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SUMMARY 

A classification of all the compensators that stabilize a given general plant in a linear, time-invariant 
multi-input, multi-output feedback system is developed. This classification, along with the associated 
necessary and sufficient conditions for stability of the feedback system, is achieved through the intro- 
duction of a new parametrization, referred to.as R-Parametrization, which is dual of the familiar 
Q-Parametrization. The classification is made according to the stability conditions of the compensators and 
the plant by themselves; and the necessary and sufficient conditions are based on the stability of Q and R 
themselves. 

1. INTRODUCTION 

Recently, there is a new formulation of the old problem of designing a compensator for a given 
time-invariant multi-input, multi-output (MIMO) plant to meet a set of performance specifications. This 
new formulation (e.g., Callier et al. (1982), Midyasagar (1985), and Boyd et al. (1988)) takes the view of 
choosing the compensator from among all the compensators that stabilize the given plant and therefore 
represents a significant departure from the earlier design methods such as Linear-Quadratic-Gaussian 
(LQG) (Bryson et al. (1969)), Inverse Nyquist Array (Rosenbrock (1969)), and Characteristic Loci 
(MacFarlane et al. (1977)). Essential to this new formulation is a deeper understanding of the nature and 
the characteristics of all the compensators that stabilize any given plant. This paper is therefore addressing 
this specific area. 

Consider a multivariable unity feedback system as shown in figure 1. The dimension of the com- 
mand input u l  (and the plant output y2), and the disturbance input u2 (and the compensator output y l )  
are nO and ni respectively. It is assumed that (i) the compensator, C(s), and the plant, P(s), are in gen- 
eral proper, (ii) neither the plant nor the compensator has unstable hidden modes, and (iii) the system is 
well-posed (Le., det(1 + DpDc) f 0). The transfer matrices from u to y and from u to e are given 
respectively in equations (1) and (2). 

*This work was performed during the academic year, 1987-88 while the author was with the Aeronautics/Astronautics 
Department., Stanford University, as a visiting professor. 
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COMPENSATOR u2 PLANT 

x l = A c x l + B c e l  
y l = C c x l + D c e l  I x2 = Ap x2 + Bp e2 

y2 = Cp x2 + Dp e2 

Figure 1 .- Multivariable unity feedback system. 

1 
1 

C(I + PC)-1 -cP(I + CP)-1 

PC(1 + PC)-1 P(I + CP)-1 

(I + PC)-' -P(I + CP)J 

c(I + PC)-1 (I + CP)-1 

Hyu=[ 

Heu = 

It is known (e.g., Callier et al. (1982)) that these transfer matrices can be cast into a form which is affine 
in Q as shown in equations (3) and (4). This "linearizing" process is accomplished using the nonlinear 
transformation pair, equations (5) and (6), and is commonly referred to as Q-Parametrization.1 

-Qp 1 Q 
H y u = [  PQ P(I-QP) (3) 

Q = C(I + PC)-' = (I + CP)-' C ( 5 )  

C = Q(I - PQ)-l = (I - QP)-' Q (6) 

It is worth noting, from equations (1)-(4), that Q is the transfer matrix from u l  to y l  (or from u l  to e2), 
i.e., 

Q = Hyl,ul = %2,u1 (7) 

We will defer the discussion of other significant characteristics of the Q-Parametrization to a later section 
in this paper. For now we will proceed to introduce another parametrization, a new one which will hence- 
forth be referred to as R-Parametrization. 

'The idea of the Q-Parametrization for SISO systems was discussed in the literature many years ago (e.g., Newton et al. 
(1957)). 
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2. R-PARAMETRIZATION 

This linearizing process was motivated by the problem of answering the question: For a given 
stable C(s) (i.e., C(s) by itself is stable), what are all the plants, P, stable or otherwise, which are 
stabilizable by C(s)? This is "dual" to the problem of answering the question: Given a stable P, what are 
all the compensators, C, that can stabilize P? (Note that Cs may or may not be stable by themselves.) 
We note that this latter question has been answered by the Q-Parametrization (Zames (198l), Desoer et al. 
(198 1)) described earlier. 

