
EEERRRRRERRRSRRRRRR KA R RERE

CONSTRAINT NAME VALUE TYPE LINIT STATUS
PINSTRESS_PAKEL1 0.11436E-01 < 1.0000 SATISFIED
MICROWIDTH_PANEL1 0.54095E-02 > 0.50000E-02 ACTIVE
GAS_P_OUT -0.97474E+06 > 600.00 VIOLATED

8.3.3 NORMALIZATION OF DESIGN VARIABLES

Design variables can be automatically normalized to the range 0. ..1 with the normalize
directive, which can only appear in the OPTIONS section of an OPTIMIZE statement. The
normalize directive has the following syntax:

normalize
The following equation was used for normalization. A design variable, dv = x IN |
lower, upper |, is mapped to a new value,dv = x' IN [0 , 1] where:

| o= (z — lower)

"~ (upper — lower)
For normalization to work properly, the following restrictions must be met:
1) The design variable’s lower bound MUST be less than the upper bound.
2) The design variable’s initial value, z, must be within the range:
lower < z < upper.
. Runtime error checking ensures the previous two conditions above are met.

3) Lower and upper bounds MUST be given or a SOL error results.

| The Optimize Statement 8-19

8.3.4 ADS PARAMETER SETTINGS

The ADS optimization software provides numerous parameters which can be set by
the user to change the optimization process. These parameters can be set from within a
SOL program, in the OPTIONS section of an OPTIMIZE statement. The parameter setting

commands have the following syntax:
(id) = (expr)

where:
(id) is a legal SOL identifier, and must be one of the ADS parameter
names. (See table 8-5 that follows for parameter names).
(expr) is an arithmetic expression. See Chapter 4, section 4.1.
° One or more of these ADS parameter setting commands can appear between
the word OPTIONS and the end of the OPTIMIZE USE section.
) The (id) identifies the ADS parameter, and the (expr) identifies the new

value for that parameter.

The following OPTIMIZE statement fragment illustrates the use of the OPTIONS section to
change the values of the ALAMDZ and IPRINT ADS parameters:

Example:
OPTIMIZE min.var
USE
x = 1IN [2, 8]
OPTIONS
ALAMDZ = 0.002
IPRINT = 1111
END USE

All ADS parameter information given originates in “ADS — A FORTRAN PROGRAM
FOR AUTOMATED DESIGN SYNTHESIS — VERSION 1.10”, NASA Contractor Report
177985, Grant NAG1-567, 1985 by G.N. Vanderplaats.

The tables that follow list the possible ADS parameter names, the meaning of the pa-
rameters, and the default settings of the parameters

D) The ISTRAT, IOPT and IONED parameters control the strategy, optimizer,
and one dimensional search settings respectively (Discussed in section 8.3.1
of this chapter, tables 8-1, 8-2, and 8-3.) There should be no reason to use
these three parameters since the SOL settings can be used to select strategy,
optimizer, and one-dimensional search algorithms.

Table 8-5: Optimization Parameters:
ALAMDZ Initial estimate of the Lagrange Multipliers in the Augmented Lagrange
Multiplier Method.

BETAMC Addditional steepest descent fraction in the method of centers. After moving
to the center of the hypersphere, a steepest descent move is made equal to
BETAMC times the radius of the hypersphere.

CTMIN Minimum constraint tolerance for nonlinear contraints. If a constraint is
more positive than CTMIN, it is considered to be violated.

The Optimize Statement 8-20

DABALP

DABOBJ

DABOBM

DABSTR
DELALP

DELDBJ

DELOBM

DELSTR

DLOBJ1

DLOBJ2

DX1

DX2

EPSPEN

EXTRAP

FDCH
FDCHM

GMULTZ
ICNDIR

Absolute convergence criteria with one-dimensional search when using the
Golden Section Method.

Maximum absolute change in the objective between two consecutive itera-
tions to indicate convergence in optimization.

Absolute convergence criterion for the optimization subproblem when using
sequential minimization techniques.

Same as DABOBJ, but used at the strategy level.

Relative convergence criteria for the one-dimensional search when using the
Golden Section method.

Maximum relative change in the objective between two consecutive iterations
to indicate convergence in optimization.

Relative convergence criterion for the optimization subproblem when using
sequential minimization techniques.

Same as DELOBJ, but used at the strategy level.

Relative change in the objective function attempted on the first optimiza-
tion iteration. Used to estimate initial move in the one-dimensional search.
Updated as the optimization progresses.

Absolute change in the objective function attempted on the first optimiza-

tion iteration. Used to estimate initial move in the one-dimensional search.
Updated as the optimization progresses.

Maximum relative change in a design variable attempted on the first opti-
mization iteration. Used to estimate the initial move in the one-dimensional
search. Updated as the optimization progresses.

Maximum absolute change in a design variable attempted on the first opti-
mization iteration. Used to estimate the initial move in the one-dimensional
search. Updated as the optimization progresses.

Initial transition point for extended penalty function methods. Updated as
the optimization progresses.

Maximum multiplier on the one-dimensional search parameter, ALPHA in
the one-dimensional search using polynomial interpolation/extrapolation.

Relative finite difference step when calculating gradients.

Minimum absolute value of the finite difference step when calculating gradi-
ents. This prevents too small a step when a design variable is near zero.

Initial penalty parameter in Sequential Quadratic Programming.

Restart parameter for conjugate direction and variable metric methods. Un-
constrained minimization is restarted with a steepest descent direction every
ICNDIR iterations.

The Optimize Statement 8-21

IPRINT

ISCAL

ITMAX
ITRMOP

ITRMST

JONED

JTMAX
PMULT
PSAIZ

RMULT

RMVLMZ

A four digit print control. IPRINT =IJKL where 1,J,K and L have the follow-
ing definitions.

I ADS system print control:

0 — No print.

1 — Print initial and final information

2 — Same as 1 plus parameter values and storage needs.

3 — Same as 2 plus scaling information calculated by ADS.

J Strategy print control.
0 — No print.

1 — Print initial and final optimization information.
2 — Same as 1 plus OBJ and X at each iteration.
3 — Same as 2 plus G at each iteration.
4 — Same as 3 plus intermediate information.
5 — Same as 4 plus gradients of contraints.
K Optimizer print control.
0 — No print.
1 — Print initial and final optimization information.
2 — Same as 1 plus OBJ and X at each iteration.
3 — Same as 2 plus constraints at each iteration.
4 — Same as 3 plus intermediate optimization and one-d search infor-
mation.
5 — Same as 4 plus gradients of constraints.
L One-dimensional search print control.
0 — No Print.
1 — One-dimensional search debug information.
2 — More of the same.

Scaling parameter. If ISCAL=0, no scaling is done. If ISCAL=1, the design

variables, objective and constraints are scaled automatically.
Maximum number of iterations allowed at the optimizer level.

The number of consecutive iterations for which the absolute or relative con-
vergence criteria must be met to indicate convergence at the optimizer level.

The number of consecutive iterations for which the absolute or relative con-
vergence criteria must be met to indicate convergence at the strategy level.

The one-dimensional search parameter (IONED) to be used in the Sequential
Quadratic Programming method at the strategy level. '

Maximum number of iterations allowed at the strategy level.
Penalty multiplier for equality constraints when 10PT=4 or 5.

Move fraction to avoid constraint violations in Sequential Quadratic Pro-
gramming.

Penalty function multiplier for the exterior penalty function method. Must
be greater than 1.0.

Initial relative move limit. Used to set the move limits in squential lin-
ear programming, method of inscribed hyperspheres and squential quadratic
programming as a fraction of the value of a design variable.

The Optimize Statement 8§-22

RP

RPMAX

RPMULT
RPPRIM
RRPMIN
SCFO

SCLMIN
STOL

THETAZ
XMULT

ZRO

Initial penalty parameter for the exterior penalty function method or the
Augmented Lagrange Multiplier method.

Maximum value of RP for the exterior penalty function method or the Aug-
mented Lagrange Multiplier method.

Multiplier on RP for consecutive iterations.
Initial penalty parameter for extended interior penalty function methods.
Minimum value of RPPRIM to indicate convergence.

The user-supplied value of the scale factor for the objective function if the
default or calculated value is to be over-ridden.

Minimum numerical value of any scale factor allowed.

Tolerance on the components of the caluculated search direction to indicate
that the Kuhn-Tucker conditions are satisfied.

Nominal value of the push-off factor in the Method of Feasible Directions.

Multiplier on the move parameter, ALPHA, in the one-dimensional search
to find bounds on the solution.

Numerical estimate of zero on the computer. Usually the default value is
adequate.

The following table gives the default values for the switches listed above.

The Optimize Stalement 8-23

Table 8—6: Optimizer Switch default values.
f0 = the value of the objective with internal design variables equal zero.
NDV = the number of design variables.

Switch Name Default Value

ALAMDZ 0.0
BETAMC 0.0

CT —0.03 (If IOPT=4, CT =——0.1)
CTMIN 0.01
DABALP 0.0001 (If IONED=3 or 8, DABALP=0.001)
DABOBJ ABS(fO)/lOOO
DABOBM ABS(fO)/500
DABSTR ABS(fO)/lOOO
DELALP 0.005 (If IONED=3 or 8, DELALP=0.05)
DELOBM 0.01
DELSTR 0.0001
DLOBJ1 0.1
DLOBJ2 1000.0

DX1 0.01

DX2 0.02
EPSPEN -0.05
EXTRAP 5.0

FDCH 0.01
GMULTZ 10.0
ICNDIR ndv+1
IPRINT 1000

ISCAL 1

ITMAX 40
ITRMOP 3
ITRMST 2

JONED IONED
JTMAX 20

PSAIZ 0.95

PMULT 10.0

RMULT 5.0
RMVLMZ 0.2 (If ISTRAT=9, RMVLMZ=0.4)

RP 20.0

RPMAX 1.0E+10
RPMULT 0.2
RPPRIM 100.0
RRPMIN 1.0E-10
SCFO 1.0
SCLMIN 0.001

STOL 0.001
THETAZ 0.1

XMULT 2.618034

ZRO 0.00001

For further information about the use of these optimization switches, see “ADS—A
FORTRAN PROGRAM FOR AUTOMATED DESIGN SYNTHESIS - VERSION 1.10”,
NASA Contractor report 177985, Grant NAG1-567, 1985 by G.N. Vanderplaats.

The Optimize Statement 8-24

Chapter 9

Subroutines

Typically, a programming task can be decomposed into a number of simpler subproblems.
Solutions to the subproblems are then combined to solve the main problem. In SOL, each
subproblem can be coded as a subroutine.

A SOL subroutine consists of the following:

A subroutine name;
Zero or more independent parameters (input parameters);

° Independent parameters specify variables which will be used, but
NOT ALTERED by the subroutine.

Zero or more dependent parameters (output parameters);

. Dependent parameters specify variables which will be altered or
initialized by the subroutine.

optional declarations to be used within the subroutine;
A body of code that performs the subroutine’s action;

In this way, a subroutine associates a name, with a set of parameters and a
body of statements.

To use a subroutine in a SOL program, do these three things:

1)

2)

3)

Declare the subroutine in the main program declaration section. This step
is detailed in Chapter 5, section 5.2, and in section 9.1.1 of this chapter.

Implement the subroutine in the subroutine implementation section of your
SOL program. More details on subroutine implementation can be found in
section 9.1.2 of this chapter.

Use a subroutine call statement to invoke the subroutine. A detailed discus-
sion of the subroutine call statement can be found in Chapter 6, section 6.7,
and in section 9.1.3 of this chapter.

This chapter is divided into three sections:

9.1 — Discusses subroutine declaration, implementation and calls.
9.2 — Discusses subroutine parameter passing conventions in detail.
9.3 — Discusses the scope rules that apply to subroutines.

Subroutines 9-1

9.1 SOL SUBROUTINES: DECLARATION, IMPLEMENTATION, AND CALLS

A SOL subroutine consists of three main elements:

1) Declaration:

. The declaration that appears in the main program gives the sub-
routine name, and describes input/output behavior in terms of
dependent and independent parameters. The SOL compiler car
then check subroutine calls in the main program or subroutice im-
plementations, and compare these calls against the corresponding
declarations to insure the same number and type of parameters
are supplied.

2) Call:

. The subroutine call allows you to invoke a subroutine, and sup-
ply it with ACTUAL parameters. The subroutine returns values
in the variables supplied as dependent parameters, by perform-
ing its action using the values of variables passed as independent
variables. The SOL compiler insures that the correct number and
type of variables are supplied as parameters. At runtime, if the
call matches the declaration, the code provided in the subrou-
tine’s implementation will be executed. Once the subroutine call
completes, the statement after the subroutine call is executed.

3) Implementation:

. The subroutine implementation states the name of the subrou-
tine, the dependent FORMAL parameters and the independent
FORMAL parameters. The implementation MUST mirror the
number, order, and types of parameters specified in the decla-
ration section. The name of the subroutine must also be the
same. The implementation supplies the code that will perform
the subroutine’s action. The dependent variables must be al-
tered or initialized in this code, but error-checking insures that
the independent parameters cannot be altered.

This section is further divided into the following subsections detailing the elements of sub-

routines:
1) Subroutine declaration 911
2) Subroutine implementation 912
3) Subroutinecalls 913

Subroutines 9-2

9.1.1 SUBROUTINE DECLARATION

All SOL subroutines must be declared in the declaration section of the main program.
A subroutine declaration has the following syntax:

SUBROUTINE ((dependentlist)) = (routine name) ((independent list))

where:

(dependent list) is a parameter list consisting of one of the following:

1) Nothing, an empty list
2) A single identifier representing a parameter

e Assumed to be of type REAL.

3) An identifier followed by a colon, and then a type name:
REAL, INTEGER or LOGICAL.

4) A list of 2)’s or 3)’s or some combination of both, sepa-
rated by commas.

| (routine name) is the name of the subroutine.

e It CANNOT be an extended identifier, see Chapter 2,
section 2.4 or Chapter 7, section 7.1.2.

e You cannot use the subroutine name as the name of other
SOL variables.

(independent list) is syntactically the same as a (dependent list)
This syntax is also outlined in Chapter 5, section 5.2.

9.1.2 SUBROUTINE IMPLEMENTATION

| A subroutine performs action. When you implement a subroutine, you do the following:

° Specify what action will be performed by the routine.

° Specify parameters will be used by the subroutine. In implementing a sub-
routine, only FORMAL parameters are specified.

Formal parameters are like variables in a formula; they are filled in later with specific
values. When a subroutine is invoked by a subroutine call, the FORMAL input parameters
are filled in with ACTUAL input parameters, and the subroutine’s action is performed. This
topic is discussed in greater detail in section 9.2 of this chapter. All SOL subroutines must
be implemented in the subroutine implementation section that follows the main program.

Subroutines 9-8

A subroutine implementation has the following syntax:

SUBROUTINE ((dependent list)) = (routine name) ((independent list))
(optional declaration)
(subroutine body)

END (name)
- where:

(dependent list) is a parameter list, as outlined section 9.1.1 of this chapter,
and represents the subroutine’s formal dependent paraine-
ters.

"

(routine name) is a legal SOL identifier, and is the name of the subroutine.
e cannot be an extended identifier, see restriction 6) as
follows.

(independent list) is a parameter list, as outlined in section 9.1.1 of this chapter,

and represents the subroutine’s formal independent parame-
ters.

(optional declaration) is a SOL subroutine declaration section. The syntax for a

declaration section is given in detail in chapter five. The
subroutine declaration section shares an identical syntax with
the main program declaration section with one exception:

e no subroutines may be declared in the declaration section
of a subroutine implementation.

(subroutine body) is one or more SOL statements. Empty statements and blank

lines can appear.

The following restrictions apply to subroutine implementations:

1)

o
SN—

7)

The subroutine { routine name) MUST be identical to the name declared in
the main program declaration section.

The (dependent list } MUST be identical, in terms of type, number and
order, to the dependent parameters declared in the main program declaration
section, .

The (independent list) MUST be identical, in terms of type, number and or-
der, to the independent parameters declared in the main program declaration
section, .

A subroutine CANNOT alter the values of its independent parameters or a
SOL error will result.

A subroutine MUST initialize its dependent parameters or a SOL error will
result.

The subroutine (routine name) cannot be an extended identifier. See
Chapter 2, section 2.4 or Chapter 7, section 7.1.2 for details on extended
identifiers.

