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PREFACE : SOL VERSION 1.22 

What this Manual Describes . . . 
The Sizing and Optimization Language, SOL, a high-level, special-purpose language 

developed for the solution of sizing and optimization problems. This manual is intended as 
a reference guide for those who wish to write SOL programs on a VAX computer running 
the VMS system. An overview of SOL appears in NASA Technical Memorandum 10056.5 
entitled, “ The Sizing and Optimization Language, SOL - A Computer Language for Design 
Problems.” This manual is a more detailed reference document. 

What this Manual Does Not Describe . . . 
Detailed tutorial information on how to program, advanced system-related information, 

or detailed reference information on the VAX/VMS command language. Wherever a more 
extensive understanding of the operating system is required, readers are referred to the 
appropriate VAX/VMS documentation for more information. 

The Structure of This Document . . . 
The installation guide explains how to install SOL on a VAX/VMS computers. Chapter 

One describes how to compile, link and run SOL programs. Chapters Two through Eleven 
provide language reference information and syntax rules. Additional information is found in 
the appendices. Several of the chapters contain two levels of information: introductory and 
advanced; the advanced level information is clearly delimited. 

A Little about the Sizing and Optimization Language (SOL) . . . 
SOL is a compiled language, and the SOL compiler produces FORTRAN object code. In 

other words, the SOL compiler translates your SOL program into an equivalent FORTRAN 
program. The SOL package consists of three elements: the SOL compiler; the SOL object 
library, that needs to be on your system for SOL to work properly; and this reference manual. 
Additional command procedures SOL and LSOL described in Chapter 1 are also included. 

SOL was developed primarily for in-house use, so a t  present SOL runs only on DEC 
VAX/VMS systems. To support SOL you need a VAX/VMS computer. In addition, your 
system needs at  least two things. First, your system must have an editor (such as EDT) so 
that you will be able to type your SOL programs. Any editor will do, but full-screen editors 
are generally better for composing programs. Second, you will need the VAX FORTRAN 
compiler. Since the SOL compiler translates SOL into FORTRAN, you will need to compile 
and link the FORTRAN to execute your program. 

The SOL compiler is a Pascal program written using the MYSTRO compiler development 
system created at the College of William and Mary and available through COSMIC. By 
utilizing MYSTRO, the SOL compiler was developed fairly rapidly, and includes an error 
recovery capability 

Notation Used in this hlanual to Describe Syntax . . . 

following syntactic conventions are used in these descriptions. 
Descriptions of the syntax of SOL statements appear regularly in this manual. The  

0 Words and letters in typewriter type indicate that you should type the word 
or letter as shown. 
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e Symbols, parentheses and so forth that appear in the descriptions should be 
typed as shown. 

Items that appear inside of angle brackets, ( and ), indicate a template to be 
filled in at  your choice. The syntax for each angle bracket template is usually 
described separately. 

e 

1)iffcircnces Iwtwcwi SOL Version 1.22 and previous versions . . . 
OPTIMIZATION: 

compatible simply delete all \ symbols from optimizer option selections. 

FORTRAN blocks: 

The \ is no longer used to prefix Optimizer Options. To make previous SOL programs 

FORTRAN blocks are allowed in the declaration section of the main program or subrout,ine. 
ALL FORTRAN type declarations MUST be placed in FORTRAN blocks inside 
a SOL declaration section. The SOL compiler does NOT catch this error, 
but the FORTRAN code created by the compiler COULD FAIL TO COMPILE 
if this rule is not followed. Simply place all FORTRAN type declarations inside 
the appropriate SOL declaration sections to make previous SOL programs 
compatible. 

e 

COMPONENTS: 
A new ASSEMBLAGE statement has been added. Please see Chapter 7 for details. Basically, 

SUMMARIZATION variables are no longer declared in the declaration section of a main program 
or subroutine, and the outermost COMPONENT now has a distinct ASSEMBLAGE syntax with its 
OiVN declaration section for SUMMARIZATION variables. 

The way summarization variables are declared has changed. 

Thc way iteration variables are declared has changed. 

e 

e 

Simply make the outermost COMPONENT an ASSEMBLAGE statement and move summariza- 
tion variable declarations into the ASSPiBLAGE declaration section to make previous programs 
compatible. Also if iteration variables are used, they must be declared according to the new 
syntax in Chapter 7. 
DECLARATION sections: 

declaration section. A new ASSEMBLAGE statement now declares SUMMARIZATION variables. 
SUMMARIZATION variables CANNOT be declared inside a main program or a subroutine 
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The Sizing and Optimization Language is installed on a VAX/VMS coriiputer in s c i ~ m l  
stcps. First, a sj-stem environment is created which itic-ludes creating a SOL clircctory. 
Second, the SOL system is read from the delivery media (i.e. the SOL tape) into the 
SOL directory. The instructions in this installation guide are geared towards the use of a 
VAX TK50 magnetic tape cartridge. Finally, several SYSTEM wide parameters and file 
protections are set. 

Installation requires the assignment of logical names and will require system management 
privileges (i.e. you must login as SYSTEM). Although this guide attempts to make installa- 
tion simple and easy, system privileges and some understanding of systems management is 
required. To install SOL, follow the steps below: 

1. LOGIN as system: 

You must choose the exact disk drives and directory on which to  install SOL. The  
installation instriictions given below assume that the installer has system privilcges so that 
system-wide parameters can be set and system login corriniand procediires altered. 

2. MOUNT the SOL taDe: 

Your SOL tape contains a single save-set containing all the files rccluired for SOL, 
including the compiler. optimizer and runtime library. The s a v e s e t  was cwated using the 
I*.-\ S BACKUP command. 

WRITE-PROTECT the tape by slidiiig thc writC-protcct switch on tlie 
front of the tape to the left. This will prevc’rit aiiy data on the tape I‘roin 
being accidently destroyed during the installation. Tnstructions for this step 
ciiii be found in Chapter 5 of tlic .\/icro C‘.\(S [ !s . rr :s  Prirucr or  in  Chapter 1 
of the JlicrolfMa5’ User’s .1Iariucil: Part 1. 

LOAD the tape hy inserting it into tlic tape drive.  Iiist.riictioiis for this 
step can bc found in the appropriate VAX tloc.rinic.iit,i~tioii. b’or cxamplc, i n  
Chapter 5 of the Micro VdiS User’s Prirrir I’ o r  in  (:lia.pter 1 of tlic Micro L’MS 
User’s .Ilanual: Part 1. 

1) 

2) 

Install ing SOL O R  n VAX/I’L14S Computer -1 



3) MOUNT t h e  t a p e  with the following coininand: 

MOUNT /FOREIGN t ape-dr ive :  

\ \ ' I I c w  t ape-dr ive  is the  namc (e.g. $TAPEl) of tlw t apc t l r i w  on which you 
moiintcd thc tape.  The physical m i n e  for the  TIi5O cartritlgc t a p :  tlrivc. is 
MUAO, or  i f  you have two t a p e  drives, MUAO and MUBO. 'rlic system-deiincd 
logical name for t h e  TK50 device is $TAPEl. 

If you wish t o  identify t h e  files on t h e  SOL delivery t a p e  before procwding with the 
installation, issue the  following commands AFTER mounting the  tape: 

BACKUP/REWIND/LIST t ape-dr ive :  
where tape-dr ive  is t h e  name of tlie drive on which t hc t a p e  was moiinted. 

3. Crea te  t h e  SOL System Environment 

Crea te  a high-level SOL directory so tha t  SOL can bc used by several i w r s  with t h c  
following command:  

CREATE/DIRECTORY sys$sysdevice:[SOL~ 

Next, set the  file protection of this directory such that  all users are able t o  access the  
files t o  b e  placed in it with the  following command: 

SET PROTECTION=(WORLD:RE) sys$sysdevice:[00000O]SOL.dir 

Define t h e  logical name SOL$DIR by issuing the command 11elow: 

DEFINE/SYSTEM SOL$DIR sys$sysdevice  : [SOL] 
Since the  SOL$DIR logical name must cxist a t  all times, you should add this definition 

s ta tement  t o  your system s t a r t u p  procedure. usually found in t lie sys$manager directory 
under  the  name  s y s t a r t u p  .corn: 

1) 
2) Add the line: 

Use an  editor (e.g. EDT) t o  edit the s y s t a r t u p .  corn command procedure. 

$ DEFINE/SYSTEM SOL$DIR sys$sysdevice:[SOL] 

t o  the  command procedure so tha t  the SOL$DIR logical namc  will always bc 
defined. 

EXIT tlie editor,  making sure t h e  changes t o  s y s t a r t u p .  corn are  saved. 3) 
.\ command procedure called SOLSYMBOLS .COM is included with the  SOL system and  

contains the  s tandard  symbol definitions tha t  allow the SOT, iiser to  invoke the  SOL compiler 
a n d  linker as discussed in t h e  SOL user's nianual. T h e  following h i e  should b e  added t o  the  
s\.stern-wi.ide login command procedure. typically SYS$MANAGER : SYLOGIN . COM: 

$ QSOL$DIR:SOL-SYMBOLS 
He sure t o  add the  command t o  t h c  systwi-widc login p r o ( ~ ~ l i i r ( *  siic11 t liat the tlefinvtl 

siymbols will be available for all users, avoiding sectioiis of' t 1 1 ~  login procedure that, arc only 
executed for SYSTEM or  other privileged users. 



4. BACKUP the tape into the SOL directory 

Once the  SOL directory has been created, t h e  SOL files must be copied from t h e  t a p e  into 
the  directory, SOL$DIR. Since the  files are stored as a save-set, t he  VAX BACKUP command 
is usccl. Type the  following to  copy the SOL files: 

BACKUP/REWIND tape-drive:SOL.BCK SOL$DIR 
T h e  required files will be copied into the SOL$DIR directory. W i t h  TK50 tapes,  this 

operation can be slow so be patient. 

S e x t ,  set t he  file protection so t h a t  all users are able to access the  individual files withill 
the SOL directory with the  following command: 

SET PROTECTION = (W0RLD:RE) SOL$DIR:*.* 
To verify t h a t  t he  files have been properly read from tlic t a p .  issue tlic following corn- 

mancl : 

DIRECTORY /S I ZE SOL$DIR 
The following should be displayed: 

Directory SYS$SYSDEVICE: [SOL] 

DVBOUNDS.FOR;I 
DVNORH.FOR;l 
LINKSOL.COM;l 
0PTIMIZER.FOR;I 
0PTIHIZER.OBJ;I 
OPT-0UTPUT.FOR;l 
RUNERR.FOR;l 
RUNSOL.COH;I 
SOL-COHPILER.EXE;1 
SOL-COHPILER.PAS;I 
SOL-LIB.OLB;l 
SOL-SYMBOLS.COH;l 
UNNORHALIZE.FOR;l 

4 
3 
9 

1008 
550 
42 
6 
2 

378 
1020 
89 1 

1 
3 

Total of 13 files, 3917 blocks. 

5 .  DISMOUNT the SOL tape 

To dismount the t ape  from the t a p e  drive, type tlic followii~g: 

DISMOUNT tape-drive 
i v l ~ c w  tape-drive is t he  nainc of tlic tapv (1i.ivv on wliidi  you mounted t , l i c ~  
tape (e.g. $TAPEl). Oncc the tape tlisniouitt is cornplcted, the t ape  can be 
rcrnoved. 



6. VERIFICATION 

This completer; the installation process. To verify that things arc workiiig: 

1 )  I, o (: o I 7'1-  as s w r  13 M . 

2)  1,OCIN as a normal user and CREATE a siniph> Sol, prograni using a n  
wlit o r .  k'or cwmiplc: 

PROCRAH test 

END test 
PRINT 'this is a test' 

Sa1.e the program in a file named t e s t .  s o l  

Compile the program with the command SOL t e s t .  

Link the program with the command LSOL t e s t .  Jbu will Le prompted for 
external file names: simply type a carriage-returii in response to the prompt. 
Run  the program with the command RUN t e s t .  

3) 
-1 1 

5 )  
If the program compiles. links, and runs (producing the output t h i s  i s  a t e s t  for the 

esample above). then it is reasonable to assume SOL has been installed properly. One might> 
also try shutting the machine doivn, and then repeating steps 2) through 5 )  ahove to further 
i-erify the installation. 

7. User Authorization 

SOL'S macro features are iniplemented with files. A s  a result, i t  is possible that SOL 
programs will require many files to be opened at once. VAX/VhlS systems set a limit on 
the number of files that a user can have opened at once. \I'hen a SOL program exceeds the 
\'.\X/VMS limits. a system error message will be displayed and the SOL program will halt. 
01ic can avoid this problem hy increasing the number of files a user is permitted to have 
open through the iise of the AUTHORIZE utility. described in the .\lrcro VMS Usei*'s Manua l ,  
f 'urt  !I, Appendi . r  . 1UTH.  To increase the file limits, do the following: 

1) Login as SJ'S'TlX. 

2 )  Switch to the proper directory and r u n  t lw A~~' l ' I IORI%l~:  l i t  ility with the 
fol lo \v i n g co I 11 ilia n d s : 

SET DEFAULT SYS$SYSTEM 
RUN AUTHORIZE 

3 )  1 . 1 1 ~  UAF> prompt synibol . ; l i o i i l t l  a p p m r .  11icr(-~is(> t l i e  file liinits for LA( ' I  I 
SOI, user ivho ncecls a higher liniit wit11 the foIlo\ving coiniiirtiid: 

MODIFY iiscr /f illm=200 

where "user" is the login name of the user rt.cluiring an increased file limit. 
The AUTHORIZE utility should return t h e  message: 

%UAF-I-MDFYMSG, user record(s) updated 

to signify the necessary changes have been made. 



4) Increase the number of bytes allowed in buffered 1/0 operations with the 
command: 

MODIFY user /bytlm=10000 

where ‘‘user‘‘ is the login name of the user requiring an increased byte limit,. 
The AUTHORIZE utility should return the message: 

%UAF-I-MDFYMSG, user record(s)  updated 

5 )  The changes can be verified with the command: 

SHOW user 

wlicre “user” is the login name of the user. 

Exit the AUTHORIZE utility with the command: 6) 
EXIT 

I t  will not be necessary to increase the “opened file” limits unless macros are iiscd 
extensively. 



~ Chapter 1 
Compiling, Linking, and Executing SOL Programs 

SOL is a compiled language. After creating a SOL source program with your favorite 
editor, you must compile the program. The compilation process translates your SOL pro- 
gram into an equivalent FORTRAN program. A computer program, the compiler, does the 
translation. You compile your program with the SOL command procedure described below. 
This command invokes the SOL compiler to translate your SOL program into FORTRAN. 
After using the SOL command to compile your program, you must use the LSOL command 
procedure to l ink your program. The LSOL command compiles the FORTRAN program, and 
links it with the SOL library routines. The result of the LSOL command is an executable 
version of your program, a version which is ready to be run on the computer. Finally, the 
VAX RUN command is used to run your program. 

In summary, to create and run a SOL program, do the following: 

1 )  
2) 
3) 
4) 

- Write a SOL program. 
- Use the SOL command procedure to compile the SOL program 
- Use the LSOL command procedure to link the SOL program. 
-- Use the \.‘AX RUN command to run the program. 

E X A  hl  PLES : 

For instance, to compile, link, and execute a SOL program named t e s t s o l .  sol, type 
the following sequence of commands: 

SOL t e s t s o l  
LSOL t e s t s o l  
RW t e s t s o l  

The SOL command will invoke the SOL compiler which translates t e s t s o l  into an equiv- 
alent FORTRAN program named t e s t s o l  .for. The LSOL command invokes the FORTRAN 
compiler to compile t e s t s o l  .for, and links the result with needed library routines. 

This chapter describes how to use the SOL and LSOL command procedures. The chapter 
is divided into four sections: 

1.1 
1.2 
1.3 
1.4 

- Discusses the SOL command 
- Discusses the LSOL command 

- Discusses the VAX R U N  command 

- Discusses an example LISTING produced by thc SOL corripilcr 
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1.1 COMPILING A SOL PROGRAM: THE SOL COMMAND PROCEDURE 

The SOL command invokes the SOL compiler. The primary functions of the SOL compiler 
are: 

to t.rarislatc SO t, source statemcnts iiito a n  t~clt~ivi\lci~b FO\X'l'Ti AN I)rOgrill11 

arid to issiie any error messages. 

to optionally generate a LISTING and/or CROSS-REFERENCE file. 

1 )  

2) 
The SOL command is not invoked from the editor, or from your SOL program. Once you 
have created your SOL program, save the program and exit from the editor. At the system 
prompt, type SOL and a space followed by the filename of your SOL program, another space 
and the compiler options. Press the RETURN or ENTER key. This will invoke the SOL 
compiler. 
More formally, the SOL command has the following syntax: 

SOL ( SOL file ) ( compiler options ) 
where: 

( SOL file ) is the name of your SOL source program (use standard VAX file 
names; the suffix .sol is assumed). 

( compiler options ) are the optional settings for the compiler. These are discussed in 
detail in Chapter 1, section 1.1.2. 

The following restrictions hold for the SOL command: 

1) The ( SOL file ) and the ( compiler options ) must appear on the same line. 
One or more spaces hlUST appear between the word SOL and ( SOL file ) and 
between the ( SOL file ) parameter and the ( compiler options ) parameter. 

Type a carriage return once you have finished typing the SOL command and 
pa ramet ers . 

2) 

3) 

Thus, the SOL command procedure has two parameters: the name of the SOL source 
file. and optional qualifiers €or the compiler. The following examples illustrate the use of the 
SOL command procedure: 

1) SOL optimum 

2) SOL optimum.so1 lx 

The name of the program being compiled, t lie conipiler options solected, and the current 
settings €or the compiler options are displayed on the scree11 aftc.1- t h e  SOL command is given. 

Compiling, Linking. and Executing SOL Programs 1-2 



For example, the invocation SOL Optimum lx will cause the following to be displayed: 
*+* SOL COMPILER UTILITY *** 
e****** VERSION 1.00 **I**** 
Compiling OPTIHUH with options W 

SOL Compiler v .  1 . 2 ,  Current Option Settings are: 
CODE OPTION SETTING 

D PRIllT RULES OFF 
L LISTING OFF 
P PARSE TRACE OFF 
0 CREATE FORTRAN 019 
X XREF OFF 

*** This run of the SOL Compiler U t i l i t y  is  complete *** 
Further details about the SOL command are found i n  the following three sections: 

1.1.1 - Discusses the ( SOL file ) parameter. 
1.1.2 - Discusses the ( compiler options ) parameter. 

1.1.3 - Discusses the output of the SOL compiler. 

1.1.1 THE SOL FILE PARAMETER 

The ( SOL file ) parameter to the SOL command is the name of the SOL source file 
containing the program to be compiled. The file must exist in the current directory, or t,he 
complete file specification must be given. 

The SOL compiler assumes a .SOL suffix if no suffix is explicitly given in the ( SOL file ) 
parameter. For instance, the SOL command: 

SOL filename 
is equivalent to iising the SOL compiler with the following command: 

SOL filename.so1 
Therefore, it is a good idea to suffix your SOL files with the suffix, “.SOL.” This suffix will 
distinguish SOL files from other programs, and save typing when using the SOL command 
to compile your SOL programs. 

Compiler options are specified in the ( compiler options ) parameter. The SOL compiler 
has default settings, so ( compiler options ) can be left blank. 

Compiling, Linking, a n d  Executing SOL Programs 1-3 



Tlic ( compiler options ) parameter is one of the following: 

1) nothing - use the default settings. The default settings are: 

1 (listing) . . . . . . . . . . . . . . . . . . . . . . . . . .  ON 
o (create FORTRAN code) . . . . . . . . . . . . . . . . . .  ON 
x (cross-reference) . . . . . . . . . . . . . . . . . . . . . .  ON 
p (parse trace) . . . . . . . . . . . . . . . . . . . . . . .  OFF 
d (print rules) . . . . . . . . . . . . . . . . . . . . . . .  OFF 

2) 
3) 
4) 

1 - turn off the listing option 

o - turn off the generation of FORTRAN code 

x -- turn off t,he Cross-reference option 

5)  
6) 
7) 

p - turn on the parse tracing 

d - turn on the printing of parse rules 

lpd or l o x  or lo 
one or more of 2) ... 6)’ not separated by spaces or carriage returns. E.g., 

Each of the options 2) through 6) is discussed in detail in the five sections that follow. 

1.1.2.1 The Listing Option, L 

The SOL compiler produces a source listing file by default. This file has the same name 
as the source file, but with the suffix “.list”. For example, compiling “example.so1” will 
produce a listing file named “examp1e.list”. 

The Listing option turns off the SOL compiler’s listing option, so that no listing is 
produced. Since the cross-reference listing goes into the listing file, turning off the compiler’s 
listing option also turns off the cross reference option. For example, the  following command 
turns off the SOL compiler’s generation of a listing: 

SOL example 1 

A sample listing is discussed in Chapter 1, section 1.-1. 

1.1.3.2 The Cross-reference Owtion. X 

The SOL compiler produces a cross-reference index of all variahlcs in tlic compiled SOI, 
program by default. The cross-reference index appears in  the listing file, also produced 
automatically The cross-reference index lists each variablc, and t h c  lincl numbers where the 
variable is accessed. 

Invoking the Cross-reference option turns off the SOT, compiler’s cross-reference in the 
listing. Since the Cross-reference information is produccd i l l  thc listing, turning off the listing 
option will also turn off the cross-reference option. 
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The three example invocations below turn off the cross-reference option: 

1) SOL example x 

‘2) SOL example 1 

3) SOJ, example lox  

A s;~t~ipl(- f . ros~-r ( ! fc r (~r i~(~  itit1c.x is tlisciisscd i i i  ( ! t l i ~ l ) t c ~ r  I , sc*c.t,ioii I :I. 

1.1.2.3 The Create FORTRAN Option, 0 

As a default, the SOL compiler automatically produces an objcct file containing a FOR- 
T I t A N  program equivalent to the compiled SOL. The object file contains the FORTRAN 
output from the SOL compiler. The name of the file containing the FORTRAN output is 
the same as the SOL source file, except it has a “.for” suffix. For example, “example-l.sol” 
will produce a FORTRAN output file named “example-1 .for” 

The Create FORTRAN option turns the SOL compiler’s FORTRAN code generator off, 
so that FORTRAN output will not be produced. To turn off the code generation, the 0 
option is specified. For instance, the following command will turn OFF the code generation 
of the SOL compiler: 

SOL example-1 o 

The FORTRAN output file, produced when the Create FORTRAN option is left on, 
must be linked with the LSOL command, discussed in Chapter 1, section 1.2. 

1.1.2.4 The Parse Trace Option, P 

The parse trace option is intended for debugging the SOL compiler, and therefore is not 
described. Unless modifying the SOL compiler source code, the P option is not needed. 

1.1.2.5 The Print Rules Option, D 

The print rules option is intended for debugging the SOL compiler, and therefore is not 
~ l ( x r i l ) c v l .  liiilcss inotlifying the SOL coiripilcr sourc~’  c.o(l(3, t l i e .  1) opt.ioii i s  not, needed. 

1.2 LINKING X SOL PROGRAM: THE LSOL COXlM.4ND PROCEDURE 

The LSOL command invokes the SOL linker. The primary functions of the SOL linker c 
are: 

to invoke the VAX FORTRAN compiler to compile the FORTRAN output 
produced by the SOL compiler. 

1) 
4 
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to link the output of the FORTRAN compiler to a standard library of rou- 
tines, and also to link with any other user-provided FORTRAN subroutines 
needed by the SOL program. This step produces an executable version of 
the SOL program. 

7’0 l ink a SOT, source program, invoke the LSOL command from tlic tcrniiiial. After using 
tlic SOL conirriancl procedurc, at tlic systcni prompt typo LSOL a n d  il spaw followcd hy t h c i  
iianic of tlic file to tw linked. Itemcmbcr ttiat thc file k i n g  l i i i k c d  is t t i o  orrlpri i  of the SOI, 
compiler, so no suffix or a .FOR suffix should be used. (c.g. “example” or “example.for”) 

More formally the invocation has the following syntax: 

2) 

LSOL ( SOL file ) 
where: 

( SOL file ) is the name of the FORTRAN program generated by the SOL com- 
piler. (your SOL program and the equivalent FORTRAN program, 
produced by the SOL command, automatically have the same names). 

The following restrictions hold for the LSOL command: 

1) 

2) 

The word LSOL, and ( SOL file ) must appear on a single line. 

Oiic or more spaces MUST appear betwecn the word LSOL arid ( SOL file ) 
l’ype a carriage return once finished typing the LSOL command procedure 
and parameters. 

Thus, the LSOL command procedure has one paxameter, the name of the SOL object file. 

3) 

For example, the following calls will invoke the LSOL Command Procedure: 

1) LSOL example-1 

2) LSOL optimum.for 
3) LSOL optimum 

The LSOL command will prompt you for the names of any  external FORTRAN routines 
called by your SOL program. For example, the command LSOL Optimum will cause the 
following to be displayed: 

*** SOL LINKER UTILITY *** 
****** VERSION 1.00  ***** 
Linking OPTIMUM t o  SOL Library Routines 

Please answer Y o r  I 
Do you have external FORTRAN ( . o b j )  f i l e s  t o  be linked? 

In response to this prompt, you should type Y if’ you have external routines to link and 
N if j*ou do not. If you answer Y ,  you will be prompted for the external file’s name, with the 
following prompt: 

You w i l l  be prompted for  f i l e  names. 
Enter a s ing le  name followed by a carriage return. 
the next name. 

You w i l l  be prompted for 
When you have f in ished,  just h i t  a carriage return a t  the prompt. 

Enter the complete filename ==> 
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Type a filename, and type carriage return. The LSOL command continues to prompt you for 
additional files until you type a carriage return in response to the e n t e r  f i l e n a m e  prompt. 
Once this prompting has ended, LSOL will compile the FORTRAN translation of your SOL 
program and invoke the V.4X Linker to create an executable ( .ese ) image which can be 
run on the computer. The LSOL command procedure will signal that linking has ended by 
sending the following message to the screen: 

*** This run of t h e  SOL Linker U t i l i t y  is comple t e  *** 
The following restrictions hold for the external file names: 

The linker requires “.obj” files produced by the VAX FORTRAN compiler. 
If a FORTRAN routine is needed by your SOL program, you must compile 
the FORTRAN to create a “.obj” file. This “.obj” file can now be linked 
with your SOL program. 
The linker assumes a “.obj” suffix, so it need not, be supplied. For example, 
to link “example-l.obj” either of the followiiig are valid file names: 

“example-1 .obj” or “example-1” 

1) 

2) 

The linker defaults to the current device and directory. If a different device 
or directory is desired, this must be specified in the file name. 

The esecutat~le image will be created in the current tlircctory. This image will have 
t he  same name as the file name passed to tlic LSOL command procediire, except the “.for” 
suffix is replaced with a “.exe” suffix. For example, LSOL o p t  i m  and LSOL 0 p t i m . f  o r  both 
produce an executable image named, “optim.exe” 

3) 

1.3 EXECUTING A SOL PROGRAM: THE R U N  COMMAND 

I 

Once you have compiled your program using the SOL command and linked it using the 

RUN ( file name ) 
where: 

LSOL command, the last step is to run your program. Simply t j p x  

( file name ) is the name of the “.ese” version of your SOI, program, produced hy 
the LSOL command. The “.exe” suffix is assumed, so it need not be 
supplied. For csample. to execute “test .cxc” yo11 can type either of 
the following: 

RUN t e s t  or RUN t e s t .  exe  

This command is the VAS RUN command. which is used to csecutc> most programs on 
Vr.AS/VI\f S systems. 

1.4 SAMPLE SOL LISTING 

.4 complete SOL compiler listing has three parts: 

1 )  A source code listing, generated by Icaving thv  I, opt ion on. 
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2) A cross-reference listing, generated by leaving the X option on. 

A list of error messages outlining where errors have been encountered in your 
SOL program. 

The source code listing for the main program appears first, followed by the cross-reference 
information (if X option selected) for the main program. The main program cross-reference 
is followed by a series of source listing/cross-reference pairs, one pair for each subroutine. 
The last thing to appear in the compiler listing is the error messages. 

On the following pages, a complete SOL compiler listing appears. After the SOL compiler 
listing, three discussion sections appear that explain the compiler listing. The italicized 
numbers that appear in the listing correspond to the numbered explanations in the sections 
that follow: 

3) 

1.4.1 

1.4.2 
1.4.3 

- Discusses the source listing 

- Discusses the cross-reference information 

- Discusses the error messages 
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SIZIJG A J D  OPTIHIZATIOJ LAJGUAGE 1 (SOL) V1.22 2 SOURCE LISTIJG 3 21-JUU-1988 4 10:53:47.88 5 PAGE 1 6 
7 SOURCELIJE 8 LIJEt 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
57 
58 
59 

: PPOGUH Opt-Beam 
: !  
: ! Determine t h e  o p t h i r u m  Geometry f o r  min veight beam 
: !  
: DECLARE 
: 
: EID DECLARE 
: ! cons tan ts  f o r  beam weight ca l cu la t ion .  

SUBROUTIJE (Rho-max) = calc-rho(max, depth) 

Fs-Allow = 6oooO 
Fb-Allov = 1OOOOO 
l eng th  = 40 ! beam l ength  i n  inches 
load  = 100 ! n n i f o m  load  i n  l b s  per inch 
s t e e l  = .3 
t -min =.l 
mater ia l -v t  = 7 
cap-width = 3 

OPTIIIIZE Beam-Weight 
USE 

depth = 20 In  C.25, 1 
cap-thickness = t e i n  I n  Ct-min, I 
veb-thickness = t e i n  I n  Ct-min, I 

: P r i n t  'Beam Depth ', depth : f 5 . 2  
: End Opt-Bear 

! cons t r a in t s  
Rho-b-max .It. Fb-Allov 
web-stress . I t .  Fs-Allov 

EJD USE 

ASSEIIBLAGE beam ( 0 ,  'Beam') 
SUIIIIARIZE 

area 
EPD SUHHARIZE 

COHPOJEJT top-cap(1, 'Top Cap') 

EJD top-cap 
COIIPOJEJT base-cap (1 ,  'Base Cap') 

EJD base-cap 
COHPOJEIT veb (1, 'Web '1  

EJD veb 

a rea  = l eng th  cap-vidth cap-thickness 

a rea  = l eng th  cap-vidth cap-thickness 

a rea  = depth  veb-thickness l eng th  

EJD beam 

n-mx = ((load*length)**2)/8 
I = (areaQtop,capQbeam*(depth**2))/2 
(Jlho-b-max) = calc-rho(H>ax, depth,  I) 
veb-s t ress  = load*len%h/(2*areaOpebQbeam) 
Beam-Weight = areaabeam s t e e l  
cap-area = areaQtop-capabear + area0base-capQbeam 
veb-area = areaavebabeam 

E J D  OPTIllIZE 
P r i n t  'cap a rea  I, cap-area : f 5 . 2  

P r i n t  'web a rea  ', web-area : f 5 . 2  
P r i n t  'Web th ickness  I, web-thickness : f 5 . 2  

a 

. 
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. 

c 

? 

S I Z I I G  A I D  OPTIHIZATIOI LAIGUAQE (SOL) V1.22 CROSS BEFEREICE 9 21-JUI-1988 10:53:47.88 

**+ CROSS REFEREBCE FOR H A 1 1  PROORAH *** 10 

**+ ASSMBLAGE IESTIIG STRUCTURE *** 11 

BEAH 
TOP-CAP 
BASE-CAP 
WEB 

e++ SU?IHARIZATIOI VARIABLES AID EIPRESSIOIS *** 12 

S u m m a r i z a t i o n  Variable lame L i n e  lumbers 

AREA 32 

*** O p t i m i z a t i o n  L i s t i a g  *+* 13 
OPTIHIZATIOI I A H E  : BEAH-EIGHT 
DESIGN VARIABLES : DEPTH. CAP-THICKIESS. VEB-THICKIESS 
COIISTRAIITS : REO-B-MI. WEB-STRESS 

Variable name,  Component Iesting Appended 

BEAH,UEIGHT 
CAP- AREA 
CAP-TEICKIESS 
CAP-WIDTH 
DEPTH 
FBJLLOW 
FS-ALLOW 
I 
LEIGTH 
LOAD 
HATERIAL-UT 
H - H A 1  
RHO-B-HAX 
STEEL 
T J I I  
WEB-AREA 
WEB-STRESS 
YEB,THICKIESS 

V a r i a b l e s  for Assemblage BEAH 15 
Variable name, Component Iesting Appended 

AREA@ BEAH 

Variables for Component TOP-CAP 
Variable name,  Component Ies t ing Appended 

AREAP TOP-CAW BEAM 

Variables for Component BASE-CAP 
Variable name,  Component B e s t i n g  Appended 

A R E A @  BASE-CAP@ BEAH 

V a r i a b l e s  f o r  Component YEB 
Variable name, Component Hesting Appended 

A R E A Q  WEB@ BEAM 

L i n e  l u m b e r s  14 

49 
50 54 
21 35 38 
16 35 38 
20 41 46 47 57 
10 25 
9 26 
46 47 
11 35 38 41 45 48 
13 43 46 
15 
45 47 
47 
13 49 
14 21 22 
51 56 
48 
21 41 55 

L i n e  l u m b e r s  

49 

L i n e  l u m b e r s  

35 46 50 

L i n e  l u m b e r s  

38 50 

L i n e  l u m b e r s  

41 48 51 

PAGE 2 
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S I Z I I G  AID OPTIHIZATIOI LAIGUAGE (SOL) V1.22 SOURCE LISTIIG 16 21-JUI-1988 10:53:47.88 
L I E :  SOURCE L I I E  

PAGE 3 

60 : SUBROUTIIE (8ho-max) = calc,rho(max, d e p t h ,  I) 
61 : Rho-lax = (MI depth) / ( 2 I) 
62 : EID calc-rho 
6 3 :  

S I Z I I G  U D  OPTIHIZATIOI LAIGUAGE (SOL) V1.22 CMSS BEFEREICE 21-JUI-1988 10:53:47.88 

*** CROSS REFEREICE FOR SUBROUTIIE *** CUC-REO 17 
Variable name, Component fas t ing Appended L i n e  lumbers 

DEPTE 
I 
HAX 
RHO-HA1 

60 61 
60 61 
60 61 
61 

S I Z I I G  AID OPTIIIZATIOI LAIGUAGE (SOL) V1.22 SOURCE LISTIIG 21-JUI-1988 10:53:47.88 
L I I E t  SOURCE L I I E  

PAGE 4 

PAGE 5 

0 2 ERRORS FOUID. 18 
1 0 WARIIIGS ISSUED. 

S I Z I I G  AID OPTIHIZATIOI LAIGUAGE (SOL) V1.22 ERROR HESSAGES I!) 21-JUU-1988 10:53:47.88 PAGE 6 
L I I E t  SOURCE L I I E  

47 : (Rho-b-max) = calc-rho(Haax, depth,  I) 

60 : SUBROUTIIE (Rho-mar) = calc-rho(max, d e p t h ,  I) 
*** ERROR - SUBROUTIIE ARCWEIT IUHBER IOT HATCH DECLARATIOH 

*** ERROR SUBROUTIIE ARGUHEHT HUHBER BOT HATCH DECLARATIOI 
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1.4.1 THE SOURCE LISTING 

. 

This section explains the format of the compiler source listing in detail. The italicized 
numbers in the explanations below refer to the italicized numbers that appear in the sample 
listing from t hc previous pages. 

Each pagc or t t i c  listing begins with a titlo linc, consisting of eight, clc.incnts: 

1 A SOL header message. 

2 
3 

4 
5 

6 
7 A line number column. 

8 A source line column. 

The version number of the SOL compiler. 

A subtitle that describes which part of the listing is found on this page. In 
the case of the source listing the words, “SOURCE LISTING,” appear. 

?‘he date the listing was created. 

The time the listing was created. 
The page number for the complete listing. 

The compiler listing begins with the main program source listing, as on page one. The 
lines from your SOL program appear. and are nunibercd for referencing. Tile line numbers 
that appear in the cross-reference and error messages, rcfer to these lint. numbers in the 
source listing. 

Following the main program source listing, the cross-reference for the main program (if 
the cross-reference option was chosen) appears. Next, the soiirce listing for the subroutine 
implementation appears, 16on page 3 of the listing. The subroutine source listing is followed 
by its own cross-reference. If other subroutines were used, a source listing/cross-reference 
pair for every subsequent subroutine implementation would also appear. 

The last page of the source listing will be blank if no errors occur, or will contain 
information on the number of errors and the number of warnings 18 that appeared followed 
by a listing of the error messages 19. 

1.4.2 THE CROSS-REFERENCE LISTING 

The cross-reference listing follows the source listing. The cross-reference will begin on a 
ncw page, and will he indicated by the words, ..CROSS REFERENCE.“ i i i  the page title as 
i l l  9. 

‘l‘lie cross-r(~f~~i.(~iict~ listing consists of the following: 

IO A title indicating that the cross-rcfercnce is for the main program. In the case 
of‘srihroutines, a different title is used to indicate thc namc of the subroutine, 
as in the case of 17. 
.An ASSEMBLAGE section appears, which illustrates components that make up 
the assemblage. If no components appear, this section is left blank. 
A list of the ASSEMBLAGE summarization variables and summarization expres- 
sion variables appears, along with the line number where they were declared. 
An  optimization section appears, which lists the objective function, design 
variables and constraints for each optirnizc staicment in your SOL program. 

11 

12 

13 
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14 A variable listing appears, which lists the variables and the lines where they 
were used. (ASSEMBLAGE and COMPONENT variables are listed separately, see 
15 below). 
A variable listing for the assemblage and associated componcnts appears. 15 

Following the cross-reference of the main program, the source listing for the subroutine 
appears, followed by its own cross-reference section as on pages 3 - 4 of the listing. Source 
listing/cross-refcrcllcc pairs continue to alternate for each siibscqiimt, sii1,routine. 

If the cross-rvfcwticc option is not selected, only a source listiiig will i i I ) j ) c a r  in the listing. 
Also, if the listing option is not selected: the cross-reference option defaults to “not selected,” 
and no cross-reference will be produced. 

1.4.3 THE ERROR LISTIXG 

The next to last page of the source listing 18 gives the number of error and warning 
messages that were issued, and is followed by a list of the messages in an error message 
section. The error message section is clearly delimited as i t  begins on a new page, and the 
words “ERROR 1IESSAGES” appears in the page header 19. The line number, line, and 
message issued for each error follow. The “up-arrow” mark before the issuccl message points 
to the general location of the error in the line. 
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Chapter 2 

. 
This chapter is divided into the following sections: 

2.1 
2.2 

2.3 
2.4 

- Presents an overview of SOL, and illustrates tlie structurc of a SOL program. 

- Discusses SOL’S lexical elements - the character set, special symbols, reserved 

- Explains how to document a SOL program using comments. 
- Explains the use of SOL’S continuation lines. 

words, identifiers and numbers. 

‘3.1 A N  OVERVIEIV OF SOL 

SOL is a high-level, special-purpose language that has been developed for use under the 

1) Conventional features: SOL has many features of “conventional’) lan- 
p a g e s  such as FORTRAN or Pascal. SOL offers variables; math-operators; 
built-in mathematical functions; program control statements for loops and 
if/tlicn/elsc logical branching statements; subroutines; and some PRINT state- 
Iiicrits to allow the output of values. 

Optimization features: One of SOL’S purposes is to make the computer 
implementation of a numerical optimization problem as simple and error- 
free as possible. There should be no confusion; SOL is not intended as a 
language for the development of numerical met hods of mathematical opti- 
mization. Rather, SOL’S purpose is to provide a language in which to write 
code which applies existing methods of numerical optimization to solve an 
optimization problem. One writes SOL code to apply optimization. At 
present, the methods of numerical optimization implemented in the ADSt 
optimization routine are available for use within SOL programs. In terms of 
its optimization capability, SOL can be considered as a sophisticated shell 
around an optimization routine. 

VAX/VhlS operating system. Four basic features describe SOL: 

2) 

f .4DS - rl FORTRAA‘ Program for rlutomatctl  Upsign Syrilhesis - I’ersion 1.10, NASA 
Contractor Report 177985, Grant nT.AG1-5G7, 1955 by G.N. V’ariclcrplaats 
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Sizing Features: SOL includes features to facilitate a type of engineering 
systems modeling herein referred to as sizing. In this manual, sizing is de- 
fined as the modeling of a system as the simple sum of its parts with respect 
to some special summarization variables. For example, an airplane can be 
modeled and sized for weight; we model the major parts of the airplane, its 
systems and structural components, along with the interaction between the 
parts. The model is constructed so that the weight of the entire airplane can 
be determined b y  summing the weight of its parts, the systems and structural 
weights. Likewise the weight of any part of the airplane can be determined 
by summing its parts. In this case, “weight” is considered a summariza- 
tion variable. SOL aids the modeling of such “assemblages;” by allowing 
the user to create such models, and automatically computing the necessary 
summat ions. 

3) 

4 ) FORTRAN Interface: SOL provides a FORTRAN block feature, which 
allows one to write FORTRAN code within a SOL program, or to interface with 
an existing FORTRAN code. 

0 Conventional SOL features combine with its specialized optimization and 
sizing capabilities to create programs. 

0 SOL’S compiler also provides an important error-checking capability. The 
compiler not only checks for syntax errors, but also uses knowledge about 
sizing and optimization to give specialized error messages. 
As a convention in this manual, a description of the correct use of a SOL 
feature is followed by a list of restrictions on usage which defines the error- 
checking of the compiler. 

0 

The following sections introduce the main elements of SOL: 

Data Types . . . . . . . . . . . . . . . . . . . . . . . .  2.1.1 1) 
2) Variable Initialization . . . . . . . . . . . . . . . . . . . .  2.1.2 

Exccutable Staternents . . . . . . . . . . . . . . . . . . .  2.1.3 3 )  
Suhroiitines . . . . . . . . . . . . . . . . . . . . . . . .  2.1.4 4 ) 

5) Structure of a SOL Program . . . . . . . . . . . . . . . . .  2.1.5 

3.1.1 DATA TYPES 

Every SOL variable has a data type. A data type classifies a variable, determining both 
the range of valiics the variable can have, and the operations which can be performed on it. 

SOL provides only three kinds of predefined types: 

-- REAL (S nytes long) 

- INTEGER (-1 Bytes 101lg) 

- LOGICAL 

0 

0 

SOL does SOT allow user-defined types. 

SOL does SOT provide structured types s i i c h  as arrays or rcwxds. 

. 
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0 Chapter 3 describes SOL data types in greater detail. 
SOL identifiers are given a data type in two wa,ys: 

a 

1) Explicit: Explicit type declarations can appear in the declaration sections of 
a SOL program, or in a subroutine formal parameter list. Explicit 
declarations give variables a type. 

Implicit: If a SOL identifier is not explicitly declared, the variable is implicitly 
declared as type REAL when it is initialized. 

2) 

Chapter 5 offers an in depth discussion of type declarations. 

2.1.2 VARIABLE INITIALIZATION 

SOL distinguishes between initializing a variable and declaring a variable. 

0 

0 

0 

A variable is declared when it is associated with a data type. 
A variable is initialized when it first receives a value. 

SOL requires every variable to be initialized before you access its value. 

The most common means of accessing a variable's value is using the variable on the 
right-hand side of an assignment statement. Variables can be initialized in six ways: 

most variables are initialized by appearing on the left-hand side of an  assign- 
ment statement. (See Chapter 6, section 6.1) 
subroutine independent parameters are initialized for use within the sub- 
routine when the subroutine is called and passcd values. (See Chapter 9, 
sections 9 2-9.3)  
optimization design variables are initialized when they are bounded (given a 
range of possible values) in the USE section of an optimize statement. (See 
Chapter S) 
summarization variables of composite COMPONENTS are implicitly initialized 
at the end of a COMPONENT. (See Chapter 7) 
Iteration variables are initialized in the ITERATE section of a COMPONENT 
statement (See Chapter 7 ,  section 7.1.3) 
variables are initialized when they are returned as the dependent variables 
from a subroutine call. (See Chapter 6, section 6.7, or Chapter 9) 

Variable initialization takes place in the statement section of a SOL program the first time 
a variable gets a value. Detailed discussions of each variable initialization method can be 
found in the sections named above. 

variable can be accessed. Each of the following is a block in SOL: 

1) 

2) 

3) 

4 

5 )  

6) 

The  block in which a variable is initialized determines the variable's scope, where the 

1) T h e  main program 

2)  S u 11 routines 

3) IF/?'I1EN/ELSE statcmcrits 



4) ASSEMBLAGES and related COMPONENTS 

Block: The chief characteristic of a block is that a variable can be iiiitialized inside a 
block, and remain uninitialized outside it. Some blocks can be nested inside 
each other. 

