
A PARALLEL ROW-BASED ALGORITHM WITH ERROR CONTROL
FOR STANDARD-CELL PLACEMENT

ON A HYPERCUBE MULTIPROCESSOR

BY

JEFF SCOTT SARGENT

B.S., University of Illinois, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1988

Urbana, Illinois

iii

ABSTRACT

A ncw row-bas& panllcl algorithm for standard-ccll placement targeted for execution on a hypercube

multiprocessor is prescntcd. Key fcatures of this implementation include a dynamic simulated-annealing

schcdule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel

ccll-placemcnt algorithms: Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuris-

tic Cell-Coloring idcntifics scts of noninteracting cells that can be moved repeatedly. and in parallel, with no

buildup of error in the placement cost. Adaptive Scquencc Control allows multiple parallel cell moves to. take

place between global cell-position "updates." This fecdback mechanism is based on an error bound we derive

analytically from thc traditional annealing move-acccpmce profile.

We present placement rcsults for rcai industry circuits and summarize the performance of an implementa-

tion on the Intcl iPSC/2 Hypercubc. The runtime of his algorithm is 5 to 16 times faster than a previous pro-

gram developed for the Hypcrcubc. while producing equivalent quality placement. An integrated place and route

program for thc Intcl iPSC/2 Hypercube is currently being developed around this kernel algorithm.

=CEDING PAGE BLANK NOT

iv

ACKNOWLEDGEMENTS

I. wish to especially hank my advisor Professor Prihviraj Banerjee for his keen guidance and encourage-

ment His ability to motivate me and his other students through personal attention and enthusiasm is without

equal. I would also like to thank my fiancce and family for their support and understanding. Lastly I would

have finished this thesis far more quickly without the constant interruptions and distractions from the other

members of the Computcr Sysiems Group, and for this I am very grateful.

I wish to acknowledgc my corporate sponsor, Bell Communications Research, without whose support this

work could not have begun.

V

TABLE OF CONTENTS

CHAPTER PAGE

1 . INTRODUCTION ...
1.1. Motivation ..
1.2. Styldard Ccll Placcmcnt ...
1.3. Simulated Annealing ..
1.4. Cell Placcmcnt and Simulated Annealing ..
1.5. Thesis Outline ...

2 . HYPERCUBE MULTIPROCESSORS ...
3 . REVIEW OF RELATED WORK ...

3.1. Uniprocessor Simulated Anncdhg Algorithms ...
3.2. F’arallcl Simulated Annealing Algorithms ; ...
3.3. Key Performance Rcsults of Jones and Banerjee ...

4 . ROW-BASED PLACEMENT ALGORITHM ..
4.1. Motivation ..
4.2. Overview of Parallel Algorithm ...
4.3. Mapping Chip Arca to Processors ..
4.4. Distributcd Data Structure ..
4.5. Cost Function ..
4.6. Inlerproccssor Communication Pattcrn ..
4.7. Cell-Movc Resolution : ...
4.8. Summary of Intcrnodc Traffic ..
4.9. Move Rangc-Limitcr ..
4.10. Anncaling Schcdulc ..

1

1

1

3

4

5

6

9

9

10

11

13

13

13

15

17

17

19

20

23

23

24

I
I vi

I
I
I
1
II
I

5 . INTEGRATED ERROR CONTROL ..
5.1 Conuolling Error ...
5.2 Heuristic Cell Coloring ..
5.3. Adaplivc Scquence-Length Control ...
5.4. Thcorctical Justification ..

6 . WLEMENTATION AND RESULTS ..
6.1. Implcmcntation ...
6.2. FIXEDSEQ Algorithm ...
6.3. CELLCOL Algorithm ..
6.4. ADAPTIVE Algorithm ..
6.5. Placement Rcsults ...
6.6. Runtime and Speedup ...

7 . CONCLUSION ..
7.1. Summary of Results ...
7.2. Future R a m h ..

APPENDIX .A. PERFORMANCE TIMINGS ...
APPENDIX B . PROGRAM USERS' GUIDE AND OVERVIEW OF ALGORITHM

REFERENCES ..

28

28

31

34

37

39

39

39

42

43

46

47

49

49

49

51

60

67

LIST OF TAULES

TABLE PAGE

I
I

3.1. Individual Step Timings on iPSC/2 ..
4.1. Outline of Inmprocessor Cell Displaccment ...
4.2. Outline of Inuaprocessor Cell Exchmgc ..
4.3. Outline of Intcrproccssor Ccll Displacement ...
4.4. Outline of Intcrprocessor Ccll Exchange ..
5.1. IC-Colorability of Sample Standard-Cell Circuits ...
6.1. Average ADAPTIVE Move-Sequcnce Length ..
6.2. Optimized Placement Wirclength ...
6.3. Execution Time and Specdup ...

11

21

22

22

23

34

46

41

48

I
I

I
I
I

V i i i

LIST OF FIGURES

I
I
I

I
i

FIGURE

1.1. Sample Standard-Cell Layout ...
1.2. Generic Simulated Annealing Algorithm ...
2.1. Three-Dimensional Hypercube ..
4.1. Pmllel Placement Algorithm ...
4 21. Suip Partitioning of Rows to Processors ..
4.2b. Grid Partitioning of Rows to Processors ...
4.3. Example Cell-Cell Connectivity and Data Structure ..
4.4. Processor-to-Processor Communication Pattern ..
4.5. Interprocessor Mcssage Traffic ..
5.1. Independent Cell Displacements Altering Bounding Box ..
5.2. Sequence of States Pcrmuted with Piuallel Movcs ...
5.3. Brclaz' Graph-Coloring Algorithm ..
5.4. Distribution of Color-Set Sizcs ...
6.1. Average Temporary Error in Suip and Grid Partitioning ...
6.2. Average Cost vs . Tcmperiture for 1 and 16 Processor Hypercubes ..
6.3. Cost Variancc vs . Tcmpcrature for 1 and 16 Processor Hypercubes ...
6.4. Move Acccptancc Ratc for F'IXEDSEQ and CELLCOL ..
6.5. ADAPTIVE Acccptancc Ratc and Normal Acccpuncc Rate ..
6.6. Sequence Lcngth vs . Tcmpcraturc for Sample Circuit ...

PAGE

2

4

7

14

15

16

18

20

24

29

30

33

35

40

41

42

43

44

45

I
1
1

1

CHAPTER 1

INTRODUCTION

1.1. Motivation

I
I
I
I
I

The processing dcinands of software for VLSI (Vcry Large Scale Integration) chip design outstrip the

power of conventional dcsktop workstations. This dcmand continues to rise due to increased device density.

Conventional CAD (Computcr-Aidcd Dcsip) softwm is heavily stressed by customdesign styles in the lucra-

tive ASIC markct, whcrc dcsign tum-around time is critical. Though the performance of microprocessors has

increased dramatically in thc last scvcral ycars, it is clear that the demands of VLSI CAD still render conven-

tional uniproccssor algorithms inconvenient for indusay-type problems. The introduction of lowcost multipro-

cessors in parallel-processing enscmblcs provides the low cost-to-performance ratio needed in this problem

domain. Howcvcr rcscarch into parallel approaches to standard VLSI CAD problems is still immature, and its

progress slowcd by lack of propcr software developrncnt tools for multiprocessors. In this thesis we present a

parallel algorithm to solvc one particular VLSI CAD problem: standardcell placement.

12. Standard Cell Placement

Thc sundard-cell approach is a popular scmi-custom design style in which the designer chooses functional

building blocks from an existing library to construct a portion of, or an entire, VLSI chip. The building blocks

(called cells from now on) provide a level of abstraction to the designer, relieving himher of the necessity of

"reinventing thc whccl." Furthcrmorc, thc interior details of thc cells can change (to improve performance for

example) without invalidating an cxisting dcsign.

Standard-cell dcsigns arc typicilly laid-out in multiple parallel rows or columns of cells. Placed in rows,

cells arc usually of thc samc hcight and of variablc width. Figure 1.1 illustrates a sample layout with 3 rows of

standard cclls. Rwl layouts can havc thousands of cclls and many rows. 40 pads and intercell wiring are omit-

ted for clarity. The gaps bctwccn rows arc flcxible in height and called channels. Gaps between cells in the

same row, which allow signals to be routed bctwccn distant rows, are cdledfeed-lhroughs. All cell-to-cell inter-

connect wiring bctwcen two rows inust lie in the channcl betwccn them.

2

c1 c2 c 3 c 4

Chip Image Boundry

............
c 4

I I

I Channel 1

..................

Channcl2 I
c11 C12 13 14 C15 C17

.........

Figure 1.1. Sample Standard-Cell Layout

I
I
1
I
I
1
I
I
I
1

Given a set of standard cclls and thc interconnection net list, the objective of optimization is to place the

cells in the rows so that the total interconnect wirclength is minimized. Scchen has shown [l] that the total wire

length of a randomly-placed layout can be much largcr han an optimized layout. A direct benefit of a short

interconnect path is reduced signal-propagation dclay, in general leading to better performance. By clustering

highly-connected cclls in closc proximity to one another, channel heights can be reduced leading to a very com-

pact layout. The placcmcnt of standard cclls is then followcd by interconnect routing. Routing assumes the cells

are fixed in placc, and intcrconnccts thcm by laying conductive paths in the intervening channel. If the router is

unable to lay a path in a channel, it incrcly increascs thc channel height to accommodate the new interconnect

path. Good placcment is csscntial for thc routcr to operate cflicienlly. Ideally, place and route should occur

simultaneously for optimal results, but since hcy arc both NP-complete optimization problems, they are handled

separately for simplicity.

Most approachcs to placcmcnt can be catcgorized [21 as cithcr constructive or iterative. Constructive

methods gencally take an incomplctc placcmcnt (some subsct of cells fixed in place) and add cells heuristically

I
I
I
1
1
1
1
1
I

3

to kecp total intcrconncct at a minimum. Classcs of constructive methods include cluster growth 131, mincut

partitioning [4,5,6], global methods such as quadratic assignment [7] and convex function optimization [8], and

traditional branch and bound [3]. Itcrative methods gencrally srart with a complete placement and attempt to

improve the configuration by gcncrating small pcrturbations. Approaches that fall into this category include

painvise interchange [9]. force-directed interchange [101 and unconnected sets [ll]. Both the consauetive and

iterative methods tend to gct stuck in local minima. and are thus unable to reach the global optima. Simulated

annealing is an iterative approach that uscs probabilistic hill climbing to avoid local optima.

13. Simulated Annealing

Kirkpatrick et a f . [I21 inuduccd sirnufafed annealing in 1983 as a new technique for solving cornbina-

tonal optimization problcms. Mctals are annealed by first raising the temperature to its boiling point, then slowly

cooling the molten mixture until frozcn. By canfully controlling the cooling schedule (sequence of tempera-

tures), the desired well-ordered low-cnergy crystalline structure will result. If the mixture is cooled too fast

(quenched), then dcfccts and impcrfcclions in the crystalline lauice (high energy irregularities) will be frozen

into the structure. For a constant tcmpcnturc T, the system is in thermal equilibrium if the probability distribu-

tion of states Si with corresponding energies E (s i) approximates the Boltzmann distribution:

with T being the absolute tcmpcraturc and k b the Boltzmann constant. Quenching occurs when the temperature

is lowered before the distribution of state cncrgics has converged to the Boltzmann distribution.

To accurately simulate physical annealing. thc state of the system must be well-defined, and have an asso-

ciated cost rcprcsenlativc of thc quantitics to be minirnizcd. Furthcr, a process to generate new states from pre-

vious statcs must bc dcfincd that crcatcs a rich sct of pcrturbations. A temperature schedule sufficiently gentle to

pmpcrly anncal without qucnching, yct aggmsivc cnough to limit CPU time, must be found. An outline of a

generic simulated anncaling algorithm is given in Figure 1.2.

4

Simulated Annealing Algorithm
Set initial tcmpcriturc To and state So
T = To
s = S o
While (Stopping Critcria Unsatisficd) Do

Gcneratc new state S' = perturb (S)
If CostAcceptuble (Cost (S '),Cost (S))

Whilc (Inncr Loop Criteria Unsatisficd) Do

thcn S = S'.
End While

End While
End

Figure 1.2. Generic Simulated Annealing Algorithm

Metropolis [13] originally proposed a probabilistic method to determine whether a newly generated state

is "acceptable." Lct AC bc the changc in cost from the previous state S

is acceptable if

New State Acceptablc} ={ ,+,T, 1,

to the new state S'. Then the new state

ifAC c0
ifAC > O

New states with supcrior cost (lowcr cost) are acccpled automatically, while those that increase cost will always

have some small chance of acccptancc. This "probabilistic hill-climbing" ability of simulated annealing allows

escape from local minima by somctimes allowing poor (uphill) moves. As temperature falls to zero, the chance

of accepting inkrior permutations is rcduccd to zero. This function for acceptance has the consequence that the

system evolves into thc Boltzmann distribution.

1.4. Cell Placement and Simulated Annealing

Simulated anncaling has proven to be a very successful method to optimize VLSI cell placement The

"state space" in cell-placcment corrcsponds to all possible pcrmutations of cell positions. The cost function is

primarily aggrcgatc wire Icngth, though most algorithms include penalty costs so that a desired layout aspectra-

ti0 is mct. TimberWolf3.2 [14,15] is a popular uniproccssor simulatcd-annealing algorithm that can produce

near-optimal placcmcnt of srandard-cell circuits. Thc primary dcficicncy of simulated annealing algorithms such

as TimberWolf3.2 is thc rnassivc computation timc required. Approaches to improving execution time fall into

the broad areas of improved cooling schedules 116,171, anncaling hybrids [18,19,20], and parallel implementa-

tions [17,21,22,23,20,24].

1.5. Thesis Outline

This thcsis dcscribcs a ncw row-bascd parallcl placement algorithm based on the simulated-annealing

optimization techniquo. Chsptcr 2 will bricfly revicw thc finc points of the intended hardware platform, hyper-

cube mulliproccssors. Chapicr 3 will rcvicw other work in parallel annealing algorithms for cell placement,

including the pcrformancc rcsulls of an earlicr program that inspired this new algorithm. Chapter 4 will outline

the fundamentals of our row-bascd placcment algorithm, including thc area mapping, distributed data structu~es.

communication patterns, and annealing schedule used. Chapter 5 will illustrate how error is created in parallel

implementations, and thcn prescnt two new methods for controlling error: Heuristic Cell Coloriag and Adap-

tive Sequence-Length Control. The impact of error on thc dynamic annealing schedule will be discussed.