The names of all formal parameters must be unique.

Subroutines 9-4

8)

A subroutine’s body can only access variables initialized within the subrou-
tine, or passed as parameters. Section 9.3 of this chapter explores scope rule
restrictions in greater detail. Parameters are discussed in section 9.2 of this
chapter.

When a subroutine is invoked by subroutine call:

Formal independent parameters are initialized with actual parameter values
before the subroutine’s statements are executed.

The statements in the subroutine implementation are executed.

Formal dependent parameters are initialized by the subroutine statements.

When the execution of the subroutine statements is completed:

the subroutine ends and the formal dependent parameters return their values
to the actual dependent parameters.

9.1.3 THE SUBROUTINE CALL

A subroutine is executed as a result of a subroutine call. The call consists of:

the subroutine name

the actual independent and dependent parameters.

The syntax for a subroutine call is:

((dependent parameters)) = (routine name) ((independent parameters))

For Example, the following are syntactically legal SOL subroutine calls:

1)
2)
3)

(a, b, ¢c) = sub_one()
(a) = sub2(b, c)
() = empty_parameter_sub()

Chapter 6, section 6.7 offers a detailed discussion of the specific syntax of
the subroutine call, detailing the syntax for the parameters and so on.

The following restrictions apply to subroutine calls:

1)

2)

If the subroutine declaration and subroutine implementation have parame-
ters, the same number and type of parameters MUST be supplied when the
routine is called.

If no parameters are specified in the declaration and implementation, then
parameters CANNOT be supplied with the subroutine call.

SOL does not have recursion: SOL subroutine’s should not call themselves.
Furthermore, SOL subroutines should not call themselves indirectly, by call-
ing another subroutine, or series of subroutines that eventually call the first
routine.

. The SOL compiler does NOT catch this error.

Subroutines 9-5

YA

The parameters supplied when calling a subroutine are referred to as AC-
TUAL parameters, to differentiate them from the FORMAL parameters
specified by the subroutine declaration and implementation.

The number and type of ACTUAL parameters MUST be the same as the
number and type of FORMAL parameters (given in the subroutine declara-
tion and implementation) or compile-time errors occur.

9.2 SUBROUTINE PARAMETERS

The parameters specified by the subroutine implementation are called the FORMAL
parameters. The parameters given in a subroutine call are called the ACTUAL parameters.
This distinction is explained in the three sections that follow:

9.2.1 - Discusses FORMAL parameters.
9.2.2 ~ Discusses ACTUAL parameters
9.2.3 - Discusses the association between FORMAL and ACTUAL parameters.

9.2.1 FORMAL PARAMETERS

A FORMAL parameter represents a local variable within the subroutine. These FOR-
MAL parameters representing local variables can be accessed by the code that performs the
subroutine’s action, given in the subroutine implementation.

In this way, a FORMAL parameter acts like a variable in a formula. For example,
f(z) = 2z + 1. The variable z is the FORMAL parameter; it designates a “blank” which is
filled in later with an actual value. The actual values for FORMAL parameters are supplied
when the subroutine is called.

There are two types of FORMAL parameters: independent and dependent, which are
discussed in the two sections that follow.

9.2.1.1 Formal Independent Parameters

A FORMAL independent parameter represents a local variable within the subroutine
implementation. An actual parameter is passed to the subroutine when it is called. The
subroutine associates the VALUE of the actual parameter with the FORMAL independent
parameter. The details on this association are supplied in section 9.2.3 of this chapter.

The following restrictions apply to INDEPENDENT parameters:

1)

2)
3)

A subroutine cannot alter the value of a formal independent parameter.
Thus, attempting to assign a value to a formal independent parameter is an
error.

A subroutine CAN access the value of a formal independent parameter.

FORMAL INDEPENDENT parameters are INITIALIZED at the start of
the subroutine implementation. (A very important fact, as in the following
examples.)

Subroutines 9-6

4) The parameter names must be unique; no two parameters can have the same
name.

Thus, the rule to remember about formal independent parameters is:

° “Use but do not Alter.”

EXAMPLES:

The following sample subroutines illustrate legal and illegal usage of FORMAL indepen-
dent parameters:
Example 1:

SUBROUTINE (a) = example_1i(b, c)

! a is a formal dependent, b and ¢ are formal
! independent parameters

12« b + ¢
12
END example_1

a
[+

[LI]

° The line, ¢ = 12, is ILLEGAL because it assigns a value to an formal inde-
pendent parameter and a compilation error results.

Example 2:
SUBROUTINE (a) = example_2(b, c)

! a is a formal dependent, b and c are formal
! independent parameters

a=12*b + ¢
IF a .gt. 12 THEXK
¢ =12
END IF
END example_2

. The line, ¢ = 12, is ILLEGAL. Recall that FORMAL independent parame-
ters are initialized at the start of the subroutine implementation. Thus, c is
initialized before the start of the IF statement, and the assignment within the
IF statement is NOT to a local variable, ¢, but to the formal independent
parameter. See Chapter 6, section 6.3.1 for details of IF statement scope
rules.

Example 3:
SUBROUTINE (a) = example_3(b, c)

! a is a formal dependent, b and ¢ are formal
! independent parameters

a=12* Db+ ¢
END example_3

Subroutines 9-7

. This example is perfectly legal, as neither of the formal independent param-
eters have their values altered.

9.2.1.2 Formal Dependent Parameters

A formal dependent parameter represents a local variable within the subroutine. An
actual parameter is associated with the formal dependent parameter when the subroutine
is called. A value for the actual dependent parameter is returned by the formal dependent
parameter when the subroutine ends. The details on this association are supplied in section
9.2.3 of this chapter.

The following restrictions apply to FORMAL DEPENDENT parameters:

1) A subroutine MUST initialize all FORMAL dependent parameters. Failing
to assign a value to a FORMAL dependent parameter is an error.

2) A subroutine can access the value of a FORMAL dependent parameter, but
only after it has been initialized within the subroutine.

3) The formal parameter names must be unique.

The subroutine directly accesses the actual parameter corresponding to the FORMAL
dependent parameter. The FORMAL dependent parameters return the results of the sub-
routine’s action; you MUST assign a new value to all FORMAL dependent parameters or a
compile-time error will result.

EXAMPLES:

The following sample subroutines illustrate legal and illegal usage of formal dependent
parameters.
Example 1:

SUBROUTINE (a, b) = example_1i(c)

! a and b are formal dependent, c is a formal
! independent parameter

a=10.24 * ¢
bad_try = a + b
END example_1

° The formal dependent parameter, b, is never initialized. This is an error.

) Thelinebad_try = a + bis ILLEGAL. Because b is not initialized, it cannot
be used in an arithmetic expression. The SOL compiler issues a compile-time
error message.

Subroutines 9-8

Example 2:
SUBROUTINE (a, b) = example_2(c)

! a and b are formal dependent, ¢ is a formal
! independent parameter

a=12 + ¢
IF a .gt. 12 THEN
b =12
END IF
END example_2

. The formal dependent parameter, b, is never initialized. The line, b= 12
appears inside the THEN part of an IF statement, with no assignment to
b in a corresponding ELSE part. Therefore, only a local variable, not the
formal dependent parameter, is initialized. See Chapter 6, section 6.3.1 for
more information on IF statement scope rules.

Example 3:
SUBROUTINE (a, b) = example_3(c)

! a and b are formal dependent, ¢ is a formal
! independent parameter

b 6
a 12 = b + ¢
END example_3

This example is LEGAL. Both formal dependent parameters are initialized.

9.2.2 ACTUAL PARAMETERS

ACTUAL parameters are named when a subroutine is called. Earlier, it was stated that
a FORMAL parameter was analagous to a variable in a formula, e.g., f(z) = 2z + 1.

. The variable z, is the FORMAL parameter which designates a “blank” to be
filled in later.
. The actual value that fills in z is analgous to an actual parameter, e.g., {(2)

and f(6) have 2 and 6 as actual independent parameters for x.

° The actual parameters for subroutines are given when the subroutine is called.
The following restrictions apply to ACTUAL parameters:

1) ACTUAL parameters MUST be variables; they CANNOT be subroutine
calls, or literal values (e.g., .true. or 6) For example, in our y = f(z)

analogy, it is ILLEGAL to say f(2). Rather, we might say, q = 2, y = f(q).)

Subroutines 9-9

2) There is a one-to-one relationship between ACTUAL parameters and FOR-
MAL parameters. The number and type of actual parameters MUST be
identical to the number and type of FORMAL parameters or an error will
result. The details of this relationship are discussed in section 9.2.3 of this
chapter.

If an actual parameter is to be both accessed and altered in a subroutine, it can be
passed as both an independent and dependent parameter. For example:

(x) = sub_1(x)

There are two types of actual parameters, dependent and independent, which are dis-
cussed in the sections that follow.

An ACTUAL independent parameter is passed to a subroutine as input. For every
ACTUAL independent parameter, there must be a corresponding FORMAL independent
parameter. The associated FORMAL independent parameter takes the value of the AC-
TUAL independent parameter.

The value of actual INDEPENDENT parameters will not be altered by the subroutine.
For example, the following demonstrates the use of actual independent parameters:

y=2
(x) = sub_1(y)
print y

This subroutine will always print the real number “2”. A subroutine cannot not alter its
actual independent parameters; in this case we know what will be printed with no knowledge
of the subroutine’s action.

9.2.2.2 Actual Dependent Parameters

An ACTUAL dependent parameter is returned from a subroutine as output. For ev-
ery ACTUAL dependent parameter, there must be a corresponding FORMAL dependent
parameter. The associated formal dependent parameter corresponds directly to the actual
dependent parameter. The value of the ACTUAL dependent parameter is assigned the value
of the corresponding FORMAL dependent parameter when the subroutine ends.

EXAMPLES:

Assume that you have written an subroutine named square, with one dependent and one
independent parameter. The subroutine returns the square of the independent parameter as
the dependent parameter. A probable subroutine implementation follows:

SUBROUTINE (y) = square (x)

y = X ** 2

END square

Subroutines 9-10

The following calls to subroutine square illustrate the principle of actual dependent
parameters:

Example 1:
p=3
(q) = square(p)
print q
This will print the real number 9, which equals 32

Example 2:

v=_§

(q) = square(v)

print v

print q

This will print the real number 5, which is v’s value, and the number 25 which equals 5
* 5, q’s value.

Thus, the value of the actual dependent parameter will be changed by the subroutine.
Of course, it is possible for a subroutine to assign the actual parameter to its original value
. Section 9.2.3 which follows provides a discussion on the association between actual and
formal parameters. '

9.2.3 THE RELATIONSHIP BETWEEN ACTUAL AND FORMAL PARAMETERS

Actual parameters are named when a procedure is called, while formal parameters the
names used by the subroutine implementation. Formal parameters are like “blanks” which
are filled in by actual parameters provided at the call. SOL matches actual and formal
parameters positionally (see example 2 which follows).

o Formal Independent parameters are Copy-In: The value of the actual pa-
rameter is copied into the formal independent parameter.

o Formal Dependent parameters are by Reference, the formal dependent pa-
rameter references the same place in memory as the actual parameter. Thus,
any changes in the formal parameter within the subroutine affect the actual
parameter. However, SOL assumes that dependent parameters are unini-
tialized, so that its error-checking assures that dependent parameters are
assigned a value within the subroutine.

The best way to describe the relationship between actual and formal parameters is
through an example. Consider the following subroutine implementation:

Example 1:
SUBROUTINE (a, b) = an_example (c, d)
print ¢
print d
a=c*d
b=c+d
END an_example
This subroutine has the formal dependent parameters, a and b, as well as formal inde-
pendent parameters, ¢ and d.

Subroutines 9-11

Example 2:
v=4
w =2
(y,2) =
print y
print 2z

an_example (v , v)

In this call, y and z are named as actual dependent parameters, with w and v specified
as actual independent parameters. Parameters are paired positionally:
— vy is associated with a
— z is associated with b
— w is associated with ¢
— v is associated with d

The independent parameters are paired as follows:.

— at the start of the subroutine, ¢ = value of w, in other words ¢ = 2.
— at the start of the subroutine, d = value of v, in other words, d = 4.

Wherever ¢ and d are referenced in the subroutine the values 2 and 4, respectively, are

used.
The dependent parameters are paired as follows:

— at the end of the subroutine, y = value of a, in other words y = 8. (8§ = ¢ *

d=2*4)
— at the end of the subroutine, z = value of b, in other words z = 6. (6 = c +
d=2+ 4)

Thus, when the print statements are reached, 8 and 6 are the values of y and z respec-
tively.

9.3 THE SCOPE RULES FOR SUBROUTINES

In the body of a subroutine implementation, only three types of variables can be accessed:

1) The subroutine’s independent formal paramecters
o The independent parameter’s values can only be accessed, it is
ILLEGAL to alter them.
2) The subroutine’s dependent formal parameters can be accessed once they
have been initialized within the subroutine.
3) Any variables initialized within the subroutine.
A subroutine CANNOT access any other variables, including but not limited to the
following:
° variables initialized in the main program
° variables initialized in another subroutine

Subroutines 9-12

Chapter 10

Predeclared Functions

SOL provides predeclared functions that perform commonly used mathematical compu-

tations.

Predeclared functions are invoked by a function reference.

Predeclared functions use an actual argument as input, and return an arith-
metic value.

Functions can be referenced when evaluating arithmetic expressions or as-
signment statements. (See Chapter 4, section 4.1 for more information on
arithemtic expressions).

SOL predeclared function references have the following syntax:

(function name) ((arith expr))

where:

(function name) is the name of the predeclared function. Any other identifiers are

illegal, and will result in an error.

(arith expr) is a SOL arithmetic expression. See Chapter 4, section 4.1 for more

information on arithmetic expressions.

SOL predeclared function references must abide by the following restrictions:

1)

2)

3)

The (arith expr) must be of the proper type for the function referenced.
The specific types needed by each function are detailed in the table that
follows.

Functions can ONLY be referenced on the righthand side of an assignment
statement, or, as part of an arithmetic expression.

Predeclared functions CANNOT be referenced as a subroutine parameter.
(E.g., subroutine_1(x, y, abs(x)), where “abs” is a predeclared function,

is ILLEGAL).

The following table details the purpose of each predeclared function, the number of
arguments required, and the type of arguments required:

Predeclarcd Functions 10-1

Table 10-1: Predeclared Functions

Purpose of Function Name Number of Type of Type of
Argument(s) Argument(s) Result(s)

computes the absolute ABS 1 REAL, REAL,

value of argument INTEGER INTEGER

computes the arc ATAN 1 REAL REAL

Tangent of argument

computes the cosine COS 1 REAL REAL

of argument

computes, e raised to EXP 1 REAL REAL

the argument, edrgument

computes the natural LOG 1 REAL REAL

logarithm of argument

truncates the value INT 1 REAL INTEGER

of the argument

computes the sine SIN 1 REAL REAL

of argument

computes the square SQRT 1 REAL REAL

root of argument v

computes the tangent TAN 1 REAL REAL

of argument

EXAMPLES:

The following examples demonstrate function references in SOL:
Example 1:
R = 3.141 * ABS(-10.2 + 4)

R is assigned the value 3.141 multiplied by the absolute value of the sum of negative 10.2
and 4, (i.e. 6.2).
Example 2:

d = 12.00
P = cos(d)**2 + sin(d) ** 2
p is assigned the value of the cosine of twelve, squared, plus the value of the square of

the sine of twelve. (i.e. (cos d)2 + (sin d)2)

Example 3:
d= EXP(2.0)

d is assigned the value of e to the second power, or e squared.

Predeclared Functions 10-2

Example 4:

t = TAN(4)

This is illegal, because TANGENT requires a REAL argument, and “4” is an Integer.
Note that “4.0” would have been legal. This error will NOT be caught by the SOL compiler,

but will be discovered by the FORTRAN compiler, when the output of the SOL compiler is
compiled.

Predeclared Functions 10-3

Chapter 11
Scope Rules

SOL restricts how variables can be accessed to prevent uninitialized variables from being
accessed. The block in which a variable is initialized determines the variable’s scope, where
in the program the variable can be accessed. The rules which determine where a variable
can be accessed are called scope rules.

