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ABSTRACT

A new row-based parallcl algorithm for standard-ccll placement targeted for execution on a hypercube
multiprocessor is presentcd. Key fcatures of this implementatibn include a dynamic simulated-annealing
schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel
ccll-placement algorithms: Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuris-
tic Cell-Coloring identifics scts of noninteracting cells that can be moved repeatedly, and in parallel, with no
buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to, take
place between global cell-position "updates.” This fecdback mechanism is based on an error bound we derive
analytically from the traditional annealing move-acceptance profile.

We present placement ;'csults for real industry circuits and summarize the performance of an implementa-
tion on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous prb-
gram developed for the Hypercube, while producing equivalent quality placement. An integrated place and route

program for the Intel iPSC/2 Hypercube is currently being developed around this kemel algorithm.
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CHAPTER1

INTRODUCTION

1.1. Motivation

The processing demands of software for VLSI (Very Large Scale Integration) chip design outstrip the
power of conventional dcsktop workstations. This demand continues to rise due to increased device density.
Conventional CAD (Computer-Aided Design) softw-arc is heavily stressed by custom-design styles in the lucra-
tive ASIC market, where design turn-around time is critical. Though the performance of microprocessors has
increased dramatically in the last scveral years, it is clear that the demands of VLSI CAD still render conven-
tional uniprocessor algorithms inconvenient for industry-type problems. The introduction of low-cost multipro-
cessors in parallel-processing enscmbles provides the low cost-to-performance ratio needed in this problem
domain. However rescarch into parallel approaches to standard VLSI CAD problems is still immature, and its
progress slowed by lack of proper software development tools for multiprocessors. In this thesis we present a

parallel algorithm to'solve one particular VLSI CAD problem: standard-cell placement.

1.2. Standard Cell Placement

The standard-cell approach is a popular semi-custom design style in which the designer chooses functional
building blocks from an existing library to construct a portion of, or an entire, VLSI chip. The building blocks
(called cells from now on) provide a level of abstraction to the designer, relieving him/her of the necessity of
"reinventing the wheel." Furthcrmore, the interior details of the cells can change (to improve performance for

example) without invalidating an cxisting design.

Standard-cell designs arc typically laid-out in multiple parallel rows or columns of cells. Placed in rows,
cells are usually of the same height and of variablc width. Figure 1.1 illustrates a sample layout with 3 rows of
standard cclls. Rcal layouts can have thousands of cclls and many rows. [/O pad‘s and intercell wiring are omit-
ted for clarity. The gaps between rows are flexible in height and called channels. Gaps between cells in the
same row, which allow signals to be routed beiween distant rows, are called feed-throughs. All cell-to-cell inter-

connect wiring between two rows must lie in the channel between them.
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Figure 1.1. Sample Standard-Cell Layout

Given a set of standard cclls and the interconnection net list, the objective of optimization is to place the
cells in the rows so that the total interconnect wirelength is minimized. Sechen has shown [1] that the total wire
length of a randomly-placed layout can be much larger than an optimized layout. A direct benefit of a short
interconnect path is reduced signal-propagation delay, in general leading to better performance. By clustering
highly-connected cells in close proximity to one another, channel heights can be reduced leading to a very com-
pact layout. The placement of standard cells is then followed by interconnect routing. Routing assumes the cells
are fixed in placc, and interconnects them by laying conductive paths in the intervening channel. If the router is
unable to lay a path in a channel, it mercly increases the channel height to accommodate the new interconnect
path. Good placcment is essential for the router to operate cfficiendy. Ideally, place and route should occur
simultancously for optimal results, but since they arc both NP-complete optimization problems, they are handled
separately for simplicity.

Most approaches to placement can be catcgorized (2] as cither constructive or iterative. Constructive

methods gencrally take an incomplcte placcment (some subset of cells fixed in place) and add cells heuristically



to kecp total interconncct at a minimum. Classcs of constructive methods include cluster growth (3], min-cut
partitioning [4, 5, 6], global methods such as quadratic assignment [7] and convex function optimization [8], and
traditional branch and bound [3]. Iicrative methods gencrally start with a complete placement and attempt to
improve the configuration by gencrating small perturbations. Approaches that fall into this category include
pairwise interchange {9], force-directed interchange [10] and unconnected sets [11]. Both the constructive and
iterative methods tend to get stuck in local minima, and are thus unable to reach the global optima. Simulated

annealing is an itcrative approach that uscs probabilistic hill climbing to avoid local optima.

1.3. Simulated Annealing

Kirkpatrick et al. {12] introduced simulated annealing in 1983 as a new technique for solving combina-
torial optimization problcms. Metals are anncaled by first raising the temperature to its boiling point, then slowly
cooling the moltcn mixture umil' frozcn. By carcfully controlling the cooling schedule (sequence of tempera-
tures), the desired well-ordered low-cnergy crystalline structure will result. If the mixture is cooled too fast
(quenched), then defects and imperfections in the crystalline lattice (high energy irregularities) will be frozen
into the structure. For a constant temperature T, the system is in thermal equilibrium if the probability distribu-

tion of states S; with corresponding cnergies E (s;) approximates the Boltzmann distribution:

P(si)= e EOIRT

with T being the absolute tcmperature and &, the Boltzmann constant. Quenching occurs when the temperature

is lowered before the distribution of state cnergies has converged to the Boltzmann distribution.

To accurately simulate physical annealing, the state of the system must be well-defined, and have an asso-
ciated cost representative of the quantitics to be minimized. Further, a process to generate new states from pre-
vious states must be defincd that creates a rich sct of perturbations. A temperature schedule sufficiently gentle to
properly anncal without quenching, yct aggressive cnough to limit CPU time, must be found. An outline of a

generic simulatcd anncaling algorithm is given in Figure 1.2.



Simulated Annealing Algorithm
Set initial temperature T, and state So
T=To
S=5o
While ( Stopping Criteria Unsatisfied ) Do
While ( Inncr Loop Criteria Unsatisfied ) Do
Generatc new state § = perturb (S)
If CostAcceptable (Cost (S *).Cost(S))
then§ =S°.
End While
End While
End

Figure 1.2, Generic Simulated Annealing Algorithm
Metropolis [13] originally proposcd a probabilistic method to determine whether a newly generated state
is "acceptable." Let AC be the change in cost from the previous state S to the new state §°. Then the new state

is acceptable if
P{New State Acccpmblc} ={ :’-ACFI" gﬁg : 8

New states with superior cost (lower cost) arc accepted automatically, while those that increase cost will always
have some small chance of acceptance. This "probabilistic hill-climbing" ability of simulated annealing allows
escape from local minima by somctimes allowing poor (uphill) moves. As temperature falls to zero, the chance
of accepting inferior permutations is reduced to zero. This function for acceptance has the consequence that the

system evolves into the Boltzmann distribution.

1.4. Cell Placement and Simulated Annealing

Simulated anncaling has proven to be a very successful method to optimize VLSI cell placement. The
"state space” in cell-placement corresponds to all possible permutations of cell positions. The cost function is
primarily aggregate wire length, though most algorithms include penalty costs so that a desired layout aspectra-
tio is met. TimberWolf3.2 [14,15] is a popular uniprocessor simulated-annealing algorithm that can produce
near-optimal placement of standard-cell circuits. The primary deficiency of simulated annealing algorithms such
as TimberWolf3.2 is the massive computation time requircd. Approaches to improving execution time fall into
the broad areas of improved cooling schedules [16, 17], anncaling hybrids {18, 19, 20], and parallel implementa-

tions [17,21, 22,23, 20,24].



1.5. Thesis Outline

This thesis describes a new row-based parallel placement algorithm based on the simulated-annealing
optimization techniquo. Chapter 2 will bricfly review the finc points of the intended hardware platform, hyper-
cube multiprocessors. Chapter 3 will review other work in parallel annealing algorithms for cell placement,
including the performance results of an earlicr program that inspired this new algorithm. Chapter 4 will outline
the fundamentals of our row-bascd placement algorithm, including the area mapping, distributed data structures,
communication patterns, and annealing schedule used. Chapter S will illustrate how error is created in parallel
implementations, and then present two new methods for controlling error: Heuristic Cell Coloring and Adap-
tive Sequence-Length Control. The impact of crror on the dynamic annealing schedule will be discussed.
Finally we prescnt results of an implementation on the Intcl iPSC/2 Hypercube in Chapter 6. Our integrated error
control coupled with dynamic scheduling yiclds an order of magnitude improvement in execution time over a

previous parallel algorithm on the same machine, whilc prescrving the final solution quality.




CHAPTER 2

HYPERCUBE MULTIPROCESSORS

The design and manufacture of VLSI "chips" have reached a level of manufacturing economy so high that
the CPU chip (Central Processing Unit) is onc of the cheapest components of a microcomputer - less expensive
than the power supply; case and keyboard, hard disk drive, or miscellaneous chips. Interconnecting large
numbers of relatively low-performance, low-cost microprocessors offers a cost-effective hardware platform with
performance approaching a mainframe computer. This potential is often hard to reach because of the difficulties
in writing parallel algorithms for such multiprocessors, assuming the problem is possible to decompose to begin
with. The most popular interconnection topology for large-scale microprocessor ensembles to date is the hyper-
cube [25].

The hypercube, or binary n-cubc;, is a multiprocessor interconnection topology characterized completely by
the hypercube "dimension,” D . There are 22 processors in a D -dimensional hypercube, and each processor is
directly connected along a communication link to D other processors. If the 2P processors are addressed from 0
to 22 -1, then those proccssors with only one bit-position difference in their addresses are directly connected to
one another. Figure 2.1 illustratcs 8 processors interconnected in binary n-cube fashion, resulting in a three-

dimensional hypercube. Proccssor addresses are represented in binary.

The hypercube topology offers a rich set of interprocessor connections, yet the number of physical "ports”
at a processor only increases with the logarithm (base 2) of the number of processors. Also any two processors

are separated by at most D communication link "hops.”

The Mark I "Cosmic Cube" developed at the California Institute of Technology was the first hypercube
built in this country [25). Borrowing hcavily from this academic effort, Intel introduced their Personal Super
Computer (iPSC) line in about 1985. Each processing "node” in the iPSC contained an 8 MHz Intel 80286
microprocessor and associated 80287 floating-point co-processor, and 512Kbytes of RAM. The "extended
memory" option allowed the substitution of 4.5 Mbyte RAM cards for half the processing nodes, resulting in a
hypercube of half the dimension but a substantial amount of memory. Each node has eight 82586 Ethernet tran-
sceiver chips - seven for node-node communication in a seven-dimensional hypercube, and the eighth for a glo-

bal channel shared by the other nodes and the cube manager "host.” Internode message routing is implemented
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Figure 2.1. Three-Dimensional Hypercube

in a store-and-forward packet-switching technique so latency is proportional to the number of link hops traveled.
The start-up cost of message transmission is very high (1.7 msec) making short messages inefficient with respect
to the link bandwidth of 2.8 Mbits/scc. All message buffering and routing is handled in software, so that very

little overlap in communication and computation can occur.

Recently Intel has released a new version, the iPSC/2, that has a new CPU and completely different
message-routing hardware. In this ncw machine the 80286/80287 has been upgraded to the 80386/80387 pro-
cessor pair for an incrcase in computational performance of about 4-6 times. Instead of store-and-forward
packet switching, the new hardware implcments circuit-switched techniques that greatly reduce latency for mul-
tihop messages. Single-hop message latency has been greatly reduced ( < 400 psec) thus improving the
efficiency of short messages. Of a more practical nature, the ncw hardware and software combination allows

multiple uscrs to run their applications simultancously on smaller "sub-cubes™ allocated from the whole hyper-



cube.