To seek a linearizing process directly aiming at answering the first question, it is proposed that the 
following nonlinear transformation pair, equations (8) and (9), be used: 

R = P(I + CP)-' = (I + PC)-' P (8) 

. P = R(I - CR)-' = (I - RC)-' R (9) 

It is important to recognize that R is the transfer matrix relating the plant output to disturbance input u2. 
With this pair of transformations, it can be shown that the transfer matrices (1) and (2) become: 

C(1-RC) I-CR -R 1 
It is seen from equations (10) and (1 1) that the closed-loop transfer matrices are now affine in R. From 
equations (3), (4), (lo), and (1 l), the following identities are evident: 

R = P(I - QP) = (I - PQ)P 

Q = C(I - RC) = (I - CR)C (13) 

PQ = RC (14) 

QP = CR (15) 

These identities will prove useful in establishing some of the important stability criteria for the feedback 
system to be discussed next. 

3. STABILITY CRITERIA FOR THE FEEDBACK SYSTEM 

Since we are concerned with compensators and plants which are proper (not just strictly proper), 
thereby broadening the engineering applicability of our results, we will be concerned in this paper with 
bounded-input-bounded-output (BIBO) stability. The following fact is known. 

FACT 1: If the plant P is stable by itself, then C stabilizes P (i.e., the feedback system is stable in the 
sense of BIBO) iff Q is stable (e.g., Callier et al. (1982)). 
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Fact 1 is clear from equation (3) or (4). An engineering interpretation for that seemingly mysterious nec- 
essary and sufficient condition can be made by simply redrawing figure 1 in the form of figure 2. Since 
the given plant P is stable, d is bounded for bounded u2. We note therefore that the signal d is equiv- 
alent to -ul. Thus, all the signals in the system are bounded iff Q is stable (recall from equation (7) that 
Q is the closed-loop transfer mamx from command input u l  to the compensator output yl). The fol- 
lowing fact is "dual" of Fact 1. 

I 
I 
I 
I 

- 

I 

I u2 

I 
I 
I 
I 
I e 2 = y l + u 2  

Figure 2.- Multivariable unity feedback system in terms of P and Q. 

FACT 2: If the compensator C is stable, then C stabilizes P iff R is stable. 

This fact is clear from equations (10) and (1 1). A somewhat less visualizable proof of this fact is to show 
algebraically from equation (1) or (2) that the feedback system is stable iff P(I + CP)-l is stable as is 
usually done in the literature ( e g ,  Vidyasagar (1985)). Again, a good physical insight into this fact can 
be made by redrawing figure 1 in the form of figure 3. 

Figure 3.- Multivariable unity feedback system in terms of C and R. 

We note that Cul is a bounded input similar to u2 since C is stable, and that the closed-loop transfer 
mamx from u2 to y2 is simply equal to R. 

FACT 3: If both C and P are stable by themselves, then C stabilizes P iff (I + PQ-1 (or alternatively, 
(I + CP)-1) is stable. 

4 



The necessity is clear from equation (2). For sufficiency, we see that (1) can be arranged in the forms of 
equations (16) and (17) and the fact is established. 

1 C(I + PC)-1 -€(I + PC)-1 P 

PC(1 + PC)-' (I + PC)-1 P 
Hyu=[ 

1 Hyu=[ (I + CP)-1 c -cP(I + CP)-1 

P(I + CP)-1 c P(I + CP)-1 

From equations (2), (4), and (1 1) we see that (I + PC)-1 = I - PQ = I - RC. This, along with equa- 
tions ( 5 )  and (8), indicates that (I + PC)-I is stable iff either Q or R is stable, since both C and P are 
stable. We have, therefore, 

FACT 3A: If C and P are both stable, then C stabilizes P iff either Q or R is stable. 

We next establish Fact 4. 

FACT 4: C and P are both unstable, but they do not have common unstable poles. C stabilizes P iff 

Necessity is clear by combining equations (4) and (1 1) in the following form 

both QandR arestable. 