Scope: The scope of a variable determines where the variable can be accessed, and 
the rules which decide the scope of the variable are called “scope rules.” 
Scope rules follow from SOL’S stringent error checking. The scope rules are 
designed to insure that variables are always iiiitialized heforv they arc iisctl. 

For instance, consider thc IF/THEN/ELSE statcirwit. One caniiot be certaiii 
that the statements in the THEN or the ELSE portion of an IF statement 
will be executed. Statements in the THEN part are executed only when the 
condition is true, and statements in the ELSE part are executed only when the 
condition is false. Therefore, it is uncertain whether a variable initialization 
which only appears in either the THEN or ELSE portion of an IF statement, 
will occur. SOL will not allow a variable to be used unless its initialization is 
certain. Hence, the scope rules require that only a local variable be initialized 
when it is not certain that the initialization will actually take place. 

In general, the scope of a variable includes the block where the variable was 
initialized, and any blocks nested inside the initializing block. Outside of 
this scope, the variable is uninitialized and cannot be accessed. 

Chapter 11 offers a detailed discussion of scope rules, and the scope rules for each block 

0 

are discussed when the block is described. 

2.1.3 EXECtiTABLE S‘I’hTEhIENTS 

Statements include conditional branching, loops, assignments, optimizations, ASSEM- 
BLAGE descriptions, print statements, subroutine calls, and FORTRAN blocks. The statement 
section ends when the main program or subroutine ends. The following table gives a repre- 
sentitive list of the SOL statements and their use: 
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Table 2-1 

Calc rila tion Stat emc~i t s  Description 

Assignment 
Expression 

Control S t  a temen ts 

Conditional DO loop 
Iterative DO loop 
IF/THEN/ELSE 
Subroutine call 

Declaration Statements 

Subroutinc declaration 
Variable declaration 

Description Statements 

ASSEMBLAGE or COMPONENT 
OPTIMIZE 

hfiscellaneous Statements 

FORTRAN block 
?INCLUDE 
Macro call 
Macro definition 

O u t p u t  Statements 

Assigns a value to a variable. 
Combines variables, operators, and/or functions to give values. 
Expressions can only appear as part of other statements. 

Repeats statements while a condition is TRUE. 
Repea.ts statements a specified number of times. 
Branches based on a logical decision. 
Calls a SOL subroutine. 

Declares a subroutine and  its pa.ramcatcrs. 
Declares a variables type. 

Describes a sizing model. 
Describes an optimization problem. 

Incorporates FORTRAN code into a SOL program. 
Include a file into the SOL program. 
Use a macro abbreviation. 
Define a macros abbreviation. 

PRINT 
SUMMARIZE 

Output a value or optimization result 
Output individual component values for a sizing model 

SOL statements are fully described in Chapter 6. 

2.1.4 SUBROUTIKES 

SOL allows yoii to group declarations and executable statements into siibroutincs. Sub- 
routines are a convenient way to organize a program, because you can isolate individual 
tasks a program must accomplish by coding each task as a subroutine. 

0 Subroutines must be declared in the declaration section (Chapter 5) of the 
niain program, before they are used. The declaration consists of the subrou- 
tine name, and the number and types of parameters. 

Subroutine implementations, i i i  wliich t h r x  actual code for tfic subroutine is 
givcn. appear after the niain program’s body. 

0 
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0 SOL subroutines can call each other, but recursion is not allowed; SOL 
subroutines cannot call themselves directly or indirectly. 

Subroutines can declare local variables, but not local subroutines. 

SOL has no global variables; SOL subroutines cannot access variables initial- 
ized in the main program, except through explicit parameter-passing. 

0 

0 

0 

0 

0 

Chapter 9 describes su broutincs more fully. 

Chapter 6. section 6:7 provides details on subroutine ca.lls. 

Chapter 5 describes subroutine declaration. 

A SOL program has the following I :,sua1 structure: 

Program Header 
Optional Declarat ion Sect ion 
Statement Sect ion 

Optional Subroutine Implementation Sect ion 
End Program Foo te r '  

The declaration and subroutine implementation sections are optional, and can be left 
out of your SOL programs under certain conditions. All the otlier scctions iiiust appear. 

The following sample SOL program illustrates the structure of SOL programs in general. 
In the example, the structures outlined above have been noted by SOL comments, which 
follow the symbol, !. 

PROGRAM example ! t h i s  i s  an example program header .  Spec ia l  
! SOL words a r e  shown i n  uppercase l e t t e r s  

DECLARE ! The dec la ra t ion  s e c t i o n ,  appears i n  t h i s  
INTEGER a-var ! program. A va r i ab le  is dec lared  t o  be 
SUBROUTINE (y) = t e s t ( x )  ! of type INTEGER and a subrout ine i s  dec lared  

END DECLARE 

a-var = 4 ! The statement s ec t ion ,  and here  i s  
(a-var) = t e s t  (a-var) ~ ! a subrout ine c a l l  

END example ! The end program foo te r  

SUBROUTINE (y) = t e s t  (x) ! t h e  start of t h e  subrout ine 
! implementation sec t ion ,  only one 

IF  x .eq.  4 THEN ! subrout ine is  implemented i n  t h i s  

EliDIF 
p r i n t  'x equals  4 '  ! sample program 

y = x + l  
END t e s t  ! end of subrout ine implementation 
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Thus, to write a SOL program: 

t 

Give the program header, consisting of thc word PROGRAM, followed by the 
name of your program. 

Write a declaration section, delimited by the r c w r v c d  words DECLARE and 
END DECLARE, if desired. 

Supply the SOL statements that make up the statement scction. Iiidicat,e 
the end of the statement section with the end program footer, which consists 
of the word END, followed by your program name. 

If subroutines have been declared, supply their implementations in the sub- 
routine implementation section. 

Blank lines and comment lines. lines that consist of nothing or a comment respectively, 
can appear almost anywhere in a SOL program including before the program header and 
after the end of the main program or subroutine implementation. 

In the chapters of this manual, specific details are given about the declaration section, 
SOL statements and statement scction, subroutines, arid the rclationship between thcw 
parts. But, all SOL programs, no matter how complicated, will still have tlie basic structure 
outlined ahove. 

1) 

2) 

3) 

4) 

2.2 LEXICAL ELEMENTS 

A SOL program is composed of lexical elements. Lexical elements consist of a single 
character (individual symbols like parent.hesis or mathematical operators), or a collection of 
characters (words that have a special meaning in SOL). Each character must be a member 
of SOL’S character set, described in section 2.2.1. 

0 Some characters act as special symbols i n  SOL, representing statement delim- 
iters, operators, or elements of the language syntax. These special symbols 
are presented in section 2.2.2. 
Some words in SOL are reserycd for the names of SOL language constructs, 
statements, and operations. The SOL reserved words are listed in section 
2.2.3. 

Some words in SOL arc idcntificrs that arc’ crcatcd by thc  user to name 
variables. subroutines and  so forth. Section 2.2.1 c~splains how identifiers are 
formed. 

e 

e 

2.2 .1  CHARACTER SET 

SOL uses the cstended ASCII character set used hy \‘AX I’ascal. The SOL compiler 
assumes that the liorizontal tab will be represented by the ASCII character numbered by 
decimal number 9. 



The SOL compiler does not distinguish between uppercase and lowercase; for example 
the word OPTIMIZE has the same meaning when written in any of the following ways: 

OPTIMIZE 
optimize 

OpTImiZe 

2.2.2 SPECIAL SYMBOLS 

SOL utilizes a number of special symbols which are listed in the following table, along 
with a short English description of their meaning in SOL. For symbols whicli arc  composed 
of niore than a single character, the characters must be contiguous and cannot be separated 
by spaces. 

Table 2-2: Special Symbols 

Symbol Symbol Description 

* 
** 
+ 

.NOT. 
A S D .  
.OR. 
.TRU E.  
.FALSE 
.LT. 
.LE. 
.EQ. 
.?;E. 
.GE. 
.GT.  

comment delimiter symbol 
percentage symbol 
open parenthesis, often delimits arithmetic expressions 
close parenthesis, often delimits arithmetic expressions 
multiplication 
esponentiat ion 
addition 
comnia 
subtraction 
division 
beginning delimiter of FORTRAN hlocks i n  SOL programs 
quote symbol for SOL strings 
ending delimiter of F O R T R A N  blochz  i n  SOL programs 
colon 
assignment symbol 
continuation syml>ol for overlong lines 
macro delimiter, indicates where a macro hcgiiis 
macro replacement test opening delimiter 
macro replacement text closing delimiter 
optimization design variable h oil n cl s opening deli ni i t e r  
Optimization design variable bounds closing delimitcr 
logical operator. boolean negation 
logical operator, boolean conjunct ion 
logical operator. boolean disjunction 
boolean true 
boolean false 
relational operator 
relational operator 
relational operator 
relational operator 
relational operator 
relational operator 

“less than“ 
“less than or equal to“ 
“equalr’‘ 
“not equal to” 
“greater t lian or q u a l  to” 
‘*great e r t h an” 
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2.3 .3  RESERVED WORDS 

In SOL, certain words form the basic SOL language, and are predefined with special 
meanings that cannot be changed. These words are reserved for the names of statements, 
data types, and operators. Rescrved words can appear in uppercase or lowercase, but the 
following t a l h  shows SOI, rcscrvctl words in all uppcrcasv Icl,tcrs. 

‘l’tihl(* 2 2: Slarlclartl SOL 1~1~sc:rvc~cl  Wortls 

ABS 
ACTIVE 
ASSEMBLAGE 
AT 
ATAN 
BFGS 
BOUNDS 
COMP 
COMPONENT 
CONSTRAINTS 
CONVEX 
cos 
CRITERIA 
CUBIC 
DECLARE 
DESIGN 

DFP 
DIRECTIONS 
DO 
ELSE 
END 
ENDDO 
ENDIF 
EVERY 
EVERYTHING 
EXP 
EXTERIOR 
FEASIBLE 
FIND 
FLETCHER 
GOLDEN 
HYPERSPHERES 

IF 
IN 
INITIALLY 
INSCRIBED 
INT 
INTEGER 
INTERPOLATION 
INTERPOLATION/EXTRAPOLATION 
ITERATE 
ITERATION 
LAGRANGE 
LINEAR 
LOG 
LOGICAL 
MOD IF I ED 
MULTIPLIER 

NONE 
NORMALIZE 
NOTHING 
OBJECTIVE 
OPTIMIZE 
OPTIMIZER 
OPTIONS 
PENALTY 
PRINT 
PROGRAM 
QUADRATIC 
REAL 
REEVES 
SEARCH 
SECTION 
SEQUENTIAL 

SIN 
SQRT 
STEP 
STRATEGY 
SUBROUTINE 
SUMMARIZE 
TAB 
TAN 
TERMINAT1 nnJ 
THEN 
USE 
VARIABLES 
VIOLATED 
WHEN 

Reserved words can only be used in the contexts for which they are defined. Reserved 
~vortls cannot be redefined for use as identifiers. (see section 2.2.4 for description of identifiers) 

2.3 .-4 I D  ESTIFI ERS 

SOL identifiers are used to name variables, ASSEMBLAGES or COMPONENTS, a SOL pro- 
gram, SOL macros. or a SOL subroutine. IIowver. there is a standard form with which all 
identifiers must conform to be considercd legal: 

1) 

2) 

All SOL ideritifiers must begin wit11 a letter 

After the starting letter, the rest o f  tlir itl(vitilic~r can he a combination of 
the following elements: 

let tcss 

digits(0.. .9) 
underscores( - ). 

SOL, is not letter case sensitive, so the letters can be upprrcase, lowercase, 
or soiiie combination of both. 

Rc*sc~vecl words cannot he usrd as i(1c~ritific~i.s. 

Identifiers AIC‘ST be strictly Icss than 2S c.liarac.tcm in length. 

3) 

4) 
5 )  
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Some illustrations of legal identifiers and illegal identifiers follow: 

LEGAL 
ILLEGAL 

- birthday, OUT-tOLUncH, a234-5k6, First-try, tHe-3rd-value 
- 2Jate, 12hours, aS$time, program, a.answer, ?wrong0 

A DVA h’ C E D h4 AT E RIAL : 

SOL also has extended identifiers. These are only used to access variables initialized 
inside of an ASSEMBLAGE. Extended identifiers consist of a list of identifiers, separated by the 
J2 symbol. Several examples of extended identifiers follow: 

weightGshaft alarge-testQmy-will golfQnoon&an-be@fun 

0 

0 

0 

No blanks can appear between the symbol, @, and t.he adjaccnt identifiers. 

Extended identifiers MUST be less than 121 characters in total length. 

See Chapter 7 for more information on ASSEMBLAGES and exknded identifiers. 

SOL numbers can be positive or negative numbers that may include decimal points or 
be expressed as powers of 10 through the use of scientific notat,ion. In this notation, the 
letter “E” stands for “times 10 to the power of.” Some examples of SOL’S representation of 
integers, reals and scientific notation are given follow: 

integer = 12, 0. +2, -4, 1000000, 66. 29 
real = 12, 0, 0.0, +0.123. -3.4.56, .’i2 

scientific notation = 12e2 ( equals “12 timcs 10 to tlie second” or 1200 ) 
+2e-3 ( equals “2 times 10 to tlie -3rd” or .002 ) 
1.OE06 ( equals ”1 times 10 to t h c  sixth” or 1000000 ) 

0 

0 

0 

INTEGER values range from -2.147.453,638 t 1 1 1  origli 2,147,4S:1,648. 

REAL values range from 1.7e38 through 0.293e-3S. 

Leading zeros are allowed hut riot requirctl. 

not 100.000. 
scientific notation. 

0 Commas are not allowed. Thus. onc hundred tliousand is Lvritten as 100000, v 
Unless otherwise specified, SOI, \vi11 output numbers using 

Introduction to SOL r?--tO 



2.3  COMMENTS 

It is a good idea to comment your SOL programs, and SOL allows one to use comments 
freely. You can type anything you want in a comment. The SOL compiler ignores commcmts 
cx-miplc*tcly, so 4 l l i ~ t  vvc11 res(nw1 words can appear in it cwl i i i i i cv i t .  ‘ I ’ l i c a  SOI, compilcr will 
riot, do error c*Ii(diirig in j o u r  COITI I I~CI I~S .  Thcrcn a r c  olily two riil(*s for c - o n i r i i c x i i t s :  

1)  
2) 

(lortirnents start with an exclarnatiori p o i i i t ,  c:.g “!” 
Comments end at the end of the line. 

So, once you start a comment on a line, the rest of the liiic is treated as a comment. Here 
are some examples of comments: 

! this is a comment 
1 

I !!!!!!!!!!!!!!!!!!! a comment toooooooooooooo 

I c a 11 t y pc a n y t h i ng , even 1 2 kl f [ 8 -& * ) Y ) # ( ) J { ( ’ h l  I< M { ) ( # - ) J F hl ” 

In a SOL program, comments should either appear alone on a line, or after a SOL 
statement. You cannot put a comment before a SOL statement on a single line, because the 
entire line will be treated as a comment, and the SOL statement will be ignored just like 
any other text inside a comment. Some examples follow: 

a=6 ! comments are effective after statements 
! and here is a comment alone on a line 
! calculate the area area=width * height 

The last esample ahove is fine for a comment, but if the text “arca=witlth * height” was 
meant to be a SOL assignment statemelit, then there is an  error, bccause it will be ignored 
as part of a commcnt. 

As a final caution, some keyboards have a tlouhle-bar symbol, that looks a little bit like 
an exclamation point. You cannot use the double-bar symbol as a comment symbol. If you 
do, your SOL program will be incorrect. 

2.4 CONTISLTATION LIKES 

SOL is not entirely free-format, as carriage returns are used as statement separators. 
There are times when you will not have enough space on your terminal’s screen to con- 
veniently finish typing a SOL statement. You would like to  continue typing on the next 
line. but in your case SOL does not allow a carriage return to appear in the middle of the 
statement. To accomodate this situation, SOT, offers a continuation symbol, SC. 

The continuation symbol. &, should be read as ‘‘continued from the prcvious line.” If 
you place the symhol in colunin one of a linc of test, Sol ,  will treat thc text as if you had 
typcd i t  011 the previous linc. An 

Legal 

esaniple follows: 

2) 

illcgaf 

a =  ( 4 * 3 )  / 
( ( c  ** 4) + 2) 
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There are a few general rules to remember when using the continuation symbol: 

1) The continuation symbol, &, MUST be placed i n  column 1 !! If it is not in 
column 1, an error will result. 

There are cases when SOL requires a carriage return after a line. If a contin- 
uation symbol appears in column one of the next line, an error will result. 

You can string together as many lines as desired, using the continuation 
S?;Illl>Ol, &. 
SOL slrings, such as ' t h i s  is a string' CANNOT b c ~  broken over two 
lines with the continuation symbol. 
SOL lines can be at most 120 characters long. 

2) 

3) 

4 1 

5 1 
Information about the use of the & symbol in a specific case is sprinkled throughout the 

manual. 

. 

1 
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Chapter 3 
Data Types 

c 

. 
Every SOL variable has a data type. A data type classifies a variable, (Ictcrniining both 

tlie range of values the variable can have and the operations wliicli ci in be performed 011 

it. Furthermore, variables can he combined with operations (e.g. a + b/2 - c ) to form 
erpressions. SOL expressions calculate a value with a certain data type. This chapter’s focus 
is the data types; the discussion of SOL expressions and their types is left to Chapter 4. 

0 

0 

0 

SOL supplies three predefined types: INTEGER, LOGICAL, and REAL. 
No other types, such as arrays, records or user-defined types are available. 

An identifier is declared to be of a certain type in tlie declaration section (see 
Chapter 5 )  of the main program or a subroutine. 

If no explicit declaration is made, identifiers default to be type REAL. 0 

‘This chapter describes the  range of possible values and the legal operat ions for the three 
predefined types. INTEGER, LOGICAL, and REAL. In addition, the SOL compiler provides some 
type checking capability which is also discussed. For example, it is an cuor  to assign an  
INTEGER value to a LOGICAL variable. 
This chapter is dividcd into four sections: 

3.1 - Discusses the INTEGER type. 

3.2 - Discusses the LOGICAL t,ype. 

3.3 - Discusses the REAL type. 
3.4 - Discusses type checking. 

3.1 THE INTEGER TYPE 

The INTEGER type allows positive and ncgativc integcr \.aliics. A variable must be de- 
claIed to be of type INTEGER i n  the declaration section of tlw main program or subroutine 
(SCC Chapter 5 ) .  

0 INTEGER \ d u e s  can range from -2 ,1Ll i ,~ lS :~ ,6  IS t hroiigh 3,147,483,647 inclu- 
sivc. 

An INTEGER consists of a scrics of contigiioiis d~c i~ i i a l  digits; 110 commas 01’ 

decinial points are allowed. 

Negative INTEGER numbers are esprcssecl l,y placing a niinus symbol (-) in 
front of the number. 

0 

0 
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3.2 

3.3 

0 The use of negative INTEGERs in complicated expressions may not give the 
results you expect, see Chapter 4, section 4.3.1 for details. 
The legal operations on INTEGERS follow: 0 

+, -, *, /, **, .eq., . g t . ,  .ge . ,  . I t . ,  .le., .ne. 

The following are valid integers in SOL: 

THE LOGICAL TYPE 

The LOGICAL type, also known as the boolean type, represents the logical conditions of 
t rue  and false. Variables are declared to be of type LOGICAL in the declaration section of the 
main program or subroutine (See Chapter 5 ) .  

0 

0 

0 

0 

The symbol, . t rue . ,  represents a logically true condition. 

The symbol, . f a l se . ,  represents a logically false condition. 

.A LOGICAL variable can have only one of the two values, . t rue .  or .false. 

Legal operat ions on logical values follow: 

.and., .or., . n o t .  

0 Relational operators, such as .GT. (>), produce logical rcsiilts. Chapter 4, 
section 4.2 discusses logical and relational operators. 

THE REAL T Y P E  

The REAL type denotes positive or negative real values. \'ariables are declared to be of 
type REAL in the declaration section of the main program or suhroutine (See Chapter 5 ) .  

0 

0 

0 

0 

A11 REAL values are double-precision, (eight bytes long). 

REAL values are allowed to range from f1.7e3S through f 0.29e-3S inclusive. 
Variables are assumed to he REAL unless clcclaretl otherwise. 

Xcgative REAL numbers are expressed hy placing a iiiiriiis syinbol (-) in front 
of the number. 
The use of ricga tivc numbers in coriiplicatcd cxprcssions sometimes will not 
protliice tlie results you expect, See Chaptcr 1 .  section 1.3.1. 

Lcgal opa-ations on REAL variables follow: 

0 

0 

+, -, *, /, **, . eq . ,  . g t . ,  .ge . ,  . ~ t . ,  .le., . ne .  
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REAL numbers can be expressed with either of the following notations: 

Decimal notation: Use the set of decimal digits and an optional decimal 
point. Leading zeros are ignored. 

Scientific notation: Some numbers cannot be conveniently represented 
with decimal notation. Tlic partas of a REAL niinihcr writttn with this not r7 .A,’ ion 
a w :  

1) 

2) 

-_ 

. _  

- an INTEGER exponent. 

a REAL number or INTEGER, 

an upper-case or lower-case “e,” 

The letter “e” stands for “times ten to the power of.” 

The following are valid REAL numbers in scientific notation, representing the number 237: 

Table 3-1: 

Scientific Notation 

23 7e0 
2.37e2 
0.000237e+6 
2370e- 1 
2 3 7 4  

English Description of Meaning 

237 times 10 to the 0 power. 
2.37 times 10 to the second power. 
.000237 times 10 to the sixth power. 
2370 times 10 to the negative first power. 
.237 times 10 to the third power. 

The following are valid REAL numbers in decimal notation: 

6: 6.0, 500, 006. 56.S, .S9, 0.5312 

3.1 TYPE CHECKISG 

SOL offers two kinds of type checking: 

Assignment Compatibility rules: Assignment compatibility rilles deter- 
mine the types of data allowed when giving ~.alues to a variable. For instance, 
can a LOGICAL variable be given an INTEGER valuc? 
Operator Compatibility rules: Operator connpatibility rules determine 
what operations are allowed on variables of a certain type. Vor instance, can 
two LOGICAL variables be multiplied together:’ 

1)  

2) 

This section is divided into two sections: 

3.4.1 - Discusses assignment compatibility rules 

3.4.2 - Dixusses opcrator compatibility r i i lw  
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3.4.1 ASSIGNMENT COMPATIBILITY RULES 

Assignment compatibility rules apply when giving values to variables, either by assign- 
ment or by a subroutine parameter pass. The rules restrict the types of data allowed, as 
detailed in the following sections: 

3.4.1.1 Compatibility rules for regular assignments. 

3.4.1.2 Compatibility rules for subroutine parameter passing during subroutine calls. 

3.4.1. I Compatibility Rules for Regular Assignment 

Compatibili ty rules for assignment apply when variables are given a value: 

by assignment statement (Chapter 6, section 6.1); 
when used as optimization design variables (Chapter 8, section 8.1); 
or as iteration variables of an ASSEMBLAGE or COMPONENT (Chapter 7, section 

The following table shows the rules of assignment compatibility. The left, column gives the 
type of the variable and the right column gives the types which are assignment compatible, 
Table 3-3: Assignment Compatibility Rules 

7.3).  

Type of Variable Assignment Compatilile Type(s) 

I NTEG ER 
REAL 
LOGICAL 

INTEGER, REAL 
INTEGER, REAL 
LOGICAL 

Assignments between inco~npatible types are not allowed and result in a 
compile-time error message. 
.An INTEGER variable is assigned the h n c n t e d  REAL: for instance, if an INTE- 
G E R  variable is assigned the REAL number, 3.99999, tlie intcyybr variable will 
receive the value. 3. 

3.4.1.2 Subroutine Parameter Passing .Assignment Compatibilit-y Rules 

The following table shows assignment compatibility rules for the parameter passing dur- 
ing subroutine calls. The left side of the table gives the type of pnrametc>r, and the right 
column lists the types which are assignment compatible. 



Table 3-3: Assignment Compatibility for Subroutine Calls 

L 

Type of Parameter Assignment Compafiblc Typc(s) 

INTEGER 
REAL 
LOGICAL 

INTEGER 
REAL 
LOGICAL 

0 

0 

Assignments between incompatible types arc‘ not allowcd. 

Compatibility rules for parameter passing arc strict. The variable passed 
must have the same type as the parameter. 
Further details on subroutine parameters are found in Chapt,er 5, section 5.2, 
Chapter 6, section 6.7, and in Chapter 9, section 9.2. 

a 

3.4.2 OPERATOR COAIPATIBILITY RULES 

Operator compatibility rules define which operations are allowed on variables of each 
type. The legal operators for each data type have already been given, and the results are 
summarized in the following table. The left side of the table lists the type, and the right 
column displays the legal operations for that type. 

Table 3-4: 

INTEGER 
REAL 
LOGICAL 

Legal Operations 

+. -, *, /, **, q., .gt., .gc’., .It., .IC.. .lie. +, -, *, /, **, .eq., .gt., .gc.. .It., . I C . ,  .lie. 

.and., .or., .not. 

0 Note that INTEGER and REAL types share the same operations. As discussed 
in Chapter 4, REALs and INTEGERS can be mised in expwssions, with the 
resulting value always being of type REAL. 

Chapter 4 provides a more detailed discusion of this topic. 

Chapter 10 lists predefined functions and tthcir assignment compatibility 
rulcs. 

0 

0 
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Chapter 4 
Expressions 

A SOL expression consists of variables or constants combined with operators (e.g. a + 
b/2 + 32); the expression calculates a value of a certain data type. This chapter’s focus is 
on expressions; a discussion on data types appears in Chapter 3. 

SOL has two kinds of expressions: 

1) 

2) 

Arithmetic expressions which calculate INTEGER or REAL values. 

LOGICAL (boolean) expressions which calcdate LOGICAL values. 

A SOL expression is one of the following: 

a single variable 
a single constant 

a single predefined funct ion call 

a collection of variables and/or constants and/or prewclared functlm calls, 
all combined with operators. 

The operators used to form SOL expressions are the arithmetic, relational, 
and LOGICAL operators, all of which are explained in the sections that follow. 

The data type of the expression is determined by the data types of the 
operators or operands as described in the sections that follow. 

The predeclared functions (See chapter 10 for more details on predeclared 
functions) are: 

-ABS, ATAN, COS, EXP, INT, LOG, SIN, SQRT, TAN 
Expressions cannot be parameters to subroutines. 

Espressions extending over more than a singlc liuc in SOL must use the 
contiiiuat ion symbol, &, See Chap tc~  2, scction 2.4 for dctails. 

?‘his chapter is di\.idcd into two sections: 

4.1 

4.2 
4.3 

- Discusses arithmetic expressions, descrihing their syntax and action. 

- Discusses LOGICAL expressions. descrihiiig their syntax and action. 

- Discusses the precedence rules that determine the order in which operators 
are evaluated. 
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4.1 ARITHMETIC EXPRESSIONS 

Arithmetic expressions calculate REAL or INTEGER values. 

0 To form an arithmetic expression, combine numeric data (constants, INTEGER, 
or REAL variables) with one or more arithmetic operators 

The use of parentheses in expressions is outlined in section 4.3.3 of this 
chapter. 

0 

The following table lists the arithmetic operators (Also see Chapter 3, section 3.4.2): 
Table 4-1: 

Operator Example 

+ 
+ 
- 
- 
* 
** 
/ 

a + b  
+a 
a - b  

a * b  
a ** b 
a / b  

-a 

Result 

The sum of a and b. 
The positive value of a. 
Subtract b from a. 
The negative value of a. 
The product of a and b. 
a raised to the power of b. 
a divided by b. 

Although the previous examples show no more than two operands, there is no limit. The 
following details are also important: 

1) 
2) 

Negative exponents must be enclosed in parentheses. E.g. a**(-b) 
Arithmetic operations cannot be applied to LOGICAL values. 

INTEGER division is truncated, not rounded. 
variables, c and d. If c=9 and d=8, then d/c = 0, not 1. 

E.g Consider two INTEGER 3) 

The value calculated by an arithmetic expression has a data type, which is 
determined by the types of the operands and operators: 

If all operands are of type INTEGER, and no division operators 
appear, the resulting value will be of type INTEGER. note: the 
predeclared functions can also be operands; predeclared functions 
return either INTEGER or REAL values (see Chapter 10). 

If any operands are REAL or if a division operator appears, the 
resulting value will be of type REAL. 

4) 

0 

0 

5) Operator precedence rules are given in Chapter 4, section 4.3 

4.2 LOGICAL EXPRESSIONS 

LOGICAL expressions calculate LOGICAL values. 

0 To form a LOGICAL expression, combine LOGICAL data terms (e.g. LOGICAL 
constants or variables) with one or more LOGICAL operators. 
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0 Relational operators test the relationship between two arithmetic expressions 
and return a LOGICAL value as a result. If the relationship holds, the value 
.TRUE. is returned, otherwise the value .FALSE. is returned. Thus, rela- 
tional operators can be used to form LOGICAL data terms which can appear 
in a LOGICAL expression. 

The following table lists the relational operators. 

Table 4-2: 

Operator Example 

. eq . a .eq. b 

.gt  . a .g t .  b 

. ge . a .ge. b 

. l e .  a . l e .  b 
:It. a .It.  b 
.ne. a .ne. b 

Result 

. t rue.  IF a is equal to b 

. t rue.  IF a is greater than b 

. t rue.  IF a is greater than or equal to b 

. t rue .  IF a is less than or equal to b 

. t rue.  IF a is less than b 

. t rue .  IF a is not equal to b 

0 Relational operators are indivisible units, no spaces or miscellaneous charac- 
ters can appear between the periods and the letters. 

0 LOGICAL values cannot be used with relational operators (e.g. . t rue  . ge. 
c). 

0 REAL and INTEGER type values can be compared. 
0 Chapter 4, section 4.3 contains information on operator precedence. 

The LOGICAL operators used to combine LOGICAL data terms formed with relational operators 
and/or LOGICAL constants and/or LOGICAL variables are listed in the following table: 

Table 4-3: 

Opera tor 

.and. 

. o r .  

. n o t .  

Example Result 

a .and. b . t rue .  IF both a and h a.re . t rue .  
. fa l se .  IF either a or b are . f a l se .  

a . o r  b . t rue.  IF a or b is . t rue .  
. fa l se .  IF both a and b are . fa l se .  

. n o t .  a . t rue .  IF a is . fa l se .  
. fa l se .  IF a is . t rue .  

0 

0 

LOGICAL operators can only be used with LOGICAL values as arguments. 

Chapter 4, section 4.3 below provides information on operat.or precedence. 
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4.3 OPERATOR PRECEDENCE 

Precedence rules determine the order in which the operations will be evaluated in ex- 

1) Precedence Rules for Arithmetic Expressions . . . . . . . . . .  4.3.1 

2) l ' r (w( l cnw I3ult~s for Logical Kxprcssions . . . . . . . . . . .  . l .3.2 

3) Parcntheses to Force Precedence Rules . . . . . . . . . . . . .  4.3.3 

pressions. There are three types of precedence rules: 

4.3.1 PRECEDENCE RULES FOR ARITHMETIC EXPRESSIONS 

The following table lists the precedence order for all opcrators which can appear in an 
arithmetic expression: 

Table 4-4: 

Operator 

** 
*, I 
+ and - 

Precedence le vel 

first 
second 
third 

e 

e 

Operators are evaluated in order of precedence listed above. 

In  the case of two operators which have equal precedence, evaluation takes 
place from left to right. 

In the case of the operator, "**," evaluation talccs place from right to left. 
For example: 

e 

a ** b ** c 

is evaluated as 
a ** ( b ** c > .  

e Two operators cannot be placed in succession. E g .  a * -b is illegal while 
a * ( - b is legal. 

See Chapter 4, section 4.3.3 discusses the use of parentheses to force prece- 
derice. 

e 

4.3.2 PRECEDENCE RVI,ES FOR LOGICAL EXPRESSIONS 

The following table lists the precedence assignccl for all operators that, can appear i n  a 
LOGICAL expressioii: 
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Table 4-5: 

Opera tor Precedence 

Relational Operators 
. n o t .  
. and. 
. or. 

li rs t 
sccor1tl 
third 
fourtli 

e Arithmetic expressions, heing compared with relational operators, are evalu- 
ated using arithmetic precedence rules before relational operator precedence 
rules are applied. 
Some LOGICAL expressions are evaluated before all subexpressions are evalu- 
ated. For example, if a is . f a l se . ,  then a .and.  ( c / b .It. 12 ) can 
be determined by testing a, without evaluating ( c / b .It. 12 ) . This 
is useful for avoiding division by zero and other problems. 

Two LOGICAL operators cannot appear consecutively, unless the second op- 
erator is .not. 

e 

e 

r--- 

4.3.3 U S I N G  PAREK’TIIESES TO FORCE P R E C E D E N C E  

Parentheses can appear in arithemetic, relational and LOGICAL expressions to alter the 
normal sequence of evaluation. 

e \\:hatever appears in parentheses is given higlicr precedence, and evaluated 
prior to any other operators. Consider t lmc  cxainplcs: 

4 + 4/2 = 4 + 2 = 6 versus (4 + 4)/2 = 8/2 = 4 

If a = .false., b = c = .true. 
a .and .  b . o r  c = . t r u e .  versus a .and.  ( b  . o r .  c )  = . f a l s e .  

, !  
e 1 l i t .  us(’ of parcnthcws is i i iandatoq. i v l i c ~ r i  r l c y , ; r t  i vv  o r  posit i v c .  o1)wators 

uscd in arithmetic expressions. E.g. a + -b is illegal while a + (-b) is legal. 
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Chapter 5 
Declaration Section 

The dcclaratiori section appears immediately after the main program or siiLnoutine 
header (Scc Chapter 2, section 2.1.5), and has two functions: 

1 )  

2) 
0 

Allows the explicit declaration oi variables’ types. 

Allows subroutines to be declared 
The declaration section is optional; it need not appear. 

The declaration section (when i t  appears) has the following syntax: 

DECLARE 
( i’ariablc or Subroutine Deck ) 

END DECLARE 
where: 

( l’ariable or Subroutine Deck ) consists of 

0 nothing, it is optional 
0 

0 

e 

a variable type declaration (See Chapter 5. section 5.1). 

a subroutine declaration (See Chapter 5, section 5.2). 
a scries of variable type and/or subroutine tlcclarat ions scpnIai c d  by carriage 
ret 11 111s. 

Thc ( Variable or Subroutine Deck ) end when the words END DECLARE are 
reached. 

FORTRAN blocks containing OKLY FORTRAN type declarations can also appear 
inside a declaration statement (See Chapter 6, section 6.8). It is the user’s re- 
sponsibility to place ONLY FORTRAN type declarations within FORTRAN blocks 
in  the declaration section. The SOL compiler DOES NOT catch the error 
of using othcr FORTRAN statements in a declaration section FORTRAN block . 

0 

e 

The following restrictions apply to the declaration statcmtwt, when it  appears: 

1) Th(> word DECLARE must appear alone on  a lint.. 
0111~7 blank lines and comment lines can scy~nrat(a tlie declnratio~i section from 
the prograni header. 

Thc words, END DECLARE, must appear togcthcr. alonc on a siriglc line. 

2) 

3) 
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5 . 1  

Examples of the possible formats for the start of a SOL prograin follow: 

1. PROGRAM just-an-example 
DECLARE 
END DECLARE 

! empty d e c l a r a t i o n  s e c t i o n  
.. 
1 1 .  PROGRAM j ust-an-example 

! no d e c l a r a t i o n  s e c t i o n  
... 
111.  PROGRAM just-an-example 

DECLARE 
REAL a 
LOGICAL s ,  t ,  e ,  f 
END DECLARE 

! d e c l a r a t i o n  s e c t i o n  with t y p e  d e c l a r a t i o n s  

This chaptcr is dividcd i i i t o  three sections: 

5.1 Discusses Variable type declarations. 

5.2 Discusses Subroutine declarations. 

5.3 Discusses the declaration section in subroutines, and how it differs from the 
dcclaration section in the main program. Rfore information on a subroutine’s 
dcclaration section can be found in Chaptcr 9. 

VA RI AB LE T I T  E D EC LA RAT1 0 S S 

A variable type declaration associates a variable with a type. This is not to be confused 
with variable initialization, which associates a variable with a value for the first time. 

e 

e 

See Chapter 2 ,  section 2.1.2 for more information on variable initialization. 

I’ariahle type declarations can OSLY appear in the declaration sections of 
t hc iriain program and/or subrou t incs. 

i’ariahles are always local to the rout inc  ( i x .  thc m a i n  prograiii or subroutinc) 
in wliich they are declared. 

Scc Chapter 5 ,  section .5.3 for details 011 siihroiitine dcclarat ions. 

e 

e 

A \xriable declarat ion has the following sjmtas: 

( type ) ( variable list ) 
 here: 

( type ) is onc of the following: 

1) INTEGER 
2)  LOGICAL 
3)  REAL 

. 
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( variable list ) is one of the following: 
1) a variable 
2) a series of variables separated by commas. 

If you do not explicitly give a variable a type with a variable declaration, it 
is assumed to be of type REAL. Chapter 3 discusses types i lk  detail. 

I h c .  o r h  of tho declaration is unimportant; you can m a k e  variable declara- 
tioris in any order you wish. 

0 

, 7  

0 

The following rest,rictions apply to how variables can be declared: 

The list of variables that follows the ( type ) cannot run over onto the next 
line, unless the next line is explicitly defined as a continuation line with an 
Qi symbol. (Remember, the & symbol must appear in the first column, See 
Chapter 2, section 2.4 for details). Some examples follow: 

Legal IllegaI 

LOGICAL a, i n d e x e r ,  LOGICAL a, i n d e x e r ,  
& found,  b found,  b 

No more than one declaration can appear per line. For example: 

Legal Illegal 

LOGICAL I m  
REAL legal  

LOGICAL I m  REAL i l l ega l  

A variable cannot be declared to be more than one type. So, for example: 

Legal Illegal 

LOGICAL anamee 
INTEGER d i f f e r e n t n a m e  

LOGICAL samename 
INTEGER samename 

J'ou must put one or more blanks after the: type name to distinguish it frorn 
the variable. For example: 

LOG I CALa-var i ab1 e 

is illcgal. 

5 . 2  SUBROUTINE DECLARATIONS 

Subroutine declarations appear in the declaration section of the rna in program; the 
subroutine's name and its parameters are declared. 

0 A subroutine must be declared before i t  is called. 
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Subroutinc declarations can only appc'ar i n  thv tlcclarat,iori scBction of tlic 
main program. 

A siibroutinc dcclaration differs from a subroutiiic iii~j)l"i~i"iit,ation. 

A subroutine declaration is a template describing the dependent and in- 
dependent parameters, and the subroutine's name, although a subroutine 
implementation describes the specific action a subroutine will perform. A 
subroutine declaration provides no information about the specific action a 
subroutine will perform. 

Chapter 9 discusses subroutines in detail. 

A subroutine declaration has the following syntax: 

SUBROUTINE ( ( dep params ) ) = ( sub name ) ( ( indep params ) ) 
where: 

( dep params ) is the dependent parameter list. A patramcter list is one of the fol- 
lowing : 

1) nothing, an empty list is possible 
2)  a single SOL identifier. (Assumed to be type REAL ) 
3) an identifier/type pair which consists of: 

( identifier ) : 
where: ( type ) is REAL, INTEGER or  LOGICAL. 

( type ) 

4) X series of 2) and/or 3) ,  separated by commas 

For example. the following are legal parameter lists: 

a ,  b y  c y  d : REAL, e : LOGICAL, f 
a 
a-var-param : INTEGER 

( sub name ) is a SOL identifier representing the subroutine's name. 

( indep params ) is the independent parameter list, and has a syntax identical to the 
( dcp params ) stated previously. 

The folloiving restrictions apply to subroutine declarations: 

Tlie entire subroutine declaration must appear on a single line. If it will not 
fit. the continuation symbol, &. must be used. See Chapter 2, section 2.4 
which provides more information on the continuation symbol. For example: 

1) 

Legal lllega I 

SUBROUTINE SUBROUTINE 
& (spread, out) = the-sub (1 (spread, out) = the-sub () 
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. 

Any subroutine called by the main program, or another subroutine, must be 
dcclared i n  the  dcclaration section of tlic h4AIN progriut1. 

Subroutine names must be unique or an error results. You cannot declare 
two subroutines with the same name. 
Variables or parameters CANNOT have the same name as a subroutine. 

Two parameters, in the same subroutine declaration, CANNOT have the 
same name. 

Dependent parameters are given to the left of the equal sign and are altered 
by the subroutine. 

Independent parameters appear to the right of the subroutine name, and are 
NOT altered by the subroutine. 

2) 

3) 

4) 
5 ) 

6) 

7) 

Ex A hi P LES : 

111 the following example, each subroutine declaratioii is scparatcd hy a blank SOL com- 
ment, and the declaration section of a SOL main program is also shown: 

DECLARE 

P (an-indep , another-indep 
! 

SUBROUTINE (dep, another : LOGICAL) = subrout 

SUBROUTINE ( >  = a-sub (single :INTEGER) 

SuBroutine (dep : LOGICAL, another :REAL) = the-sub (> 

subroutine ( >  = simple () 

! 

! 

END DECLARE 

Thc first declaration declares the subroutine subrout  with four parameters. 
l'lic second dependent parameter, another ,  is esplicit ly clcclared to be of 
type LOGICAL whereas the remaining dcpcndent parameter, dep and the in- 
tl(-pcridcnt paramctcrs are implicitly assumctl to bc of t.ypc REAL sincc no 
t ! . p ~  dcclaration appears. 

The second declaration declares the subroil tine a-sub wi th  a single indepen- 
dent parameter of type INTEGER. 

The third declaration declares the subroutine the-sub wi th  two dependent 
parameters and no independent parameters. 
T l i ~  final declaration declares the subrout inc s imple with no parameters. 

Chapter 9 provides detailed information 0 1 1  subroutines. a n d  their declara- 
tion. 

1) 

3-1 

3)  

4) 
0 
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5 .3  THE DECLARATION SECTION IN SUBROUTINES 

.A declaration section in a subroutine is identical to the main program declaration section 
w i t h  one‘ csceptioii: 

0 No suhrotitincs can IF declared i n  the dcclaratiori scctioii ol’ a subrorit,inc, 

Otlicrwisc i i i a i r i  program ai id  srtbrotitinc tlcclaratiori scct,ioiis arc. idciii iml. Thc syiitax 
arid action descrilml in section 5.1 of this chapter apply equally to both tlw niain program 
and subroutine declaration sections. 

0 Chapter 9 discusses subroutines in detail. 
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Chapter 6 
s t at~enlcnt s 

. 

. 

F'ollowing an overview of SOL statements, the chapter is divided into the following sec- 
ti 011 s : 

6.1 

6.3 
6.3 
6.4 
6.5 

6.G 
6.7 
6.8 

- Discusses the assignment statcrnent 
- Discusses the PRINT statements 
- Discusses the conditional statement, IF/THEN/ELSE 
- Discusses the repetitive statements 
- Discusses the ASSEMBLAGE and COMPONENT statcnierits 
-- Discusses the OPTIMIZE statement 
- Discusses the subroutine call statement 
- Discusses the use of FORTRAN blocks 

OVERVIEFV 

SOL statements control the actions performed by a SOL program. The following restric- 
tions apply to how SOL statements can be placed in a SOL program: 

1) SOL statements can only appear t h e  places in a SOL program: 
0 

0 

0 

In the SOL statement section of the main program. 
In the SOL statement section of a subroutine implementation. 