Jones and Bancrjee’s placcment algorithm was ported to both the iPSC/1 and iPSC/2 hypercubes here at
Illinois; performance data were mcasured to determine the runtime characteristics of the algorithm. (A summary
of these measurcments can be found in Appendix A.) Though initial development began on thé iPSC/1, this
new row-based algorithm was designed to take full advantage of the iPSC/2 architecture. In particular, the
circuit-switched nature of the interconnection nctwork places a smaller penalty on nonlocal message traffic,

which leads to improved flexibility in the design of the inter-node communication pattern. (See Section 4.6.)



CHAPTER 3

REVIEW OF RELATED WORK

Because of the remendous amount of material published on simulated annealing, this review will only

highlight new work that is particularly relcvant to this thesis.

3.1. Uniprocessor Simulated Annealing Algorithms

The latest version of the TimberWolf program, TimberWolfSC version 4.1 [15], improves on the original
program TimberWolf3.2 in scveral ways. The anncaling temperature schedule is truncated so that only low-
temperature annealing takes place. The initial acceptance rate is adjusted to 50% with appropriate cost scaling.
In an attempt to reduce thc number of rejected moves, only short-distance moves are generated in what is called
"neighborhood relaxation.” Furthennore, cell exchanges are proposed over cell displacements if possible.
These improvements reduce the exccution time substantially over that of TimberWoif3.2, while maintaining the

same quality final placement.

To reduce overall execution time , Grover [18] clips the typical annealing schedule by starting at a cool
temperature instead of a very hot "boiling" temperature. A good initial placement is first generated with a tradi-
tional min-cut algorithm [6] , and then anncalcd at a icmperature so low that only a small fraction of the moves
are accepted. This low temperature anncaling does not perturb placement substantially but instead improves the
initial configuration by about 10%. Runtime is improved because the min-cut algorithm produces a fairly good
initial placement much faster than the anncaling algorithm can at high temperatures. Grover {19] has imple-
mented another approach that uscs "approximate calculations” in cell position to avoid the high cost of exact
cost calculations in simulatcd anncaling. Error is introduced to the cost calculations because cells are shifted
slightly to accommodate accepled cell moves into an alrcady crowded neighborhood. He suggests that the mag-
nitude of this error can approach the tempcerature and the solution will still converge to good final placement.

Approximate calculations yield overall spcedup of 3 to 5 times over the same algorithm with exact calculations.

Huang et al.[16] have dcveloped an adaptive scheduling methodology independent of any particular
annealing application. This statistical approach installed in a version of TimberWolf produced a savings in run-

time of between 15 and 57% comparcd to that for the nonadaptive schedule, and resulted in equivalent quality
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solutions. This general schedule was also applied to the traveling-salesman problem with good results, Because
of the potential reduction in CPU time offered by a dynamic schedule, we have adapted Huang’s schedule to our

parallel algorithm,

'3.2. Parallel Simulated Annealing Algorithms

Several groups have implemcated parallel versions of simulated annealing. Parallel in the context of
annealing can take two forms - functional parallelism or data parallelism. Functional parallelism provides lim-
ited spcedup by using multiple processors to evaluate different phases of a single move. Data pérallelism con-
sists of proposing and evaluating moves independently at different processors (or groups of processors). Obvi-
ously the two forms can be mixed as well. Data parallelism has the advantage of easily scaling the algorithm to
large ensembles of processors.

Jones and Banerjec [22] developed a parallel algorithm based on TimberWolf for the Intel iPSC/1 Hyper-
cube. In this algorithm multiple cell moves are proposed and evaluated in parallel by pairs of processors. This
early effort laid the foundation for our new row-bascd algorithm. Performance results of Jones and Banerjee’s
algorithm will be discussed in detail at the end of this chapter.

In a manner similar to Grover [18], Rose et al.[20] replace high-temperature annealing with a partin'onirig
method called heuristic spanning that assigns cells to fixed sub-areas of the chip. These sub-areas are then
annealed independently on separate processors via "section annealing.” By risking possible nonoptimal place-
ment they save considerable execution time.

Kravitz and Rutenbar [23] suggest that a hybrid approach is appropriate to deal with the dynamic charac-
teristics of parallcl anncaling. At high tcmperature, functional partitioning of major annealing tasks improves
performance while at low temperatures parallel moves may be proposed in parailel with little contention due to
the high move-rcjection rate. They present a tentative criterion to determine at what point their algorithm should

switch from function to data partitioning.

Two groups, Casotto and A. Sangiovanni-Vincentelli {21] and Wong and Fiebrich [24], have developed

algorithms for cell placcment on the massively-parallel Connection Machine.
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3.3. Key Performance Results of Jones and Banerjee

Jones and Bancrjec’s algorithm for the Intcl Hypercube produced better quality placement than Tim-
berWolf3.2 and was predicted to also have superior performance. At the time of publication, results were
obtained from an implcmentation on a hypcrcube simulator because a physical hypercube was not available.
Since that time the program has been ported to the Intel iPSC/1 and iPSC/2 and the performanceldiscussed [26].
The absolute performance of the program was not as fast as expected. No program profiling tools are available
for the iPSC/1 or /2 so dctailed timings of important computational and communicational functions were meas- -

ured in situ to detcrmine execution bottlenecks. These performance measurements are included in Appendix A.

These measurcments pointed out a significant bottlencck. A single parallel move can be decomposed into
four primary stcps: move proposal and evaluation, node-to-node message traffic, synchronizing broadcast and
cell-position update. The timings for these four steps are listed below for an 800-cell circuit on a four-

dimensional hypercube (iPSC/2).

Table 3.1. Individual Step Timings on iPSC/2

Step | Time(msec)
Move Evaluation 32.7
Node-Node Traffic 8.1
Broadcast 7.9
Update 161.1

It was clear the single sub-function dominating cxecution time was the cell-position update routine. This
routine’s high CPU cost is due to the structure and nature of the distributed-data structure it manipulates. We
predicted that hand optimizing this routine, perhaps coding in assembly language, would only lead to a factor of

3 to 5 speed improvement over the original.

Instead we concentrated on developing a method to avoid this update step. Earlier, Jones and Banerjee
[27] had reported the results of a uniprocessor placement algorithm that would update after multiple moves.
They obtained the best results when 16 moves were made between updates. The rationale behind this behavior
was that the misinformation accumulation allowed more uphill moves be accepted, thereby avoiding local
minima. Rosc et al. also allowed their parallel algorithm to perform multiple moves between updates. Experi-

mentally they found that up to 10 parallel moves could take place between updates.
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We have developed techniques to modulate update rate dynamically to achieve maximum performance

without sacrificing placement quality.
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CHAPTER 4

ROW-BASED PLACEMENT ALGORITHM

4.1. Motivation

The primary design goal of this algorithm was to provide high performance in terms of final placement
quality and overall execution time. A sccondary motivating factor was to implement the parallelism in a manner
that would be convenient for a combined place and route tool, i.e., this placement program will be a subfunction
in an integrated place and route program. Lastly we wanted to provide implicit error control as a means of

improving performance without sacrificing solution quality.

4.2. Overview of Parallel Algorithm

This parallel algorithm is a parallel adaptation of the anncaling methodology implemented in the Tim-
berWolf [14] placcment and routing package, with some important improvements. TimberWolf is a uniproces-
sor cell-placemém oplimization program that cmploys single-cell displacements, orientation "flips," and cell-pair
exchanges in an effort to minimize aggregate interconnect wire length. The TimberWolf simulated annealing
temperature schedule is fixed irrcgardless of circuit characteristics, and the number of attempted new states per
temperaturc is a constant proportional to the size of the circuit (number of cells). (The latest release of Tim-
berWolf, TimberWolfSC version 4.1, still has a fixed tcmperature schedule, but the number of attempted states
increases slightly at low temperature). For simplicity our algorithm employs only single-cell displacements and
cell-pair exchangcs. Instcad of a fixed annealing temperature schedule, a dynamic schedule very similar to that
reported by Huang [16] is used, allowing considerable savings in overall execution time. The temperature decre-
ment is controlled adaptively by the perceived variation in the cost of candidate placement states at the previous
temperaturc.l The temperature is reduced only after thermal equilibrium has been reached, i.e., the probability
distribution of candidate statcs approximatcs the Boltzmann distribution. Since equilibrium detection is
dynamic, the number of new attempted states per temperature varics across temperatures. Even with the over-

head involved in adaptive scheduling, we find an improvement in overall runtime performance.
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The basic theme of our parallel algorithm is to divide up the area of the VLSI chip image into equally-
sized sub-areas, and allocate each sub-area 10 a scparate processor. For a standard-cell circuit in row organiza-
tion, each processor would be allocated onc or more rows of chip image. Cells are assigned an initial position
but are frec to migrate across the layout. The cell’s associated data structure passes from processor to processor
.as it crosses sub-arca boundaries during placement evolution. Processors pair up to evaluate single move types
(displacements or exchanges), drawing potential cells from the sub-areas assigned to both processors. On a P
processor hypercube, a total of P /2 moves are evaluated in parallel at each "parallel move.” The P/2 moves are
independent - the geographic partition guarantees that a cell cannot be moved by more than one processor simul-

taneously. A brief algorithmic outline of the parallel algorithm is presented in Figure 4.1.

The Host assembles the initial placement configuration completely at random. The overhead of Host-to-
Node and Node-to-Host communication at the onset and termination of the program is negligible compared to
overall execution time. Determination of initial temperature, frozen condition, and the dynamic temperature
schedule is explained in Section 4.9. A move sequence is a series of parallel moves made without updating

cell-position data structures between moves. This updating is an expensive procedure - so maximal length

Node_Program
{

Receive initial placcment and anncaling parameters from Host.
Determine initial temperature T,

While placement not "frozen” do
For i=1 to ScquenceLength do

If current color exhausted, then switch colors.
Evaluate cell move with Neighbor processor.
If move successful, record event in MoveQueuc.
}
Broadcast all ccll moves from MoveQueue to all processors.
Parse move scquence - add to knowledge of cost distribution.
Adjust SequenceLength based on perceived average crror.
If at thermal equilibrium for this lcmperature,
then reduce tempcrature.
}

Send optimized cell-placement configuration to Host.
}

Figure 4.1. Parallel Placement Algorithm
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sequences are desirable. Excessively long scquences produce error that will impair convergence. Chapter 5
discusses the control of scquence length via crror sampling. All processors maintain an identical current "color."
Cell coloring influences the choice of cells sclected for moves - only cells of the current color are allowed to
move. This eliminates all temporary crror duc to interacting cell moves. Colorin_g as an error-control mechan-
ism is discussed in Chapter 5, and the coloring method itsclf is outlined in Section 5.2. Pairs of processors

cooperate to perform cell moves. Detailed descriptions of possible move types are in Section 4.7.

4.3. Mapping Chip Area to Processors

Jones and Banerjee’s cell-placcment program written for a hypercube multiprocessor [22] partitioned the
chip area into square blocks, or a grid. This new algorithm instead incorporates row, or "strip” partitioning.
Symbolic examples of the two chip partitioning strategies are illustrated below - Figure 4.2a illustrates strip par-
titioning, while figure 4.2b illustrates grid partitioning. Four rows of standard cells have been mapped to four

Processors.

lf---.-.-----------------------------‘

[ ]
‘| 0 K
b------.---.--.----.--.--..--.--.---‘
[ ]

[ ‘ ;

P----.------------------------------4

[ : ;

r---.----------.-.-.--------.-------1

]
' 2 K
'h--------------.----------.---------‘

Figure 4.2a. Strip Partitioning of Rows to Processors
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Figure 4.2b. Grid Partitioning of Rows to Processors

Strip partitioning cannot achicve as (ine data granularity as square partitioning, because the sub-area correspond-
ing to a row of cclls can be allocated 10 only one processor. If the number of processors P in the hypercube
assigned to the problem is larger than the number of rows R in the circuit, the remaining P~R processors are

drones - they do no work. If R exceeds P, then multiple physically adjacent rows are assigned to individual pro-

cessors, i.c., [ %] rows are assigned to cach processor.