Finally we prcscnt rcsulls of an implcmcntation on the Intcl iPSC/2 Hypercube in Chapter 6. Our integrated error

control couplcd with dynamic schcduling yiclds an order of magnitude improvement in execution time over a

previous parallel algorithm on ihe samc machine, whilc prcscrving the final solution quality.

6

CHAPTER 2

HYPERCUBE MULTIPROCESSORS

The dcsign and manufacture of VLSI "chips" have reached a level of manufacturing economy so high that

the CPU chip (Ccnwal Proccssing Unit) is onc of the cheapest components of a microcomputer - less expensive

than the powcr supply, case and keyboard, hard disk drive, or miscellaneous chips. Interconnecting large

numbers of relatively low-pcrformance. low-cost microprocessors offers a cost-effective hardware platform with

pcrformance approaching a mainframc computer. This potential is often hard to reach because of the difficulties

in writing parallel algorithms for such multiprocessors, assuming the problem is possible to decompose to begin

with. The most popular interconnection topology for large-scale microprocessor ensembles to date is the hyper-

cube [251.

The hypercubc, or binary n-cube is a multiprocessor interconnection topology characterized completely by

the hypercube "dimcnsion," D . There are 2O proccssors in a D -dimensional hypercube, and each processor is

directly connectcd along a communication link to D othcr processors. If the 2 O processors ate addressed from 0

to 2D-1, then those proccssors with only one bit-position difference in their addresses are directly connected to

one another. Figurc 2.1 illusuatcs 8 proccssors intcrconnected. in binary n-cube fashion, resulting in a three-

dimensional hypercubc. Proccssor ad(tresscs are represented in binary.

The hypercube topology offcrs a rich set of inteqrocessor connections, yet the number of physical "ports"

at a processor only increases with the logarithm (base 2) of the number of processors. Also any two processors

are separated by at most D communication link "hops."

The Mark I "Cosmic Cubc" dcvclopcd at the California Institute of Technology was the fist hypercube

built in this country [25]. Borrowing hcavily from this academic effort, Intel introduced their Personal Super

Computer (iPSC) line in about 1985. Each processing "node" in the iPSC conrained an 8 MHz Intel 80286

microprocessor and associated 80287 floating-point co-pmessor, and 5 12Kbytes of RAM. The "extended

memory" option allowed the substitution of 4.5 Mbyte RAM cards for half the processing nodes, resulting in a

hypercube of half the dimcnsion but a substantial amount of memory. Each node has eight 82586 Ethernet tran-

sceiver chips - seven for node-nodc communication in a scvcn-dimensional hypercube, and the eighth for a glo-

bal channel sharcd by thc olhcr nodcs and the cube manager "host." Internode message routing is implemented

7

Figure 2.1. Three-Dimensional Hypercube

in a store-and-forward packet-switching tcchnique so latency is proportional to the number of link hops traveled.

The start-up cost of mesmgc transmission is very high (1.7 msec) making short messages inefficient with respect

to the link bandwidth of 2.8 Mbils/scc. All mcssage buffering and routing is handled in software, so that very

little overlap in communication and computation can occur.

Rccentiy Intel has relcascd a ncw vcrsion, thc iPSC/2, that hsls a new CPU and completely different

message-routing hardware. In this ncw machine the 80286/80287 has been upgraded to the 803861730387 pro-

cessor pair for an incrcase in computational performance of about 4-6 times. Instead of store-and-forward

packet switching, thc new hardwarc implcmcnls circuit-switchcd techniques that greatly reduce latency for mul-

tihop messages. Singlc-hop message latency has been greatly reduced (e 400 pez) thus improving the

efficiency of short messages. Of a morc practical naturc, the ncw hardware and software combination allows

multiple uscrs to run thcir applications simultancously on smallcr "sub-cubes" allocated from the whole hyper-

8

cube.

Jones and Bancrjcc’s placcmcnt algorithm wils ported to both the iPSC/l and iPSC/2 hypercubes here at

Illinois; pcrformance data wcre mcasurcd to dctcrmine the runtime characteristics of the algorithm. (A summary

of these mcasurcmcnts can bc found in Appcndix A.) Though initial development began on the iPSC/l, this

new row-based algorithm was designed to take full advantage of the iPSC/2 architecture. In particular, the

circuit-switched nature of thc intcrconnection network places a smaller penalty on nonlocal message traffic,

which leads to improvcd flexibility in the design of the inter-node communication pattern. (See Section 4.6.)

CHAPTER 3

9

REVIEW OF RELATED WORK

Bccause of thc vcmcndous amount of malerial published on simulated annealing, this review will only

highlight new work that is particularly rclcvant to this thesis.

3.1. Uniprocessor Simulated Annealing Algorithms

The latcst vcrsion of the TimbcrWolf program, TimberWolfSC version 4.1 [15], improves on the original

program TimberWolf3.2 in scveral ways. Thc anncaling temperature schedule is truncated so that only low-

temperature annealing takcs placc. Thc initial acceptance rate is adjusted to 50% with appropriate cost scaling.

In an auempt to reducc thc number of rcjccted movcs. only short-distance moves are generated in what is called

"neighborhood relaxation." Furthennore, cell exchanges are proposed over cell displacements if possible.

These improvcmcnts rcducc thc cxccution timc subsuntially over that of TimberWolf3.2, while maintaining the

same quality final placcmcnt.

To rcducc overall execution timc , Grovcr [18] clips thc typical annealing schedule by starting at a cool

temperature instcad of a vcry hot "boiling" tcmperature. A good initial placement is fkst generated with a tradi-

tional min-cut algorithm [6] , and lhcn anncalcd at a tcmpcrature so low that only a small fraction of the moves

are accepted. This low tcmpcrature annealing docs not perturb placement substantially but instead improves the

initial configuration by about 10%. Runtime is improvcd bccause the min-cut algorithm produces a fairly good

initial placement much fastcr than the anncaling algorithm can at high temperatures. Grover [19] has imple-

mented anolhcr approach that uscs "approximate calculations" in cell position to avoid the high cost of exact

cost calculations in simulatcd anncaling. Error is introduced to the cost calculations because cells are shifted

slightly to accommodate accepted cell moves into an alrcady crowded neighborhood. He suggests that the mag-

nitude of this crror can approach thc tcmpcraturc and thc solution will still converge to good final placement.

Approximate calculations yicld ovcrall spccdup of 3 to 5 timcs over the same algorithm with exact calculations.

Huang er a1.[16] havc dcvelopcd an adaptive schcduling methodology independent of any particular

annealing application. This slatistical approach installcd in a version of Timberwolf produccd a savings in run-

time of betwecn 15 and 57% compared to that for the iionadaptivc schedule, and resulted in equivalent quality

10

solutions. This general schedulc was also applied lo the traveling-salesman problem with good results. Because

of the potential reduction in CPU timc offered by a dynamic schedule, we have adapted Huang’s schedule to our

parallel algorithm.

3.2. Parallel Simulated Annealing Algorithms

Several groups have implemcmxi parallel versions of simulated annealing. Parallel in the context of

annealing can take two forms - functional parallelism or data parallelism. Functional parallelism provides lim-

ited speedup by using multiplc processors to evaluate different phases of a single move. Data parallelism con-

sists of proposing and cvaluating moves indcpendenrly at differem processors (or groups of processors). Obvi-

ously the two forms can be mixed as well. Data parallelism has the advantage of easily scaling the algorithm to

large ensembles of processors.

Jones and Banerjec [22] devclopcd a parallel algorithm based on TimberWolf €or the Intel iPSC/l Hyper-

cube. In this algorithm multiplc cell moves are proposed and evaluated in parallel by pairs of processors. This

early effort laid the foundation for our new row-based algorithm. Performance results of Jones and Banerjee’s

algorithm will be discussed in detail at he end of this chaptcr.

In a manncr similar to Grover [HI, Rose et af.[20] replace high-temperature annealing with a partitioning

method called heuristic spanning that assigns cells to fixed sub-areas of the chip. These sub-areas are then

annealed independently on separate processors via “section annealing.” By risking possible nonoptimal place-

ment they save considerable execution time.

h v i t z and Rutenbar [231 suggcst that a hybrid approach is appropriate to deal with the dynamic charac-

teristics of parallel anncaling. At high tcmpcraturc, functional partitioning of major annealing tasks improves

performance whilc at low tcmperaturcs parallcl moves may be proposcd in parallel with little contention due to

the high move-rcjcction rrltc. Thcy prescnt a icncative criterion to determine at what point their algorithm should

switch from function to data partitioning.

Two groups, Casotto and A. Sangiov~ni-Vincentelli [211 and Wong and Fiebrich [24]. have developed

algorithms for cell placcmcnt on the massively-parallel Connection Machine.

I
I
I
I
I
1
I
I
I
I
I
I
I
I
1
I
I
1
1

11

33. Key Performance Results of Jones and llanerjee

Jones and Bancrjec’s algorithm for the Intcl Hypcrcube produced better quality placement than Tim-

berWolt3.2 and was prcdictcd to also have supcrior pcrformance. At the time of publication, resula were

obtained from an implcmcntation on a hypcrcube simulator bccause a physical hypercube was not available.

Since that time thc program has bccn portcd to thc Intcl iPSC/l and iPSC/2 and the performance discussed [26].

The absolutc performance of the program was not as fast as expected. No program profiling tools are available

for the iPSC/l or /2 so dctailcd timings of important computational and communicational functions were meas-

urcd in situ to detcrminc execution bottlenecks. Thesc performance mcasuremcnts arc included in Appendix A.

Thesc measurcmcnts pointed out a significant boulcncck. A single parallel move can be decomposed into

four primary stcps: move proposal and evaluation, nodc-to-node message Uaffic, synchronizing broadcast and

cell-position update. The timings for these four steps arc listed below for an 800cell circuit on a four-

dimensional hypercube (iPS C/2) .

Table 3.1. Individual Step Timings on iPSCI2

Move Evalualion
Node-Node Traffic

Broadcast
Update 161.1

It was clear the single sub-functiorr dominating cxecution time was the cell-positwn update routine. This

routine’s high CPU cost is due to the structure and nature of the distributed-data structure it manipulates. We

predicted that hand optimizing this routine, pcrhaps coding in assembly language, would only lead to a factor of

3 to 5 speed improvemcnt ovcr the original.

Instead we conccntratcd on dcvcloping a method to avoid this update step. Earlier. Jones and Banerjee

[27] had rcpond thc results of a uniproccssor placcmcnt algorithm that would update after multiple moves.

They obtained thc best rcsults whcn 16 moves wcrc made betwcen updates. The rationale behind this behavior

was that the misinformation accumulation allowed more uphill moves be accepted, thereby avoiding local

minima. Rosc et af. also allowcd their parallcl algorithm to pcrform multiple moves between updates. Experi-

mentally they found that up to 10 parallcl moves could take place between updates.

We havc devclopcd tcchniqucs to modulate update rate dynamically to achieve maximum pe.rformance

without sacrificing placcmcnt quality.

I
I
1
I
I
1
I
I
I
I
I
I
I
I
1
1
I
I
1

13

CHAPTER 4

ROW-BASED PLACEMENT ALGORITHM

4.1. Motivation

The primary design goal of this algorithm was to provide high performance in terms of final placement

quality and overall execution time. A secondary motivating factor was to implement the parallelism in a manner

that would be convcnient for a combined place and route tool, i.e., this placement program will be a subfunction

in an integrated place and route program. Lastly we wanted to provide implicit error control as a means of

improving performance without sacrificing solution quality.

43. Overview of Parallel Algorithm .

This parallel algorithm is a parallel adaptation of the annealing methodology implemented in the Tim-

berWolf [I41 placcmcnt and routing package, with some important improvements. Timberwolf is a uniproces-

sor cell-placemcnt optimization program that cmploys single-cell displacements, orientation “flips,” and cell-pair

exchanges in an effort to minimizc aggrcgatc intcrconncct wire length. The Timberwolf simulated annealing

temperature schedule is fixcd irrcgllrdless of circuit characteristics, and the number of attempted new states per

ternperaturc is a constant proportional to the size of the circuit (number of cells). (?’he latest release of Tim-

berwolf, TimberWolfSC version 4.1, still has a fixed tcmperature schcdule, but the number of attempted states

increases slightly at low tcmpcriture). For simplicity our algorithm employs only single-cell displacements and

cell-pair exchangcs. Instcad of a f i x d annealing lcmpcnture schedule, a dynamic schedule very similar to that

reported by Hung [16] is used, allowing considerable savings in overall execution h e . The temperature decre-

ment is controlled adaptivcly by the pcrceivcd variation in Ihe cost of candidate placement states at the previous

temperature. Thc tcmpcrature is rcduccd only after lhermal equilibrium has been reached, i.e., the probability

distribution of candidate statcs approximalcs the Boltzmann distribution. Since equilibrium detection is

dynamic, the number of ncw attcrnlmd stlltcs per tcmpcrature varics across temperatures. Even with the over-

head involved in adaptivc scheduling, we find an improvement in overall runtime performance.

14

The basic thcmc of our parallel algorithm is to dividc up the area of the VLSI chip image into equally-

sized sub-areas, and allocate each sub-area to a scpmte processor. For a standard-cell circuit in row organiza-

tion, each processor would bc allocatcd onc or morc rows of chip image. Cells are assigned an initial position

but are frec to migrate across thc layout. Tlic ccll's associatcd data structure passes From processor to processor

as it crosses sub-arca boundaries during placcment evolution. Processors pair up to evaluate single move types

(displacements or exchanges), drawing potential cells from the sub-areas assigned to both processors. On a P

processor hypercube, a total of P /2 movcs are evaluatcd in parallel at each "parallel move." The P R moves are

independent - the geographic partitioli guarantees that a cell cannot be moved by more than one processor simul-

taneously. A brief algorithmic outline of the parallel algorithm is presented in Figure 4.1.

Thc Host asscmblcs the initial placcment configuration complctely at random. The overhead of Host-to-

Node and Node-to-Host communication at the onset and termination of the program is negligible compared to

overall exccution time. Dctermimuon of initial tcmperature, Frozcn condition, and the dynamic temperature

schedulc is explained in Section 4.9. A movc scquencc is a series of parallcl moves ma& without updating

cell-position data structures between moves. This updating is an expensive procedure - so maximal length

Node-F'rognm

Receive initial placcment and annealing parameters from Host.
Determine initid temperature To.

I

While placement not "frozen" do

For i-I to SequcnceLength do
(

(
If currcnt color exhaustcd, then switch colors.
Evaluatc ccll movc with Ncighbor proccssor.
If movc succcssful, rccord evcnt in MovcQucuc.