(18) 1 I-PQ -R I-RC -R 
%'=[ Q I - Q P ] = [  Q I-CR 

or in the form of equation (19), 

Q -QP Q --CR 
Hy.'[ PQ R ] = [  RC R ] 

For sufficiency, we see from the first equality of equation (18) or (19) that if instability occurs in the feed- 
back system it must be caused by the unstable poles of P, since both Q and R are stable. However, the 
right-hand side of equation (18) or (19) indicates that the instability can only be from the unstable poles of 
C. Since P and C have no common unstable poles, we conclude that the feedback system cannot be 
unstable if both Q and R are stable, thus establishing Fact 4. 

Fact 4 was first found by Desoer et al. (1975) using complex variable analysis, not in the context 
of Q- and R-Parametrization. To gain a better insight into this fact. we shall .exmess the terms 
I - PQ and I - QP in equation (1 8) in terms of only Q and R. 
Y = I - QP. Then from equations (9), (14), and (15), we have 

X = I - X - ~ R Q  

Y = I - QRY-l 

Solving these two second-order matrix equations yields 

X =-[I 1 k (I -4RQ)'I2] 
2 
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(23) 
Y =-[Irt(I-4QR)'D] 1 

2 

One of the two solutions in equations (22) and (23) provides the answer for I - PQ and I - QP, 
respectively, as will become clear in the sequel. However, both solutions of X and Y are stable if 

(I - 4RQ)'D and (I - 4QR)'D 

are stable. Note that (I - 4 R Q  and (I - 4QR) are stable if both Q and R are stable. For the SISO case, 
we note that (1 - 4RQ)ln = (1 - 4QR)ln and they are stable if (1 - 4RQ) is stable. This fact does 
not hold for the MIMO case, however. Indeed, from equations (12) and (13), we have 

and 
I - 4RQ = (I - 2PQ)2 = (I - 2RC)2 

I - 4QR = (I - 2QP)2 = (I - 2CR)2 

We see that (I - 4RQ)1/2 = I - 2PQ = I - 2RC can be 
unstable if P and C have common unstable poles. Examples 1 to 4 in table 1 show the four combina- 
tions of the stability characteristics of (I - 4RQ)'D and (I - 4QR)'D, given that Q and R are both 
stable. Example 1 shows that C and P do not have a common unstable pole; consequently, (I - 4RQ)1/2 
and (I - 4QR)lD are both stable. In examples 2 to 4, C and P have common unstable poles, which give 
rise to three combinations of instability in (I - 4RQ)lD and (I - 4QR)lD. It is interesting to observe 
from these examples that when the instabilities occur in (I - 4RQ)1/2 or (I - 4QR)1/2, there are trans- 
mission zeros coinciding with the unstable common poles of C and P in the associated transfer matrices 
I - PQ, PQ, or I - QP, QP, respectively (see table 3). This property of having transmission zeros 
coinciding with poles, which has no parallel in a SISO system, may exist in a MIMO system, and is the 
underlying reason why (I - 4RQ)'I2 or (I - 4QR)lD becomes unstable while both Q and R are stable. 

or (I - 4QR)l/2 = I - 2QP = I - 2CR 

It may be appropriate at this point to return to equations (22) and (23), and examine the two 
solutions of X and Y. Let X1 = [I + (I - 4RQ)1/2]/2 and X2 = [I - (I - 4RQ)1/2]/2; 
Y 1 = [I + (I - 4QR)li2]/2 and Y2 = [I - (I - 4QR)1/2]/2. Then since (I - 4RQ)1/2 = I - 2PQ 
and (I - 4QR)1/2 = I - 2QP, it follows that X1 = I - PQ, Y1 = I - QP, and X2 = PQ, 
Y2 = QP. This further reinforces the fact that when (I - 4RQ)lD is stable, both &lul and Hy2,,1 are 
stable, and when (I - 4QR)lE is stable, &2,,2 and HY2,,1 are stable (see eqs. (18) and (19)). 