The primary benefit of strip partitioning is that the entire cost of any move type can be computed solely on
the basis of local information, along with its partner node. With grid partitioning, it was necessary to maintain
information on the placement of cclls at a node’s cast and west neighbors to assess the two penalty components
of the cost function (scc Section 4.5). The overhead of maintaining this "neighborhood” phceﬁent information
can be very high. Furthcrmore, this ncighborhood placement information must be exchanged between east-west
neighbors alter every parallel move to maintain state cost accuracy. By nature, strip partitioning has all such
neighborhood placement information, eliminating this costly exchange. Most importantly, with exact knowledge
of the two penalty cost components at cach processor, the only error that accumulates due to parallel moves is
error in total wire length. This partial elimination of crror via strip partitioning not only reduces the overall

magnitude of crror (cspecially at high tcmperature) but also simplifies the theoretical justification behind our
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methods of crror control. Lastly, strip partitioning lends itsclf naturally to an integrated place and route strategy.
Pairs of (logically adjacent) proccssors cooperating on moves have all the required cell-position knowledge to

route the intervening channel simultancously.

4.4. Distributed Data Structure

Each processor maintains a list of cells currently assigned to this processor. This list is implemented as a
linked list of cell structures, where the structurcs contain net-list information necessary to compute the
bounding-box portion of the cost function. Though timewise inefficient, this is the most memory-efficient

method of storing the circuit description in a distributed manner. Cell structure information includes

1) The unique global cell ID#
2) The width of the ccll
3) The x,y location at which the centroid of the cell is currently placed
4) A list of nets to which this cell is connected
5) For each net listed in 4), a list of other cells to which the net
is connected, along with the x,y location(s) within these cells.
Figure 4.3 shows an cxample of scveral cells intcrconnected via nets, and the corresponding cell-structures
as they would appear in a list at the processor. These cell structures are transferred between processors as cell-

moves are made.

4.5. Cost Function

The cost function uscd in this algorithm is identical to that used in early versions of TimberWolf and
several other simulated-anncaling based cell-placement programs. The cost of a candidate placement is com-

posed of three subcosts:

1] Estimate wiring length using half the perimeter of the
bounding box rule.

2] Overshoot or undershoot of row lengths compared to
ideal length (Penalty Cost).

3] Area overlap of cells in the same row (Penalty Cost).

At high temperaturcs cells are allowed to overshoot the maximum row length boundary, and can overlap one

another. Idcally the penalty costs of 2] and 3] reduce to zero at the termination of annealing. Each processor
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can compute the exact cost of cclls placed within its chip image sub-area. The exact cost of the current place-

ment configuration for the entire chip is simply the sum of partial costs computed at each processor.

4.6. Interprocessor Communication Pattern_

Processors pair up to evaluatc a single move type - either a displacement or an exchange. Several inter-
node messages arc usually exchanged in the course of move resolution (see next section). Because minimizing
inter-nodc message latency in this phase of the algorithm is very important to overall performance, the choice of
node-pairings must made carcfully. Uniprocessor algorithms can choose candidate cells from among the entire
cell complement and can then displace them to any location within the confines of the chip image. Parallel
annealing as implemented in this algorithm restricts the choice of cells to the rows mapped to the processor(s)

performing the move.

The interprocessor communication pattern should satisfy two conflicting objectives: 1) short, medium, and
long distance moves allowed to simulate the geographic uniformity of uniprocessor algorithms, and 2) proces-
sors chosen as neighbor pairs should communicate efficiently, i.e., the number of link "hops” necessary to com-
municate from processor to processor should be low. The algorithm developed by Jones and Banerjee [22]
satisfied objective 2) by only allowing nearcst-neighbor (1 link-hop) communication. With their square-grid
chip partition, the communication pattcrn was a variant of the 5-point stencil [28]. If the algorithm was run on a
hypercube of dimension 4 or above the higher-order links performed long-distance moves, satisfying objective
1).

We propose an improved neighbor mapping based on hierarchical gray codes [29] that satisfies the pro-
cessor proximity goal while providing a more geographically uniform move selection. If physically consecutive
rows are assigned to logically consccutive processors from a gray-code sequence, all physically adjacent rows
will be mapped to adjacent processors in the hypercube. A mapping corresponding to a hierarchical gray-code
sequence has the additional property that two processors with node numbers P; and P;1»; will be separated by at
most two link hops for 0 < j < P/2. An example of this mapping and the pairwise communication that is possi-
ble with such a mapping is shown in Figure 4.4. In the figure, a six-row chip image is mapped to a three-
dimensional hypcrcube arranged in a broken ring arrangement with the hierarchical gray code. Arrows originat-

ing in the row allocated to nodc #2 indicatc pairwise move resolution with other nodes +2j ,0<j<2 .
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Processors without rows (c.g. processors #4 and #5 do not take an active part in the algorithm, so the move per-
formed with nodc #4 would be strictly intcrnal to node #2. Given a layout with R rows executing on a hyper-
cube with P processors where P > R, cach processor will pair up with 2log.R — 1 other processors in this pat-

tern. This provides geographic uniformity for hypercubes of any size.

Figure 4.4, Processor-to-Processor Communication Pattern

4.7. Cell-Move Resolution

Pairs of processors cooperate to perform two kinds of cell moves - cell displacements and pairwise move
exchanges. The ratio of displaccments to exchanges is maintained at approximately 5:1 as used by TimberWolf,
One processor assumes the role of master, the other of slave. The relative master/slave relationship between any

two processors alternates in time (o avoid load imbalance in cell complements. The master determines the type
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of move that will be made and informs the slave. Theoretically, two processors cooperating can perform a cell
move in half the time of a singlc processor; however, the precedence of computational steps in resolving a move
does not always allow masier and slave to operate concurrently. There are two sub-classes of moves for both

displacements and cxchanges, or four move types in total:

{1] Intraprocessor Ccll Displacement
[2] Intraprocessor Cell Exchange
[3] Interprocessor Cell Displaccment

{4] Interprocessor Cell Exchange

In an intraprocessor move, the master displaces or exchanges cells strictly within its own sub-area - the slave
essentially is dormant. In an interprocessor move, the master either displaces a cell to the slave’s sub-area, or
the master and slave exchange cells. (n the case of interprocessor cell movement the change in cost is evaluated
partially at the master and partially at the slave. The ratio of interprocessor to intraprocessor moves is 1:1. We

now present a brief algorithmic outline of each move type.

4.7.1. Intraprocessor cell displacement

The master displaces a single ccll to another location within its allocated chip area. The candidate loca-
tion is chosen randomly from within a range-limiting rectangle centered upon the cell’s current location. The

slave initially sends a cell structure packct which the master discards without inspection.

Table 4.1, Outline of Intraprocessor Cell Displacement

Master | Slave
Send null cell to slave. * Select cell at random.
Send cell to master.
Receive cell from slave (discard). Receive cell from master. (Determines move type)

Select cell at random.
Select random location.
Compute displacement cost.
If displacement cost acccptable,
then update position, switch rows,
and add move to move_qucue.
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4.7.2. Intraprocessor cell exchange

The master selects two candidate cells and exchanges their positions. Change in cost is calculated entirely
by the master, as is the decision to accept the move. If the bounding box created by the two candidate cells

exceeds the range-limiting window in either dimension, the exchange is rejected.

Table 4.2. Outline of Intraprocessor Cell Exchange

. Master | . Slave
Send null cell to slave. " Select cell at random.
Send cell to master.
Receive cell from slave. Receive cell from master.
(discard) (Determines move type)

Select a cell at random.
Select a sccond cell at random.
Compute exchange cost of the two cells,
If exchange cost accceptable,

then modify cell list,

and add movce to MoveQuecue.

4.7.3. Interprocessor cell displacement

The master sclects the candidate cell, computes the effect of its loss, and serds a copy of the cell to the
slave. The slave picks a new location from the area created by the intersection of the slave’s sub-area and the
range-limiting box centcred on the ccli’s previous location. Accounting for the master’s loss, the slave com-

putes the total cost of accepting the move, and decides accordingly.

Table 4.3. Outline of Interprocessor Cell Displacement

Master | Slave

Selcct cell at random. Select cell at random.
Send cell to master.
Receive cell from slave (discard).
Compute displacement cost.
Send cell to slave. Receive cell from master. (Determines move type)
Select random location for cell.
If displacement cost acceptable,
then update position, add cell.
Add move to move queue.
Inform Master of decision.
Receive move acceptance decision,
If move accepted,
remove ccll from local arca.




4.7.4. Interprocessor cell exchange

Master and slave both sclect random cells, and both compute partial exchange costs. The slave informs
the master of its partial cost-change calculations and the master then makes the decision to accept the move. As

in intraprocessor exchangcs, the move is rejected outright if the two cells are too far apart.

Table 4.4. Outline of Interprocessor Cell Exchange

Master | Slave
Select a cell at random. " Select cell at random.
Send cell to slave. Send cell to master.
Receive cell from slave. Receive cell from master,
Compute partial exchange cost P1. Compute partial exchange cost P2.
Send partial cost P2 to master.

Receive partial P2 cost from slave.
If aggregate (P1+P2) cost acceptable,
then modify cell list.
Add move to move_queue.
Inform Slave of decision. Receive acceptance decision.
. If move was accepted,
then update local placement.

4.8. Summary of Internode Traffic

Figure 4.5 summarizes the intcrprocessor message traffic that occurs in each move type. Message pre-

cedence is indicated by a number next to the arc.

4.9. Move Range Limiter

This algorithm incorporates a range-limiting window similar to TimberWolf3.2 to enhance convergence at
the later stages of annealing. Displacement move types always restrict the destination within this box, and
exchange move types are always rejected if the cells exceed either dimension in distance. The dimensions of

this window are controlled by the following formula:

Width = 2*max (3, ChipWidth - 1'(‘)’5—1‘&(;%)
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Figure 4.5. Interprocessor Message Traffic

As the window contracts within the boundaries of the layout, processor pairs that communicated previ-
oﬁsly to evaluate moves will now be scparated by a dismnce exceeding the limiter. These processors will no
longer pair-up. At the later stages of annealing, the range-limiting window only allows processors assigned to
physically adjacent rows to pair-up ( a consequence of gray-code mapping), thereby improving performance

slightly over the general hicrarchical gray-code mapping used at high temperature.

4.10. Annealing Schedule

The annealing schedule is the scquence of temperatures by which the placement problem is boiled, cooled
and finally frozen. Most implementations of simulated annealing use a fixed sequence of temperatures derived
empirically [12,30, 15, 14,27,23,21,24,18,22]. Huang [16] has proposed an adaptive cooling schedule based
on the characteristics of the cost distribution and the annealing curve itself (average cost vs. logio temperature).

Insuallation of Huang’s schedule in a version of TimberWolf yielded substantial savings in overall execution
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time with no significant change in final placement quality - for the small sample of test circuits listed. The over-
head of adaptive scheduling is not large for a uniprocessor algorithm such as TimberWolf, but can be very sub-
stantial in an algorithm likc ours that proposcs cell moves in parallel. The system cost would have to be sampled
after each accepted move to build an accurate cost distribution, requiring global synchronization and updating
after every parallel mer. This is exactly what we want to avoid in our ner algorithm. However to validate
Huang’s schedule for parallel anncaling we have implemented a version that only allows one parallel move

between updates. The performance of this algorithm is discussed in Chapter 6.