1
Broadcast all ccll movcs from MovcQucuc to all processors.
Para movc scqucnce - add to knowlcdgc of cost distribution.
Adjust ScquenceLcngth bascd on perceived avcragc crror.
If at thermal equilibrium for this tcmpcrature.
then reduce tcmpcrature.

1

Send optimizd cell-placcmcnt configuration to Host.
I

Figure 4.1. Parallel Placement Algorithm

I
I
1
I
I
1
I
1
1
I
I
I
I
I
1
1
1
I
1

15

sequences arc dcsirable. Exccssivcly long scqucqces produce error that will impair convergence. Chapter 5

discusses the control of sequcncc lcngth via crror sampling. All processors maintain an identical current "color."

Cell coloring influcnccs the choicc of cclls sclectcd for moves - only cells of the current color are allowed to

move. This eliminates all temporary crror duc to interacting cell moves. Coloring as an errorcontrol mechan-

ism is discussed in Chapter 5, and thc coloring method itsclf is outlined in Section 52. Pairs of processors

cooperate to pcrform cell rnovcs. Dctailcd dcscriptions of possible move types are in Section 4.7.

43. Mapping Chip Area to Processors

Jones and Banerjee's cell-plxcment pmgram writlen for a hypercube multiprocessor [22] partitioned the

chip area into square blocks, or a grid. This new algorithm instead incorporates TOW. or "sfrip" partitioning.

Symbolic examples of the two chip partitioning smtegics are illustrated below - Figure 4.2a illustrates strip par-

titioning, while figure 4.2b illustrates grid partitioning. Four rows of standard cells have been mapped to four

processors.

Figure 42a. Strip Partitioning of Rows to Processors

16

I I I
I I I

8 m

2 3
a 8

Figure 42b. Grid Partitioning of Rows to Processors

Strip partitioning cannot achicve as fine data granularity as square partitioning, because the sub-area correspond-

ing to a row of cclls can be allocated to only one processor. If the number of processors P in the hypercube

assigned to the problcm is larger than thc number of rows R in the circuit, the remaining P-R processors are

drones - they do no work. If R excccds P , Lhcn multiple physically adjacent rows are assigned to individual pro-

cessors. i.e., [$1 rows are assigncd to cach processor.

The primary benefit of smp partitioning is that the entire cost of any move type can be computed solely on

the basis of local information, along with its partncr node. With grid partitioning. it was necessary to maintain

information on the placemcnt of cclls at a nodc's cast and west neighbors to assess the two penalty components

of the cost function (scc Section 3.5). Thc ovcrhead of maintaining this "neighborhood placement information

can be very high. Furthcrmorc, this ncighborhood placcment information must be exchanged between east-west

neighbors alter every parallel movc to maintain stlltc cost accuracy. By nature, strip partitioning bas all such

neighborhood placement information, eliminating this costly exchange. Most importantly, with exact knowledge

of the two pcnalty cost components i t cach processor, thc only error that accumulates due to parallel moves is

error in total wire [englh. This partial eliminarion of crror via strip partitioning not only reduces the overall

magnitude of crror (cspecinlly at high tcmpcrature) but also simplifies the theoretical justification behind OUT

I
I
1
1
I
I
I
I
1
I
I
I
I
I
1
I
I
I
I

17

methods of crror control. Lastly, strip partitioning lcnds itsclf naturally to an integrated place and route strategy.

Pairs of (logically adjacent) proccssors coopcrating on moves have all the required cell-position knowledge to

route the intervening channel simultancously.

4.4. Distributed Data Structure

Each processor maintains a list of cells currcntly assigned to this processor. This list is implemented as a

linked list of cell structures, whcrc thc svucturcs contain net-list information necessary to compute the

bounding-box portion of the cost function. Though timewise inefficient, this is the most memory-efficient

method of storing the circuit description in a distributed manner. Cell structure information includes

1) The unique global cell IWP
2) The width of the ccll
3) The x,y location at which the centroid of thc cell is currently placed
4) A list of nets to which this cell is connected
5) For each net listcd in 4), a list of other cells u) which the net

is connected, along with the x,y location(s) within these cells.

Figure 4.3 shows an'cxamplc of scvenl cells intcrconnected via nets, and the corresponding cell-sauctures

as thcy would appear in a list at the proccssor. These ccll structures are transferred between processors as cell-

moves are made.

4.5. Cost Function

Thc cost function uscd in this algorithm is identical to that used in early versions of Timberwolf and

several other simulated-anncaling bascd ccll-placcmcnt programs. The cost of a candidate placement is com-

posed of threc subcosts:

11 Estimate wiring lcngth using half thc pcrimctcr of the

21 Overshoot or undcrshoot of row lcnglhs compared to

31 Area ovcrlap of cclls in thc samc row (Pcnalty Cost).

bounding box rulc.

ideal length (Pcnalty Cost).

At high temperatures cells are allowcd to ovcrshoot the maximum row length boundary, and can overlap one

another. Idcally the penalty costs of 21 and 31 rcduce to zcro at the termination of annealing. Each processor

18

* Cell Width

Center (X,Y)
Next Cell

Total Nets = 2

Net #N1 3
Pins = 4

I
I
I

Net #N2

Cell #C2
#of Bytes
Cell Width

Center (X,Y)
Next Cell

Total Nets = 1
r

U U

Pin(l).xy

Pin(2). x y

Pins = 3

Pin(S).xy I I Pin(6).xy

I
I
I
I
I

Nct#N2
I
I

0
Figure 3.3. Example Cell-Cell Connectivity and Data Structure

4

i Net #N2
I

1
I
I
1
I
1
1
I
I
I
I
I
1
I
I

19

can compute the cxact cost of cclls placed within its chip image sub-area. The exact cost of the current place-

ment configuration for the entire chip is simply the sum of partial costs computed at each processor.

4.6. Interprocessor Communication Pattern

Processors pair up to evaluau: a single movc type - either a displacement or an exchange. Several inter-

node messages ;~n: usually cxchangcd in thc coursc of move rcsolution (see next section). Because minimizing

inter-nodc mcssagc latcncy in this phase of thc algorithm is very important to overall performance, the choice of

node-pairings must made carcfully. Uniproccssor algorithms can choose candidate cells from among the entire

cell complement and can then displacc them to any location within the confines of the chip image. Parallel

annealing as implcmcntd in this algorithm resuicts thc choice of cells to the rows mapped to the processor(s)

performing the move.

The intcrproccssor communicalion pattern should satisfy two conflicting objectives: 1) short, medium, and

long distance moves allowed to simulate the gcographic uniformity of uniprocessor algorithms, and 2) prOCes-

sors chosen as neighbor pairs should communicate efficicnlly, i.e., the number of link "hops" necessary to com-

municate from proccssor to proccssor should bc low. The algorithm developed by Jones and Banerje [221

satisfied objcctive 2) by only allowing nwcst-ncighbor (1 link-hop) communication. With their square-grid

chip partition, the communication pattcrn was a variant of the 5-point stencil [28]. If the algorithm was run on a

hypercube of dimension 4 or above the highcr-order links performed long-distance moves, satisfying objective

1).

We propose an improved neighbor mapping based on hierarchical gray codes [29] that satisfies the pro-

cessor proximity goal whilc providing a morc gcographically uniform move selection. If physically consecutive

rows are assigned to logically consccutive processors lrom a gay-code sequence, all physically adjacent rows

will be mappcd to adjaccnt proccssors in thc hypercubc. A mapping corresponding to a hierarchical graycode

sequencc has thc additional propcrty that two proccssors with node numbers Pi and P i e j will be separated by at

most two link hops for 0 < j < P 12. An examplc of this mapping and the pairwise communication that is possi-

ble with such a mapping is shown in Figure 4.4. In the figure, a six-row chip image is mapped to a three-

dimensional hypcrcubc arrangcd in a brokcn ring arrangemcnt with the hierarchical gray code. Arrows originat-

ing in the row allocatcd to nodc #2 indicatc pairwise move resolution with other nodes k2j , O<j<2 .

20

Processors without rows (c.g. processors #4 and #5 do not take an active part in the algorithm, so the move per-

formed with nodc #4 would be strictly internal Lo nodc #2. Given a layout with R rows executing on a hyper-

cube with P proccssors where P > R , cach processor will pair up with 21ogzR - 1 other processors in this pat-

tern. This provides gcographic uniformity for hypcrcubcs of any size.

Node I .. . *.

A 1

m ; [t I
. .

Figure 4.4. Processor-to-Processor Communication Pattern

4.7. Cell-Move Resolution

Pairs of processors coopcrate to pcrfom two kinds of cell moves - cell displacements and pairwise move

exchanges. Thc ratio of displaccmcnts to cxchanges is maintained at approximately 5: 1 as used by Timberwolf.

One proccssor assumcs thc rolc of mastcr, thc other of slave. The relative master/shve relationship between any

two proccssors altematcs in time to avoid load imbalaricc in ccll complements. The master determines the type

I
1 21

of move that will be made and informs the slave. Theoretically, two processors cooperating can perform a cell

move in half the time of a singlc proccssor; howcvcr, the precedence of compufational steps in resolving a move

does not always allow mastcr and slave to opcrate concumnlly. There are two subclasses of moves for both

displacements and exchanges. or four move typcs in total: .

[l] Inuaproccssor Ccll Displacement

[2] Inuaprocessor Ccll Exchange

[3] Intcrproccssor Ccll Displaccmcnt

[4] Interprocessor Ccll Exchange

In an intrapmessor move, the master displaces or cxchangcs cells strictly within its own subarea - the slave

essentially is dormant. In an intcrprocessor move, the master either displaces a cell to the slave's sub-area, or

the master and slave exchange cells. In the wsc of interprocessor cell movement the change in cost is evaluated

partially at the mastcr and partially at the shve. The ratio of interprocessor to intrapmessor moves is 1:l. We

now present a brief algorithmic outlinc of each movc type.

4.7.1. Intraprocessor cell displacement

The master displaces a singlc ccll to another location within its allocated chip area. The candidate loca-

tion is chosen randomly from within a nnge-limiting rectangle centered upon the cell's current location. The .

slave initially sends a cell structure packct which the mastcr discards without inspection.

Table 4.1. Outline of Intraprocessor Cell Displacement

Mastcr I Slave
Send null ccll to slavc.

Receive cell from slavc (discard).
Select cell at random.
Select rdndom location.
Compute displaccment cost.
If displacement cost acccptablc,

Selcct cell at random.
Scnd cell to master.
Receive cell from master. (Determines move type)

then update position, switch rows,
and add move to movequcuc.

22

Mastcr

4.7.2. Intraprocessor cell exchange

Slave

The master selects two candidate cells and exchangcs thcir positions. Change in cost is calculated entirely

by the master, as is the decision to accept the move. If the bounding box created by the two candidate cells

exceeds the range-limiting window in either dimension, the exchange is rejected.

Mastcr Slave

4.73. Interprocessor cell displacement

The mastcr sclects the candidate cell, computes the effect of its loss, and sends a copy of the cell to the

slave. Thc slavc picks a new location from the area crcatcd by the intersection of the slave’s sub-area and the

range-limiting box centcrcd on the ccll’s previous location. Accounting for the master’s loss, the slave com-

putes the total cost of acccpting the move, and decides accordingly.

Table 43. Outline of Interprocessor Cell Displacement

I
I
I
I
I
1
I
1
I
I
1
1
I
I
I
I
I
I

23

4.7.4. Interprocessor cell exchange

Master and slave both sclcct rindom cclls, and both compute partial exchange costs. The slave informs

the master of its partial cost-changc calculations and the master then makes the decision to accept the move. As

in inuaprocessor exchangcs, lhc movc is rejccrcd ouvight if the two cells are too far apart.

Table 4.4. Outline of Interprocessor Cell Exchange

Master I Slave
Select a cell at random.
Send cell to slave.
Receive cell from slave.
Compute partial exchange cost P1.

Receive p d a l P 2 cost from slave.
If aggregate (Pl+P2) cost acceptable,

then modify cell list.
Add move to move-queue.

Inform Slave of decision.

Select cell at random.
Send cell to master.
Receive cell from master.
Compute mal exchange cost P2.
Send partial cost P2 to master.

Receive acceptance decision.
If move was accepted,

then update local placement.

4.8. Summary of Internode Traffic

Figure 4.5 summarizes the intcrprocessor mcssage traffic that occurs in each move type. Message pre-

cedence is indicated by a number next to the arc.

4.9. Move Range Limiter

This algorithm incorporatcs a rmge-limi ting window similar to TimberWolf3.2 to enhance convergence at

the later stagcs of annealing. Displaccmcnt movc typcs always restrict the destination within this box, and

exchange movc typcs arc always rcjcctcd if thc cells cxcced either dimension in distance. The dimensions of

this window arc controlld by thc following formula:

24

1 1 e-3

Inuapmccssor Displaccmcnt Intrapmessor Exchange

1 1
e...

....

3

Interpmccssor Displaccrncn t Interprocessor Exchange

Figure 4.5. Interprocessor Message Traffic

As the window contracts within thc boundvies of thc layout, processor pairs that communicated previ-

ously to evaluate movcs will now be scpanled by a distance exceeding the limiter. These processors will no

longer pair-up. At the later stagcs of anncaling, the rangc-limiting window only allows processors assigned to

physically adjaccnt rows to pair-up (a consequcncc of gray-code mapping), thereby improving perfonnance

slightly over thc gcneral hicrarchical gray-code mapping used at high tcmpexature.

4.10. Annealing Schedule

Thc annealing schedule is the scqucncc of tcmpcratures by which the placement problem is boiled, cooled

and finally frozen. Most implcmeniations of simulated annealing use a fixed sequence of temperatures derived

empirically [12,30,15,14,27,23,21,24,18,223. Huang [161 has proposed an adaptive cooling schedule based

on the characteristics of thc cost distribution and Ihc annealing curve itself (average cost vs. loglo temperature).

Installation of Huang’s schcdulc in a vcrsion of TimbcrWolf yielded substantial savings in overall execution

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
1
I
I

I
I
I
I
I
1
I
I
I
8
I
1
1
I
1
I
I
I
I

25

time with no significant change in final placemcnt quality - for the small sample of test circuits listed. The over-

head of adaptivc scheduling is not large for a uniproccssor algorithm such as TimberWolf. but can be very sub-

stantial in an algorithm likc ours that proposcs cell movcs in parallel. The system cost would have to be sampled

after each accepted move to build an accurate cost distribution. requiring global synchronization and updating

after every parallel move. This is exacdy. what we want to avoid in our new algorithm. However to validate

Huang's schedule for parallel anncding wc have implemented a version that only allows one parallel move

between updates. The pcrformancc of this algorithm is discussed in Chapter 6.