Inside another SOL statenicnt, (Inult i-line statcmcmt). 

3) 
3) 

I3lank lincs are allowed on the. lincs Idorc: aiitl aftw all s t i ~ t c ' l ~ l e ~ ~ t ~ .  

C'ornments are allowed on the lines before and after all statements. 

Comments are allowed on the same line as a SOL statement, after the state- 
ment. 
Two statements CANNOT appear on the same line. 

4) 

5 )  
Several SOL statements are multi-line statemenfs: so a single stateniciit can be many 

lines long. Regardless of the number of lines a statement occupies, a statement must start 
alone on a line, and must end alone on a line. The following arc multi-line sta.tenients: 

1) The OPTIMIZE statement 

2) Tlic COMPONENT and ASSEMBLAGE statements 
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3) The conditional IF/THEN/ELSE statement 
4) The repetitive DO statements 

0 If a statement is not a multi-line statement, and it won’t fit on a single line, 
then the continuation symbol, &, must be used. See chapter 2, section 2.4 
which describes the continuation symbol in detail. 

‘Tlic gcricral structiirc of a SOL program is dcbi lwl  in Chapter 2, scctioii 
2.1.5. 

0 

6.1 THE ASSIGNhlEKT ST-4TEMENT 

Assignment statements give variables a value. Variables can be initialized by assignment 
statements. Tlie assignment statement has the following syntax: 

( id ) = ( cxpr ) 
wliere: 

is a SOL identifier. (Extended idcntificrs used for ASSEMBLAGES or 
COMPONENTS CANSOT be used: Sco Chapter 7 ,  section 7.1.2 for de- 
tails). 

( expr ) is a SOL expression. 

‘The expression on the right side of the assignment staterncnt’s equal sign is evaluatctl 

The following restrictions apply to assignment statements: 
and the resulting value is assigned to the variable. 

Assignment statements must appear alone on a line. If an assignment state- 
ment will not fit on a line, the continuation symbol must be used. (Further 
details appear in Chapter 2, section 2.4 ). For example: 

1) 

Legal 

a-var  = (43 + 
& r ** 2) 

a-var  = (43 + 
r ** 2) 

There are two types of assignment statements in  SOL: 

1 )  A d  hmetic Assignment Statenicnts . . . 
2)  Logical Assignment Statements . . . . . 

. . . . . . . 6.1.1 

. . . . . . . 6.1.2 

6.1.1 .\RITIIhlETIC .k%IGShlE?U‘TS 

Tlie arithmetic assignment assigns to the variable on the left, of the equal sign, the value 
of the arithmetic expression on the right of the equal sign. 

, 

~ 
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The arithmetic assignment statement has the following syntax: 
( a-variable ) = ( arith-expression ) 

wl1crc: 

( i i - w i . i a I t l ~ -  ) i s  i i  REAL 01‘ INTEGER v; i r i ; i l~ l (~  

.. 

( arith-expression ) is an arithmetic expression. Chapter 3 ,  section 4.1 details arith- 
metic expressions. 

The following restrictions apply to arithmetic assignment statements: 

Tlic equal sign does not mean “is eqiial to,’’ as i n  conillion mathematical 
usage. It means, “is rcplaccd by.” For exaniple: 

1) 

a = a + l  

This statement means, “replace the current value of the variable 
named ‘a,’ with the sum of a’s current value and one.” 

All variables which appear on the right-hand side of an assignment statement 
3II-ST be initialized before their appearance. 
The expression on the right-hand side must evaluate to a REAL or INTEGER 
value. 

Lhriables on the left side of an assignment statement cannot be signed. (e.g. 
- a = a * 3 is illegal because “-a’, cannot appear on the left-hand side of an 
assignment statement. 

Type checking of arithmetic assignment statements is rclased. In some cases, if the value 
of the evaluated expression is of a different type froin the variable, the result is converted 
into a value of the variable’s type. 

3) 

3) 

4 1 

The folioivirig tahlc details how types arc convcrted: 
Table 6-1: 

\’ar Tjvpc Expression Type 

INTEGER INTEGER 
INT?EGER REAL 
INTEGER LOGICAL 
REAL INTEGER 
REAL REAL 
REAL LOGICAL 

Expression c o n ~ w t e d  to 

INTEGER 
INTEGER, REAL is truncated 
error -- illegal assignment 
REAL, INTEGER converted 
REAL 
crror - illcgal assigiiment 

Chapter 3, especially sections 3.1 - 3.3 .  offcrs somc dctai l  o i l  the. conccpt ol TYPE. 

The logical assignment statement assigns to the variahle on  the left of the equal sign, 
the value of the logical expression to the riglit of the cqiial sign. 
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The logical assignment statement has the following syntax: 
( a-var ) = ( logic-expr ) 

where: 

( a-var ) is a LOGICAL variable 

( logic-cyr ) 

1 he following restrictions apply to logical assignnicnt statemcnts: 

i s  a logic.al cxprc-ssion. ( ’ l i a p t c ~  S I ,  sc~i.iori I .2 tl(.Ii1iIs logical cixl)r(’s 
sioiis. 

r ,  

Ttic equal sign does not mean “is equal to,” as in common mathematical 
usage. It means, “is replaced by.” For example: 

1) 

a = .not. r 

This statement means, “replace the current value of the LOGICAL 
variable named a, with the negation of the LOGICAL variable r.” 

All variables which appear in the right side of an assignment MUST be 
init ializecl before their appearance. 

The expression on the right-hand side must evaluate to a LOGICAL value. 

2) 

3) 
Type checking of logical assignment statements is strict: a LOGICAL variable can only be 

assigned a LOGICAL value. The following table details the results of such assignments: 
Table 6-2: 

I‘ar Type Expression Type Expression converted to  

LOGICAL INTEGER error ~ ilkgal assignment 
LOGICAL REAL error -- illegal assigiiment 
LOGICAL LOGICAL LOGICAL, value of expression. 

Chapter 3, especially sections 3.1 - 3.3, offers some detail on tlic concept of TYPE, 

6.3 T H E  PRINT ST-ATEhIENTS 

SOL print statements are used to write valucs aiid messages from your cxecutirig SOT, 
program to an external logical unit, which by default is your terminal. 

0 

0 

0 

The external unit is not user defined. 

SOL uses cxternal logical uni t  6 (SI’SSOr“1’I’lJT 011 VAS/VMS syst,cms). 

For iiiteractive SOL programs external logic-a1 unit G will he your terrninal 
by dcfault. 

For batch jobs, this cstcrnal logical u r i i t  6 defaults to lw tllc batch log file. 0 
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SOL provides two kinds of print statements: 

1) the PRINT statement 

6.3.1 

the SUMMARIZE print statement (ADVANCED MATERIAL). The SUMMARIZE 
print statement is discussed in Chapter 7, section 7.1.1.3. 

2) 

0 sce Chapter 7 for more detailed iriforniation on ASSEMBLAGES or COMPONENTS. 
This section is divided into two sections: 

6.2.1 - Discusses the PRINT statement. 
6.3.3 - Discusses the format part, of PRINT and SUMMARIZE print stat ement,s. 

P RI N T STAT El1 ENT 

SOL'S PRINT statement provides a means of writing values or messages from an executing 
SOL program to a n  exter~ial logical unit. 
PRINT statcrnents have the following syntax: 

PRINT ( printlist ) 
where: 

( printlist ) is the list of items to be printed, consisting of one of the following: 

1) a variable 
Example: PRINT a - v a r i a b l e  

2) a string 
Example: PRINT ' T h i s  is a s t r i n g '  
0 

3) an optional sign(+ or -), followed by a numbcr 
Examples: PRINT 23 or PRINT -143.2 

4) a variable. followed by a colon, :. followlrcd by the desired print 
format. 
Example: PRINT a - v a r i a b l e  : 

a string CANNOT be longer than 61 characters. 

( forillat ) 
5 )  an optional sign-number pair. f'ollo~ved by it colon, :, followed 
by a format. 
Example: PRINT -23.4 : ( format ) 
6)  a mixed series of the five choices abovc, separated by commas. 
Examples : 

i )  PRINT a -va r ,  -2.3 : 
i i )  PRINT ' t r y  Aga in ' ,  a -var  : 

( forinat ) 
( foimiat, ) 
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7) nothing 
Example: PRINT 
0 ’l’liis has tlw d f c v . t ,  o f  wril.iiig it l)liliik l i i i ( * .  

In the exaniplcs above, the word, ( format ) , appears where a n  actual format would 

The following restrictions apply to PRINT statements: 

appear. Formats arc tliscussetl i n  the next section of this chapter, sectiori 6.2.2. 

1) 

2) 

Variables used in PRINT statements must be initialized before use. 

No comma appears after the last item in a print list. 

The format 1II:ST lie compatible with tlie variable or nuriilwr prinkd. Scc. 
s c ~ t  ion 6.2.2 of this chapter for details. 

Print lists must appear on the same h i e  as the word, PRINT. 

3 

4 
0 If the print list is too long to fit on the line, use the continuation 

symbol, &, to continue the list on the next line. See Chapter 2, 
section 2.4 for details on the continuation symbol. 

A string cannot be “split” over two lines with a continuation 
syml~ol, rather the entire string must be moved to the next line. 

0 

*5 1 Print lists CXSSOT lie longer than 20 items in length. 

6 . 2 . 2  FORMATS FOR PRINT AND SUhIAIARIZE PRINT STXTEMEXTS 

The PRINT and SUMMARIZE print statements use formats identically. The format part of 

There are foiir formats available in SOL 
either print statement specifies the way in which output data will be displayed. 

E compatible with values of type REAL . . . . . . . . . . . . . .  6.2.2.1 

F compatible wi th  values of type REAL . . . . . . . . . . . . . .  6.2.2.2 
I compatible with values of type INTEGER . . . . . . . . . . . .  6.2.2.3 

L compatible with values of type INTEGER or LOGICAL . . . . . . .  6.2.2.4 

0 The format must be compatible wi th  the varia1)lc or nunher being printed, 
thc compatibility rules are given above: or  an error will result. 

Since summarization variables are of typc REAL by default (Chapter 7, section 
7.1.1.1). only t hc E and F formats arc legal for iisc wit 11 the SUMMARIZE print 
statcwient. 

0 

G.2.2.1 Tho E Format 

The E format is conipatililc with valuc!s of typc REAL. 
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The E format has the following syntax: 
E ( width ) . ( digits ) 
where: 

( width)  is a positive integer representing the size of the print field. 

( digits ) is a positive integer, representing the significant digits for rounding. 
Note: No spaces can appear between the ( width ) , decimal point arid ( digits ) . 

EXAMPLES : 

E12.3, E 12 .3 ,  E 3 . 2 ,  E12.12, a n d e i 2 . 7 .  

The E format transfers the value to be printed, rounded to ( digits ) decimal digits and 
right-justified, to an external field that is ( width ) characters wide. The value is displayed 
with scientific notation. 

The following restrict ions apply: 

1) If the value does not fill the field, leading blank spaces are inserted. 

If the value is too large for the field, the entire field is filled with asterisks, 
and a rulitime error message appears. 

The term, ( width ) , should be at least ( digits ) + 7. 
The term. ( digits ) , must be greater than zero. A runtime error results if 
the term ( digits ) equals zero. 

The term, ( width ) , must be greater than zero, or a compile time error 
results. 
Both of the terms, ( digits ) , must appear and must be 
separateci by a decimal point. If a single term appears, or the decimal point 
is excludtid, a compile-time error will result 

2) 

3) 
4) 

5 )  

6) ( width ) and 
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Examples of the E format in action are given in the following table: 

Table 6-3: E Format Output Example 
0 in what follows, means a blank space. 

Format Internal value Value printed 

E9.2 
E12.5 
E12.3 
E10.3 
E5.3 
E12 .O 
E9 
E.4 
E12.5 
E0.2 

475867.222 
475867.222 
0.00069 
-0.5555 
56.12 
456.777 
73.34 
+1999.334 
6 
1.23456 

u 0.48E+06 
u 0.47587E+06 
u u u 0.690E-03 
-0.556E+OO 

runtime error (1) 
compile time error (2 
compile time error (3  
compile t8ime error (4) 
compile t iine c v o r  ( 5 )  

***** 

i 

1) 
2) 

3) 
4) 

5 )  

The first runtime error occurs because the term, ( digits ) , equals zero. 

Using E9 is illegal because no term ( digits ) , is given. 

Using E.4 is illegal because no term ( width ) , is given. 
Using E12.5 is illegal because an E format cannot be used with INTEGERS. 
Using E 0 2  is illegal because the term ( width ) , equals zero. 

6.2.2.2 The F Format 

The F format is compatible with values of type REAL. It has the following syntax: 

F ( width ) . ( digit:, ) 
where: 

( width ) is a positive integer representing t h e  size of thc print field. 

( digits ) i b  a positive integer. representing the significant digits for rounding. 

Note: No sp,.tces can appear between the ( width ) . decimal point and ( digits ) . 

F12.3, F 12.3, F 3.2, F12.11, andf12 .7 .  

The F format transfers the value to be printed, with the fractional part rounded to 
( digits ) decimal digits and riglit-justified, to an external field that is ( width ) characters 
wide. The value is displayed with ordinary decimal notation. 

The following restric-ions apply: 

1) If the valiie does not fill the field, leading blank spaces are inserted. 
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If the value is too large for the field, the entire field is f i l l ( ~ 1  with asterisks, 
and a runtime error message appears. 

The term, ( width ) , should be at least ( digits ) + 4. 
Both of the terms, ( width ) and ( digits ) , must appear and must be 
separated by a decimal point. If a single term appears, or tlie decimal point 
is excluded, an error will result. 

2) 

3) 
4) 

Examples of the F format in action are given in the following table: 

Table 6-4: F Format Output Example 
0 in what follows, means a blank space. 

Format 

F8.5 
F8.5 
F9.3 
F2.1 
F10.4 
F11 
F. 12 
Fl. 10 
F0.2 
F6.0 

Internal d u e  

123456789 
-1234.567 
8789.736 1 
51.44 
-23.24352 
93.45678 
123.23178 
1234.34 
12.345987 
1234.567 

Value printed 

compile time error (1 )  ****** 
u 8789.736 ** 
u u -23.2435 
compile t,ime error (2) 
compile time error (3) 

compile time error (4) 
1235. (rounded up) 

* 

The first compile time error for F8.5 occurs because the F' format is not 
compatible with integer values, like 123456789. 

The use of F11 is illegal because no term ( digits ) appears. 

'I he use of F.12 is illegal because no term ( width ) appears. 

The use of F0.2 is illegal because ( width ) must bo greatc.r than zero. 

1) 

2) 

3) 

4) 

6.2.2.3 The I Format 

The I format is compatible with values of type INTEGER. It  has the following syntax: 

I ( width ) 
where: 

( width ) is a positive integer representing the size of the pri~it field 

EXAMPLES : 

112, I 9, I 3, Ill, i 6, i, and I. 
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The I format transfers the value to be printed, right-justified, to an external field that is 
( width ) characters wide. When ( width ) is left blank, a default, value of twelve is used. 
The value is displayed with ordinary decimal notation. 

The following restrictions apply: 

INTEGER values cannot be larger than 2147483647. Attempting to display 
such a value will give a runtime error. 

If the value does not fill the field, leading blank spaces are iiisertcd. 
If the value is too large for the field, the entire field is fillctl with asterisks, 
and a runtime error message appears. 

The term, ( width ) , must be large enough to include a minus sign when 
necessary. (negative numbers will have minus sign as the leftmost nonblank 
character) 

1) 

2) 

3) 

4) 

5 )  The term, ( width ) , cannot be zero. 

Examples of the I format in action are given in the following tablc: 

Table 6-5: I Format Output Example 
0 in what follows, means a blank space 

Format In tern a1 value k'alue printed 

I3 
I4 
I5 
I 
I2 
I3 
I7 
I 
IO 

2 84 
-284 
174 
123456 
3244 
-473 
29.876 
123456789012 
385 

*** 
compile time error (1) 
compile time error (2) 
compile time error (3) 

The use of I7 is an error because the I format is not compatible with a REAL 
value, like 29376. 

The use of I is not illegal, but the riiiinber 1203.56759O12 is too large to bc 
a legal integer, so a compile time error results. If  the value is not known at 
compile-time, as with a variable, a runtime error would rc.;ult instead. 

The use o f  IO is an error because the term ( width ) , equals zero. 

1 )  

3) 

3) 

6.2.2.4 The L Format 

The L format is compatible with values of type INTEGER or type LOGICAL. 
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The L format has the following syntax: 

L ( width ) 
where: 

( width ) is a positive integer representing the size of the print field 

EXAMPLES : - 

L12, L 9 ,  L 3, L l l ,  1 6 ,  1, andL. 
For LOGICAL values, the L format transfers either a T [if the value is. true .) or a F (if 

the value is . f a l se . )  to an external field that is ( width ) characters long. When ( width ) 
is left blank, a default value of two is used. The T or F is in the rightmost position of the 
field, preceded by ( width ) -1 spaces. 

For INTEGER values, the L format transfers either a T (if the value equals one) or a F 
(if the value does not equal one). If ( width ) is left blank, a default value of two is used. 
Otherwise, the T or F is in the rightmost position of the field, preceded by ( width ) -1 
spaces. 

The following restrictions apply: 

1) 
2) The term, ( width ) , cannot be zero. 

If the value does not fill the field. leading blank spaces are inserted. 

Examples of the L format in action are given in the following table: 

Table 6-6: L Format Output Example 
0 in what follows, means a blank space 

Form a t 

L 
L1 
L4 
L 
L 1  
LO 
L2 

Internal value Value printed 

.true. 

. true. 
.false. 
28 
1 
. fa l se  
1 . o  

U T  
T 
u u u F  
u F  
T 
compile time error 
compile time error 

1) 

2) 

The use of the LO format is illegal because ( wid th  ) equal5 zero. 

The use of the L2 format is illegal I>ecause the L format cannot be used with 
REAL values, like 1.0. 

4 
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6.3 THE CONDITIONAL STATEMENT 

SOL provides a single (multi-line) statement for conditional branching: the I F  statement. 
The IF  statement consists of two parts: 

1) a required THEN part 

2) an optional ELSE part 
0 The IF statement evaluates a logical expression and performs a specified 

action, the THEN part, if the expression evaluates l o  . t r u e .  

The ELSE part is optional. When present. it only executes if the logical 
expression evaluates to . f a l se  . 

The I F  statement has the following syntax: 

0 

IF  ( logic-expr ) THEN 

( optional-ELSE ) 
( SOLstatements ) 

END IF 

where: 

( logic-expr ) is a logical expression. See Chaptcr 4, section 4.2. 

( SOLstatements ) 

( OptionalXLSE ) 

is a series of one or more SOL st.atements. 

is one of the following: 
1) Nothing - the ELSE part is optional. 
2) An ELSE part, with the following syntax: 

ELSE 
( SOLstaternents ) 

where : 

( SOLstaternents ) is a series of wro  or niore SOL state- 
ments. 

So, an I F  statement will have one of the following formats: 

IF ( logic-expr ) THEN 
( SOLstat enients ) 

END IF 

1) 

I F  ( logic-espr ) THEN 
( SOLstatements ) 

ELSE 
( SOLstatements ) 

END IF 

‘2) 

0 Additionally, you can use ENDIF, wi th  no space, as a ~ q ) l ; t c ~ ~ t i i e n t  for END IF 
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The following restrictions apply to IF statements: 

The word IF, the ( logic expr ) , and the word THEN MUST appear alone 
on a single line. If they will not fit on a single line, then the continuation 
symbol, &, MIJST t>c% u s c d .  I:url,ller details ai-(' i i i  Cliaptclr 2, wctiori 2.4. 

1) 

Legal 

IF .no t .  
& a THEN 
PRINT 'I am ok' 
ENDIF 

IF . n o t .  
a THEN 
PRINT 'I am not ok' 
ENDIF 

2) The word ELSE, when it appcars, MUST be alone on a singlc line. 

Legal Illegal 

IF a .g t .  10 THEN IF a .g t .  10 THEN 
PRINT 'This is ok' PRINT 'The then part i s  ok' 
ELSE ELSE print  'But the  else part i s  i l l egal '  
PRINT 'Ok too '  END IF 
ENDIF 

3) The ENDIF or END IF MUST appear alone on a line. 

IF statements can be nested. The word ENDIF will match the nearest pre- 
ceding IF. For example: 

4) 

01 IF a . I t .  20 THEW 
02 IF a .g t .  5 THEN 
03 PRINT 'greater than 5' 
04 ELSE 
05 IF a .eq.  5 THEN 
06 PRINT 'equals 5 '  
07 ENDIF 
08 ENDIF 

0 

0 

0 

The ENDIF on line 7 matches the IF on line 5. 
The ENDIF on line S matches the IF on line 2. 
An error results because there is no ENDIF for the IF statement 
on line 1. 

Disregard indentation when matching ENDIFs. 0 

The IF/THEN/ELSE statement is a block in SOL, and must, abide by special 
scope rules outlined in section 6.3.1 of this chapter. 
ASSEMBLAGE or COMPONENT statements CANNOT appear inside an IF state- 
men t . 

5 )  

6) 
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~ EXAMPLES : 

Example 1: 
IF crazy THEN 

ELSE 
print 'Yep, you are crazy' 

print 'Hope, you OK' 
EBD IF 

This example prints a different line of text, depending on the valuc of thc logical variable, 
crazy. 
Example 2: 

IF (a .gt. b) .AID. 
& (b .gt. c) THEB 

desirability = 50 
ELSE 

IF (a.lt. b) .Am. 
& (b .It. c 1 THEB 

PRIBT 'a is greater than c ' 

PRINT 'a is less than c 
desirability = 0 

PRINT 'What do I know?' 
desirability = 100 

ELSE 

EBDIF 
EHD IF 

This example prints a different line of test, and sets the value of a variable, desirabil- 
ity, depending on the values of two relational expressions. It also illustraics the use of the 
Si continuation symbol to continue a long expression (See Chaptcr 2, section 2.4).  

~ 6.3.1 SCOPE RULES FOR IF STATEMENTS 

The I F  statement is a block in  SOL, which affects how variahles are initialized within 
an I F  statement: 

0 The chief characteristic of a block is that variables can be initialized within 
the block and remain uninitialized outside the block. Variables with this 
property are called local variables. 

0 It is possible to initialize local variables in thrb  THEN part, and/or the ELSE 
part of an I F  statement. 
1-ariable initializations are considered local to a n  I F  statement if and only if 
both of the following are true: 

0 

1. The variable is uninitialized at  the start of the I F  statement. 
b 
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A 

.. 
11. The variable is initialized in either the THEN part of the IF  state- 

ment, or the ELSE part, but NOT BOTH. A variable which is 
initialized in both the THEN and the ELSE part of an I F  state- 
ment is NOT considered local to the I F  statcmcnt. 

When the I F  statement ends, indicated by tht. worcls ENDIF or END IF ,  local 
variables initialized within the I F  statement bcconic uninit  ialized. 

In Chapter 2, section 2.1.2 the concepts of scope, block, and  variablc initial- 
ization are discussed. 

Chapter 11 discusses scope rules in depth. 

0 

0 

0 

These scope rules follow from SOL’S stringent error checking. One cannot be certain 
that the statements in the THEN or the ELSE portion of an I F  statement will be executed. 
Statements in the THEN part are executed only when the condition is true, and statements 
in the ELSE part are executed only when the condition is false. Therefore, it is uncertain 
whether a variable initialization which only appears in either the THEN or ELSE portion of an 
IF statement, will occur. SOL will not allow a variable to be used unless its initialization is 
certain. Hence, the scope rules require that only a local variable be initialized when it is not 
certain that the initialization will actually take place. 

E X A  hl PLES : 

In these examples, assume all variables are uninitialized before the code in the example 
begins. 
Example 1: 

a = 65 
IF a .g t .  30 THEN 

ENDIF 

Is variable, “a,” local to the IF statement? 

NO. The variable was initialized prior to the start of the I F  statement. After the I F  

a = 7  

statement, “a” will have the value 7. 
Example 2: 

IF .true. THEM 
a = 6  

b = 4  
ELSE 

ENDIF 

Is variable, “a,” local to the IF  statement? 

YES. It is uninitialized at  the start of the IF ,  and “a” is initialized in the THEN part 
only. After the I F  statement ends, “a” will be uninitialized, and cannot be printed, used in 
arithmetic expressions and so on. 

b = 9  

Is variable, “b,” local to the I F  statement? 

NO. It is initialized in both the THEN and the ELSE part of the I F  statement. The variable 
“b” will have the value 4 after the I F  statement has ended (because . t r u e .  is always true). 
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Example 3: 
c = 20 

IF c . g t .  2 THEY 

ELSE 
a = 6  

a = 7  
EBDIF 

IF a . I t .  12 THEY 

EIlDIF 

Is variable, ”a,” local to the second IF statement? 

NO. Because the variable “a” was initialized in both the THEN and ELSE part of the 
first IF,  “a” is not local to the first IF. Thus, “a” has been initialized BEFORE the start 
of the second I F  statement, and CANNOT be local to the second IF. Wlien the second I F  
statement ends, “a” will have the value 10. 
Example 4: 

a = 10 

IF . true .  THE3 
c = 20 

IF c . g e .  15 THEM 

EBDIF 
a = 7  

ELSE 
a = 6  

WDIF 

Is the variable, “a,” local to the encompassiiig I F  statement? 

YES. “a” is only initialized in the ELSE part of the encompassing I F  statement, so it is 
a local variable. In the THEN part of the encompassing I F  statement, another I F  statement 
appears. This I F  statement initializes a local variable, “it.’) This local “a’) becomes unini- 
tialized when the inner I F  statement ends, so “a” is never initialized in the THEN part of the 
encompassing IF. 
Example 5: 

c = 5  
IF c .It. 12 THEN 

IF c . g t .  10 THEN 

ELSE 
a = 7  

a = 4  
ENDIF 

ELSE 
a = 6  

ElDIF 

Is the variable, “a,” local to the encompassing IF? 
A 
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NO. “a” is initialized in both the THEN and ELSE parts of the encompassing IF, so “a” 
is not local. This example is similar to 4), except that the inner IF statement, inside the 
encompassing I F  statement’s THEN, initializes “a,” in both the THEN and ELSE part, so that 
the variable “a” is initialized in the THEN part of the encompassing IF  statement. 

0 The rules are simple, but when IF  statements are nested within themselves 
and other statements, applying the rules may become a little complicated. 

These rules exist to prevent key variahlcs froi i i  ac.ci(lt-nttly Iwiiig lcft 1111 in i -  
tialized. 

A variable that is uninitialized before an IF statement, can ONLY be initial- 
ized when the variable is initialized in both the THEN and in the ELSE part 
of the I F  statement. 

The rules insure that if a variable initialization is dependent on a condition, 
only a local variable is initialized. 

0 

0 

0 

G.4 REPETITIVE STATEMENTS 

SOL’S repetitive control statements are called DO loops. DO loops specify the repetitive 
execution of one or more SOL statements. SOL provides two types of repetitive control 
statements : 

an iterative repetitive statement . . . . . . . . . . . . . . .  6.4.1 

a conditional repetitive statement . . . . . . . . . . . . . . .  6.4.2 
1) 

2) 

6.4.1 T H E  ITERATIVE DO LOOP 

The iterative DO loop specifies the repetitive execution of a statement, or statements, 

The iterative DO loop has the following syntax: 
DO ( var ) = ( initial-exp ) , ( final-esp ) 

END DO 
where : 

based on the value of an automatically incremented control irariable. 

( loop-body ) 

( ) is a legal SOL identifier. This is callctl t l i e  loop control variable, 
because it controls thc iteration of t l i c  loop. 

( initial-exp ) is an arithmetic expression. 
information on arithmetic expressions. 

See (’liaptc~. 4. scction 4.1 for more 

( final-exp ) is an arithmetic expression. 
information on arithmetic expressions. 

Sec Chapter 4, section 4.1 for more 

( loop-body ) is one or more SOL statements. 

Additionally, the  single word, ENDDO, can be used instcad of t l i c  words, END DO. 
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Generally, an iterative loop works as follows: 

The value of ( initial-exp ) is calculated. 

The control variable is assigned the value of ( initial-exp ) . 
The value of ( final-exp ) is calculated. 
If the value of the control variable is less than or equal to the value of 
( final-exp ) then SOL statements in ( loop-body ) are executed; the control 
variable is incremented by 1; and this step is repeated until the control 
variable is greater than the value of ( final-exp ) . The loop ends, skipping 
step 5) ,  and program execution continues with the statements that follow 
the ENDDO. 

If the INITIAL value of the control variable is greater than the value of 
( final-exp ) , the loop executes once and a runtime warning mes- 
sage appears. The control variable is incremented, and then the loop ends. 
Program execution continues with the stateiricnts which follow the ENDDO. 

Because of rule 5 ,  an iterative DO loop will always execute at least once. 

EXAMPLES : 

Example 1: 
DO control = 1 , 5 

EWDDO 
PRINT control : F4.2 

PRINT 'Here I go again' 

will produce the following output at the terminal: 
Here I go again 
Here I go again 
Here I go again 
Here I go again 
Here I go again 
6 .00  

The following restrictions apply to iterative DO loops: 

The value of the control variable CANNOT he altered inside the loop. This 
restriction insures that the control variable is i~icrcmcnted with every itera- 
tion. If yoii attempt to do so, a compile-tiinc wror  will rc.sii11. 

1111 variables which appear in tlic initial aiitl final ar i l  I i i i i d , i c  cbspressions mis t  
be initialized prior to their use. 

The control variable must be of type REAL or INTEGER. 

1) 

2) 

3) 
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The values of both arithmetic expressions will be treated as being of the same 
type as the control variable. Thus, if our control variable is of type INTEGER, 
the following loop: 

4) 

DO c o n t r o l  = 1 . 2 ,  10 .9  

ENDDO 
PRINT ’Convert me’ 

will be treated as if you typed the following: 

DO c o n t r o l  = 1, 10 

ENDDO 
PRINT ’Convert me’ 

REAL values are truncated, not rounded, when convcrtiiig from REAL to I N -  
TEGER. 

The start of the loop, consisting of “DO ( var ) = ( initial-exp ) , ( final-exp ) 
,” must appear alone on a line. If it is too long to fit alone on a line, 
the continuation symbol, &, must be used. (Chapter 2, section 2.4 offers a 
detailed discussion of the continuation symbol) 
The end of the do loop consisting of ENDDO or END DO, must appear alone on 
a line. 
A COMPONENT or ASSEMBLAGE statement CANNOT appear iiisidc a loop 

An inner loop’s control variable cannot have the same name as an outer 
loop’s control \variable. 

5 )  

6 )  

7) 
8) 

Some helpful facts about iterative do loops: 

The loop will eventually terminate. The initial value is calculated at the 
start of the loop, and cannot change. The final value is also calculated at 
the start and cannot change. Therefore, there is a finite difference between 
the initial and final value. As the control variable is incremeiited each time 
the loop repeats, eventually the control variable will be larger than the final 
value, and the loop will terminate. 

If the initial value is 2 the final value, the statements of ( loop-body ) will 
execute only once. 

Loops can be nested inside each other. However, loops cannot, alter the value 
of an enclosing loop’s control variahlc or an  error will rcsiilt,. Also, a loop’s 
control variable cannot liavc~ t Iic. same iiame as H I I  ciiclosiiig loop’s control 
variable. 

1) 

9 

3) 
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Example 1: 
D o n =  I, 5 

EPDDO 
print 'the f i n a l  value: J , n  : f 4 . 2  

This loop will produce the following output at the terminal: 

print n : 1 4 . 2  

1 .oo 
2.00 
3.00 
4.00 
5.00 
THE FIlDAL VALUE: 6 00 

Example 2: 
D o n =  I. 3 

print n : 14.2  
DO another = 4 ,  6 

EBDDO 
print ', another : f 4 . 2  

EYDDO 
print 'the f i n a l  value: ',n : f 4 . 2  

This loop will produce the following output at the terminal: 

1.00 
4.00 
5.00 
6.00 

2.00 
4.00 
5.00 
6.00 

3.00 
4.00 
5.00 
0.00 

THE FINAL VALUE: 4.00 

This example illiistratcs tlic effects ~f rivst c d  loops. 
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Example 3: 
Line numbers have been displayed to facilitate discussion: 

01 DO a = 12.1 
02 print 'here I am' 
03 ENDDO 
04 print a : f 5 . 2  

This loop produces the following output at the terminal: 
*** RUYTIHE WARNING FOR LINE NUMBER: 1 
DO A = 12, 1 
INITIAL BOUND IS 12.00 
FINAL BOUND IS 1.00 
WARNING: INITIAL > FINAL *** LOOP WIU EXECUTE ONCE 
here I am 
13.00 

-4 warning message, at  runtime, is issued hecause the initial \ d u e  is greater than the 
final value. The loop executes once. 

6.4.2 THE CONDITIOKAL DO LOOP 

The conditional DO loop executes one or more statements until a specified condition is 

DO 

END DO WHEN ( logical-exp ) 
where: 

true. The conditional DO loop has the following syntax: 

( loop-body ) 

( loop-body ) is one or more SOL statements 

( logical-exp ) is a logical expression (one that evaluates to . t r u e .  or . f a l s e .  See 
chapter 4 for details.) 

Additionally, the single word, ENDDO, can be used instead of the words. END DO. 
In general, the conditional DO loop works as follows: 

1) T h c  statements in ( loop-body ) arc cwwitcd. 

2)  'I'he valuc of ( logical-csp ) is calculatccl. II' ttic ( logic;il-c.sp ) evaluat,es 
to . t r u e . ,  the loop is terminated and program execution c.ontinues with the 
statements after the word, ENDDO. 

3) Steps 1) through 2 )  are repeated until the loop terminates 
Clearly. if ( Logicalsip ) never evaluates to . t r u e . ,  the DO loop will riot terminate, 

and an infinite loop will result. 
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For example, consider the following conditional DO loop: 
stop = . f a l s e .  
n = O  
DO 

n = n + l  
PRINT n : F4.2 
IF n .eq. 5 THEM 

stop = . true.  
EHD IF 

EllDDO Y A E l  stop 

This loop will produce the following output at the terminal: 

1 .oo 
2.00 
3.00 
4.00 
5.00 

The execution of the loop terminates when stop is assigned to be . t r u e . ,  which occurs 

The following restrictions apply to conditional DO loops: 
when n equals five. 

1) The word, DO, must appear alone on a line, or an error will result. 
The end of a loop, “ENDDO WHEN ( logical-exp ) ,” must appear alone on a 
line. If your logical expression is too long to fit on a single line, the line must 
be continued with the continuation symbol, &. See Chapter 2, section 2.4 
which provides more information on the use of the continuation symbol. 

If ( logical-exp ) consists of a single variable, and that variable is left unini- 
tialized or is missing, an error will result. (The SOL compiler will inform 
you that the missing variable has been replaced with the symbol, . t r u e . )  

Any variables used in the logical expression, ( logical-exp ) must be initialized 
prior to use. (See Chapter 4 which provides more information about logical 
expressions) 
A COMPONENT or ASSiGiYiEiAGE statement cannot appear insidc a DO loop. 

2) 

3) 

4) 

5 )  

6.5 -4 S S EM B LAG E AS D C 0 ?\I I? 0 N ENT S T-AT Ehl E NTs 

The ASSEMBLAGE statement is a data/modeling structure used for sizing. An ASSEMBLAGE 
models a “whole;” but an ASSEMBLAGE is a special kind of “wholc.“ one which equals the sum 
of its parts. The COMPONENT definition statement represents a n  individual piece of the total 
ASSEMBLAGE. For example, an airplane wing can be considered as an ASSEMBLAGE, where 
the weight of the wing equals the sum of the COMPONENT parts, such as flaps, wing box, 
skin, hydraulic systems, cooling systems, engine mounts and so on. Because ASSEMBLAGES 
and COMPONENTS are a unique feature of SOL, Chapter 7 is dcvoted entirely to a detailed 
discussion of ASSEMBLAGES and COMPONENTS. 
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6.6 T H E  O P T I M I Z E  STATEMENT 

The OPTIMIZE statement provides an interface into a state-of-the-art numerical opti- 
mization routine, ADS. Thus, optimization is a high-level statcvtient in SOL. Chapter S is 
devoted to a detailed discussion of the OPTIMIZE statcmcnt.. Por fur thcr  iiilormation abori 1 
ADS proper, please consult “ADS - A FORTRAN PROGRAM FOR AUTOMATED DE- 
SIGN SYNTHESIS - VERSION 1.10”, NASA Contractor Report 177985, Grant NAGl-- 
567, 1983, by G.N. Vanderplaats. 

6.7 T H E  SUBROUTINE CALL 

A subroutine call specifies parameters that will be passed to a routine and executes the 

( ( dependent list ) ) = ( routine name ) ( ( independent list ) ) 

routine. SOL subroutine calls have the following syntax: 

where: 

( dependent list ) 

( routine name ) 

( independent list ) 

is the list of dependent parameters, the variables which will be 
initialized or altered by the subroutine. This list consists of one 
of the following: 
1) an empty list, nothing. 
2) a single variable 
3) a series of variables, separated by commas. 
0 no comma can appear after t,he last item in the list. 
hlore information on the dependent parameter list can be found 
in Chapter 9, section 9.2. 

is the nanic of thc subroutine. This must be a lcgal SOL identifier. 

is the list of iiidependcnt parameters, the variables which will 
supply data needed as input to the subroutine. An independent 
parameter list has the same syntax as the ( dependent list ) 
detailed above. h4ore information on the ( independent list ) 
can he found in Chapter 9, section 9.2. 

The following restrictions apply to Subroutine calls: 

The subroutine call must appear on a single line in your SOL program. If the 
call will not fit, then the continuation symbol & must be used. (See Chapter 
2 ,  section 2.4 which details the use of the continuation symbol) 

The subroutine hlUST be declared i n  the main program declaration section 
before it is called. (See Chapter 5, section 5.2) 
‘I’hci suhroutinc MUST IIC implemcxitcd in t t i c  suI~rou1,iric~ iiiiplementation 
section or an error will result. 

The subroutine name IIUST be the same for the declaration, call, and im- 
plementation. Further, the formal and actual paramcters MUST match in 
both number and type. (See Chapter 9, section 9.2 for details). 

1) 

2) 

3) 

4) 
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Only variables can be passed as parameters, values such as: 6 ,  8 
. t r u e .  may not be passed directly as subroutine parameters. 
Any variable passed as an independent parameter to a subroutine M 
initialized before the suhoutine call. 

5 )  

6 )  

0 0 ,  or 

JST be 

E X  A hl PL ES : 

Example  1: 

(x ,  y)  = ThothO 

This statement calls the subroutine named, Thoth. and returns the variables x and y as 
dependent parameters. There are no independent variables, so the independent parameter 
list is empty. 
Example 2: (x)  = Caloriiic-Caluminations(x) 

an independent parameter and returns x as a dependent parameter. 

Example  3: 

This statement calls the subroutine named, C a l o r i f  ic-Caluminations.  and passes x as 

() = Craven-Dastard (> 

This statement is a call to subroutine CravenDastard, with neither dependent nor 

Chapter 9 gives a detailed discussion of subroutines. 
independent parameters. 

(3.8 FORTRAX BLOCKS (.ADVANCED h.Z-ATERIAL) 

You can write FORTRAN code inside a SOL program. The FORTRAN code must be delimited; 
with /*  indicating the beginning of a FORTRAN block. and \* indicating the end of a FORTRAN 
block. In this way, a SOL program can interface with existing FORTRAN routines. 

There are several important restrictions on the use of FORTRAN blocks: 

FORTRAN blocks can only appear in the statement and declaration sections of 
the main program or subroutine implementations. 

FORTRAN type declarations should OX1,Y appear i r i  it FORTRAN block 1NSTI)IC 
a SOL DLCLARATION section. ONLI’ FORTRAN tylx: declarations should 
appear in FORTRAN blocks inside a SOL declaration section. 

The SOL compiler does NOT offer error-checking for the 
contents of FORTRAN blocks. It is the SOL user’s responsibility to 
use FORTRAN blocks inside SOL declaration sect ions correctly. 

ONLY FORTRAN statements should appear in FORTRAN blocks inside the state- 
ment sections of SOL programs. 

1) 

2) 

e 

3) 
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0 SOL does NO error checking on tlie FORTRAN code that appears 
within a FORTRAN block. Thus, if you make a FORTRAN coding 
mistake it will not be caught by the SOL compiler, but should 
be detected when the FORTRAN output of the SOL compiler is 
compiled using the FORTRAN compiler. 

FORTRAN blocks cannot appear before the start of the main program header, 
or an error will result. 

FORTRAN block delimiters, /" and \*, MTJST bcgin i n  coliirriii one cif a SO!, 
program or an error will result. 

Macro calls SHOULD NOT be used inside a FORTRAN block -- only FORTRAN 
code should appear in a FORTRAN block (See Appendix C). IIowever, FORTRAN 
blocks can be part of a macro's replacement text. 

FORTRAN blocks CANNOT appear inside a n  ASSEMBLAGE or COMPONENT state- 
ment. 

4) 

5 )  

6) 

7) 

In general, it is best to abide by the following guidelines: 

0 write each FORTRAN block delimiter on a line by itself, and write the FORTRAN 
code between the delimiters. 

Do not nest FORTRAN blocks inside of other SOL statements, such as DO loops 
or IF statements. Keep FORTRAN blocks at the main program or subroutine 
level. 

FORTRAN blocks should ONLY be used to access variables initialized in the 
main program or subroutine implementation BEFORE the FORTRAN block 
appears; local variables should not be accessed. 

Columns are significant in FORTRAN, so space carefully inside your FORTRAN 
blocks. Be sure to indent correctly inside the FORTRAN block. 

0 

0 

0 

. 
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EXAMPLES: 

Example 1: 
PROCRAH ftn-block 
! l o t i c e  t h e  de l imi te rs  start i n  column one, and t h e  FORTRAN 
! block accesses  previously i n i t i a l i z e d  non-local var iab les  only. 
! This is t h e  safest way t o  use FORTRAI blocks.  The FORTRAN code 
! produced by t h e  compiler w i l l  need t o  be “l inked“ by t h e  
! programmer t o  t h e  ex terna l  subroutine RAIDOM, c a l l e d  
! i n  what follows. 

DECLARE 
IPTECER seed 

EPD DECLARE 
seed = 1777 
number = 0 
/* 

\* 
p r i n t  number 
end ftn-block 

CALL RAPDOM(seed, number) 

Example 2: 
PROGRAM ftn-block 
! l o t i c e  t h a t  t h e  FORTRAN block accesses  a u n i t i a l i z e d  var iab le ,  
! This is not  a good way t o  use FORTRAN BLOCKS. I n  f a c t ,  
! because of t h e  oay SOL’S var iab les  work, t h e  
! v a r i a b l e  “number” i s  not i n i t i a l i z e d  ins ide  t h e  I F  
! statement .  
DECLARE 

IITEGER seed 
E I D  DECLARE 

seed = 1777 
I F  (seed . g t .  0) THEN 
/* 

\* 
ELSE 

CALL RAIDOM(seed, number) 

number = 0 
ENDIF 
end ftn-block 

FORTRAN blocks should be avoided if possible. 

0 SOL does NO ERROR CHECKIKG on FORTRAN cotic> introdriced by FORTRAN 
blocks. 

FORTRAN I,locks SIIOULI) NOT be used to accc‘ss local viiriablcs, or to ini- 
tialize variables. 

Thus, FORTRAN blocks are sufficiently dangerous to be off-limits for t h c  novice. Experi- 

e 

enced SOL users should utilize FORTRAN blocks only when necessary. 
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ADVANCED MATERIAL: HOW TO INTERFACE WITH A FORTRAN ROUTINE 

c 

There are two ways to interface SOL with a FORTRAN routine: use a call to an external 
subroutine, or put the body of the FORTRAN block inside a SOL subroutine implementation. 
Both of these methods are described in detail in the text that follows. 

I. EXTERNAL FORTRAN ROUTINES: 
External FORTRAN routines are written and compiled separately, and then “linked” to 

the FORTRAN object code produced by the SOL compiler. The external routine is called from 
within a SOL program through the use of a FORTRAN call statement in a SOL FORTRAN block. 
The two example programs given earlier use this technique to call an external subroutine 
named RANDOM. Thus, to use an external subroutine in a SOL program, the following 
procedure should be employed: 

1) \\.”rite the SOL program. 