In all the placement via anncaling implementations mentioned above the number of attempted cell-moves
per temperature is a lincar function of the circuit size, and remains constant throughout the entire annealing
schedule. TimberWolfSC4.2 increases the number of aticmpts at low temperature to compensate for the high
move rejection rate. Huang instcad rclies on dynamic "equilibrium detection” to signal the appropriate point to
lower the annealing temperature. The overhead in cquilibrium detection is slight, and results in far fewer move
attempts at high tcmperature than at low tcmpcrature, thereby reducing total CPU time. We have adapted
Huang’s schedule to our parallel algorithm. In addition to the aforcmentioned reduction in total move attempts,
detection of equilibrium implicitly considers the impact of .crror on the the cost distribution, providing natural
error control. This benelit is considered in the next chapter. The initial temperature, temperature decrement,

equilibrium detcction, and frozen condition will be discussed in the next four sections.

4.10.1. Initial temperature

Initial placement is "scrambled” randomly to detcrmine the maximum possible variance in the placement
cost distribution under a 100% move acceptance ratc. To scramble the circuit, all randomly selected moves are

accepted until the variance in the cost distribution stabilizes. The so-called Hot Condition [16] is reached when

I O'; —cc | :
+ <003 i=l.K
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After each parallcl move, the new state cost is sampled, and added to existing knowledge of the overall cost dis-

tribution. The standard dcviation has stabilized when K successive samples of the standard deviation o, in

sequence differ from the initial standard deviation of the scquence o, by 3% or less.

Having measured this maximal variation, temperature is sct proportional to the standard deviation so that

"bad” moves ( +30, ) arc initially accepted with high (75%) probability, i.e.,



26

0.75 = e*¥7T
therefore,
To=k ‘Ce
Typically k is ncar 20 [16] , but as the icmperature decline is very sharp at high temperatures the value of k is

)

not critical.

4.10.2. Equilibrium detection

Equilibrium at a tempcrature means the probability distribution of placement configurations has reached a
steady state. At high temperature this distribution will be approximately normal {16,31]. Huang suggests that
equilibrium can be detected by sampling costs dynamically as the placement is perturbed. The ratio of cost sam-
ples within a closed interval about the mean cost to the total number of samples will reach a steady-state value if
the system is at thermal cquilibrium. For a normal distribution, this ratio is well-defined and easily computed via

the error function erf{x). Huang chose a small target interval § = +6/2 as representative. For a standard normal

distribution,

P {C <ut—g- and C>pc+%} =0.38.

From this fraction a target count value and maximum count tolerance are established:
TargetCount = K (0.38)(Total#of Cells)

MaxLimit = K (1-0.38)(Total#of Cells)

where K'=3. Whilc constructing the cost distribution, a counter J, increments each time a new sample cost lies
within the target intcrval mentioncd above. Another counter J2 increments if the sample lies outside the target
interval. Should J, reach the TargetCount before J, reaches the MaxLimit, eql;ilibﬁum detection is signaled.
Otherwise both counters are reset and counting resumes. To account for the multiple cell moves made in paral-
lel, we weight the counter increment by the number of moves accepted at that parallel move. In our parallel
implementation, the maximum number of new configurations gencrated is bounded from above by the same

static limit used in a previous parallel implementation [22], and in TimberWolf3.2 [14].
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4.10.3. Temperature decrement

The derivation of the function for lemperature decrement from Huang [16] is too lengthy to repeat here.
The idea is to reduce the current temperature so that the expected decrease in average cost is less than the stan-
dard deviation in the cost distribution at this temperature. To avoid sharp reductions at high temperatures, the

new temperature is bounded from below by one-half the previous temperature, or

Tyt = max (T;e 7, T12)

where A is typically = 0.7.

4.10.4. Frozen condition

A simple procedure detects the frozen condition. If average placement cost is unchanged for several con-

secutive temperaturcs, placement is esscntially "frozen” and annealing terminates. Formally,

1ozl <00 isl4

if the average placement cost during four consecutive temperatures remains within 1% of the first measured cost

in the sequence, the placement is "frozen.”
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CHAPTER 5

INTEGRATED ERROR CONTROL

5.1. Controlling Error

In algorithms such as ours that move multiplc cells independently and simultaneously, error is the differ-
ence between the real change in cost from initial to final configurations and the estimated change in cost equal to
the sum of locally perceived changes in cost at each processor. If C; is the exact cost of the initial configuration,
Cy the exact cost of the new configuration, and AC; the perceived change in cost computed locally at the

1 £ j < P72 processor pairs that evaluated moves in parallel, then

C; +‘,§ch =Cr + Error .
When not written in the sum as above, consider AC; o be the perceived cost change at an arbitrary processor
pair. The AC; of an unacccpted cell move is zero. Unaccepted moves may have also experienced error during
evaluation, but this quantity is impossiblc 1o measure dircctly, so average error is only sampled from accepted
moves. Clearly, error is due to inaccurate AC; costs computed locally when evaluating potential moves. Of the
three components making up the cost function, only estimated wire length contains error. The penalty com-
ponents - cell overlap and row over/undershoot are computed accurately as a consequence of the strip-

partitioning in row-based placcment. We now examine a cause of error.

Consider the following typical move scenario. Figure 5.1 shows a net bounding box BB defined by
extremally located pins in the cells named C 1, C2 and C 3. Because the three cells are in different rows, we can

assume their associated data structures are located at three different processors.
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Figure 5.1. Independent Cell Displacements Altering Bounding Box

Suppose C2 and C3 arc displaced independently (by different processors) in a move set to new positions
indicated by the dotted boxes. The new dashed bounding box BB results if either or both moves is accepted.
Each cell has an associated data structure containing pin positions of all other cells that share at least one net
with this original cell. The AC; computed at both processors would account for the increase in bounding-box
dimension from BB o0 BB’ for all cclls on that net. Both processors would compute a positive AC; resulting
from this new larger bounding box, but the sum of these partial cost changes is actually double the real change in
cost. The magnitude of error would be on the same order as the change in bounding-box wire length. Thus error
may be produced when cells that sharc nets are moved simultancously, and both moves alter the dimension of
one or more shared net bounding boxes. Obviously, the chance of error occurring increases with the number of
cells moved simultaneously. At high temperatures, ceils can move across the entire chip in a single displace-
ment, whereas at low temperatures, the displacement is limited by the range-limiting window discussed previ-
ously. Long-distancc moves create greater distortion in bounding-box dimensions, and thus create more error on
the average. Though this cnlire sccnario dealt with single-ccll displacements, a similar argument can be made

for the error crcated by simultancous ccll exchanges.

In summary, the error in AC; duc to distributed cell-location inconsistency for one parailel move is pro-

portional to: 1) the number of cclls in the parallel move sct; 2) the extent to which these cells share common
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nets; and 3) the distances AX and AY that the cells may be moved constrained by the range limiter. In his com-
parison of sevcral parallel placcment algorithms, Durand [32] classifies this error in parallel move evaluation
"temporary error,” the implied procedure to resynchronize and update distributed cell positioning after each
parallel move. Large amounts of temporary error do not scem to impair convergence to a "good” solution. Even
algorithms that move three-quarters of the total number of cells in one parallel move converge successfully

[21,24].

Of more interest is the error accumulated after several parallel moves with no intervening cell position
update. Clearly, the amount of misinformation will increase with each accepted move. However if this expen-
sive synchronizing update could be reduced in frequency, overall execution time would be significantly
improved, especially at low tempcrature. We call such a series of parallel moves a parallel move sequence, or
simply a sequence. A move scquence is illustrated schematically in Figure 5.2. The initial placement
configuration is SO, the final placement configuration SN. The exact costs of states SO and SN are known
because the algorithm synchronizes and updates at the start of every sequence. The exact costs of states S1
through S(N-1) are not known. However, a pscudocost for state S1 can be computed by adding the total per-
ceived parallel move cost change ( sum of AC;’s ) to the original cost Co. In this manner, pseudocosts are deter-
mined for states S2, S3 up to S(N-1). The pseudocosts will become increasingly inaccurate further along the

sequence as a result of increasing error.

Fs"=" rFe==="
[} [} [} |

SO f------ > §] Re-ones > §2 »-->000 ---> SN
I | | SO |

Co PC1 PC2 CN

Figure 5.2. Sequence of States Permuted with Parallel Moves

Of course the total perceived cost change between pseudostates cannot be determined without synchroni-
zation, so pscudocosts are not computed until after synchronization at the end of the sequence. These pseu-
docosts are used as cost samples to build a cost distribution. In Huang’s uniprocessor adaptive schedule, exact

cost after every move is known (no crror) implicitly, and an exact cost distribution can be built. What we are
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creating is a cost distribution with error - the theoretical consequences of which will be discussed in Section 5.4.

The error of a sequence of length N is similar to the case for just one parallel move.

Ci+ ﬁ;ﬁ&,‘ =Cy +Error.
Again average error is just the total error divided by the number of accepted moves. As the sequence length
grows, so does the amount of misinformation on cell positioning. Hence, average error increases. Durand calls
this error due to outdated information "cumulative crror." While convergence is largely insensitive to temporary
error, several groups rcport that cumulative error can impair or disable convergence entirely {20,33,19,27].
Grover’s algorithm with approxi‘mate calculations [19] restricts the error to a magnitude less than the current
temperature, and maintains convergence. Due to the nature of our distributed data structure, we cannot provide

rough analytic bounds with which to detcrmine sequence length as he has.

Our placcmeni algorithm guarantees that the error in system cost because of outdated cell-position infor-
mation is due only to incorrcct wirc-length assessment.  This benefit of strip partitioning not only reduces the
magnitude of error, but also allows us to analyze the effect of error more closely. We have developed two new
approaches for controlling crror: Heuristic Cell Coloring to eliminate temporary error; and Adaptive

Sequence-Length Control to constrain cumulative error.

5.2. Heuristic Cell Coloring

We have implementcd an cfficient circuit preprocessing algorithm called Heuristic Cell Coloring, which
complctely eliminates temporary crror in our parallel placement algorithm by identifying sets of noninteracting
cells. Noninteracting cclls can be moved repeatedly, and in parallel, without any accumulation of cell position
misinformation in the distributcd database. Casotto [21] calls such a move-set independent moves. If each cell
were only moved once between global cell-position updates (with coloring), then that set of moves would be a
Serializeable Subset as dcfined by Fravitz and Rutenbar [30]. This cell-coloring method is extensible to other

parallel-placement algorithms.

Finding sets of unconnected nodes in an arbitrary graph is analogous to graph coloring. Clearly the circuit
description of a standard-cell circuit can be directly posed as a graph where cells correspond to nodes and nets

correspond to cdges. The graph is colored so that no two connected vertices are the same color. Now all ver-
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tices (cells) of the same color are nonintcracting, and can be moved repeatedly between updates without any
error accumulation! Though optimal graphcoloring for arbitrary graphs is NP-complete, fast heuristic graph-
coloring methods arc available for graphs that are not "pathological cases." We will now outline a standard

_ cell-coloring algorithm that can be uscd to heuristically color standard-cell circuits.