It is important to point out that, given Q and R being both stable, (I - 4RQ)1/2 and (I - 4QR)1/2 
can sometimes remain stable (thus the feedback system remains stable) even if there are common unstable 
poles in C and P. In other words, when Q and R are both stable, having common unstable poles in C 
and P does not imply that (I - 4RQ)1l2 or (I - 4QR)lE must be unstable. This fact is illustrated by 
example #5 as listed in tables 1 and 2. Summarizing the above discussion, we can state that, given Q and 
R being both stable, and C and P being both unstable, (a) C always stabilizes P for the SISO case, 
and (b) C almost always stabilizes P for the MIMO case with the exception being for some "patho- 
logical" cases in which C and P have common unstable poles that happen to cause (I - 4RQ)lD or 
(I - 4QR)ln to become unstable. Fact 5 in the following addresses more precisely those pathological 
cases. 

FACT 5: C and P are unstable and they have common unstable poles. C stabilizes P if (i) Q and R are 
stable, and (ii) (I - 4RQ)1/2 and (I - 4QR)l/2 are stable. 
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TABLE 1.- FIVE EXAMPLES OF MIMO UNITY FEEDBACK SYSTEMS. 

Example 

#l: 

C =  

s + l  
S 

0 

1 

p=[  S + l  0 

0 
2(s+ 1) 

S 

1 
s - 1  

1 
s -  1 

Parameter 

2(s + 1) r l  - 

a = s2 + s + 2 

a 
Q = /  - 2 ( s - l ) ( s +  1) 0 L a 

(I - 4RQ)'n = 

(I - 4QR)'n = 

R =  

s -  1 
s + l  

0 

s -  1 
s + l  

0 

0 S - 
a 

4s 
a 

-- 

s 2 -3 s -2  
a 

2s 
a 

s2 - 3s - 2 
a 

-- 
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Example 

TABLE 1 .- CONTINUED. 

Parameter 

2 b = s  + s + l ;  c = s 2 + 3 s + 1  

s + 1 s(s + l)(s + 2) 

Q=[ s:i ] R =  

(I -4RQ)'/2 = 

(I - 4QR)lD = 

b - 
C 

0 

s(s + 1) 
C 

0 

b 2(s + 1)2 
C bc 
- -  

, 2 + s - 1  
b 0 

bc 
s + l  

b ! s(s + 1)2 

2(s + 1)2(2s + 1) - 
SbC 

, 2 + s - 1  
b 
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Example 

#3: 

s 1  

c p  0 -  

S 

r i  1 - -  
s + l  s 

1 0 -  p = l  s + l  

VOTE: This is the example 9 
If Desoer et al. (1975). 

TABLE 1 .- CONTINUED. 

Parameter 

b = s 2 + s + l ;  c = s 2 + 3 s + 1  

r s + l  s(s + 1) s(s + 1)2 
C bc 

s + l  
b 0 

R = l  C 

0 

r 

b - 
C 

(I - 4RQ)lE = 

(I - 4QR)'D = 

s(s + 1% + 2) 

1 2(s + 1)*(2S + 1) - 
SbC 

s 2 + s - l  
. b  

b 2(s + 1)3 
C bc 

0 

- -  

s 2 + s - l  
b 

bc 
S - 
b 

9 



Example 

C =  

w : 

s + l  s - 1  
2 0 -  

s + l  

P = C  

Note: This is the example 7 
3f Desoer et al. (1975). 

TABLE 1 .- CONTINUED. 

Parameter 

d = s2 + 2s + 5 

Q =  
d 

0 

2(s + 1) (s + 1)2(s + 3) 
d2 

2(s + 1) 

(I - 4RQ)'D = 

d 

; R = Q  

(s + 3)(s - 1) - 8(s + 1)3 
d d2(s - 1) 

0 
(s + 3)(s - 1) 

' (I - 4QR)'D = (I - 4RQ)'I2 

d 
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TABLE 1.- CONCLUDED. 