In all the placement via annwling implementations mcntioned above the number of attempted cell-moves

per temperature is a linear function of the circuit size, and remains constant throughout the entire annealing

schedule. TimbcrWolfSC4.2 increases the numbcr of attcmpts at low temperature to compensate for the high

move rejection rate. Huang instcad d i e s on dynamic "equilibrium detection" to signal the appropriate point to

lower the annealing tcmperaturc. Ttic overhead in cquilibrium dctection is slight, and results in far fewer move

attempts at high tcmpcrature than at low tcmpcrature, thereby reducing total CPU time. We have adapted

Huang's schedule to our parallcl algorithm. In addition to the aforcmentioned reduction in total move attempts.

detection of equilibrium implicitly considcrs the impact of error on the the cost distribution, providing natural

error control. This benefit is considcrcd in the next chapter. The initial temperature, temperature decrement,

equilibrium detcction, and frozen condition will be discusscd in the next four sections.

4.10.1. Initial temperature

Initial placcmcnt is "scramblcd" randomly to delcrmine thc maximum possible variance in the placement

cost distribution undcr a 100% move acccpmcc ratc. To scramblc the circuit, all randomly selected moves are

accepted until the variance in the cost distribution stabilizes. Thc so-called Hot Condition [16] is reached when

I UC, - 0,. I
0%

c 0.03 i=l..X

After each parallcl move, h e ncw statc cost is sampled, and added to existing knowledge of the overall cost dis-

tribution. The standard dcviation has swbilizcd whcn K successive samples of the standard deviation crc, in

sequence diffcr from the initial standard deviation of the scqucnce uc, by 3% or less.

Having measured this maximal variation, tcmpcrature is sct proportional to the standard deviation so that

"bad moves (+3u,) arc initially acccptcd with high (75%) probability, Le.,

26

0.75 =

therefore,

To = k . 0 ,

Typically k is ncx 20 [16] , but as the Emperatwe dccline is very sharp at high temperatures the value of k is

not critical. I

4.102. Equilibrium detection

Equilibrium at a tempcrature means the probability distribution of placement configurations has reached a

steady statc. At high tempcrature this distribution will be approximately normal [16,31]. Huang suggests that

equilibrium can be dctectcd by sampling costs dynamically as the placement is perturbed. The ratio of cost sam-

ples within a closed intcmal about tlic mean cost to the total number of samples will reach a steady-state value if

the system is at thcrmal cquilibrium. For a normal distribution, this ratio is well-defined and easily computed via

the error function e$(%). Huang chose a small largct interval S = ka/2 as representative. For a standard normal

distribution,

From this fraction a target count value and maximum count tolerance are established

TargcfCowtt = K (0.38)(Toful#of Cells)

M d i m ' t = K (1-0.38)(Totaf#of Cells)

where K=3. Whilc constructing thc cost distribution. B counter J1 increments each time a new sample cost lies

within the targct intcrval mentioncd above. Anothcr countcr J 2 incremcnts if the sample lies outside the target

interval. Should J1 reach the TurgcrCount bcforc JZ reaches the M d i m i r , equilibrium detection is signaled.

Otherwise both countcrs arc rcsct and counting resumcs. To account for the multiple cell moves ma& in paral-

lel, we weight the countcr incrcmcnt by thc number of movcs accepted at that parallel move. In our parallel

implemenration, the maximum number of ncw configurations gencrated is bounded from above by the same

static limit used in a previous pa~allel implcmcntation [221, and in TimberWolf3.2 [14].

1
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

27

I
I

4.103. Temperature decrement

Thc derivation of the function for temperature decrcmcnt from Huang [16] is too lengthy 10 repeat here.

The idea is to rcduce thc current ternpcriture so that thc expected decrease in average cost is less than the stan-

dard deviation in the cost distribution at this temperature. To avoid sharp reductions at high temperatures, the

new temperature is bounded from below by onc-half the previous temperature, or

Ti+l= mar (Ti TL2)

where h is typically = 0.7.

4.10.4. Frozen condition

A simple proccdurc dctccts Ihc frozen condition. If average placement cost is unchanged for several con-

secutive tempcraturcs, placcmcnt is esscntially "frozcn" and annealing terminates. Fonnally,

' ' 'Cci ' 50.01 i=1. ..4

if the average placerncnt cost during four consecutive temperatures remains wilhin 1% of the first measured cost

in the sequence, the placerncnt is "frozen."

1

28

CHAPTER 5

INTEGRATED ERROR CONTROL

5.1. Controlling Error

In algorithms such as ours that move multiplc cclls independently and simultaneously, error is the differ-

ence betwcen the real change in cost from initial to final configurations and the estimated change in cost equal to

the sum of locally perceived changes in cost at each proccssor. If Ci is the exact cost of the initial configuration,

Cf the exact cost of thc new configuration, and ACj the perceived change in cost computed locally at the

1 5 j S P L? processor pairs that evaluatcd moves in parallel, then

Ci + ACi = C, +Error . x
When not writtcn in the sum as abovc, consider ACj lo be the perceived cost change at an arbitrary processor

pair. The AC, of an unacccpled ccll move is zero. Unaccepted moves may have also experienced error during

evaluation, but this quantity is impossiblc to measure directly, so average error is only sampled from accepted

moves. Clearly, error is duc to inaccurate AC, costs computed locally when evaluating potential moves. Of the

three components making up thc cost function, only estimated wire length contains error. The penalty com-

ponents - cell ovcrlap and row ovcrlundershoot arc computed accurately as a consequence of the strip-

partitioning in row-bascd placement. We now examine a cause of error.

Consider thc following typicru move scenario. Figure 5.1 shows a net bounding box BB defined by

exucmally locatcd pins in the cclls named C 1. C 2 and C3. Because the three cells are in different rows, we can

assume their associatcd dab suuctllrcs arc locatcd at thrcc diffcrcnt processors.

4
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
1
I
I

I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
1
1
1

I - - - - - - - - - - -

; BB'

......... ,. ...
I ;

1 :

I ' I &------{?I
".......(....

29

Figure 5.1. Independent Cell Displacements Altering Bounding Box

Suppose C 2 and C 3 arc displaced indepcndently (by different processors) in a move set to new positions

indicated by the dotted boxcs. Thc ncw dashcd bounding box BB' results if either or both moves is accepted.

Each cell has an associated data smcturc containing pin positions of al l other cells that share at least one net

with this original ccll. Thc AC, computed at both processors would account for the increase in bounding-box

dimension from BB to BB ' for all cclls on that net. Both processors would compute a positive ACj resulting

from this new Iargcr bounding box. but the sum of thcse partial cost changes is actually double the real change in

cost. The magniludc of error would bc on the same ordcr as the change in bounding-box wire length. Thus error

may be produccd when cclls that sliarc ncts are movcd simultaneously, and both moves alter the dimension of

one or more s h a d nct bounding boxcs. Obviously, the chance of error occurring increases with the number of

cells moved simultaneously. At high tcmperaturcs, cclls can move across the entire chip in a single displace-

ment, whereas at low tcmpcratures, the displaccmcnt is limitcd by the range-limiting window discussed previ-

ously. Long-dismcc movcs crcatc grcalcr distortion in bounding-box dimensions, and thus create more error on

the average. Though this cnlire sccnario dealt with singlc-ccll displacements, a similar argument can be made

for thc error crcatcd by simulmcous ccll cxchangcs.

In summary, the crror in ACj duc Lo distributed ccll-location inconsistency for one parallel move is pro-

portional to: 1) the numbcr of cclls in Lhc parallel move scc 2) the extent to which these cells share common

30

nets; and 3) the distances AX and AY that the cclls may be moved constrained by the range.limiter. In his com-

parison of sevcral parallel placcmcnt algorithms, Durand [32] classifies this error in parallel move evaluation

"temporary error," thc implied procedun: to resynchronize and update distributed cell positioning after each

parallel move. Large amounts of temporary error do not seem to impair convergence to a "good" solution. Even

algorithms that move thrcequartcrs of the total number of cells in one parallel move converge successfully

[2 1,241.

Of more interest is the crror accumulated aftcr several parallel moves with no intervening cell position

update. Clearly, thc amount of misinformation will increase with each accepted move. However if this expen-

sive synchronizing update could be reduced in frequency, overall execution time would be significantly

improved, especially at low tempcrature. We call such a series of parallel moves a parallel move sequence, or

simply a sequence. A move scquencc is illustrated schematically in Figure 5.2. The initial placement

configuration is SO, the final placement configuration SN. The exact costs of states SO and SN are known

because the algorithm synchronizes and updates at the start of every sequence. The exact costs of Sates S1

through S(N-1) are not known. However, a pscudocost for state S1 can be computed by adding the total per-

ceived parallcl move cost change (sum of AC, 's) to thc original cost CO. In this manner, pseudocosts are deter-

mined for states S2, S3 up to S(N-1). The pseudocosts will become increasingly inaccurate further along the

sequence as a result of incrcasing error.

r - - - i

I so t------2: I t I ---7 SN 1 +------a s 2 c-->ooo

co PC 1 PC2 CN

Figure 5.2. Sequence of States Permuted with Parallel Moves

Of course the total perceived cost change between pseudostates Cannot be determined without synchroni-

zation, so pscudocosts are not computcd until after synchronization at the end of the sequence. These pseu-

docosts are used as cost samples to build a cost distribution. In Huang's uniprocessor adaptive schedule, exact

cost after every move is known (no crror) implicitly, and an exact cost distribution can be built, What we are

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~

I
I
I
I
I
I
D
I
I
I
I
I
I
I
1
I
I
I
I

31

creating is a cost distribution with crror - the theoretical consequences of which will be discussed in Section 5.4.

The crror of a scqucnce of length N is similar to the casc for just one parallel move.

Ci + Avkj = C' +Error.
ic I'

Again average error is just the total crror divided by the number of accepted moves. As the sequence length

grows, so docs thc amount of misinformation on ccll positioning. Hence, average error increases. Durand calls

this error due to outdated information "cumulative crror." While convergence is largely insensitive to temporary

error. several groups report that cumulativc error can impair or disable convergence entirely [20,33.19,27].

Grover's algorithm with approximate calculations [19] resmcts the error to a magnitude less than the current

temperature, and maintains convergence. Due to thc nature of our distributed data smcture, we cannot provide

rough analytic bounds with which to detcrmine sequcncc length as he has.

Our placement algorithm guarantccs that thc error in system cost because of outdated cell-position infor-

mation is due only to incorrcct wirc-lcngth assessment. This benefit of strip partitioning not only reduces the

magnitude of error, but also allows us to analyze the effect of e m r more closely. We have developed two new

approaches for controlling crror: Heuristic Cell Coloring to eliminate temporary error, and Adaptive

Sequence-Length Control to consvain cumulative crror.

5.2. Heuristic Cell Coloring

We have implcmentcd an cfficient circuit prcpmessing algorilhm called Heuristic Cell Coloring, which

complctely eliminatcs temporary error in our parallel placement algorilhm by identifying sets of noninteracting

cells. Nonintencting cclls can bc movcd rcpcatcdly. and in parallel, without any accumulation of cell position

misinformation in the distributcd database. Casotto [21] calls such a move-set independent moves. If each cell

were only movcd once bctwccn global cell-position updates (with coloring), then that set of moves would be a

Serializeable Subset as dcfincd by ICmvitz and Rutcnbar [30]. This cell-coloring method is extensible to other

parallel-placcmcnt algorithms.

Finding scts of unconncclcd nodcs in an arbitrary graph is analogous to graph coloring. Clearly the circuit

description of a standard-cell circuit can bc directly poscd as a graph where cells correspond to nodes and nets

correspond to cdges. Thc graph is colorcd so that no two connected vertices are the same color. Now all ver-

32

tices (cells) of the same color arc noninlcracting, and can be moved repeatedly between updates without any

error accumulation! Though optimal graphcoloring for arbitrary graphs is NP-complete, fast heuristic graph-

coloring mcthods arc available for graphs that are not "pathological cases." We will now outline a standard

cell-coloring algorithm that can bc uscd to heuristically color standard-cell circuits. . .

Thc graph-coloring problcm, like optimal standard-cell placement, is NP-complete. Fortunately, heuristic

algorithms for near-optimal graph coloring produce colorings sufficient to benefit parallel placement algorithms,

in much less time than placemcnt. The emphasis of this project was not to find an algorithm that produced the

best coloring (fcwest colors), but rathcr to dcterminc what benefit approximate coloring can provide. Turner

[34] suggests that most graphs are "easy" to color in j colors where j' = k, the chromatic number of the graph.

The chromatic number k is thc minimum number of colors ncedcd to color the graph. He further suggests that

graphs that are extrcmely hard to color are pathological cases. We conjecture that standardall circuit descrip-

tions are not pathological cascs, and thus are easy to color in near-optimal number of colors. Graphs that exhibit

low maximum conncctivity (c.g.. lack of vcry largc cliques) are easier to color in k colors than those graphs with

high maximum connectivity. The conncctivity smcturc of scvcral example circuits will be examined briefly, and

its relation to ovcrall colorability notcd.

In kceping with Turner's suggcstion, thrcc variations of an algorithm originally proposed by Brelaz

[35,34] were developed to study thc merits of diffcrcnt levels of heuristics in coloring graphs of typical circuits.

In what follows, vertices are cquivalcnt to cells and cdges correspond to nets interconnecting cells. The "origi-

nal" algorithm can be paraphrased with a vertex selection rule:

0 Select an uncolored vertex x from the heap of uncolored vertices such that the number of potential

colors available to x is a minimum. If several vertices match this criterion, select that vertex with

maximum degree in the as yet uncolored subgraph. Color this vertex x with the minimum color

available.

An outline of Lhc original Brelaz algorithm is listed in Figure 5.3.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
~I
I
I
I
I
I
u
I
I
I
I
I
1
I
I
I
1

Brclaz()

for all w E V (
(

w.color = NULL
w.avail = (Colors nunibercd 1 through IVI)
w.dcg = Iw.neighbors1

1
M = makchcap(V)
so&eap(W
while hcap-not-empty(M) (

x = dclctc-hcap-min(M)
x.color = min-avail-color(x.avail)
for z E x.neighbors (

if z.color = NULL (
z.avail c z.avail - x.color
z.deg = z.dcg - 1

1
1
siftup(W

1
1

33

;For all cells
;Set to uncolored
;All colors available

;As per previous rule

;Pop top of heap
;Smallest available color
;For all connected cells
Seduce possible color
;set
Seduce degree in
;uncolored subgraph

;Maintain heap order

Figure 5.3. Brehz' Graph-Coloring Algorithm

The original Brclaz algorithm will run in O(m1ognn) time (n vertices and m edges) if the set function rou-

tines (color availability sct) arc coded carefully with balanced binary-= data structures [34]. The current

implemcnotion was not codcd in this manncr. Thc original Brclaz algorithm was the slowest of the three varia-

tions.