Make sure all SOL variables that are to be used or altered by the exter- 
nal FORTRAN routine are NON-LOCAL and INITIALIZED BEFORE THE 
FORTRAN block. (This is a very IMPORTANT step) 

Invoke the FORTRAN routine in the SOL program, using a SOT, FORTRAN block 
that contains a FORTRAN CALL statement. 

Compile the SOL program, using the SOL compilcr. 

Link the compiled SOL program with the “Linksol” Command Procedure; 
the “Linksol” command procedure prompts for the names of any external 
FORTRAN subroutines. (See Chapter 1, section 1.2 for details). 

The external routines need to be compiled separately (creating an “.obj” 
files) BEFORE they can be linked with the compiled SOL program. 

2) 

3) 

4) 
5 )  

0 

11. USING THE BODY OF A FORTRAX ROUTINE INSIDE A SOL ROUTINE 

This method is a little more complicated than the first techniquc~, but requires less fussing 
with the linker, and  has the advantage of keeping a SOL program self-contained, with all of 
the code in a single source file. 

As the basis for discussion of this method, the following SOL program accomplishes the 
same task as the earlier examples, but does not use an external subroutine call. 
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Example 3: 
PROGRAU ftn-block 
! Weed to declare the subroutine in the declaration section 

DECLARE 
INTEGER seed 
SUBROUTIBE (seed-out : INTEGER, number) = Random (seed-in : INTEGER) 

END DECLARE 

seed = 1777 
! calling the routine as a SOL subroutine call 
(seed, number) = Random(seed) 
PRIIT number 

EBD ftn-block 

! The subroutine implementation. It is especially important 
! to initialize all dependent variables BEFORE accessing them in a FORTRAN block 

SUBROUTINE (seed-out : INTEGER, number) = Random (seed-in : INTEGER) 
! Generate a random number using the linear congruential Method, D. Lehmer (1949) 
DECLARE 
/* 

INTEGER Multiplier, Increment 
REAL*8 nodulus 

\* 
EHD DECLARE 
number = 0 
seed-out = 0 
/* 

nodulus = 65536.0 
nultiplier = 25173 
Increment = 13849 
seed-out = MOD( (multiplier*seed-in+Increment), INT(Modu1us)) 
number = seed-out/Modulus 

\* 
END Random 

Thus, take the following steps to include the body of a FORTRAN routine as a SOL routine: 

Declare a SOL subroutine in the dcclaration section with the same parameters 
as required by the FORTRAN routine, use SOL subroutine calls to call the SOL 
subroutine, and include it  in  the siihroutine iniplcnicntation section. 

Define t h e  typcs for local FORTRAN variables using ii FORTRAN block in a SOL 
Declaration sect ion. 
Initialize all dependent variables AFTER the declaration section, but BE- 
FORE a second FORTRAN block (step 5 )  ) containing the body of the FORTRAN 
routine. (VERY IhlPORTANT) 

1) 

2) 

3) 

. 
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Make sure types will agree with all FORTRAN statements : 
0 

0 

0 

REAL is equivalent to REAL*8 
INTEGER is equivalent to INTEGER. 
LOGICAL is equivalent to LOGICAL. 

Use a second FORTRAN block to include the body of a FORTRAN routine as the 
statement section of a SOL routine. 

Caution: Make sure the FORTRAN block alters any dependent parameters, 
unless you want the values defined in 3) above to be returned. 

END the SOL subroutine. 

Run the SOL compiler and linker as normal, unless FORTRAN code from the 
block requires special linking for external subroutines and so forth. 

111. USING THE SOL COMPILER OUTPUT AS AN AID TO FORTRAN BLOCKS: 
Perhaps the easiest way to see the effects of a FORTRAN block is to examine the FORTRAN 

output from the SOL compiler. This is especially helpful to make sure that things appear 
in the correct column. However, making changes to the FORTRAN output is STRONGLY 
discouraged. It is better to make a change in the SOL source and recompile. In this way, 
the more readable SOL source code accurately reflects what occurs when the program runs. 
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Chapter 7 
I Sizing: Assemblages and Components 

ASSEMBLAGE and COMPONENT statements facilitate sizing, a type of engineering systems 
modeling. In this manual: sizing is defined as the modeling of a system as the simple s u m  
of i t s  parts with respect to some special sumrnan’zafion variables. For example, an airplane 
can be modeled and sized for weight; we model the major parts of the airplane, its systems 
and structural components, along with the interaction between the parts. The model is 
constructed so that the weight of the entire airplane can be determined by summing the 
weight of its parts. the systems and structural weights. Likewise the weight of any part of 
the airplane can be determined by summing its parts. In this case, “weight” is considered a 
simple summarizat ion variable. SOL aids the modeling of such “assemblages;” by allowing 
the user to create such models. and automatically computing the necessary summations. 
In addition to simple summarization variables, SOL also offers r.rpression summarization 
variables, discussed subsequently in section 7.1.1.1 of this chapter. 

e The ASSEMBLAGE statement models the whole structure, such as the airplane 
above. 

The COMPONENT statement models subsystems and structures of an ASSEM- 
BLAGE, such as the airplane’s wings, fuselage and landing gear. By nesting 
COMPONENTS inside other COMPONENTS and inside the ASSEMBLAGE, the whole 
structure can be modeled and sized. 
Simple summarization variables are automatically summed by SOL to yield 
correct totals for parts and subsystems (represented by COMPONENTS), and 
the whole structure (represented by the ASSEMBLAGE). 

The simple summarization variables for an ASSEMBLAGE or a COM- 
PONENT which does not contain nested COMPONENTS MUST be ex- 
plicit ly initialized. 

Expression Summarization variable values are also computed automatically 
by SOL for each COMPONENT or ASSEMBLAGE. but espression summarization 
Lrariahles are not summed like simple sumniarization variables. 

Section 7.2.1.1 of this chapter dctails cxpression suinmarization 
variables. 

An extended ideiztzfier notation allows variables in ASSEMBLAGES and COMPO- 
NENTs to be accessed. The notation distinguishes among various COMPONENTS 
so that, for example, the weight of a wing 1)os is distinguished from the 
weight of an insulation system. 

0 

0 

0 

0 

0 

0 
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EX AM PL ES : 

The following code fragment models an airplane wing as consisting of‘ striictural and 
clcctricill systcrii coriipowrit,s. A singlc siiriiiiiilrix;il,ioii wi~iaI)lc, w, is  tlc-cl;irc*cl 1.0 s i x  I , I I O  wiiig 
for weight. The values of the component surninarizatioii variables are sumriled automatically 
to yield the total weight of the wing. The last line prints the total weight (179000 + 5000 in 
this case) of the ASSEMBLAGE using extended identifier notation (Chapter 7 ,  section 7.1.2). 

ASSEMBLAGE Wing ( 0 ,  ’ ’1 
! 
SUHMARIZE 

The Summarization Section appears below 

P 

EID SUHURIZE 

! The Structural Component of the wing 
COMPOlEBT Structure ( 1 ,  ’ ’1 

w = 179000 
END Structure 

! The Electr ica l  system Component of the wing 
COHPONEIT Electr ica l  (I, ’ ’1 

w = 6000 
END Electr ica l  

END Wing 
PRINT oQWing 

This chapter is divided into the following sections which detail ASSEMBLAGE and COMPO- 

..’y , 
7.1 - Offers an overview of the ASSEMBLAGE and COMPONENT definition statements, 

addressing their syntax, simple and expression summarization variables and 
extended identifier notation. 

NENT usage: 

7.2 - Scope rules for ASSEMBLAGE and COMPONENT statements. 

7.3 - ADVANCED hfATERIAL on ASSEMBLAGE and COMPONENT iteration. 

7.1 .ASSEMBLAGES A Y D  CO1,IPONENTs 

The syntax of ASSEMBLAGE and COMPONENT statements is nearly identical. There are only 
two differences: 

0 ASSEMBLAGES h a v e  a ( Suniiriarizatioii ) Declaration s c ~ . l  i o t i ,  where sim- 
ple arid expression sumniarization variables arc. dcdarcd. Siiice COMPONENT 
statements can ONLY appear inside an ASSEMBLAGE, COMPONENTS inherit their 
ASSEMBLAGE’S summarization variables. 

COMPONENTS have an optional ( Iteration ) section, whcre iteration vari- 
ables can be declared (See Chapter 7, section 7.3). Iteration variables for an 
ASSEMBLAGE appear inside the ASSEMBLAGE ( Summariza tion ) Declaration 
section, so a separate iteration section is not required. 

0 
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The ASSEMBLAGE statement has the following syntax: 
ASSEMBLAGE ( name ) ( ( indentation ) , ( row label ) ) 
( Summarization ) 

( Body ) 
END ( name)  

The COMPONENT statement I i x  the following synt,ax: 

COMPONENT ( name ) ( ( indentration ) , ( r o w  label ) ) 
( Iterations ) 

END ( name ) 
where (for both ASSEMBLAGES and COMPONENTS): 

( Body ) 

( name)  is a legal SOL identifier for the name of the ASSEMBLAGE or COMPO- 
NENT. 

e Extended identifiers cannot be used as either ASSEMBLAGE or 
COMPONENT names. 

( indentation ) is a legal SOL number or the word TAB followed by a legal SOL 
number. This provides information for SUMMARIZE print statements. 

0 See section 7.1.1.3 of this chapter for more information. 

( row label ) is a legal SOL string, that consists of at least one character. Provides 
informat ion for SUMMARIZE print statement.s. 

e See section 7.1.1.3 of this chapter for more information. 
e Note that the null string, ”, is not pcrmittcd. 

( Summarization ) declares simple and expression summarization variables (see Chap- 
ter 7: section 7.1.1) and iteration variahlcs for the ASSEMBLAGE (see 
Chapter 7, sections 7.1.1 and 7.3). 

( Iterations ) Iteration variables for COMPONENTS are declared in this OPTIONAL 
section (see Chapter 7, sections 7.1.1 and 7.3). 

( Body ) is a series of one or more SOL statements. 
e The use of FORTRAN Blocks inside an ASSEMBLAGE or COMPO- 
NENT definition is KOT allowed. See Chapter 6, section 6.S for 
more details. 
e COMPONENT statements can only appear inside of an ASSEM- 
BLAGE or another COMPONENT statement. 
e ASSEMBLAGE statments CANNOT appear inside another AS- 
SEMBLAGE or COMPONENT statement. 

I. RESTRICTIONS ON ASSEMBLAGES A N D  COMPONENTS: 
The restrictions listed above for an ASSEMBLAGE or COMPONENT ( body ) must 
be followed. 

1) 
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The ( name ) at the start of the ASSEMBLAGE or COMPONENT must be the 
same as the ( name ) used at the end of the ASSEMBLAGE or COMPONENT. 
An ASSEMBLAGE or COMPONENT ( name ) cannot be an extended identifier. 
The ASSEMBLAGE or COMPONENT header, consisting of the word, “ASSEMBLAGE” 
or “COMPONENT;” the ASSEMBLAGE or COMPONENT ( name ) ; and summarize 
print information enclosed in parenthesis, MUST appear alone on a line. If 
the entire ASSEMBLAGE or COMPONENT header will not fit on a single line, the 
continuation symbol, &, must be used. For further information, see Chapter 
2, section 2.4. 
An ASSEMBLAGE or COMPONENT definition statement CANNOT appear inside 
an I F  statement, or a SOL error will result. 

An ASSEMBLAGE or COMPONENT definition statement CANNOT appear inside 
a DO loop, or a SOL error will result. 

ASSEMBLAGES and COMPONENTS are SOL blocks, illid ahidc3 I)y special scope 
rules which determine how variables are initialized or accessed. See Chapter 
7, section 7.2 and Chapter 11. 
Other restrictions concerning the use of summarization variables and itera- 
tion variables appear in Chapter 7,  section 7.1.1 and Chapter 7, section 7.3 
respectively. 

2) 

3) 
4) 

5 )  

6 )  

7) 

8) 

11. RESTRICTIONS ON ASSEMBLAGES ONLY: 
.4t XlOST ONE ASSEMBLAGE statement can appear in the body of the main 
program or a subroutine. 
An ASSEMBLAGE statement CANNOT appear inside of a COMPONENT state- 
ment; COMPONENTS are parts of an ASSEMBLAGE and not vice-versa. 

1) 

2) 

111. RESTRICTIONS ON COhIPONENTs ONLY: 
COMPONENT definition statements can ONLY appear inside of i t i t  ASSEMBLAGE 
or inside other COMPONENT definition statements. 

COMPONENTS nested at the same level inside an ASSEMBLAGE or another COM- 
PONENT CANNOT have the same name (or there could hc no way of distin- 
guishing between them). 

1) 

3-1 

Legal Illegal 

ASSEMBLAGE a (0, ’ ’)  
SUMMARIZE 

END SUMMARIZE 
COMPONENT same (0, ’ ’)  

x = 2  
END same 
COMPONENT d i f f  (0, ’ ’> 

x = 2  
END d i f f  
END a 

X 

ASSEMBLAGE a (0, ’ ’1  
SUMMARIZE 

END SUMMARIZE 
COMPONENT same (0, ’ ’) 

x = 2  
END same 
COMPONENT same (0, ’ ’) 

x = 2  
END same 
END a 

X 
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7.1.1 SUMMARIZATION VARIABLE DECLARATION 

Each ASSEMBLAGE MUST have an associated set of simple summarization variables, which 
represent the sizing information (such as weight) associated with the ASSEMBLAGE. Each AS- 
SEMBLAGE can also have an OPTIONAL associated set of expression summan’zation variables: 

Summarization variables are declared in the Sumniarization Declaration sec- 
tion of an ASSEMBLAGE (Described subscqucntly). 

Each COMPONENT that makes up the ASSEMBLAGE initializes local copies of the 
simple summarization variables (See Chapter 7, section 7.2 for scope rules). 
Expression summarization variables are initializtd autonint ically when an 
ASSEMBLAGE or COMPONENT ends. 

If an ASSEMBLAGE or COMPONENT contains COMPONENTS nested within it,  the 
‘‘inner’’ COMPONENT’S simple summarization variables arc  summed automati- 
cally to yield a total value for the “outer” ASSEMBLAGE or COMPONENT. 
If an ASSEMBLAGE or COMPONENT does NOT contain COMPONENTS nested within 
it, its simple summarization variables MUST be explicitly initialized (i.e. 
with assignment statements or subroutine calls). 

0 

0 

0 

0 

0 

The summarization declaration section of an ASSEMBLAGE has the following syntax: 

SUMMARIZE 
( summarize decls ) 
( optional iterations ) 

END SUMMARIZE 

where: 

( summarize clcds ) is the sct of summarization dcclarat ions. Wi t  summarization 
declarations end under ci t tier of tho following coritlitions: 

0 The summarization declaration scction ends \vit  11 the words, END 
SUMMARIZE 

OR 

0 if the ( optional iterations ) section lias heen supplied (See Chap- 
ter 7.  section 7.3), the summarization declaration section ends 
when the word ITERATE appears. 

( optional iterations ) is an optional iteration section wliere iteration variables can bc 
declared (sce Chapter 7, section 7 . 3 ) .  

.A summarization declaration consists of one of the following: 

A simple summarization variable dcclarat ion. (Scc (’liaptcr 7, section 7.1.1.1 
for exact syntas). 

An expression summarization variable declaration (Sec Chapter 7, section 
7.1.1.1 for exact syntax). 

A summary title declaration, used in SUMMARIZE print statements. (See 
Chapter ’7. sections 7.1.1.2 and 7.1.1.3 for details). 

A series of 1) and/or 2) and/or 3) separated by commas OR carriage returns. 

1) 

2)  

3) 

4) 
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0 density is an EXPRESSION summarization variable. The density of each 
COMPONENT is computed automatically using the expression declared with the 
variable, the wt/vol formula. 

The density of the total Radio is computed automatically using the the 
total Radio weight and volume (which were also computed automatically. 

Note: The two local density variables are NOT summed to yield the total 
density of the Radio. 

0 

Example 2: The following ASSEMBLAGE models a ballpoint pen sized for weight: 

ASSEMBLAGE Pen ( 0 ,  ’ ’> 
SUMnARIZE 

ueight 
EID SVMHARIZE 

COMPONENT Cap (1, ’ ’1 

END Cap 
COMPONENT Shaft (1, ’ ’1 

ueight = 3.44 

weight = 1.322 

COMPONEllT Plastic (2,  ’ ’> 

END Plastic 
COHPONElJT Nib-and-Ink 

ueight = 2.786 
END Nib-and-Ink 

END Shaft 
END Pen 

e The weight of the Shaft is automatically given the sum of the Plastic and 
Nib-and-Ink COMPONENTS (6.226) 
The weight of the ASSEMBLAGE is sirrdarily initialized wi th  the sum of the 
Shaft and Cap COMPONENTS. 

e 

7.1. 1. 1 Summarization Variable and Expression Variable Declarations: Syntax S: Restrictions 

Simple summarization variables have the following syntax: 

( id ) 
where: 

( id ) is a SOL identifier. 
Expression summarization variables have the following syntax: 

( id ) = ( arith expr ) 
where: 

is a SOL identifier, representing an  expression sunirnarization vari- 
able. 

( id ) 

( arith expr ) is an arithmetic expression. See Chapter 4, section 4 .1  for details. 
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The following restrictions apply to the summarization declaration section: 

1) The word SUMMARIZE MUST appear alone on a line. 

Comments and blank lines CAN appear between the ASSEMBLAGE header and 
the word SUMMARIZE. 
Comments and blank lines CAN appear between the words SUMMARIZE and 
END SUMMARIZE. 
The ( summarize decls ) part CANNOT be empty. At least one summariza- 
tion variable declaration MUST appear. 

The use of simple and expression summarization variables is best shown by example. Ex- 
amples illustrating the use of the summarization declaration section are given next, followed 
by these three sections: 

2) 

3) 

4) 

Simple and expression summarization variable declaration; syntax and usage 
restrictions 7.1.1.1 

1) 

2) Summary title declaration; syntax and usage restrictions . . . . .  7.1.1.2 

3) 

. . . . . . . . . . . . . . . . . . . . . . . .  

Summarize print statements . . . . . . . . . . . . . . . . .  7.1.1.3 

E X A  hl P L ES : 

Example 1: An ASSEMBLAGE with two simple summarization variables and an expression 
summarization variable: 

ASSEMBLAGE Radio (0, ’ ’) 
SUMMARIZE 

ut, vol 
density = at/vol 

END SUMMARIZE 

COMPONEHT Housing (1, ’housing’ ) 
ut = 5000 
v o l  = 3000 

END Housing 

COMPONENT Knobs-n,Stuff (1, ’L.g’ 1 
ut = 0.03 * 10000 
vol = 30 

END Knobs-n-Stuff 
EHD Radio 

In this example, a radio is modeled as consisting of a housing component, with the knobs 
and electronics represented by a single component; the entire radio model is sized for weight 
and volume. 

0 w t  and vol are SIMPLE summarization variables. The local w t  and vol of 
the two COMPONENTS are summed to yield the total Radio weight and volume. 
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RESTRICTIONS FOR SUMMARIZATION DECLARATIONS 

1) Summarization variables are ALWAYS LOCAL. 
0 If a previously initialized variable is used as a. summarization 

variable, a local copy is made instead and a warning message 
appears. 

A summarization variable CANNOT be declared twice in the same declara- 
tion section. 

All summarization variables must be of type REAL. Since SOL variables are 
REAL by default. no explicit declaration is needed. 

EVERY summarization variable must be initialized in every ASSEMBLAGE or 
COMPONENT Statement according to the following rules: 

If COMPONENTS DO NOT appear in the body (See Chapter 7 ,  sec- 
tion 7.1) of a given ASSEMBLAGE or COMPONENT, all simple sum- 
marization variables in that ASSEMBLAGE or COMPONENT MUST he 
explicitly initialized (e.g. via assignmentn staternent or subroutine 
call). 

If COMPONENTS DO appear in the body of a given ASSEMBLAGE 
or COMPONENT, all simple summarization variahlcs in that ASSEM- 
BLAGE or COMPONENT are automatically initialized and explicit 
initialization is ILLEGAL. 
Expression summarization variables CANNOT be explicitly ini- 
tialized under any circumstances, and are ALWAYS computed 
automatically when the ASSEMBLAGE or COMPONENT ends. 

2) 

3) 

4) 

1. 

.. 
11. 

... 
111. 

Since automatic initialization takes place when the COMPONENT or ASSEMBLAGE 
ends (cases ii. and iii. above) , automatically initialized variables CANNOT 
be accessed until after the COMPONENT or ASSEMBLAGE ends. 

After a COMPONENT or ASSEMBLAGE ends, local variables such as summarization 
variables can be accessed (but NOT altered) via extended identifier notation 
(See Chapter 7, section 7.1.2). 

7) Only two types of variables can be used in  arithriiet ic ex1)ressions for sum- 
marization expression declarations: 

0 Previously initialized variables. 
I,e<qal 1lleg;il 

some-var = 12 
ASSEMBLAGE Demo (0 ,  ’ ) )  ASSEMBLAGE un in i t a l i zed  (0, ’ ’>  
SUMMARIZE SUMMARIZE 
a a 
b = some_var/2 b = some_var/2 
END SUMMARIZE END SUMMARIZE 
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0 Previously declared summarization variables. 
Legal Illegal 

ASSEMBLAGE Demo (0, ’ ’> ASSEMBLAGE not-declared-yet (0, ’ ’ 
SUMMARIZE SUMMARIZE 
a b = a/2 
b = a/2 a 
END SUMMARIZE END SUMMARIZE 

Recall that summarization and summarization expression variables arc declared in the 
summarization section of an ASSEMBLAGE. Both the ASSEMBLAGE hcader and summarization 
section are shown in the examples: 

Example 1: Five simple summarization variables (a ,  b, c ,  d ,  e) and two expression 
summarization variables ( f ,  g) are declared. 

ASSEMBLAGE example (0, $1 
SUWARIZE 

a ,  b 

d ,  e ,  f = a/b 
g = a + c - e + f  

C 

EID SUHMARIZE 

Example 2: A simple summarization variable, a, and an expwssion summarization variable, 
b, are declared. 

PROCRAH Demo 

ASSEMBLAGE t r i a l  (0. ’ ’> 
SUMMARIZE 

a ,  b = a * * 2  
END SUMMARIZE 

COMPONENT t e s t  (1, ’ ’1 
a = 5  

END t e s t  

COMPONENT t e s t -2  (1, ’ ’> 
a = 6  

END t e s t -2  

p r i n t  ba t e s t  : F3.0 
EIID trial 

p r i n t  ac0trial : F3.0 
p r i n t  b e r i a l  : F3.0 
E I D  Demo 
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This program produces the following output: 

25. 
11. 

121. 

The following table lists the values for the summarizat,ion variables and explains how 
the values were computed. 

Table 7-1 
SSV = “Simple Summarization Variable” 
ESV = “Expression Summarization Variable” 

\’ar 

a 
- 

a 

a 

b 

b 

b 

COASPONENT Type Value 
- -  

t e s t  ssv 5 

t e s t 2  SSV 6 

t r i a l  ssv 11 

t e s t  ESV 25 

test-2 ESV 36 

t r i a l  ESV 121 

How value was derived 

explicitly initialized sirice t e s t  
has no subCOMPONENTs 

explicitly initialized since test-2 
has no subCOMPONENTs 

computed automatica,lly by SOL; 
equals sum of the summarization variables 
for subCOMPONENTs, t e s t  and 
test-2. (5 + 6 = 11) 

computed automatically by SOL; 
equals the summarization expression 
evaluated with local summarization 
variables. ( a = 5, b = a ** 2 = 2.5 ) 

computed automatically by SOI,; 
equals the summarization exprcwion 
evaluated with local su~nniarizat,ion variables. 
( a =  6, b = a ** 2 = 36 ) 

computed automatically by SOL; 
equals the summarization expression 
evaluated with local summarization variables. 
( a = 11. 1) = a ** 2 = 121 

e The print  statements use cxtended idcntifcr notation. (Sce Cliapter 7, section 
7.1.2 for details). 

The synibol, 42, should be rcact as “of the.” For cxamplc, bOtest should be 
read as, ”variable b of the tes t  component.” 

The print statements will display the following values, in order from first to 
last: 25,  11, and 121, which represent “the value of variable b of the t e s t  
component,” “the value of variable a of the t r i a l  assemhlage,” and “the 
value of variable b of the t r i a l  assemblage” respectively. 

e 

e 

Sizing: Assemblages and Components 7-1 0 



Example 3: Two simple summarization variables, a and c, and an expression summarization 
variable b are declared. Note: this example illustrates the use of a global variable to declare 
an expression summarization variable. 

PROGRAH Demo2 
global = 2 

ASSEHBLAGE t r i a l  (0,  ’ ’> 
SUlMARIZE 

a ,  c ,  b = global ** 2 
END SUHHARIZE 

c 

COHPONEIT t e s t  (1, ’ ’1 
a = 5  
c = l  

ERD t e s t  
COHPONEIT tes t -2  (1, ’ ’1 

global = 3 
a = 6  
c = 2  

EID t e s t -2  

print betest : F2.0 
END t r i a l  

print a@test@trial : F2.0 
print cOtrial : F2.0 
print bOtrial : F2.0 

END Demo2 

This program produces the following output: 

4 .  
5 .  
3 .  
9 .  

The following table lists the values for the summarization variables arid explains how 
the values were computed. 
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Table 7-2 
SSV = “Simple Summarization Variable” 
ESV = “Expression Summarization Variable’’ 

VU 

a 
- 

a 

a 

C 

C 

C 

COMPONENT Type Value How value was derived 

test ssv 5 explicitly initialized since t e s t  
- -  

has no subCOMPONENTs 

test-2 SSV 6 explicitly initialized since t e s t -2  
has no sub COMPONENTS 

t r i a l  ssv 11 computed autoniatically by Sol , ;  
equals sum of the siiiiiiiiarizatiori variables 
for subCOMPONENTs. t e s t  and t e s t - 2 .  
(5 t 6 = 11) 

t e s t  ssv 1 explicitly initialized since test is 
has no subCOMPONENTs 

t e s t -2  ssv 2 explicitly stated since test-:! 
has no subCOMPONENTs 

t r i a l  ssv 3 computed automatically by SOL; 
equals sum of the summarization variables 
for subCOMPONENTs, t e s t  and t e s t - 2 .  
(5 t 6 = 11) 

b test 

b t e s t 2  

b t r i a l  

ESV 4 computed automatically by SOL; 
equals the summarization expression evaluated 
with the current value of global .  
(global = 2, b = global * *  2 = 4 ) 

ESV 9 computed automatically by SOL; 
equals the summarization expression evaluated 
with the current va.lue of global .  
(global = 3, b = global **  2 = 9 ) 

ESV 9 computed automatically by SOL; 
equals the summarization expression evaluated 
with the current value of global .  
(global = 3, b = global ** 2 = 9 ) 

0 The print statements use extended identifer notation. (See Chapter 7, section 
7.1.2 for details). 
The symbol, Q, should be read as “of thcb.” For cxaniple, bOtest should be 
read as, ”varialile b of the t e s t  component.’’ 

0 
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The print statements will display the following values, in order from first 
to last: 4, 5 ,  3, and 9, which represent Uthc value of variablc b of the test 
component, (‘the value of variable a of the t e s t  component of the t r i a l  
assemblage,” ‘(the value of variable c of the t r i a l  assemblage,” and “the 
value of variable b of the t r i a l  assemblage” respectively. 

Example 4: The example contains a compilation error because of a violation of rule 4 (iii.) 
of the restrictions on summarization variables. (Restrictions appear in this Chapter and 
section, just before the current “examples” section.) 

PROGRAM D e m o 3  

ASSEMBLAGE tr ial  ( 0  , ’ ’ 
SUMMARIZE 
a 
b = a * * 2  

END SUIIHARIZE 

COHPOPENT t e s t  (1, ’ ’> 
a = 5  
b = 14 

END t e s t  

COHPONENT tes t -2  ( 1 ,  ’ ’> 
a = 6  

EBD t e s t -2  
END trial  
END D e m o 3  

A compilation error occurs inside COMPONENT t e s t .  The statement, b = 
14, is ILLEGAL because b is an  expression summarization variable and 
CANNOT he explicitly initializc>d. 
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Example 5:  This example contains a compilation error because of a violation of rule 5 of 
the restrictions on summarization variables. (Restrictions appear in this chapter and section, 
just before the current “examples” section). 

PROGRAM Demo4 

ASSENBLAGE trial  ( 0 ,  ’ ’1 
SUnnARIZE 

a 
b = a * * 2  

EHD SUnHARIZE 

COMPONENT t e s t  (1, ’ ’1 
a = 5  

EHD t e s t  

COHPOIiEIiT t e s t -2  (1, ’ ’1 
a = b * 6  

ElOD tes t -2  
print bQtest 

END trial 

END Demo4 

e An error occurs inside COMPONENT t e s t - 2 .  The statement, a = b * 6 is 
ILLEGAL, because the summarization expression variable b of COMPONENT 
t e s t2  is not initialized until the COMPONENT ends. 

The summarization expression variable initialized in COMPONENT test is a 
local variable, and CANNOT be accessed from COMPONENT test-2 unless 
extended identifier notation is used. (See section 7.1.2 for details on extended 
identifier notation). 

e 

7.2.1.2 Summar-v  T i t l e  Declarations - Advanced Material 

The S u m m a r y - T i t l e  declaration initializes a header title for SUMMARIZE PRINT state- 
ments. 

e 11 S u m m a r y - T i t l e  declaration call appear i i i  the Sum~nari/ation declaration 
section of an ASSEMBLAGE. 

A S u m m a r y - T i t l e  declaration is OPTIONAL; it neccl NOT appear in thc 
Sun-marization clcclaration section of an ASSEMBLAGE. 

More information on summarize print st aterncrits can he found in section 
7.1.1.3. 

e 

e 
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A Summary-Title declaration has the following syntax: 
SUMMARY-TITLE = ( string ) 
where: 

( string ) is a SOL string, consisting of a string of characters enclosed by a.pos- 
trophes. 

0 

0 

A string cannot be longer than 61 characters. 

The string must appear on a single line. T h e  continuation symbol, 
&, CANNOT be used to split a string over two lines. 

The following restrictions apply to Summary-Title declarations: 

1) An empty (null) ( string ) such as *’ is illegal. 

Summary-Title declarations appear in the siimniarization declaration section 
of an ASSEMBLAGE, and must be separated from summarization variables by 
commas OR carriage returns. For example: 

2) 

Legal Ulegal 

ASSEMBLAGE Demo (0, ’ ’> ASSEMBLAGE Demo (0, ’ ’) 
SUMMARIZE SUMMARIZE 
summary-title = ’Demo Title’ summary-title = ’Demo Title’ w 
W 

END SUMMARIZE END SUMMARIZE 

ASSEMBLAGE Demo (0, ’ ’) ASSEMBLAGE Demo (0, ’ ’) 
SUMMARIZE SUMMARIZE 

END SUMMARIZE END SUMMARIZE 
summary-title = ’Demo2 Title’, sum-var summary-title = ’Demo2 Title’ sum-var 

3) The Summary-Title declaration must appear on a single l inc .  If it will not fit, 
the continuation symbol, SC, must be used. For further details, see Chapter 
2, section 2.4. For example: 

Legal Illegal 

ASSEMBLAGE Demo (0 ,  ’ ’ )  ASSEMBLAGE Demo (0, ’ ’) 
SUMMARIZE SUMMARIZE 

k ’use the continuation symbol’ 

END SUMMARIZE END SUMMARIZE 

summary-t it 1 e = 

w , e = w * 2  w , e = w * 2  

summary-t it le = 
’your decl is illegal without it’ 

Chapter 7, section 7.1.1.3 details the use of the summarize print statcment. 
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7.1.1.3 Summarize Print Statement - Advanced Material 

An understanding of ASSEMBLAGES and COMPONENTS, detailed earlier in this chapter, will 
make this section more understandable 

0 The SUMMARIZE print, stat,cmcnt, allows tliv qiiick, aiicl coiic-isc priii1,irig of 
ASSEMBLAGE or COMPONENT si1 iiiiiiilr imt ioii vari i l l )  Ics. 

The SUMMARIZE print statement prints summarization vari;thl(.s in a tabular 
form, along with a header message indicating whether the ASSEMBLAGE has 
ended. 

Each row in the table contains the values for a requested ASSEMBLAGE variable. 
Options allow a title for the table and/or row labels to be specified. 

Rows can be indented to reflect COMPONENT nesting within the ASSEMBLAGE, 
or for emphasis. 

0 

0 

0 

0 

GENERAL USE AND SYNTAX OF THE SUMMARIZE PRINT STATEMENT 
The SUMMARIZE print statement has the following syntax: 

SUMMARIZE ( printlist ) 
where: 

( printlist ) is the list of variables to be printed, and corisists of one of the fol- 
low i n g : 

1) a simple summarization variablc, or expressioii summarization 
variable. 
Example: SUMMARIZE a-summar ize-var i ab1 e 

Recall that summarization variables must be declared in the sum- 
marize declaration section. ( See chapter 7, sections 7.1.1 and 
7.1.1.1 for greater detail on summarization variable declarations) 

2) a simple summarization variable or expression summarization 
variable, followed by a colon, :, followed by a format. 
Example: SUMMARIZE a-sum-var : 

3) a mixed sequence of the  two choices above, separated by com- 
mas. 
Examples: 

( format ) 

SUMMARIZE a-var, another : ( format ) , a - th i rd  
SUMMARIZE a : 
( format ) 

( format, ) , b : ( forrrial, ) , last : 

0 In the examples above, the word, ( format ) , appears where an actual format 
would appear. (Formats are discussed in Chapter 6,  section 6.2.2). 

Since summarization variables are always of type REAL, only E and F formats 
are legal with SUMMARIZE print statements. 

0 

The following restrictions apply to SUMMARIZE print statements: 

Variables used in SUMMARIZE print statements must be summarization vari- 
ables. 

1) 
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2) No comma can appear after the last item in a print list. 

You must use a format that is compatible with the variable printed. See 
Chapter 6, section 6.2.2 for details on formats. 

Print lists must appear on the same line as the word, SUMMARIZE. 

3) 

4) 
0 If the print list is too long to fit on the line, use the continuation 

symbol, &, continue the list on the nest line. See Chapter 2, 
section 2.4 for details on the contiriiiat,ion sytnhol. 

5 )  Print lists can be NO LONGER than 20 items. 
SUMMARIZE print statements are only legal if at  least one ASSEMBLAGE or 
COMPONENT statement has ended before the SUMMARIZE print statement. 

6) 

The following is an example of an ASSEMBLAGE statement, illustrating the use of the 

01 PROGRAM example 
02 
03 ASSEMBLAGE One(0, ’the name one’) 
04 SUMMARIZE 
05 a, b 
06 END SUMMARIZE 
07 COMPONENT Two(TAB 1, ’the name two’) 
08 a = l  
09 b = 2  
10 END Two 
11 COMPONENT Three(TAB 1, ’the name three’) 
12 a = 2  
13 b - 3  
14 END Three 
15 END One 
16 SUMMARIZE a : f 4 . 2 ,  b : f 4 . 2  
17 END example 
The SUMMARIZE print statement on line sixteen results i n  the followiiig output at the 

SUMMARIZE print: 

terninal: 

SUMHARY STATEHENT 

NO TITLE DECLARED IN SUMMARY-TITLE 
A B 

THE BAHE TWO 1 .oo 2.00 
THE BAHE THREE 2.00 3.00 

THE NAME ONE 3.00 5.00 

The explanation of the examplc: 

0 The first thing printed is the table header, “SUMMARY STATEMENT .” If the 
SUMMARIZE print statement appeared before the ASSEMBLAGE had ended, the 
table header would have been, “PARTIAL SUMMARY STATEMENT. ” 
A blank line appears next, which is then followed by the table title. As 
no title was declared, the default, “NO TITLE DECLARED IN SUMMARY-TITLE, 
appears. (See Chapter 7. section 7.1.1.2) 

0 
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0 The column headers appear next, automatically labeled with the names of 
the summarization variables that will be printed. 

The summarization variables for the first COMPONENT ended (COMPONENT ends 
at  line 10) appear next. 

The row is labeled with the string declared in the COMPONENT definition, ' the 
name t w o '  (Line 7).  The label is idcnted one tal, ( f i v ~  spaws). This was also 
specified by TAB which appears before the lal->vl in  t h  COMPONENT definition 
(Line 7). The values of the variables follow. 
The indented label and the values for the next COMPONENT follow. 

Values of the ASSEMBLAGE summarization variables are then printed. This 
row is not indented as specified by the dcfinitiori (on line 3, the number 
0 specifies zero spaces). Because of the lack of indentatiorl, the values for 
the summarization variables are not aligned with those of tile previous two 
COMPONENTS. 

0 

0 

0 

0 

0 A title can be declared in the SUMMARIZE section of an ASSEMBLAGE (See 
section 7.1.1.2 of this chapter) that will be printed with the table of summa- 
rization variable values generated by a SUMMARIZE print. 

0 

0 

If no title is explicitly declared, the default title will be used. 

The default title is, NO TITLE DECLARED IN SUMMARY-TITLE. 
LABELING AND IDENTING TABLE ROiVS 

Identation information must be given for the table rows produced by a SUMMARIZE print 

Each row of a SUMMARIZE print table states an indented label, followed by the 
values of the requested summarization variables for a particular ASSEMBLAGE 
or COMPONENT. 
Indentation and labeling instructions are given at t h e  start of a n  ASSEMBLAGE 
or COMPONENT. 

statement. A label for each row of a SUMMARIZE print table must also be specified. 

0 

0 

The start of an ASSEMBLAGE has the following syntax: 

ASSEMBLAGE ( name ) ( ( identation ) , ( astring ) ) 

The start of a COMPONENT definition has the following syntax: 

COMPONENT ( name ) ( ( identation ) , ( astring ) ) 
where (ASSEMBLAGES and COMPONENTS) row labeling information is given 1)y ( astring ) and 
( indentation ) : 

( name ) is a legal SOL identifier which names the ASSEMBLAGE or COMPONENT. 
( indentation ) is a legal SOL number or the word TAB followed hy a legal SOL 

nu nib er . 
0 

0 

Specifies how many blank spaces to indent ( a-string ) . 
If the word TAB a.ppears, the number specifies how many tabs 
(where a tab is five blank spaces) to indent. 

numbers less than or equal to -1 will result in tlic row not being 
included in the table. 

0 
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0 numbers are treated as INTEGERS and truncated. e.g. 1.9 becomes 
1 and .999999 becomes zero. Only digits before the decimal point 
are significant. 

( astr ing ) is a legal, non-null SOL string. 

0 

0 

Row labeling information is given in ( astring ) . 
The label specified in ( astring ) will appear in  the leftmost 
position of the table row. 

If no label is desired, use a space string, ’ ’. The null string, ” , 
is not allowed. 

0 

7.1.3 EXTEKDED IDENTIFIER NOTATION 

Extended Identifier notation is used to access the values of variables initialized within 
an ASSEMBLAGE or COMPONENT: 

0 Once an ASSEMBLAGE or COMPONENT has ended, the values of any variables 
initialized within the ASSEMBLAGE or COMPONENT can be accessed through 
SOL’S extended identifier notation. 

Chapter 7 ,  section 7.2 details the scope rules governing variable initializations 
within ASSEMBLAGES or COMPONENTS. 

0 

The extended identifier notation has the following syntax: 

( identifier ) @ ( path name ) 
where: 

( identifier ) is a legal SOL identifier 

( path name ) specifies where the desired variable was iiiitialized ill the ASSEMBLAGE. 
This ( path name ) consists of either of the following: 

1) an ASSEMBLAGE or COMPONENT name 
2) an  ASSEMBLAGE or COMPONENT name, followed by the 
symbol 42 followed by another ( path name ) 

Extended identifiers describe a ”search path,” expressing the desired variable’s location 
in the hierachy of an ASSEMBLAGE and its COMPONENTS. The ASSEMBLAGE is considered the 
OUTERMOST level, COMPONENTS directly inside the ASSEMBLAGE comprise the next most 
outer level, COMPONENTS directly inside COMPONENTs inside the ASSEMBLAGE are the third 
most outer level and so forth. 

0 The symbol @ means “of the.“ I;or exaniplc ‘‘weiglit~Flaps@ Wing” should 
be read as, “the weight of the Flaps of the IVing.“ This wading makes clear 
which variable is being accessed. 
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0 A search for the variable begins with the right-most name in the ( path 
name ) . The search differs slightly depending on where the extended iden- 
tifier reference appears, as follows: 

The extended identifer reference appears inside an ASSEMBLAGE 
or COMPONENT: 
Thc search proceeds “outwards,” (from the rcfclciice through the 
hierarchy towards the ASSEMBLAGE l cvc l ) .  ‘1’11~ scwcli coiitini1c.s 
through the ncsted levels of COMPONENTS, checking the COMPONENT 
names at each level, until a matching COMPONENT or ASSEMBLAGE 
name is found. If the name is found, the search continues inwards 
from the matching COMPONENT or ASSEMBLAGE analagous with ii. 
(which follows), otherwise an error occurs. 

A partial “path name” can be used, only the minimum length 
extended identifier that uniquely identifies a variable is required. 

If the extended identifier reference appears outside the ASSEM- 
BLAGE, the search moves from thc ASSEMBLAGE illwards, matching 
the rightmost name in the “path name” with the ASSEMBLAGE 
name, the next rightmost name with a COMPONENT nested in the 
ASSEMBLAGE, the next name matches a COMPONENT nested in the 
COMPONENT in the ASSEMBLAGE and so on until the desired variable 
is found. If the variable is not found, an error occurs. 

The full “path name” MUST be used in this case. 

1. 

0 

.. 
11. 

0 

0 SOL’S extended identifier notation is best explained with the aid of the 
example which follows. 
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EXAMPLES : 

Example 1: The following ASSEMBLAGE models an egg, and illustrates the use of SOL’S 
extended identifier notation. (Some statements have been anndated to aid the discussion.) 

PROCRAH Component-Demo 

ASSEMBLAGE egg (0, ’ ’1 
SUWARIZE 

protein, weight 
EllD SUHMARIZE 

protein-factor = .33 

COMPONENT Yolk (1, ’) 
weight = 1.9 
protein = weight * protein-factor 

END Yolk 

print WaightQYolkOegg 
print weightOYolk 

COMPONENT White (1, ’ ’1 
weight = 1.3 
protein = weight * protein-factor 

END White 

print weightOWhiteQegg 
print weightWhite 

END egg 

print protein-f actoreegg 
print weight@yolk@egg 
print weighteegg 
END Component-Demo 

! 1) 
! 2) 

! 3) 
! 4) 

! 5) 

! 7) 
! 6) 

The extended identifier notation is used in six print statements which write out the 
following values: 

Print St atemen t Variable A messed RI?,Il, Nuniber Valiie Printed 

“weight of the Yolk of the egg” 
“weight of the Yolk” 
“weight of the \\'bite of the egg” 
“weight of the \\‘hitee’ 
“proteinfactor of the egg” 
“weight of the yolk of the egg” 
*’weight of the egg” 

1.9 
1.9 
1.3 
1.3 
.33 
1.9 
3.2 
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a Print statements 1) and 2) print the same value. Recall that if an extended 
identifier reference appears INSIDE an ASSEMBLAGE or COMPONENT, only the 
minimum length extended identifier is required. 

Print statements 3) and 4) are analgous to statements 1) and 2) .  

Notice that the complete “path name” must be given in statements 5), S ) ,  
and 7). 
The final print statement writes the value, 3.2. Because ASSEMBLAGE sim- 
ple summarization variables are initialized with the sum of the appropriate 
simple summarization variables from its subCOMPONENTs. In this case, the 
“egg” COMPONENT has two subCOMPONENTs - -  “Yolk” and “White” - so that 
the “weight of the egg” equals “the weight of the Yolk” plus “the weight of 
the White,” 1.9 + 1.3 = 3.2. 

a 

a 

a 

The following restrictions apply to SOL’S extended identifiers: 

1) An extended identifier cannot appear on the left side of an assignment state- 
ment, or be passed as a subroutine dependent parameter. For example, the 
following is ILLEGAL: 

weight6egg = 12 

2) Extended identifiers can only be used to access variables that were initialized 
inside of an ASSEMBLAGE or COMPONENT. 