Each of the following is a block in SOL:

1. the main program

ii. subroutines

iii. if/then/else statements

iv. assemblages and components

The chief characteristic of a block is that a variable can be initialized inside
a block, and remain uninitialized outside it.

° For example, a variable can be initialized inside an ASSEMBLAGE
but remain uninitialized in the SOL program outside the ASSEM-
BLAGE statement. :

Some blocks can be nested inside each other.

A block is NOT the same as a multi-line statement. A multi-line statement
simply extends over several lines. For example, the OPTIMIZE statement
extends over several lines, but is NOT a block.

The following definitions are useful for describing SOL’s variable access restrictions:

Block: A place in a SOL program where a variable can be initialized, and remain unini-

Scope:

tialized in other parts of the program.

Refers to where (in a SOL program) a variable can be accessed. All the places
where a variable can be accessed is the “scope” of the variable. The rules which
decide where the variable can be accessed are called “scope rules.”

Local: Used to describe the relationship between a variable and a block. Variables which

are initialized inside a block are called “local” to that block.

This Chapter is divided into four sections:

1)
2)

Scope rules for the main program 111

Scope rules for subroutine implementations 11.2

Scope Rules 11-1

3)
4)

Scope rules for IF/THEN/ELSE statements 113
Scope rules for ASSEMBLAGEs and COMPONENTs. 114

11.1 MAIN PROGRAM SCOPE

1)
2)

3)

Ut
N

The main program block has access to all identifiers initialized within it, and
can call subroutines declared in the declaration section.

The main program can make variable type declarations in its declaration
section.

The main program cannot call itself.

The main program block CANNOT access identifiers initialized inside of
either:

1. blocks that are nested inside the main program
OR
il. subroutines.
. Exception: variables initialized inside of ASSEMBLAGEs or COM-

PONENTs can be accessed with a special “extended identifier” no-
tation. See Chapter 7, section 7.1.2

No variables can have the same name as an ASSEMBLAGE, COMPONENT, sub-
routine, the program name or other non-local variables.

11.2 SUBROUTINE SCOPE

A subroutine can access all identifiers initialized within it, which includes its
own parameters.

A subroutine can make variable type declarations in its declaration section.

SOL subroutines can call any other subroutine declared in a given SOL
program.

A subroutine cannot access the main program, or any identifiers initialized
in the main program.

A subroutine cannot declare local subroutines

A subroutine cannot call itself. (Recusion is NOT permited.) The SOL
compiler will not catch this error.

Scope Rules 11-2

7)

A subroutine CANNOT access identifiers initialized inside of either:

1. blocks that are nested inside the subroutine.
OR
il other subroutines. L
. Exception: variables initialized inside of ASSEMBLAGEs or COM-

PONENTs within the subroutine can be accessed with a special
“extended identifier” notation. See Chapter 7, section 7.1.2

See Chapter 9 for further details on subroutines. Also, sec Chapter 6, section
6.7 for information on subroutine calls.

A brief overview of subroutines is presented in Chapter 2, section 2.1.4

11.3 IF/THEN/ELSE SCOPE

1)

2)

3)

4)

All previously initialized identifiers can be both accessed and altered within
an IF/THEN/ELSE statement.

Assignments to a previously UNINITIALIZED variable within the THEN por-
tion of an IF/THEN/ELSE statement will create and initialize a local variable,
except under rule 4 which follows.

Assignments to a previously UNINITIALIZED variable within the ELSE por-
tion of an IF/THEN/ELSE statement will create and initialize a local variable,
except under rule 4 which follows.

An identifier which is initialized in both the THEN and the ELSE portions of
an IF/THEN/ELSE statement is NOT local to the IF/THEN/ELSE statement.
Instead, the variable is initialized in the block (i.e. the main program, a
subroutine, an ASSEMBLAGE or COMPONENT, or even another IF/THEN/ELSE
statement) that encloses the IF/THEN/ELSE.

For instance, if an IF/THEN/ELSE statement appears in the main program,
the main program encloses the IF/THEN/ELSE. But if an IF/THEN/ELSE state-
ment appears INSIDE the THEN portion of a second IF/THEN/ELSE state-
ment, the second IF/THEN/ELSE statement’s THEN block encloses the first
IF/THEN/ELSE statement.

Local variables of an IF/THEN/ELSE statement cannot be accessed outside
the IF/THEN/ELSE block.

Rules 2, 3, 4, and 5 were designed to insure that variables are not left unini-
tialized. Since variables are initialized the first time they get a value, a vari-
able must be initialized in both the THEN and ELSE portion of IF/THEN/ELSE
statements to be considered initialized in an outer block.

Chapter 6, section 6.3 provides further details.

Scope Rules 11-3

11.4 ASSEMBLAGE aND COMPONENT SCOPE

1)
2)

3)

4)
5)

6)

7)

8)

AT MOST ONE ASSEMBLAGE statement can appear within the main program.

AT MOST ONE ASSEMBLAGE statement can appear per subroutine imple-
mentation.

COMPONENT statements can ONLY appear within an ASSEMBLAGE statement
or within another COMPONENT statement.

ASSEMBLAGEs and COMPONENTs cannot appear within DO loops.

ASSEMBLAGEs and COMPONENTs cannot appear within IF/THEN/ELSE state-
ments. '

Summarization variables and summarization expression variables are AL-

WAYS local variables.

. ASSEMBLAGEs and COMPONENTs cannot initialize or alter another
ASSEMBLAGE or COMPONENT’s summarization variables.
° ASSEMBLAGEs and COMPONENTs can only access another ASSEM-

BLAGEs and COMPONENT’s summarization variables when: 1) ex-
tended identifier notation is used and 2) the ASSEMBLAGE or COM-
PONENT attempting access appears after the summarization vari-
able is initialized.

ASSEMBLAGEs and COMPONENTs can ACCESS and ALTER all identifiers pre-
viously declared in outer blocks.

. A warning message is issued when outer block variables are al-
tered.

Any identifier initialized within an ASSEMBLAGE or COMPONENT cannot be
altered by outer blocks.

° However, the value of the variable can be accessed via the ex-
tended identifier notation.

Chapter 7 provides a more detailed discussion of both ASSEMBLAGE scope
rules and extended identifier notation.

Scope Rules 11-4

Appendix A

BNF Grammar for SOL

What follows is a BNF (Backus-Naur Form) LALR(1) grammar for the Sizing and
Opimization Language, SOL. In the grammar, the many semi-colon symbols represent car-
riage returns. In addition, (ID) and (NO) are terminal symbols representing SOL identifiers
and numbers. This is the actual grammar used in the SOL compiler, so many of the grammar
rules have been arranged to facilitate code emission.

(PROGRAM)
(PROGRAM SUB?)
(PROGRAM_SUB?)

)
(PROGRAM_HEAD)

(PLAIN_.PROGRAM_HEAD)

(PROGRAM_MAIN)

+

(PROGRAM MAIN)

+

(END.D)
(ID.PROGRAM)
(SUB_HEAD)

+

(PROGRAM _SUB)

+

(PROGRAM _SUB)
(SUBROUTINE)
(ID_SUB_DEF)
(FORMAL _DEP_LIST?)
(FORMAL_DEP_LIST?)
(FORMAL_DEP_LIST)
(FORMAL_DEP_LIST)
(FORMAL_INDEP_LIST?)
(FORMAL_INDEP _LIST?)
(FORMAL INDEP_LIST)
(FORMAL_INDEP _LIST)
(X_ID)

(X ID)

(X ID)

(X ID)

(BLOCK)
(MAIN_DECLARE)
(MAIN_DECLARE)

LI O I T T A [TR TR TR TR T

(?}(PROGRAM_MAIN)(PROGRAM _SUB?)(EOF)

(PROGRAM_SUB?)(PROGRAM_SUB)
()

G

(PLAIN.PROGRAM_HEAD)(?_)

PROGRAM (ID_PROGRAM);
(PROGRAM_HEAD)(BLOCK)(STATEMENT_LIST)
(END.ID)(;)

::= (PLAIN.PROGRAM_HEAD)(STATEMENT_LIST)

(END.D)(;)

:= END (OK.ID)
= (OKJID)

(SUBROUTINE)((FORMAL_DEP LIST?)) = (ID_SUB_DEF)(
(FORMAL_NDEP_LIST?))

::= (SUB_HEAD)(;){(BLOCK_SUB)

(STATEMENT _LIST)(END.ID)(;)
(SUB_HEAD)(STATEMENT_LIST)(END_ID)(;)
SUBROUTINE

(OK.D)

(FORMAL _DEP_LIST)
(XID)
(FORMAL_DEP_LIST), (X_ID)

(FORMAL_INDEP_LIST)

(XID)
(FORMAL_INDEP_LIST), (XID)
(OKD)

(OKID): REAL

(OKD): INTEGER

(OKID): LOGICAL

::= DECLARE (MAIN_DECLARE)END DECLARE ;

(MAIN_DECLARE)(DECLARE_SUB)

BNF Grammar for SOL A-1

(MAIN_DECLARE)
(MAIN_DECLARE)
(MAIN_DECLARE)
(DECLARE.SUB)

+

(DECLARE_DEP_LIST?)
(DECLARE_DEP _LIST?)
(DECLARE_DEP_LIST)
(DECLARE_DEP_LIST)
(ID_SUB_DECL)
(DECLARE_INDEP _LIST?)
(DECLARE_INDEP _LIST?)
(DECLARE_INDEP_LIST)
(DECLARE_INDEP_LIST)
(WD)

(W_D)

(WD)

(W_ID)
(;-DECLARE_SUB)
(BLOCK SUB)
(SUB_DECLARE)
(SUB_DECLARE)
(SUB_DECLARE)
(SUB_DECLARE)

~ (TYPESPEC)

(TYPE_SPEC)
(TYPE.SPEC)
(DECLARE_TYPE)
(TYPEID_LIST)
(TYPEID_LIST)
(FORTRAN_DECL)
(STATEMENT _LIST)
(STATEMENT _LIST)
(STATEMENT_LIST)
(STATEMENTS)
(STATEMENTS)
(STATEMENTS)
(COMP STMTS)
(STATEMENT)
(STATEMENT)
(STATEMENT)
(STATEMENT)
(STATEMENT)
(STATEMENT)
(STATEMENT)
(STATEMENT)
(STATEMENT)
(STATEMENT)
(PRINT STATEMENT)
(PRINT STATEMENT)
(PRINT)
(OPT_SIGN)
(OPTSIGN)
(OPTSIGN)
(PRINT_TAIL)
(PRINT_TAIL)

BNF Grammar for SOL A-2

TR || WA i 'n' 1] '||' oo

—~ e~

(MAIN_DECLARE)(DECLARE_TYPE)
(MAIN_DECLARE)(FORTRAN_DECL)

(MAIN_DECLARE);

(SUBROUTINE)((DECLARE_DEP_LIST?)) = (ID_SUB_DECLY)(
(DECLARE_INDEP_LIST?)) (;.DECLARE_SUB)

(DECLARE_DEP_LIST)

(W_ID)

(DECLARE_DEP_LIST), (WD)
(OK_D)

(DECLARE_INDEP _LIST)

(WD)
(DECLAREINDEP_LIST), (WD)
(OK_ID)

(OKJID): REAL

(OKID): INTEGER

(OK.ID): LOGICAL

DECLARE (SUB.DECLARE)END DECLARE ;
(SUB.DECLARE);

(SUB_.DECLARE)(DECLARE_TYPE)
(SUB_DECLARE)(FORTRAN _DECL)

= REAL

INTEGER
LOGICAL
(TYPE_SPEC)(TYPEID_LIST);
(OK.ID)

(TYPEID.LIST), (OK.ID)

/*;

(s)

(;}(STATEMENTS)
(STATEMENTS)
(STATEMENT)
(STATEMENTS);
(STATEMENTS)(STATEMENT)
(STATEMENTS
(ASSEMBLAGE
(COMPONENT)
(DOSTATEMENT)
(

(

(

(

(

{

N

IF STATEMENT)
CALLSTATEMENT)
ASSIGNMENT)
OPTIM_STATEMENT)
PRINT STATEMENT)
SUMMARIZE_ STATEMENT)

/*

(PRINT);

(PRINT)(PRINT_LIST);

PRINT

+

OPTSIGN)(NO): (FORMAT)
OPT_SIGN){NO)

(PRINT.TAIL)
(PRINT_TAIL)
(PRINT_TAIL)
(PRINT_LIST)
(PRINT_LIST)

(FORMAT)

(FORMAT)

(SUMMARIZE STATEMENT)
(SUMMARIZE_STATE_WORD)
(SUMMARIZE STATE_TAIL)
(SUMMARIZE _STATE.TAIL)
(SUMMARIZE STATE.TAIL)
(SUMMARIZE_STATE_TAIL)
(DO STATEMENT)
(DO.STATEMENT)
(LOGICAL_DO_STATEMENT)
(LOGICAL_DO_HEAD)
(LOGICAL_DO_HEAD)
(LOGICAL_DO_HEAD)
(LOGICAL_END_DO)
(END_DO.WHEN)
(INDEXED.DO_STATEMENT)
(END_DO)

(END_DO)

(DO_HEAD)

(DO_HEAD)

(DO_HEAD)

(DO_BEGIN)

(SID)

(IF STATEMENT)

(END_IF)

(END.IF)

(IF STATEMENT)

(IF HEAD)

(IF)

(IF_ HEAD)

(IF HEAD)

(ELSE_HEAD)
(ELSE_HEAD)

(ELSE_HEAD)
(ASSEMBLAGE)

(TABNO)

(TABNO)
(ASSEM_HEADER)

+

(ASSEM_ID)
(SUMMARIZE_DECLARE)

+

(SUMMARIZE_WORD)
(SUMMARIZE_TAIL)
(SUMMARIZE_EXPR)
(SUMMARIZE_EXPR)
(SUMMARIZE_EXPR)
(SUMMARIZE STATE)
(SUMMARIZE STATE)
(SUMMARIZE STATE)

R R R R TR

(OK.ID) -
(OKID): (FORMAT)
(STRING)
(PRINT.TAIL)
(PRINT_LIST), (PRINT_TAIL)
(OK_ID)(NO)
(OK.ID)
(SUMMARIZE_STATE_WORD)(SUMMARIZE STATE_TAIL);
SUMMARIZE
(OK_ID)
(SUMMARIZE_STATE_TAIL), (OK_ID)
(OKID): (FORMAT)
(SUMMARIZE STATE_TAIL), (OKID): (FORMAT)
(INDEXED_DO_STATEMENT)
(LOGICAL DO STATEMENT)
(LOGICAL_DO_HEAD)(LOGICAL_END_DO);
DO ;
(LOGICAL_DO_HEAD)(STATEMENT)
(LOGICAL_DO_HEAD);
(END_DO_WHEN)(LOGICAL_EXPRESSION)
(END_DO)WHEN
(DO_HEAD){END_DO);

END DO

ENDDO
(DO_BEGIN), (ARITH_EXPR);
(DO_HEAD)(STATEMENT)
(DO_HEAD);
:= DO (SID)= (ARITH_EXPR)
(OKID)

II lI Il II l! II II Il II II ll Il II II Il II ll II Il II II II ll Il Il “ II

::= (IF_HEAD)(END.IF);
::= END IF

ENDIF
(IF_HEAD)(ELSE_HEAD)(END_IF);
(IF)(LOGICAL_EXPRESSION)THEN ;

IF

(IF_ HEAD)(STATEMENT)

(IF_HEAD);

ELSE ;

(ELSE_HEAD)(STATEMENT)

(ELSE_HEAD);
(ASSEM_HEADER)(STATEMENT_LIST)END (OK_ID);
TAB (NO)

(NO)

::= ASSEMBLAGE (ASSEM _ID)((OPT_SIGN)(TAB_NO), (STRING

(;}(SUMMARIZE_DECLARE)

(OK_ID) ’
(SUMMARIZE_WORD)(SUMMA RIZE_TAIL)
(ITERATIONS?)SUMMARIZE

= SUMMARIZE (;)

(SUMMARIZE.EXPR)(;)

(SUMMARIZE STATE)

(SUMMARIZE_EXPR), (SUMMARIZE._STATE)
(SUMMARIZE.EXPR)(;)(SUMMA RIZE STATE)
(SUID)

(SUMMARIZE.ARITH_ASSIGN)
(DECLARE_SWITCH)

BNF Grammar for SOL A-3

(DECLARE_SWITCH)
(SUJID)
(SUMMARIZE_ARITH_ASSIGN)
(SU_AR.ID)

(=)
(SARITH_EXPR)
(S_ARITH_EXPR)
(SAARITH_EXPR)
(SARITH_EXPR)
(SARITH_EXPR)
(S+)

(S-)

(S.TERM)

(S.TERM)
(S_TERM*)
(S.TERM)
(S.TERM/)
(S_-PRIMARY)
(S_PRIMARY)
(SPRIMARY HEAD)
(SSOURCE)
(SSOURCE)
(SSOURCE})
(S-(_EXPRESSION)
(SSOURCE)
(SFUNCT)
(SFUNCT)
(SFUNCT)
(S-FUNCT)
(SFUNCT)
(SFUNCT)
(S.FUNCT)
(SFUNCT)
(S_FUNCT)
(COMPONENT)

+

(COMP_WORD)
(COMP_WORD)
(ID_.COMP)
(COMP_ITERATIONS?)
(COMP_ITERATIONS?)
(ITERATIONS?)
(ITERATIONS?)
(ITERATING)
(COMP_SWITCHES)
(COMP_SWITCHES)
+

(CONVERGE?)
(CONVERGE?)
(CONVERGE?)
(COMP_SW.D_1)
(COMP_SW_ID)
(CALLSTATEMENT)
+

((.CALL)
(ID.SUB_CALL)

BNF Grammar for SOL A-4

= SUMMARY_TITLE =

R O I T O R T T T I R R AR TR TR R R TR TR AT

(STRING)
(OK_ID)
(SU_ARID)(S_=)(S_ARITH_EXPR)
(OKD)

(S-TERM)
(S_ARITH_EXPR)(S_+)(S_TERM)
(S_ARITH_EXPR)(S_-){S_.TERM)

= (S_+)(S-TERM)

(S-)(S_.TERM)

.+.