The graph-coloring problem, like optimal standard-cell placement, is NP-complete. Fortunately, heuristic
algorithms for near-optimal graph coloring produce colorings sufficient to benefit parallel placement algorithms,
in much less time than placement. The emphasis of this project was not to find an algorithm that produced the
best coioring (fewest colors), but rather to determine what benefit approximate coloring can provide. Turner
{34] suggests that most graphs are "easy” to color in j colors where j =k, the chromatic number of the graph.
The chromatic number & is the minimum number of colors needed to color the graph. He further suggests that
graphs that are extremely hard to color are pathological cases. We conjecture that standard-cell circuit descrip-
tions are not pathological cascs, and thus are easy to color in near-optimal number of colors. Graphs that exhibit
low maximum connectivity (e.g., lack of very large cliques) are easier to color in £ c;)lors than those graphs with
high maximum connectivity. The conncctivity structure of several example circuits will be examined briefly, and

its relation to overall colorability noted.

In keeping with Tumcr’s suggestion, three variations of an algorithm originally proposed by Brelaz
{35, 34] were developed to study the merits of different levels of heuristics in coloring graphs of typical circuits.
In what follows, vertices are cquivalent to cells and cdges correspond to nets interconnecting cells. The "origi-

nal" algorithm can be paraphrased with a vertex selection rule:

a Select an uncolored vertex x from the heap of uncolored vertices such that the number of potential
colors available to x is 4 minimum. If several vertices match this criterion, select that vertex with
maximum degree in the as yet uncolored subgraph. Color this vertex x with the minimum color

available.

An outline of the original Brelaz algorithm is listed in Figure 5.3.
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Brelaz()
forallwe V { ;For all cells
w.color = NULL ;Set to uncolored

w.avail = { Colors numbered 1 through VI )
w.deg = Iw.neighborsi

)
M = makchcap(V)

;All colors available

sortheap(M) ;As per previous rule
while heap_not_empty(M) (
x = delete_heap_min(M) :Pop top of heap
x.color = min_avail_color(x.avail) ;Smallest available color
for z € x.neighbors { ;For all connected cells
if z.color == NULL { :Reduce possible color
z.avail « z.avail - x.color ;set.
zdeg=z.deg-1 ;:Reduce degree in
) ;uncolored subgraph -
}
siftup(M) ;Maintain heap order

)
)

Figure 5.3. Brelaz’ Graph-Coloring Algorithm

The original Brelaz algorithm will run in O(mlogn) time (n vertices and m edges) if the set function rou-
tines (color availability sct) are coded carefully’ with balanced binary-tree data structures [34]. The current
implementation was not coded in this manncr. The original Brelaz algorithm was the slowest of the three varia-
tions.

Variation no. 1, called "random,” is identical to the original except the vertex heap is never sorted.
Delete_heap_min then essentially removes a random clement from the heap of remaining vertices. This varia-

tion is faster because sorting the heap is very expensive.

Variation no. 2, "grcedy,” is identical to the original, but no heap sorting is performed after the first sort.
This orders the vertices in the heap by degree - those vertices with high degree will be removed first. This is
similar to the "standard" grecdy graph coloring algorithm. The execution time of this algorithm is somewhere

between "original” and "random”[34].

The three graph-coloring algorithms were coded in the form of a program in the "C" Language. Input files
for the program werc cell-description files in TimberWolf format. (Actually TimberWolf format had to be con-
verted slightly since it contained information superfluous to the coloring program.) Resulting colorings of

several circuits are listed in Table 5.1, The runtime for the coloring algorithm on all circuits was under 10
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minutes, with the exccption of the 800-ccll circuit, which took about an hour with the original Brelaz algorithm.

This satisfies the constraint that coloring should take much less time than placement.

Table 5.1. K-Colorability of Sample Standard-Cell Circuits

Number Connectivity Colors Needed
of Cells | Min M_ax_ Avg | Brelaz | Random_|_ Greedy
32 3 10 6 6 6 6
64 3 16 6 11 11 11
183 1 23 8 15 15 15
286 1 123 40 29 24 30
800 1 123 22 21 24 24

The random and greedy algorithms performed as well (or better) than the original algorithms, except for
the 800-cell circuit, where the original algorithm did slightly better. The 286-cell circuit had a very high average
connectivity, and requircd a corrcspondingly high number of colors. Unfortunately no optimal coloring numbers

were availablc for these circuits.
Of more intercst is the distribution of the color-set sizes. For example, the 800-cell circuit colored by the
original Brelaz algorithm can be colored in 21 distinct hues. The average color set would then include 800/21 =

38 cells. The actual distribution of set sizes for this circuit is plotted in Figure 5.4.

Casual inspection of the graph will show that the size of most of the color sets falls below the 38-cell aver-
age. with several large scts encompassing about 50% of the total cells. These large cell sets offer the greatest
potential in terms of parallel cell moves, but those cells in the smaller sets must be allowed to move as well. By
limiting the current color to a small color set, the overall acceptance rate drops with respect to the noncolored
algorithm.

All three algorithm variations produced ncai'ly the same sct-size distribution. Certainly other algorithms
could probably be developed that produce a more cven distribution. It is doubtful that other algorithms could

produce a substantially better coloring.

5.3. Adaptive Sequence-Length Control

We now describe a method used to control cumulative error. Our parallel algorithm dynamically extends
and contracts the parallel move scquence length constrained by a bound on allowable error derived from tem-

perature. Other rescarchers [20,22, 23] have reported that fixed length sequences can be used and still maintain
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convergence. Fixed sequence lengths are inappropriate due to the varying conditions found for different circuits
at different temperaturcs. Maximal size sequence lengths are desirable because they limit the frequency of cell

position updating thereby improving performance significantly.

5.3.1. Bounding error with temperature

We wish to find an upper bound on the maximum permissible average error at a particular temperature.
By adjusting scquence length dynamically after cach scquence, the average error can be limited to a specific
range. We base our approach on the characteristics of the move-acceptance curve. The composite move-
acceptance-rate curve is ncarly continuous and similar to the so-called "annealing curve” of cost versus loga-

rithm of tempcrature. We call the acceptance rate composite because it has two components:
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P = P{move accepled}
= l‘{move accepted |AC > 0}-1’{AC > 0} +P{move accepted | AC <O}-P{AC <0}

where AC is the change in cost such a move would produce. The procedure developed by Metropolis [13]

rewrites the probability of accepting a "good" move (AC <0) as unity and that of a "bad" move as (e-2C'T),

P= e‘AC’T-R{AC >0} +P{AC <0}

In the presence of crror the composite acceptance rate changes slightly; however, the probability of generating

Hence,

good or bad moves is invariant with respect to error :

Pe = e'W-'*EW-P{AC >0} +F{AC <0}

Our approach then is to bound the magnitude of allowable error so that the "normal” composite acceptance rate

is not unduly affected. In similar fashion, TimberWolfSC version 4.1 [15] dynamically scales the acceptance
rate of bad moves thercby forcing the composite rate to follow an empirically derived optimal curve. To bound

the acceptance rate with error Pg to within 5% of normal, i.e.,

we find two bounds on magnitude of crror - one for pessimistic error E ., and one for optimistic error E .

E,<-T /In(1-0.05)=T720

E_<-T /In(1+0.05) =T/21
The tighter bound (optimistic crror) is used in the algorithm. If the average error measured at the end of a
sequence is higher than T/21, the scquence length is reduced commensurate with that excess. If average error is
very low (T/42) then sequence length is lengthened slowly. Plots of average sequence length vs. temperature
are included in the next chapter. Experimentally we found that a 5% deviation in composite acceptance main-
tained convergence of all our test circuils - it is not clear what maximum variation in acceptance rate can be

toleratcd and still insure convergence.
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5.4. Theoretical Justification

Our conjecture is that error constrained to wire length with our row-based algorithm will assume a normal
distribution under a parallel move sct. Furthermore the distribution of system cost with error will also retain

normal form validating Huang’s schedule [16] for our parallel move set.

We have demonstrated how crror is created by ‘cvaluating interacting moves in parallel. Outdated cell-
position information produces crror that is proportional to the number of nets connected to the cell and the dis-

tance it was displaced from its original location. The error can be decomposed into X and Y components:

Ex = a'Wx
E, =B-W,
where E, is a random variable representing the system-wide crror in the X-dimension at all nodes, and W, is a

random variable representing error in the bounding box. Now E; is proportional to the W; because all the cells
are chosen independendy without regard to connectivity. Therefore E, = ﬁa.- W, will assume a normal distribu-
tion as the sum of independent uniformly random variables. The same argument can be made for E,. Now the

X and Y components of displaccments and exchanges are completely independent. Therefore, the error com-

ponents E,; and E, can be combined into a single normal random variable £ with mean,

He = Mg +UE,

and variance,
o2 =Gf+0E .

Hence error introduccd by a parallel move sct is normal in distribution.

By treating simulated annealinyg as a Markov process Hajck [31] and others have shown that the cost dis-
tribution will assume a normal distribution at high temperature. Indeed Huang’s statistical scheduling approach
is based on this assumption. We have just shown that error in a parallel move set will assume a normal distribu-
tion. Assuming that the normal random variable error is independent with respect to the normal random variable

cost, the sum of the two will assume a necw distribution that is also normal;

He, = He+ig
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O, = Gé+0F .
Taking this procedure onc step further, a sequence of parallel moves is equivalent to one very large move
set except that cclls may be moved more than during a sequence. Though cell moves. are no longer independent,

we conjecture that the average crror experienced in a sequence of moves will also follow a normal distribution,

with some minor dependeney effects.
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CHAPTER 6

IMPLEMENTATION AND RESULTS

6.1. Implementation

The performance of this row-bascd placement algorithm is at least 5 to 20 times as fast as a previous-
parallel algorithm for the hypercube [22]. We have implemented this algorithm on the Intel iPSC/1 and /2
Hypercubes, in about 6,000 lincs of "C" language code. Three variants of the algorithm were developed with dif-
ferent levels of error control, The simplest algorithm, FIXEDSEQ, fixed the sequence length at one, and did not
use heuristic cell coloring. This version basically verified that Huang’s annealing schedule could be adapted to a
parallel annealing algorithm. The second algorithm CELLCOL is identical to FIXEDSEQ, with the addition of
heuristic cell coloring. We will present the impact of coloring on convergence and the annealing schedule.
Lastly the third algorithm ADAPTIVE incorporates dynamic séquence-lcngth adjustment, but does not include
heuristic cell coloring. ADAPTIVE has performance an order of magnitude better than that for Jones’ algorithm,
while maintaining equivalent quality placcment. In the future this program will form the core of an integrated
VLSI placement and routing package tailored for the iPSC/2 Hypercube. We will first discuss general results of
our error control mcthodologies, then the placement quality produced by all three algorithms, and finally the run-

time performance.

6.2. FIXEDSEQ Algorithm

We stated that strip partitionirg would eliminate error due to cell overlaps and edge overshoot/undershoot,
and that error would be produced only in wire length. Figure 6.1 plots the average temporary error of a 64-cell
test circuit for both the new row-bascd algorithm and the previous grid-based approach {22]). A four-processor
hypercube was uscd in both cascs, and the scquence length was limited to one. Clearly by eliminating error in

cell overlap and row-over/undershoot the new algorithm experiences far less temporary error.