Extended identifiers CANNOT be used to access variables before the vari- 
ables have been initialized. (In particular, summarization variables of AS- 
SEMBLAGFs or COMPONENTs which have nested sub COMPONENTs CANNOT be 
accessed until the summarization variables are automatically initialized when 
the ASSEMBLAGE or COMPONENT ends.) 

3) 

7.2 SCOPE RULES FOR ASSEMBLAGES AND COMPONENTs 

ASSEMBLAGES and COMPONENTs abide by the special scope rules. Because COMPONENT 
statements are oftcn nested, it is useful to have terminology with which to distinguish the 
relationships among COMPONENTs to aid a discussion of scope rules. The following definitions 
are used: 
Complete COMPONENT 

- a COMPONENT whose body contains NO COMPONENT definition statements. 

Composite COMPONENT 

- COMPONENT whose body contains AT LlLIS1’ ONE COMPONENT definition 
statement. 

Encompass 

1) An ASSEMBLAGE ENCOhlPASSes all COMPONENTs within it. 

IF a Composite COMPONENT contains the COMPONENT definition statement for a 
second COMPONENT, the first COMPONENT is said to ENCOMPASS the second. 

2) 
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IF a Composite COMPONENT contains a sequcncc of nested COMPONENT defiiii- 
tion statements, the composite COMPONENT is said to ENCOMPASS any and 
all members in the sequence. 

3) 

Outer COMPONENT 

- A term used to describe the relationship between COMPONENTS. ALL COMPO- 
NENTS that encompass a COMPONENT statement are OUTER to that COMPO- 
NENT. (The ASSEMBLAGE is by definition OUTER to all COMPONENTS). 

Inner COMPONENT 

- .4ll COMPONENTS that a Composite COMPONENT encompasses are INNER to 
the Composite COMPONENT. (All  COMPONENTS are by definition INNER to the 
ASSEMBLAGE). 

SubCOMPONENT 

- A term used to describe the relationship betwcen COMPONENTS. All COMPO- 
NENTS whose definition statements appear IhlhIEDl ATELY inside a COM- 
POSITE COMPONENT or ASSEMBLAGE are subCOMPONENTs o f  the composite 
COMPONENT or ASSEMBLAGE. For example: 

C O W O B E N T  one (1, ’ ’1 
C O H P O I E I T  T w o  (2 ,  ’ ’> 

COMPONENT Three ( 3 ,  ’ ’> 

END Three 
S U m - V a I  = 2 

END T w o  
COMPONENT Four ( 2 ,  ’ ’> 

END Four 
sum-var = 6 

END one 

0 In this example, subCOMPONENTs Two and Four  appear immediately inside 
COMPONENT one,  b u t  COMPONENT T h r e e  is NOT a subCOMPONENT of COMPO- 
NENT one COMPONENT Three is a subCOMPONENT of COMPONENT Two. 

0 t 1ic.r COMPONENT 

- A term used to describe the relationship between COMPONENTS. All COMPO- 
NENTS which are neither an ISNER nor an OIJTER COMPONENT to a COMPO- 
NENT. are called OTHER components. 
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SCOPE RULES FOR ASSEMBLAGES AND COMPONENTS: 
Accessing or Altering Variables: 

An ASSPiBLAGE or COMPONENT can access and alter variables which have been 
initialized in the MAIN program or SUBROUTINE implementation before 
the ASSEMBLAGE or COMPONENT statement appeared, For example: 

1) 

c = 24 
outer-var = 12 
ASSEMBLAGE t e s t  (0, '1 
SUMMARIZE 

END SUHXARIZE 
sumqarize-var 

rurmqarize,var = outer-var + 12/c ! access c and outer-var 
out er ,var = 42 ! a l t e r  outer-var 

Em t e s t  

0 A warning message flags when an outer scope's variable is al- 
tered by an ASSEMBLAGE or COMPONENT such as the alteration to 
outer-var in this example. 

2) An INNER COMPONENT can access and alter: 

i. Any variables initialized in the ASSEMBLAGE and OUTER COMPO- 
NENTs, if the variables are initialized BEFORE the inner COMPO- 
NENT appears. 

A warning message flags when an outer scope's variable is altered. 

An ASSEMBLAGE or COMPONENT can ACCESS but NOT ALTER variables 
ipitialized in INYER or OTHER COMPONENTS. 

0 

3) 

i. Access using extended identifier notiition. (SCP ( ' I i ; i p t , c ~  7, sectiori 
7.1.2). 
The INNER or OTHER COMPONENT variable must be initialized 
before it is accessed. 

i'ariables initialized in an ASSEMBLAGE or COMPONENT can be ACCESSED but 
NOT ALTERED by main program or subroutine statements: 

.. 
11. 

4) 

i, Access with extended identifier notation. (See Chapter 7, section 
7.1.2) 

Initial iz i n g Va ri ab les : 

Simple summarization variables and Expression sunimarization Variables are 
AL\\IAYS local. Every ASSEMBLAGE or COMPONENT accesses and initializes a 
local summarization variable. 

When an ASSEMBLAGE or COMPONENT initializes a variable, a variable l,OCAIJ 
to that ASSEMBLAGE or COMPONENT is initialized. This local variable can be 
accessed or altered outside the ASSEMBLAGE or COMPONENT ONLY by the rules 
above. 

1) 

?I 
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0 Note: Variables are only initialized the first time they receive a 
value. Therefore, local variables are NOT created when an AS- 
SEMBLAGE or COMPONENT assigns a value to an existing variable. 
The exceptions, of course, are summarization variables (see sec- 
tions 7.1.1 and 7.1.1.1 of this chapter) because these variables are 
ALWAYS local. 

EXAMPLES : 

Example 1: 
01 PROCRAH example 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 

a = 6  
ASSEHBLACE p i e  (0, ’ ’1 
SUMMARIZE 

cost  
END SUMMARIZE 

cost  = a + 1 
a = 15 
a = a + 2  
print a 

EID p i e  
print cost  Op i e  
print a 

15 END example 

li‘hat does the print statement on line 11 print? 

0 On line 9, a is given the value, 15 and then incremcnted by two on line 10. 
Therefore, on line 1 1  thc value, 17 is printed. 

\Vhat does the print statement on line 13 print? 

0 On line 8, the summarization variable cost  is given the value a + 1. The 
variable a has the value 6 (from line 3) at that point, so cost is assigned the 
value 7, and 7 is printed. 

U\’hat does the print statement on line 14 print? 

0 The assignment statements on lines 9 and 10 haye altered the main program 
\-arial,le, a,. so the value 17 is printed. 

4 
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Example 2: 
01 PROGRAM example-2 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
l e  
17 
18 
I 9  
20 
21 
22 
23 
24 
25 

factor  = 13 
ASSEMBLAGE one (0, ’ ’1 
SUMMARIZE 

a ,  b,  coat = a * b 
END SUMMARIZE 

factor  = 11 
an-error = aOtwoQone 
COMPOIENT two (I, ’ ’ 1  

a = factor + 2 
b = a + factor 
factor  = 10 

END two 
COMPONENT three 

a = factor  + cost@twoQone 
b = bQtwo0one 
factor  = 3 

END three 
print factor  

END one 
PRINT aQtaoQone 
PRIIT bQthreeQone 
PRIIT aOthreeOone 

26 END example-2 

The rule numbers that appear in the discussion that follows refer to the rules for accessing 
and initializing variables that appear immediately before this “examples” section. 
One error occurs in this program, Where is it? 

0 An error occurs on line 10. An ASSEMBLAGE can access an variables initialized 
in subCOMPONENTs, with extended identifier notation but only AFTER the 
variables have been initialized (as per rule 3 (i i  ) of Scope rules for accessing 
and Altering variables). COMPONENT two has not ended, so the summariza- 
tion variables are not yet initialized and Line 10 is ILLEGAL. For the next 
questions, assume line 10 is removed so the program runs. 

What value is printed on line 21? 

0 f a c t o r  has been altered on lines 14 and 19 in accordance with rule 1, The 
assignment on line 19 is the most recent, therefore the value 3 is printed. 

What value is printed on line 2:3? 

0 The two COMPONENT’S summarization variable a is assigrietl its value on line 
12. The variable f a c t o r  is referenced as per rule 1, and the value 11 is 
returned. Thus, aQtwo gets the value “11 + 2,” and the value 13 is printed. 

What value is printed on line 2/4? 
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0 The three COMPONENT’S summarization variable b is assigned its value on 
line 18 to have the same value as COMPONENT two‘s summarization variable 
b. The value of the two COMPONENT’S summarization variahlc b is set on l inc  
13 t,o be “13 + 11” or 24. Thus, the valiic 21 is I)riiit,<d. 

What value is printed on line 25 ? 

0 The three COMPONENT’S summarization variable a is assigned its value on line 
17. COMPONENT two has changed the value of fac tor  to be “30” (line 14). 
COMPONENT two’s summarization variables a and b have the values “13” arid 
“24” respectively as seen in the previous two print statements. Because the 
cos t  of COMPONENT two is an expression summarization variable, its value is 
computed automatically as a * b = 13 * 24 = 312. Thus, f a c t o r  + 312 = 
10 + 312 = 322, and the value 322 is printed. 

i . 3  .AD\’-ASCED M.ATERI.4L - ASSEXIBLAGE A N D / O R  COMPONEST 
ITERATION 

The Iterations section of an ASSEMBLAGE or COMPONENT allows you to give initial values to 
A S Y  krariables LOCAL to the COMPONENT or ASSEMBLAGE, such as summarization variables. 
The initial values are used before the variables get final values later i l l  the ASSEMBLAGE or 
COMPONENT body. 
Motivation: It is not always possible to create a sizing model where the sizing information 
can be handled in a linear fashion. The values for summarization variables of an ASSEMBLAGE 
are computed automatically to be the sum of the corresponding summarization variables 
of all nested subCOMPONENTs and are inherently linear. However, in some cases it would be 
helpful to define a subCOMPONENT’s summarization variable in tcrms of another variable, such 
as an outer COMPONENT or ASSEMBLAGE summarization variable. For example, in modeling 
aircraft, the landing gear is often modeled as a fixed percentage of the total vehicle gross 
weight. The vehicle weight would be a summarization variable for the ASSEMBLAGE, and the 
weight of the landing gear would be a summarization variable of a siibCOMPONENT. 

Normally, such a model is not possible, because the total gross weight would not be 
initialized until the ASSEMBLAGE ended. The Iterations section allows proper modeling for 
these cases. 
The iteration section for an ASSEMBLAGE is optional; when supplied the iteration section 
appears inside the ASSEMBLAGE summarization declaration section ( A s  tlctailed in Chapter 
T i ,  section 7.1)’ and has the following syntax: 

ITERATE 
( iterations ) 

For example: 
ASSEMBLAGE Test (0, ’ ’> 
SUKHARIZE 

a, b 
ITERATE 

a = 12 
EID SUMMARIZE 

- -v 
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0 The iteration section ends when the summarization declaration section ends 
with the words END SUMMARIZE. 

The iteration section for a COMPONENT is optional; when supplied the iteration section appears 
immediately after the COMPONENT header (As detailed in Chapter 7, section 7.1), and has the 
following syntax: 

ITERATE 
( itc*ra.tions ) 

END ITERATE 

For example: 
COHPOIEIOT T e s t  (0 ,  J ,  
ITERATE 

a = 12 
END ITERATE 

where (for both ASSEMBLAGES and COMPONENTS): 

( iterations ) is one of the following: 

1) ( id ) = ( expr ) 
2) ( id ) = ( expr ) : ( no ) 
3) ( id ) = ( expr ) : ( no ) % 
4) MAX-ITERATIONS = ( expr ) 

5 )  
or more carriage returns. 

a series of 1) and/or 2) and/or 3) and/or 4) separated by one 

( id ) 

( expr ) 

( no ) 

is a SOL identifier; the variable to be initialized. 

is an arithmetic expression for the initial value. 

is a SOL number giving the convergence criteria. 

The following restrictions apply to the ( iterations ) section, when it appears: 

1) ( id ) must be a legal SOL identifier. 
( id ) CASNOT be a previously initialized variable, it MUST BE local 
to the COMPONENT w h i c h  iterates. Since all variables initialized within a 
COMPONENT are local variables. any WNINITIALIZED variable can be used, 
including summarization variables. 

( id ) MUST BE INITIALIZED within the COMPONENT that declares the iter- 
ation. Initialization can be explicit (e.g. an assignment statement or subrou- 
tine call) or implicit (such as the automatic initialization of summarization 
variables of COMPONENTS as the sum of suhCOMPONENT local summarization 
variables). 

If no Max-iterations is explicitly given, a default. value of fifty (50) is used. 
If iteration stops because Max-iterat ions is exceeded, a run-time error 
message will appear. 

4) 
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If no CONVERGENCE criteria is given, i.e. '': ( no) )) or '': ( no) %," 
then a default absolute convergence criteria of 1 IS  used. 

5 )  

7.3.1 HOW ITERATION WORKS 

In what follows, all bracketed items refer to the iteration section syntax described in the 
previous section. 

The initial value for the variable is calculated in the ( expr ) part of an 
( iterations ) section. 
The iteration variable can now appear in  inner COMPONENT calculations. 

The iteration variable MUST be assigned (explicitly or implicitly) a new 
value in the COMPONENT or ASSEMBLAGE that defined the itcration. 

At the end of the ASSEMBLAGE or COMPONENT that initiated iteration, the new 
value of the iteration variable is compared to the value from the previous 
itera tion. 

A convergence criteria defines whether the new/previous comparison will end 
the iteration or whether the new value will be used as the initial valiie and 
the process repeated. This repetition is called iteration. 
A convergence criteria is either ": ( no ) )) (ahsolute convergence) or ": 
( no ) % .' (relative convergence). If nothing appears, a default absolute 
convergence criteria, with ( no ) = 1 is used. 

absolute convergence: When the difference between the previous value 
and the new value of the summarization variable is less than or equal to 
( no ) , the iteration halts. 

relative convergence: When the previous value changes less than or equal 
to the percentage, " ( no ) %" then the itcration halts. 

Max-iterations places a further limit on the number of iterations allowed; 
the compare/repeat process will continue at  most max-iterations times. If 
the Convergence criteria is not satisfied at  that poilit, iteration halts and an 
error message is output. 

Sizing: Asserri blngcs and Components 7-29 



EXAMPLES: 

Example 1: 
PROGRAH plane 
! 
! Demonstrater i terat ion 
! 
ASSEHBLAGE g-ut (0, Jail') 
SUMMARIZE 

ITERATE 

END SWHARIZE 

u t ,  v01, av-density = ut/vol 

ut = 10000:0.5 % ! i t era te  on ut 

COHPOIEPT wing (1, ’wing’ 1 
a t  = 5000 
vol  = 3000 

END wing 

COMPONENT Landing-gear ( I , ’L . g 
ut = 0.03  * d0g-ut  
vol  = 30 

END Landing-gear 

END g-ut 
END plane 

This example shows a landing gear modeling problem discussed earlier. Landing-gear is 
a subCOMPONENT of G-ut, but tlic value of its summarization variable, ut ,  is a function of thc 
ut  of the ASSEMBLAGE G-ut, which is uninitialized until autornatically iriitializcd with tllc 
sum of its nested COMPONENTS. The initial value of WtcDG-wt is given in the iteration section 
“ ut = io000 : 0 . 6  % .” The iteration statement can be read as, “use 10000 as the initial 
value for wtcDG-wt in any calculation inside of G-wt .”  The calculation of w t 9 G - w t  will repeat 
until it  changes less than 0.5 9% in consecutive iterations. 
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Chapter 8 
The Optimize Statement 

The OPTIMIZE statement acts as a sophisticated shell about the ADSt numerical opti- 
mization routine. Recall that one of SOL’S purposes is to make the computer implementa- 
tion of a numerical optimization problem as simple and error-free as possible. The OPTIMIZE 
statement permits the methods of numerical optimization implemented in the ADS opti- 
mization routine to be applied within a SOL program. The OPTIMIZE statement is combined 
with other SOL statements to pose an optimization problem; the resulting SOL program is 
compiled, linked and run to solve the posed problem and output the results. 

This chapter discusses the OPTIMIZE statement syntax and use, with a minimal but 
necessary prior exposure to the concepts of numerical optimization assumed. 

The OPTIMIZE statement has the following syntax: 
OPTIMIZE ( minimized variable ) 
USE 

( design variables & constraints ) 
( Options Section ) 

( SOL statements ) 
END USE 

END OPTIMIZE 
where: 

( minimized variable ) is a legal SOL identifier, but CANNOT be an ex- 
tended identifier. 

ADS - A FORTRAN Program for  Automated Design Synthesis - Version 1.10, NASA 
Contractor Report 177955, Grant NAG1-567, 1955 by G.N. Vanderplaats 
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( design variables & constraints ) section is one of the following: 

I 

( Options Section ) 

1) a design variable declaration 
2) a constraint declaration 
3) A series of design variable declarations or con- 
straint declarations separated by one or more carriage 
returns. 

0 At least one design variable must appear in the 
USE section. The exact syntax for both 1) and 2) 
is given in sections 8.1 and 8.2 of this chapter. 

contains the optional settings for t,he optimizer, al- 
lows the user to specify a choice of optimization al- 
gorithms, to normalize design variables, to request 
output of optimization results, and to change default, 
parameters of the ADS optimization routine. The 
optional settings are discussed in detail in section 8.3 
of this chapter. 

( SOL statements ) consists of one or more SOL statements. The objec- 
tive function, ( minimized variable ) , and constraint 
functions are defined in this section. 

The following restrictions apply to the OPTIMIZE statement: 

The reserved word, OPTIMIZE and the ( minimized variable ) MUST appear 
alone on the same line. If they will not fit on a single line, the continuation 
symbol, St. must be used. For more information, see Chapter 2, section 2.4. 
The reserved word, USE, must appear alone on a line. 

The reserved words, END USE, must appear alone on the same line, and must 
be separated by at least one space (i.e. ENDUSE is illegal). 

The reserved words, END OPTIMIZE, must appear alone on 1 he same line, and 
must be separated by at least one space. 

The ( minimized variable ) and the constraint variables (see section 8.2 
which follows) hZUST be initialized in the ( SOL statements ) section. 
Design variables (see section 8.1 which follows) CANNOT be initialized or 
altered in the ( SOL statements ) section. 

Any legal SOL statement (See Chapter 6) can appear in thc ( SOL state- 
ments ) section. 

Note that other OPTIMIZE statements can appear to perform 
nest Ed optimizations. 

The ( minimized variable ) RIUST be a function of the design variables. 
This function is specified in the ( SOL statements ) section of the OPTIMIZE 
statement . 
Values for the constraint variables RWST be specified in the ( SOL state- 
ments ) section. 

a 
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0 The ( minimized variable ) is known as the objective function, and it is a 
function of the design variables. In the example above, the variable f u n c t  
represents the objective function of two design variables, x and y. 

Design variables are stated in the ( design variables & constraints ) section. 
By varying the values of the design variables, the value of the 
objective function is also varied. 

Bounds on the values design variables can also be given to define 
the range of possible values. In the example, x and y are stated 
as bounded design variables. 
The OPTIMIZE statement includes initial values for the design 
variables; the design variables of the example. x and y, are ini- 
tialized to -1.2 and 1 respcctively. 

Section 5.2 of this Chapter d e s c r i h  design variables in greater 
detail. 

Constraints are stated in the ( design variables & constraints section ) . 
Constraints provide additional criteria which must be satisfied, beyond the 
goal of minimizing the objective function. For instance, we may want to 
minimize the weight of an airplane wing, but with the constraint that the 
wing cannot be too weak to withstand flight conditions. In the previous 
example, a single variable c o n s t r a i n t  represents the constraint function. 

Like the objective function, constraints MUST be a function of 
the design variables. 

0 

0 

0 

0 

0 

0 

0 

The OPTIMIZE statement poses the optimization problem, “mininlize the value of the 
variable, ( minimized variable ) by varying the values of the design variables and satisfying 
the constraints.” The description of an optimization problem with an OPTIMIZE statement 
closely parallels the mathematical description of the problem, as seen in the following exam- 
ple: 

Example: 

Mathematical description: SOL program: 

Minimize: funct( x,y) 
Subject to: 

-20 5 1 5  50 
o 5 y 5 1 0  
constraint(1, y) = 5 

OPTIMIZE f u n c t  
US E 

x = -1.2 IN [-20, 501 
y = I IN EO, 101 
c o n s t r a i n t  .eq.  5 

Where: END USE 

f u n c t ( r , y )  = 10 * ( 9  - 12)2 + (1 - 2)2 
constraint(z, y) = 5 * y 

f u n c t  = 1O*(y - x4*2)*42 + (I - x)**2 
c o n s t r a i n t  = x 4 y 

END OPTIMIZE 
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0 (ADVANCED MATERIAL) SOL constraint values are automati- 
cally scaled by the SOL compiler and constraint values are stored 
as a percentage of the constraint bound. If a particular constraint 
bound is zero, that constraint is left unscaled (See Section 8.2.1 
of this chapter for details). 

The functions computing the ( minimized variable ) and the constraints 
MUST be stated in the ( SOL statements ) section. 

The OPTIMIZE statement invokes the optimizer to solve the problem of minimizing thc 
( minimized variablc ) The optimizer automatically varies tlic valucs of tlic clcsign VariiLbles, 
increasing or decreasing the value of the ( minimized variathlc ) The optimizer finds the 
values for the design variables which minimize the value of the ( minimized variable ) and 
insures that all the constraints are satisfied. Some values for design variables may give a 
mimimum value to the ( minimized variable ) , but are ruled out because all the constraints 
cannot be satisfied with those values. 

This Chapter is divided into the following sections: 

0 

1) Design Variable Declaration Syntax and Restrictions . . . . . . . 8.1 
2) Constraint Variable Declaration Syntax and Restrictions . . . . . . 8.2 
3) Examples 
4) The ( options ) section of an OPTIMIZE statement . . . . . . . . 8.3 

8.1 DESIGN VARIABLE DECLARATIONS: 

Design variable declarations, which appear in the ( designs ft constraints ) section of 
an OPTIMIZE statement, have the following syntax: 

( design var ) = ( initial value ) IN [ ( lower bound ) , ( upper bound ) ] 
where: 

( design var ) is a legal SOL identifier, and CANNOT be an extended identifier. 

( initial value ) is an arithmetic expression. See Chapter 4, 4. 1 for more information 
on arithmetic expressions. 

( lower bound ) 
( upper bound ) are either arithmetic expressions, o r  oiiiil ted. (they are optional; 

both may appear, only one may appear, or neither may appear). 
a A comma RlUST separate the upper and lower bounds even 
when one or both of the bounds is excluded. 

The following restrictions apply to design variable declarations: 

Design variable declarations MUST be separated from othcr design variable 
declarations or constraint declarations by one or more carriage rcturns. 

1) 
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2) Variables that appear in arithmetic expressions of ( lower bound ) , ( initial 
value ) , and ( upper bound ) CANNOT be design variables. For example: 

Legal Illegal 

extra-var = 1 extra-var = 1 
OPTIMIZE mini OPTIMIZE mini 
USE USE 

x = 1 IN I O y  21 x = 1 IN [O, 21 
y = 1 IN [extra-vary extra-var + 41 y = 1 IN [x,  x + 41 

END USE END USE 

The entire design variable declaration must appear alone on a single line. If 
the declaration will not fit, then the continuation symbol h must be used. 
For further details, see Chapter 2, section 2.4. 
The following relationships must be true: 

3) 

4) 
0 ( lower bound ) 5 ( initial value ) 
0 ( initial value ) 5 ( upper bound ) 
0 ( lower bound ) c ( upper bound ) 

If the relationships above do not hold, a RUNTI;2IE error message will be 
issued when your SOL program is executed. Such messages can only appear 
at  runtime because arithmetic expressions whose values are not known at 
compile-time can be used for the bounds. 

The ( lower bound ) and ( upper bound ) are calculated just once, in the 
design variable declaration. Subsequent changes to the variables used in the 
arithmetic expressions that compute the bounds will have no effect on the 
values of ( lower bound ) arid ( upper bound ) . 
It is illegal to alter or initialize a design variable inside an OPTIMIZE state- 
ment. (Le. in tlie ( SOL statements ) part) The ADS optirnizer controls the 
values of design variables. 

Design variables must have unique names; two CANNOT have the same 
name nor can a design variable have the same name as a constraint. 

5 )  

6) 

'i) 

I 8.2 C 0 N S T RA I S T DE C LA RAT IO N S : 

The constraint declaration, which appears in the ( designs & constraints ) section of the 
OPTIMIZE statement. has the following syntax: 

( constraint var ) ( relationship ) ( bound ) 
I 

where: I ( constraint var ) is a legal SOL identifier, but CANNOT be an estcucled identifier 
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( relationship ) is one of the following: 

.gt. 

.It. 

means the value of ( constraint-var ) MUST be greater 
than the value of ( bound ) 
means the value of ( constraint-var ) MUST be less than 
the value of ( bound ) 
means the value of ( constraint-var ) MUST be equal to 
the value of ( bound ) 

.eq. 

( bound ) is an arithmetic expression. See Chapter 4, section 4.1 for more 
details on arithmetic expressions. 

The following restrictions apply to the constraint declaration: 

Constraint declarations MUST be separated from design variahle declarations 
and other constraint declarations by onc o r  mor(* carriage 1~~1, i i r r is .  

Variables which appear in the ( bound ) expression CANNOT be design 
variables. 

Variables which appear in the ( bound ) expression MUST be initialized 
BEFORE the constraint declaration. 

The entire constraint declaration must appear alone on a single line. If the 
constraint declaration will not fit, the continuation symbol, &, must be used. 
For further details, see Chapter 2, section 2.4. 
The ( constraint var ) MUST be initialized inside the ( SOL statements ) 
section of an OPTIMIZE statement, or a SOL error results. 

A ( constraint var ) CANNOT be accessed before it is initialized. 
Constraint variable names must be unique; two constraint variables CAN- 
NOT have the same name nor can a constraint variable and a design variable 
have the same name. 

1) 

2) 

3) 

4) 

5 )  

6 )  
7) 

8.2.1 (ADVANCED MATERIAL) COKSTRAINT SCALING 

SOL automatically scales constraint values as a percentage of the constraint limit (the 

The scaling is transparent to the user; only THE ACTUAL UNSCALED 
values are output to the user from a SOL program. Scaled values are used 
internally within the ADS optimizer. 
If a particular constraint limit is zero, then that particular constraint is left 
u 11s caled . 

( bound ) ). 

e 

e 
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EXAMPLES : 

The following example programs illustrate the OPTIMIZE statement and the declaration 
of design variables and constraints. The examples are deliberately simplistic so that syntactic 
and semantic details can be discussed without the complications of a a difficult optimization 
problem . 
Example 1: 

OPTIHIZE area 
USE 

length = 5 IN c1. 103 
width = 5 IN [l, 101 

area = length * width 
END USE 

EBD OPTIMIZE 
PRINT ’the length i s  : J l  length 
PRINT ’the widith i s  . , width 
PRI lT  ’the m i n i m u m  area i s  area 

This example is trivial, but illustrative. The problem posed is to minimize the value of 
the variable, “area.” Two design variables are provided, “length” and “width;” no Constraints 
are provided. The two design variables are bounded with a minimum value of one, and a 
maximum value of 10. The functional model states that, ”area equals length times width.” 
The optimizer will vary the values of “length” and “width” until the minimum area is found. 
In this case, the minimum area occurs when both the design variables are a t  minimum. Thus 
when the OPTIMIZE statement ends, the three print statements will print the following: “1,” 
“1,” and “1.” 
Example 2: 

. I  

OPTIMIZE area 
USE 

length = 5 IN E l ,  101 
width = 5 IN c l ,  51 
d i f f  . eq .  2 . 5  

area = length * width 
d i f f  = length - width 

END USE 

END OPTIMIZE 
PRINT ’the length i s  : J ,  length 
PRINT ’the width i s  : ’ width 
PRIHT ’the minimum area i s  : ) ,  =ea 

This example differs from the previous example in only one respect: the addition of the 
constraint, “diff .eq. 2.5.” The *’diff” is the difference between the ‘Llength” and “width” as 
calculated by the statement, “diff = lenuth - width.” 

The “diff” constraint effectively limits the range of possible values for ‘‘length.’’ The 
.4DS optimizer makes the values of “length” and “width” as small as possible, to minimize 
the “area.” However, when “width” has a minimum value of “1,” the “length” cannot be 
less than approximately “3.5” or the “diff” constraint would not be satisfied. 

In this example, the optimizer varies the values of “length” and “width,” minimizing 
the ‘Lareit” while at  the same time satisfying the “diff” constraint. When the OPTIMIZE 
statement ends, the three print statements will display the following: “1 ,” “3.4902,” and 
“3.4902.” 

9 
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Note: The “diff” constraint is only approximately satisfied; the difference between 
“length” and “width” is “2.5” in the exact solution. The variable, “diff,” only approximates 
this exact value because the optimizer can only approximately satisfy constraints within 
a certain level of tolerance. There is a default tolerance, and the SOL programmer can 
adjust the tolerance through the ( options ) section. (See Chapter 8, section 8.3 for more 
information on ( options ) ) 

The level of tolerance acts regardless of the difficulty of the problem. A very complex 
set of constraints from a difficult problem are satisfied with the same degrcc of prccisioii 
as an easy problem. The optimizer approximately satisfied the “diff” constraint with the 
difference between the “length” and “width” equal “2.4902,” very close to the exact value 
“2.5.” 

The OPTIMIZE statement may also be used to maximize a value, by minimizing the 
negative value. For example, the following simple OPTIMIZE statement maximizes the area 
of a rectangle: 

Example 3: 
OPTIMIZE neg-area 
USE 

length = 5 II [I, 101 
width = 6 XI [I, 101 

neg-area = -(length * width) 
EHD 

EHD OPTIMIZE 
area = -neg-area 

This concludes the OPTIMIZE statement examples. A more tutorial preseritation with 
examples appears in “The Sizing and Optimization Language, SOL - - A Computer Language 
for Design Problems,” NASA Technical Memorandum 100565, April 1988. 

8.3 OPTIMIZE ST-4TEMENT ( OPTIONS SECTION ) (ADVANCED MATERIAL) 

The OPTIMIZE statement’s ( options section ) allows the user to: 

1) choose from a variety of optimization algorithms . . . . . . . . 8.3.1 
2) print initial, intermediate, and final results of an optimization . . 8.3.2 

3) normalize design variables to between zero arid one . . . . . . . 8.3.3 

4 change the default settings for the ADS optimizer routine usod by SOL. 8.3.4 

0 The. 
st at ement. 

( options section ) is optional; it need not a p p a r  in  a n  OPTIMIZE 
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When the ( options section ) appears, it has the following syntax: 

OPTIONS 

where: 

( optional switches ) 

( optional switches ) is one or more of the following: 

1. ( strategy, optimizer, or search setting ) This allows the user 
to select from a variety of optimization algorithms; a detailed 
description appears in section 8.3.1 of this chapter. 

.. 
11. ( print results request ) is a request to print the initial, interme- 

diate or final results of an optimization; a detailed explanation 
appears in section 5.3.2 of this chapter. 

... 
111. normalize This setting automatically normalizes the design 

variables, as described in section 8.3.3 of this chapter. 

iv. ( ADS parameter settings ) These settings allow numerous val- 
ues used by the ADS optimization routine, such as the constraint 
tolerance settings, to be altered to customize the optimization 
process. ADS provides default values, so that these control pa- 
rameters need only be accessed when absolutely necessary The 
details are provided in section 8.3.4 of this chapter. 

Each of the ( optional switches ) MUST appear on a line alone, 
separated from other optional switches by one or more carriage 
returns. 

( options 
section ) to select an optimizer, strategy combination, normalize design variables, and output 
some intermediate results (the design variable, constraint and SOL statement sections appear 
as comments): 
Example: 

e 

For example, the following OPTIMIZE statement illustrates tlie use of the 

OPTIMIZE energy 
USE 

! 

! 
! 

OPTIONS 

Design variables and constraints would appear here 

optimizer = modified feasible directions 
strategy = sequential quadratic 
normalize 
print everything every iteration 

END USE 
! 
! equations would appear here 
! 

EID OPTIHIZE 
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The following rules apply to the ( options section ) : 

1)  

2) 

The ( optional switches ) can appear in any order between the word OPTIONS 
and the end of the USE section (indicated by the words END USE). 

Any number of switches can be used. 
0 If a switch is repeated, the last value given is used by the opti- 

mizer. . 

8.3.1 Strategy, optimizer and one-dimensional search settings (Advanced h/la.terial) 

The strategy, optimizer and one-dimensional search settings can appear in the ( OP- 
TIONS ) section of an OPTIMIZE statement. These settings allow the selection of an opti- 
mization algorithm from those available within the ADS optimization software. 

The strategy settings have the following syntax: 

strategy = ( strategy setting ) 
where: 

( strategy setting ) is one of the choices from table 8-1. 
The optimizer settings have the following syntax: 

optimizer = ( optimizer setting ) 
where: 

( optimizer setting ) is one of the choices from table S-2. 
The one-dimensional search settings have the following syntas: 

search = ( search setting ) 
where: 

( search setting ) is one of the choices from table 8-3. 
The tables that follow list the possible strategy, optimizer and one-dimensional search set- 
tings: 
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Table 8-1: Strategy settings: 

Strategy Setting 

Hone 

Exterior Penalty 

Linear Penalty 

Quadratic Penalty 

Cubic Penalty 

Lagrange Xultiplier 

Sequential Linear 

Inscribed Hyperspheres 

Sequential Quadratic 

Sequential Convex 

Table 8-2: Optimizer settings: 

Strategy Used 

None, go directly to optimizer ( D e j u d t  Setting) 

Sccliiviit.ia.l Iriic.oiisl.raiiic~(1 iiiiiiitiiimI ioii 
using the cxterior penalty Itlnc.1 i o r i  r r i c . 1 , h o t l .  

Sequential unconstrained minimization 
using the linear extended interior penalty function method. 

Sequential unconstrained minimization 
using the quadratic extended interior penalty function method. 

Sequential unconstrained minimization 
using the cubic extended interior penalty function method. 

Augmented Lagrange Multiplier method. 

Sequential Linear Programming. 

Inscribed Hyperspheres (Method of Centers). 

Sequential Quadratic Programming. 

Sequential Convex programming. 

Optimizer Setting 

None 

Fletcher-Reeves 

DFP 

BFGS 

Feasible Directions 

Modified Feasible Directions 

Optimization Method Used 

None. Go directly to the one-dimensional search. 
(This method should only be used for program development) 

Fletcher- Reeves algorithm for unconstrained minimization 

Da\.~idon-Fletcher-Po~v~ll ( D I T )  variahlc metric method 
for unconstraincd minirnizat ion. 

Droyer-Fletcher-Goldfarb-Shanno (BFGS) niet hod for 
unconstrained minimization. (Dclavlf:  unconstrained problems ) 

Method of Feasible Directions (11lW) for 
constrained minimization. 

Modified Method of Feasible Directions for constrained 
mini mi za t ion. ( Defa ult : co ns t ru in ed pro b le ms) 
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Table 8-3: One-dimensional search settings: 

One-d Search Setting Search Method Used 

Golden Sect ion 

Golden Section + Interpolation 

Find Bounds + Interpolation 

Interpolat ion/Extrapolat ion 

t 

Find the minimum using the Golden Sectmion Method. 

Find the minimum using tlie 
Golden Section met hod followcd by polyrioniial interpolation 

Find the minimum by first finding bounds and 
then using polynomial interpolation. (Default Setting) 

Find the minimum by polynomial interpolation/extrapolation 
without first finding bounds on the solution. 

SOL automatically supplies default settings for search, optimizer, and one-dimensional 
search methods. 
The default settings for constrained minimization are: 

0 Strategy = None 

0 

0 

Optimizer = Modified Feasible  Directions 

Search = Find Bounds + Interpolation 
The default settings for unconstrained minimization are: 

0 Strategy = None 

0 Optimizer = BFGS (Broyer-Fletcher-Goldfarh-Shanno). 
0 Search = Find Bounds + Interpolation 

Recall that the ( strategy, optimizer or search setting ) appears within the ( options 
section ) of an OPTIMIZE statement. The following example illiistrates the use of these 
settings: 

OPTIMIZE weight 
USE 

! Design variables and constraints commented out 
OPTIONS 

strategy = Lagrange Multiplier 
optimizer = DFP 
search = Golden Section 

! optimization body commented out 
END USE 

END OPTINIZE 
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As might be expected, not all combinations of strategy and optimizer settings are compat- 
ible. Table 8-4 (paraphrased from "ADS - A FORTRAN PROGRAM FOR AUTOMATED 
DESIGN SYNTHESIS - VERSION 1.10", NASA Contractor Report 177985, Grant NAG1- 
567, 1985 by G.N. Vanderplaats) identifies meaningful combinations of these two options: 

Table 8-4: Meaningful Option Combinations: 

Strategy Fletcher-Reeves 

lone 
Exterior Penalty 
Linear Penalty 

Quadratic Penaly 
Cubic Penalty 

Lagrange Hult ip l i sr  
Sequential Linear 

Inscribed Hyperspheres 
Sequential Quadratic 

Sequential Convex 

X 
X 
X 
X 
X 
X 
0 
0 
0 
0 

Optimizer 
DFP BFGS 

X X 
X X 
X X 
X X 
X X 
X X 
0 0 
0 0 
0 0 
0 0 

FD 

X 
0 
0 
0 
0 
0 
X 
X 
X 
X 

Modified FD 

X 
0 
0 
0 
0 
0 
X 
X 
X 
X 

0 

0 

0 

The table pairs strategies with the optimizer selections. 
In this table, "X" denotes an acceptable strategy and optimizer combination. 
The appropriate (constrained or unconstrained) one-dimensional search is 
selected automatically. 

8.3.2 O U T P U T  OF OPTIMIZATION RESULTS 

SOL provides statements to request printing of the values of the objective function, 
design variables, constraints, and termination criteria at user-selected points during the 
optimization process. These ( print results request ) are placed in the OPTIONS section of 
an OPTIMIZE statement. 

0 The output produced by SOL ( print results request ) is integrated with 
SOL'S OPTIMIZE statement. 
Although an output capability already exists within ADS, by default SOL 
suppresses the ADS output. 
The ADS output can be accessed via the IPRINT parameter setting, outlined 
in section 8.3.4 of this chapter. 
By default, the final values of the objective function, design variables, and 
all constraints are displayed at the termination of the optimization process. 

0 

0 

0 

The remainder of this section is divided in two parts: 

1. 

11. 

discusses the syntax of the ( print results request ) that appears in the 
OPTIONS section. 

discusses the format of the output display produced by a print results request. 

, 
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I. PRINT STATEMENTS FOR O U T P U T  OF OPTIMIZATION RESULTS 
A ( print results requests ) has the following syntax: 

PRINT ( optim value ) ( time ) 
where: 

( optim value ) is the optimization result to be printcd, and can be one of the fol- 
lowing: 

object ive  

design variables  

v io lated constraints  

ac t ive  constraints  

constraints  

termination c r i t e r i a  

everything 

nothing 

( t ime)  

0 

0 

0 

print the value of the objective function, the ( minlmizzd 
variable ) . 
print the values of the design variables. 

print the values of violated constraints only. 

priqt the values of active and violated constraints only. 

print the values of all contraints. 

print values of the internal ADS optimization software vari- 
ables used to terminate the optimization; primarily useful 
to the knowledgable user of ADS. 
print the current values of the objective function, design 
variables, constraints, and termination criteria. 

negates ALL current print requests, including the default 
settings. The ( time ) parameter CANNOT appear with 
this setting. 

specifies when to print during the optimization process. 

The ( time ) parameter is optional; it need not appear. When 
the ( time ) does not appear, the given ( optim value ) prints 
when the optimization ends (i.e. at termination). 

The ( time ) can be either a print time, or a series of print 
times separated by commas. If a series will not fit on a single 
line, the continuation symbol, &, must be used. 
A print time is one of the following: 

i n i t i a l l y  

a t  termination 

every ( expr ) search s tep  

(nothing). When the ( time ) does not appear, the 
given ( optim value ) prints whcii the  optimization 
ends (i.e. a t  termination). 

print the value(s) for ( optim value ) at the start of 
the optimization process. 

print value(s) for ( optim value ) when optimization 
ends. 

print the value(s) for ( optim value ) on the ( expr ) 

0 The ( expr ) parameter is an optional SOL expres- 
sion, just as in the case of optimizer/strategy iteration 
and is described in the next example). 

iteration at the one-dimensional search level. 
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every ( expr ) i t e r a t i o n  print the value(s) for ( optim value ) on the ( expr ) 
th  iteration at either the strategy or optimizer level. 
0 If a strategy is used, printing occurs at the strategy 
level, otherwise printing occurs at the optimizer level. 
0 The ( expr ) parameter optional. If the ( expr ) 
parameter is not used, printing occurs on every itera- 
tion. 

0 When the ( expr ) parameter appears it is a SOL 
arithmetic expression (See Chapter 4, section 4.1.1). 

0 For example if no strategy is selected, print  objec- 
t i v e  every 2 i t e r a t i o n  specifies printing the value 
of the objective function at every 2nd iteration of the 
optimizer. 

0 pr int  object ive  every 2/a i t e r a t i o n ,  where 
2/a = 4 .7  at the time of the print request, specifies 
printing the value of the objective every 4th iteration 
of the optimizer. 
0 The ( expr ) parameter is only evaluated once 
(before the iterative optimization process begins) and 
REAL values are truncated as in the last example above. 

MULTIPLE PRINT REQUESTS: 

0 Print requests are USUALLY cumulative, with each print request being added 
to  all previous print requests for that particular ( optim value ) . 
HOWEVER, some print requests SUPERCEDE previous print requests. For 
example: 

0 

PRIllT violated constraints every i terat ion,  a t  termination 
PRIllT constraints a t  termination 

will result in the violated constraints being printed every i t e r a t i o n ,  but 
all constraints will be printed a t  termination because of the second re- 
quest, which supercedes the previous request that only violated constraints 
be output. 
When print requests contradict each other, the most recent request su- 
percedes all others. 

o 

EXAMPLES: 

The example which follows illustrates the use of print requests to output optimization 
results, with parts of the OPTIMIZE statement omitted and line numbers displayed for clarity: 
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Example: 
0 : OPTIHIZB weight 
1 : USE 
2 : ! Design variables and constraints would appear here 
3 : OPTIOIS 
4 : print objective i n i t i a l l y ,  every i terat ion,  
S : k  every search s tep  
6 : print design variables every iteration 
7 : print everything at termination 
8 : ElID USE 
9 : 
10: END OPTIHIZE 

The print requests appear on lines 4-7. 

! The r e s t  of the optimization statement goes here 

0 The print request that begins on line 4 illustrates the use of commas and a 
continuation symbol to specify a number of print times with a single print 
request. 
The ( minimized variable ) is weight (line 0), so that weight is the Objective 
function and the print request on line 4 will display the value of weight. 

The print request on line 7 is nearly superfluous) as the final values of the 
objective, design variables and constraints are printed by default. 

0 

0 

11. FORMAT OF OPTIMIZATION RESULTS OUTPUT 

0 The format of the output produced by SOL print requests is integrated with 
SOL language statements. 
The format consists of a title header followed by one or more of the following: 0 

1. 

11. 

111. 

iv. 

the value of the objective; 

the values for all design variables; 

the values for all or selected constraints; 

the values for the appropriate termination criteria variables. 

.. 

... 

Caveat: Values displayed at the strategy, optimizer) and one-dimensional search level 
are sometimes “incorrect.” This is because the ADS optimization software uses scaled and/or 
normalized values at these levels. While the SOL output corrects for such scaling, the 
correction logic is immature and scaled and/or normalized values are occasionally displayed 
for the ohjcctive and constraints. The output format in no way affects the optimization 
process itself, and in any event the final values displayed are always correctly unscaled and 
denormalized. If this correction is not desired, the values internal to ADS are visible through 
the use of the ADS parameter P R I N T  as discussed in section 8.3.4 of this chapter. 