(S_PRIMARY)
(S.TERM*)(S_PRIMARY)
(S-TERM)*
(S.TERM/)(S_PRIMARY)
(S.TERM)/

(SSOURCE)

(S_PRIMARY HEAD)(S_SOURCE)
(S_PRIMARY)**

(NO)

(OKID)
(S((EXPRESSION)(S_.ARITH_EXPR))
(

(

S_FUNCT)(S_ARITH_EXPR))
SIN (
ABS (

SQRT (

COS (

LOG (

TAN (

ATAN (

NT (

XP (

(COMP.WORD)(ID_.COMP)((OPT SIGN)(TAB_NO), (STRING
(COMP_ITERATIONS?)(COMP_STMTS)END (OK_ID);

(o5 emi

::= COMPONENT
= COMP

W W

TRt 'n’ ’u' i

(OK D)

(ITERATING)ITERATE (;)

END

(ITERATING)

ITERATE ; (COMP_SWITCHES); END
(COMP_SW.ID_1)= (ARITH_EXPR)(CONVERGE?)
(COMP_SWITCHES)(;)(COMP _SW_ID)= (ARITH_EXPR)
(CONVERGE?)

: (NO)
: (NOY%
(OK_ID)
(OK_ID)
((.CALL){(ACTUAL_DEP.LIST?)) = (ID.SUB_CALL)
((A\CTUALINDEP_LIST?)) ;
(
(0

KD)

(ACTUAL.DEP_LIST?)
(ACTUAL.DEP_LIST?)
(ACTUAL.DEP_LIST)
(ACTUAL_DEP_LIST)
(ACTUALINDEP_LIST?)
(ACTUALINDEP_LIST?)
(ACTUAL_INDEP_LIST)
(ACTUALINDEP_LIST)
(YD)
(ASSIGNMENT)
(ASSIGNMENT)

(D)

(=)
(OPTIM_STATEMENT)
(OPTIM_HEAD)
(OPTIM_BODY)
(OPTIM_BODY)
(OPTIM_BODY)
(USE_HEAD)
(USE_STATEMENT)
(OPTIONS?)
(OPTIONS?)
(OPTIONS_HEAD)
(O_LIST)

(O_LIST)

(O_LIST)

(O_LIST)

(O_LIST)

(OLIST)

(ALGO STMT)
(ALGOSTMT)
(ALGOSTMT)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(STRATEGY)
(OPTIMIZER)
(OPTIMIZER)
(OPTIMIZER)
(OPTIMIZER)
(OPTIMIZER)
(OPTIMIZER)
(SEARCH)

(SEARCH)

(SEARCH)

(SEARCH)
(OPTIM_PRINT)
(OPTIM_PRINT)
(OPTIM_VAL)
(OPTIM.VAL)

W 'n' I I T T T T TR TR T R TR

(ACTUAL_DEP_LIST)
(Y ID)
(ACTUAL_DEP_LIST), (Y_ID)

(ACTUALINDEP_LIST)

(Y ID)

(ACTUALJINDEP_LIST), (Y_ID)
(OK.ID)

(ZID)(=)(ARITH_EXPR);
(zJID)(=){(LOGICAL_EXPRESSION);
(OK.ID)

(OPTIM_HEAD)(;)(OPTIM_BODY)END OPTIMIZE ;
OPTIMIZE (OK_ID)
(USE.STATEMENT)
(OPTIM.BODY)(STATEMENT)
{(OPTIM_BODY);

USE (;)
(USE_HEAD)(USE_BODY)(OPTIONS?)END USE ;

(OPTIONS_HEAD)(O_LIST)
OPTIONS (;)

(OPTIM_PRINT)

(ALGO_STMT)
(OPTIM_SWITCHES)(;)
(O_LIST)(OPTIM_PRINT)
(O_LIST)(ALGO_STMT)
(O_LIST){OPTIM_SWITCHES)(;)

= STRATEGY = (STRATEGY)(;)
:= OPTIMIZER = (OPTIMIZER)(;)
::= SEARCH = (SEARCH)(;)

::= NONE

2= EXTERIOR PENALTY

= LINEAR PENALTY

= QUADRATIC PENALTY

::= CUBIC PENALTY

= LAGRANGE MULTIPLIER

= SEQUENTIAL LINEAR

= INSCRIBED HYPERSPHERES

2= SEQUENTIAL QUADRATIC

::= SEQUENTIAL CONVEX

= NONE

::= FLETCHER - REEVES

::= DFP

= BFGS

::= FEASIBLE DIRECTIONS

::= MODIFIED FEASIBLE DIRECTIONS
::= GOLDEN SECTION

::= GOLDEN SECTION + INTERPOLATION
::= FIND BOUNDS + INTERPOLATION

= INTERPOLATION/EXTRAPOLATION

::= PRINT NOTHING (;)

::= PRINT (OPTIM.VAL)(OPT_PRT_TIME?)(;)
= OBJECTIVE

::= DESIGN VARIABLES

BNF Grammar for SOL A-5

(OPTIM_VAL)

(OPTIM_VAL)

(OPTIM_VAL)

(OPTIM_VAL)

(OPTIM_VAL)
(OPT_PRT_TIME?)
(OPT_PRT.TIME?)
(PRT.TIME)

(PRT_TIME)

(TIME)

(TIME)

(TIME)

(TIME)

(?OPT_EXPR)

(OPT_EXPR)
(OPTIM_SWITCHES)
(OPTIM_SWITCHES)
(OPTIM.SET)

(OPTIM_SET)

(OPTIM_SW.ID)

(USE.BODY)

(USE_BODY)
(USE_DESIGN_OR_CONSTRAINT)
(DJD)

(DES_LO)

(DES_LO)

(DES)

(DES_HI)

(DES_HI)
(USE_DESIGN_OR.CONSTRAINT)
(CID)

(FUZZY _RELAT)

(FUZZY RELAT)

(FUZZY RELAT)
(LOGICAL_EXPRESSION)
(LOGICAL_EXPRESSION)
(.OR.)

(LOGICAL_FACTOR)
(LOGICAL_FACTOR)
(LAND.)
(LOGICAL_SECONDARY)
(LOGICAL_SECONDARY)
(NOT.)
(LOGICAL_PRIMARY)
(LOGICAL_PRIMARY)
(LOGICAL_PRIMARY)
(LOGICAL_PRIMARY)
((_EXPRESSION)
(LOGICAL_PRIMARY)
(RELAT)

(RELAT)

(RELAT)

(RELAT)

(RELAT)

(RELAT)
(ARITH_EXPR)

BNF Grammar for SOL A-6

::= VIOLATED CONSTRAINTS
::= ACTIVE CONSTRAINTS
::== CONSTRAINTS

== TERMINATION CRITERIA
= EVERYTHING

(PRT_TIME)

(TIME)

(PRT_TIME), (TIME)

INITIALLY

::= EVERY (?OPT_EXPR)ITERATION
::= EVERY (?OPT_EXPR)SEARCH STEP
::= AT TERMINATION

(ARITH_EXPR)

(OPTIM_SET)
(OPTIM_SWITCHES)(OPTIM_SET)

::= NORMALIZE

(OPTIM.SW.ID)= (ARITI _EXPR)

(OKD)

(USE_DESIGN_OR_CONSTRAINT)
(USE_BODY)(USE_DESIGN_OR_CONSTRAINT)
(DID)= (DES)IN [(DES_LO), (DES_HI)] (;)
(OK_ID)

(ARITH_EXPR)
(ARITH_EXPR)

(ARITH_EXPR)

(CID)(FUZZY RELAT)(ARITH_EXPR)(;)

(OK_ID)

EQ.

LT.

GT.

(LOGICAL_FACTOR)
(LOGICAL_EXPRESSION)(.OR.)(LOGICAL _FACTOR)
OR.

(LOGICAL SECONDARY)
(LOGICAL_FACTOR)({.AND.)(LOGICAL_ SECONDARY)
AND.

(LOGICAL_PRIMARY)

(NOT.){LOGICAL_PRIMARY)

NOT.

(ARITH_EXPR)(RELAT)(ARITH.EXPR)

‘TRUE.

FALSE.

(OK.ID)

((.EXPRESSION)(LOGICAT._EXPRESSION))
EQ.

LT.

GT.

NE.

LE.

.GE.

(TERM)

T T T T O T T T T T T T T T T T R T O R TR T TR

(ARITH_EXPR)
(ARITH_EXPR)
(ARITH_EXPR)
(ARITH_EXPR)
(+)

(-)

(TERM)
(TERM)
(TERM*)
(TERM)
(TERMY/)
(PRIMARY)
(PRIMARY)
(PRIMARY_HEAD)
(SOURCE)
(SOURCE)
(SOURCE)
(SOURCE)
(FUNCT)
(FUNCT)
(FUNCT)
(FUNCT)
(FUNCT)
(FUNCT)
(FUNCT)
(FUNCT)
(FUNCT)
(OK.ID)

(ARITH.EXPR)(+)(TERM)
(ARITH_EXPR)(-)(TERM)
(+)(TERM)

(-}{TERM)
+

(PR.IMARY)
(TERM*)(PRIMARY)
(TERM)*
(TERM/)(PRIMARY)
(TERM)/

(SOURCE)

(PRIMARY _HEAD)(SOURCE)
(PRIMARY)**

(NO)

(OK.ID)
(((EXPRESSION)(ARITH_EXPR))
(FUNCT){ARITH_EXPR))

(T A IR A R AT

BNF Grammar for SOL A-7

Appendix B

Compiler Messages

The following are the error messages given by the SOL compiler. The messages are listed
in alphabetical order. The type of message is described, along with the probable cause, and
probable source of aid in this reference.

ASSEMBLAGE ILLEGALLY DEFINED IN IF OR DO STATEMENT
* 3k %k ERROR 3% %%k

— An ASSEMBLAGE CANNOT appear inside IF or DO statements.

ASSEMBLAGE OR COMPONENT SCOPE ERROR
*** FATAL ERROR ***

— This is an internal compiler error which indicates the compiler software is
not functioning properly. This error should never appear.

CAREFUL, THIS MACRO IS BEING REDEFINED
*** WARNING ***

— You are using ?def or ?xdef with a macro that is already defined. This
warning message appears in case the redefinition was accidental.

....................... C.1 (simple macros).

..................... C.2 (parametric macros).

COMPILATION ABORTED.
*** FATAL ERROR ***

— The compiler cannot recover from your errors, so the current compilation
halts.

COMPONENT OR ASSEMBLAGE NOT ENDED CORRECTLY.
X % % ERROR sk ok %

— The same name must be used to start and end an ASSEMBLAGE or COMPONENT
statement.

Compiler Messages B-1

COMPONENT OUTSIDE ASSEMBLAGE OR INSIDE DO OR IF STMT.
k% ¥ ERROR k%K

— COMPONENT statements are illegal outside an ASSEMBLAGE statement or within
an IF/THEN/ELSE or DO statement.

............................ 6.3 (IF)
............................ 6.4 (DO)
..................... 7.1 (I11) (ASSEMBLAGE}

CONSTRAINED OPTIMIZER WITH UNCONSTRAINED PROBLEM
*xxx ERROR, ***

— Algorithms for constrained optimization, such as Feasible Directions
or Modified Feasible Directions, CANNOT be used for unconstrained
problems unless a strategy is used. You must either employ a strategy or
switch optimization methods.

......................... 8.3.1 (Table 8-2)

DEPENDENT PARAMETER NOT INITIALIZED IN SUBROUTINE
Kk ERROR 3% 3k %k

— Subroutine dependent parameters MUST be initialized within the subroutine.
.............................. 9.1.2

DESIGN VARIABLES UNBOUNDED DURING NORMALIZATION
*** ERROR. ***

— Unbounded design variables cannot be normalized. Either eschew normal-
ization or add bounds to all design variables.

DIGIT EXCEEDS BASE
*** ERROR ***

— This number is too large and beyond the compiler’s range. Typically occurs
when scientific notation is used with an overly large exponent.

DUPLICATE ASSEMBLAGE DECLARED.
*** FRROR ***

— No more than a single ASSEMBLAGE can appear per main program or subrou-
tine.

............................. 7.1 (II)
............................... 11.4

Compiler Messages B-2

DUPLICATE IDENTIFIER DECLARED.
KK ¥k ERROR %k k

— In general this error occurs whenever the same name is used to refer to two
or more objects, for example a variable and a subroutine. Some common
possibilities are listed below.

— You have given a subroutine the same name as one of its arguments

............................... 5.2
— You have given two subroutine formal parameters the same names.
............................... 5.2
.............................. 9.1.2
— You have given two subroutines the same names
............................... 5.2
— You h'a,ve declared a variable to be of two types in the declaration section.
............................... 5.1
— You have given two COMPONENTs at the same nesting level the same names.
............................. 7.1 (11II).
— You have given a variable the same name as a subroutine or the main pro-
gram.
............................ 5.2 (SUB)
........................... 11.1 (MAIN)

DUPLICATE OPTIMIZATION VARIABLE DECLARED.
% %k % ERROR % % X%

— Design variable and constraint names must be unique within a given OPTI-
MIZE statement.

....................... 8.1 (Design variables)
......................... 8.2 (Constraints)

EMITTED LINE EXCEEDS MAX CONTINUATIONS.
Xk ERROR * XKk

— The FORTRAN emitted by the SOL compiler allows only 19 consecutive con-
tinuation lines using the & symbol. Break the offending SOL statement into
several shorter SOL statements to avoid this problem.

EMPTY FILE PASSED TO INCLUDE MACRO
*** WARNING ***

— An empty file is being included, the rest of the line on which the ?include
macro appears is ignored

Compiler Messages B-3

EXPECTING APPEND TEXT, A { SYMBOL SHOULD BE HERE
*** ERROR ***

— When using the ?append or ?xappend macros, the next non-blank character
after the macro name should be a {, to indicate the start of the replacement
text.

FILE OVERFLOW - MACRO NESTING TOO DEEP
*kx ERROR, ***

— In doing macro expansion, files are used. If more than 10 macros are being
expanded at once (e.g. via ?xdef), this error occurs. The error results from
macros calling other macros calling other macros ... Reduce the nesting level
(complexity) of your macro calls.