Several propertics of the FIXEDSEQ algorithm are worth noting. Figure 6.2 is a plot of placement cost
vs. temperature for a circuit run on a uniprocessor and a sixteen-processor hypercube. At high temperature the

parallel algorithm appears to find some high-encrgy states not accessible to the uniprocessor algorithm. This
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Figure 6.1. Average Temporary Error in Strip and Grid Partitioning

graphically depicts the parallel algorithm’s abilily to rcsist local minima in the presence of error, an idea first
attributable to Jones and Banerjce [22). At low temperature the cost curves converge as is expected because the
behavior of the parallcl algorithm converges to that of the uniprocessor under a high move-rejection rate. With
this fuller exploration of the configuration space comes a corresponding higher variance in cost distribution. The
variance of the placement cost vs. cmperature is plotted in Figure 6.3 for the same circuit and hypercube
configurations as above. Likewisc lhe behavior of the parallel algorithm approaches that of the uniprocessor
algorithm at low temperature. With the FIXEDSEQ algorithm we have shown that Huang’s adaptive schedule is
appropriate for our parallel anncaling algorithm, Though FIXEDSEQ produces good quality results, the runtime
is excessive due in part to the globa! synchronization that occurs after every parallel move (i.e., sequence length

is one).
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Figure 6.3. Cost Variance vs. Temperature for 1 and 16 Processor Hypercubes

6.3. CELLCOL Algorithm

The CELLCOL algorithm is identical to FIXEDSEQ but heuristic cell coloring influences the cells chosen
at each parallel move. We conjecturcd that heuristic cell coloring could restrict the potential move sets enough
to impair convergence. Figure 6.4 plots move-acceptance percentage vs. temperature for FIXEDSEQ and
CELLCOL. At high temperature the acceptance rate is lower for CELLCOL than for FIXEDSEQ. If a processor
pair fails to cvaluate a move because of lack of cells of the proper color, this is tallied as nonacceptance. This
graph then illustrates how restricting the pool of available cells in a parallel move set can damage acceptance
rate, which in tum rcquires more parallel cell moves to reach ﬁr;al high-quality placement. For all the circuits
tested, the final placement configuration found by CELLCOL was inferior to that for either FIXEDSEQ or

ADAPTIVE.
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Figure 6.4. Move Acceptance Rate for FIXEDSEQ and CELLCOL

6.4. ADAPTIVE Algorithm

The ADAPTIVE program employs adaptive sequence-length control to achieve greater runtime perfor-
mance through error monitoring. Our adaptive algorithm restricts sequence length to within a certain percentage
of error so that the composite acceptance rate with error will stay very close to the composite acceptance rate
without error. Figure 6.5 below comparces the acceptance rate of the adaptive algorithm with 16 processors with
that of the nonadaptive uniprocessor algorithm (i.e., no error implies unbiased acceptance rate). The adaptive

acceptance rate closcly follows the ratc of the nonadaptive algorithm,

Figure 6.6 is a plot of sequence length vs. temperature for a 183-cell circuit placed on a 16-processor
hypercube. Sequence length starts at 1 and climbs rapidly until the system reaches a particular temperature. The
sequence length drops sharply to zero when the amount of temporary error in a single parallel move exceeds the
allowable bound based on tcmperature. After this point, error at each parallel move is usually either zero or

much larger-than the allowable bound, which produces the wild oscillation in sequence length seen. At low tem-
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Figure 6.5. ADAPTIVE Acceptance Rate and Normal Acceptance Rate

perature a long scquence length is still appropriate because so few moves are accepted, but after the "threshold
temperaturc” is rcached a new method for modulating scquence length is needed. This is still a subject of our
research.

Though fixed scquence lengths have becn reported by other groups [20,22,23] we find that the average
ADAPTIVE sequence length is usually one or two orders of magnitude greater than these static limits.
Table 6.1 summarizes the average length of move sequences for all the test circuits. Allocating more processors
to the task generates morc crror (i.e., larger parallcl move set). Therefore, the sequences contract to restrict error

to a constant fraction of temperature.
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Table 6.1. Average ADAPTIVE Move-Sequence Length

Circuit | Number of || Sequence
Size Processors Length
1 72
32 2 60
44
157
115
57
33
70
78
60
75
40
329
304
275
210
105
na
na
287

183

£ {000 & 10 =00 Bt |

286

[

469

145

na
316

na
174

800

ot —
oo h N —|onoo b —]|on oo

6.5. Placement Results

Our algorithm produced placement results equivalent to TimberWolf3.2. Table 6.2 summarizes our place-
ment results for various test circuits and hypercube sizes. FIXEDSEQ converged to a better or equivalent place-
ment for the two circuits we could compare to TimberWolf. Larger circuits were not placed with FIXEDSEQ
due to prohibitively long run time. The results for the 32-cell and 64-cell circuit are compared to placement
values from Jones and Banerjce’s program.

CELLCOL plainly did not converge for the three circuits attempted. This is probably a result of the res-
tricted move set available to the annealing algorithm under heuristic cell coloring. Again larger circuits were not
attempted due to cxcessive run times.

ADAPTIVE had exccllent convergence for all circuits and hypercube sizes, with the exception of the

286-cell circuit which exhibited somewhat poorer placement.



Table 6.2. Optimized Placement Wire Length

Circuit | Number of | pyvphoE | CELLCOL | ADAPTIVE | TimberWolf
Size Processors
1 4666 6803 4930 5101
32 2 4761 6485 4855 -
4 5276 6663 4995 . -
1 14604 25008 14448 25798
64 2 14830 24385 14553 -
4 14633 24497 14626 -
8 14497 22320 14541 -
1 80588 102191 81422 97956
2 80747 - 109021 75324 -
183 4 86932 114025 77968 -
8 82751 119648 89537 -
16 82594 125545 83095 -
1 126478 na 144939 127788
2 132140 na 135517 -
286 4 131887 na 172017 -
8 153923 na 149587 -
16 143310 na 142849 -
1 na na na 258744
2 na na na -
469 4 na na 245808 -
8 na na na -
16 na na 249162 .-
1 na na na 494948
2 na na na -
800 4 na na 544721 -
8 na na na -
16 na na 553875 -

6.6. Runtime and Speedup
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With adaptive scquence-length control our algorithm ran between 5 and 16 times faster than a previous

hypercube algorithm [22], and now has an overall execution time comparable to TimberWolf. The runtimes and

speedups in minutes for threc variants of the algorithm are listed in Table 6.3. Speedups are not as high as those

reported by Jonces [22], in which a fixed annealing schedule was used. The number of temperature decrements

increased in the presence of crror, and more total moves were evaluated to compensate for this effect, reducing

speedup.

We expect with slight changes to the scquence-control fecedback mechanism that we can improve this

overall performance by a factor of 2 to 5 while preserving convergence.



Table 6.3. Execution Time and Speedup

Circuit | Numberof | pyepsEQ CELLCOL ADAPTIVE Jones
Size | Processors | o o g | Time | Speedup | Time | Speedup | _Time
1 8 1.0 7 1.0 7 1.0 36
32 2 -9 09 6 12 6 12 -
4 7 1.1 5 14 3 2.1 30
1 32 1.0 38 1.0 28 1.0 102
64 2 30 1.1 31 1.2 17 1.7 -
4 24 1.3 22 1.7 10 28 66
8 22 14 20 1.9 7 44 -
1 406 1.0 542 1.0 434 1.0 876
2 451 0.9 465 12 433 1.0 -
183 4 447 09 247 22 125 3.5 408
8 123 33 128 42 118 3.7 -
16 118 34 97 5.6 58 7.5 168
1 2940 1.0 na na 1350 1.0 6840
2 2415 1.2 na na 1114 1.2 -
286 4 1135 2.6 na na 348 39 2448
8 720 4.1 na na 390 3.5 -
16 482 6.1 na na 170 7.9 840
1 na na na na na na 136800
2 na na na na na na -
469 4 na na na na 4149 na 45600
8 na na na na na na -
16 na na na na 1018 na 10800
1 na na na na na na 117720
2 na na na na na na -
800 4 na na na na 6225 na 30780
8 na na na na na na -
16 na na na na 1260 na 10260
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CHAPTER7

CONCLUSION

7.1. Summary of Results

We have presented a new row-bascd parallel cell-placement algorithm based on the simulated annealing
technique, designed to run on a hypercube multiprocessor. The algorithm has been implemented on the Intel

iPSC/2 Hypercube. The placement results of this algorithm are equivalent to TimberWolf - the standard for

comparison in academia and industry - yct the execution time is much faster. Also the runtime is up to 16 times

faster than a previous placement algorithm implemented on the hypercube [22].

Though all the parallel placement algorithms suffer from error as summarized by Durand [32], we are the
first to implement error control in a systematic method with theoretical grounding. We have addressed the prob-
lem of error in parallel cell moves with two ncw techniques: Heuristic Cell Coloring and Adaptive
Sequence-Length Control. Heuristi;' Cecll Coloring climinates all temporary error in a parallel move set by only
choosing noninteracting cells at each parallcl move. Cell coloring takes only a small fraction of the time neces-
sary to place the circuit, and nceds to be done only once as a preprocessing step. Adaptive Sequence-Length
Control allows multiple parallcl moves to occur between cell-position updates. We derive a bound on acceptable
error based on the traditional move-acceptance curve, and the sequence length is modulated so that average
measured error approaches this bound from below. Long sequence lengths provide high performance because
all computation and interprocessor communication that take place during a sequence are asynchronous and
nearly local. This locality of computation and communication enables the overall speedup to scale with the

hypercube size.

7.2. Future Research

Having cstablished a viable placcment tool that can place industrial-sized circuits in a reasonable amount
of time, the next task is o integrate channel-routing and placement into a single parallel algorithm. Merging a
high-quality parallel routcr such as Brouwer’s [36] with this placer should provide superior results over distinct

place and route programs.
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There are several improvements that can be made to this program to improve performance. First, adaptive
scquence-length control provides tremendous improvements in execution time. It would be wbnhwhile to
experiment with other (looser) bounds on crror to maximize sequence length. Second, the move set of intrapro-
cessor and interprocessor cell moves is not efficient in that the Slave processor is always dormant during an
intraprocessor move. Pcrhaps a better mové sct would be along the lines of the latest version of TimberWolf [15]
with mostly cell exchanges taking place over short distances. Third, as Huang points out [16] the statistical
approach relies on a normal cost distribution. This is strictly the case only at high temperatures. The cost inter-

val and target counts should be updated with decreasing temperature to account for the changing shape of the

distribution.
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APPENDIX A
PERFORMANCE TIMINGS

A.l. Introduction

Prior to development of the ncw row-based anncaling algorithm, Jones and Banerjee’s parallel algorithm
was timed in some detail to determine performance bottlenecks. The new row-based algorithm was developed
to surmount these bottlenccks in order to provide greater performance. No automatic profiling tools are avail-
able (a la *gprof® under UNIX) for the hypercube, so code was inserted into the program to perform the timings.
Each node processor in the iPSC/1 and iPSC/2 has a local real-time clock with precision in single milliseconds.
Though accurate to milliseconds, on the iPSC/1 granularity is only available to 5 milliseconds. This clock value
is accessible through the CLOCK() (iPSC/1) and MCLOCK() (iPSC/2) "C" language function calls. By bracket-
ing important subroutines and code fragments with "clock” calls, timing estimates were made. To enhance accu-
racy the code fragments to be timed were repeated 1000-5000 times in a single timing. This reduced the effect

of overhead interfering with timing, and made it possible to time routines with duration < 5 msec on the iPSC/1.

In the following sections, a brief algorithmic outline of each move type will be presented, with master and
slave contributions listed side-by-side as computations occur simultaneously. Timings of important computa-
tional steps from the outline will follow. Pairwise node message traffic will be tabulated, as well as the syn-

chronizing broadcast. Finally, absolute performance timings and relative speedups will be presented.

As in TimberWolf3.2, the ratio of displacements to exchanges is about 5:1. All processors synchronize at
the end of a move cycle so performance will be limited by the slowest of the four move types listed above. This

synchronization has been implemented as a combining tree broadcast, and with a simple ring broadcast.

A.2. Intraprocessor Cell Displacement

The master displaces onc of its cells to another location within its allocated chip area. The slave initially
sends a cell structurc packet which the master discdrds without inspection. Though this is a wasted message for
this move type, for othcr move types this initial cell transfer is useful data, and its presence provides a regular

communication patiern. Table 2(a) shows the outine of the steps involved in the intraprocessor displacement in
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the master and the slave processor and the average mcasured execution times for each step on the iPSC/2 abd
iPSC/1 are shown in Table 2(b) and 2(c) respectively.