1 

Example 

2* 3* 

#5: 

C =  

stable 
stable 
stable 
stable 

s + l  

0 
S 

2(s + 1) 
S 

stable stable 
stable stable 
stable unstable 
unstable stable 

Note: In this example, 
C and P have common 
unstable pole at s = 0. 

stable 
stable 
unstable 
unstable 

Parameter 

stable 
stable 
stable 
stable 

Q =  
1 

0 

e = s* + 2s + 2 

2(s+ 1) 

2s(s + 1) 
e 

; R =  
- 

r s  
(s + 1)2 

L 

s - 1  
s + l  I 0 

(I - 4RQ)'n = 

1 
r s - 1  

(I - 4QR)'n = I s + l  

e(s + 1) 
s2 1 
S - 
e 0 

4s 
e 

-- 

s2 - 2s - 2 
e 

2s 
e 

s2 - 2s - 2 

-- 

e 

TABLE 2.- STABILITY CHARACTERISTICS OF Q AND R PARAMETERS 
FOR THE FIVE EXAMPLES IN TABLE 1. 

Example I 
Parameter I I I 

Q 
R 
(I - 4RQ)ln 
(I - 4QR)'n 

I I I 

C and P have common unstable poles. 

I 
I I 

I I 
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TABLE 3.- POLES AND TRANSMISSION ZEROS OF VARIOUS TRANSFER MATRICES FOR 
THE FIVE EXAMPLES IN TABLE 1. 

Example 

#1 

#2 

#3 

*The 

Parameter 

(I - 4RQ)ln 

I-PQ 

PQ 

(I - 4QR) 1/2 

I-QP 

QP 
~ 

(I - 4RQ)lD 

I-PQ 

PQ 

(I - 4QR)ln 

I-QP 

QP 

(I - 4RQ)ln 

I-PQ 

PQ 

(I - 4QR)ln 

I-QP 

QP 

ansmission zei 

Poles Transmission zeros* 
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TABLE 3.- CONCLUDED. 

Example 

#4 

#5 

Parameter 

(I - 4RQ)lD 

I-PQ 

PQ 

(I - 4QR)lD 

I-QP 

QP 

(I - 4RQ)lD 

I-PQ 

PQ 

(I - 4QR)'D 

I-QP 

QP 

Poles 

{ 1; -1 f 2j; -1 f 2jj) 

{ 1; -1 f 2j; -1 f 2j)) 

{ 1; -1 f 2j; -1 f 2j)) 

{ 1; -1 f 2j; -1 f 2j)) 

{l;-1 f 2 j ; - l f 2 j ) )  

(1; -1 & 2j; -1 f 2j)) 
~ ~~~ 

{--1; -1 f j )  

{-1; -1 f j )  

{-1; -1 f j )  

{-1; -1 f j )  

{-1; -1 f j )  

{-1; -1 f j )  

Transmission zeros 

{ 1; 1; 1; -3; -3) 

(1; -1; -1; -1; -1) 

(1 )  

{ 1; 1; 1; -3; -3) 

{ 1; -1; -1; -1; -1 ) 

(1 )  

Fact 5, along with the preceding four facts, permits a complete classification of the time-invariant 
linear multivariable unity feedback system examined in this paper. These facts imply that 1) if the given 
plant P and the compensator C are unstable and they have common unstable poles, then to guarantee the 
stability of the feedback system it is required to ascertain that (i) both the closed-loop transfer matrix from 
the command input u l  to the compensator output y l  (which is Q) and the closed-loop transfer matrix 
from the disturbance input u2 to the plant output y2 (which is R) are stable, and (ii) both 
(I - 4RQ)lE and (I - 4QR)lE are stable (thus guaranteeing that the closed-loop transfer matrices from 
the command input to the plant output and from the disturbance input to the compensator output are 
stable); 2) if the plant and the compensator are unstable but they do not have common unstable poles, then 
it is required to ascertain only the stability of the associated Q and R; 3) if the plant is unstable but the 
compensator is stable, then it is required to only ascertain the stability of the associated R (the associated 
Q will be stable automatically); 4) if the plant is stable but the compensator is unstable, then we only need 
to make sure that the associated Q is stable (the stability of the associated R will be automatically 
satisfied); 5 )  if the given plant and the compensator are both stable, then we only need to ascertain that 
either the associated R or Q is stable (both will be stable automatically). These facts are summarized in 
table 4. For the sake of completeness, the SISO case is also included in the table. 
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TABLE 4.- CLASSIFICATION OF MIMO UNITY FEEDBACK SYSTEMS USING Q- AND 
R-PARAMETRIZATION. 