FORMAT OF THIS TYPE HAS NO DECIMAL POINT
*** ERROR ***

— You cannot use a decimal point with an I or L format
......................... 6.2.2.3 and 6.2.2.4

FORMAT OF THIS TYPE REQUIRES A DECIMAL POINT
%k kK ERROR XKk

— You must use a decimal point with an E or F format
......................... 6.2.2.1 and 6.2.2.2

FORMAT TYPE ILLEGAL FOR INTEGER VARIABLES
x* ERROR *

— You must use an I or L format when printing integer variables

.............................. 6.2.2
FORMAT TYPE ILLEGAL FOR LOGICAL VARIABLES
ok %k ERROR 3 3k K
— You must use an L format when printing logical variables
.............................. 6.2.2
FORMAT TYPE ILLEGAL FOR REAL VARIABLES
% RERROR, *
— You cannot use an [or L format when printing real variables
.............................. 6.2.2

FORTRAN BLOCK BEFORE MAIN PROGRAM BEGINS
* % % ERROR % XK X%

— You have started a FORTRAN block before your SOL program has begun.
You should move the FORTRAN block after your program’s header.

Compiler Messages B—4

FORTRAN BLOCK DELIMITERS MUST BE IN COLUMN ONE
*** WARNING ***

— You should put your block delimiters in column one to be sure your FOR-
TRAN code will be spaced correctly in the compiler’s output.

FORTRAN BLOCKS ILLEGAL IN A COMPONENT OR ASSEMBLAGE
% %k %k ERROR * % %

— FORTRAN blocks cannot appear inside of ASSEMBLAGEs or COMPONENTS, be-
cause errors could result in the FORTRAN code emitted. The variables emitted
in the FORTRAN code often are emitted with aliases. The FORTRAN block
will not be accessing the same variables, and errors can result.

FURTHER INPUT IGNORED.
*** ERROR ***

— Self-explanatory; the compiler stops parsing the present line. This message
often appears with other error messages.

GRAMMAR DOES NOT CONTAIN AN UNCONDITIONAL REDUCTION.
*** FATAL ERROR ***

— This is an internal compiler error that indicates the compiler software is not
functioning properly. It should never appear.

ID MUST BE REAL, INTEGER OR LOGICAL FOR FORMAT
x* PRROR, *

— You have probably tried to print a subroutine name, ASSEMBLAGE or COMPO-
NENT name or some other non-variable. Only variables can be printed.

IDENTIFIERS MUST BE LESS THAN 28 CHARACTERS LONG
*** WARNING ***

— You have used an identifier that is longer than 27 characters.

ILLEGAL ARGUMENT; REAL TYPE ARGUMENT IS REQUIRED
% x % ERROR * % K

— INTEGER or LOGICAL variables and/or expressions CANNOT be passed to
functions which require a REAL argument.

........................... Chapter 10.

ILLEGAL CHARACTER
#xk FRROR ***

— An illegal character which the SOL compiler does not recognize appears in
your program.

Compiler Messages B-5

ILLEGAL INITIALIZATION OF AN INDEPENDENT PARAMETER
Kk ¥k ERROR * kK

— Independent subroutine parameters CANNOT be assigned a value; only de-
pendent parameters can be assigned values.

...................... 9.1.2,9.2.1.1, and 9.2.3

ILLEGAL ITERATION: VARIABLE ALREADY INITIALIZED
***x ERROR ***

— ASSEMBLAGE or COMPONENT iteration variables CANNOT be initialized beforc
the ITERATION section of the ASSEMBLAGE or COMPONENT.

............................... 7.3
ILLEGAL LIST CALL, ON AND OFF ARE THE ONLY SETTINGS
%k %k ok ERROR % K%
— The ?1ist macro with an has only two legal settings: ON and OFF.
.............................. C44
ILLEGAL MACRO USE: UNDEFINED MACRO DISCOVERED
ok %k ERROR Kk
— Macros MUST be defined before they are used.
........................... Appendix C

ILLEGAL NAME RESULTS FROM CALL TO COMPONENT MACRO
* %k %k ERROR * Kk

— Expansion of the ?component_name macro created an overlong line. Try to
break the original line up with the continuation symbol to avoid overlong
expansion.

ILLEGAL OPTIMIZER AND STRATEGY COMBINATION
3 % X ERROR % ¥ X

— Not all combinations of optimizer and strategy are legal.

ILLEGAL SYNTAX IN FORMAT STATEMENT
%k % ERROR * % Xk

— An illegal character appears within the format statement

— The field width of your format statement is zero or less.

ILLEGAL USE OF AN EXTENDED IDENTIFIER
* %k % ERROR * k%K

— Extended identifiers CANNOT be used as subroutine names, ASSEMBLAGE
or COMPONENT names, objective variable names for optimization, or in other

ways; extended identifiers can only be used to refer to variables initialized
inside of ASSEMBLAGEs or COMPONENTSs.

Compiler Messages B-6

ILLEGAL USE OF AN OPTIMIZATION DESIGN VARIABLE
xx RRROR *

— Design variable cannot be used to define other design variables in the USE
section of an OPTIMIZE statement, nor can values be assigned to a design
variable with assignment statement or subroutine call.

ILLEGAL USE OF PREVIOUSLY INITIALIZED LOOP VARIABLE
*** ERROR ***

— The control variable of a DO loop cannot be altered within the loop. For
example, the control variable of a nested DO loop cannot be the same as an
outer loop’s control variable.

ILLEGAL USE OF SUMMARIZATION EXPRESSION VARIABLE
*** ERROR ***

— Expression summarization variables are ONLY implicitly initialized at the
end of an ASSEMBLAGE or COMPONENT; it is ILLEGAL to assign values to an
expression summarization variable.

ILLEGAL USE OF ZERO LENGTH STRING
>* ERROR *

— A null string CANNOT be used in specifying a COMPONENT or ASSEMBLAGE’s
summarize print information. Use a blank string (* ’) instead.

INCORRECT PARSER TABLES.
*** ERROR. ***

— This is an internal compiler error indicating that the SOL compiler is not
working properly. It should never appear.

INPUT LINE EXCEEDS 120 CHARS.
x* RPRROR *

— SOL lines can be at most 120 characters long. If the line contains macros,
perhaps the trouble is due to macro expansion. Use the continuation symbol,
&, to break the line into smaller pieces.

INVALID DATA TYPE FOR USE.
*** ERROR ***

— A subroutine name, ASSEMBLAGE or COMPONENT name, or some other type of
identifier appears where a variable MUST appcar.

INVALID SYNTAX FOR REAL NUMBER.
% % X% ERROR % %k %

— Check the syntax of a REAL number.
........................... 2.2.5 and 3.3

Compiler Messages B-7

IT IS ILLEGAL TO APPEND TO AN UNDEFINED MACRO
x* ERROR, *

— A macro must already be defined before the ?append and ?xappend macros
can be used to add additional text.

ITERATION VARIABLE HAS NOT BEEN INITIALIZED
*k*x ERROR, ***

— ASSEMBLAGE and COMPONENT iteration variables MUST be initialized withis
the iterating ASSEMBLAGE or COMPONENT.

LAST ERROR ABORTED COMPILER.
*** FATAL ERROR ***

— Self-explanatory; the compiler is so wounded by the input program, it cannot
go on.

MACRO ARGUMENTS DO NOT MATCH DEFINITION
x ERROR, *

— the called macro’s arguments do not match its defined pattern. Check the
macro definition and call to see if they match.

MACRO PARAMETERS MUST BE SEQUENTIAL
* %k %k ERROR * %k %k

— Macro parameters must be defined in a sequential order, i.e., #2 appears

before #3.

MISSING (gives symbol inserted) INSERTED BEFORE SYMBOL.
% %k % ERROR % %k

— The compiler could not parse the SOL code input, but made the change
above and will try and go on.

MISSPELLED (gives symbol) CORRECTED.
*** TRROR, ***

~ The compiler could not parse the SOL code input, but guessed that a word
was just misspelled, corrected it and will try to go on.

NO COMPONENTS HAVE ENDED
¥ ERROR. ***

— A SUMMARIZE print statement CANNOT appear until at least one COMPONENT
or an ASSEMBLAGE has ended.

Compiler Messages B-8

NO DESIGN VARIABLES DEFINED IN OPTIMIZATION
* %k %k ERROR %k %k

— At least ONE design variable MUST appear within every OPTIMIZE state-

ment.
............................... 8.1
NO FILE NAME GIVEN.
***x FATAL ERROR ***
— No SOL code source file has been given, so there is nothing to compile
............................... 1.1

NO RULE CAN BE APPLIED IN PARSER.
*** ERROR ***

— Internal compiler error indicating that the compiler software is not function-
ing properly. This error should never appear.

NO SUMMARIZATION VARIABLES HAVE BEEN DECLARED
*** BRROR. ***

— At least one summarization variable MUST be declared in an ASSEMBLAGE

statement.
.............................. 7.1.1
NUMBER REPRESENTATION GREATER THAN 27 CHARACTERS
¥ ERROR ***
— Numbers CANNOT be longer than 27 characters.
.............................. 2.2.5

OPTIMIZATION VARIABLE IS UNINITIALIZED
* % %k ERROR 3 %k K

— The objective function or a constraint variable for an OPTIMIZE statement
has been left uninitialized. These variables must be initialized within the
OPTIMIZE statement (i.e. by assignment statement or subroutine call.)

......................... Chapter 8 and 8.2

OUT OF INFO WHILE COLLECTING MACRO
*** ERROR ***

— The SOL program ended before the last macro call was completed.

........................... Appendix C

OUTER SCOPE VARIABLE ALTERED IN ASSEMBLAGE OR COMPONENT
*** WARNING ***

— ASSEMBLAGEs and COMPONENTSs can alter non-local variables; this warning flags
the alteration in case it was accidental.

Compiler Messages B-9

OVERLONG LINE IN MACRO DEFINITION
%k %k % ERROR * k%

— Delimited macro’s CANNOT have a pattern more than 120 characters long.
The continuation symbol CANNOT be used here and a smaller pattern must
be used.

OVERLONG LINE IN MACRO EXPANSION
*** TRROR ***

— A line in your macro call expands beyond line size, 120, when the parameters
are substituted. Shorten the line by altering the macro definition.

PROGRAM NOT ENDED CORRECTLY.
* %k k ERROR * kK

— The name at the start of a SOL program MUST be the same as the name
used to end it.

REAL NUMBER EXCEEDS MACHINE RANGE.
%%k k ERROR % %k k

— SOL numbers are limited in range.
......................... 92.2.5, 3.1 and 3.3

SEVERE SYNTAX ERROR
x ERROR ***

— An illegal character or word appears in your SOL program

SEVERE SYNTAX ERROR CAUSED PARSER FAILURE.
*** FATAL ERROR ***

— The compiler cannot recover from the previous syntactic errors, and will stop
execution. Fix the errors found and recompile.

SOURCE PROGRAM FILE IS EMPTY.
***¥ FATAL ERROR ***

— An empty file; there is no program to compile so execution halts.

STRING EXCEEDS ALLOWABLE STRING LENGTH
*** ERROR ***

— Strings CANNOT be longer than 61 characters.

SUBROUTINE ARGUMENT DEPENDENCY NOT MATCH DECLARATION
***x PRROR ***

— The number of independent or dependent parameters in the subroutine im-
plementation does not match the subroutine’s declaration. The total num-
ber of parameters is correct, but there are too many or too few depen-
dent/independent parameters

Compiler Messages B-10

SUBROUTINE ARGUMENT NUMBER NOT MATCH DECLARATION
*** ERROR. ***

— The number of parameters in the subroutine implementation does not match
the subroutine’s declaration.

SUBROUTINE ARGUMENT TYPES NOT MATCH DECLARATION
x% ERROR *

— The argument types in your subroutine implementation do not match the
types of arguments given in the subroutine’s declaration.

SUBROUTINE DEFINED TWICE IN SOURCE
Xk % ERROR % % X%

— You have two implementations of the same subroutine; eliminate one.

SUBROUTINE NAME NOT DECLARED
* %k % ERROR % % kK

— The implemented subroutine was not declared.
.......................... 9.1.1 and 9.1.2

SUBROUTINE UNDEFINED IN SOURCE

— The declared subroutine is never implemented.
.......................... 9.1.1 and 9.1.2

SUMMARIZATION VARIABLE DECLARED AS A NON-REAL TYPE
* %k %k ERROR % %k

— Summarization variables and summarization expression variables MUST be
REAL; change the DECLARE section or rename your summarization variable.

............................... 9.1
.............................. 7.1.1.1

SUMMARIZATION VARIABLES INITIALIZED BEFORE ASSEMBLAGE; LOCAL
COPY MADE
*** WARNING ***

— The summarization variable declared has already been intialized; a local copy
will be used within the ASSEMBLAGE.

.......................... 7.1.1.1 and 7.2

SUMMARIZATION VARIABLES INITIALIZED WHEN SUB-COMPONENTS EXIST
*** ERROR *~*

— The summarization variables of an ASSEMBLAGE or COMPONENT which contain
nested COMPONENTs CANNOT be initialized; such variables are initialized
automatically.

Compiler Messages B-11

SUMMARIZATION VARIABLES UNINITIALIZED
*kk ERROR * %k %k

— The summarization variables of an ASSEMBLAGE or COMPONENT which DO
NOT contain nested COMPONENTs MUST be initialized.

SYNTAX DEMANDS A ? SYMBOL HERE
* ok Xk ERROR % % %k

— The compiler expects a macro name to appear, but you have not supplied &
leading macro symbol,?.

THE INCLUDE MACRO MUST APPEAR ALONE ON A LINE
% FRROR ***

— Other non-blank characters CANNOT appear on the same line as the ?in-
clude macro.

THE INPUT FILE NAME IS TOO LONG.
sk %k ERROR * %k

— File names cannot be longer than 120 characters.

THIS IS AN ILLEGAL OPTIMIZATION SWITCH
Rk %k ERROR * %k

— This is not a valid optimizer option setting.
...................... 8.3 (8.3.3 and 8.3.4 esp.)

TOO MANY ITEMS IN PRINT LIST, ONLY 20 ALLOWED
%k Xk ERROR % kK

— At most 20 items can be printed with a single PRINT or SUMMARIZE print
statement.

.......................... 6.2.1 and 6.2.3

UNCONSTRAINED OPTIMIZER WITH A CONSTRAINED PROBLEM
*** ERROR ***

— No constraints can be used with this optimization algorithm unless a strategy
option is chosen. You must either employ a strategy or switch optimization
methods.

......................... 8.3.1 (Table 8-4)
UNEXPECTED SYMBOL DELETED.
* % X ERROR %k %K %

— The compiler cannot parse your program, and has deleted the above symbol
and will try and go on.

UNEXPECTED SYMBOL REPLACED BY (gives replacement symbol)
* k% ERROR %k % %

— The compiler cannot parse your program, and has replaced an unexpected
character or word with the above, and will try and go on

Compiler Messages B-12

UNIMPLEMENTED SUBROUTINE(S)
* %K%k ERROR % k% :

— The subroutines listed were declared BUT NOT implemented. Either alter
the DECLARE section or implement the subroutines.

UNINITIALIZED IDENTIFIER.
%k %k ERROR * %k Xk

— Variables cannot be accessed until they are initialized

VALUE EXCEEDS MAXIMUM INTEGER.
%k %k ERROR ¥ %k

— INTEGERs have a limited range.

VARIABLE NOT DECLARED AS A SUMMARIZATION VARIABLE
*** BRROR, ***

— SUMMARIZE print statements are legal only with summarization variables.
.............................. 6.2.3

Compiler Messages B-13

Appendix C

SOL Macros — Advanced Material

]

Macros are an advanced feature of SOL and are not recommended for the novice. An
experienced SOL user can benefit from the use of macros, especially when developing large
SOL programs.

Macros are like abbreviations. A single character, or short word, can represent longer
sequences of text that are used repeatedly. The simplest macro consists of a macro name and
a body of replacement text. Defining a macro involves associating a name with replacement
text. When a macro name appears in a SOL program, the replacement text is substituted for
the name at COMPILE-TIME. This act of replacement is known as a macro call or macro
expansion. Macros allow text substitution in a SOL program.

This may seem complex, but a simple example will clarify the concept. Suppose we
define a macro named ?pi (all macros begin with the ? symbol), with the replacement text
“3.141592654,” at the start of a SOL program. Then, whenever the name ?pi appeared in
my SOL program, it would be replaced with 3.141592654. For instance, x = 2 * 7pi * r
would become, x = 2 * 3.141592654 * r

Naturally, macro definitions are not generally used just to speed up the typing of one
isolated formula. The real advantage lies in using a macro abbreviation for clusters of code
or text that are used dozens of times throughout a SOL program.