Variation no. 1, callcd "random," is identical to the original except the vertex heap is never sorted.

Delete-heap-min then essentially removes a random clement from the heap of remaining vertices. This varia-

tion is faster because sorting the h a p is very expensive.

Variation no. 2, "grccdy." is identical to the original, but no heap sorting is performed after the first sort.

This orders the verticcs in ihc hcap by dcgrce - those vcrtices with high degree will be removed first. This is

similar to the "standard" grecdy gaph coloring algorithm. The execution time of this algorithm is somewhere

betwcen "original" and "random"[34].

The thrcc graph-coloring algorithms wcrc codcd in the form of a program in the "C" Language. Input files

for the program wcrc ccll-dcscription filcs in TimbcrWolf format. (Actually TimbcrWolf format had to be con-

verted slightly sincc it contained information superfluous to the coloring program.) Resulting colorings of

several circuits are listcd in Table 5.1. Thc runtime for the coloring algorithm on all circuits was under 10

34

Y
Ava

6
6
8

40
22

minutes, with the exccpqon of the 800-cell circuit, which took about an hour with the original Brelaz algorithm.

This satisfies the constraint that coloring should lake much less time than placement.

Table 5.1. I(-Colorability of Sample Standard-Cell Circuits

Colors Needed
Brelaz Random Greedy

11 11 11
15 15 15
29 24 30
21 24 24

6 6 6 <

. Number
/“fc$s I bf inecti\

Max
10
16
23

123
123

- -

-

The random and greedy algorithms pcrformed as well (or beuer) than the original algorithms, except for

the 800-cell circuit, wheee the original algorithm did slightly better. The 286-cell circuit had a very high average

connectivity, and required a corrcspondingly high number of colors. Unfortunately no optimal coloring numbers

were available for thcsc circuits.

Of more intcrcst is thc distribution of the color-set sizes. For example, the 800-cell circuit colored by the

original Brclaz algorithm can bc colorcd in 21 distinct hues. The average color set would then include 800/21=

38 cells. The actual distribution of set sizcs for this circuit is plotted in Figure 5.4.

Ci~~ual inspcction of the graph will show that the size of most of the color sets falls below the 38cell aver-

age, with scvcral large scts encompassing about 50% of the total cells. These large cell sets offer the greatest

potential in terms of parallel cell movcs, but those cells in the smaller sets must be allowed to move as well. By

limiting the currcnt color to a small color set, the overall acceptance rate drops with respect to the noncolored

algorithm.

All lhree algorithm variations produced ncarly the same sct-size distribution. Certainly other algorithms

could probably be developcd that producc a more cven distribution. It is doubtful that other algorithms could

produce a substantially better coloring.

53. Adaptive Sequence-Length Control

We now describe a mcthod uscd to control cutnulative error. Our parallel algorithm dynamically extends

and contracts thc parallcl move scqucncc Icngth consuaincd by a bound on allowable error derived from tem-

perature. Other rescarchcrs [20.22,231 hnvc reportcd that fixed length sequences can be used and still maintain

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
1
I
'I
I .
I
1
I
I
I
I
I
I
I
I
1
1
1

200 -

150 -

100 -

50 -

0-

Number of

convergen

Cells

e. Fix d sequ

1
I I I I I

0 5 10 15 20 25

Index of Color Set

Figure 5.4. Distribution of Color-Set Sizes

35

'3
o B r e b
x Random
A Greedy

nce lcngths are inappropriate due to the varying conditions found for different circuits

at different tempcnturcs. Maximal size sequence lengths are desirable because they limit the frequency of cell

position updating thereby improving performance significantly.

53.1. Bounding error with temperature

We wish to find an uppcr bowd on the maximum pcrmissible average error at a particular temperature.

By adjusting scqucncc lcngth dynamically aftcr cach scqucnce, the average error can be limited to a specific

range. We base our approach on thc characteristics of the move-acceptance curve. The composite move-

acceptance-ratc curve is ncarly continuous and similar to the so-called "annealing curve" of cost versus loga-

rithm of tempcriturc. Wc call Lhc acccptancc ratc composite because it has two comporlents:

36

P = {move accqmd}

= {move accepted IAC > 0 move accepted IAC < O}*{AC < O}

where AC is the change in cost such a move would producc. The procedure developed by Metropolis [13]

rewrites the probability of accepting a "good" move (AC<O) as unity and that of a "bad move as (e-&IT).

Hence,

In the prcsencc of crror the compositc acccpunce rate changes slightly; however, the probability of generating

good or bad moves is invariant with respect to error :

PE =e-(ugfl-{AC>O} +{AC<O}

Our approach then is to bound the magnitude of allowable error so that the "normal" composite acceptance rate

is not unduly affected. In similar fashion, TimbcrWolfSC version 4.1 [15] dynamically scales the acceptance

rate of bad moves thercby forcing the composite rate to follow an empirically derived optimal curve. To bound

the acceptance rate with error PE to within 5% of normal, i.e..

P -PE p S 0.05

we find two bounds on magnitude of crror - one for pessimistic error E+ and one for optimistic error E-:

E+ 5 -T I ln(l-0.05) = T120

E - I -T / ln(1+0.05) = T / 2 l

The tighter bound (optimistic crror) is used in the algorithm. If the average error measured at the end of a

sequencc is higher than T/21, thc scqucncc length is reduced commensurate with that excess. If average e m r is

very low (T/42) then sequcncc length is lengthened slowly. Plots of average sequence length vs. temperature

are included in the next chaptcr. Expcrimcnolly wc found that a 5% deviation in composite acceptance main-

tained convergence of all our tcst circuits - it is not clear what maximum variation in acceptance rate can be

tolerated and still insurc convergcncc.

I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
l
I
I
1

37

5.4. Theoretical Justification

Our conjecture is that error consuained to wire length with our row-based algorithm will assume a normal

distribution undcr a parallcl movc SCL Furthcrmorc thc dismbution of system cost with error will also retain

normal form validating Huang’s schcdulc [161 for our pafallcl move set

Wc have dcmonsvatcd how error is created by cvaluating interacting moves in parallel. Outdated cell-

position information produccs crror that is proponional to the number of nets connected to the cell and the &-

ranee it was displaced from its original location. Thc mor can be decomposed into X and Y components:

E, = aW,

E, = P-W,

where E, is a random variable reprcsenting the system-wide crror in the Xdimension at all nodes, and W, is a

random variable reprcscnting error in the bounding box. Now E, is proportional to the W, because all the cells

are chosen indcpcndently without rcgard Lo conncctivity. Thcrcfore E, = ai W, will assume a normal distxibu-

tion as the sum of indcpcndcnt uniformly random variables. The same argument can be made for E,. Now the

X and Y componcnts of displaccments and exchanges arc completely independent. Therefore, the error com-

ponents E, and E,, can be combined into a single normal random variable E with mean,

CLE = PE.+CLE, 9

and variance,

Hence crror introduccd by a parallcl movc sct is normal in distribution.

By treating simulated annealing as a Markov process Hajck [311 and others have shown that the cost dis-

tribution will assume a normal distribution at high tcmpcrature. Indeed Huang’s statistical scheduling approach

is based on this assumption. We havc just shown that error in a parallcl move set will assume a normal dishibu-

tion. Assuming that thc normal random variable error is indepcndent with respect to the normal random variable

cost, the sum of thc two will assumc a ncw distribution that is also normal:

38

a~,=a&o2 .

Taking this procedure onc stcp furthcr. a squcncc of parallel moves is equivalent to one very large move

set except that cclls may be movcd morc than during a squcnce. Though cell moves are no longer independent,

we conjecture that the avcnge error cxpcricnced in a scquence of moves will also follow a normal distribution,

with some minor dcpendcncy effects.

1
I
I
I
I
1
I
I
1
I
I
I
1
I
I
I
I
I
I

39

I
I
I
I
I
1
I
I
I
I
1
1
1
I
I
I
I
I
1

CHAPTER 6

IkIPLEMENTATION AND RESULTS

6.1. Implementation

The performance of this row-bascd placement algorithm is at least 5 to 20 times as fast as a previous

parallel algorithm for the hypercubc [22]. We have implemented this algorithm on the Intel iPSC/l and /2

Hypcrcubcs, in about 6,000 lincs of "C" language code. Three variants of the algorithm were developed with dif-

ferent lcvels of error conuol. The simplest algorithm, FIXEDSEQ, fixed the sequence length at one. and did not

use heuristic ccll coloring. This vcrsion basically verified that Huang's annealing schedule could be adapted to a

parallel annealing algorithm. Thc sccond algorithm CELLCOL is identical to FIZDSEQ, with the addition of

heuristic cell coloring. We will present the impact of coloring on convergence and the annealing schedule.

Lastly the third algorithm ADAPTIVE incorporatcs dynamic sequence-length adjustment, but does not include

heuristic cell coloring. ADAPTIVE has performance an order of magnitude better than that for Jones' algorithm,

while maintaining equivalent quality placcment. In the future this program will form the core of an integrated

VLSI placement and routing package milored for the iPSC/2 Hypercube. We will first discuss general results of

OUT error control mcthodologies. thcn thc placcmcnt quality produced by all three algorithms. and finally the run-

time performance.

6.2. FIXEDSEQ Algorithm

Wc stated that suip putitionicg would eliminate error due to cell overlaps and edge overshoorhdershoot,

and that error would bc produced oiily in wire lcngth. Figure 6.1 plots the average temporary error of a @-cell

test circuit for both the new row-bascd algorithm and die previous grid-based approach [22]. A four-processor

hypercube was uscd in both cascs, and the scqucnce lcngth was limited to one. Clearly by eliminating error in

cell overlap and row-ovcr/undcrshoot thc new algorithm experiences far less temporary error.

Several propertics of the FIXEDSEQ algorithm are worth noting. Figure 6.2 is a plot of placement cost

vs. temperature for a circuit run on a uniprocessor and a sixtecn-processor hypercube. At high temperature the

parallel algorithm appcars to find some high-encrgy states not accessible to the uniprocessor algorithm. This

40

. Row-Bascd

- Grid-Bad
40

I I I I I I I I I I I
-3 -2 -1 0 1 2 3 4 5 6 7

Figure 6.1. Average Temporary Error in Strip and Grid Partitioning

graphically depicts the pslnllel algorithm's ability to mist local minima in the presence of error, an idea fust

atuibutable to Jones and Banerjce [221. At low temperature the cost curves converge as is expected because the

behavior of the parallel algorithm convcrges to that of the uniprocessor under a high move-rejection rate. With

this fuller exploration of the configuration space comes a corresponding higher variance in cost distribution. The

variance of the placement cost vs. lcmpcnture is plotted in Figure 6.3 for the same circuit and hypercube

configurations as above. Likewise the bchavior of the parallel algorithm approaches that of the uniprocessor

algorithm at low tempcraturc. With the FIXEDSEQ algorithm we have shown that Huang's adaptive schedule is

appropriate for our parallcl anncaling algorithm. Though FIXEDSEQ produces good quality results, the runtime

is excessive due in part to the globa! synchronization that occurs after every parallel move (i.e., sequence length

is one).

I
I
I
I
I
1
I
I
I
I
I
1
I
I
1
I
I
I
I

I
I
I
I
I
1
I
I
i
1
1
I
I
I
1
1
I
I
1

41

' 1 Processor
16 Processor A

Average
cost

500000

-1 0 1 2 3 4 5 6 7

Figure 6.2. Average Cost vs. Temperature for 1 and 16 Processor Hypercubes

42

cost
Variance

1OOOOO

5 m

0
-1 0 1 2 3 4 5 6 7

loglo CTempemture)

Figure 6.3. Cost Variance vs. Temperature for 1 and 16 Processor Hypercubes

63. CELLCOL Algorithm

The CELLCOL algorithm is identical to FIXEDSEQ but heuristic cell coloring influences the cells chosen

at each parallel move. We conjectured that heuristic cell coloring could restrict the potential move sets enough

to impair convergence. Figure 6.4 plots move-acceptance percentage vs. temperature for F'IXEDSEQ and

CELLCOL. At high tempcrature thc acccptancc rate is lower for CELLCOL than for FIXEDSEQ. If a processor

pair fails to evaluate a movc bccausc of lack of cclls of the proper color, this is tallied as nonacceptance. This

graph then illuswitcs how rcstricting thc pool of available cclls in a parallel move set can damage acceptance

rate, which in turn requires morc parallcl ccll movcs to rcach find high-quality placement. For all the circuits

tested, the final placemcnt configuration found by CELLCOL was inferior to that for either FIXEDSEQ or

ADAPTIVE.

I
I
1
I
I
I
1
I
I
I
1
I
I
I
I
I
I
I
1

43

...........
.*.

FIXEDSEQ

........... CELLCOL

0 i
I

1 1 I I I I I I
0 1 2 3 4 5 6 7

log10 CTcmpenture)

Figure 6.4. Move Acceptance Rate for FIXEDSEQ and CELLCOL

6.4. ADAPTIVE Algorithm

The ADAPTIVE program eniploys adaptive sequence-length control to achieve greater runtime perfor-

mance through error monitoring. Our adaptive algorithm restricts sequence length to within a certain percentage

of error so that the compositc acceptance rate with error will stay very close to the composite acceptance rate

without mor. Figurc 6.5 bclow comparcs thc acceptance ratc of the adaptive algorithm with 16 processors with

that of the nonadaptivc uniproccssor algorithm (i.e., no error implies unbiased acceptance rate). The adaptive

acceptance rate closcly follows thc riltc of the nonadaptive algorithm.

Figure 6.6 is a plot of scqucncc length vs. tcmpcrature for a 183-cell circuit placed on a 16-processor

hypercube. Sequence lcngth starts at 1 and climbs rapidly until the system reaches a particular temperature. The

sequence lcngth drops sharply LO zero when the amount of temporary error in a single parallel move exceeds the

allowable bound bascd on tcmpcraturc. After this point, error at each parallel move is usually either z m or

much largcr than thc allowable bound, which produccs the wild oscillation in sequence length seen. At low tem-

44

1-

0.5 -

0-

Percent
Accepted

I I I I I I I I
0 1 2 3 4 5 6 7

Figure 6.5. ADAPTIVE Acceptance Rate and Normal Acceptance Rate

perature a long scquence length is still appropriatc because so fcw moves are accepted, but after the "threshold

temperaturc" is rcachcd a new mctliod for modulating scquence length is needed. This is still a subject of OUT

research.