Table 2. Intraprocessor Cell Displacement

(a) Outline of move steps.

master ' l slave
Send null ccll 10 slave. ~ Select cell at random.
Send cell to master.
Receive ccll from slave (discard). Receive cell from master. (Determines move type)

Select cell at random.
Select random location.
Compute displacement cost.
If displacement cost acceptable,
then update position, switch rows.
Broadcast changes. Broadcast null.
Update affected cell structures. Update affected cell structures.

(b) Move step timings in milliseconds for iPSC/2

Number | Number master Total
Select Select Compute
of Cells | of Procs || Random | Random | Displacement | Time
Ccll | Location Cost
39 1 0.08 0.28 225 2.61
4 0.06 028 2.19 2.53
1 0.13 0.28 2,51 291
64 4 0.08 0.28 246 2.82
16 0.07 0.28 1.79 2.14
1 0.29 0.28 3.77 4.33
183 4 0.13 0.28 3.70 4,11
16 0.09 0.28 2.76 3.13
1 041 0.28 843 9.12
286 4 0.19 0.28 7.88 8.35
16 0.11 0.28 5.89 6.28
1 na na na na
469 4 0.26 0.28 23.52 26.45
16 0.12 0.28 24.81 25.21
1 1.05 0.28 11.93 13.26
800 4 042 0.28 11.54 12.24
16 0.18 0.28 8.53 8.99
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(c) Move step timings in milliseconds for iPSC/1

Number | Number master Total
Select Select Compute

of Cells | of Procs || Random | Random | Displacement | Time
' Cell Location Cost

32 1 0.75 - 1.16 12.44 1435

4 041 1.16 12.35 13.92

1 1.21 1.16 13.90 16.27

64 4 0.55 1.16 13.87 15.58

16 0.36 1.16 10.56 12.08

1 2.76 1.16 20.87 24.79

183 4 0.90 1.16 2092 2298

16 0.49 1.16 16.31 17.96

1 3.94 1.16 46.69 51.79

286 4 1.28 1.16 44.50 46.94

16 0.55 1.16 34.81 36.52

1 na na na na

469 4 1.74 1.16 132.90 135.80

16 0.64 1.16 146.44 148.24

1 10.17 1.16 66.07 774

800 4 2.88 1.16 65.18 69.22

16 0.95 1.16 5032 | 5243

AJ3. Intraprocessor Cell Exchange

The master sclects two candidate cells and exchanges their positions. Change in cost is calculated entirely
by the master, as is the decision whether or not to accept the move. Table 3(a) shows the outline of the steps
involved in the intraprocessor cell exchange move in the master and the slave processor and the average meas-

ured execution times for each step are shown in Table 3(b).
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Table 3. Intraprocessor Cell Exchange

(a) Outline of move steps

mastcr | slave
Send null cell to slave. . Select cell at random.
_ ' Send cell to master.
Receive cell from slave. ‘ Receive cell from master.
(discard) (Determines move type)

Select a cell at random.

Select a sccond cell at random.
Compute exchange cost of the two cells.
If exchange cost acceptable,

then modify cell list.
Broadcast changes. Broadcast null.
Update affected cell structures. Update affected cell structures.

(b) Move step timings in milliseconds

Number | Number master
Select Two | Compute Total | Total
of Cells | of Procs Random ‘Exchange Time
Cells Cost

32 1 0.16 4.07 4.23
4 0.12 3.99 4.11
1 "0.26 4.70 4.96
64 4 0.16 4.92 5.08
16 0.14 3.84 3.98
1 0.58 6.94 7.52
183 4 0.26 8.16 8.42
16 0.18 5.60 5.78
1 0.82 18.14 18.96
286 4 0.28 17.49 17.77
16 0.22 11.99 12.21

1 na na na
469 4 0.52 48.97 49.49
16 0.24 45.56 45.80
1 2.10 2231 2441
800 4 0.84 22.93 23.77
16 0.36 17.66 18.02

A4, Interprocessor Cell Displacement

The master selects the candidate ccll, computes the effect of losing it from its local area, and sends the cell
to the slave. The slave picks a new location and computes the cost of accepting the cell. The decision whether
or not to accept the mové is then made by the slave. Table 4(a) shows the outline of the steps involved in the

interprocessor cell displacement move in the master and the slave processor and the average measured execution



times for each step are shown in Table 4(b).
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Table 4. Interprocessor Cell Displacement

(a) Outline of move steps

master

! slave

Select cell at random.

Send cell to slave.

Broadcast null.

Receive cell from slave (discard).
Compute displaccment cost.

Update affected ceil structures.

Select cell at random.
Send cell to master.

Receive cell from master. (Determines move type)
Select random location for cell.
If displacement cost acceptable,
then update position, add cell.
Broadcast changes.
Update affected cell structure.

(b) Move step timings in milliseconds

Number | Number master slave Total
Select Compute Select Select Time
of Cells | of Procs || Random | Displaccment | Random | Random
Cell Cost Cell Location
32 4 0.08 1.03 0.08 0.28 1.31
64 4 0.13 1.04 0.13 0.28 145
16 0.08 0.71 0.08 0.28 1.07
183 4 0.29 1.82 0.29 0.28 2.39
16 0.13 1.16 0.13 0.28 1.57
286 4 041 2.58 0.41 0.28 3.27
16 0.19 1.63 0.19 0.28 2.10
469 4 0.26 7.83 0.26 0.28 8.37
16 0.12 6.88 0.12 0.28 7.28
800 4 042 5.86 042 0.28 6.56
16 0.18 3.94 0.18 0.28 4.40
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A.S, Interprocessor Cell Exchange

master and slave both select random cclls, and both compute partial exchange costs. The slave informs
the master of its cost calculations and the master then makes the decision whether or not to accept the move.
Table 5(a) shows the outline of the steps involved in the interprocessor cell exchange move in the master and the

slave processors and the average measurcd exccution times for each step are shown in Table 5(b).

Table 5. Interprocessor Cell Exchange

(a) Outline of move steps

master I slave
Sclect a cell at random. Select cell at random.
Send ccll to slave. Send cell to master.
Receive cell from slave. Receive cell from master.
Compute partial exchange cost P1. Compute partial exchange cost P2.

Send partial cost P2 to master.
Receive partial P2 cost from slave.
If aggregate (P1+P2) cost acceptable,
then modify cell list.
Broadcast changes. Broadcast nuil.
Update affected cell structures. Update affected cell structures.

{b) Move step timings in milliseconds

Number | Number master slave Total
Select Compute Select Compute

of Cells | of Procs || Random | P1 Partial | Random | P2 Partial | Time

Cell Cost Cell Cost

32 4 0.06 2.11 0.06 2.11 2.17

64 4 0.08 2.57 0.08 2.57 2.65

16 0.07 1.76 0.07 1.76 1.83

183 4 0.13 4.13 0.13 4.13 4,26

16 0.09 2.72 0.09 2.72 2.81

286 4 0.19 6.18 0.19 6.18 6.37

16 0.11 6.86 0.11 6.86 6.97

469 4 0.26 24.09 0.26 24.09 24.35

16 0.12 20.83 0.12 20.83 20.95

800 4 042 11.10 0.42 11.10 11.53

16 0.18 7.79 0.18 7.79 7.97
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A.6. Master-Slave Message Traffic

The interprocessor cxchange move type requires the master and slave exchange entire candidate cell data
structures in order to calculate cost in a distributed fashion. Other move types require structure transmission
from slave to master only, or’ transmission of an cmpty acknowledgement packet. The communication cost
incurred by transmission of a single average cell data structure is given in Table 6. Cell data structures will vary

in size depending on conncctivity; a minimum, maximum, and average message length is presented.

Table 6. Message Latency (milliseconds) on Node Processor

Number Length in Bytes Average Latency

of Cells || Min | Max | Avg | iPSC-1 | iPSC-2
32 || 104 | 308 | 190 | 2.00 0.87
64 104 | 400 [ 230 | 2.03 0.88
183 68 | 1024 | 359 | 2.20 0.91
286 68 | 3800 | 851 | 3.34 1.21
469 68 | 6124 | 4344 | 7.10 2.56
800 68 | 892 | 403 [ 227 0.97

A.7. Broadcast Timing

Two varieties of N-way broadcast were implemented and timed. Ring broadcast maps a virtual ring onto
the physical hypercube topology, ana has a delay proportional to the number of processors. The combining tree
broadcast has delay proportional to the dimension of the hypercube. Performance for four- and sixteen-node

hypercubes is listcd below in Table 7.

Broadcast packets scnt from each node fall into 3 discrete sizes: 0 bytes, 28 bytes, and 56 bytes depending
on the move type performed and whether or not the gencrated move was accepted. This packet size is indepen-
dent of circuit size, and thus total broadcast time is independent of circuit size. Zero-length packets will tend to
dominate broadcast traffic at low tempcratures late into the annealing schedule, and this will reduce broadcast

time slightly. The effect is not significant due to the high start-up cost for even empty packets on the iPSC/1.




Table 7. N-way Broadcast Time in Milliseconds

Hypercube iPSC-1 iPSC-2
Ring Combining Tree Ring Combining Tree
Size | Broadcast Broadcast Broadcast Broadcast
4 || 1570 10.72 226 229
16 102.17 90.42 11.23 791

A.8. Cell Update Timings

After every sct of of parallcl moves, the new cell locations have to be updated in various processors. Cost

of updating is directly related to the number of cell moves accepted and is therefore most expensive at high tem-

peratures. This high-tcmperature update requirement for various circuits is shown below in Table 8.

Table 8. Cell Update Timings in Milliseconds

Number | Number || Average iPSC-1 iPSC-2
Cells Total Per Cell-Move Total Per Cell-Move

of Cells | of Procs Affected Update Update Update Update
Time Time Time Time

32 1 1.0 256 25.6 1.8 1.8
4 2.4 15.7 6.5 2.2 0.9

1 1.0 59.8 59.8 43 4.3

64 4 24 39.5 16.5 5.5 23
16 9.6 419 44 5.3 0.6

1 1.0 235.8 235.8 372 372

183 4 24 147.3 61.4 27.2 11.3
16 9.6 1594 16.6 294 3.1

1 1.0 1186.1 1186.1 187.1 187.1

286 4 24 690.3 287.6 127.4 53.1
16 9.6 713.8 74.4 134.3 13.9

1 1.0 na na na na

469 4 24 4191.2 1746.3 773.2 3222
16 9.6 4146.7 431.9 780.9 81.3

1 1.0 1475.6 1475.6 232.7 232.7

800 4 2.4 913.1 380.5 168.5 70.2
16 9.6 855.5 89.1 161.1 16.8
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Exccution time and speedup of the algorithm as a function of circuit size and hypercube size are listed in

Tables A.9 and A.10. Exccution time is given in rcal-time hours. Speedup as listed here is the ratio of the execu-

tion time on a single processor to execution time on a multiple processor configuration.