Stability characteristics 
of the plant P and the 

compensator C 

P: unstable 
C: unstable 

C and P have common 
unstable poles 

P: unstable 
C: unstable 

C and P do not have 
common unstable poles 

P: unstable 
C: stable 

P: stable 
C: unstable 

P: stable 
C: stable 

Necessary and sufficient conditions for the 
feedback system to be stable 

SISO 

Q = C(I + PC) -1 stable 
and 
R = P(I + CP)-1 stable 

QandR stable 

R stable 

Q stable 

Q stableor 
R stable 

MIMO 

Q and R stable, and 
(I - 4RQ)lD and 
(I - 4QR)lR stable 

QandR stable 

R stable 

Q stable 

Q stableor 
R stable 

4. COMPARISON WITH STABILITY TESTS USING THE CHARACTERISTIC 
POLYNOMIAL 

Using a minimal state-space realization, it has been known for many years (Hsu et al. (1968)) that 
the characteristic polynomial of the feedback system, A(s) is given by 

A(s) = Ac(s) Ap(s)det[I + PC] (24) 

where Ac(s) and Ap(s) are respectively the characteristic polynomial of the compensator and the plant. 
Note that det[I + PC] = det[I + CP]. Table 5 shows the results of applying equation (24) to the five 
examples listed in table 1. As expected, the results concerning the stability of the feedback system are 
identical to those shown in table 2 discussed earlier. 

14 



~~ ~ ~~~~ ~~ ~ 

TABLE 5.- CHARACTERISTIC POLYNOMIAL OF THE 

s -1  
e2 .. 

kIVE EXAMPLES IN TABLE 1. 

Characteristic polynomial of the 
feedback system 

(s + 1)2(s2 + s + 2) 

s(s2 + 3s + l)(s2 + s + 1) 

s(s2 + 3s + l)(s2 + s + 1) 

(s - 1)2(s2 + 2s + 5)2 

(s + 1)2(s2 + 2s + 2) 

Notice that, to apply equation (24), a minimal state-space realization (or equivalently a co-prime 
factorization (see Desoer et al. (1975)) of the plant and the compensator are required. By contrast, how- 
ever, no such procedure is required in table 4 with Q- and R-Parametrization. 

5. ' ILLUSTRATIVE EXAMPLES 

The following simple examples serve to illustrate some of the applications that make use of the 
ideas shown in table 4. 

E x a a .  To begin with, consider a very simple unstable SISO plant as shown in figure 4. 

Figure 4.- A simple SISO feedback system. 

Can the compensators of the forms, (a) C(s) = Cl(s) = k(s + l)/s and (b) C(s) = C2(s) = 
k(s + l)/(s - OS), where k being a constant, stabilize the plant? Generate all the compensators that 
stabilize the plant. 

We note that since both the plant and the compensators (a) and (b) are unstable for this SISO feed- 
back system, we need, according to table 4, to ascertain that both the associated Q and R are stable. For 
Cl(s), we found that the associated Q1 and R1, equations (3) and (5 ) ,  cannot be both stable for any value 
of k. We conclude therefore that Cl(s) cannot stabilize the plant. For C2(s), the associated 4 2  and R2 
are both stable with values of k > 1.5. Thus, the plant can be stabilized by the C2(s) with k > 1.5. 