Though fixed scqucnce lengths have becn rcported by other groups [20,22,23] we find that the average

ADAPTIVE sequence length is usually one or two orders of magnitude greater than these static limits.

Table 6.1 summarizes the averagc length of movc scquenccs for all the test circuits. Allocating more processors

to the task gcncratcs morc crror (Le., largcr parallcl move set). Therefore, the sequences contract to restrict error

to a constant fraction of tcmpcrature.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I

Sequence
Length

50 - 1

45

-3 -2 -1 0 1 2 3 4 5 6 7

log10 (Temperature)
Figure 6.6. Sequence Length vs. Temperature for Sample Circuit

46

1

Table 6.1. Average ADAlTIVE Move-Sequence Length

I 72

i Circuit I Numberof 11 Sequence

32

64

183

286

469

2 60
4 44
1 157
2 115
4 57
8 33
1 70
2 78
4 60
8 75

16 40
1 329
2 304
4 275
8 210

16 105
1 na
2 na
4 287
8 M >

16 145
1 M

8
16

na
174

65, Placement Results

Our algorithm produced placcmcnt results equivalent to TimberWolf3.2 Table 6.2 summarizes our place-

ment results for various tcst circuits and hypcrcube sizes. FIXEDSEQ converged to a better or equivalent place-

ment for the two circuiu wc could compare to Timberwolf. Larger circuits were not placed with FIXEDSEQ

due to prohibitivcly long run time. Thc rcsults for the 32-cell and 64-cell circuit are compared to placement

values from Jones and Banerjce’s program.

CELLCOL plainly did not c o n a g e for the three circuits attempted. This is probably a result of the res-

tricted move set available to the anncaling algorithm under heuristic cell coloring. Again larger circuits were not

attcmpted duc to cxcessive run times.

ADAPTIVE had cxccllent convcrgcncc for all circuits and hypercube sizes, with the exception of the

286cell circuit which exhibited somewhat poorer placement.

I
I
I
I
I
I
I
1
1
I
I
I
I
I
I
3
I
I
I

47

FIXEDSEQ

4666
476 1
5276

14604
14830
14633
14497
80588
80747
86932
8275 1

Table 6.2. Optimized Placement Wire Length

CELLCOL ADAPTIVE

6803 4930
6485 4855
6663 4995.

25098 14448
24385 14553
24497 14626
22320 14541

102191 8 1422
109021 75324
114025 77968
119648 89537

Circuit I Numbcrof

183

286

Size Proccssors +
8
1
2
4
8

16
1
2
4
8

2 4 4

~~ -

82594
126478

125545 83095
na 144939

2
469 1 4

132140
131887
153923
1433 10

na
na
na
na

na
na
na
na

na

na
~ 800

na 135517
172017 na

na 149587
na 142849

na na
na 245808
na na
na 249 162

na na
na 544721
na na
na 553875

na M

na M

16

Timberwolf

,5101 -
25798

-
97956 -

127788

-
-
-

258744

-
-
-

494948

6.6. Runtime and Speedup

With adaptive scqucnce-lcngth control our algorithm ran between 5 and 16 times faster than a previous

hypercube algorithm [22], and now has an overall cxecution time comparable to Timberwolf. The runtimes and

speedups in minutcs for threc varianls of the algorithm are listed in Table 6.3. Speedups are not as high as those

reportcd by Joncs [22], in which a fixcd annealing schedule was used. The number of temperature decrements

increased in the prcsencc of mor, and more total moves were evaluated to compensate for this effect, reducing

speedup.

We expcct with slight changcs to thc scqucncecontrol fcedback mechanism that we can improve this

overall pcrformancc by a factor of 2 to 5 while prescrving convergence.

Table 6.3. Execution Time and Speedup

183

286

469

800

8 22 1.4 20 1.9 7 4.4
1 406 1 .o 542 1 .o 434 1 .o 876
2 45 1 0.9 465 1.2 433 1 .o -
4 347 0.9 247 2.2 125 3.5 408
8 123 3.3 128 4.2 118 3.7

16 118 3.4 97 5.6 58 7.5 168
1 2940 1 .o M M 1350 1 .o 6840
2 2415 1.2 M M 1114 1.2
4 1135 2.6 na M 348 3.9 2448
8 720 4.1 na na 390 3.5

16 482 6.1 na na 170 7.9 840
1 na na M na na na 136800
2 na M M M na na
4 na na na M 4149 na 45600
8 na M na na na M

16 na na na na 1018 na 10800
1 na na M M na na 117720
2 na na M na na na
4 na na M na 6225 na 30780

. 8 na na M na na M
16 na na M na 1260 na 10260

I
i
i
1
1
i
i
1
1
1
1
1
1
1
1
1
1
1
I

I
I
I
I
8
I
1
I
I
I
I
I
I
I
I
I
I
1
1

49

CHAPTER 7

CONCLUSION

7.1. Summary of Results

We have prcsentcd a new row-bascd panllel cell-placement algorithm based on the simulated annealing

technique, designcd to run on a hypcrcubc multiprocessor. The algorithm has been implemented on the Intel

PSC/2 Hypcrcubc. Thc placcmcnt results of this algorithm are equivalent to Timberwolf - the standard for

comparison in academia and industry - yct thc execution time is much faster. Also the runtime is up to 16 times

faster than a previous placcmcnt algorilhm implemented on the hypercube [221.

Though all the parallel placement algorithms suffer from error as summarized by Durand [32]. we are the

first to implement error control in a systematic mcthod with theoretical grounding. We have addressed the prob-

lem of e m r in parallel cell maves with two ncw techniques: Heuristic Cell Coloring and Adaptive

Sequence-Length Control. Heuristic Ccll Coloring climinates all temporary emr in a parallel move set by only

choosing nonintcracting cclls at each parallcl move. Ccll coloring rakes only a small fraction of the time neces-

sary to place the circuit, and nccds to be done only once as a prepmessing step. Adaptive Sequence-Length

Conml allows multiple parallcl moves to occur betwecn cell-position updates. We derive a bound on acceptable

error based on the traditional move-acceptance curve, and the sequence length is modulated so that average

measured error approaches this bound from below. Long sequence lengths provide high performance because

all cornputation and intcrprocessor communication that take place during a sequence are asynchronous and

nearly local. This locality of computation and communication enables the overall speedup to scale with the

hypercube size.

7.2. Future Research

Having cstablished a viable placcmcnt tool that can place industriahized circuits in a reasonable amount

of time, the next task is to inregrate channcl-routing and placement into a single parallel algorithm. Merging a

high-quality parallel routcr such as Brouwcr’s [36] with this placer should provide superior results over distinct

place and route programs.

50

Then are sevcral improvcmcnts that CM be madc to this program to improve performance. First, adaptive

scquence-lcngth control providcs trcmcndous improvcmcnts in execution time. It would be worthwhile to

experiment with othcr (looscr) bounds on crror to maximize sequence length. Second, the move set of innpro-

cessor and inmproccssor cell moves is not efficient in that thc Slave processor is always dormant during an

invaprocessor movc. Pcrhaps a bctlcr movc sCt would be dong the lines of the latest version of Timberwolf [15]

with mostly cell exchanges taking placc ovcr short distances. Third, as Huang points out [16] the statistical

approach relies on a normal cost distribution. This is strictly the case only at high temperatures. The cost inter-

val and large1 counts should be uptlalcd with decreasing temperature to account for the changing shape of the

dislribution.

1
I
I
I
I
1
I
I
1
I
I
I
1
I
I
1
1
I
1

51

APPENDIX A

PERFORMANCE TIMINGS

A.l. Introduction

Prior to dcvelopment of the ncw row-based annealing algorithm, Jones and Banejee's parallel algorithm

was timed in some detail to dctcrmirie performmcc boulcnecks. The new row-based algorithm was developed

to surmount these bottlenccks in ordcr to provide greater performance. No automatic profiling tools are avail-

able (a la 'gprof undcr UNIX) for the hypcrcube, so code was inserted into the program to perform the timings.

Each node processor in the iPSC/l and iPSC/;! has a local real-time clock with precision in single milliseconds.

Though accurate to milliseconds. on the iPSC/l sylulVity is only available to 5 milliseconds. This clock value

is accessiblc through the CLOCK0 (iPSC/l) and MCLOCKO (iPSC/2) "C" language function calls. By bracket-

ing important subroutines and code fragmcnts with "clock" calls, timing estimates were made. To enhance accu-

racy the code fragments to be timed wcre rcpeated 1000-5000 times in a single timing. This reduced the effect

of overhead interfering with timing, and madc it possiblc to time routines with duration e 5 msec on the iPSC/l.

In the following sections, a brief algorithmic outline of each move type will be presented, with master and

slave contributions listed side-by-sidc as computations occur simultaneously. Timings of important computa-

tional steps from the outline will follow. Pairwise node message tra€fic will be tabulated, as well as the syn-

chronizing broadcast. Finally, absolutc performance timings and relative speedups will be presented.

As in TimberWolf3.2, the ratio of displacements to exchanges is about 51. All processors synchronize at

the end of a move cycle so pcrrorm;incc will bc limitcd by the slowest of the four move types listed above. This

synchronization has bccn implementcd as a combining tree broadcast, and with a simple ring broadcast.

A.2. Intriaprocessor Cell Displacement

Thc masLcr displaccs onc of its cclls to anothcr location within its allocated chip area The slave initially

scnds a cell smcturc packct which thc mastcr discArds without inspection. Though this is a wasted message for

this move typc, for othcr movc typcs this initial cell uansfer is useful data, and its presence provides a regular

communication patrcm. Tablc 2(a) shows thc outlinc of thc steps involved in the intraprocessor displacement in

52

4
1

I
I

the master and the slave processor and the avcragc mcasured execution times for each step on the iPSC/2 abd

PSC/l are shown in Tablc 2(b) and 2(c) rcspcctivcly.

Table 2. Intraprocessor Cell Displacement

(a) Outline,of move steps.

0.06 0.28 2.19 2.53
0.13 0.28 2.5 1 2.9 1

master I slave
Send null ccll to slavc.

Receivc ccll from slave (discard).
Selcct ccll at random.
Select random location.
Compute disphcemcnt cost.
If displacement cost acceptable,

Broadcast changes. Broadcast null.
Updatc affccted cell structures.

Select cell at random.
Send cell to master.
Receive cell from master. (Determines move type)

then update position. switch rows.

Update affected cell structures.

16
1

' Number

0.07 0.28 1.79 I 2.14
0.29 0.28 3.77 I 4.33

of Cclls

4
16
1

32

0.13 0.28 3.70 4.11
0.09 0.28 2.76 3.13
0.4 1 0.28 8.43 9.12

64

4
16
1
4

16
1
4

16

183

0.19 0.28 7.88 8.35
0.1 1 0.28 5.89 6.28
na na na na

0.26 0.28 23.52 26.45
0.12 0.28 24.81 25.21
1.05 0.28 11.93 13.26
0.42 0.28 11.54 12.24
0.18 0.28 8.53 8.99

286

469

800

(b) Move step timings in milliseconds for iPSC/2

Compute
Number

I I CCII I Location I cost
1 II 0.08 I 0.28 I 2.25 I 2.61

4 11 0.08 I 0.28 I 2.46 I 2.82 I

I
I

I

I

(c) Move step timings in milliseconds for iPSC/1

of Cclls

Numbcr
Select

of Procs

Nuinbcr

1
4
1

32

64 I 4 II 0.55

Ccll
0.75
0.4 1
1.21

1
183 I 4 11 0.90

I 2.76

1.16
1.16

469 1.74

16.31 17.96
46.69 5 1.79

I 0.64
1 11 10.17

1

Select Compute

I 3.94

Location 1 cost
1.16 I 12.44 I 14.35
1.16 I 12.35 I 13.92
1.16 I 13.90 I 16.27 ~ . ~ .

1.16 I 13.87 I 15.58 I
10.56 12.08
20.87

1.16 20.92 22.98

36.52

1.16 132.90 135.80
1.16 146.44 148.24
1.16 66.07 77.4
1.16 65.18 69.22
1.16 50.32 ' 52.43

A 3 . Intraprocessor Cell Exchange

The mastcr selccts two candidate cclls and exchanges their positions. Change in cost is calculated entirely

by the master. as is thc decision whethcr or not to accept the move. Table 3(a) shows the outline of the steps

involved in the intraprocessor cell exchange movc in the master and the slave processor and the average meas-

ured execution times for each step are shown in Table 3(b).

Table 3. Intraprocessor Cell Exchange

mastcr

(a) Outline of move steps

slave

0.12
.0.26
0.16
0.14
0.58
0.26
0.18
0.82
0.28
0.22
na

0.52

(b) Move step timings in milliseconds

3.99 4.11
4.70 4.96
4.92 5.08
3.84 3.98
6.94 7.52
8.16 8.42
5.60 5.78

18.14 18.96
17.49 17.77
1 1.99 12.21

na na
48.97 49.49

800 4
16

0.24
2.10

Fbndom

45.56 45.80
22.3 1 24.41

0.84
0.36

22.93 23.77
17.66 18.02

A.4. Interprocessor Cell Displacement

The master selccts thc candidate ccll, computes the effcct of losing it from its local area, and sends the cell

to the slave. The slavc picks a new location and computcs the cost of accepting the cell. The decision whether

or not to acccpt the move is thcn madc by thc slavc. Table 4(a) shows the outline of the steps involved in the

interprocessor cell displacement move in the master and the slave processor and the average measured execution

I
1
I
I
I
I
I
I
1
I
1
I
I
I
1
1
I
I
I

54

55

master

I
I
I

slave

times for each step are shown in Table 4(b).

32

Table 4. Interprocessor Cell Displacement

(a) Outline of move steps

CCll cost Cell Location
4 0.08 1.03 0.08 0.28 1.3 1

master ! slave
Select cell at random.

Receive cell from slave (discard).
Compute displaccment cost.
Send cell to slave.

Select cell at random.
Send cell to master.

Receive cell from master. (Determines move type)
Select random location for cell.
If displacement cost acceptable,

then update position, add cell.

update affected cell structure.
Broadcast null. Broadcast changes.
Update affected ccll structures.

(b) Move step timings in milliseconds

Select Compute I Select I Select I Time I
. I ofcells I ofProcs 11 Random I Displaccment Random Random

56

ofcells

Number

AS. Interprocessor Cell Exchange

master and slave both select random cells, and bolh compute partial exchange costs. The slave informs

the master of its cost calculations and the master thcn makes the decision whether or not to accept the move.