Each part of the format is discussed subsequently, and an example of the output format 
follows this discussion. 

TITLE HEADER 

The title header indicates the current point in the optimization process. The possible 

OPTIMIZATION INITIAL VALUES 

headers and associated points in the optimization process are as follows: 

Initial values a t  start of optimization process; initially setting. 

The Optimize Statement 8-16 



OPTIMIZATION FINAL VALUES 
Final values at the end of the optimization process; at termination setting. 

Values at the one dimensional search Ievel; every search s tep  setting. 

Values at the optimizer level; every i t e r a t i o n  setting. The actual iteration number 
is also displayed. 

Values at the strategy level; every i t e r a t i o n  setting when a strategy option has 
been selected. The actual iteration number is also displayed. 

This header is displayed at either the optimizer or strategy level just before termi- 
nation; every i t e r a t i o n  setting. 

OPTIMIZATION ONE-D SEARCH STEP ( no ) 

OPTIMIZATION ITERATION NUMBER ( n o )  

STRATEGY LEVEL ITERATION NUMBER ( no ) 

FINAL ITERATION NUMBER ( n o )  

OBJECTIVE FUNCTION OUTPUT 

The format for the objective function consists of the name of the SOL variable repre- 
senting the objective, followed by an equals sign, = , followed by the current value of the 
objective. The value displayed is the current value being used by the ADS software. 

Caveat: Objective function values from the strategy, optimizer, or one-dimensional 
search level are not always DISPLAYED “correctly,” especially when equality constraints 
are used. The ADS software’s internal representations of the objective are occasionally 
displayed, due to the immaturity of SOL’S output formatting. This does not affect the 
optimization process and the final values are always correctly displayed. 

DESIGN VARIABLES OUTPUT 

The format for the design variables consists of the header Design Variables Output 
followed by a tabular listing. Each table row consists of the name of the design variable, its 
current value, and its bounds. In addition if a variable is at a bound, an exclamation point 
is displayed at  the far right of the row. Unlike the objective and constraints, the “correct” 
values for the design variables are always displayed. 

CONSTRAINTS OUTPUT 

The format for the constraints consists of the header Constraints Output followed by 
a tabular listing. Each table row consists of the name of the constraint, its current value, the 
type of constraint (>, <, or =), its limit, and its current status (active, violated or satisfied). 

Caveat: As with the objective function, values for the constraints are occassionally 
LC incorrect,” * at  the strategy, optimizer, or one-dimensional search level, as thc ADS software’s 
internal representations are sometimes displayed clue to the immaturity of SOL’S formatting. 
This does not affect the optimization process, and the final values are always correctly 
displayed. 

TE R M IN AT IO N C RIT ERI A OUT P UT 

The termination criteria output simply displays the current values of the internal ADS 
variables and appropriate messages. This output option is primarily useful to the knowl- 
edgable user of ADS. The termination criteria format consists of the header termination 
criteria, followed by the appropriate values and messages. If none of the termination 
criteria are met, the header appears alone. The following are possible messages: 

0 Maximum number of i t era t ions  exceeddequals  followed by the number 
of optimizer or strategy iterations and the maximum allowable iterations. 
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0 

0 

0 

0 

0 

0 

Absolute convergence criteria i s  s a t i s f i e d  followed by the current 
convergence criteria values. 
Relative convergence criteria i s  s a t i s f i e d  followed by the current 
convergence criteria values. 
Kuhn Tucker Conditions are satisfied 

Kuhn Tucker Parameter followed by the parameter value, <= , followed by 
the parameter limit. 

Maximum K-T Residual followed by the residual value, <= , followed by the 
limit . 
Penalty exceeded l i m i t  followed by the penalty, >= , followed by the limit. 
Penalty below l i m i t  followed by the penalty, <= , followed by the limit. 
Kuhn Tucker Parameter followed by the parameter value, >= , followed by 
the parameter limit. 
S vector value followed by the search vector value, <= , followed by the 
limit. 

EXAMPLES: 

The following is an example of optimization output produced by a print request. The 
title header indicates that the final results (at termination) are being displayed. Note the 
exclamation point at the far right of the design variable inlet-pressure indicating it has 
reached its bounds. 

The Optimize Statement 8-18 



Example: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
OPTIUIZATIOI FIIAL RESULTS * 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OBJ-FLOURATE - - 2.68346 

*** DESIGI VARIABLES OUTPUT *** 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

DESIGI VARIABLE 

PAIEL,FU)URATE 
IILET-PRESSURE 
PIE-E-0-D-PAPELI 

CURRENT VALUE BOUNDS 

= 2.6835 11 [ 2.500 , 10.00 1 
= 4500 IN [ 1200. , 4500. I !  
= 1.0972 11 c0.2000 , 6.000 1 

*** COPSTRAIITS OUTPUT *** 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

COPSTRAIIT YAHE VALUE TYPE LIUIT STATUS 

PIISTRESS-PAMEL1 
HICROUIDTE,PAIELI 
GAS-P-OUT 

1.0000 SATISFIED 0.114363-01 < 
0.540963-02 > 0.50000E-02 ACTIVE 
-0.97#7#3+06 > 600.00 VIOLATED 

8.3.3 NORhIALIZATION OF DESIGN k’ARIABLES 

Design variables can be automatically normalized to the range 0 . .  . 1 with the normalize 
directive, which can only appear in the OPTIONS section of an OPTIMIZE statement. The 
normalize directive has the following syntax: 

normalize 
The following equation was used for normalization. A design variable, dv = x IN [ 

lower, upper 1, is mapped to a new value, dv = XI IN [0 , 1 ] where: 

I (5 - lower) 
x =  

(upper - lower)  

For normalization to work properly, the following restrictions must be met: 

1) 
2) 

The design variable’s lower bound MUST be less than the iipper bound. 

The design variable’s initial value, x, must be within the range: 

lower 5 x 5 upper. 

0 

3) 

Runtime error checking ensures the previous two conditions above are met. 

Lower and upper bounds MUST be given or a SOL error results. 
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8.3.4 ADS PARAMETER SETTINGS 

The ADS optimization software provides numerous parameters which can be set by 
the user to change the optimization process. These parameters can be set from within a 
SOL program, in the OPTIONS section of an OPTIMIZE statement. The parameter settling 
cornrnands have the following syntax: 

( id ) = ( expr ) 
where: 

is a legal SOL identifier, and must be one of the ADS parameter 
names. (See table 8-5 that follows for parameter names). 

( id ) 

( expr 1 is an arithmetic expression. See Chapter 4, section 4.1. 

0 One or more of these ADS parameter setting commands can appear between 
the word OPTIONS and the end of the OPTIMIZE USE section. 

The ( id ) identifies the ADS parameter, and the ( expr ) identifies the new 
value for that parameter. 

The following OPTIMIZE statement fragment illustrates the use of the OPTIONS section to 
change the values of the ALAMDZ and IPRINT ADS parameters: 
Example: 

OPTIMIZE min-var 
USE 
x = 1 IN C2, 81 

OPTIONS 
ALAMDZ = 0.002 
IPRINT = 1111 

END USE 
All ADS parameter information given originates in “ADS - A FORTRAN PROGRAM 

FOR AUTOMATED DESIGN SYNTHESIS - VERSION 1.10”, NASA Contractor Report 
177985, Grant NAG1-567, 1985 by G.N. Vanderplaats. 

The tables that follow list the possible ADS parameter names, the meaning of the pa- 
rameters, and the default settings of the parameters 

The ISTRAT, IOPT and IONED parameters control the strategy, optimizer, 
and one dimensional search settings respectively (Discussed in section 8.3.1 
of this chapter, tables 8-1, 8-2, and 8-3.) There should be no reason to use 
these three parameters since the SOL settings can be used to select strategy, 
optimizer, and one-dimensional search algorithms. 

0 

Table 8-5: Optimization Parameters: 

ALAMDZ Initial estimate of the Lagrange hlultipliers in tlie Augniented Lagrangc 
hlult iplier Met hod. 

AddditionaI steepest descent fraction in the method of centers. After moving 
to the center of the hypersphere, a steepest descent move is made equal to 
BETAMC times the radius of the hypersphere. 

Minimum constraint tolerance for nonlinear contraints. If a constraint is 
more positive than CTMIN, it is considered to be violated. 

BETAMC 

CTMIN 
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DAB ALP 

DABOBJ 

DABOBM 

DABSTR 

DELALP 

DELOB J 

DELOBM 

DELSTR 

DLOBJl 

DLOB 52 

DX 1 

DX2 

EPSPEN 

EXTRAP 

FDCH 

FDCHM 

GMULTZ 

ICNDIR 

Absolute convergence criteria with 
Golden Section Method. 

one-dimensional search when using the 

Maximum absolute change in the objective between two consecutive itera- 
tions to indicate convergence in optimization. 

Absolute convergence criterion for the optimization subproblem when using 
sequential minimization techniques. 

Same as DAROBJ, but used at  the strategy Ic:vcl. 

Relative convergence criteria for the one-dimensional search when using the 
Golden Section method. 

Maximum relative change in the objective between two consecutive iterations 
to indicate convergence in optimization. 

Relative convergence criterion for the optimization subproblem when using 
sequential minimization techniques. 

Same as DELOBJ, but used at the strategy level. 

Relative change in the objective function attempted on the first optimiza- 
tion iteration. Used to estimate initial move in the one-dimensional search. 
Updated as the optimization progresses. 

Absolute change in the objective function attempted on the first optimiza- 
tion iteration. Used to estimate initial move in the one-dimensional search. 
Updated as the optimization progresses. 

Maximum relative change in a design variable attempted on the first opti- 
mization iteration. Used to estimate the initial move in the one-dimensional 
search. Updated as the optimization progresses. 

Maximum absolute change in a design variable attempted on the first opti- 
mization iteration. Used to estimate the initial move in the one-dimensional 
search. Updated as the optimization progresses. 
Initial transition point for extended penalty function methods. Updated as 
the optimization progresses. 

haasimum multiplier on the one-dimensional search parameter, ALPHA in 
the one-dimensional search using polynomial interpolation/extrapolation. 

Relative finite difference step when calculating gradients. 

h4inimum absolute value of the finite difference step when calculating gradi- 
ents. This prevents too small a step when a design variahlc is near zero. 

Initial penalty parameter in Sequential Quadratic Programming. 

Restart parameter for conjugate direction and variable metric methods. Un- 
constrained minimization is restarted with a steepest descent direction every 
ICNDIR iterations. 
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. 

. 

IPRINT 

I SCAL 

ITMAX 

ITRMOP 

ITRMST 

JONED 

JTMAX 

PMULT 

PSAIZ 

RMULT 

RMVLMZ 

A four digit print control. IPRINT =IJKL where I,J,K and L have the follow- 
ing definitions. 

I ADS system print control: 
0 - No print. 
1 - Print initial and final information 
2 - Same as 1 plus parameter values and storage needs. 
3 - Same as 2 plus scaling information calculated by ADS. 

J Strategy print control. 
0 - No print. 
1 - Print initial and final optimization information. 
2 - Same as 1 plus OBJ and X at each iteration. 
3 - Same as 2 plus G at each iteration. 
4 - Same as 3 plus intermediate information. 
5 - Same as 4 plus gradients of contraints. 

0 - No print. 
1 - Print initial and final optimization information. 
2 - Same as 1 plus OBJ and X at each iteration. 
3 - Same as 2 plus constraints at each iteration. 
4 - Same as 3 plus intermediate optimization and one-d search infor- 
mation. 
5 - Same as 4 plus gradients of constraints. 

0 - No Print. 
1 - One-dimensional search debug information. 
2 - More of the same. 

K Optimizer print control. 

L One-dimensional search print control. 

Scaling parameter. If ISCAL=O, no scaling is done. If ISCAL=l, the design 
variables, objective and constraints are scaled automatically. 

hlaximum number of iterations allowed at the optimizer level. 

The number of consecutive iterations for which the absolute or relative con- 
vergence criteria must be met to indicate convergence at  the optimizer level. 
The number of consecutive iterations for which the absolute or relative con- 
vergence criteria must be met to indicate convergence a t  the strategy level. 
The one-dimensional search parameter (IONED) to be used in the Sequential 
Quadratic Programming method at the strategy level. 
hlaximum number of iterations allowed at the strategy level. 
Penalty multiplier for equality constraints when IOPT=4 or 5. 
hlove fraction to avoid constraint violations in Sequential Quadratic Pro- 
gramming. 

Penalty function multiplier for the exterior penalty function method. Must 
be greater than 1.0. 
Initial relative move limit. Used to set the move limits in squential lin- 
ear programming, method of inscribed hyperspheres and squential quadratic 
programming as a fraction of the value of a design variable. 
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RP 

RPMAX 

RPMULT 

RPPRIM 

RRPMIN 

SCFO 

SCLMIN 

STOL 

THETAZ 
XMULT 

ZRO 

Initial penalty parameter for the exterior penalty function method or the 
Augmented Lagrange Multiplier method. 
Maximum value of RP for the exterior penalty function method or the Aug- 
mented Lagrange Multiplier method. 

Multiplier on RP for consecutive iterations. 

Initial penalty parameter for extended interior penalty function methods. 

Minimum value of RPPRIM to indicate convergence. 

The user-supplied value of the scale factor for the objective function if the 
default or calculated value is to be over-ridden. 

Minimum numerical value of any scale factor allowed. 

Tolerance on the components of the caluculated search direction to indicate 
that the Kuhn-Tucker conditions are satisfied. 

Nominal value of the push-off factor in the Method of Feasible Directions. 

Multiplier on the move parameter, ALPHA, in the one-dimensional search 
to find bounds on the solution. 
Numerical estimate of zero on the computer. Usually the default value is 
adequate. 

The following table gives the default values for the switches listed above. 
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Table 8-6: Optimizer Switch default values. 
f0 = the value of the objective with internal design variables equal zero. 
NDV = the number of design variables. 

Switch Name Default Value 

ALAMDZ 
BETAMC 
CT 

CTMIN 
DABALP 
DABOB J 
DABOBM 
DABSTR 
DELALP 
DELOBM 
DELSTR 
DLOB J 1 
DLOB 5 2  

D X 1  
DX2 

EPSPEN 
EXTRAP 

FDCH 
GMULTZ 
ICNDIR 
IPRINT 
ISCAL 
ITMAX 

ITRMOP 
ITRMST 
JONED 
JTMAX 
PSAIZ 
PMULT 
RMULT 

RMVLMZ 
RP 

RPMAX 
RPMULT 
RPPRIM 
RRPMIN 

SCFO 
SCLMIN 

STOL 
THETAZ 
XMULT 

ZRO 

0.0 
0.0 
-0.03 (If IOPTz4, CT =-0.l) 
0.01 
0.0001 (If IONED=3 or 8, DABALP=0.001) 
ABS( fO) /  1000 
ABS (f0)/500 
ABS( fO)/ 1000 
0.005 (If IONED=3 or 8, DELALP=0.05) 
0.01 
0.0001 
0.1 
1000.0 
0.01 
0.02 
-0.05 
5.0 
0.01 
10.0 
ndv+l 
1000 
1 
40 
3 
2 
IONED 
20 
0.95 
10.0 
5.0 
0.2 (If ISTRAT=9, RR.IVLMZ=O.4) 
20.0 
l.OE+lO 
0.2 
100.0 
1 .OE- 10 
1 .o 
0.001 
0.001 
0.1 
2.6 18034 
0.00001 

For further information about the use of’ these optimization switches, see “ADS--A 
FORTRAN PROGRAM FOR AUTOMATED DESIGN SYNTHESIS - VERSION 1.10”, 
NASA Contractor report 177985, Grant NAG1-567, 1985 by G.N. Vanderplaats. 
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Chapter 9 
Subroutines 

Typically, a programming task can be decomposed into a ririniber of simpler subproblems. 
Solutions to the subproblems are then combined to solve the main problem. In SOL, each 
subproblem can be coded as a subroutine. 
A SOL subroutine consists of the following: 

1) A subroutine name; 

2) Zero or more independent parameters (input parameters); 

0 Independent parameters specify variables which will be used, but 
NOT ALTERED by the subroutine. 

3) Zero or more dependent parameters (output parameters); 
0 Dependent parameters specify variables which will be altered or 

initialized by the subroutine. 

4) 
5 )  

optional declarations to be used within the subroutine; 

A body of code that performs the subroutine’s action; 

0 In this way, a subroutine associates a name, with a set of parameters and a 
body of statements. 

To use a subroutine in a SOL program, do these three things: 

Declare the subroutine in the main program declaration section. This step 
is detailed in Chapter 5, section 5.2, and in section 9.1.1 of this chapter. 

Implement the subroutine in the subroutine implementation section of your 
SOL program. More details on subroutine implementation can be found in 
section 9.1.2 of this chapter. 

Use a subroutine call statement to invoke the subroutine. A detailed discus- 
sion of the subroutine call statement can be found in Chapter 6, section 6.7, 
and in section 9.1.3 of this chapter. 

1) 

2) 

3) 

This chapter is divided into three sections: 

9.1 - Discusses subroutine declaration, implementation and calls. 
9.2 - Discusses subroutine parameter passing conventions in detail. 

9.3 - Discusses the scope rules that apply to subroutines. 
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9.1 SOL SUBROUTINES: DECLARATION, IMPLEMENTATION, AND CALLS 

A SOL subroutine consists of three main elements: 

1) Declaration: 
0 The declaration that appears i n  the main progrii ln gives the sub- 

routine name, and describes input/output behavior in terms of 
dependent and independent parameters. The SOL compiler car’ 
then check subroutine calls in the main program or subr0utni.r. i i r -  
plementations, and compare these calls against the corresponding 
declarations to insure the same number and type of parameters 
are supplied. 

2) Call: 
0 The subroutine call allows you to invoke a subroutine, and sup- 

ply it with ACTUAL parameters. The subroutine returns values 
in the variables supplied as dependent parameters, by perform- 
ing its action using the values of variables passed as independent 
variables. The SOL compiler insures that the correct number and 
type of variables are supplied as parameters. At runtime, if the 
call matches the declaration, the code provided in the subrou- 
tine’s implementation will be executed. Once the subroutine call 
completes, the statement after the subroutine call is executed. 

3) Implementation: 
0 The subroutine implementation states the name of the subrou- 

tine, the dependent FORMAL parameters and the independent 
FORMAL parameters. The implementation MUST mirror the 
number, order, and types of parameters specified in the decla- 
ration section. The name of the subroutine must also be the 
same. The implementation supplies the code that will perform 
the subroutine’s action. The dependent variables must be al- 
tered or initialized in this code, but error-checking insures that 
the independent parameters cannot be altered. 

This section is further divided into the following subsections detailing the elements of sub- 
routines: 

Subroutine declaration . . . . . . . . . . . . . . . . . . .  9.1.1 
Subroutine implementation . . . . . . . . . . . . . . . . .  9.1.2 

Subroutine calls . . . . . . . . . . . . . . . . . . . . . .  9.1.3 

1) 

2) 
3) 
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9.1.1 SUBROUTINE DECLARATION 

All SOL subroutines must be declared in the declaration section of the main program. 

SUBROUTINE ( ( dependentlist ) ) = ( routine name ) ( ( independent list ) ) 
where: 

A subroutine declaration has the following syntax: 

( dependentlist ) is a parameter list consisting of one of the following: 

1) Nothing, an empty list 
2) A single identifier representing a parameter 
0 Assumed to be of type REAL. 
3) An identifier followed by a colon, and then a type name: 
REAL, INTEGER or LOGICAL. 
4) A list of 2)’s or 3)’s or some combination of both, sepa- 
rated by commas. 

( routine name ) is the name of the subroutine. 

0 It CANNOT be an extended identifier, see Chapter 2, 
section 2.4 or Chapter 7, section 7.1.2. 
0 You cannot use the subroutine name as the name of other 
SOL variables. 

( independent list ) is syntactically the same as a ( dependentlist ) 
This syntax is also outlined in Chapter 5 ,  section 5.2. 

9.1.2 SUBROUTINE IMPLEMENTATION 

A subroutine performs action. When you implement a subroutine, you do the following: 

0 

0 

Specify what action will be performed by the routine. 

Specify parameters will be used by the subroutine. In implementing a sub- 
routine, only FORMAL parameters are specified. 

Formal parameters are like variables in a formula; they are filled in later with specific 
values. When a subroutine is invoked by a subroutine call, the FORMAL input parameters 
are filled in with ACTUAL input parameters, and the subroutine’s action is performed. This 
topic is discussed in greater detail in section 9.2 of this chapter. All SOL subroutines must 
be implemented in the subroutine implementation section that follows the main program. 
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A subroutine implementation has the following syntax: 

SUBROUTINE ( ( dependent list ) ) = ( routine name ) ( ( independent list ) ) 
( optional declaration ) 
( subroutine body ) 

END ( name)  
where: 

( dependent list ) is a parameter list, as oul,liricvl sc>ction 9.1, I of tliis cliapt c r  
and represents t,he subroutine’s formal dependent pxaine- 
ters. 

.‘\ 

( routine name ) is a legal SOL identifier, and is the name of the subroutine. 
0 

follows. 
cannot be an extended identifier, see restriction 6) as 

( independent list ) is a parameter list, as outlined in section 9.1.1 of this chapter, 
and represents the subroutine’s formal independent parame- 
ters. 

( optional declaration ) is a SOL subroutine declaration section. The syntax for a 
declaration section is given in detail in chapter five. The 
subroutine declaration section shares an identical syntax with 
the main program declaration section with one exception: 
0 no subroutines may be declared in the declaration section 
of a subroutine implementation. 

( subroutine body ) is one or more SOL statements. Empty statements and blank 
lines can appear. 

The following restrictions apply to subroutine implementations: 

The subroutine ( routine name ) MUST be identical to the name declared in 
the main program declaration section. 

The ( dependent list ) MUST be identical, in terms of type, number and 
order, to the dependent parameters declared in the main program declaration 
section,. 

The ( independent list ) MUST be identical, in terms of type, number and or- 
d c ~ ,  to the independent parameters declared in the main program declaration 
section, . 
A subroutine CANNOT alter the values of its independent parameters or a 
SOL error will result. 

A subroutine hIUST initialize its depcndeiit paraiiieters or a SOL error will 
result. 
The subroutine ( routine name ) cannot be an extended identifier. See 
Chapter 2, section 2.4 or Chapter 7, section 7.1.2 for details on extended 
identifiers . 
The names of all formal parameters must be unique. 

1) 

2) 

3) 

4) 

5 ) 

6) 

7 )  
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A subroutine’s body can only access variables initialized within the subrou- 
tine, or passed as parameters. Section 9.3 of this chapter explores scope rule 
restrictions in greater detail. Parameters are discussed in section 9.2 of this 
chapter. 

8) 

When a subroutine is invoked by subroutine call: 

e Formal independent parameters are initialized with actual parameter values 
before the subroutine’s statements are executed. 
The statements in the subroutine implementation are executed. 

Formal dependent parameters are initialized by the subroutine statements. 

e 

e 
/- 

When the execution of the subroutine statements is completed: 

e the subroutine ends and the formal dependent parameters return their values 
to the actual dependent parameters. 

9.1.3 THE SUBROUTINE CALL 

A subroutine is executed as a result of a subroutine call. The call consists of 

e the subroutine name 
e the actual independent and dependent parameters. 

The syntax for a subroutine call is: 

( ( dependent parameters ) ) = ( routine name ) ( ( independent parameters ) ) 
For Example, the following are syntactically legal SOL subroutine calls: 

1)  
2) (a) = sub2(b, c) 

3) (> = empty-parameter-sub() 

(a, b, c )  = sub-one0 

e Chapter 6, section 6.7 offers a detailed discussion of the specific syntax of 
the subroutine call, detailing the syntax for the parameters and so on. 

Tf the subroutine declaration and  subroutine implementation have parame- 
ters, the same number and type of parameters M U S T  be supplied when the 
routine is called. 

If no parameters are specified in the declaration and implementation, then 
parameters CANNOT be supplied with the subroutine call. 
SOL does not have recursion: SOL subroutine’s should not call themselves. 
Furthermore, SOL subroutines should not call themselves indirectly, by call- 
ing another subroutine, or series of subroutines that eventually call the first 
routine. 

e 

The following restrictions apply to subroutine calls: 

1) 

2) 

3) 

The SOL compiler does NOT catch this error. 

Subroutines 9-5 



L 

, 

0 The parameters supplied when calling a subroutine are referred to as AC- 
TUAL parameters, to differentiate them from the FORMAL parameters 
specified by the subroutine declaration and implementation. 
The number and type of ACTUAL parameters MUST be the same as the 
number and type of FORMAL parameters (given in the subroutine declara- 
tion and implementation) or compile-time errors occur. 

0 

9.2 SUBROUTINE PARAMETERS 

The parameters specified by the subroutine implementation are callcd the FORMAT, 
parameters. The parameters given in a subroutine call arc called the ACTUAL parameters. 
This distinction is explained in the three sections that follow: 

9.2.1 - Discusses FORMAL parameters. 
9.2.2 - Discusses ACTUAL parameters 
9.2.3 - Discusses the association between FORMAL and ACTUAL parameters. 

9.3.1 FORMAL PARAMETERS 

A FORMAL parameter represents a local variable within the subroiltine. These FOR- 
MAL parameters representing local variables can be accessed by the code that performs the 
subroutine’s action, given in thc subroutine implementation. 

In this way, a FORMAL parameter acts like a variable in a formula. For example, 
f (x )  = 2s + 1. The variable s is the FORMAL parameter; it designates a “blank” which is 
filled in later with an actual value. The actual values for FORMAL parameters are supplied 
when the subroutine is called. 

There are two types of FORMAL parameters: independent and dependent, which are 
discussed in the two sections that follow. 

9.2.1.1 Formal Independent Parameters 

A FORMAL independent parameter represents a local variable within the subroutine 
implementation. An actual parameter is passed to the subroutine when it is called. The 
subroutine associates the VALUE of the actual parameter with the FORMAL independent 
parameter. The details on this association are supplied in section 9.2.3 of this chapter. 

The following restrictions apply to INDEPENDENT parameters: 

A subroutine cannot alter the value of a formal independent parameter. 
Thus, attempting to assign a value to a formal independent parameter is an 
error. 

A subroutine CAN access the value of a formal independelit parameter. 

FORhlAL INDEPENDENT parameters are INITIALIZED at the start of 
the subroutine implementation. (A  very important fact, as in the following 
examples. ) 

1) 

2) 
3) 

Subroutines 9-6 



The parameter names must be unique; no two parameters can have the same 
name. 

4) 

Thus, the rule to remember about formal independent parameters is: 

0 "Use but do not Alter." 

EX AMP LES : 

The following sample subroutines illustrate legal and illegal usage of FORMAL indepen- 
dent parameters: 
Example 1: 

SUBROUTIIE (a) = example-l(b, c) 

! a is  a formal dependent, b and c are  formal 
! independent parameters 

a = 12 * b + c 
c = 12 

EID exaraple-I 

a The line, c = 12, is ILLEGAL because it assigns a value to an formal inde- 
pendent parameter and a compilation error results. 

Example 2: 
SUBROUTIHE (a) = example_2(b, c) 

! a is  a formal dependent, b and c are formal 
! independent parameters 

a = 12 * b + c 
IF a . g t .  12 THEH 

END I F  
c = 12 

EID example-2 

0 The line, c = 12, is ILLEGAL. Recall that FORMAL independent parame- 
ters are initialized at the start of the subroutine implementation. Thus, c is 
initialized before the start of the IF statement, and the assignment within the 
I F  statement is NOT to a local variable, c ,  but to the formal independent 
parameter. See Chapter 6, section 6.3.1 for details of IF statement scope 
rules. 

Example 3: 
SUBROUTIIE (a) = example_3(b, c)  

! a is  a formal dependent, b and c are formal 
! independent paranieters 

a = 12 * b + c 
EID example-3 
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0 This example is perfectly legal, as neither of the formal independent param- 
eters have their values altered. 

9.2.1.2 Formal Dependent Parameters 

A formal dependent parameter represents a local variahle within thct subroutine. An 
actual parameter is associated with the formal dependent parameter when the subroutine 
is called. A value for the actual dependent parameter is returned by the formal dependent 
parameter when the subroutine ends. The details on this association are supplied in section 
9.2.3 of this chapter. 

The following restrictions apply to FORMAL DEPENDENT parameters: 

A subroutine MUST initialize all FORMAL dependent parameters. Failing 
to assign a value to a FORMAL dependent parameter is an error. 

A subroutine can access the value of a FORMAL dependent parameter, but 
only after it has been initialized within the subroutine. 
The formal parameter names must be unique. 

1) 

2) 

3) 
The subroutine directly accesses the actual parameter corresponding to the FORMAL 

dependent parameter. The FORMAL dependent parameters return the results of the sub- 
routine’s action; you MUST assign a new value to all FORMAL dependent parameters or a 
compile-time error will result. 

EXAMPLES: 

The following sample subroutines illustrate legal and illegal usage of formal dependent 
parameters. 

Example 1: 
SUBROUTINE (a, b) = example-l(c) 

! a and b are formal dependent, c is  a formal 
! independent parameter 

a = 10.24 * c 
bad-try = a + b 

END example-1 

0 

0 

The formal dependent parameter, b, is never initialized. This is an error. 

The line bad-try = a + b is ILLEGAL. Because b is not initialized, it cannot 
be used in an arithmetic expression. The SOL compiler issues a compile-time 
error message. 
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Example 2: 
SUBROUTIBE (a, b) = example_2(c) 

a and b are  formal dependent, c i s  a formal 
independent parameter 

a = l 2 + c  
IF a . g t .  12 THE# 

b = 12 
EHD IF 

END example-2 

0 The formal dependent parameter, b, is never initialized. The line, b= 12 
appears inside the THEN part of an IF statement, with no assignment to 
b in a corresponding ELSE part. Therefore, only a local variable, not the 
formal dependent parameter, is initialized. See Chapter 6, section 6.3.1 for 
more information on IF statement scope rules. 

Example 3: 
SUBROUTIlDE (a, b) = example_3(c) 

! a and b are formal dependent, c is  a formal 
! independent parameter 

b = 6  
a = 12 * b + c 

EHD example-3 

This example is LEGAL. Both formal dependent parameters are initialized. 

9.3.3 ACTUAL PARAMETERS 

ACTUAL parameters are named when a subroutine is called. Earlier, it was stated that 
a FORMAL parameter was analagous to a variable in a formula, e.g., f(s) = 22 + 1. 

0 The variable 5, is the FORMAL parameter which designates a “blank” to be 
filled in later. 

The actual value that fills in x is analgous to an actual parameter, e.g., f(2) 
and f(6) have 2 and 6 as actual independent parameters for x. 
The actual parameters for subroutines are given when the subroutine is called. 

0 

0 

The following restrictions apply to ACTUAL parameters: 

ACTUAL parameters MUST be variables; they CANNOT be subroutine 
calls, or literal values (e.g., . true .  or 6) For example, in our y = f (x )  
analogy, it is ILLEGAL to say f(2). Rather, we might say, q = 2, y = f(q).) 

1) 

Subroutines 9-9 



There is a one-to-one relationship between ACTUAL parameters and FOR- 
MAL parameters. The number and type of actual parameters MUST be 
identical to the number and type of FORMAL parameters or an error will 
result. The details of this relationship are discussed in section 9.2.3 of this 
chapter. 

If an actual parameter is to be both accessed and altered in a subroutine, it can be 

(x) = sub-l(x) 

There are two types of actual parameters, dependent and independent, which are dis- 

2) 

passed as both an independent and dependent parameter. For example: 

cussed in the sections that follow. 

9.2.2.1 Actual Independent Parameters 

An ACTUAL independent parameter is passed to a subroutine as input. For every 
ACTUAL independent parameter, there must be a corresponding FORMAL independent 
parameter. The associated FORMAL independent parameter takes the value of the AC- 
TU AL independent parameter . 

The value of actual INDEPENDENT parameters will not be altered by the subroutine. 
For example, the following demonstrates the use of actual independent parameters: 

y = 2  
(XI = sub,l(y) 
print y 

This subroutine will always print the real number “2”. A subroutine cannot not alter its 
actual independent parameters; in this case we know what will be printed with no knowledge 
of the subroutine’s action. 

9.2.2.2 Actual Dependent Parameters 

An ACTUAL dependent parameter is returned from a subroutine as output. For ev- 
ery ACTUAL dependent parameter, there must be a corresponding FORMAL dependent 
parameter. The associated formal dependent parameter corresponds directly to the actual 
dependent parameter. The value of the ACTUAL dependent parameter is assigned the value 
of the corresponding FORMAL dependent parameter when the subroutine ends. 

EXAMPLES : 

Assume that you have written an subroutine named square, with one dependent and one 
independent parameter. The subroutine returns the square of the independent parameter as 
the dependent parameter. A probable subroutine implementation follows: 

SUBROUTINE (y) = square (x) 

END square 
y = x * * 2  
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The following calls to subroutine square illustrate the principle of actual dependent 
parameters: 
Example 1: 

p = 3  
(9) = square(p) 
print q 

This will print the real number 9, which equals 32 

Example 2: 
v = 6  
(9) = square(v1 
print v 
print q 

This will print the real number 5 ,  which is v’s value, and the number 25 which equals 5 
* 5 ,  q’s value. 

Thus, the value of the actual dependent parameter will be changed by the subroutine. 
Of course, it is possible for a subroutine to assign the actual parameter to its original value 
. Section 9.2.3 which follows provides a discussion on the association between actual and 
formal parameters. 

9.2.3 THE RELATIONSHIP BETWEEN ACTUAL AND FORMAL PARAMETERS 

Actual parameters are named when a procedure is called, while formal parameters the 
names used by the subroutine implementation. Formal parameters are like “blanks” which 
are filled in by actual parameters provided at the call. SOL matches actual and formal 
parameters positionally (see example 2 which follows ). 

0 Formal Independent parameters are Copy-In: The value of the actual pa- 
rameter is copied into the formal independent parameter. 
Formal Dependent parameters are b y  Reference, the formal dependent pa- 
rameter references the same place in memory as the actual parameter. Thus, 
any changes in the formal parameter within the subroutine affect the actual 
parameter. However, SOL assumes that dependent parameters are unini- 
tialized, so that its error-checking assures that dependent parameters are 
assigned a value within the subroutine. 

The best way to describe the relationship between actual and formal parameters is 

0 

through an example. Consider the following subroutine implementation: 

Example 1: 
SUBROUTIBE (a ,  b) = an-example (c, d) 

print c 
print d 
a = c * d  
b = c + d  

EID an-example 

This subroutine has the formal dependent parameters, a and b, as well as formal inde- 
pendent parameters, c and d. 
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Example 2: 
v = 4  
w = 2  
(y,z) = an-example (w , v) 
print y 
print z 

In this call, y and z are named as actual dependent parameters, with w and v specified 
as actual independent parameters. Parameters are paired positionally: 

- y is associated with a 

- z is associated with b 

- w is associated with c 
- v is associated with d 

The independent parameters are paired as follows: 

- at the start of the subroutine, c = value of w, in other words c = 2. 
- at the start of the subroutine, d = value of v, in other words, d = 4. 

Wherever c and d are referenced in the subroutine the values 2 and 4. respectively, are 
used. 
The dependent parameters are paired as follows: 

- at  the end of the subroutine, y = value of a, in other words y = 8. (8 = c * 

- at the end of the subroutine, z = value of b, in other words z = 6. (6 = c + 

Thus, when the print statements are reached, 8 and 6 are the values of y and z respec- 

d = 2 * 4 )  

d = 2 + 4 )  

tively. 

9.3 T H E  SCOPE RULES FOR SUBROUTINES 

In the body of a subroutine implementation, only three types of variables can be accessed: 

1) ‘l‘tic’ subrout iric’s iridcpt.dcnt. formal paraincitcw 

The independent parameter’s values can only he accessed, it is 
ILLEGAL to alter them. 

The subroutine’s dependent formal parameters can be accessed once they 
have been initialized within the subroutine. 
Any variables initialized within the subroutine. 

0 

2) 

3) 

following: 
A subroutine CANNOT access any other variables, including but not limited to the 

0 

0 

variables initialized in the main program 

variables initialized in another subroutine 

Subroutines 9-12 



Chapter 10 
Predeclared Functions 

. 
SOL provides predeclared functions that perform commonly used mathematical compu- 

tat ions. 

0 

0 

Predeclared functions are invoked by a function reference. 

Predeclared functions use an actual argument as input, and rcturn an arith- 
metic value. 
Functions can be referenced when evaluating arithmetic expressions or as- 
signment statements. (See Chapter 4, section 4.1 for more information on 
ari t hemtic expressions). 

0 

SOL predeclared function references have the following syntax: 
( function name ) ( ( arith expr ) ) 

where: 

( function name ) is the name of the predeclared function. Any other identifiers are 
illegal, and will result in an error. 

( arith expr ) is a SOL arithmetic expression. See Chapter 4, section 4.1 for more 
information on arithmetic expressions. 

SOL predeclared function references must abide by the following restrictions: 

The ( arith expr ) must be of the proper type for the function referenced. 
The specific types needed by each function are detailed in the table that 
follows. 

Functions can ONLY be referenced on the righthand side of an assignment, 
statement, or, as part of an arithmetic expression. 

Predeclared functions CANNOT be referenced as a subroutine parameter. 
(E.g., subrout ine-1 (x , y , abs (x) ) , where “abs” is a predeclared function, 
is ILLEGAL). 

The following table details the purpose of each predeclared function, the number of 

1) 

2) 

3) 

arguments required, and the type of arguments required: 
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Table 10-1: Predeclared Functions 

Purpose of Function 

computes the absolute 
value of argument 

computes the arc 
Tangent of argument 

computes the cosine 
of argument 

computes, e raised to 
the argument, eargument 

computes the natural 
logarithm of argument 

truncates the value 
of the argument 

computes the sine 
of argument 

computes the square 
root of argument 

computes the tangent 
of argument 

Name 

ABS 

ATAN 

cos 

EXP 

LOG 

INT 

SIN 

SQRT 

TAN 

Number of 
Argument (s) 

~ ~~ 

Type of 
Argument (s) 

REAL, 
INTEGER 

REAL 

REAL 

REAL 

REAL 

REAL 

REAL 

REAL 

REAL 

Type of 
Result (s) 

REAL, 
INTEGER 

REAL 

REAL 

REAL 

REAL 

INTEGER 

REAL 

REAL 

REAL 

EXAMPLES: 

The following examples demonstrate function references in SOL: 
Example 1: 

R 

R is assigned the value 3.141 multiplied by the absolute value of the sum of negative 10.2 
3.141 * ABS(-10.2 + 4) 

and 4, (i.e. 6.2). 
Example 2: 

d = 12.00 
p = cos(d)**2 + s in(d)  ** 2 
p is assigned the value of the cosine of twelve, squared, plus the value of the square of 

the sine of twelve. (i.e. (cos d ) 2  + (sin d ) 2 )  
Example 3: 

d= EXP(2.0) 
d is assigned the value of e to the second power, or e squared. 
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Example 4: 
t = TAN(4) 
This is illegal, because TANGENT requires a REAL argument, and "4" is an Integer. 

Note that "4.0" would have been legal. This error will NOT be caught by the SOL compiler, 
but will be discovered by the FORTRAN compiler, when the output of the SOL compiler is 
compiled. 

. 
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Chapter 11 
Scope Rules 

c 

, 

SOL restricts how variables can be accessed to prevent uninitialized variables from being 
accessed. The block in which a variable is initialized determines the variable’s scope, where 
in the program the variable can be accessed. The rules which determine where a variable 
can be accessed are called scope rules. 

0 Each of the following is a block in SOL: 

1. the main program 

11. sub routines 

111. if/ t hen/else statements 
iv. assemblages and components 

.. 

... 

0 The chief characteristic of a block is that a variable can be initialized inside 
a block, and remain uninitialized outside it. 

For example, a variable can be initialized inside an ASSEMBLAGE 
but remain uninitialized in the SOL program outside the ASSEM- 
BLAGE statement. 

0 

0 

0 

Some blocks can be nested inside each other. 

A block is NOT the same as a multi-line statement. A multi-line statement 
simply extends over several lines. For example, the OPTIMIZE statement 
extends over several lines, but is NOT a block. 

The following definitions are useful for describing SOL’S variable access restrictions: 

Block: A place in a SOL program where a variable can be initialized, and remain unini- 
tialized in other parts of the program. 

Scope: Refers to where (in a SOL program) a variable can be accessed. All the places 
where a variable can be accessed is the “scope” of the variable. The rules which 
decide where the variable can be accessed are called “scope rules.” 

Local: Used to describe the relationship between a variable and a block. Variables which 
are initialized inside a block are called “local” to that block. 

This Chapter is divided into four sections: 

1) Scope rules for the main program . . . , . . . . . . . . . . . . 11.1 
2) Scope rules for subroutine implementations . . . . . . . . . . . 11.2 
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3) Scope rules for IF/THEN/ELSE statements . . . . . . . . . . . 11.3 

4) Scope rules for ASSEMBLAGES and COMPONENTS. . . . . . . 11.4 

I 11.1 MAIN PROGRAM SCOPE 

l’lie main program block has access to all idcntilicrs initializcd within it, aiitl 

can call subroutines declared in the declaration section. 
The main program can make variable type declarations in its declaration 
section. 

The main program cannot call itself. 

The main program block CANNOT access identifiers initialized inside of 
either: 

1. blocks that are nested inside the main program 
OR 

.. 
11. subroutines. 

0 Exception: variables initialized inside of ASSEMBLAGES or COM- 
PONENTs can be accessed with a special “extended identifier” no- 
tation. See Chapter 7, section 7.1.2 

No variables can have the same name as an ASSEMBLAGE, COMPONENT, sub- 
routine, the program name or other non-local variables. 

11.3 SUBROUTINE SCOPE 

A subroutine can access all identifiers initializcd within it, which includes its 
own parameters. 

A subroutine can make variable type declarations in its declaration section. 
SOL subroutines can call any other subroutine declared in a given SOL 
program. 
A sul)routiric cannot atcccss tlic main propaill,  o r  any iht,ific:rs iiiit,ializcyl 
i n  t,lic rnain program. 

A subroutine cannot declare local subroutines 

A subroutine cannot call itself. (Recusion is NOT permited.) The SOL 
compiler will not catch this error. 

1 )  

2) 
3) 

4 1 

5 )  

6) 
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7) A subroutine CANNOT access identifiers initialized inside of either: 
blocks that are nested inside the subroutine. 1. 

OR 
.. 
11. other subroutines. 

0 Exception: variables initialized inside of ASSEMBLAGES or COM- 
PONENTs within the subroutine can be accessed with a special 
“extended identifier” notation. See Chapter 7, section 7.1.2 

0 See Chapter 9 for further details on subroutines. Also, see Chapter 6, section 
6.7 for information on subroutine calls. 

A brief overview of subroutines is presented in Chapter 2, section 2.1.4 0 

11.3 IF/THEN/ELSE SCOPE 

All previously initialized identifiers can be both accessed and altered within 
an IF/THEN/ELSE statement. 

Assignments to a previously UNINITIALIZED variable within the THEN por- 
tion of an IF/THEN/ELSE statement will create and initialize a local variable, 
except under rule 4 which follows. 

Assignments to a previously UNINITIALIZED variable within the ELSE por- 
tion of an IF/THEN/ELSE statement will create and initialize a local variable, 
except under rule 4 which follows. 

An identifier which is initialized in both the THEN and the ELSE portions of 
an IF/THEN/ELSE statement is NOT local to the IF/THEN/ELSE statement. 
Instead, the variable is initialized in the block (i.e. the main program, a 
subroutine, an ASSEMBLAGE or COMPONENT, or even another IF/THEN/ELSE 
statement) that encloses the IF/THEN/ELSE. 

For instance, if an IF/THEN/ELSE statement appears in the main program, 
the main program encloses the IF/THEN/ELSE. But if an IF/THEN/ELSE state- 
ment appears INSIDE the THEN portion of a second IF/THEN/ELSE state- 
ment, the second IF/THEN/ELSE statement’s THEN block encloses the first 
IF/THEN/ELSE statement. 