Abbreviations like ?pi are useful in many applications, and they are powerful. One
little macro can represent an enormous amount of material. The judicious use of macros can
reduce or eliminate the tedium of retyping repetitive portions of identical or similar code.
Further, a macro can be made an abbreviation for a complex tangle of code. By giving
the macro a carefully selected name which reflects the function of the code, the macro can
be made more understandable than the text that will be substituted. In this way, a tidy,
descriptive macro call can appear in the SOL program, and the messy code is hidden away
as replacement text.

) It is important to note that the text replacement occurs at COMPILE-TIME,
and is not a dynamic run-time event.

SOL offers four different kinds of macros:

1) Simple macros, like the ?pi example above C.1
2) Parametric macros, which are macros with parameters C.2
3) Delimited macros C3
4) Predefined macros, provided by the SOL compiler C4

SOL Macros — Advanced Material C-1

C.1 SIMPLE MACROS

Simple macros consist in a macro name and a body of replacement text. Using macros
involves two elements:

1) Defining the macro and its replacement text
2) Calling (expanding) the macro
In order to use a macro, it MUST be defined first. SOL provides the means to define

macros by using a predefined macro, ?def (All macros begin with a ? symbol). A simple
macro definition has the following syntax:

?def (macro.name) { (replacement text) }

where:
macro name is the name of the macro. It must consist of a 7 symbol, fol-
. . . -)
lowed by either a legal SOL identifier or a single non-alphabetic
character.

o Extended Identifiers are not legal macro names.

(replacement text) is the body of replacement text. Any characters can appear in
the replacement text.

e However, additional restrictions apply to the use of open brace,
{, and close brace, }, within the replacement text. See section
C.1.2 of this appendix for details.

There are a number of stipulations for proper use of SOL macros. These stipulations fall
naturally into two categories:

1) General stipulations for simple macro definitions C.1.1

2) Stipulations which govern the body of replacement text C.1.2

C.1.1 GENERAL RULES FOR SIMPLE MACRO DEFINITIONS

The following restrictions apply to simple macro definitions:

1) No spaces can appear between the ? symbol and the word, def or between
the ? symbol and the first character of the macro name.

2) Zero or more spaces, tabs and/or carriage returns are allowed between the
(macro name) and the open bracket, {, that signifies the start of the macro’s
replacement text.

3) Macro definitions can appear anywhere a blank line can appear in a SOL
program, including before the main program header (e.g., PROGRAM test)
appears.

4) More than one macro definition can appear per line, although one per line is

recommended for readability’s sake.

SOL Macros — Advanced Material C-2

5) A macro must be defined before it is called.

6) Macros CAN be redefined by subsequent macro definitions. The most recent
macro definition holds.

o SOL gives a warning message announcing that a macro is being
redefined, just in case the redefinition is accidental.

To illustrate these points, consider the following macro definition in the context of a SOL
program (annotated with line numbers to facilitate the discussion):

AO1 PROGRAM test
A02 ?7def ?incr_x {x = x + 3.141592654}
A03

A04 x =0

AO5 DO i =1, 10
A086 ?incr_x
A07 print x
A08 ?incr_x
A09 print x
A10 ENDDO

All

A12 END test

The macro definition appears on line A02. It associates the macro name, ?incr_x, with
a body of replacement text, x = x + 3.141592654. Wherever the name ?incr_x is found,
it will be replaced by the SOL compiler with the replacement text, x = x + 3.141592654.
Thus, lines A05 ~ A10, are seen by the SOL compiler EXACTLY AS IF the following was

typed:

BOS DO i =1, 10

BO6 X =X + 3.141592654
BO7 print x

BO8 X = X + 3.141592654
BO9 print x

B10 ERD DO

Notice that the macro names have all been replaced by the replacement text. Calls to
user defined macros (e.g., A06 or A08) do not appear in the SOL compiler LISTING file
(See Chapter 1, section 1.4). Rather, the expanded text appears instead.

SOL Macros - Advanced Material C-3

As a further example, consider the following sample program:

AO1 ?def ?prt_imcr_x

402 {print x

A03 x = x + 2}

A04 ! some macro definitions before the main program
A0S ! begins. Notice that the replacement text stretches
AO6 ! over two lines

AO07 ?def ?pythag _x

A08 { x = sqrt((sidel *#* 2) + (side2 ** 2))

A09 7prt_incr_x }

A10 Program x_printer

A1l x = 12

A12 ?prt_incr_x

A13 sidel = 3

A14 side2 = 4

A15 7pythag_x

A16 print x

Al17 end x_printer

In this example, the macros on lines A12 through Al6 are expanded, and the SOL
compiler acts EXACTLY as if the following was typed instead of lines A12 through A16:

B12 PRINT X

Bi13 X=X+ 2

Bi4 sidel = 3

Bi15 side2 = 4

B16 X= SQRT((SIDE1 #** 2) + (SIDE2 ** 2))
B17 PRINT X

Bi8 X =X + 2
B19 print x
The macro on line A12 is expanded into lines B12 through B13. The macro on line A15

is expanded on lines B16 through B18. Notice that the call to ?ptr_incr_x is also expanded.
These examples are fairly simple, but illustrate the basic principle behind simple macros.

C.1.2 SIMPLE MACRO DEFINITION (REPLACEMENT TEXT)

The following restrictions hold for the syntax and body of the replacement text:

1) A macro’s replacement text CAN include calls to other macros.

2) A macro CANNOT call itself in the replacement text of its own defini-
tion, either directly or indirectly. SOL DOES NOT PROVIDE ERROR-
CHECKING FOR THIS, so you must avoid this condition on your own.

SOL Macros - Advanced Material C-§

3)

H

Braces, { and }, CANNOT be included in the replacement text UNLESS
they are paired.

° This restriction requires a more detailed explanation. The re-
placement text is delimited by an open brace, {, and a close
brace, }. But consider the following declaration: (columns de-
noted shown for convenience)

0123456789abcdefghi jklmnopqrstuvwxyzABCDEFGHIJKLMN
?7def 7macro_i {replace} me }

The SOL compiler cannot determine whether the brace in column t is intended to end
the replacement text, or whether the end of the text occurs in column y. However, it is useful
to have braces appear in macro replacement texts, so that macro definitions can appear in
the replacement text, for example:

?def ?Macro.l { ?def macro.2 {a = 6} }

Any open brace in replacement text is matched with the nearest unpaired
close brace, so only pairs of braces can appear in the replacement text.

The replacement text will be substituted for any macro call. The compiler
will act just as if the replacement text appeared in the program, instead of
the macro call.

The listing file will contain the “expanded” replacement text, instead of the
original call.

C.2 PARAMETRIC MACROS

A useful addition to the simple macro would be the capability to have macros in which
some of the replacement text is changeable; the replacement text would become a template,
filled in with different things when the macro is used. SOL offers this capability with its
parametric macros. Macros can be defined in terms of parameters, and arguments are
supplied when the macro is used; the arguments are substituted for the parameters in the
replacement text.

This section is divided into two sections:

C.2.1 - Explains how to define parametric macros

C.2.2 - Explains how to use parametric macros

SOL Macros — Advanced Material C-5

C.2.1 PARAMETRIC MACRO DEFINITION

Before a macro can be used, it must be defined, and parametric macros are no exception.
Defining parametric macros is very much like defining simple macros, except “blanks” are
specified in the replacement text that will be filled in when the macro is used, and the way
these “blanks” receive values is also specified. A parametric macro has the following syntax:

?def (macroname) (parameters) { (replacement text) }

where:

(macro name) is the name of the macro. It must consist of a ? symbol, fol-
lowed by a legal SOL identifier or a single non-alphanumeric
character.

. Extended Identifiers are not legal macro names.

(parameters) is the macro’s parameter list specifying the “blanks” that will
be filled in later. The parameter list consists of a series of
(digit) pairs, (e.g., #1 or #4), where the (digit) is a
number between 1 and 9.

(replacement text) is the body of replacement text. Any characters can appear in
the replacement text. Parameters, such as #1 appear where
variable replacement text is desired.

e However, additional restrictions apply to the use of open
brace, {, and close brace, }, within the replacement text. See
section C.1.2 of this appendix for details.

A parametric macro definition takes the form of a template, leaving holes to be filled in
later. This can best be explained with an example.

Suppose a macro is needed that would produce code to cube the variable, x. This is a
simple macro, and might be defined as below:

?def 7cube {x = x * x * x}

However, after a while it becomes clear that it would be useful to have a more general
macro that would produce code to cube any variable. Such a parametric macro might be
defined as below:

7def 7cube #1 {#1 = #1 * #1 * #1}

With this definition, ?cube x would expand to x = x * x * x and 7cube y would
expand to,y =y * y * y. The symbol #1 stands for the first parameter to the macro,
and when you say ?cube x, x is the so-called argument that will be substituted for #1 in
the replacement text.

As the notation, #1, suggests, macros can have more than one parameter. There can be
as many as nine parameters, #1 to #9, and they must be numbered in order. For example,
#4 cannot be used in a definition, unless the previous parameter was #3.

The restrictions and regulations governing the definition of parametric macros are given
below:

1) There can be no more than nine parameters, starting with #1 and increasing

to #9.

SOL Macros — Advanced Material C-6

2) Parameters in a definition must be specified in order. So for example, a
macro with four parameters, MUST name its parameters #1 to #4, in that

order.

3) Restriction 2) applies only to the definition of parameters (before the re-
placement text begins). Parameters can appear in any order desired within
the replacement text.

4) No spaces can appear between the “#” symbol and the number, “1” to “9.”

5) Blanks, tabs and carriage returns are IGNORED between the macro nam-
and the first parameter, between the parameters and between the last param-
eter and the start of the replacement text, i.e. the following are equivalent;:

i. ?def 7maci#i#2{...}
il. ?def ?maci

#1#2 {...}
iii. ?def ?7macl #1#2 {...}
iv. ?def 7macl #1 #2 {...}
V. ?7def 7macl #1 #2 {...}
vi. ?7def 7macl #1

#2 {...}

vii. ?7def 7maci #1#2{...}

6) Further, parametric macros abide by the same regulations as simple macros,
as stipulated in section C.2 of this chapter.

C.2.2 PARAMETRIC MACRO USE

Once a parametric macro has been defined, it can be used in a SOL program. Parametric
macros are used the same way as simple macros, except that the actual “arguments” to the
parameters must be supplied when the parametric macro is used. These actual arguments
are associated with the macro’s parameters. Everywhere the parameter appears in the
replacement text, the associated actual argument is substituted. The replacement text, with
substitutions, replaces the macro call in the SOL program.

Parametric macro calls have the following syntax:

? {(name) (argument list)

where:
name is the name of the macro. Nothing can appcar between the
g .
symbol, 7, and the name of the macro. The name is any legal
SOL identifier.
(argument list) is the list of arguments. The exact syntax of the argument

list is discussed in the next section, C.2.2.1

SOL Macros - Advanced Material C-7

For example, the following are syntactically legal calls to parametric macros:

— ?cube x

— "macl a b

— ?"macl a b

— ?rectangle_area 14 12 total_area

This section is divided into two sections:

C.2.21 — Discusses what constitutes an argument
C.2.2.2 - Discusses how arguments and parameters are associated.
C.2.2.1 Arguments to Parametric Macros

An argument to a parametric macro can be any of the following:

1) a SOL identifier
E.g., the_name, abcde a2345_7@b
2) a SOL string
E.g., ’the string’ , "Walter Cronkite: what a guy’ , 'Cheap Hotel’

° Note: Macro calls will NOT be expanded inside strings. However, quote
marks are stripped off and WILL NOT appear in the replacement text, (e.g.
see C.2.2.2, (example 1, 3)) for an example).

3) a signed (+, -) or unsigned number
E.g.,.0992 , -4, 4+3.456 , 8
4) # (digit) , where (digit) is a number, “1”7..“9”, no spaces between # and

; (digit) .
E.g., #2 , #8 , #1 (See example 1 item 2) in section C.2.2.2).
5) any character other than a blank or tab character, a 7, or the quote symbol,

E~g" #’ %1 . 'Y, & Ua ia *)), 01 4a 6’ {

These arguments are combined to form an (argument list) for a parametric macro call.
An (argument list) to a parametric macro must abide by the following regulations:

1) If the argument is an identifer, unsigned number, or a character that can
appear in a SOL identifier, one or more tabs, blanks and/or carriage returns
must separate the argument from the macro name, otherwise, zero or more
blanks, tabs and carriage returns can appear between the argument and the
macro name. For example:

DEFINITIONS:

| 7def 7macl #1 #2 { }
| 7def 7mac2.a #1 #2 { }
?def 7mac5 #1 #2 { }

SOL Macros - Advanced Material C-8

7def 7mac4d #1 #2 #3 { }

Legal ' Illegal
Tmaci 12 =* 7macii2 *
7mac2.a alfa ?mac2_aalfa ¥
7?macd . 65 ?mac5_ 65
mac3+4.3 Walter
?macéd
a
b
c
o The SOL compiler cannot distinguish between the name and the

argument in the case of arguments that are identifers, numbers,
or characters that can appear in SOL identifiers, UNLESS at
least one blank or carriage return separates them.

2) Arguments are separated with zero or more blanks/tabs and carriage returns,
with the following exceptions:

— two identifier arguments must be separated by at least one blank,
tab or carriage return.

— two numerical arguments, when the second argument is unsigned,
must be separated by at least one blank, tab or carriage return.

— An identifier argument must be separated by one or more blanks
or carriage returns from unsigned numerical arguments, or single
character arguments, when the character can appear in a legal

SOL identifier.

For example, given the definition, ?def 7macl #1 #2 #3, the following macro calls
are equivalent:

1) 7macl ident 12.3 $

2) 7Tmaci ident 12.3%
3) 7?maci ident
12.3
$
4) 7macit
ident
12.3
$

The next section details how these arguments are associated with the parameters in
parametric macros.

SOL Macros — Advanced Material C-9

C.2.2.2 Association Between Arguments and Parameters

The association between arguments and macro parameters is simple: the first argument
is associated with parameter #1, the second with parameter #2 and so on. Once all the
parameters are matched, the macro is expanded. Just be careful to supply the same number
of arguments as there are parameters, otherwise one of the following will occur:

1) Too few arguments: the SOL compiler will gobble up part of your SOL
program for use as a parameter argument.

2) Too many arguments: the SOL compiler will interpret the extra arguments
as part of the SOL program, and syntactic errors will probably result.

EXAMPLES:
Example 1:
Definition:
?def ?example #1 {#1}

Use:

1) 7example X
This call will expand to be: x

2) 7example #1
This call will expand to be: #1

3) ?example ’this is a string’

This call will expand to be: this is a string

° Note that the quote marks are stripped off, you CANNOT put quote marks
inside a string. IF quote marks were desired, the following definition could
be used:

7def 7example #1 {’#1’}

° Strings must appear on a single line.
4) ?example
12.3

This call will expand to be: 12.3

5) 7example 0
This call will expand to be: @

. §0L Macros - Advanced Material C-10

: Example 2:
5 Definition:

7def 7example2 #1
#2 {#1 = #2.33

‘ print #1}

Use:

| 1) ?example2 a 13
This call will expand to be:

'« a = 13.33

: print a

In the next section, parametric macros with delimited parameters, and some more com-
plex uses of macros are discussed.

C.3 DELIMITED MACROS

SOL also allows you to provide “delimiters” for both simple and parametric macros.
Delimiters consist of additional text, a pattern, that must be matched when the macro is
called. This section is divided into two sections that provide detailed explanations:

C.3.1 - Discusses delimited simple macros

C.3.2 - Discusses delimited parametric macros

C.3.1 DELIMITED SIMPLE MACROS

Delimiters are specified when you give a macro definition. Delimited simple macros have
the following syntax:

?def (name) (pattern) { (replacement text) }

where:

(name) is the name of the macro being defined.

(pattern) is the string of delimiters. This consists of one or more char-
acters. All characters are legal except the following: ?, {, the
blank space, and a tab. Any other character can be used as
a delimiter.

(replacement text) is the macros replacement text.