Table 5(a) shows lhc outlinc of thc stcps involved in the interprocessor cell exchange move in the master and the

slave processors and the avcrage measured cxccution times for each step are shown in Table 5(b).

ofProcs

Number

Table 5. Interprocessor Cell Exchange

(a) Outline of move steps

64

1 9 1

master ! slave
Sclect a ccll at random. Select cell at random.

4 0.08 2.57 0.08 2.57 2.65
16 0.07 1.76 0.07 1.76 1.83
4 0.13 4.13 0.13 4.13 4.26

Send ccll to slave.
Receivc ccll from slave.
Compute partial exchange cost P1.

Receive partial €9 cost from slave.
IF aggregate (Pl+P2) cost acceptablc,

Broadcast changes. Broadcast null.
Update affccted cell structures.

Send cell to master.
Receive cell from master.
Compute partial exchange cost P2.
Send partial cost P2 to master.

thcn modify cell Iist.

Update affected cell structures.

O O L

(b) Move step timings in milliseconds

4)I 0.19 I 6.18 I 0.19 I 6.18 I 6.37
16
4
16

LOU

469

I II Cell I cost I cost I
32 I 4 II 0.06 I 2.11 I 0.06 I 2.11 I 2.17

0.11 6.86 0.11 6.86 6.97
0.26 24.09 0.26 24.09 24.35
0.12 20.83 0.12 20.83 20.95

4
16 800 0.42 11.10 0.42 11.10 11.53

0.18 7.79 0.18 7.79 7.97

I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
1
1
1
1

57

A.6. Master-Slave Message Traffic

The interprocessor cxchangc movc type rcquires the master and slave exchange entire candidate cell data

structures in ordcr to calculate cost in a distributed fashion. Other move types require structure transmission

from slave to master only, or'transmission of an cmpty acknowledgement packet. The communication cost

incurred by transmission of a single average cell dam structure is given in Table 6. Cell data structures will vary

in size dcpcnding on conncctivity; a minimum, maximum, and average message length is presented.

Table 6. Message Latency (milliseconds) on Node Processor

Average Latency I Numkr 11 LengthinBytes

A.7. Broadcast Timing

Two varieties of N-way broatlcast were implemented and timed. Ring broadcast maps a virtual ring onto

the physical hypercube topology, ana has a delay proportional to the number of pmessors. The combining me

broadcast has delay proportional to the dimension of h e hypercube. Performance for four- and sixteen-node

hypercubes is listcd below in Tablc 7.

Broadcast packcts scnt from each nodc fa11 into 3 discrete sizes: 0 bytes, 28 bytes, and 56 bytes depending

on the move type pcrformcd and wliethcr or not thc gencrated move was accepted. This packet size is indepen-

dent of circuit sizc, and Lhus total broadcast time is indcpcndcnt of circuit size. Zero-length packets will tend to

dominate broadcast traffic at low tempcmures late into the annealing schedule, and this will reduce broadcast

time slightly. The effect is not significant due to thc high start-up cost for even empty packets on the ieSC/l.

58

4

Table 7. N-way Broadcast Time in Milliseconds

15.70 I 10.72 I 2.26 I 2.29

IPSC-1 ipsc-2 I Hypercube 11 Ring I CombiningTree I Ring I CombiningTree I

ipsc- 1 ipsc-2

16 11 102.17 I 90.42 I 11.23 I 7.91

Number Number

A.8. Cell Update Timings

Aftcr every sct of of parallcl movcs. the new cell locations have to be updated in various processors. Cost

of updating is directly related to Lhc number of cell moves accepted and is therefore most expensive at high tem-

peratures. This high-tcmpcrature update requirement for various circuits is shown below in Table 8.

Table 8. Cell Update Timings in Milliseconds

Average
I I I

of Cells

Clm

I 11 Cells I Total I per cell-Move I Total I Per Cell-Move
update update update
Time Time Time

1 1 .o 25.6 25.6 1.8 1.8

of Procs Affected update Time

3L

64

183

286

469

4 2.4 15.7 6.5 2.2 0.9
1 1 .o 59.8 59.8 4.3 4.3
4 2.4 39.5 16.5 5.5 2.3

16 9.6 41.9 4.4 5.3 0.6
1 1.0 235.8 235.8 37.2 372
4 2.4 147.3 61.4 27.2 11.3

16 9.6 159.4 16.6 29.4 3.1
1 1.0 1186.1 1186.1 187.1 187.1
4 2.4 690.3 287.6 127.4 53.1

16 9.6 713.8 74.4 134.3 13.9
1 1 .o na M na na
4 2.4 4191.2 1746.3 773.2 322.2

16
1

9.6 4 146.7 431.9 780.9 81.3
1.0 1475.6 1475.6 232.7 232.7

I
I
I
1
I
I
I
I
1
I
1
I
I
I
I
I
I
I
1

913.1
855.5

380.5 168.5 70.2
89.1 161.1 16.8

59

Of

32
64

183
286
469
800

~~

A.9. Overall Runtime and Speedup

of attcmpts
ucr cell Runtimc(hrs) SDceduD Runtime(hrs1 S ~ e e d u ~ Runtime(hrs) S ~ e e d u ~

100 4.2 1 .o 3.2 1.4 2.4 1.9
100 11.7 1 .o 6.4 1.8 2.9 4.0
25 25.1 1 .o 9.7 2.6 3.8 6.7

5 32.5 1 .o 11.7 2.8 4.1 7.9
1 130.7 1 .o 43.8 3 .O 10.8 12 1
1 57.0 1 .o 18.1 3.1 5.6 10.2

1
I

I
!
I

iI

Number Number 1 Prcccssor 4 Processor
of Cells of attempts I

per cell Runt imdhn) SDcedun Runtime(hrs) S ~ e e d u ~
32 100 0.6 1 .o 0.5 1.2
64 100 1.7 1 .o 1.1 1.5 *

183 100 14.6 1 .o 6.8 2.2
286 25 28.5 1 .o 10.2 2.8
469 2 22.8 1 .o 7.6 3.0
800 5 21.8 1 .o 5.7 3.8 I

I
8
1
I
I
I

16 ~ e s s o r s

Runtime(hrs) SDeedup
0.2 2.4
0.6 3.0
2.8 5.3
3.5 8.2
1.8 12.5
1.9 11.8

Exccution time and spcedup of Lhc algorithm as a function of circuit size and hypercube size are listed in

Tables A.9 and A.lO. Exccution timc is givcn in real-time hours. Specdup as listed here is the ratio of the execu-

tion time on a singlc processor to execution time on a multiple processor configuration.

Table 9. Overall Execution Time and Speedup - ipSC/1

w Number I Number I 4 Processor 16 hocessors

Table 10. Overall Execution Time and Speedup - iPSC/2.

A.lO. Conclusions

For all circuits cxccpt thc smallest (32- and @-cell) the cell-position update time dwarfs the other com-

ponenls of cell-move evaluation. Prior to cvery update, the hypercube must perform the N-way broadcast to

synchronize and share updatc information. Despite novel algorithms developed to minimize this cost , this

broadcast ovcrhead will grow larger proportional to the mt of the algorithm as the hypercube size increases.

While thc other individual routincs havc trcmcndous potential for optimization, broadcast time is dependent

almost exclusively on Lhc hardware and would eventually become a serious bottleneck, especially on larger

hypercubes. It is for this reason we chose to develop adaptive sequence-length adjustment as an effective means

of eliminating broadcast ovcrhcad.

60

APPENDIX B

PROGRAM USERS' GUIDE AND OVERVIEW OF ALGORITHM

B.l.l. Introduction

Physically this program has two parts - lhe "host" program that runs on the iPSC/2 Host, and the nnOden

program that runs on each Hypcrcube nodc. Bolh programs are physically divided across several "C" language

source filcs. Each program is compilcd scparatcly and a "makcfile" is included with the source to ease this pm-

cess. After the program has becn modificd or retuncd, type "touch *.c", then "make" to rebuild the host and

no& binary filcs. It is important to always recompile all the source files if the header file "anneal.h" is modified.

B.1.2. Program invocation

To start up the program on the Intel iPSC/2, simply type:

getcube -c test -t Nm4 > NODELOG
host > HOSTLOG &

The paramctcr N above should be the size (numbcr of nodes) of the hypercube desired. The program will

automatically adjust for lhe size of the hypercube allocated. Now preliminary output will be sent to the file

HOSTLOG, and execution will start. Output from the nodes is collccted separately in the file NODELOG. The

NODELOG accumulatcs data as anncaling progrcsscs. recording temperatuxe, cost averages, and other statistics.

The HOSTLOG will contain bcginning and cnding placement costs, elapsed runtime, etc.

B.13. Program input

The host program rcads the circuit dcscription and system parameters from a file in the local directory

called "data." This circuit description file is the same format as specificd in M. Jones' thesis, "A Parallel Siimu-

latcd Annealing Algorithm for Standard Ccll Placemcnt on a Hypercube Multiprocessor," wilh the exception that

a new "centcred" flag appcars as the first line. Thc first seven lines in this file have the following meaning to the

program:

1. Ccntcrcd Bit. 1 if all pins arc lacatcd ;it centcr of
ccll, elsc 0. (I for data.32 and data.64).

2. Numbcr of attcmptcd movcs pcr ccll at cach itcration/tcmpcrature

I
I
1

. I
1
1
I
1
1
I
1
I
I
1
I
I
1
I
I

61

of thc systcm. (not uscd.)

3. Standard hcight of each logic cell.

4. Bytcs of mcmory requircd LO hold all cell-specification structures.

5. Desired length of every row of cells in circuit.

6. Number of rows of cclls in circuit.
. .

7. Desired character prefix for output file.
(not used)

Following these parametcrs a variaklc numbcr of ccll-spccification structures should follow. For each logic cell

in the circuit thc following format is rcquircd

1. Unique global ccll ID-number (zcro-bucd.)

2. Ccll width.

3. Total number of ncts ccll is a membcr of.

4. For each net spccificd in 3.

a) Unique global net ID number.

b) Total numbcr of pins in net spccified in a.

c) For each of the pins specified in b.

i) ID number of cell in which pin is locatcd.

ii) X and Y location of pin relative to center of cell.
(OMIT if Ccntcred Bit set above.)

In addition, if hcuristic ccll coloring mode is enabled, the file 'data.co1' will be read for coloring details

produced by the program -color-. Sce Section B.2 on coloring for dctails.

B.1.4. Program output

In addition LO the output scnt to stdout w I X standard output, redirect with a pipe 'I' or 5') by the host

and node programs, at program complction the host writes out two files:

1) "results" : a pic-format file that shows cell-placement
graphically. Uscful for small (undcr 300 cells) circuits
to verify the program is not creating Frankenstein-like
placcmcnt.

62

2) "twout.pl1" : Optimized ccll placement rccord in Timberwolf
format. Actually afcr thc host creates this file it
nccds to be rcformattcd slightly using the following
commands:

cp LwouLpll twout.tmp
sort -n +6 -8 +1-3 twout.tmp > twoutpll
rm twout.tmp

B.1.5. Program Tunables and Compiler Directives

Several runtime options arc includcd in thc source with conditional #if and #ifdef preprocessor statements.

Some merely have to be delincd (is., with -Dopion in the makefile) while others hold specific values and are

defined in the header file 'anncal.h'.

DEBUG2

Enablcs all the embcdded debugging messagcs. These messages are sent to standard output along with

. normal outpur This is uscful if you don't have any idea where to start but slows the program down

tremendously.

WEIGHTED

Causes cost calculations regarding wiring to bc based on the formula

ll2perimetcr of bounding box x min (lsqrt(number pins in net - 2)

instead of just 1/2 thc bounding box.

iPSCI2

Archaic flag to indicate which hypcrcube program will run on. Should always be defined.

SYNCH

Another anachronism. Keep this defined.

The following are explicitly defined in 'annea1.h' and change the behavior depending on whether they are

set ON = 1, or OFF = 0.

COLORING

Enablcs Heuristic Ccll Coloring.

I
I
I
I
1
I
I
I
I
I
I
I
1
I
I
I
I
I
I

63

FEEDBACK

Enables adaptive sequcncc lcngth adjustment through error control. Obviously COLORING and FEED-

BACK should not both be enabled simu1t;meously.

TWRANCE

Enables a move range limiter idcntical to TimberWolf3.2.

NORANGE

Disables range limiter. Only one of TWRANGE and NORANGE should be enabled simultaneously.

B.2. Cell-Coloring Program

Thc cell-coloring program "color" ukcs as input a circuit description file in the format described above,

and gcneratcs an output file with lincs of the the following formar

Unique-Ccll-ID-# Ccll-Color

i.e.. one linc for each cell. Program invocation is simplc:

color inputfile centered-jag outputfile scheme#

whcre schemc# is 1 for Brelaz, 2 for Random, and 3 for greedy depth first. A sample invocation would be:

color data.32 1 32.~011 1

Now the file 32.~011 would bc copied over to "data.co1" for the annealing program if necessary.

B 3 . Procedural Description of Parallel Algorithm

Thc parallel simulatcd anncaling algorithm has been implemented in the C programming language. The

software package has h e n dividcd into scvcral modules, each of which convols a different aspect of program

control. Each of tho modules is contained in a separate filc. The following sections give details and purpose of

the proccdures and functions contained in cach module.

64

I
I

annea1.h

Header filc containing all global structure and constant definitions along with external declarations of

global variables. This file is used by all other modules through inclusion in the compilation process.

host.c

print.c

This file contains all source codc which is loaded into and run by the host-processing node to initialize

the systcm, distribute thc work load to thc hypercube processing nodes, and gather the final optimized

cell placement. This filc contains the following proccdurcs and functions:

main - Main functional level proccdure of host node which calls all required procedures and loads the
processing nodes with executable code.

inputgarams - Reads from user file the initial setting of various system-wide parameters and allocates
buffer space for holding thc cell specilication structures.

input-mods - Reads from user file the size and interconnectivity of the standard logic cells whose
placement is to be optimized.

distribute-mods - Randomly perfoms the initial placement of cells and distributes the physical chip
area among the nodc proccssors.

init-mod - Initializcs the cell-spccification structures at both the cell and net level as determined by the
initial random placcment.

send-mods - Tnnsfcrs h e ccll-spccification structure over the hypercube links to each processing node
as dctcrmined by the distribute-mods proccdure.

gather-mods - Retrieves tlic optimal placement of cclls from the processing nodes of the hypercube.