15 
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To generate all the compensators, stable or otherwise by themselves, which stabilize the unstable 
SISO plant, we must again ascertain that both the associated Q and R are stable. To meet this require- 
ment, we fmt choose a general, stable, and proper Q1 such as 

I with qi(s) being Hurwitz. We then enforce the stability requirement of the associated Ri, which from 
equation (12) is 

n(s)[d(s)qi(s) - n(s)pi(s>l 
[d(s)l2 qi(s) 

Ri = 

where the plant P(s) is denoted by P(s) = n(s)/d(s). This permits us to express the coefficients of pi(s) 
in terms of the coefficients of qi(s). Finally the associated compensators, Ci, that stabilize the plant are 
obtained. 

i The following compensators are generated from the above process with i = 1 and i = 2. 

a) i = 1: 

; q l  >O,pl =-(l  +ql) ,pO= 1 + q l  pos + p l  
s + q l  

Q1= 

R1=- 4 1 s  
s + q l  

c1 =-( l  + l/ql) 

b) i = 2: 

; q l  > 0, q2 > 0, PO arbitrary, 
pos2 + pls + p2 
s2 + qls  + q2 

4 2  = 

p l  = (1 + q l  + 92) - 2p0, and 

p 2 = - ( 1 + q l + q 2 ) + p O  

pos2 + pls  + p2 - -- PO s - [l - (1 + q l  + q2)/pO] 
(1 -pO)(s- l)[s-q2/(1 -PO)] 1 -PO s - q2/(1 - PO) 

c 2  = 

The above 3-parameter compensators can be reduced to various 2-parameter first-order compensators with 
a proper selection of PO, p l ,  and p2. 

16 



1) PO =o: 
1 + q l  +q2 

s-q2 
c 2  = 

2) p2 =o: 
1 + q l  +q2 S c 2 = -  

ql  + q2 s + q2/(ql + 92) 

3) p l  =o: 
1 + q l  +q2 s + l  
1 -q l  -q2 s + 2q2/(ql+ q2 - 1) c 2  = 

In particular, if it is now restricted to 

q l  = 1 - 5q2 , q2 < 0.2 

then the family of compensators C2(s) of (b) is produced. 

C2=k- ' + ' ,  k>1.5  s - 0.5 

Example 2. Consider a simple unstable MIMO plant P(s) and the compensators of the proportional plus 
integral form: 

1 

p=[  s + l  0 $1  s - 1  

k2 

c= [  o s  k3 'k:] +- 
k l + -  

Can C stabilize P? 

Both the C and P are unstable, but they do not have common unstable poles. Thus from table 4, 
C stabilizes P iff Q andR are stable. We found that both Q andR are stableif 

k l  >-1, k2>O and k3> 1 ,  k 4 > 0  

Therefore C can stabilize P if ki (i = 1,4) are satisfied by the above conditions. In particular, if we set 
k l  = k2 = 1 and k3 = k4 = 2, then we reduce the compensators to the special one shown in the 
example #1 in table 1 discussed previously. 

Example 3. Given a two-input, two-output plant P(s), 

s - 2  2(s - 2) 
(s - l)(s + 2) (s - l)(s + 2) 

3(s - 2) 4(s - 2) 
(s - l)(s + 2) (s - l)(s + 2) 1 P(s) = 

Can the plant be stabilized with simple proportional compensators of the following form? 

17 



k l  0 
C(s) =[ 0 

Since the plant is unstable but the compensators are stable, we need, according to table 4, only to ascertain 
the stability of the associated R. We found that R is 

1 s - 2 (s + 2)(s - 1) - 2(s - 2)k2 2(s + 2)(s - 1) 
4(s + 2 ) ( ~  - 1) - 2(s - 2)kl 3(s + 2)(s - 1) R=-[ r(s) 

r(s) = s4 + (a + b)s3 + (ab - 2a - 2b - 6klk2)s2 + 4(6klk2 - ab)s - 4(6klk2 - ab) 

where a = 1 + k l ,  and b = 1 + 4k2. We see from the last two terms of r(s) that r(s) is not Hurwitz 
and r(s) cannot be the product of a Hurwitz and (s - 2). Thus R is always unstable and hence C(s) 
cannot stabilize the plant. 

Examule 4. Generate all the plants which are stabilizable by the following family of compensators, 

0 C(S)=[ s + dO n3s+n2 1 ,  dO>O,dl > O  

s + d l  

nls + nO 

We recall that this is the sort of problem which provides a motivation behind our introduction of the 
R-Parametrization described earlier in the paper. The family of compensators is stable by itself. There- 
fore, the feedback system is stable iff R is stable. Let us therefore choose a sequence of stable and 
proper Rs such as 

Rs = (RO, R1, R2,. . ., Ri, . . .) 
where 

and where KO, K1, K2, . . ., Ki are arbitrary 2 x 2 constant matrices, and ri(s) is a Hurwitz polynomial 
of order i in s, i.e., 

The sequence of the plants, Ps, associated with the compensator C and the Rs is obtained. 