Delimited simple macros are best explained by example. Consider the following macro
definition:

2}

?def 7mac_1 pattern {x

SOL Macros - Advanced Material C-11

This macro could be called in the following ways:

Call Expands to be
7mac_1 pa tt e rn X =2
?mac_1 pattern X=2

When the macro is called the pattern, “p,a,t,t,e,r,n” must be matched before the macro
will be replaced. If the pattern cannot be matched, an error results. For example, given the
definition above, the following macro calls would be ILLEGAL:

— ?mac._1

— 7mac_1 p at

These are illegal because the entire pattern, “p,a,t,t,e,r,n” does not appear. When match-
ing delimiters, blanks, tabs, and carriage returns are ignored; matching is done on a character
by character basis. Thus, the definition above specifies that the first character is a “p,” fol-
lowed by an “a,” followed by a “t,” and so on. For example, the following are legal calls to
?mac_l:

-— 7mac_1l pattern
— "mac_.1 pattern

The precise rules that apply to the use of delimiters with simple macros are given below:

1) A delimiter can be any character except for the following: the macro symbol
“?” the blank space “ ”, open brace “{”, and a tab. A carriage return
CANNOT be a delimiter.

2) The symbol,“#”, has special significance. If the character immediately fol-

lowing the # is a digit in “1” ... “9”, the #, digit pair is considered to denote
a parameter, otherwise the character “#” is considered to be a delimiter.

3) The macro call must match the order and number of delimiters specified in
the macro definition. If the call does not match, a SOL error will occur.

4) Blank spaces, tabs and carriage returns between delimiters are ignored, ex-
cept in the case of “#” as detailed previously.

5) Delimiters are case sensitive. For example, a will not match A.

6) The pattern CANNOT be longer than 120 characters, the maximum length
of a SOL input line.

o The continuation symbol, &, cannot be used to dodge the length
restriction.

SOL Macros — Advanced Material C-12

In general, delimited simple macros are not very useful. Delimiters are primarily used for
delimited parametric macros. However, delimited simple macros are needed to have prefix
macros, as in the next example:

Example:

Suppose we want a macro that will expand as a prefix in forming arbitrary file names.
Consider the following:
Definition:
?def ?prefix {name_of_file}
Use:
?prefix _obj
?prefix_list
Expansion:
name_of file _obj
***ERROR, undefined macro, ‘‘prefix.list’’

As you can see, a simple macro will not do for a prefix macro; either a blank space
appears between the expanded text and the root word (_obj), or the root is misinterpreted
as part of the macro name, as in “prefix.list” Delimited simple macros solve this problem,
as shown with the following definition:

Definition:
?def ?prefix : {name.of file}

Use:
?prefix :_obj
?prefix:_list
Expansion:
name_of_file_obj
name_of file list

Here, the delimiter, :, forces the 7prefix call to match the delimiter before substituting
the replacement text. In this way, macros which can be used as prefixes are possible.
Section C.5 offers a summary of the rules that govern macros in general.

DELIMITED PARAMETRIC MACROS

Delimited parametric macros are treated in much the same way as delimited simple
macros. However, delimited parametric macros can have parameters intermingled with the
delimiters. Delimiters are specified when a macro is defined. The delimiters and the param-
eters are matched when the macro is called.

SOL Macros — Advanced Material C-18

Delimited parametric macros have the following syntax:

?def (name) (pattern) { (replacement text) }

where:

(name) is the name of the macro being defined.

(pattern) is the string of delimiters and parameters. The delimiters
consist of one or more characters. All characters are legal
except the following: ?, {, the blank space, and tabs. Param-
eters are specified as usual with a # digit pair. (see C.2 for
a full explanation of parameters).

(replacement text) is the macros replacement text.

Delimited parametric macros are best explained with an example. Consider the following:

?def 7increment #1 by #2 from #3 to #4
{D0 i = #3,#4

#1 = #1 + ¥2
ENDDO }

This macro could be called in the following ways:

1) 7increment x by 3 from 5 to 9
2) ?increment list by 1 from 1 to maximum_list

The macro’s arguments are determined as follows: the first argument is associated with
#1, then a pair of characters b and y should be seen, then the next argument is associated
with #2 , then the characters f, r, o and m should be seen, and so on. Thus, the two calls
above would expand into the following:

1) DO i =5,9
X=X+3
ENDDO

2) DO i = 1,MAXIMUM_LIST
LIST = LIST + 1
ENDDO

Of particular note is the fact that blanks and carriage returns are ignored when matching
up with delimiters. Thus, both of the following are legal calls to ?increment:
— ?increment z by 2 f r om 1 to fast_time
— ?increment z by 2 from 1 to fast_time
The precise rules that govern the use of delimiters with parametric macros follow:
1) A delimiter can be any character except for the following: the macro symbol

?, the blank space “ ”, open brace “{”, and tab. A carriage return cannot
be a delimiter.

2) The symbol,“#”, has special significance. If the character immediately fol-
lowing the # is a digit, the #, digit pair is considered to denote a parameter,
otherwise the character “#” is considered to be a delimiter.

SOL Macros - Advanced Material C-14

3) The macro call must match the order and number of parameters and de-
limiters specified in the macro definition. If the call does not match, a SOL
error will occur.

4) Blank spaces, tabs, and carriage returns between delimiters are ignored,
except in the case of “#” as detailed previously.
5) Delimiters are case sensitive. For example, a will not match A.
EXAMPLES:

Example 1:
Definition:

?def 7example ab#1 1:# 2 {print #1}
Use:

7example ab 12 1:# 2
7example abl2 1:#2
7example a b 12

1: #2

All of the above are legal calls of ?example. Note that the blank space in the definition
between “#” and “2”, make “#” and “2” delimiters, rather than denote parameter #2. In
all three cases, #1 is associated with 12.

Bad Use:
7example ab 121:# 2

This is an illegal call to ?example. Parameter #1 will be associated with the number,
121, and the delimiter, “1”, will not be found.
Example 2:
Definition:

?7def 7pattern { x : } 7def 7example ?pattern #1, y : #2 {print #1}

Because of the expansion of the macro, ?pattern, the above definition of 7example is
equivalent to:

7def 7example x : #1, y : #2

Use:
7example x:134,y:ppop
7example x : axis ,
y ¢ 123.33

Section C.5 of this chapter offers a detailed summary of rules that govern macros in
general.

SOL Macros — Advanced Material C-15

C.4 PREDEFINED MACROS

SOL offers

1)
2)
3)
4)
5)
6)
7)

eight predefined macros:

?DEF e e e e e e e e e e ... C4aa
PXDEF e e e e e e e e e e s e e s s, G422
PINCLUDE« « o o v v o v C43
2 70 . 3 O O Y |
PCHECKLIST B O 3%
PCOMPONENTNAME C46
PAPPEND & 7?XAPPEND C4a1

C.4.1 THE ?DEF MACRO

The ?def macro is an essential part of SOL macros, because it allows the SOL program-
mer to define his/her own macros. The ?def macro has already been discussed tangentially

in sections C.2

and C.3 of this chapter. The ?def macro has the following syntax:

?def { macro name) { pattern) { (replacement text) }

where :
macro name is the name of the macro and consists of the symbol, ?, fol-
. 3 . . y
lowed immediately by a SOL identifier.

(pattern) is the pattern text and consists of a series of delimiters and
parameters. This part is optional and does not have to ap-
pear.

(replacement text) is the replacement text, can be any characters, with stipula-

tions on the use of braces. This section is delimited by the
open and close braces, “{” and “}.”

This has already been discussed in detail in sections C.1 - C.3 of this chapter. The
following rules govern how the ?def macro can be used in a SOL program:

1)

2)

A ?def macro can appear anywhere in a SOL program blanks can appear.
However, a ?def cannot immediately appear after an ?include macro, on
the same line as the ?include macro.

A call to the macro being defined CANNOT appear in the replacement text
of the definition, e.g. ?def ?macl {7maci} is ILLEGAL, no error message
is given, and an infinite loop generally results. In other words, this is BAD,
don’t do it. Also, don’t do things like the following either:

?def 7a {6}
7def ?b {7a}
?def ?a {7b} ! As BAD as calling 7a directly.

SOL Macros — Advanced Material C-16

3) Macro calls in the replacement text are not expanded until the macro being
defined is CALLED. (See section C.4.2 of this appendix).

° If such an expansion is desired, use the ?xdef macro.

4) Macros inside of comments are ignored, just as any other SOL statements.

C.4.2 Tue 7XDEF MACRO

The ?xdef macro acts exactly like the ?def macro, but the replacement text is handled
somewhat differently. In an ?xdef, all macros in the replacement text are expanded when
the macro is DEFINED. With a ?def, all macros in the replacement text are expanded when
the defined macro is CALLED. This difference can best be demonstrated with an example.
Consider the following:

Example 1 Example 2

?def 7maci {6} ?def ?maci {6}

7xdef 7mac2 {x = 7maci} ?def ?mac2 {x = ?maci}
?def 7maci {9} ?def ?maci {9}

?mac2 7mac2

In example 1, 7maci, in ?mac2’s replacement text, is expanded when ?mac2 is defined.
Thus, the ?xdef on the second line is equivalent to:

7def 7mac2 {x = 6}

When ?mac?2 is called on the last line, it expands to be: x = 6.

However, in example 2, 7maci is expanded when ?mac2 is called, on the last line. By
this time, ?mac1 has been redefined. Therefore, the call to ?mac2 in example 2 expands to
be: x = 9.

Thus, a call to 7xdef is equivalent to a call to 7def except that the macros in the ?xdef’s
replacement text are expanded. Aside from the different expansion times of macros in the
replacement text, ?xdef and ?def are equivalent.

C.4.3 THE ?INCLUDE MACRO

The ?include macro is one of the most useful features of SOL, because it allows external
files to be included in a SOL program. The ?include macro has the following syntax:

?include (file name)

where :

(file name) is the name of the file to be included.

The 7include macro call is replaced with the text of the included file in the LISTING.
The following restrictions hold for the ?include macro:

1) The (file name) portion of the ?include macro must appear on the same
line as the call to ?include, or a SOL error results.

SOL Macros — Advanced Material C-17

2)

3)

4)

The file named (file name) must exist in the current directory, or the SOL
compilation will ABORT while trying to open the file. The full path name
can be given as a (file name) , but if that file does not exist, the SOL
compilation will ABORT.

If the file is empty, a SOL compile-time warning will be issued, but compila-
tion will continue.

The ?include macro MUST appear on a line alone in a SOL program.
However, an ?include macro can be followed by a comment, but NO other
statements, not even macros.

The ?include macro is especially useful for introducing often used macros. By storing
the macro definitions in a file, many SOL programs can use the same definitions by ?in-
cluding the definition file at the start of the programs. In the same way, useful subroutines
can be stored in files, and included for use in other SOL programs. In this case, remember
to 7include the subroutine declarations, as well as implementations.

C.4.4 THE ?LIST MACRO

The ?1ist macro allows the LISTING option to be turned on or off from within the SOL
program being compiled. This is useful when only a few particularly significant portions of
a SOL program are desired in the compilation listing. The ?1ist macro has the following

syntax:

?list (option)

where:

(option)

can be one of two values: on or off. Thus to turn the listing
on, type ?list on, and to turn the listing off type, 71ist
off. In a way, the on or off can be considered an argument
to the ?1ist macro.

The 71ist macro must abide by the following regulations:

1)

2)

No carriage returns can appear between the ?1ist and its option, on or off.
Blanks can appear.

A call to ?1ist can appear anywhere in a SOL program blanks can appear.

° A call cannot appear after an ?include macro, on the same line
as the 7include.

All calls to ?1ist on will appear in the listing file.

All calls to 71ist off will NOT appear in the listing file, because the macro
turns the listing off.

The listing CANNOT be turned on, by a call to ?list on, if the SOL
program is compiled with the compiler LIST option OFF. Thus, in order
to turn the listing on or off from within the compiled program, the SOL
program must be compiled with the compiler LIST option ON.

SOL Macros - Advanced Material C-18

C.4.5 THE 7CHECK_LIST MACRO

The ?check_list macro is a companion to the ?1list macro. The ?check_list macro
returns the current status the ?1ist macro. Thus, ?check_list can be used to determine
whether the list file is ON or OFF. The ?check_1ist macro has the following syntax:

?check_list

The ?check_list macro must abide by the following regulations:
1) ?check_list returns the value, ON, under two conditions:

1. if the ?71ist on macro is the most recent ?1ist macro called

ii. if no ?1ist macros have been called before to the ?check list
call, and the compiler LIST option is ON.
2) ?check_1ist returns the value, OFF, under two conditions:
i. if the 71ist off macro is the most recent 1ist macro called.
il. if no ?1ist macros have been called before to the ?check_list

call, and the compiler LIST option is OFF.

The ?check.list macro is useful when used with the ?xdef macro to save the current
state of the listing option, before turning the option off. Then the listing option can be
returned to its orginal state. For example, considering the following sequence of macro calls:

?xdef ?prev_list_option {?check_list}
?7list off

7include external file.sol

?71list ?prev_list_option

This sequence of calls illustrates a use for 7check_list. The intention is to include a file,
with the listing option off. Once the file is ?included, however, the listing file is returned
to its original setting. The orginal setting is saved by the first call to ?xdef. If the listing
option were ON, this call would be the equivalent of:

7def ?prev_list_option {ON}

Thus, the last line expands to: 71ist ON. Saving the state of the listing option is some-
times necessary to avoid the error of turning the listing ON when it was originally OFF.

SOL Macros — Advanced Material C-19

C.4.6 THE 7COMPONENT_NAME MACRO

The ?component_name macro is useful when used with the ?xdef macro inside of ASSEM-
BALGEs or COMPONENTs. The ?component_name macro returns the current ASSEMBLAGE nesting
in extended identifier notation. The ?component_name macro has the following syntax:

?component_name

The function of the ?component_name macro is illustrated by the following example:

ASSEMBLAGE outer (0, * ?)
SUMMARIZE

sum
END SUMMARIZE

COMPONENT one_in (1, * ’)
COMPONENT two_in (2, ’ °’)
sum = 12
ERD two_in
COMPONERT same_as_two (2, ’ ?)
sum = 15
?7xdef ?comp {?component_name}
END same_as_two
END one_in
COMPONENT same_as_one (1, ’ ')
sum = sum?comp + 4
END same_as_one
END outer

In this example, the ?xdef is equivalent to:

7def ?comp {@same_as._twoQone_inQouter}

Thus, the call to ?comp is replaced with:
@same_as_twoQone_inQouter.

In this way, sum = sum?comp + 4 becomes the SOL statement:
sum = sum@same_as_twoQone_inQouter + 4

More information on the extended identifier notation, and on ASSEMBLAGEs themselves
can be found in chapter 7.

C.4.7 THE TAPPEND AND 7XAPPEND MACROS

I. 7APPEND MACRO

The ?append macro appends lines of text to the end of the replacement text of an existing
macro. The ?append macro is much like ?def, except that the existing replacement text is
saved, and the new lines of text are tacked on .

SOL Macros - Advanced Material C-20

The ?append macro has the following syntax:

7append (macro name) { (append text) }

where :

(macro name) is the name of the existing macro. Consists of the symbol, ?,
followed immediately by a SOL identifier.

(append text) is the text to be appended on the end of (macro name)

can be any characters, with stipulations on the use of braces.

This section is delimited by the open and close braces, “{”
and “}.”

The following rules govern how the ?append macro can be used in a SOL program:
1) An 7append macro can appear anywhere in a SOL program blanks can ap-

pear. However, an ?append CANNOT appear immediately after an ?in-
clude macro, on the same line as the ?include macro.

2) It is ILLEGAL to 7append text to an undefined macro; an error message
will result.

3) It is ILLEGAL to ?append a call to a macro to itself e.g. ?append ?maci
{?mac1} . No error message is given, and an infinite loop will result. In other
words, this is BAD, don’t do it. Also, don't do things like the following either:

?def ?a {6}
7def ?b {7a}
7append ?a {?b} ! BAD appends 7a to itself.