Local variables of an IF/THEN/ELSE statement cannot be accessed outside 
the IF/THEN/ELSE block. 

1) 

2) 

3) 

4) 

0 

5) 

0 Rules 2, 3, 4, and 5 were designed to insure that variables are not left unini- 
tialized. Since variables are initialized the first time they get a value, a vari- 
able must be initialized in both the THEN and ELSE portion of IF/THEN/ELSE 
statements to be considered initialized in an outer block. 

Chapter 6, section 6.3 provides further details. 0 
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11.4 ASSEMBLAGE AND COMPONENT SCOPE 

1) AT MOST ONE ASSEMBLAGE statement can appear within the main program. 

AT MOST ONE ASSEMBLAGE statement can appear per subroutine imple- 
ment ation. 
COMPONENT statements can ONLY appear within an ASSEMBLAGE statement 
or within another COMPONENT statement. 

ASSEMBLAGES and COMPONENTS cannot appear within DO loops. 

ASSEMBLAGES and COMPONENTS cannot appear within IF/THEN/ELSE state- 
ments. 

2) 

3) 

4) 
5 )  

Summarization variables and summarization expression variables are AL- 
WAYS local variables. 

ASSEMBLAGES and COMPONENTS cannot initialize or alter another 
ASSEMBLAGE or COMPONENT’S summarization variables. 

ASSEMBLAGES and COMPONENTS can only access another ASSEM- 
BLAGES and COMPONENT’S summarization variables when: 1) ex- 
tended identifier notation is used and 2) the ASSEMBLAGE or COM- 
PONENT attempting access appears after the summarization vari- 
able is initialized. 

ASSEMBLAGES and COMPONENTS can ACCESS and ALTER all identifiers pre- 
viously declared in outer blocks. 

A warning message is issued when outer block variables are al- 
tered. 

Any identifier initialized within an ASSEMBLAGE or COMPONENT cannot be 
altered by outer blocks. 

However, the value of the variable can be accessed via the ex- 
tended identifier notation. 

Chapter 7 provides a more detailed discussion of both ASSEMBLAGE scope 
rules and extended identifier notation. 

6) 

0 

0 

7) 

0 

8) 

0 

0 
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Appendix A 
BNF Grammar for SOL 

. 

What follows is a BNF Backus-Naur Form) LALR(1) grammar for the Sizing and 

riage returns. In addition, (ID ) and (NO ) are terminal symbols representing SOL identifiers 
and numbers. This is the actual grammar used in the SOL compiler, so many of the grammar 
rules have been arranged to facilitate code emission. 

(PROGRAM) 
(PROGRAMSUB?) ..- 
(PROGRAMSUB?) ::= (PROGRAMSUB?)(PROGRAMSUB) 
(W ..- 

::= (;) (?-$ 
(;) ..- , 
(9 ::= (;); 

Opimization Language, SOL. f n the grammar, the many semi-colon symbols represent car- 

: := (?-;) (PRO G R A M 3  AI N) ( P ROG RA M S U  B?) (EO F) . .- 

..- 

..- . 

(PROGRAMHEAD) 
(PLAINPROGRAM-HEAD) ::= PROGRAM (IDPROGRAM); 
(P ROG RAM MAIN) 

(PROGRAMMAIN) 

(EN DJD) ::= END (OKJD) 
(IDPROGRAM) ::= (OKJD) 
(SUBHEAD) 
+ 
(PROGRAM S U  B) 
+ (STATEMENTLIST)(ENDJD) (;) 
(PHOGRAhISU B) 
( S  U B ROU TI N E) 
(IDS U B D EF) 

(FORMALDEPLIST?) ::= (FORMALDEPLIST) 
(FORMALDEPLIST) ::= (XJD) 
(FORMALDEPLIST) ::= (FORMALDEPLIST), (XJD) 

(FORMALJNDEPLIST?) ::= (FORMAL JNDEPLIST) 
(FORMALJNDEPLIST) ::= (XJD) 
(FORM ALJ N D E P LIST) 
(X-ID) ::= (OKJD) 

: := (PLAIN P R O  G RAM-H EAD) (? -;) 

: : = ( P ROG RAM -H EA D ) ( B L 0 C K) (STATEMENT LIST) 

: : = ( P LAIN -P ROG RA hi -H EA D) (STAT EM ENTLIST) 
+ (ENDJD)(;) 

+ (ENDJD)(;) 

::= (SUBROUTINE)( (FORMALDEPLIST?)) = (IDSUB-DEF)( 
(FO Rhl AL J N  DEP LIST?) ) 

: : = (SU B-HE AD) ( ;) (BLOCK S U  B) 

: : = (S U B-H E AD) (STAT Ehl EN TLI ST) ( EN DJD) ( ;) 
::= SUBROUTINE 
::= (OKJD) 
..- (FORMALDEPLIST?) ..- 

..- (FORMALJNDEPLIST?) ..- 

::= (FORMALJNDEPLIST), (XJD) 

::= (OKJD): REAL 
::= (OKJD): INTEGER 
::= (OKJD): LOGICAL 
::= DECLARE (MA1NDECLARE)END DECLARE ; 

(XJD) 
(X-ID) 
(XJD) 

(MAINDECLARE) ..- 
(BLOCK) 

(M AIN-DECLARE) ::= (MAIN-DECLARE) (DECLARESUB) 
..- 
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(MAINDECLARE) 
(MAINDECLARE) 
(MAINDECLARE) 
(DECLARESUB) 
+ 
(DECLARE-DEPLIST?) 
(DECLARE-DEPLIST?) 
(DECLARE-DEPLIST) 
(DECLARE-DEPLIST) 
( IDS U B D EC L) 
(DECLAREJNDEPLIST?) 
(DECLAREJNDEPLIST?) 
(DECLAREJNDEP-LIST) 
(DECLAREJNDEP-LIST) 
( WJD) 

(WJD) 

(;DECLARESUB) 
(BLOCKSUB) 
(SUBDECLARE) 
(SUBDECLARE) 
(SUBDECLARE) 
(SUBDECLARE) 
(TYPESPEC) 
(TYPESPEC) 
(TYPESPEC) 
(DECLARE-TYPE) 
(TYPEJDLIST) 
(TYPE JD-LIST) 
(FOWRANDECL) 
(STATEMENTLIST) 
(STATE M ENTJ, IST) 
(STATEM ENTLIS?’) 
(STAT E M EN TS ) 
(STATEMENTS) 
(STAT E h i  E N TS ) 
(COMPSTMTS) 
(STATE hl EN T) 
(STATEMENT) 
(STATEMENT) 
(STATEMENT) 
(STATE h l  EX T) 
(STATEMENT) 
(STATE hi E N T )  
(STATE hl ENT) 
(STAT E hl  E N T )  
(STATE hi ENT) 
(PRINTSTATEM ENT) 
(PRINTSTATEMENT) 
(PRINT) 
(OPTSIGN) 
(OPTSIGN) 
(OPTSIGN) 
( PRI NT-TAI L) 
(PRINT-TAIL) 

(WJD) 

(WJD) 

::= (hlAINDECLARE)(DECLARE-TYPE) 
::= (MAINDECLARE)(FORTRANDECL) 
::= (hiAINDECLARE); 
::= (SUBROUTINE)( (DECLAREDEPJIIST?)) = (IDSUB-DECL)( 

(DECLAREJNDEPLIST?)) (;-DECLARESUB) 
..- ..- 
::= (DECLAREDEPLIST) 
::= (WJD) 
::= (DECLAREDEPJX’I’), (WJD)  
::= (OKJD) 

: : = (DECLARE J N D E P LIST) 
::= (WJD) 
::= (DECLARE JNDEP-LIST) , (WJD) 
::= (OKJD) 
::= (OKJD): REAL 
::= (OKJD): INTEGER 
::= (OKJD): LOGICAL 

::= DECLARE (SUB-DECLARE)END DECLARE ; 

: := (SU B-D ECLARE) ; 
::= (SUB-DECLARE)(DECLARE-TYPE) 
::= (SUB-DECLARE)(FORTRANDECL) 
::= REAL 
::= INTEGER 
::= LOGICAL 
::= (TYPESPEC)(TYPE JD-LIST); 
::= (OKJD) 
::= (TYPEJD-LIST), (OKJD) 

. .- . .- 

.._ . ..- , 

..- ..- 

::= /* ; 
::= (;) 
: := ( ;) (STATE hi E NTS) 
: := (STATE hi EN‘r S) 
::= (STATEMENT) 
::= (STATEMENTS); 
::= (STATEMENTS) (STATEMENT) 
::= (STATEhfENTS) 
::= (ASSEMBLAGE) 
::= (COMPONENT) 
::= (DOSTATEMENT) 
::= (IFSTATEMENT) 
: := (CALL STATE hl E N T )  
::= (ASSIGNAlENT) 
: : = (0 PTI M STAT EM EN T) 
: : = (P RI N TSTAT E X I  E N T )  
: := (SU hi  hl  A RIZ ESTATE M E N T )  

::= (PRINT); 
::= (PRINT) (PRINTLIST); 
::= PRINT 

::= + 
::= (OPTSIGN) (NO) : (FORMAT) 
::= (OPTSIGN)(NO) 

::= /* 

. .- 

. .- ..- - 
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(PRINT-TAIL) 
(PRINT-TAIL) 
(PRINT-TAIL) 
(PRINTLIST) 
(PRINTLIST) 
(FORMAT) 
(FORMAT) 
(SUMMARIZESTATEMENT) 
(S U M M A FtJ Z ESTAT E-W 0 RD ) 
(SUMM ARIZESTATE-TAIL) 
(SUMMARIZESTATE-TAIL) 
(SUMMARIZESTATE-TAIL) 

(DOSTATEM ENT) 
(DOSTATEMENT) 
(LOGICALDOSTATEMENT) 
(LOGICALDOHEAD) 
(LOGICALDOHEAD) 
(LOGICALDOHEAD) 
(LOGICAL-ENDDO) 
(ENDDO-WHEN) 
(INDEXEDDOSTATEMENT) 
(EN DDO) 
(ENDDO) 
(DOHEAD) 
(DOH EAD) 
(DOHEAD) 
(DOBEGIN) 

(IFSTATEMENT) 
(ENDJF) 
(EN DJF) 
(I FSTATE M ENT) 
(IFJIEAD) 

(IF H EA D) 
(I FH E AD) 
(ELSEHEAD) 
(ELSEHEAD) 
(ELSEXEAD) 
(ASS E M B LAG E) 
(TABNO) 
(TABJO)  
(ASSEM-HEADER) 
+ 
(ASSEMJD) 
(SUMMARIZE-DECLARE) 
+ 
(SUMMARIZE-WORD) 
(SUMMARIZE-TAIL) 
(SUMMARIZE-EXPR) 
(SUMMARIZEXXPR) 
(SUMMARIZE-EXPR) 
(SUMMARIZESTATE) 
(SUMMARIZESTATE) 
(SUMMA RIZESTATE) 

* (SUMMAFUZESTATE-TAIL) 

(SJD) 

(IF) 

::= (OKJD) 
::= (OKJD): (FORMAT) 
::= (STRING) 
::= (PRINT-TAIL) 
::= (PRINTLIST), (PRINT-TAIL) 
::= (OKJD)(NO) 
::= (OKJD) 
: : = (S IJ M MA RJZ ESTATE-W 0 I t  D) (S I J M M A RIZ ESTA'I'F:-'l'A 1 I ,) ; 
::= SUMMARIZE 
::= (OKJD) 
: := (SUMMA RIZ ESTATE-TA I L) , (OK 1 D) 
::= (OKJD): (FORMAT) 
::= (SUMMARIZESTATE-TAIL), (OKlD) : (FORMAT) 
::= (INDEXEDDOSTATEMENT) 
::= (LOGICALDOSTATEMENT) 
::= (LOGICALDOJIEAD)(LOGICALENDDO); 
..- DO ; 
::= (LOGICALDOHEAD)(STATEMENT) 
::= (LOGICALDOHEAD); 
::= (ENDDO-WHEN)(LOGICAL-EXPRESSION) 
::= (ENDD0)WHEN 
::= (DOHEAD) (ENDDO); 
::= END DO 
::= ENDDO 
::= (DOBEGIN), (ARITHXXPR); 
::= (DOHEAD) (STATEMENT) 
::= (DOHEAD); 
::= DO (SJD)= (ARITHXXPR) 
::= (OKJD) 
: := (IF-H E AD) (EN DJF)  ; 
::= END IF 
::= ENDIF 
::= (IFHEAD) (ELSEJIEAD) (ENDJF); 
::= (IF) (LOGICALl2XPRESSION)THEN ; 
::= IF 
: : = (IF H EA D) (STATEM E N T )  
::= (IFHEAD); 
::= ELSE ; 
: := (E LS EJ1 EA D) (STAT EM ENT) 
::= (ELSE-HEAD); 
::= (ASSEhI-HEADER)(STATEMENT_LIST)END (OKJD); 
::= TAB (NO) 
::= (NO) 
::= ASSEMBLAGE (ASSEhI_ID)( (OPTSIGN)(TAB-NO), (STRING 

::= (OKlD) 
: : = (S U hi M A RIZ E-WO RD) (S U h l  MA RJZ E-TAIL) 

::= SUMhlARIZE (;) 
: := (SUM M ARIZ E-EXPR) (;) 
: := (S U M M A RIZ ESTATE) 
: := (SU hl MA RIZE-EXPR) , (SUMMA R IZESTATE) 
: : = (S U hl  hl  A RIZ E-EX P R) ( ; ) (S U M MA It1 Z ESTATE) 
::= (SUJD) 
::= (SUMMARIZEARITHASSIGN) 
: := (DECLARESWITCH) 

. .- 

( ;) (SUXIhl A RIZE-DECL ARE) 

(IT E RAT1 0 NS?) S U hl  hl A R I Z E 
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(DECLARESWITCII) 
(SU-ID) 
(SUMMARIZEARITH ASSIGN) 
(SUA RJD) 

(SARITHJ3XPR) 
(SA RITH-EXP R) 
(SARITH-EXPR) 
(SARITH-EXPR) 
(SARITHEXPR) 

(S-=) 

(S-+) 
@--I 
(S -TERM) 
(S -TERM) 
(S-TERM*) 
(S-TERM) 
(S-TERM /) 
(S P R I  M A RY) 
(SPRI  hi A RY) 
(S P RI M ARY H E A D) 
(SSOURCE) 
(SSOURCE) 
(S S O  U RCE) 
(S-( 3XPRESSIOK) 
(SSOU RCE) 
( S E U N C T )  
(SJUNCT) 
(SIUNCT) 
(SEUNCT) 
(S-FUNCT) 
(S-FUNCT) 
(S _F U N CI') 
(SEUNCT) 
(SJUNCT) 
(CO hl P 0 N EN T) 
+ 
(COhf P-WORD) 
(COM P-WORD) 
(ID-COhfP) 
( CO M P JT E RAT IO K S ?) 
(COMPJTERATIONS?) 
(IT E RATIONS?) 
(ITERATIONS?) 
(ITERATING) 
(CO M P S FVITCII ES) 
(COMPSWITCHES) 
+ 
(CONVERGE?) 
(CONVERGE?) 
(CONVERGE?) 
(COMPSW3D-1) 
(COMPSWJD) 
(C A L L STAT E hI EK T ) 
+ 
((-CALL) 
(IDSUB-CALL) 

::= SUMMARY-TITLE = (STRING) 
::= (OKJD) 
: := (SUA R J  D) (S-=) (SA RIT I1 _EX 1' It) 
::= (OKJD) 

::= (S-TERM) 
::= (SARITHXXPR)(S-+)(S-TERM) 
::= (SARITHXXPR)(S--) (S-TERM) 
::= (S-+)(%TERM) 
::= (S--)(S-TERhi) 
::= + 
::= (SPRIMARY) 
: : = ( S -T E RM * ) ( S PRIM A RY) 
::= (S-TERh[)* 
: := (S-TERM/) (SPRIM ARY) 
::= (%TERM)/ 
::= (SSOURCE) 
::= (SPRIMARYHEAD)(SSOURCE) 
::= (SPRIhlARY)** 
::= (NO) 
::= (OKJD) 
::= (S-(_EXPRESSION) (SARITHXXPR)) 

::= (SJUNCT)(SARITII-EXPR)) 
..- SIN ( 
::= ABS ( 
::= SQRT ( 

::= LOG ( 
::= TAN ( 
::= ATAN ( 
::= I N T  ( 
::= EXP ( 
: := (COM P-WO RD) (I D-COMP) ( (OPT SIGN) (TAB B O ) ,  (STRING 

::= COMPONENT 
::= COhiP 
::= (OKJD) 

::= (1TERATING)ITERATE (;) 
::= END 
::= (ITERATING) 

::= (COMPSWJD-l)= (ARITH-EXPR)(CONVERGE?) 
::= (COMPS\YITCIIES)(;)(COMPSWJD)= (ARITHXXPR) 

..- - ..- - 

. .- ..- - 

::= ( 

. .- 

::= cos ( 

(COhlPJTERATIOIVS?)(COMPSTMTS)END (OKJD); 

. .- ..- 

::= ITERATE ; ( c o a i P s w r c I I E s ) ;  E N D  

(CONVERGE?) 
..- ..- 
::= : (NO) 
::= : (NO)% 
::= (OKJD) 
::= (OKJD) 
::= ((-CALL)(ACTUAL-DEP-LIST?)) = (IDSUB-CALL) 

( (ACTUAL _IN DE P -LIST?)) ; 
::= ( 
::= (OKJD) 
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(ACTU ALDEPLIST?) 
(ACTUALDEPLIST?) 
(ACTUALDEPLIST) 
(ACTUALDEPLIST) 
(ACTUALJNDEP-LIST?) 
(ACTUALJNDEP-LIST?) 
(ACTUALJNDEP-LIST) 
(ACTU ALJNDEP-LIST) 

(ASSIGNMENT) 
(ASSIGNMENT) 

(YJD) 

(ZJD) 
(=) 
(OPTIMSTATEMENT) 
(0 PTIM ,H EA D) 
(OPTIMBODY) 
(OPTIMBODY) 
(OPTIMEODY) 
(USE-HEAD) 
(USESTATEMENT) 
(OPTIONS?) 
(OPTIONS?) 
(OPTIONSHEAD) 
(0 LIST) 
(OLIST) 
(OLIST) 
(OLIST) 
(O-LIST) 
(O-LIST) 
(ALGOSTMT) 
(ALGOSTMT) 
(ALGOSThlT) 
(STRATEGY) 
(STRATEGY) 
(STRATEGY) 
(STRATEGY) 
(STRATEGY) 
(STRATEGY) 
(STRATEGY) 
(STRATEGY) 
(STRATEGY) 
(STRATEGY) 
(OPTIMIZER) 
(OPTIMIZER) 
(OPTIMIZER) 
(OPTIMIZER) 
(OPTIMIZER) 
(OPTIMIZER) 
(SEARCH) 
(SEARCH) 
(SEARCH) 
(SEARCH) 
(OPTI M -P RJ N T) 
(OPTIM-PRJ NT) 
(OPTIM-VAL) 
(OPTIM-VAL) 

..- * .- 
: := (ACTUALDEP-LIST) 
::= (YJD) 
::= (ACTUALDEP-LIST), (YID) 

::= (ACTUALJNDEP-LIST) 
::= (YJD) 
::= (ACTUALJNDEP-LIST), (YJD) 
::= (OKJD) 
: := (Z I D) (=) (A RITH -EX P R) ; 
: := (ZJD) (=) (LOG IC A LXXP RESSION) ; 
::= (OKJD) 

::= (OPTIM-HEAD) (;) (OPTIM-BODY) EN D OPTIMIZE ; 
::= OPTIMIZE (OKJD) 
::= (USESTATEMENT) 
::= (OPTIM-BODY)(STATEMENT) 
::= (OPTIMBODY); 
::= USE (;) 
::= (USEHEAD)(USE-BODY)(OPTIONS?)END USE ; 

::= (OPTIONS-HEAD)(O-LIST) 
::= OPTIONS (;) 
::= (OPTIM-PRINT) 
::= (ALGOSTMT) 
::= (OPTIMSWITCHES) (;) 
::= (OLIST) (OPTIMJRJNT) 
::= (0-LIST)(ALGOSTMT) 
::= (OLIST) (OPTIMSWITCIIES) (;) 
::= STRATEGY = (STRATEGY)(;) 
::= OPTIMIZER = (OPTIMIZER)(;) 
::= SEARCH = (SEARCH)(;) 
::= NONE 
::= EXTERIOR PENALTY 
::= LINEAR PENALTY 
::= QUADRATIC PENALTY 
::= CUBIC PENALTY 
::= LAGRANGE MULTIPLIER 
::= SEQUENTIAL LINEAR 
::= INSCRIBED HYPERSPHERES 
::= SEQUENTIAL QUADRATIC 
::= SEQUENTIAL CONVEX 
::= NONE 
::= FLETCHER - REEVES 
::= DFP 
::= BFGS 
::= FEASIBLE DIRECTIONS 
::= MODIFIED FEASIBLE DIRECTIONS 
::= GOLDEN SECTION 
::= GOLDEN SECTION + INTERPOLATION 
::= FIND BOUNDS + INTERPOLATION 
::= INTERPOLATION/EXTRAPOLATlON 
::= PRINT NOTHING (;) 
: : = PRINT (OPTI M-VA L) (0 PT-PRT-TIM E?) (;) 
::= OBJECTIVE 
::= DESIGN VARIABLES 

..- ..- 

..- - ..- - 

. .- . .- 
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(OPTIM-VAL) 
(OPTIM-VAL) 
(OPTIM-VAL) 
(OPTIM-VAL) 
(0 PTI M-VAL) 
(OPTPRT-TI M E?) 
(OPT-PRT-TIM E?) 
( P RT-TIM E) 
(PRT-TIME) 
(TI h l  E) 
(TIME) 
(TIME) 
(TIME) 
(?OPT_EXPR) 
(?OPT_EXPR) 
(OPTIMSWITCHES) 
(OPTIMSWITCHES) 
(OPTIMSET) 
(OPTIMSET) 
(OPTIMSWJD) 
(USE-BODY) 
(USE-BODY) 
(USE-DESIGN-OR-CONSTRAINT) 

(DESLO) 
(DESLO) 

(DESHI) 
(DESHI) 
(USE-DESIGN-OR-CONSTRAINT) 

(FUZZYRELAT) 
(FUZZY R E L  AT) 
(FUZZY RELAT) 
(LOGICAL-EXPRESSION) 
(LOGICAL-EXPRESSION) 
(.OR.) 
(LOGICALJ'ACTO R) 
(LOGICAL-FACTOR) 
(.AND .) 
(LOGICALSECON DARY) 

(.NOT.) 
(LOGICAL-PRIhl ARY) 
(LOGICAL-PRIMARY) 
(LOGICAL-PRIhl ARY) 
(LOGICAL-PRIhl ARY) 
((_EXPRESSION) 

(RE L AT) 
(REL AT) 
(RE L AT) 
(RELAT) 
(RELAT) 
(RELAT) 
( ARITH-EX P R) 

(DJD) 

(DES) 

(C-ID) 

(LOGICALSECOXDARY) 

(LOG IC A L P  RI hl A RY) 

::= VIOLATED CONSTRAINTS 
::= ACTIVE CONSTRAINTS 
::= CONSTRAINTS 
::= TERMINATION CRITERIA 
::= EVERYTHING 

::= (PRT-TIME) 
::= (TIME) 
::= (PRT-TIME), (TIME) 
::= INITIALLY 
::= EVERY (?OPT_EXPR)ITERATION 
::= EVERY (?OPTEXPR)SEARCH STEP 
::= AT TERMINATION 

::= (ARITHEXPR) 
::= (OPTIMSET) 
::= (OPTIMSWITCHES)(OPTIhISET) 
::= NORMALIZE 
: : = (0 PTI M S  W JD)  = ( ARITII E X  PR) 
::= (OKJD) 
::= (USEDESIGN-OR-CONSTRAINT) 
::= (USE-BODY)(USE-DESIGN-OR-CONSTRAINT) 
::= (DID)= (DES)IN [ (DES-LO), (DES-HI)] (;) 
::= (OKJD) 

::= (ARITHXXPR) 
::= (ARITHXXPR) 

::= (ARITHXXPR) 
: : = (C _I D) (FUZZY R E  L AT) (A RITII -EX PR) (;) 
::= (OKJD) 
::= .EQ. 
::= .LT. 
::= .GT. 
::= (LOGICALPACTOR) 
::= (LOGICALXXPRESSION) (.OR.)(LOGICALYACTOR) 
::= .OR. 
::= (LOGICALSECONDARY) 
::= (LOGICALYACTOR) (.AND .) (LOGICALSECONDARY) 
::= .AND. 
::= (LOGICALPRIhIARY) 
::= (.NOT.)(LOGICAL-PRIhlARY) 
::= .NOT. 
::= (ARITIIEXPR) (RELAT) (ARITII-EXPR) 
::= .TRUE. 
::= .FALSE. 
::= (OKJD) 

::= ((_EXPRESSION) (LOGICA 1A:X PILESSION)) 
::= .EQ. 
::= .LT. 
::= .GT. 
::= .NE. 
::= .LE. 
::= .GE. 
::= (TERM) 

. .- . .- 

.._ ..- 

..- ..- 

. .- ..- 

::= ( 
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(ARITH-EXPR) 
( ARITH-EXPR) 
( ARITH-EXP R) 
( ARITH-EXP R) 
(+) 
(4 
(TERM) 
(TERM) 
(TERM*) 
(TERM) 

(PRIMARY) 
(PRIMARY) 
(PRIMARYHEAD) 
(SOU RCE) 
(SOURCE) 
(SOURCE) 
(SOU RCE) 
(FUNCT) 
(FUNCT) 
(FUNCT) 
(FUNCT) 
(FUNCT) 
(FUNCT) 
(FUNCT) 
(FUNCT) 

,d (FUNCT) 
(OKJD) 

(TERM/) 

::= (ARITH-EXPR) (+) (TERM) 
: := ( ARITH J3XP R) (-) (TERM) 
::= (+)(TERM) 
::= (-)(TERM) 
::= + 
::= (PRIMARY) 
: := (TERM *) (P RIM A RY) 
::= (TERM)* 
::= (TERM/)(PRIMARY) 
::= (TERM)/ 
::= (SOURCE) 
::= (PRIMARYHEAD)(SOURCE) 
::= (PRIMARY)** 
::= (NO) 
::= (OKJD) 
::= (( _EXPRESSION)(ARITH_EXPR)) 
: : = (F U NCT) ( ARITH -EX P R) ) 
::= SIN ( 

::= LOG ( 
::= TAN ( 
::= ATAN ( 
..- INT ( 
::= EXP ( 
::= SQRT ( 
::= ABS ( 
::= (ID) 

. .- ..- - 

::= cos ( 

. .- 
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Appendix B 
Compiler Messages 

The following are the error messages given by the SOL compiler. The messages are listed 
in alphabetical order. The type of message is described, along with the probable cause, and 
probable source of aid in this reference. 

ASSEMBLAGE ILLEGALLY DEFINED IN IF OR DO STATEMENT 
*** ERROR *** 

- An ASSEMBLAGE CANNOT appear inside I F  or DO statements. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.3(IF)  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 .4 (DO)  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1 

ASSEMBLAGE OR COhfIPONENT SCOPE ERROR 
*** FATAL ERROR *** 

- This is an internal compiler error which indicates the compiler software is 
not functioning properly. This error should never appear. 

CAREFUL, THIS MACRO IS BEING REDEFINED 
*** WARNING *** 

- You are using ?def or ?xdef with a macro that is already defined. This 

. . . . . . . . . . . . . . . . . . . . . . .  C. 1 (simple macros). 

. . . . . . . . . . . . . . . . . . . . .  C.2 (parametric macros). 

warning message appears in case the redefinition was accidental. 

C 0 bl P I L AT IO N AB 0 RTED . 
-** FATAL ERROR *** 

- ‘fhe compiler cannot recover from your errors, so the current compilation 
halts. 

COMPONEXT OR ASSEMBLAGE NOT ENDED CORRECTLY. 
*** ERROR *** 

- The same name must be used to start and end an ASSEMBLAGE or COMPONENT 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1 
statement . 
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COMPONENT OUTSIDE ASSEMBLAGE OR INSIDE DO OR IF STMT. 
*** ERROR *** 

- COMPONENT statements are illegal outside an ASSEMBLAGE statement or within 
an IF/THEN/ELSE or DO statement. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 . 3 ( I F )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 . 4 ( D O )  

. . . . . . . . . . . . . . . . . . . . .  7.1 (111) (ASSEMBLASE) 

CONSTRAINED OPTIMIZER WITH UNCONSTRAINED PROBLEM 
*** ERROR *** 

- Algorithms for constrained optinlization, such as Feasible  Directions 
or Modified Feasible  Directions,  CANNOT be used for unconstrained 
problems unless a strategy is used. You must either employ a strategy or 
switch optimization methods. 
. . . . . . . . . . . . . . . . . . . . . . . . .  8.3.1 (Table 8-2) 

DEPENDENT PARAMETER NOT INITIALIZED IN SUBROUTINE 
*** ERROR *** 

- Subroutine dependent parameters hIUST be initialized within the subroutine. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.1.2 
DESIGN VARIABLES UNBOUNDED DURING NORMALIZATION 
*** ERROR *** 

- Unbounded design variables cannot be normalized. Either eschew normal- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.3.3 
ization or add bounds to all design variables. 

DIGIT EXCEEDS BASE 
*** ERROR *** 

- This number is too large and beyond the compiler’s range. Typically occurs 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2.5 
when scientific notation is used with an overly large exponcwt. 

DUPLICATE ASSEhlBLACE DECLARED. 
*** ERROR *** 

tine. 
- No more than a single ASSEMBLAGE can appear per maill program or subrou- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1(11) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.4 

? 
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DUPLICATE IDENTIFIER DECLARED. 
*** ERROR *** 

- In general this error occurs whenever the same name is used to  refer to two 
or more objects, for example a variable and a subroutine. Some common 
possibilities are listed below. 

- You have 

. . . .  
- You have 

. . . .  

. . . .  
- You have 

. . . .  
- You have 

# 
. . . .  

- You have 

. . . .  
- You have 

gram. 

. . . .  

. . . .  

given a subroutine the same name as one of its arguments 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 
given two subroutine formal parameters the same names. 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 

. . . . . . . . . . . . . . . . . . . . . . . . . .  9.1.2 

given two subroutines the same names 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 
declared a variable to be of two types in the declaration section. 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 
given two COMPONENTS at  the same nesting level the same names. 

. . . . . . . . . . . . . . . . . . . . . . . .  .7.1(111). 
given a variable the same name as a subroutine or the main pro- 

. . . . . . . . . . . . . . . . . . . . . . . .  5.2(SUB) 

. . . . . . . . . . . . . . . . . . . . . . .  l l . l (MAIN)  

DUPLICATE OPTIMIZATION VARIABLE DECLARED. 
*** ERROR *** 

- Design variable and constraint names must be unique within a given OPTI- 
MIZE statement. 

. . . . . . . . . . . . . . . . . . . . . . .  8.1 (Design variables) 

. . . . . . . . . . . . . . . . . . . . . . . . .  S.2 (Constraints) 

EMITTED LINE EXCEEDS MAX CONTINUATIONS. 
*** ERROR *** 

- The FORTRAN emitted by the SOL compiler allows only 19 consecutive con- 
tinuation lines using the & symbol. Break the offending SOL statement into 
several shorter SOL statements to avoid this problem. 

EMPTY FILE PASSED TO INCLUDE MACRO 
*** WARNING *** 

- An empty file is being included, the rest of the line on which the ?include 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c.4.3 
macro appears is ignored 
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EXPECTING APPEND TEXT, A { SYMBOL SHOULD BE HERE 
*** ERROR *** 

- When using the ?append or ?xappend macros, the next non-blank character 
after the macro name should be a {, to indicate the start of the replacement 
text. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c.4.7 

FILE OVERFLOW - MACRO NESTING TOO DEEP 
*** ERROR *** 

- In doing macro expansion, files are used. If more than 10 macros are being 
expanded at  once (e.g. via ?xdef), this error occurs. The error results from 
macros calling other macros calling other macros ... Reduce the nesting level 
(complexity) of your macro calls. 

FORMAT OF THIS TYPE HAS NO DECIMAL POINT 
*** ERROR *** 

- You cannot use a decimal point with an I or L format 

. . . . . . . . . . . . . . . . . . . . . . . . .  6.2.2.3 and 6.2.2.4 

FORMAT OF THIS TYPE REQUIRES A DECIMAL POINT 
*** ERROR *** 

- You must use a decimal point with an E or F format 

. . . . . . . . . . . . . . . . . . . . . . . . .  6.2.2.1 and 6.2.2.2 

FORMAT TYPE ILLEGAL FOR INTEGER VARIABLES *** ERROR *** 
- You must use an I or L format when printing integer variables 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2.2 

FORMAT TYPE ILLEGAL FOR LOGICAL VARIABLES 
*** ERROR *** 

- You must use an L format when printing logical variables 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2.2 
FORMAT TYPE ILLEGAL FOR REAL VARIABLES 
*** ERROR *** 

- You cannot use an I or L format when printing real variables 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2.2 

FORTRAN BLOCK BEFORE hlAIN PROGRAM BEGINS 
r** ERROR *** 

- You have started a FORTRAN block before your SOL program has begun. 
You should move the FORTRAN block after your program’s header. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.8 
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FORTRAN BLOCK DELIMITERS MUST BE IN COLUMN ONE 
*** WARNING *** 

- You should put your block delimiters in column one to bc sure your FOR- 
T R A N  code will be spaced corrcctly in the compiler's output. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.8 
FORTRAN BLOCKS ILLEGAL IN A COMPONENT OR ASSEMBLAGE 
*** ERROR *** 

- FORTRAN blocks cannot appear inside of ASSEMBLAGES or COMPONENTS, be- 
cause errors could result in the FORTRAN code emitted. The variables emitted 
in the FORTRAN code often are emitted with aliases. The FORTRAN block 
will not be accessing the same variables, and errors can result, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.8 

~ 

FURTHER IKPUT IGNORED. 
*** EHItOft *** I 

I 
- Self-explanatory; the compiler stops parsing the present line. This message 

often appears with other error messages. 

GRAhlMAR DOES NOT CONTAIN A N  UNCONDITIONAL REDUCTION. 
*** FATAL ERROR *** 

I 
- This is an internal compiler error that indicates the compiler software is not 

functioning properly. It should never appear. 

ID MUST BE REAL, INTEGER OR LOGICAL FOR FORMAT 
*** ERROR *** 

- You have probably tried to print a subroutine name, ASSEMBLAGE or COMPO- 
NENT name or some other non-variable. Only variables can be printed. 

IDENTIFIERS MUST BE LESS T H A N  28 CHARACTERS LONG 
*** WARNING *** 

- You have used an identifier that is longer than 27 characters. 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2.4 

ILLEGAL ARGUMENT; REAL TYPE ARGUMENT IS REQUIREII 
*r* ERROR *** 

- INTEGER or LOGICAL variables and/or expressions CANNOT be passed to 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  Chapterlo.  

~ functions which require a REAL argument. 

ILL E G .4 L C I I A R AC T E R 
*** ERROR *** 

- An illegal character which the SOL compiler does not recognize appears in 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2 
your program. 
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ILLEGAL INITIALIZATION OF AN INDEPENDENT PARAMETER 
*** ERROR *** 

- Independent subroutine parameters CANNOT be assigned a value; only de- 
pendent parameters can be assigned values. 

. . . . . . . . . . . . . . . . . . . . . .  9.1.2, 9.2.1.1, and 9.2.3 
ILLEGAL ITERATION: VARIABLE ALREADY INITIALIZED 
*** ERROR *** 

- ASSEMBLAGE or COMPONENT iteration variables CANNOT be initialized d o i r ,  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.3 
the ITERATION section of the ASSEMBLAGE or COMPONENT. 

ILLEGAL LIST CALL, ON AND OFF ARE THE ONLY SETTINGS 
*** ERROR *** 

- The ?list macro with an has only two legal settings: ON arid OFF. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2.4.4 
ILLEGAL MACRO USE: UNDEFINED MACRO DISCOVERED 
*** ERROR *** 

- Macros MUST be defined before they are used. 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  AppendixC 

ILLEGAL NAME RESULTS FROM CALL TO COMPONENT MACRO 
*** ERROR *** 

- Expansion of the ?componentname macro created an overlong line. Try to 
break the original line up with the continuation symbol to avoid overlong 
expansion. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.4.6 

ILLEGAL OPTIMIZER AND STRATEGY COMBINATION 
*** ERROR *** 

- Not all combinations of optimizer and strategy are legal. 

. . . . . . . . . . . . . . . . . . . . . . . . .  8.3.1 (Table 8-4) 
ILLEGAL SYNTAX IN FORMAT STATEMENT 
*** ERROR *** 

- An illegal character appears within the format statement 
- The field width of your format statement is zero or less. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2.2 

ILLEGAL USE OF AN EXTENDED IDENTIFIER 
*** ERROR *** 

- Extended identifiers CANNOT be used as subroutine names, ASSEMBLAGE 
or COMPONENT names, objective variable names for optimization, or in other 
ways; extended identifiers can only be used to refer to variables initialized 
inside of ASSEMBLAGES or COMPONENTS. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1.2 
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ILLEGAL USE OF AN OPTIMIZATION DESIGN VARIABLE 
*** ERROR *** 

- Design variable cannot be used to define other design variables in the USE 
section of an OPTIMIZE statement, nor can values be assigned to a design 
variable with assignment statement or subroutine call. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.1 

ILLEGAL USE OF PREVIOUSLY INITIALIZED LOOP VARIABLE 
*** ERROR *** 

- The control variable of a DO loop cannot be altered within the loop. For 
example, the control variable of a nested DO loop cannot he the same as an 
outer loop’s cont,rol variable. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.4.1 

ILLEGAL USE OF SUMMARIZATION EXPRESSION VARIABLE 
*** ERROR *** 

- Expression summarization variables are ONLY implicitly initialized at the 
end of an ASSEMBLAGE or COMPONENT; it is ILLEGAL to assign values to an 
expression summarization variable. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .7 .1 .1 .1  

ILLEGAL USE OF ZERO LENGTH STRING 
*** ERROR T**  

- A null string CANNOT be used in specifying a COMPONENT or ASSEMBLAGE’S 
summarize print information. Use a blank string ( ’  ’) instead. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2.3.3 

INCORRECT PARSER TABLES. 
*** ERROR *** 

I - This is an internal compiler error indicating that the SOL compiler is not 
working properly. It should never appear. 

INPUT LINE EXCEEDS 120 CHARS. 
*** ERROR *** 

- SOL lines can be at most 120 characters long. If the line contains macros, 
perhaps the trouble is due to macro expansion. Use the continuation symbol, 
&, to break the line into smaller pieces. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.4 

INVALID DATA TYPE FOR USE. 
*** ERROR *** 

- A subroutine name, ASSEMBLAGE or COMPONENT itanic, or soriic other type of 
identifier appears where a variable M U S T  appear. 

INVALID SYNTAX FOR REAL NUMBER. 
*** ERROR *** 

- Check the syntax of a REAL number. 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2.5and3.3 
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IT IS ILLEGAL TO APPEND TO AN UNDEFINED MACRO *** ERROR *** 
- A macro must already be defined before the ?append and ?xappend macros 

cam be used to add additional text. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c.4.7 
ITERATION VARIABLE HAS NOT BEEN INITIALIZED 
*** ERROR *** 

- ASSEMBLAGE and COMPONENT iteration variables MUST be initialized w i t h ,  
the iterating ASSEMBLAGE or COMPONENT. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.3 
LAST ERROR ABORTED COMPILER. 
*** FATAL ERROR *** 

- Self-explanatory; the compiler is so wounded by the input program, it cannot 
go on. 

MACRO ARGUMENTS DO NOT MATCH DEFINITION 
*** ERROR *** 

- the called macro’s arguments do not match its 
macro definition and call to see if they match. 

. . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  

defined pattern. Check the 

. . . . . . . . . .  c . 2  

. . . . . . . . . .  c . 3  

MACRO PARAMETERS MUST BE SEQUENTIAL 
*** ERROR *** 

- Macro parameters must be defined in a sequential order, i.e., #2 appears 
before #3. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c.2 

MISSING (gives symbol inserted) INSERTED BEFORE SYMBOL. 
*** ERROR *** 

- The compiler could not parse the SOL code input, but made the change 
above and will try and go on. 

MISSPELLED (gives symbol) CORRECTED. 
*** ERROR *** 

- The compiler could not parse the SOL code input, but guessed that a word 
was just misspelled, corrected it and will try to go on. 

NO COMPONENTS HAVE ENDED 
*** ERROR *** 

- A SUMMARIZE print statement CANNOT appear until a t  least one COMPONENT 

6.2.3.1 

or an ASSEMBLAGE has ended. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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NO DESIGN VARIABLES DEFINED IN OPTIMIZATION 
*** ERROR *** I 

- At least ONE design variable MUST appear within every OPTIMIZE state- 
ment. 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8.1 

NO FILE NAME GIVEN. 
*** FATAL ERROR *** 

- No SOL code source file has been given, so there is nothing to compile 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 

NO RULE CAN BE APPLIED IN PARSER. 
*** ERROR *** 

- Internal compiler error indicating that the compiler software is not function- 
ing properly. This error should never appear. 

NO SUMMARIZATION VARIABLES HAVE BEEN DECLARED 
*** ERROR *** 

- At least one summarization variable MUST be declared in an ASSEMBLAGE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1.1 

st a tement . 

NUMBER REPRESENTATION GREATER T H A N  27 CHARACTERS 
*** ERROR *** 

I 

- Numbers CANNOT be longer than 27 characters. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2.5 
OPT I M I2 AT IO N VA RIA B L E IS U N I N IT I A L I Z E D 
*** ERROR *** 

- The objective function or a constraint variablc for an OPTIMIZE statement 
has been left uninitialized. These variables must be initialized within the 
OPTIMIZE statement (i.e. by assignment statement or subroutine call.) 

. . . . . . . . . . . . . . . . . . . . . . . . .  Chapter 8 and 8.2 

OUT OF INFO \VHILE COLLECTING MACRO 
*** ERROR * x *  

- The SOL program ended before the last macro call was completed. 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  AppendixC 

OUTER SCOPE VARIABLE ALTERED IN ASSEMBLAGE OR COMPONENT 
*** WARNING *** 

- ASSEMBLAGES and COMPONENTS can alter non-local variables; this warning flags 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.2 

the alteration in case it was accidental. 
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OVERLONG LINE IN MACRO DEFINITION 
*** ERROR *** 

- Delimited macro’s CANNOT have a pattern more than 120 characters long. 
The continuation symbol CANNOT be used here and a smaller pattern must 
be used. 

. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c.3 
0VER.LONG LINE IN MACRO EXPANSION 
*** ERROR *** 

- A line in your macro call expands beyond line size, 120, when the parameters 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c.2 
are substituted. Shorten the line by altering the macro definition. 

PROGRAM NOT ENDED CORRECTLY. 
*** ERROR *** 

- The name at the start of a SOL program MUST be the same as the name 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1.5 

used to end it. 

REAL NUPvlBER EXCEEDS MACHINE RANGE. 
*** ERROR *** 

- SOL numbers are limited in range. 
. . . . . . . . . . . . . . . . . . . . . . . . .  2.2.5, 3.1 and 3.3 

SEVERE SYNTAX ERROR 
*** ERROR *** 

- An illegal character or word appears in your SOL program 

SEVERE SYNTAX ERROR CAUSED PARSER FAILURE. 
*** FATAL ERROR *** 

- The compiler cannot recover from the previous syntactic errors, and will stop 
execution. Fix the errors found and recompile. 

SOURCE PROGRAhl FILE IS EMPTY. 
*** FATAL ERROR *** 

- An empty file; there is no program to compile so execution halts. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 

STRING EXCEEDS ALLOWABLE STRING LENGTH 
*** ERROR *** 

- Strings CANNOT be longer than 61 characters. 