Ps = (PO, P1, P2, . . ., Pi, . . .) 
where 

Pi = Ri(1- CRi)-' 

Since Rs is a general and proper sequence, Ps is a sequence consisting of all the plants stabilizable by the 
given stable compensator. The following plants are generated from the above process with i = 0, and 
i = 1. 

18 



1) i = 0: 

k l  k2 RO = KO = [ k3 k4] , ki are arbitrary constants 

PO = RO(1- CR0)-' 

where 

aO(s) = [(l - k4n3)s + (dl - k4n2)][(1 - kln1)s + (do - klnO)] - k2k3(nls + nO)(n3s + n2) 

to1 = (s + do)( [kl(l - k4n3) + k2k3n31s + kl(d1- k4n2) + k2k3n2) 

t02 = (s + dl)(  [k2(1- klnl)  + klk2nlls + k2(d0 - klnO) + klk2n0) 

t03 = (s + do)( [k3(1- k4n3) + k3k4n31s + k3(dl- k4n2) + k3k4n2) 

and 

to4 = (s + dl)(  [k4(1- klnl)  + k2k3nlIs + k4(d0 - klnO) + k2k3n0) 

2) i =  1: 

(KOs + K1) , K1= [ k5 k7 k i  1,  kiarearbitraryconstants 1 
s + r l  R1=- 

PI = RI(I - CR~)-' 

where 

al(s) = [(s + rl)(s + dl)  - (n3s + n2)(k4s + k8)][(s + rl)(s + do) - (nls + nO)(kls + k5)] 

- (k2s + k6)(k3s + k7)(nls + nO)(n3s + n2) 

t l l  = (s + dO)((kls + k5)[(s + rl)(s + dl)  - (n3s + n2)(k4s + k8)] 

+ (k2s + k6)(n3s + n2)(k3s + k7)) 

t12 = (s + dl)((kls + k5)(nls + nO)(k2s + k6) + (k2s + k6)[(s + rl)(s + do) 

- (nls + nO)(kls + k5)]} 

t13 = (s + dO)((k3s + k7)[(s + rl)(s + dl)  - (n3s + n2)(k4s + k8)] 

+ (k4s + k8)(n3s + n2)(k3s + k7)) 
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and 

t14 = (s + dl)((k3s + k7)(nls + nO)(k2s + k6) + (k4s + k8)[(s + rl)(s + do) 

- (nls + nO)(kls + k5)]) 

We note in passing that, for nO = dO = n2 = d l  = 0, the compensators reduce to the special proportional 
type of compensators of example 3. As expected, under this condition, the plant in example 3 is not a 
member of Ps. However, the following plant, 

P(s) = 

for instance, is stabilizable by the special proportional type of compensators, and we find that this plant is 
indeed a member of Ps. 

6. CONCLUSIONS 

A classification of all the compensators which stabilize a given plant, stable or unstable, in a linear, 
time-invariant, MIMO unity feedback system is developed. This classification is made possible by intro- 
ducing a new parametrization referred herein as R-Parametrization, which is dual of the familiar 
Q-Parametrization. It is shown that (i) if the plant and the compensators are both unstable and they 
have common unstable poles, then the feedback system is stable iff (a) Q and R are stable, and 
(b) (I - 4RQ)lD and (I - 4QR)lD are stable, (ii) if the plant and the compensators are both unstable 
but they do not have common unstable poles, then the feedback system is stable iff both Q and R are 
stable, (iii) if the plant is unstable but the compensators are stable, then the feedback system is stable iff R 
is stable, (iv) if the plant is stable but the compensators are unstable, then the feedback system is stable iff 
Q is stable, and (v) if the plant and the compensators are both stable, then the feedback system is stable 
iff either Q or R is stable. 
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