4) Macro calls in the append text are not expanded at the time of the append,
just as macros in the replacement text of a 7def are not expanded until the
macro being defined is called. (See section C.4 of this chapter)

5) The 7append macro appends LINES of text to the end of an existing macro;
it does not append text onto the last line of an existing macro. For example,

7def 7a {X =}
7append 7a {12}
a call to ?a expands to be:
X =
12
not: X = 12

L4
C -2 SOL Macros — Advanced Material C-21

II. 2XAPPEND MACRO

The ?xappend macro acts exactly like the ?append macro, but the append text is handled
somewhat differently. In an ?xappend, all macros in the append text are expanded when the
?xappend OCCURS. With an 7append, macros in the append text are not expanded until
the macro being appended to is CALLED. Thus, the difference between an ?xappend and
7append is analagous to the difference between 7xdef and ?def. The difference between
?xappend and 7append is best illustrated with an example. Consider the following:

Example 1 Example 2

7def 7maci {6} ?def 7maci {6}

?def 7mac2 {X = 12} ?def 7mac2 {X = 12}
?xappend 7mac2 {x = 7macil} 7append ?mac2 {x = 7macl}
?def 7maci {9} ?def ?maci {9}

?mac?2 ?mac2

In example 1, ?macl is expanded when the ?xappend to ?mac2 occurs. Thus, the ?7xap-
pend on the third line is equivalent to:

7append 7mac2 {x = 6}

When ?mac?2 is called on the last line, it expands to be:

X = 12.
X=6

However, in example 2, 7mac1 is expanded when ?mac2 is called, on the last line. By
this time, ?mac1 has been redefined. Therefore, the call to 7mac2 in example 2 expands to
be:

X

X

Thus, a call to ?xappend is equivalent to a call to ?append except that the macros in the
7?xappend’s append text are expanded before the text is appended. Aside from the different
expansion times of macros in the append text, ?xappend and ?7append are equivalent.

12.
9

C.5 SUMMARY OF MACROS

In general, all macro calls or definitions abide by the following rules:

1) A macro call is expanded nearly anywhere it appears in a SOL program, with
the following exceptions:

. Macro calls are NOT expanded when a macro is defined; the
expansion occurs when the defined macro is called. For example:
?def ?macl { x = 2}
?def 7mac {?maci}
?def 7macl {x = 4}
?mac

SOL Macros - Advanced Material C-22

The call to ?mac will expand to: x = 4 (7macl expanded). If
?macl had been expanded when ?mac was defined, the replace-
ment text would have been x = 2.

° Macro calls are NOT expanded inside SOL comments or SOL
strings.

Note: When strings are passed as macro parameters, the quote marks
are stripped off in the replacement text. (See C.2.2.2, Example
1, item 3) for details)

2) A user defined or predefined macro can appear anywhere in a SOL program
its replacement text can legally appear. (See section C.4 of this appendix for
information about predefined macros)

3) All macro expansions occur at COMPILE TIME. The result of expanding all
macros will be the same as if the corresponding replacement text was typed
instead of each macro call.

4) The replacement text will appear in the compiler LISTING instead of the
macro call.

There are some exceptions to the above guidelines, as covered in previous sections.

SOL Macros — Advanced Material C-23

Index

1|

1, 2-8, 2-11
~, 28

=, 2-8

[, 2-8

#, C-6, C-17, C-11, C-14

&, 2-8
\, 2-8
*, 2-8, 6-24

{,28, C-4, C-11, C-14

}, 2-8, C-4

], 2-8

’, 2-8, C-10

(, 2-8

), 2-8

* 2-8,4-2

x, 2-8, 4-2
+, 2-8, 4-2

., 2-8

-, 4-2

.and., 2-8, 4-3
.eq., 2-8, 4-3
.false., 2-8
.ge., 2-8, 4-3
.gt., 2-8,4-3
.le., 2-8, 4-3
.1t ., 2-8, 4-3
.ne., 2-8, 4-3
.not ., 2-8, 4-3
.or., 2-8, 4-3
.true., 2-8
/, 2-8, 4-2

/*, 2-8, 6-24
:, 2-8

3 2-8

, 2
y 2
, 2

2

?, 2-8, C-1, C-11, C-14

?append, C-20

?check list, C-19
?component name, C-20
2det, C-2, C-3, C-4, C-16

?include, C-17

?1list, C-18, C-19
?xappend, C-22
?xdef, C-17
@, 2-11
%, 2-8
ABS, 10-2
actual parameters, 9-2, 9-11
dependent, 9-10
independent, 9-10
restrictions on, 9-9
addition, 4-2
ADS,
optimize statement, 6-23
arithmetic,
assignments, 6-2
operators, 2-8, 4-2
precedence rules for, 4-4
assemblage,
definition and syntax, 7-1, 7-3
example of, 7-9, 7-13
iteration, 7-29
restrictions on, 7-28
syntax of, 7-27
restrictions on, 7-3
scope rules, 7-24
summarization variable,
declaration, 7-5
use of, 7-9
assignment statement,
compatibility rules, 3-4
definition and syntax of, 6-2
ATAN, 10-2 :
block,
FORTRAN, 6-24
definition, 11-1
character set, 2-7
command procedures,
SOL, 1-2
LSOL, 1-5
comments, 2-11, C-17
compatibility rules,

Indez—1

compatibility rules (continued):
assignment compatibility, 3-4
operator, 3-5
parameter passing, 3-4
printing formats, 6-6, 6-8, 6-9, 6-10, 7-17
compile, 1-1, 1-2, 1-3, 1-5
options, 1-3
cross reference (x), 1-4
listing (1), 1-4
object code (f), 1-5
parse trace (p), 1-5
print rules (d), 1-5
component,
definition and syntax, 6-22, 7-1, 7-3
example of, 7-13
iteration, 7-29
restrictions on, 7-28
syntax of, 7-27
macro for, C-20
restrictions on, 7-3
scope rules, 7-24, 11-4
summarization variable, 7-5
declaration, 7-5
conditional do loop,
definition and syntax, 6-21
restrictions on, 6-22;
constraints,
restrictions on, 8-5
scaling, 8-6
syntax, 8-5
usage, 8-6, 8-7
continuation lines, symbol, 2-11
convergence,
for assemblages, 7-28
for components, 7-28
cos, 10-2
cross reference,
compiler option, 1-4
compiler option, 1-5
data types,
integer, 3-1
logical, 3-2
overview, 2-2
real, 3-2
decimal notation, 3-2
declaration,
explicit, 2-3
implicit, 2-3
in subroutines, 5-6

Indez-2

declaration (continued):

main program syntax, 5-1
of subroutines, 9-3
inside another subroutine, 5-6
restrictions on, 5-4
syntax, 5-3
of summarization variables, 7-5
of title for summarize print, 7-14
of variables, 5-2
restrictions on, 5-3
syntax, 5-2
restrictions on, 5-1

DECLARE, 5-1
default,

linker input, 1-7

optimization results output, 8-13
optimization settings, 8-12
optimizer switches, 8-8

summary title, 7-17

dependent parameters,

actual, 9-10
formal, 9-8
restrictions on, 9-10

design variable,

syntax of, 8-2

design variables,

bounds, 8-4
restrictions on, 8-4
syntax, 8-4

usage, 8-7

division, 4-2
do loops,

conditional, 6-21
iterative, 6-17

E format,

restrictions on, 6-6
syntax, 6-6

example of,

SOL program, 2-6

assemblage, 7-9, 7-11, 7-25, 7-26

comments, 2-11, C-4

component, 7-9, 7-11, 7-14, 7-21, 7-25, 7-26,
7-30, C-20

cross reference listing, 1-10

declaration, 5-2

do loop, 6-18, 6-20, 6-22

fortran block, 6-26

if statement, 6-12, 6-14, 6-15

example of (continued):
macros, C-1, C-3, C-4, C-6, C-7, C-8, C-9,
C-10, C-12, C-13, C-14, C-15, C-16,
C-17, C-19, C-20, C-21, C-22
optimization results output, 8-16, 8-19
optimize statement, 8-3, 8-4, 8-7, 8-9, 8-15
print formats, 6-8, 6-9, 6-10, 6-11
print statements, 6-5
source listing, 1-9
subroutine,
call, 2-6, 6-24, 9-5, 9-10
declaration, 2-6, 5-5
implementation, 2-6, 9-7
parameter passing, 9-7, 9-10, 9-11
summarization variable declaration, 7-5,
7-6, 7-7, 7-9
summarize statement, 7-17
EXP, 10-2
exponentiation, 4-2
expressions, 4-1
arithmetic, 4-2;
logical, 4-4
precedence rules for, 4-4
the role of parentheses in, 4-5
extended identifiers, 7-19
external FORTRAN routines,
in a SOL program, 6-24, 6-27
linking with, 1-6, 6-27
verification with output, 6-29
external file inclusion, C-17
external files, 1-6
naming conventions, 1-7

F,
compiler option, 1-5
format,
restrictions on, 6-8
syntax, 6-8

formal parameters, 9-2, 9-3, 9-11
dependent, 9-8
independent, 9-6

formats for printing, 6-3, 7-16
E, 6-6
F, 6-8
I, 6-9
L, 6-10

FORTRAN,
external routines, 6-24, 6-27
blocks, 6-24

I format,
restrictions on, 6-9

I format (continued):
syntax, 6-9
identifier,
extended notation, 2-10
syntax of, 2-9
versus reserved words, 2-9
identifiers,
extended notation, 7-19
if/then/else,
restrictions on, 6-13
scope rules, 6-14, 6-15, 11-3
syntax, 6-12
independent parameters,
actual, 9-10
formal, 9-6
restrictions on, 9-6, 9-10
initialization,
of variables, 5-2
summarization variables, 2-3
variables, 2-3
INT, 10-2
integer,
maximum value of, 3-1
type, 3-1
iterative do loop,
definition and syntax, 6-17
restrictions on, 6-18
L,
compiler option, 1-4
format,
restrictions on, 6-10
syntax, 6-10
link, 1-5
default input source, 1-7
with FORTRAN routines, 1-6, 6-27
linking, 1-1
listing,
and macro calls, C-4, C-18, C-19, C-22
compiler options, 1-4, C-18, C-19
cross reference information, 1-12
error messages, 1-13
sample of, 1-7
source listing, 1-12
local,
scope definition, 11-1
variables and initializations, 6-15
LOG, 10-2

‘logical,

assignments, 6-3
operators, 2-8, 4-3

Indez-3

logical (continued) :
precedence rules for, 4-4
type, 3-2
loops,
conditional, 6-21
LSOL, 1-5
restrictions on, 1-6
macros,
call, C-1, C-3, C-4, C-8, C-10, C-12, C-13,
C-15, C-22
restrictions on,
definition of, C-1, C-2, C-3, C-4, C-6, C-8,
C-11, C-13, C-16, C-17, C-22
delimited, C-11, C-13
restrictions on, C-12, C-14
overview of, C-1, C-22
parametric, C-5, C-7, C-10, C-13
restrictions on, C-8
predefined,
types of, C-16
simple, C-2, C-7, C-11
restrictions on, C-2, C-4
types of, C-1
main program,
declaration section, 5-1
scope rules, 11-2
structure of, 2-6, C-2
max iterations, 7-28
minimization, 8-7
multi-line statements, 6-1, 6-12
multiplication, 4-2
numbers,
syntax of, 2-10
numerical optimization, 6-23, 8-1
operator compatibility, 3-5
operators,
arithmetic, 2-8, 4-2
logical, 2-8, 4-3
precedence of, 4-4
relational, 4-2
optimization,
statement, 8-1
optimization results output,
default settings, 8-13
OPTIMIZE statement,
constraints, 8-2
definition and syntax, 6-23, 8-1
design variables, 8-2, 8-4
example of, 8-15
options section, 8-1, 8-8

Index-4

OPTIMIZE statement (continued):
restrictions on , 8-2
usage, 8-20
optimizer options, 8-8, 8-15
example of, 8-9
option,
compiler options, 1-3
optimization settings, 8-8
output,
from SOL compiler, 6-29
of optimization results, 8-15, 8-19
optimization results, 8-16
statements, 6-4, 7-16
P,
compiler option, 1-5
parameter passing,
compatibility, 3-4
restrictions on, 9-6, 9-8, 9-9
to macros, C-6, C-7, C-8, C-10 C-1
to subroutines, 6-23, 9-6, 9-8, 9-9, 9-10
parameters,
LSOL, 1-6
soL, 1-3
macro, C-5, C-7, C-8, C-17
restrictions on, C-6
subroutine, 3-4, 6-23, 9-4, 9-6, 9-7, 9-9,
9-10, 9-11
parentheses,
to force precedence with, 4-5
precedence,
arithmetic operators, 4-4
logical operators, 4-4
predeclared functions, 10-1
print statements,
for optimization results, 8-14, 8-15
print, 6-5
summarize print, 7-16
prograin,
as a SOL reserved word, 2-7
overall structure, 2-6
quote marks, C-10
real,
scientific notation of, 3-2
type, 3-2
recursion, 9-5, 11-3, C-16, C-21
relational operators, 4-2
precedence rules for, 4-4
replacement text for macros, C-2, C-4, C-5,
C-6, C-17, C-20, C-22

reserved words, 2-9

routines,
subroutines, 6-23
RUN command, 1-7
scientific notation, 3-2
scope rules,
assemblages, 7-24
components, 7-24, 11-4
if/then/else, 6-14, 11-3
main program, 11-2
subroutine, 9-12, 11-2
SIN, 10-2
soL, 1-2
restrictions on, 1-2
SQRT, 10-2
statements, 2-1
assemblage definition, 7-1
assignments, 6-2
component definition, 6-22, 7-1
if/then/else, 6-12
loops, 6-17
optimization, 6-23, 8-1
printing, 6-4, 7-16
restrictions on, 6-1
subroutine call, 6-23, 9-5
subroutine, 2-5
call, 6-23, 9-2, 9-5
restrictions on, 9-5
concept, 9-1
declaration, 5-1, 5-3, 9-2, 9-3
declaration section, 5-6
implementation, 9-2
restrictions on, 9-4
syntax, 9-3
parameters, 6-23, 9-4
scope rules, 9-12, 11-2
subtraction, 4-2
summarization variable,
declaration, 7-5
expression variable, 7-1, 7-7
use of, 7-10, 7-12
initialization, 7-27
printing, 7-16, 7-18, 7-21
restrictions on, 7-5
simple variable, 7-1, 7-7
use of, 7-2, 7-10, 7-12, 7-21, 7-22
summarize statement, 7-16
restrictions on, 7-16
syntax, 7-16
title for, 7-14, 7-17, 7-18
summary title, 7-15
symbols, special, 2-8

TAN, 10-2
type checking,

kinds of, 3-3

of assignments, 3-4, 6-3, 6-4
of operators, 3-5

of subroutine parameters, 3-4

variable,

X,

declaration, 5-1, 5-2, 5-2

5-2, 5-
initialization of, 2-3, 6-14, 7-27, 9-4,

11-3, 114
initialization versus declaration, 5-2

compiler option, 1-4

11-2

Indez-5

NASA Report Documentation Page

Nalonal Aeronautics ang
Scace Agrwstr 3o

1. Report No. 2. Government Accession No.

NASA TM-100566

3. Recipient’s Catalog No.

4. Title and Subtitle

The Preliminary SOL Reference Manual

5. Report Date

January 1989

6. Performing Organization Code

7. Author(s)

Stephen H. Lucas and Stephen J. Scotti

8. Performing Organization Report No.

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665-5225

10. Work Unit No.
506-80-31-04

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546-0001

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

NASA Langley Research Center, Hampton, Virginia.

Stephen H. Lucas, Vigyan Research Assoc., Inc., Hampton, Virginia.
Stephen J. Scotti, Thermal Structures Branch, Structural Mechanics Division,

This document is a reference for work described in NASA TM 100565.

16. Abstract

The Sizing and Optimization Language, SOL, a high-level special-purpose
computer language has been developed to expedite application of numerical optimiz-
ation to design problems and to make the process less error-prone.

is a reference manual for those wishing to write SOL programs.
available for DEC VAX/VMS systems. A SOL package is available which includes the

SOL compiler and runtime library routines. An overview of SOL appears in NASA

This document
SOL is presently

TM 100565.
17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Optimization, nonlinear mathematical Unclassified - Unlimited
programming, computer languages, .
design tools, SOL Subject Category 61
19. Security Classif. (of this report) 20. Security Classif. {of this page) 21. No. of pages 22. Price
Unclassified Unclassified 203 A10

NASA FORM 1626 oCT 86

For Sale by the National Information Service, Springfield, Va. 22161