SUBROUTINE ARGUMENT DEPENDENCY NOT MATCH DECLARATION 
*** ERROR *** 

- The number of independent or dependent parameters in the subroutine im- 
plementation does not match the subroutine’s declaration. The total num- 
ber of parameters is correct, but there are too many or too few depen- 
dent/independent parameters 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.1.2 
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SUBROUTINE ARGUMENT NUMBER NOT MATCH DECLARATION 
*** ERROR *** 

- The number of parameters in the subroutine implementation does not match 
the subroutine’s declaration. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.1.2 

SUBROUTINE ARGUMENT TYPES NOT MATCH DECLARATION 
*** ERROR *** 

- The argument types in your subroutine implementation do not match the 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.1.2 

types of arguments given in the subroutine’s declaration. 

SUBROUTINE DEFINED TWICE IN SOURCE 
*** ERROR *** 

- You have two implementations of the same subroutiiic; eliminate one. 

SUBROUTINE NAME NOT DECLARED 
*** ERROR *** 

- The implemented subroutine was not declared. 

. . . . . . . . . . . . . . . . . . . . . . . . . .  9.1.1 and9.1.2 

SUBROUTINE UNDEFINED IN SOURCE 
*** ERROR *** 

- The declared subroutine is never implemented. 
. . . . . . . . . . . . . . . . . . . . . . . . . .  9.1.1 and9.1.2 

I SUMMARIZATION VARIABLE DECLARED AS A NON-REAL TYPE 
*** ERROR *** 

- Summarization variables and summarization expression variables MUST be 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .7.1.1.1 

SUMMARIZATION VARIABLES INITIALIZED BEFORE ASSEMBLAGE; LOCAL 

r** WARNIKG *** 

REAL; change the DECLARE section or rename your summarization variable. 

COPY MADE 

- The summarization variable declared has already been intialized; a local copy 

. . . . . . . . . . . . . . . . . . . . . . . . . .  7.1.1.1 and7.2 
S U h IM A RIZ AT IO N VARIABLES I NI T I .A L I Z E D \VH E N SUB - C 0 M P 0 N ENTS EXIST 

will be used within the ASSEMBLAGE. 

*** ERROR *Ir* 

- The summarization variables of an ASSEMBLAGE or COMPONENT which contain 
nested COMPONENTS CANNOT be initialized; such variables are initialized 
automatically. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .7.1.1.1 
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SUMMARIZATION VARIABLES UNINITIALIZED 
*** ERROR *** 

- The summarization variables of an ASSEMBLAGE or COMPONENT which DO 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .7.1.1.1 
NOT contain nested COMPONENTS MUST be initialized. 

SYNTAX DEMANDS A ? SYMBOL HERE 
*** ERROR *** 

- The compiler expects a macro name to appear, but you have not supplied a 
leading macro symbol,?. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c.1 

THE INCLUDE MACRO MUST APPEAR ALONE ON A LINE 
*** ERROR *** 

- Other non-blank characters CANNOT appear on the same line as the ?in- 
clude macro. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c.4.3 

THE INPUT FILE NAME IS TOO LONG. 
*** ERROR *** 

- File names cannot be longer than 120 characters. 

THIS IS AN ILLEGAL OPTIMIZATION SWITCH 
*** ERROR *** 

- This is not a valid optimizer option setting. 

. . . . . . . . . . . . . . . . . . . . . .  8.3 (8.3.3 and 8.3.4 esp.) 
TOO MANY ITEMS IN PRINT LIST, ONLY 20 ALLOWED 
*** ERROR *** 

- At most 20 items can be printed with a single PRINT or SUMMARIZE print 

. . . . . . . . . . . . . . . . . . . . . . . . . .  6.2.1 and6.2.3 
statement . 

UNCONSTRAINED OPTIMIZER WITH A CONSTRAINED PROBLEM 
*** ERROR *** 

- No constraints can be used with this optimization algorithm unless a strategy 
option is chosen. You must either employ a strategy or switch optimization 
methods. 
. . . . . . . . . . . . . . . . . . . . . . . . .  8.3.1 (Table 8-4) 

UNEXPECTED SYMBOL DELETED. 
*** ERROR *** 

- The compiler cannot parse your program, and has deleted the above symbol 
and will try and go on. 

UNEXPECTED SYMBOL REPLACED BY (gives replacement symbol) 
*** ERROR *** 

- The compiler cannot parse your program, and has replaced an unexpected 
character or word with the above, and will try and go on 
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UNIMPLEMENTED SUBROUTINE(S) 
*** ERROR *** 

- The subroutines listed were declared BUT NOT implemented. Either alter 
the DECLARE section or implement the subroutines. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.1.2 

UNINITIALIZED IDENTIFIER. 
*** ERROR *** 

- Variables cannot be accessed until they are initialized 
VALUE EXCEEDS MAXIMUM INTEGER. 
*** ERROR *** 

- INTEGERS have a limited range. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 

VARIABLE NOT DECLARED AS A SUMMARIZATION VARIABLE 
*** ERROR *** 

- SUMMARIZE print statements are legal only with summarization variables. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2.3 
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Appendix C 
~ 

L 

1 

SOL Macros - Advanced Material 

Macros are an advanced feature of SOL and are not recommended for the novice. An 
experienced SOL user can benefit from the use of macros, especially when developing large 
SOL programs. 

Macros are like abbreviations. A single character, or short word, can represent longer 
sequences of text that are used repeatedly. The simplest macro consists of a macro name and 
a body of replacement text. Defining a macro involves associating a name with replacement 
text. When a macro name appears in a SOL program, the replacement text is substituted for 
the name a t  COMPILETIME. This act of replacement is known as a macro call or macro 
expansion. Macros allow text substitution in a SOL program. 

This may seem complex, but a simple example will clarify the concept. Suppose we 
define a macro named ?pi  (all macros begin with the ? symbol), with the replacement text 
“3.141592654,” a t  the start of a SOL program. Then, whenever the name ?pi appeared in 
my SOL program, it would be replaced with 3.141592654. For instance, x = 2 * ?pi * r 
would become, x = 2 * 3.141592654 * r 

Naturally, macro definitions are not generally used just to speed up the typing of one 
isolated formula. The real advantage lies in using a macro abbreviation for clusters of code 
or text that are used dozens of times throughout a SOL program. 

Abbreviations like ?pi are useful in many applications, and they are powerful. One 
little macro can represent an enormous amount of material. The judicious use of macros can 
reduce or eliminate the tedium of retyping repetitive portions of identical or similar code. 
Further, a macro can be made an abbreviation for a complex tangle of code. By giving 
the macro a carefully selected name which reflects the function of the code, the macro can 
be made more understandable than the text that will be substituted. In this way, a tidy, 
descriptive macro call can appear in the SOL program, and the messy code is hidden away 
as replacement text. 

It is important to note that the text replacement occurs at COMPILE-TIME, 
and is not a dynamic run-time event. 

0 

SOL offers four different kinds of macros: 

1) Simple macros, like the ?pi  example above . . . . . . . . . . . .  C.l 

2) Parametric macros, which are macros with parameters . . . . . .  C.2 
Delimited macros . . . . . . . . . . . . . . . . . . . . . . .  C.3 

4) Predefined macros, provided by the SOL compiler . . . . . . . .  C.4 
3) 
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C.l SIMPLE MACROS , Simple macros consist in a macro name and a body of replacement text. Using macros 
involves two elements: 

1) 
2) Calling (expanding) the macro 

Defining the macro and its replacement text 

In order to use a macro, it MUST be defined first. SOL provides the means to  define 
macros by using a predefined macro, ?def (All macros begin with a ? symbol). A simple 
macro definition has the following syntax: 

?def ( macroaame ) { ( replacement text ) } 
where: 

( macro name ) is the name of the macro. It must consist of a ? symbol, fol- 
lowed by either a legal SOL identifier or a single non-alphabetic 
character. 
0 Extended Identifiers are not legal macro names. 

( replacement text ) is the body of replacement text. Any characters can appear in 
the replacement text. 
0 However, additional restrictions apply to the use of open brace, 
{, and close brace, }, within the replacement text. See section 
C.1.2 of this appendix for details. 

There are a number of stipulations for proper use of SOL macros. These stipulations fall 
naturally into two categories: 

1) General stipulations for simple macro definitions . . . . . . . . C.1.1 
2) Stipulations which govern the body of replacement text . . . . . C.1.2 

I c. 1.1 GENERAL RULES FOR SIh€PI,E MACRO DEFINITIONS 

~ 

The following restrictions apply to simple macro definitions: 
I 

No spaces can appear between the ? symbol and the word, def or between 
the ? symbol and the first character of the macro name. 

Zero or more spaces, tabs and/or carriage returns are allowed between the 
( macro name ) and the open bracket, {, that signifies the start of the macro’s 
replacement text. 

Macro definitions can appear anywhere a blank line can appear in a SOL 
program, including before the main program header (e.g., PROGRAM t e s t )  
appears. 

More than one macro definition can appear per line, although one per line is 
recommended for readability’s sake. 

1) 

2) 

3) 

4) 
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5 )  A macro must be defined before it is called. 

c 

Macros CAN be redefined by subsequent macro definitions. The most recent 
macro definition holds. 

6 )  

0 SOL gives a warning message announcing that a macro is being 
redefined, just in case the redefinition is a.c<:idcnt,al. 

To illustrate these points, consider thc following macro dcfiiiitiori in  tlw coiltext of a SOT, 
program (annotatcd with line numbers to facilitate the discussion): 

A01 PROGRAH t ea t  
A02 ?def ?incr-x 
A03 
A04 x = 0 
A05 DO i = 1, 10 
A06 ?incr-x 
A07 print x 
A08 ? incr-x 
A09 print x 
A10 ElJDDO 
A l l  
A12 EHD Best 

(x = x + 3.141592664) 

The macro definition appears on line A02. It associates the macro name, ? incrr ,  with 
a body of replacement text, x = x + 3.141592654. Wherever the name ? i n c r s  is found, 
it will be replaced by the SOL compiler with the replacement text, x = x + 3.141592654. 
Thus, lines A05 - A10, are seen by the SOL compiler EXACTLY AS IF the following was 
typed: 

BO5 DO i = 1, 10 
BO6 X = X + 3.141592654 
BO7 print x 
BO8 X = X + 3.141592654 
BO9 print x 
B l O  ElJD DO 

Notice that the macro names have all been replaced by the replacement text. Calls to 
user defined macros (e.g., A06 or A08) do not appear in the SOL compiler LISTING file 
(See Chapter 1, section 1.4). Rather, the expanded text appears instead. 
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As a further example, consider the following sample program: 
A0 1 
A02 
A03 
A04 
A06 
A 0 6  
A07 
A08 
A09 
A10 
A l l  
A12 
A 1 3  
A14 
A16 
A16 
A17 

?def ?prt,incr,x 
(pr int  x 
x = x t 2 )  
! some macro def ini t ions before the main program 
! beginn. Notice t h a t  t h e  replacement t e x t  s t re tches  
! over two l i n e s  
?def ?pythag,x 
( x = sq r t ( ( s ide1  ** 2) t (side2 ** 2)) 
?prt,incr,x 1 
Program x-printer 
1 = 12 
?prt,incr,x 
s ide1 = 3 
side2 = 4 
?pythag-x 
p r i n t  x 

end x-printer 

In this example, the macros on lines A12 through A16 are expanded, and the SOL 
compiler acts EXACTLY as if the following was typed instead of lines A12 through A16: 

B12 
813 
B l 4  

816 
B16 
B17 
B 1 8  
B l Q  

PRIIT X 
x = x + 2  
sidel = 3 
side2 = 4 
X= SqRT( (SIDE1 ** 2) t (SIDE2 ** 2)) 
PRINT X 
x = x + 2  
p r i n t  x 

The macro on line A12 is expanded into lines B12 through B13. The macro on line A15 
is expanded on lines B16 through B18. Notice that the call to ?ptr-incr_x is also expanded. 

These examples are fairly simple, but illustrate the basic principle behind simple macros. 

c.1.2 SIMPLE hfACRO DEFINITION ( REPLACEMENT TEXT ) 

The following restrictions hold for the syntax and body of the repla.cemcnt text: 

1) A macro’s replacement text CAN include calls to other macros. 

A macro CANNOT call itself in the replacement text of its own defini- 
tion, either directly or indirectly. SOL DOES NOT PROVIDE ERROR- 
CHECKING FOR THIS, so you must avoid this condition on your own. 

2) 
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Braces, { and }, CANNOT be included in the replacement text UNLESS 
they are paired. 

o This restriction requires a more dctailed explanation. The re- 
placement text is delimited by an open bracc, {, and a close 
brace, }. But consider the following declaration: (columns de- 
noted shown for convenience) 

3) 

01234S6789abcdefghijklmnopqrstuvsxyzABCDEFGEIJKLl4H 
?def ?rnacro-l Ireplace) me ) 

The SOL compiler cannot determine whether the brace in column t is intended to end 
the replacement text, or whether the end of the text occurs in column y. However, it is useful 
to have braces appear in macro replacement texts, so that macro definitions can appear in 
the replacement text, for example: 

?bef ?Macro,i { ?def macro2 {a = 6 )  } 

0 Any open brace in replacement text is matched with the nearest unpaired 
close brace, so only pairs of braces can appear in the replacement text. 

The replacement text will be substituted for any macro call. The compiler 
will act just as if the replacement text appeared in the program, instead of 
the macro call. 

The listing file will contain the “expanded” replacement text, instead of the 
original call. 

0 

0 

C.2 PARAMETRIC MACROS 

A useful addition to the simple macro would be the capability to have macros in which 
some of the replacement text is changeable; the replacement text would become a template, 
filled in with different things when the macro is used. SOL offers this capability with its 
parametric macros. Macros can be defined in terms of parameters, and arguments are 
supplied when the macro is used; the arguments are substituted for the parameters in the 
replacement text. 

This section is divided into two sections: 

C.2.1 - Explains how to define parametric macros 
C.2.2 - Explains how to use parametric macros 
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C.2.1 PARAMETRIC MACRO DEFINITION 

Before a macro can be used, it must be defined, and parametric macros are no exception. 
Defining parametric macros is very much like defining simple macros, except "blanks" are 
specified in the replacement text that will be filled in when the macro is used, and the way 
these "blanks" receive values is also specified. A parametric macro has the following syntax: 

?def ( macroname ) ( parameters ) { ( replacement text ) } 
where: 

( macro name ) is the name of the macro. It must consist of a ? symbol, fol- 
lowed by a legal SOL identifier or a single non-alphanumeric 
char act er . 
0 Extended Identifiers are not legal macro names. 

( parameters ) is the macro's parameter list specifying the "blanks" that will 
be filled in later. The parameter list consists of a series of 
# ( digit ) pairs, (e.g., #1 or #4), where the ( digit ) is a 
number between 1 and 9. 

( replacement text ) is the body of replacement text. Any characters can appear in 
the replacement text. Parameters, such as #1 appear where 
variable replacement text is desired. 
0 However, additional restrictions apply to the use of open 
brace, {, and close brace, }, within the replacement text. See 
section C.1.2 of this appendix for details. 

A parametric macro definition takes the form of a template, leaving holes to be filled in 

Suppose a macro is needed that would produce code to cube the variable, x. This is a 

?def ?cube {x = x * x * x} 
However, after a while it becomes clear that it would be useful to have a more general 

macro that would produce code to cube any variable. Such a parametric macro might be 
defined as below: 

later. This can best be explained with an example. 

simple macro, and might be defined as below: 

?def ?cube #1 {#1 = #1 * #l * #1} 
With this definition, ?cube x would expand to x = x * x * x and ?cube y would 

expand to, y = y * y * y. The symbol #1 stands for the first parameter to the macro, 
and when you say ?cube x, x is the so-called argument that will be substituted for #1 in 
the replacement text . 

As the notation, #1, suggests, macros can have more than one parameter. There can be 
as many as nine parameters, #1 to #9, and they must be numbered in order. For example, 
#4 cannot be used in a definition, unless the previous parameter was #3. 

The restrictions and regulations governing the definition of parametric macros are given 
below: 

1) There can be no more than nine parameters, starting with #1 and increasing 
to #9. 
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Parameters in a definition must be’specified in order. So for example, a 
macro with four parameters, MUST name its parameters #1 to #4, in that 
order. 

Restriction 2) applies only to the definition of parameters (before the re- 
placement text begins). Parameters can appear in any order desired within 
the replacement text. 

No spaces can appear between the “#” symbol and the number, “1” to “9.” 

Blanks, tabs and carriage returns are IGNORED between the macro nqm- 
and the first parameter, between the parameters and between the last param- 
eter and the start of the replacement text, i.e. the following are equivalent: 

2) 

3) 

4) 

5 )  

1. ?def ?macl#l#2{. . .} 
11. ?def ?macl .. 

#1#2 {*4 
#1#2 { . . 4  ... 

111. ?def ?mac 1 
iv. ?def ?macl #l #2 { .  . .} 
V. ?def ?macl #1 #2 {...} 
vi. ?def ?macl #I 

#2 { . . 4  
vii. ?def ?macl #1#2{ . . .}  

Further, parametric macros abide by the same regulations as simple macros, 
as stipulated in section C.2 of this chapter. 

6) 

c.2.2 PARAMETRIC MACRO USE 

Once a parametric macro has been defined, it can be used in a SOL program. Parametric 
macros are used the same way as simple macros, except that the actual “arguments” to the 
parameters must be supplied when the parametric macro is used. These actual arguments 
are associated with the macro’s parameters. Everywhere the parameter appears in the 
replacement text, the associated actual argument is substituted. The replacement text, with 
substitutions, replaces the macro call in the SOL program. 

Parametric macro calls have the following syntax: 
? ( name ) ( argument list ) 
where: 

( name)  is the name of the macro. Nothing can appear between the 
symbol, ?, and the name of the niacro. Thc name is any legal 
SOL identifier. 

( argument list ) is the list of arguments. The exact syntax of the argument 
list is discussed in the next section, C.2.2.1 
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For example, the following are syntactically legal calls to parametric macros: 

-?cube x 

-??macl a b 

- ?macl a b 

- ?rectangle,area 14 12 total-area 

This section is divided into two sections: 

c.2.2.1 

c.2.2.2 

- Discusses what constitutes an argument 

- Discusses how arguments and parameters are associated. 

C.2.2.1 Arguments to Parametric Macros 

An argument to a parametric macro can be any of the following: 

a SOL identifier 

E.g., thename, abcde a2345_7@b 

a SOL string 
E.g., ’the string’ , ’Walter Cronkite: what a guy’ , ’Cheap Hotel’ 

Note: Macro calls will NOT be expanded inside strings. However, quote 
marks are stripped off and WILL NOT appear in the replacement text, (e.g. 
see C.2.2.2, (example 1, 3) ) for an example). 
a signed (+, -) or unsigned number 

E.g., .0992 , -4 , +3.456 , 8 
# ( digit ) , where ( digit ) is a number, “l’7..‘‘!”’, no spaces between # and 
( digit ) . 
E.g., #2 , #S , #1 (See example 1 item 2) in section C.2.2.2). 

any character other than a blank or tab character, a ?, or the quote symbol, 
9 

E.g., #, %, - , Y, g, u, i, * - 7  1, 0, 4, 6, {. 
These arguments are combined to form an ( argument list ) for a parametric macro call. 

An ( argument list ) to a parametric macro must abide by the following regulations: 

If the argument is an identifer, unsigned number, or a character that can 
appear in a SOL identifier, one or more tabs, blanks and/or carriage returns 
must separate the argument from the macro name, otherwise, zero or more 
blanks, tabs and carriage returns can appear between the argument and the 
macro name. For example: 

1) 

DEFSNITIONS: 
?def ?macl #1 #2 { 
?def ?mac2,a #l #2 { 

} 
} 

?def ?mac5 #l # 2 {  I 
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?def ?mac4 #l #2 #3 { 1 

Legal Illegal 
I ,  

I '  

I 

' I  

! 

?mad 12 * 
?mac2,a alfa X 
?mac5 - 65 
?mac3+4.3 Walter 
?mac4 

a 
b 

C 

?macll2 * 
?mac2,aalf a X 
?mac5, 65 

0 The SOL compiler cannot distinguish between the name and the 
argument in the case of arguments that are identifers, numbers, 
or characters that can appear in SOL identifiers, UNLESS at 
least one blank or carriage return separates them. 

Arguments are separated with zero or more blanks/tabs and carriage returns, 
with the following exceptions: 

2) 

- two identifier arguments must be separated by at least one blank, 
tab or carriage return. 

- two numerical arguments, when the second argument is unsigned, 
must be separated by at least one blank, tab or carriage return. 

- An identifier argument must be separated by one or more blanks 
or carriage returns from unsigned numerical arguments, or single 
character arguments, when the character can appear in a legal 
SOL identifier. 

For example, given the definition, ?def ?macl #I  #2 #3, the following macro calls 

1) h a c 1  ident 12.3 $ 

are equivalent: 

2 )  t m a c l  ident 12.3$ 

3 1 ?mac I 

$ 
12.3 

ident 

4) ?maci 
ident 
12.3 
$ 

parametric macros. 
The next section details how these arguments arc: associated with the parameters in 
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C.2.2.2 Association Between Arguments and Parameters 

The association between arguments and macro parameters is simple: the first argument 
is associated with parameter #1, the second with parameter #2 and so on. Once all the 
parameters are matched, the macro is expanded. Just be careful to supply the same number 
of arguments as there are parameters, otherwise one of the following will occur: 

Too few arguments: the SOL compiler will gobble up part of your SOL 
program for use as a parameter argument. 
Too many arguments: the SOL compiler will interpret the extra arguments 
as part of the SOL program, and syntactic errors will probably result. 

1) 

2) 

Example 1: 
Definition: 

Use: 
?def ?example #1 {#l} 

1) ?example x 

This call will expand to  be: x 
2) ?example #1 

This call will expand to be: #1 

3) ?example ' t h i s  is  a s tr ing'  

This call will expand to be: t h i s  i s  a s t r i n g  

0 Note that the quote marks are stripped off, you CANNOT put quote marks 
inside a string. IF quote marks were desired, the following definition could 
be used: 

?def ?example #1 { '#l '} 

0 Strings must appear on a single hie.  

?ex amp1 e 
12.3 

4) 

This call will expand to be: 12.3 

5 )  ?example CJI 
This call will expand to be: (D 
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Example 2: 
Definition: 

?def ?example2 #l 
112 (#l = t 2 . 3 3  

print #l> 

Use: 

1) ?example2 a 13 

This call will expand to be: 
a = 13.33 
print a 

In the next section, parametric macros with delimited parameters, and some more com- 
plex uses of macros are discussed. 

DELIMITED MACROS - 

SOL also allows you to  provide “delimiters” for both simple and parametric macros. 
Delimiters consist of additional text, a pattern, that must be matched when the macro is 
called. This section is divided into two sections that provide detailed explanations: 

C.3.1 - Discusses delimited simple macros 

C.3.2 - Discusses delimited parametric macros 

C.3.1 DELIMITED SIMPLE MACROS 

Delimiters are specified when you give a macro definition. Delimited simple macros have 
the following syntax: 

?def ( name ) ( pattern ) { ( replacement text ) } 
where: 

( name ) is the name of the macro being defined. 

( pattern ) is the string of delimiters. This consists of one or more char- 
acters. All characters are legal except the following: ?, {, the 
blank space, and a tab. Any other character can be used as 
a delimiter. 

( replacement text ) is the macros replaccment text. 

Delimited simple macros are best explained by example. Consider the following macro 

?def ? m a d  pattern {x = 2) 

definition: 
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This macro could be called in the following ways: 

Call 

?mad pa tt e rn 
?mac,l pattern 

x = 2  
x - 2  

When the macro is called the pattern, “p,a,t,t,e,r,n” must be matched before the macro 
will be replaced. If the pattern cannot be matched, an error results. For example, given the 
definition above, the following macro calls would be ILLEGAL: 

Expands to be 

- ?mac-l 

- ?mat-1 p at 

These are illegal because the entire pattern, ‘(p,a,t,t,e,r,n” does not appear. When match- 
ing delimiters, blanks, tabs, and carriage returns are ignored; matching is done on a character 
by character basis. Thus, the definition above specifies that the first character is a “p,” fol- 
lowed by an “a,” followed by a “t,” and so on. For example, the following are legal calls to 
? m a d :  

- ?mat-1 pattern 

- ?mac-l p a t t er n 
The precise rules that apply to the use of delimiters with simple macros are given below: 

A delimiter can be any character except for the following: the macro symbol 
(‘?’’, the blank space (( ”, open brace (‘{’’, and a tab. A carriage return 
CANNOT be a delimiter. 

The symbol,“#”, has special significance. If the character immediately fol- 
lowing the # is a digit in “1” . . . “g”, the #, digit pair is considered to denote 
a parameter, otherwise the character “#” is considered to be a delimiter. 

The macro call must match the order and number of delimiters specified in 
the macro definition. If the call does not match, a SOL error will occur. 

Blank spaces, tabs and carriage returns between delimiters are ignored, ex- 
cept in the case of “#” as detailed previously. 

Delimiters are case sensitive. For example, a will not match A. 

The pattern CANNOT be longer than 120 characters, the maximum length 
of a SOL input line. 

The continuation symbol, &, cannot be used to dodge the length 
restriction. 

1) 

2) 

3) 

4) 

5 )  

6) 

0 
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I. 

In general, delimited simple macros are not very useful. Delimiters are primarily used for 
delimited parametric macros. However, delimited simple macros are needed to have prefix 
macros, as in the next example: 
Example: 

Consider the following: 

Definition: 

Suppose we want a macro that will expand as a prefix in forming arbitrary file names. 

?def ?pref ix  { name-of f i l e }  

?pref ix  ,obj 
?pref i x l i s t  

name-of f i l e  ,obj 
***ERROR, undefined macro, “ p r e f i x , l i s t J J  

As you can see, a simple macro will not do for a prefix macro; either a blank space 
appears between the expanded text and the root word (-obj), or the root is misinterpreted 
qs part of the macro name, as in “prefixlist” Delimited simple macros solve this problem, 
as shown with the following definition: 

Definition: 
?def ?pref ix  : {name-of f i l e }  

?pref ix  : ,ob j 
?pref ix:  l i s t  

name-off i l e -obj  
name-of f i l e - l i s t  
Here, the delimiter, :, forces the ?prefix c a l l  to match the delimiter before substituting 

Section C.5 offers a summary of the rules that govern macros in general. 

Use: 

Expansion: 

Use: 

Expansion: 

the replacement text. In this way, macros which can be used as prefixes are possible. 

c.3.2 DELIMITED PARAhlETRIC MACROS 

Delimited parametric macros are treated in much the same way as delimited simple 
macros. However, delimited parametric macros can have parameters intermingled with the 
delimiters. Delimiters are specified when a macro is defined. The delimiters and the param- 
eters are matched when the macro is called. 
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Delimited parametric macros have the following syntax: 

?def ( name ) ( pattern ) { ( replacement text ) } 
where: 

( name)  is the name of the macro being defined. 

( pattern ) is the string of delimiters and parameters. The delimiters 
consist of one or more characters. All characters are legal 
except the following: ?, {, the blank space, and tabs. Pasam- 
eters are specified as usual with a # digit pair. (see C.2 for 
a full explanation of parameters). 

( replacement text ) is the macros replacement text. 

Delimited parametric macros are best explained with an example. Consider the following: 

?def ?increment #l by #2 from t3 t o  #4 
(DO i = t3.t4 

EHDDO 1 
This macro could be called in the following ways: 

ti = ll + t2 

1) 

2) 

?increment x by 3 from 5 t o  9 

?increment l ist  by 1 from 1 to  maximum-list 
The macro’s arguments are determined as follows: the first argument is associated with 

#1, then a pair of characters b and y should be seen, then the next argument is associated 
with #2 , then the characters f ,  r, o and m should be seen, and so on. Thus, the two calls 
above would expand into the following: 

1) DO i = 5,9 

EYDDO 
x = x + 3  

2) DO i = l,HAXIMUH,LIST 
LIST = LIST + 1 

EIDDO 

Of particular note is the fact that blanks and carriage returns are ignored when matching 
up with delimiters. Thus, both of the following are legal calls to ?increment: 

-?increment z b y 2 f r o m 1 t o  fast-time 
-?increment z by 2 from 1 to fast-time 

The precise rules that govern the use of delimiters with parametric macros follow: 

A delimiter can be any character except for the following: the macro symbol 
?, the blank space (( ”, open brace (c{n, and tab. A carriage return cannot 
be a delimiter. 
The symbol, “#”, has special significance. If the character immediately fol- 
lowing the # is a digit, the #, digit pair is considered to denote a parameter, 
otherwise the character ”#” is considered to be a delimiter. 

1) 

2) 
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The macro call must match the order and number of parameters and de- 
limiters specified in the macro definition. If the call does not match, a SOL 
error will occur. 

Blank spaces, tabs, and carriage returns between delimiters are ignored, 
except in the case of “#” as detailed previously. 
Delimiters are case sensitive. For example, a will not match A. 

3) 

4) 

5 )  

EX AMP L ES : 

Example 1: 
Definition: 

?def ?example ab#l 1:# 2 {print #1) 

?example ab 12 1 :#  2 
?example ab12 1:#2 
?example a b 12 

All of the above are legal calls of ?example. Note that the blank space in the definition 
between “#” and “2”, make ”#” and “2” delimiters, rather than denote parameter #2. In 
all three cases, #1 is associated with 12. 

Use: 

1 :  # 2  

Bad Use: 
?example ab 121:# 2 

This is an illegal call to ?example. Parameter #1 will be associated with the number, 
121, and the delimiter, “l”, will not be found. 

Example 2: 
Definition: 

?def ?pattern { x : } ?def ?example ?pattern #1 ,  y : #2 {print #1} 

Because of the expansion of the macro, ?pattern, the above definition of ?example is 

?def ?example x : # 1 ,  y : #2 

?example x:l34,y:ppop 
?example x : a x i s  , 
y : 123.33 

Section C.5 of this chapter offers a detailed summary of rules that govern macros in 

equivalent to: 

Use: 

general. 
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C.4 PREDEFINED MACROS 

SOL offers eight predefined macros: 

?DEF . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.4.1 

?XDEF . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.4.2 

?INCLUDE . . . . . . . . . . . . . . . . . . . . . . . . .  c.4.3 
? L I S T . .  . . . . . . . . . . . . . . . . . . . . . . . . .  c.4.4 

1) 
2) 
3) 
4) 

5 )  

6) 
7) 

?CHECKLIST . . . . . . . . . . . . . . . . . . . . . . . .  c.4.5 

?COMPONENT_NAME . . . . . . . . . . . . . . . . . . . . . .  C.4.6 

?APPEND & ?XAPPEND . . . . . . . . . . . . . . . . . . . .  c.4.7 

' C.4.1 THE ?DEF MACRO 

, 
The ?def macro is an essential part of SOL macros, because it allows the SOL program- 

mer to define his/her own macros. The ?def macro has already been discussed tangentially 
in sections C.2 and C.3 of this chapter. The ?def macro has the following syntax: 

I 

?def ( macro name ) ( pattern ) { ( replacement text ) ) 
where : 

( macro name ) is the name of the macro and consists of the symbol, ?, fol- 
lowed immediately by a SOL identifier. 

( pattern ) is the pattern text and consists of a series of delimiters and 
parameters. This part is optional and does not have to ap- 
pear. 

( replacement text ) is the replacement text, can be any characters, with stipula- 
tions on the use of braces. This section is delimited by the 
open and close braces, "{" and "}.', 

This has already been discussed in detail in sections C.1 - C.3 of this chapter. The 
following rules govern how the ?def macro can be used in a SOL program: 

A ?def macro can appear anywhere in a SOL program blanks can appear. 
However, a ?def cannot immediately appear after an ?include macro, on 
the same line as the ?include macro. 

A call to the macro being defined CANNOT appear in the replacement text 
of the definition, e.g. ?def ?macl {?macl} is ILLEGAL, no error messa,ge 
is given, and an infinite loop generally results. In othcr words, this is BAD, 
don't do it. Also, don't do things like the following either: 

1) 

2) 

?def ?a (6) 

?def ?b {?a} 

?def ?a {?b} ! A s  BAD as c a l l i n g  ?a d i r e c t l y .  

c 

c 
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Macro calls in the replacement text are not expanded until the macro being 
defined is CALLED. (See section (3.4.2 of this appendix). 

If such an expansion is desired, use the ?xdef macro. 

3) 

0 

4) Macros inside of comments are ignored, just as any other SOL statements. 

It 

I C.4.S TirE ?XDEF MACRO 

The ?xdef macro acts exactly like the ?def macro, but the replacement text is handled 
somewhat differently. In an ?xdef, all macros in the replacement text are expanded when 
the macro is DEFINED. With a ?def, all macros in the replacement text are expanded when 
the defined macro is CALLED. This difference can best be demonstrated with an example. 
Consider the following: 

Example 1 Example 2 

?def ?macl (6) 
?xdef ?mac2 {x = ?macl) 
?def ?macl (9) 
?mac2 ?mac2 

In example 1, ?mad, in ?mac2’s replacement text, is expanded when ?mac2 is defined. 

?def ?mac2 {x = 6) 

When ?mac2 is called on the last line, it expands to be: x = 6. 
However, in example 2, ?maci is expanded when ?mad is called, on the last line. By 

this time, ?maci has been redefined. Therefore, the call to ?mad in example 2 expands to 
be: x = 9. 

Thus, a call to ?xdef is equivalent to a call to ?def except that the macros in the ?xdef’s 
replacement text are expanded. Aside from the different expansion times of macros in the 
replacement text, ?xdef and ?def are equivalent. 

Thus, the ?xdef on the second line is equivalent to: 

C.3.3 T H E  ?INCLUDE MACRO 

The ?include macro is one of the most useful features of SOL, because it allows external 

?include ( file name ) 
where : 

files to be included in a SOL program. The ?include macro has the following syntax: 

4 

I 

( file name ) is the name of the file to be included. 

The ?include macro call is replaced with the text of the included file in the LISTING. 

The ( file name ) portion of the ?include macro must appear on the same 
line as the call to ?include, or a SOL error results. 

The following restrictions hold for the ?include macro: 

1)  

j 
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The file named ( file name ) must exist in the current directory, or the SOL 
compilation will ABORT while trying to  open the file. The full path name 
can be given as a ( file name ) , but if that file does not exist, the SOL 
compilation will ABORT. 
If the file is empty, a SOL compile-time warning will be issued, but compila- 
tion will continue. 

The ?include macro MUST appear on a line alone in a SOL program. 
However, an ?include macro can be followed by a comment, but NO other 
statements, not even macros. 

The ?include macro is especially useful for introducing often used macros. By storing 
the macro definitions in a file, many SOL programs can use the same definitions by ?in- 
cluding the definition file a t  the start of the programs. In the same way, useful subroutines 
can be stored in files, and included for use in other SOL programs. In this case, remember 
to ? include the subroutine declarations, as well as implementations. 

2) 

3) 

4) 

C.3.4 THE ?LIST MACRO 

The ?list macro allows the LISTING option to be turned on or off from within the SOL 
program being compiled. This is useful when only a few particularly significant portions of 
a SOL program are desired in the compilation listing. The ?list macro has the following 
syntax: 

?list ( option ) 
where: 

( option ) can be one of two values: on or off. Thus to turn the listing 
on, type ? l i s t  on, and to turn the listing off type, ?list 
o f f .  In a way, the on or o f f  can be considered an argument 
to the ?list macro. 

The ? l i s t  macro must abide by the following regulations: 

No carriage returns can appear between the ?list and its option, on or o f f .  
Blanks can appear. 

A call to ? l i s t  can appear anywhere in a SOL program blanks can appear. 
A call cannot appear after an ?include macro, on the same line 
as the ?include. 

1) 

2) 
0 

3) All calls to ?list on will appear in the listing file. 

All calls to ?list o f f  will NOT appear in the listing file, because the macro 
turns the listing off. 

The listing CANNOT be turned on, by a call to ?list on, if the SOL 
program is compiled with the compiler LIST option OFF. Thus, in order 
to turn the listing on or off from within the compiled program, the SOL 
program must be compiled with the compiler LIST option ON. 

4) 

5) 

SOL Macros - Advanced Material C-18 



C.4.5 THE ?CHECK,LIST MACRO 

The ? c h e c k l i s t  macro is a companion to the ?list macro. The ? c h e c k l i s t  macro 
returns the current status the ?list macro. Thus, ? c h e c k l i s t  can be used to determine 
whether the list file is ON or OFF. The ? c h e c k l i s t  macro has the following syntax: 

? c h e c k 3  st 

The ? c h e c k l i s t  macro must abide by the following regulations: 

1) ? c h e c k l i s t  returns the value, ON, under two conditions: 

1. 

11. 

if the ?list  on macro is the most recent ? l i s t  macro called 

if no ?list  macros have been called before to the ? c h e c k l i s t  
call, and the compiler LIST option is ON. 

.. 

2) ? c h e c k l i s t  returns the value, OFF, under two conditions: 

1. 

11. 

if the ?list o f f  macro is the most recent l i s t  macro called. 

if no ?list macros have been called before to the ? c h e c k l i s t  
call, and the compiler LIST option is OFF. 

The ?check,list  macro is useful when used with the ?xdef macro to save the current 
state of the listing option, before turning the option off. Then the listing option can be 
returned to its orginal state. For example, considering the following sequence of macro calls: 

.. 

?xdef ?prev l i s t -opt ion  { ? c h e c k l i s t }  
? l i s t  o f f  
?include e x t e r n a l f i l e .  s o l  
?1 i st ? p r e v l  i st -opt ion  

This sequence of calls illustrates a use for ?check,list .  The intention is to include a file, 
with the listing option off. Once the file is ?included, however, the listing file is returned 
to its original setting. The orginal setting is saved by the first call to ?xdef. If the listing 
option were ON, this call would be the equivalent of 

?def ?prev,l ist-option {ON} 

Thus, the last line expands to: ?list ON. Saving the state of the listing option is some- 
times necessary to avoid the error of turning the listing ON when it was originally OFF. 
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C.4.6 THE ?COMPONENT-NAME MACRO 

The ?componentname macro is useful when used with the ?xdef macro inside of ASSEM- 
BALGEs or COMPONENTS. The ?component name macro returns the current ASSEMBLAGE nesting 
in extended identifier notation. The ?componentname macro has the following syntax: 

?component dame 

The function of the ?componentdame macro is illustrated by the following example: 

ASSEHBLAGE outer ( 0 ,  ’> 
SUHHARIZE 

SUm 

END SUHHARIZE 

COHPOIIEIT one-in (I, ’ ’1 
COHPOPEIT two-in (2, ’ ’> 

sum = 12 
END two-in 
COHPOIIEPT same-as-two (2, ’ ’1 

sum = I S  
?xdef ?comp <?component-name) 

END same-as-two 
EID one-in 
COHPOPEPT same-as-one (1. ’1 

EID same-as-one 
sum = sum?comp + 4 

EID outer 

In this example, the ?xdef is equivalent to: 

? def ? comp { Q s ame -as ,t wo @one -i nQ out e r } 
Thus, the call to ?comp is replaced with: 
Qsame-as-twoQone-inQout er . 
In this way, sum = sum?comp + 4 becomes the SOL statement: 

sum = sumQsame-as-tvoQone,incDouter + 4 

hiore information on the extended identifier notation, and on ASSEMBLAGES themselves 
can be found in chapter 7. 

C.4.7 THE ?APPEND AND ?XAPPEND MACROS 

I. ?APPEKD MACRO 
The ?append macro appends lines of text to the end of the replacement text of an existing 

macro. The ?append macro is much like ?def, except that the existing replacement text is 
saved, and the new lines of text are tacked on . 
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The ?append macro has the following syntax: 
?append ( macro name ) { ( append text ) } 
where : 

( macro name ) is the name of the existing macro. Consists of the symbol, ?, 
followed immediately by a SOL identifier. 

is the text to be appended on the end of ( macro name ) , 
can be any characters, with stipulations on the use of braces, 
This section is delimited by the open and close braces, "{" 
and "}." 

( append text ) 

The following rules govern how the ?append macro can be used in a SOL program: 

An ?append macro can appear anywhere in a SOL program blanks can ap- 
pear. However, an ?append CANNOT appear immediately after an ?in- 
clude macro, on the same line as the ?include macro. 

It is ILLEGAL to ?append t e x t  to an undefined macro; an error message 
will result. 
It is ILLEGAL to ?append a call to a macro to itself e.g. ?append ?macl 
{?maci} . No error message is given, and an infinite loop will result. In other 
words, this is BAD, don't do it. Also, don't do things like the following either: 

?def ?a (6) 

?def ?b {?a} 

?append ?a {?b} ! BAD appends ?a to i t s e l f .  

hlacro calls in the append text are not expanded a t  the time of the append, 
just as macros in the replacement text of a ?def are not expanded until the 
macro being defined is called. (See section C.4 of this chapter) 
The ?append macro appends LINES of text to the end of an existing macro; 
it does not append text onto the last line of an existing macro. For example, 

?def ?a { X  =} 
?append ?a (12) 

a call to ?a expands to be: 
X =  
12 
not: X = 12 
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11. ?XAPPEND MACRO 
The ?xappend macro acts exactly like the ?append macro, but the append text is handled 

somewhat differently. In an ?xappend, all macros in the append text are expanded when the 
?xappend OCCURS. With an ?append, macros in the append text are not expanded until 
the macro being appended to is CALLED. Thus, the difference between an ?xappend and 
?append is analagous to the difference between ?xdef and ?def. The difference between 
?xappend and ?append is best illustrated with an example. Consider the following: 

Example 1 Example 2 

?def ?macl (6) 
?def ?mac2 (X = 12) 
?xappend ?mac2 {x = ?macl} 
?def ?macl (9) 
?mac2 ?mac2 

?def ?macl (6) 
?def ?mac2 {X = 12) 
?append ?mac2 {x = ?macl) 
?def ?macl (9)  

In example 1,  ?macl is expanded when the ?xappend to ?mac2 occurs. Thus, the ?xap- 

?append ?mac2 {x = 6) 

When ?mac2 is called on the last line, it expands to be: 
x = 12. 
X - 6  

However, in example 2, ?macl is expanded when ?mac2 is called, on the last line. By 
this time, ?mac1 has been redefined. Therefore, the call to ?ma& in example 2 expands to 
be: 

pend on the third line is equivalent to: 

x = 12. 
x = 9  

Thus, a call to ?xappend is equivalent to a call to ?append except that the macros in the 
?xappend’s append text are expanded before the text is appended. Aside from the different 
expansion times of macros in the append text, ?xappend and ?append are equivalent. 

C.5 SUhlMARY OF hlACROS 

In general, all macro calls or definitions abide by the following rules: 

A macro call is expanded nearly anywhere it appears in a SOL program, with 
the following exceptions: 

Macro calls are NOT expanded when a macro is defined; the 
expansion occurs when the defined macro is called. For example: 

1) 

0 

?def ?macl { x = 2) 
?def ?mac { ?mac 1 } 
?def ?macl {x = 4) 
?mac 
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The call to ?mac will expand to: x = 4 (?maci expanded). If 
?macl had been expanded when ?mac was defined, the replace- 
ment text would have been x = 2. 

0 Macro calls are NOT expanded inside SOL comments or SOT, 
st rings. 

Note: When strings are passed as macro parameters, the quote marks 
are stripped off in the replacement text. (See C.2.2.2, Example 
1, item 3) for details) 

A user defined or predefined macro can appear anywhere in a SOL program 
its replacement text can legally appear. (See section C.4 of this appendix for 
information about predefined macros) 

All macro expansions occur a t  COMPILE TIME. The result of expanding all 
macros will be the same as if the corresponding replacement, text was typed 
instead of each macro call. 

The replacement text will appear in the compiler LISTING instead of the 
macro call. 

2) 

3) 

4) 

There are some exceptions to the above guidelines, as covered in previous sections. 
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compatibility rules (continued): 
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logical, 3-2 
overview, 2-2 
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in subroutines, 5-6 

declaration (continued): 
main program syntax, 5-1 
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component, 7-9, 7-11, 7-14, 7-21, 7-25, 7-26, 
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if statement, 6-12, 6-14, 6-15 
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example of, 
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external files, 1-6 

naming conventions, 1-7 
F, 

compiler option, 1-5 
format, 

restrictions on, 6 4  
syntax, 6-8 

dependent, 9-8 
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listing, 
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