This file contains thc proccdurcs run at the host node, which performs terminal and file output of cir-

cuit statistics. These procedures include:

nehvork-cost - Calculates and outputs to the terminal the cost of a given cell placement in terms of
cdge ovcrlap, cell overlap, and rcquired wire routing.

print-mod-pos - Outputs the position of each of the standard logic cells and the total area required for
the givcn placcment of cells.

print circuit - Graphically shows the rclative position of each of the cells in a given placement. A file
capabTe of bcing run using pic I roEf -mc to create an exact picture of the given placement is also
crcatcd.

I
I
I
I
1
I
I
I
1
I
I
I
I
I

65

n0de.c

This file conlains thc main functional lcvcl procedure which is duplicated and run at each of the node

proccssors of thc hypcrcubc LO pcrform the pmlIel simulated annealing algorithm.

init.c

This file contains thc nodc procedures and functions which initialize a hypercube node using system

parameters and cell specification structures received from the host node. This file contains the follow-

ing proccdures and functions:

initgarams - Initializes the system wide parameters received from the host node.

init-mod - Initializes the locally allocated cell speciiication structures received from the host node.

neighbors - Detcrmines the identity of the node processors which correspond to the east and west logi-
cal neighbors of the physically mappcd circuit.

init-borders - Intcracts with logical east and west node processors to create a list of cells to be used in
determining cell overlap attributcd to cells in ncighboring processors.

netc

File containing communications-oriented proccdures and functions used to transmit and receive infor-

mation over the links of the hypercube using logical channels. This file contains the following pro-

cedures and functions:

send-mod - Transmits thc cell-specification structure of a given cell to a neighboring node processor.

rec-mod - Receives a cell-specification suucture transmitted using send-mod.

broadcast cost - This function vslnsmits the parrial global cost associated with a node's locally allo-
cated cells-to all othcr nodcs in the hypercube. It then receives and adds partial costs from all other
nodes in ordcr to dcterminc the global cost of the present placement.

broadcast-update - Informs and rcceivcs from all other node processors information regarding
changcs in cell placcmcnt during the last iteration of the algorithm.

send-host - Transmits Ihc linal placcmcnt of all locally allocated cells to the host node.

utili ty.c

This filc contains various computationally intensive procedures and functions used during the iterative

phascs of thc algorithm. This filc contains thc following procedures and functions:

66

irandom - Produces a pseudorandom integer bctwcen given limits.

drandom - Produces a pseudorandom rcal valued number between given limits.

param-update - Updates tcmperaturc parameter and nnge limiter.

mod-sel - Randomly sclects a ccll from a list of locally allocated cells.

dist-ok - Dctcrmincs if thc distance of the movement of a cell is within the bounds set by the range
limiter.

accept-change - Dctcrmincs if a proposed move should be accepted based on the change in cost and an
exponcntial function of temperature.

switch-list - Switchcs the row a ccll is associated with.

insert-mod - Adds a cell to thc prcscnt set of locally allocated cells.

remove-mod - Rcmovcs a ccll from the present set of locally allocated cells.

find-cost - Dctermincs the partial global cost associated with the present set of locally allocated cells.

find-my-ex-cost - Determines the change in cost for a proposed inuaprocessor exchange of cells.

find-ex-cost - Determines the partial change in cost for a proposed interprocessor exchange of cells.

find-disp-cost - Determines thc change in cost for a proposed intrapmessor displacement or the slave
processor’s partial cost for a proposed interprocessor displacement.

disp-loss-cost - Determincs the master’s changc in cost for an interprocessor displacement.

wire-cost - Determines the change in wiring cost for a proposed move.

overlap-cost - Determincs h e change in cell ovcrlap with cells within the same processor for a pro-
posed move.

border-cost - Dctermincs the change in ccll overlap with cells in logical east and west neighboring
processors for a proposcd move.

update - Updates all locally allocated ccll-specification srrucaues for a change in a given cell’s loca-
tion.

1
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

67

REFERENCES

[l]

[2]

[3]

[4]

[5]

[a]

171

[8]

[9]

[lo]

[l l]
[12]

[13]

[14]

[la
[I61

[17]

[181

1191

[201

Carl Scchcn, “Average Intcrconncction Length Estimation for Random and Optimized Placement,”
International Conference on Computer-Aided Design ’87. pp. 190-193,1987.
Bryan T. Preas and Patrick G. Kluger, “Automatic Placement - A Review of Current Techniques,”
Proceedings 23rd Design Automation Conference, pp. 622429, 1986.
M. Hanan and J. M. Kurtzburg, “Placemcnt Tcchniques,” Design Automation of Digital’system:
Theory and Techniques, pp. 2 13-282.1972.
M. A. Breuer, “Min-cut placcmcnt,” Journal Design Automation and Fault Tolerant Computing, vol. 1.

B. W. Kcrnighan and S. Lin, “An efficient heuristic for partitioning graphs,” Bell System Technical
Journal, February 1970.
A. E. Dunlop and B. W. Kcrnighan, “A procedure for placement of standardsell VLSI circuits,” IEEE
Transactions on Computer-Aided Design of Circuits and System, vol. C A D 4 pp. 92-98, January 1985.
M. J. Hanan and J. M. Kumburg, “A Review of Placement and the Quadratic Assignment Problem,”
SIAM review, pp. 602-615, June 1985.
T. Blank, “A S w c y of Hardware Accelerators Used in Computer-Aided Design,” IEEE Design and
Test, pp. 21-39, August 1984.
D. G. Schwcikert, “A 2-dimensional Placement Algorithm for the Layout of Elecmcal Circuits,”
Proceedings 13th Design Automation Conference, pp. 408-416, June 1976.
M. Hanan, P. K. Wolff Sr., and B. J. Agule, “Some Experimental Results on Placement Techniques.”
Proceedings 13th Design Automalion Conference, pp. 214-224, June 1976.
L. Steinberg, “The Backboard Wiring Problcm,” SIAM Review, vol. 3, pp. 37-50, January 1961.
S. Kirkpawick, C. D. Gclatt, Jr., and M. P. Vecchi, “Optimization by Simulated Annealing,” Science,
vol. 220, pp. 671-680. May 13,1983.
N. Meuopolis, A. Roscnbluth, M. Roscnbluth. A. Teller. and E. Teller, Journal Chemical Physics, voL
21, p. 1087, 1953.
Carl Sechcn, Douglas Bnun, and Albcrto Sangiovanni-Vincentelli, “Thunderbird: a complete standard
cell layout package,” IEEE Journal of Solid-Stare Circuits, vol. 23, pp. 410420, April 1988.
Carl Scchen and Kai-Win Lce, “An Improved Simulated Annealing Algorithm for Row-Based
Placcmcnt,” International Corference on Computer-Aided Design ‘87. pp. 478-48 1,1987.
M. D. Huang, F. Romeo, and A. Sangiovanni-Vincenlelli, “An Efficient General Cooling Schedule for
Simulatcd Annealing.” Proceedings ICCAD, pp. 381-384.1986.
Emile H. L. Aarts, Frans M. J. dc Bont, Erik H. A. Habers, and Peter J. M. van Laarhooven, “Parallel
Implcmcntalions of thc Statistical Cooling,” IN7’EGRATION. vol. 4, pp. 209-238.1986.
Lov K. Grovcr, “Standard Cell Placement Using Simulated Sintering.” 24th ACMIIEEE Design
Automation Conference. pp. 56-59, 1987.
Lov K. Grovcr, “A New Simulatcd Anncaling Algorithm for Standard Cell Placement.” Proceedings

Jonathan S. Rose, W. MAP Snelgrove, and Zvonko G. Vranesic, “Parallel standard cell placement
algorithms with quality cquivalcnt to simulaled annealing,” IEEE Transactions on Computer-Aided
Design, vol. 7, pp. 387-396, March 1988.
Andrea Casotto and Albcrto Sangiovanni-VinccntUi, “Placement of Standard Cells Using Simulated
Annaling on the Conncction Machinc,” Proceedings ICCAD, pp. 350-352,1987.
M. Joncs and P. Bancrjcc, “Pcrformance of a Parclllcl Algorithm for Standard Cell Placement on the
Ink1 Hypercube.” Proceedings 24th Design Automation Conference, pp. 807-813, June 1987.

pp. 343-382.1977.

ICCAD ‘86, pp. 378-380.1986.

1211

1221

68

[231

[24]

Saul A. Kmvitz and Rob A. Rutcnbar, “PIacement by simulated annealing on a multiprocessor,” IEEE
Transactions on CAD, vol. CAD-6, pp. 534-549. July 1987.
Chi-Ponp Won& and Rolf-Dieter Fiebrich. “Simulated Annealing-Based Circuit Placement on The
Connection Machine S ystcm,” Proceedings International Conference on Computer Design (ICCD ’87).
pp. 78-82, Octobcr 1987.
C. L. Seitz, “Thc Cosmic Cubc,” Commwu’cations of the ACM. vol. 28, pp. 22-33, January 1985.
P. Banerjce. M. Joncs, and J. Sargent, “A PmIlcl Simulated Annealing Algorithm for Standard Cell
Placemcnt on Hypercube Multiprrxessors,” (To appear in IEEE Trunsuctionr on CAD).
M. Jones and P. Bancrjce, “An Improved Simulating Annealing Algorithm for Standard Cell
Placemcnt.” Proceedings International Conference on Computer Design, pp. 83-86, October 1987.
Daniel A. Rccd and Richard M. Fujimoto. Multicomputer Network: Messugc-Based Parallel
Processing. Cambridge. M;lSS.: Thc MIT Prcss, 1987.
Tony F. Chvl and Youccf Sad, “Multigrid afgorirhms on the hypercube multiprocessor,“ IEEE
Transucrions on Computers, vol. C-35, pp. 969-977, November 11,1986.
Saul A. Knvitz and Rob A. Rutcnbar, Multiprocessor-Based Phcement by Simulated Anneding. 23rd
IEEE Design Automation Confcrence, 1986. pp. 567-573.
Bruce Hajck, “A Tutorial Survey of Theory and Applications of Simulated Annealing,” Proceedings
24th Confcrence on Decision and Control, pp. 755-760,1985.
M. D. Durand, “Controlling crroc in p d e l l simulated annealing algorithms for W I placement,” (to
appear in IEEE Transactions on CAD), January 3 1.1988.
R. Jayanman and R. A. Rutcnbar, “Floorplanning by Annealing on a Hypercube Multiprocessor,”
Proceedings fnfernationd Conference on Computer-Aided Design, pp. 346-349, November 1987.
Jonathan S. Turncr, “Almost all k-Colorablc graphs are easy to color,” Journal of Algorithnrs, vol. 9,

D. Brelaz, “New methods to color the vertices of a graph,” Commwrications of the ACM, vol. 22, pp.

Randall Jay Brouwer and Prilhvinj Bancrjce. “A Parallcl Simulated Annealing Algorithm for Channel
Routing on a Hypercube Multiprocessor," to appear in 1988 International Conference on Computer
Design, 1988.

[25]
[26l

[27l

[28]

1291

[30]

[31]

[32]

[33]

[341

[35l

[3q

pp. 63-82. M h 1988.

251-256.1979.

I
I
1
1
1
I
I
1
I
I
1
1
I
I
1
I
I
I
I

- -
Wc prcscnt placcmcnt rcsults Cor rcal industry circuits and summarizc he performancc of an implementa-

tion on the h c l iPSC/2 Hypcrcuk. Thc runtimc of this algorithm is 5 to 16 times faster than a previous pro-

gram dcvclopcd for the Hypcrcubc, whilc producing cquivalent qualily placement. An integrated phce and mute

program for Lhc Intcl iPSCI2 Hypcrcubc is currcntly being dcvclopcd around this kernel algorithm.

~

I
I
I
I
1
1

REPORT DOCUMENTATION PAGE ---
OMINO. 070+01#

Approved for public release;
distribution unlimited

I
' 2b. DEClASSIFlC4TION / OOWNGRAMNG SCHEDULE

la. REPORT SECURITY CWSlFlCATlON
Unclassified

' 2r. SECURITY CUSflflCATlON AUTHORITY

4. PERfORMlNG ORGANIZATION REPORT WUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

(CSG 92) UILU-ENG-88-2259

Sa. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab

6b. OFFICE SYMBOL 7r. NAME OF MONITORING 0I IWUATK)N

NASA rpplkrbk)

1101 W. Springfield Ave.
Urbana, IL 61801 Hampton, VA 23665

NASA Langley Research Center

1 b. RESTRICTIVE MARKINGS

3 . DISTRIBUTION l AVAlUOlUTY Of REPORT
None

1

- t b. NAME Of FUNO(NG /SPONSORING I ab. OFFICE SYMBOL 1 9. PROCUREMENT INSTRUMENT IDENTICCATION NUMBER

I

ORGANUATION 11 NASA

r
c0SAn COWS 18. SUBIECT TERMS (Contincn on mwn8 H nmpuy and e bybkdrnurnkr)

'I7. FIELD GROUP SUO-GROUP Cell placement, simulated annealing, parallel alorithm,
hypercube, error control

1s. AIsTlucT (Conumm on rmn, it nu8auy .nd ldrrme by bkdr number)

NASA NAG 1-613

1

A Parallel Row-Based Algorithm with Error Control For Standard-Cell Placement on a Hypercube
Multiprocessor-
12. CtMONAL AuTHOR(s)

UNCLASSIFIEDNNLIMITED 0 SAME AS RPT. 123 OTIC USERS Unclassif led
22r. NAME OF RESPONSl8LE INOIVIOUAL ZZb. TELEPHONE (&IC/& Ana COdrJ I 22c. OFFICE SYMWL

Jeff Scott Sargent
13b. TIME COVERED 14. OAT€ Of REPO

1988 August
-n - 10 - --- - Technical FROM

16. SUPKEMENTMY NOTATION
,

A ncw row-bscd p r ; r l k l J;cf.:rim lor Uid.ud-dJ p i x a n a l W p d for u~cuw)(I oa 8 byplrubc

muluproccsslor is prcslcntcd. Kcy iidturcs of his implcmenuion includ: il d m i c simulated-ding

schcdulc. row-pmitioning 01 thc VLSI i h ~ p image. and two novel new approaches u) conuolling e m in parallel

ccll-placcmcnt algorlthins: Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Hturis-

uc Ccll-Coloring idcnlilics scts 0 1 nonintcracting cclls IhaL can bc moved repcaedly. and in p;mllel. wilh IW)

buildup of crror in thc placcmcnt cost. Adapdvc Scqucncc Control allows multiple parallel cell movm IO I&

place bctwccn global ccll-position "upclatcs." This fccdback mechanism is based on an error bound we derive

analyticnlly from Ihc trndilional anncalinp move-acccpmce profile.

I(I I
IFICATION OF THIS PAGE 00 Form 1473, JUN 86 PmvioUr ohroktr. SECURITY C U S S

UNCLASSIFIED