Table 9. Overall Execution Time al_nd Speedup - iPSC/1

Number Number 1 Processor 4 Processor 16 Processors
of Cells | Of aucmpts . . .
percell || Runtime(hrs) | Spcedup | Runtime(hrs) | Speedup | Runtime(hrs) | Speedup
32 100 42 1.0 3.2 14 24 19
64 100 11.7 1.0 6.4 1.8 29 40
183 25 25.1 1.0 9.7 26 3.8 6.7
286 5 32.5 1.0 11.7 2.8 4.1 7.9
469 1 130.7 1.0 43.8 30 10.8 12.1
800 1 57.0 1.0 18.1 3.1 5.6 10.2
Table 10. Overall Execution Time and Speedup - iPSC/2.
Number Number 1 Proccssor 4 Processor 16 Processors
of Cells of attempts . . .
per cell Runtime(hrs) | Speedup | Runtime(hrs) | Speedup | Runtime(hrs) S&ug
32 100 0.6 1.0 0.5 1.2 0.2 24
64 100 1.7 1.0 1.1 1.5 0.6 3.0
183 100 14.6 10 6.8 22 2.8 53
286 25 28.5 1.0 10.2 28 3.5 8.2
469 2 22.8 1.0 7.6 30 1.8 12.5
800 5 21.8 1.0 5.7 3.8 1.9 11.8

A.10. Conclusions

For all circuits except the smallest (32- and 64-cell) the cell-position update time dwarfs the other com-

ponents of cell-move evaluation. Prior to cvery update, the hypercube must perform the N-way broadcast to

synchronize and share updatc information. Despite novel algorithms developed to minimize this cost , this

broadcast overhead will grow larger proportional to the rest of the algorithm as the hypercube size increases.

While the other individual routincs have tremendous potential for optimization, broadcast time is dependent

almost exclusively on the hardware and would eventually become a serious bottleneck, especially on larger

hypercubes. It is for this reason we chose to develop adaptive sequence-length adjustment as an effective means

of eliminating broadcast overhead.
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APPENDIX B

PROGRAM USERS’ GUIDE AND OVERVIEW OF ALGORITHM

B.1.1. Introduction

Physically this program has two parts - the "host" program that runs on the iPSC/2 Host, and the "node”
program that runs on each Hypcrcube node. Both programs are physically divided across several "C" language
source files. Each program is compiled scparately and a "makefile” is included with the source to ease this pro-
cess. After the program has becn modificd or retuncd, type "touch *.c”, then "make" to rebuild the host and

node binary files. It is important to always recompile ail the source files if the header file "anneal.h” is modified.

B.1.2. Program invocation
To start up the program on the Intel iPSC/2, simply type:

getcube -c test -t Nm4 > NODELOG
host > HOSTLOG &

The parameter N above should be the size (number of nodes) of the hypercube desired. The program will
automatically adjust for the size of the hypercube allocated. Now preliminary output will be sent to the file
HOSTLOG, and exccution will start. Output from the nodes is collected separately in the file NODELOG. The
NODELOG accumulates data as anncaling progresscs, recording temperature, cost averages, and other statistics.

The HOSTLOG will contain beginning and cnding placement costs, elapsed runtime, etc.

B.1.3. Program input

The host program reads the circuit description and system parameters from a file in the local directory
called "data." This circuit description file is the same format as specified in M. Jones’ thesis, "A Parallel Siimuy-
lated Anncaling Algorithm for Standard Cell Placement on a Hypercube Multiprocessor,” with the exception that
a new "centered” flag appears as the first line. The first seven lines in this file have the following meaning to the
program:

1. Centered Bit. 1 if all pins arc located at center of
cell, elsc 0. (1 for data.32 and data.64).

2. Number of attempted moves per cell at cach iteration/temperature
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of the system. (not uscd.)

3. Standard hcight of cach logic cell.

4. Bytes of memory requircd to hold all cell-specification structures.
S. Desired length of every row of cells in circuit.

6. Number of rows of cells in circuit.

7. Desired character prefix for output file.
(not used)

Following these parametcrs a variatlc number of cell-specification structures should follow. For each logic cell

in the circuit the following format is required:

1. Unique global ccll ID-number (zcro-bascd.)
2. Cell width.
3. Total number of ncts cell is a member of.
4, For each net spccificd in 3.

a) Unique global net ID number.

b) Total number of pins in net specified in a.

¢) For cach of the pins specificd in b.

i) ID number of cell in which pin is located.

ii) X and Y location of pin relative to center of cell.
(OMIT if Centered Bit set above.)

In addition, if heuristic cell coloring mode is enabled, the file *data.col’ will be read for coloring details

produced by the program -color-. Sce Section B.2 on coloring for details.

B.1.4. Program output

In addition to the output sent to stdout (UNIX standard output, redirect with a pipe ’I’ or *>’) by the host

and node programs, at program complction the host writes out two files:

1) "results" : a pic-format file that shows cell-placement
graphically. Uscful for smail (under 300 cells) circuits
to verify the program is not creating Frankenstein-like
placement.
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2) "twout.pl1” : Optimized ccll placement record in TimberWolf
format. Actually after the host creates this file it
needs to be reformatted slightly using the following
commands:

cp twout.pll twout.tmp
sort -n +6 -8 +1 -3 twout.tmp > twout.pl1
rm twout.tmp

B.1.5. Program Tunables and Compiler Directives
Several runtime options arc included in the source with conditional #if and #ifdef preprocessor statements.
Some merely have to be defincd (i.e., with -Doption in the makefile) while others hold specific values and are

defined in the header file anncal.h’.

DEBUGZ

Enables all the embedded debugging messages. These messages are sent to standard output along with
normal output. This is uscful if you don’t have any ideca where to start but slows the program down
tremendously.

WEIGHTED

Causes cost calculations regarding wiring to be based on the formula

1/2perimeter of bounding box x min(1,sqrt(number pins in net —2)

instead of just 1/2 the bounding box.

iPSC/2
Archaic flag to indicate which hypercube program will run on. Should always be defined.

SYNCH

Another anachronism. Keep this defined.

The following are explicitly defined in *anneal.h’ and change the behavior depending on whether they are

setON=1,0orOFF=0.

COLORING

Enables Heuristic Cell Coloring.
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FEEDBACK
Enables adaptive sequence length adjustment through error control. Obviously COLORING and FEED-

BACK should not both be enabled simultaneously.

TWRANGE

Enables a move range limiter identical to TimberWolf3.2.

NORANGE
Disables range limiter. Only one of TWRANGE and NORANGE should be enabled simultaneously.

B.2. Cell-Coloring Program

The cell-coloring program "color” takes as input a circuit description file in the format described above,

and generatcs an output file with lines of the the following format:
Unique_Cell_ID_# Ccll_Color

i.e., one linc for each cell. Program invocation is simple:
color inputfile centered-flag owtputfile scheme#

where scheme# is 1 for Brelaz, 2 for Random, and 3 for greedy depth first. A sample invocation would be:
color data.32 1 32.coll 1

Now the file 32.coll would be copied over to "data.col” for the annealing program if necessary.

B.3. Procedural Description of Parallel Algorithm

The parallel simulated annealing algorithm has been implemented in the C programming language. The
software package has been divided into several modules, each of which controls a different aspect of program
control. Each of the modules is contained in a separate file. The following sections give details and purpose of

the procedures and functions contained in cach module.
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anneal.h

host.c

print.c

Header filc containing all global structure and constant definitions along with external declarations of

global variables. This file is uscd by all other modules through inclusion in the compilation process.

This file contains all source code which is loaded into and run by the host-processing node to initialize
the system, distribute the work load to the hypercube processing nodes, and gather the final optimized

cell placement. This file contains the following procedures and functions:

main - Main functional level procedure of host node which calls all required procedures and loads the
processing nodes with executable code.

input_params - Reads from user file the initial setting of various system-wide parameters and allocates
buffer space for holding the cell specification structures.

input_mods - Reads from user file the size and interconnectivity of the standard logic cells whose
placement is to be optimized.

distribute_mods - Randomly performs the initial placement of cells and distributes the physical chip
arca among the node proccessors.

init_mod - Initializes the cell-specification structures at both the cell and net level as determined by the
initial random placcment.

send_mods - Transfers the cell-specification structure over the hypercube links to each processing node
as detcrmined by the distribute_mods procedure.

gather_mods - Retrieves the optimal placement of cells from the processing nodes of the hypercube.

This file contains the procedurcs run at the host node, which performs terminal and file output of cir-
cuit statistics. These procedures include:

network_cost - Calculates and outputs to the terminal the cost of a given cell placement in terms of
cdge overlap, cell overlap, and required wire routing.

print_mod_pos - Outputs the position of each of the standard logic cells and the total area required for
the given placement of cells.

print_circuit - Graphically shows the rclative position of each of the cells in a given placement. A file
capable of being run using pic | roff -mc to create an exact picture of the given placement is also
created.



node.c

init.c

net.c

utility.c
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This file contains the main functional level procedure which is duplicated and run at each of the node

processors of the hypercube to perform the parallel simulated annealing algorithm.

This file contains the node procedures and functions which initialize a hypercube node using system

parameters and cell specification structures received from the host node. This file contains the follow-

ing procedures and functions:

init_params - Initializes the system wide parameters received from the host node.
init_mod - Initializes the locally allocated cell specification structures received from the host node.

neighbors - Detcrmines the identity of the node processors which correspond to the east and west logi-
cal neighbors of the physically mapped circuit.

init_borders - Intcracts with logical east and west node processors to create a list of cells to be used in
determining cell overlap attributed to cells in neighboring processors.

File containing communications-oriented procedures and functions used to transmit and receive infor-
mation over the links of the hypercube using logical channels. This file contains the following pro-

cedures and functions:

send_mod - Transmits the cell-specification structure of a given cell to a neighboring node processor.
rec_mod - Receives a cell-specification structure transmitted using send_mod.

broadcast_cost - This function transmits the partial global cost associated with a node’s locally allo-
cated cells to all other nodes in the hypercube. It then receives and adds partial costs from all other
nodes in order to determine the global cost of the present placement. '

broadcast_update - Informs and rcceives from all other node processors information regarding
changes in cell placcment during the last iteration of the algorithm.

send_haost - Transmits the linal placement of all locally allocated cells to the host node.

This file contains various computationally intensive procedures and functions used during the iterative

phases of the algorithm. This file contains the following procedures and functions:
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irandom - Produces a pseudorandom integer between given limiFs.

drandom - Produces a pseudorandom real valued number between given limits.
param_update - Updates temperature parameter and range limiter.

mod_sel - Randomly sclects a cell from a list of locally allocated cells.

dist_ok - Determines if the distance of the movement of a cell is within the bounds set by the range
limiter.

accept_change - Determines if a proposed move should be accepted based on the change in cost and an
exponcntial function of icmperature.

switch_list - Switches the row a cell is associated with.

insert_mod - Adds a cell to the present set of locally allocated cells.

remove_mod - Removes a ccll from the present set of locally allocated cells.

find_cost - Dctermines the partial global cost associated with the present set of locally allocated cells.
find_my_ex_cost - Determines the change in cost for a ﬁroposed intraprocessor exchange of cells,
find_ex_cost - Determincs the partial change in cost for a proposed interprocessor exchange of cells.

find_disp_cost - Determines the change in cost for a proposed intraprocessor displacement or the slave
processor’s partial cost for a proposed interprocessor displacement.

disp_loss_cost - Determines the master’s change in cost for an interprocessor displacement.
wire_cost - Dctermines the change in wiring cost for a proposed move.

overlap_cost - Determincs the change in cell overlap with cells within the same processor for a pro-
posed move.

border_cost - Determines the change in cell overlap with cells in logical east and west neighboring
processors for a proposcd move.

update - Updates all locally allocated cell-specification structures for a change in a given cell’s loca-
tion.
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We present placement results for real industry circuits and summarize the performance of an implementa-
tion on the Intel iPSC/2 Hypercube. The runime of this algorithm is 5 to 16 times faster than a previous pro-
gram developed for the Hypercube, while producing equivalent quality placement. An integrated place and route

program for the Intcl iPSC/2 Hypercube is currently being developed around this kemnel algorithm.
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